WO2020031948A1 - レーザ加工システムに用いられる機械学習方法、シミュレーション装置、レーザ加工システム並びにプログラム - Google Patents

レーザ加工システムに用いられる機械学習方法、シミュレーション装置、レーザ加工システム並びにプログラム Download PDF

Info

Publication number
WO2020031948A1
WO2020031948A1 PCT/JP2019/030695 JP2019030695W WO2020031948A1 WO 2020031948 A1 WO2020031948 A1 WO 2020031948A1 JP 2019030695 W JP2019030695 W JP 2019030695W WO 2020031948 A1 WO2020031948 A1 WO 2020031948A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
data
processed
laser
laser light
Prior art date
Application number
PCT/JP2019/030695
Other languages
English (en)
French (fr)
Inventor
小林 洋平
峻太郎 谷
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2020535752A priority Critical patent/JPWO2020031948A1/ja
Priority to CN201980051966.9A priority patent/CN112543692A/zh
Priority to US17/265,667 priority patent/US20210299788A1/en
Priority to EP19846492.7A priority patent/EP3834979A4/en
Publication of WO2020031948A1 publication Critical patent/WO2020031948A1/ja
Priority to JP2023172717A priority patent/JP2023171479A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/006Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to using of neural networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45041Laser cutting

Definitions

  • the present invention relates to a machine learning method, a simulation device, a laser processing system, and a program used in a laser processing system.
  • techniques related to machine learning used in this type of laser processing system include a state quantity observation unit that observes a state quantity of the laser processing system, an operation result acquisition unit that acquires a processing result by the laser processing system, and a state quantity A learning unit that receives the output from the observation unit and the output from the operation result acquisition unit and learns the laser processing condition data in association with the state quantity and the processing result of the laser processing system, and a laser processing condition data learned by the learning unit.
  • a machine learning device including a decision-making unit that outputs laser processing condition data has been proposed (for example, see Patent Document 1). According to this apparatus, it is said that such machine learning can determine laser processing condition data that provides an optimum processing result.
  • the removal volume (ablation volume) removed from the object to be processed increases nonlinearly with respect to the number of irradiation pulses, and the fluence (pulse energy per unit area) of the laser light to be irradiated is increased. It is also found that the ablation volume increases non-linearly. Therefore, even if parameters are set on the object to be processed and the laser light is irradiated, it is necessary to estimate the degree of ablation processing by the irradiation of the laser light or to perform a specific processing on the object to be processed. It was extremely difficult to set the parameters of the laser light. In the machine learning device described above, it is said that laser processing condition data that can obtain an optimum processing result can be determined. However, this is only learning in relation to the result of laser processing, and laser processing during laser processing is performed. There is no learning in relation to the degree of processing of the processed part before and after light irradiation.
  • the machine learning method used in the laser processing system of the present invention is to learn the degree of processing of a processing portion before and after laser light irradiation during laser processing, the material of a processing target object, and parameters of laser light to be irradiated.
  • the main purpose is.
  • the simulation device used in the laser processing system of the present invention uses a learning result of the degree of processing of the processing portion before and after the irradiation of the laser light during the laser processing, the material of the processing target, and the parameters of the laser light to be irradiated.
  • the main purpose is to perform a simulation that has been performed.
  • the main object of the laser processing system of the present invention is to improve the accuracy of laser processing.
  • the program of the present invention causes a computer to function as a machine learning device that learns the degree of processing of a processing portion before and after laser light irradiation during laser processing, the material of a processing target object, and parameters of laser light to be irradiated.
  • the main purpose is.
  • the machine learning method, the simulation device, the laser processing system, and the program used in the laser processing system of the present invention employ the following means in order to achieve the above-mentioned main object.
  • the machine learning method of the present invention A machine learning method used in a laser processing system that performs ablation processing by irradiating a laser beam to a processing target, Reflects the material of the object to be processed, a laser light parameter indicating characteristics of the laser light applied to the object to be processed, and a three-dimensional shape accompanying the laser processing of the processing portion before and after the object to be processed is irradiated with the laser light. Deep learning was performed using the pre-processed part data and the post-processed part data, and when the material of the processing target, the pre-processed part data, and the laser light parameter were input data, the laser light according to the input data was irradiated. Obtain a first relationship with the subsequent post-processed part data as output data as one of the learning results. It is characterized by the following.
  • the material of the object to be processed, the laser light parameter indicating the characteristic of the laser light irradiated to the object to be processed, and the laser processing of the processing part before and after irradiating the object to be processed with the laser light are used.
  • Deep learning is performed using the pre-processed part data and the post-processed part data that reflect the dimensional shape, and as the result of this deep learning (learning result), the material of the workpiece, pre-processed part data, and laser beam parameters are input.
  • a first relationship is obtained in which the post-processed portion data after the irradiation of the laser beam according to the input data is used as the output data.
  • the pre-processed part data and the post-processed part data are data reflecting the three-dimensional shape accompanying the laser processing of the processed part before and after irradiating the processing target with the laser light.
  • Data before and after laser light irradiation in the middle and before and after laser light irradiation in the middle of laser processing, and data before and after laser light irradiation in the middle of laser processing and after laser processing (after processing is completed) Also included.
  • the pre-processing When the part data and the laser light parameter are input data, the first relationship in which the post-processed part data after the irradiation of the laser beam related to the input data is used as the output data can be used as the learning result.
  • the “deep learning” in the machine learning method of the present invention uses the pre-processed part data and the post-processed part data, and basically obtains the first relationship using the post-processed part data as output data as a learning result. Is supervised learning.
  • the laser light parameter at least a part of the wavelength, the pulse width, the pulse intensity, the spot diameter, the number of pulses, and the fluence (pulse energy per unit area) can be used.
  • the “post-processing portion data” at least a part of the three-dimensional shape data of the processing portion, the surface temperature distribution data of the processing portion, and the color distribution data of the processing portion can be used. This is because the surface temperature distribution data of the processed portion and the color distribution data of the processed portion indicate a change in temperature due to the irradiation of the laser beam, and are considered to reflect the easiness and change in the three-dimensional shape.
  • the color distribution data includes not only data of normal color distribution but also Raman spectrum data, light reflectance spectrum data, and the like.
  • the processed portion of the pre-processed portion data related to the input data may be obtained as one of the learning results in which the laser light parameter of the laser light to be irradiated necessary for changing the state of the post-processing part data to the state of the processing part from the state described above is used as output data.
  • the simulation device of the present invention A simulation device used in a laser processing system for performing ablation processing by irradiating a laser beam to a processing object,
  • the laser light parameter is used as the input data, the first relationship in which the post-processing portion data is output data after the irradiation of the laser beam related to the input data, or the material of the object to be processed based on the first relationship
  • the material of the object to be processed, pre-processed portion data, or output post-processed portion data after the laser beam according to the input data is irradiated when the laser light parameter is input data
  • Necessary to change the state of the processed part of the pre-processed part data from the state of the processed part of the post-processed part data to the state of the processed part of the post-processed part data when the material of the processing target, the pre-processed part data, and the post-processed part data are input data. It is possible to output a laser beam parameter of a laser beam to be irradiated. This makes it possible to perform a simulation using the learning result of the degree of processing of the processing portion before and after the laser light irradiation during the laser processing, the material of the processing target object, and the parameters of the laser light to be irradiated.
  • the shape before processing and the target shape of the processing object are input, and the laser light parameter and the laser light irradiation location are adjusted according to the difference between the shape during processing and the target shape.
  • the obtained data is used as the input data, and the output data as a result of the processing simulation obtained by applying the learning result to the input data is used as the shape during the processing, and the output between the shape during the processing and the target shape is obtained.
  • the processing simulation may be repeated until the difference falls within a predetermined range. For example, an arbitrary laser beam parameter and an arbitrary number of laser irradiation locations are set as initial values, the material of the object to be processed, the shape before processing, etc.
  • the output data is obtained by applying a processing simulation.
  • Post-processed part data after the irradiation of the laser beam according to the input data is obtained.
  • the obtained output data is used to determine whether the difference between the target shape and the shape being processed is within a predetermined range as the shape being processed. If the difference between the shape being processed and the target shape is not within the predetermined range, the difference is determined.
  • the laser light parameter and the laser irradiation position are adjusted according to the above to obtain input data. Then, a processing simulation is applied to the adjusted input data to obtain output data.
  • the number of repetitions of such repetitive processing, the laser beam parameters adjusted for each repetition, and the laser irradiation location are the simulation results.
  • the optimum value of laser processing is obtained by changing the initial value and obtaining simulation results over a plurality of times, and comparing the total energy, processing time, processing accuracy, and the like by laser irradiation in each simulation result. be able to.
  • the first laser processing system of the present invention comprises: A laser beam irradiating apparatus for performing ablation processing by irradiating a laser beam to a processing object, and a processing section data shape measuring apparatus for measuring processing section data reflecting a three-dimensional shape accompanying laser processing on the processing object And a control device for controlling the processing laser light irradiation device, a laser processing system comprising: The control device performs learning using the machine learning method according to any one of the above-described embodiments of the present invention, that is, a material of a processing target, a laser light parameter indicating a characteristic of a laser beam applied to the processing target, and a processing.
  • Deep learning is performed using the pre-processing part data and the post-processing part data that reflect the three-dimensional shape accompanying the laser processing of the processing part before and after irradiating the object with the laser beam, and the material of the processing object and the pre-processing
  • a part data and a laser beam parameter are set as input data
  • a first relation in which post-processed part data is output data after the irradiation of the laser beam related to the input data is obtained as one of the learning results.
  • the pre-processed part data, and the state of the processed part of the post-processed part data Based on the material of the object to be processed, the pre-processed part data, and the state of the processed part of the post-processed part data from the state of the processed part of the pre-processed part data based on the input data when the post-processed part data is input data.
  • the processing unit before and after laser beam irradiation during laser processing is performed.
  • Laser processing can be performed using the learning result of the degree, the material of the object to be processed, and the parameters of the laser light to be irradiated. Further, since the first relationship and the second relationship are learned each time the laser processing is performed, the accuracy of the laser processing can be increased.
  • a second laser processing system includes: A laser processing system that includes a processing laser light irradiation device that performs ablation processing by irradiating a processing target with laser light, and a control device that controls the processing laser light irradiation device,
  • the control device is a learning result obtained by the machine learning method according to any one of the embodiments of the present invention described above, that is, a material of a processing target, a laser light parameter indicating a characteristic of a laser beam irradiated on the processing target, and processing.
  • the material of the processing object obtained by performing deep learning using the pre-processing part data and the post-processing part data reflecting the three-dimensional shape accompanying the laser processing of the processing part before and after irradiating the object with the laser beam,
  • the pre-processed portion data and the laser light parameter are input data
  • the laser beam related to the input data is irradiated
  • the post-processed portion data is used as output data.
  • Controlling the processing laser light irradiation apparatus on the basis of the output data for the input data using the second relationship, to the laser beam parameters output data of the laser beam to, It is characterized by the following.
  • the processing unit before and after the irradiation of the laser beam during laser processing is used.
  • Laser processing can be performed using the learning result of the degree of processing, the material of the processing object, and the parameters of the laser beam to be irradiated, and as a result, the accuracy of laser processing can be increased.
  • the program of the present invention A program that causes a computer to function as a machine learning device used in a laser processing system, Before reflecting the material of the object to be processed, a laser light parameter indicating characteristics of the laser light irradiated on the object to be processed, and the three-dimensional shape accompanying the laser processing of the processing part before and after irradiating the object to be processed with the laser light.
  • a plurality of data consisting of processed part data and post-processed part data;
  • the material of the object to be processed, the pre-processed portion data, and the post-processed portion after the laser light according to the input data is irradiated when the laser light parameter is set as the input data.
  • the material of the object to be processed the laser light parameter indicating the characteristics of the laser light irradiated to the object to be processed, the three-dimensional shape accompanying the laser processing of the processing part before and after the object is irradiated with the laser light.
  • Input multiple data consisting of pre-processed part data and post-processed part data to reflect the material of the object to be processed, pre-processed part data, and laser beam parameters by deep learning using the input data.
  • the pre-processed part data and the post-processed part data are data reflecting the three-dimensional shape accompanying the laser processing of the processed part before and after irradiating the processing target with the laser light.
  • Data before and after laser light irradiation in the middle, before and after laser light irradiation in the middle of laser processing, data before and after laser light irradiation in the middle of laser processing and after laser processing (after processing is completed) Also included.
  • This allows the computer to function as a machine learning device that learns the degree of processing of the processing portion before and after the laser light irradiation during laser processing, the material of the processing target, and the parameters of the laser light to be irradiated.
  • “deep learning” uses the pre-processed part data and the post-processed part data, and obtains the first relationship using the post-processed part data as output data.
  • “laser light parameter” at least a part of the wavelength, the pulse width, the pulse intensity, the number of pulses, and the fluence (pulse energy per unit area) can be used.
  • data at least a part of the three-dimensional data of the processed part, the surface temperature distribution data of the processed part, and the color distribution data of the processed part can be used.
  • the program according to the present invention based on the first relationship, when the material of the object to be processed, pre-processed portion data, and post-processed portion data are input data, the state of the processed portion of the pre-processed portion data related to the input data And a step of obtaining, as one of the learning results, a second relation in which a laser beam parameter of a laser beam to be irradiated necessary for setting the state of the processed portion in the post-processed portion data is output data. .
  • the computer changes the state of the pre-processed portion data processed portion related to the input data to the post-processed portion data processed portion.
  • FIG. 1 is a configuration diagram illustrating a schematic configuration of a laser processing system 20 as one embodiment of the present invention. It is a schematic diagram which shows deep learning of an Example typically. 5 is a flowchart illustrating an example of a learning process performed by a system control unit 50. It is explanatory drawing which shows an example of three-dimensional shape data for every laser beam irradiation when seven laser beams of random laser beam parameters are irradiated to a random irradiation position at the time of acquiring learning data.
  • FIG. 7 is an explanatory diagram showing an irradiation state of laser light when the object to be processed 10 is moved by 10 ⁇ m at a time, and seven shots are sequentially irradiated in a folded manner.
  • FIG. 4 is an explanatory diagram illustrating an example of total fluence irradiated with laser.
  • FIG. 4 is an explanatory diagram showing a proportional relationship between three-dimensional shape data obtained by laser processing using simulation result and three-dimensional shape data obtained by using simulation results;
  • FIG. 3 is an explanatory diagram illustrating a relationship among the number of irradiation pulses of laser light, fluence, and a removal volume removed from a processing object.
  • FIG. 1 is a configuration diagram schematically showing the configuration of a laser processing system 20 as one embodiment of the present invention.
  • the laser processing system 20 includes a processing laser irradiation device 30 that outputs a processing laser beam, and a focus lens 42 and a mirror 44 that are output from the processing laser irradiation device 30 and focus and irradiate.
  • the motorized stage 46 on which the object 10 to be irradiated with the laser light whose position has been adjusted is mounted, a three-dimensional data measuring device 48 for measuring the three-dimensional shape data of the processing part of the object 10, and the entire system And a system control unit 50 for controlling.
  • the processing laser irradiator 30 includes a processing laser irradiator 32 that outputs a processing laser light, and a pulse picker 34 that cuts out an arbitrary number of pulses at an arbitrary timing from a pulse train of the laser light from the processing laser irradiator 32.
  • a half-wave plate 35 for adjusting the polarization direction of the laser light from the pulse picker 34, a polarization beam splitter 36 for reflecting the S-polarized light of the laser light and transmitting the P-polarized light, and a laser control unit for controlling these. 38.
  • the processing laser irradiator 32 has a wavelength of 800 nm, a pulse width of 35 fs to 10 ps and can be changed, a repetition frequency of 1 kHz, a maximum output of 6 W, a maximum pulse energy of 6 mJ, and a fluence of 0.1 to 100 J / cm 2.
  • a titanium sapphire laser irradiator capable of outputting a laser beam (pulse laser beam).
  • the wavelength plate 35 and the polarization beam splitter 36 can use an acousto-optic device (AOM), a neutral density filter, or the like instead.
  • AOM acousto-optic device
  • the laser control unit 38 is configured as a microcomputer centered on a CPU (not shown), and includes a ROM, a RAM, a flash memory, an input / output port, a communication port, and the like in addition to the CPU.
  • the laser controller 38 communicates with the system controller 50 via a communication port.
  • the laser control unit 38 controls the processing laser irradiator 32 so that laser light having a laser light parameter based on a control signal from the system control unit 50 is output.
  • the laser light parameter at least a part of the wavelength, the pulse width, the pulse intensity, the spot diameter, the number of pulses, and the fluence (pulse energy per unit area) can be used.
  • the laser control unit 38 controls the pulse picker 34 so that the timing or the number of pulses for cutting out the pulse train of the laser beam based on the control signal from the system control unit 50, or based on the control signal from the system control unit 50
  • the half-wave plate 35 and the polarization beam splitter 36 are controlled so as to be in the polarization direction of the laser light.
  • the electric stage 46 is a stage for moving the object 10 to the measurement position of the three-dimensional data measuring device 48.
  • the electric stage 46 has a position accuracy of 0.5 ⁇ m and a movable distance of 150 mm.
  • the three-dimensional measuring device 48 includes, for example, a white interference microscope, a scanning laser microscope, an X-ray CT (Computed Tomography: computer tomography diagnostic apparatus), a step meter, an AMF (Atomic Force Microscope: an atomic force microscope), and a Raman microscope.
  • An apparatus capable of measuring a dimensional shape can be used.
  • a white interference microscope having a vertical resolution of 1 nm, a horizontal resolution of 0.2 ⁇ m, and a measurement time of 1 to 10 seconds was used as the measurement accuracy. If the same optical system as the laser beam is used as the three-dimensional measuring device 48, the electric stage 46 becomes unnecessary.
  • the three-dimensional shape data measured by the three-dimensional measuring device 48 can include not only the three-dimensional shape data of the processed part but also the surface temperature distribution data of the processed part and the color distribution data of the processed part. This is because the surface temperature distribution data of the processed portion and the color distribution data of the processed portion indicate a change in temperature due to the irradiation of the laser beam, and are considered to reflect the easiness and change in the three-dimensional shape.
  • the color distribution data includes not only data of normal color distribution but also Raman spectrum data, light reflectance spectrum data, and the like.
  • the system control unit 50 is configured as a microcomputer centered on a CPU, and includes a ROM, a RAM, a flash memory, a GPU (Graphics Processing Unit), an input / output port, a communication port, and the like in addition to the CPU. .
  • the system control unit 50 functionally includes an input unit 52 such as a keyboard and a mouse, and a machine learning unit 54. To the system control unit 50, input data from the input unit 52, position signals of the workpiece 10 on the electric stage 46, three-dimensional measurement data from the three-dimensional measuring device 48, and the like are input via input ports. .
  • a drive control signal to the electric stage 46 and a drive control signal to the three-dimensional measuring device 48 are output from the system control unit 50 through the output port. Further, the system control unit 50 communicates with the laser control unit 38 and acquires the laser light parameters of the laser light output from the processing laser irradiation device 30.
  • the machine learning unit 54 includes the material of the processing target 10, laser light parameters of the laser light applied to the processing unit of the processing target 10, and three-dimensional shape data of the processing unit before and after the laser light irradiation. Deep learning is performed using the learning data, and as the first input data, the material of the processing object 10 and the laser light parameters of the laser light to be applied to the processing part of the processing object 10 and the processing part before the laser light irradiation.
  • the three-dimensional shape data is given, a relationship for estimating the three-dimensional shape data of the processed portion after the irradiation of the laser beam as the first output data is obtained as a first learning result and stored as a learning result 56.
  • FIG. 2 is a schematic diagram schematically illustrating deep learning according to the embodiment.
  • the deep learning of the embodiment is based on a supervised convolutional neural network since the three-dimensional shape data of the processed portion after the irradiation of the laser beam is input. It becomes a feature vector.
  • the second output The relation for estimating the laser light parameter of the laser light to be irradiated on the processing portion of the processing target 10 as data is obtained as a second learning result, and this is also stored as the learning result 56.
  • the laser processing system 20 of the embodiment functions as a laser processing system that performs laser processing by irradiating a laser beam to a processing portion of the processing target 10 mounted on the electric stage 46, and is mounted on the electric stage 46.
  • the laser processing system 20 of the embodiment inputs the first input data and the second input data from the input unit 52 and the like, and outputs the learning result 56 of the machine learning unit 54 to the first input data and the second input data.
  • FIG. 3 is a flowchart illustrating an example of a learning process performed by the system control unit 50 of the laser processing system 20 according to the embodiment.
  • the processing object 10 is set on the electric stage 46 (step S100), and the three-dimensional measuring device 48 acquires three-dimensional shape data of the processing part before laser processing (step S110).
  • a random laser light parameter is set at a random irradiation position within a predetermined range (for example, a range in which laser light irradiation is possible) (step S120), and laser light of the set laser light parameter is irradiated to the set irradiation position ( (Step S130)
  • the three-dimensional shape data after irradiating the laser beam with the three-dimensional measuring device 48 is acquired (Step S140).
  • the processes of steps S120 to S140 are repeatedly executed until the number of irradiations Nf reaches a threshold value Nfref (for example, 100 times or 200 times) (step S150).
  • a threshold value Nfref for example, 100 times or 200 times
  • FIG. 4 shows an example of three-dimensional shape data for each laser beam irradiation when seven laser beams having random laser beam parameters are irradiated to random irradiation positions when acquiring learning data.
  • the color depth indicates the depth of the processed portion.
  • a laser beam having a random laser beam parameter is irradiated to a random irradiation position of the processing object 10.
  • the pulse energy of the laser beam used in the experiment of FIG. 4 was random within the range of 0.1 ⁇ J to 100 ⁇ J.
  • steps S120 to S150 are repeated until the number of repetitions Nn of the workpiece 10 of the same material reaches a threshold value Nnref (for example, 20 or 30 times) (step S160), and the material of the workpiece 10 Until the number Nm reaches a threshold value Nmref (for example, 5 or 10) (step S170), the process is repeatedly executed from the process of setting a new workpiece 10 on the electric stage 46 in step S100.
  • a threshold value Nnref for example, 20 or 30 times
  • Nmref for example, 5 or 10
  • Examples of the material of the processing object 10 include quartz, copper, aluminum, carbon fiber reinforced plastic (CFRP) sapphire, and silicon.
  • the threshold Nfref of the number of irradiations Nf is 200 times
  • the threshold Nnref of the number of repetitions Nn of the workpiece 10 of the same material is 20 times
  • the threshold Nmref of the number Nm of materials of the workpiece 10 is 5
  • the number of data for use is 20,000 (200 ⁇ 20 ⁇ 5).
  • the learning data is three-dimensional shape data before and after laser beam parameters and laser light irradiation.
  • step S1 When the learning data is acquired in this manner, supervised deep learning is performed in which the laser light parameter is used as the feature vector z for the acquired learning data, and the three-dimensional shape data after the irradiation of the laser light is the solution of the example (step S1). S180). Then, when the material of the processing object 10, the laser light parameter of the laser light applied to the processing part of the processing object 10, and the three-dimensional shape data of the processing part before the irradiation of the laser light are given as the first input data. Then, a relationship for estimating the three-dimensional shape data of the processed portion after the irradiation of the laser beam as the first output data is obtained as a first learning result and stored (step S190).
  • the processing as the second output data is performed.
  • the relation for estimating the laser light parameter of the laser light to be irradiated on the processing part of the object 10 is derived as the second learning result (step S200), and this is stored (step S210), and the learning processing ends.
  • FIG. 6 shows a simulation result and an experiment result of the processing depth at each position in the folding direction of the processed portion when the pulse energy is set to 50 ⁇ J and the turning direction of the processed portion.
  • FIG. 7 shows a simulation result and an experimental result of the processing depth at each position in the folding direction of the processing portion when the laser beam is irradiated at 100 pulses with pulse energy of 40 ⁇ J, 50 ⁇ J, and 60 ⁇ J.
  • the scale of the vertical axis is changed when the pulse energy is 40 ⁇ J, 50 ⁇ J, and 60 ⁇ J, but the simulation result and the experiment result agree well.
  • FIG. 8 shows a laser beam having a wavelength of 800 nm, a spot diameter of 26 ⁇ m, a pulse width of 35 fs, and a pulse energy of 50 ⁇ J applied to a processing object 10 made of silicon at a rate of 12.5 ⁇ m along a 125 ⁇ m-sided star.
  • a processing object 10 made of silicon at a rate of 12.5 ⁇ m along a 125 ⁇ m-sided star.
  • the color depth is the processing depth.
  • the simulation results and the experimental results are in good agreement with the machining depth shape (average depth, outer peripheral shape, point that is deeper at line intersections).
  • the material of the processing target 10 a laser light parameter indicating the characteristics of the laser light irradiated on the processing target 10
  • the processing unit before and after the processing target 10 is irradiated with the laser light.
  • Deep learning is performed using the three-dimensional shape data.
  • the laser light parameter of the laser light applied to the processing part of the processing target 10 and the three-dimensional shape data of the processing part before the laser light irradiation are given as the first input data
  • a relationship for estimating the three-dimensional shape data of the processed portion after the irradiation of the laser beam as one output data is obtained as a first learning result.
  • the laser processing system 20 of the embodiment when the material of the processing target 10 and the three-dimensional shape data of the processing part before and after the irradiation of the laser beam are given as the second input data based on the first learning result. Then, a relationship for estimating the laser light parameter of the laser light to be irradiated on the processing portion of the processing target 10 as the second output data is derived as a second learning result. Thereby, it is possible to estimate the laser light parameters of the laser light necessary for forming the processed portion of the processing target 10 into a desired shape.
  • learning data is acquired for the processing object 10 of a different material in addition to the processing object 10 of the same material.
  • the processing object of the same material is used.
  • the learning data may be acquired for only 10.
  • the three-dimensional shape data of the processing unit is acquired every time the laser light is irradiated. However, every time the laser light is irradiated plural times, or the laser light is randomly generated.
  • the three-dimensional shape data of the processing unit may be acquired every time the irradiation is performed for a sufficient number of times. In this case, the laser light to be irradiated a plurality of times or the laser light to be irradiated at random times may have the same laser light parameter or different laser light parameters.
  • 800 nm is used as the wavelength of the laser light.
  • the wavelength range in which the electron excitation by light affects the processing that is, the laser light whose wavelength is in the range of 193 nm to 5 ⁇ m. Is also applicable.
  • the present invention is also applied to a laser light having a pulse width ranging from short pulses to ultrashort pulses, that is, a pulse width ranging from 10 fs to 100 ns. It is possible.
  • machine learning is performed when the learning processing in FIG. 3 is performed. However, after the learning processing in FIG. Machine learning may be performed using the learning data accumulated up to that time.
  • the laser processing system 20 includes a processing laser irradiation device 30, an electric stage 46, a three-dimensional data measuring device 48, and a system control unit 50, and obtains three-dimensional shape data of the processing unit every time a laser beam is irradiated.
  • the laser processing system 20 has the same hardware configuration as that of the laser processing system 20 of the embodiment, and includes only the system control unit 50.
  • a hardware configuration may be used. In this case, the processing of steps S100 to S170 of the learning processing in FIG.
  • the processing object 10 3 is performed by using the material of the processing object 10 by another apparatus in advance, the laser light parameter indicating the characteristic of the laser light irradiated on the processing object 10, the processing object 10 3D shape data of the processing section before and after the laser beam is irradiated on the laser beam may be acquired, and the learning data may be input.
  • the program may be a program executed by the system control unit 50 when the laser processing system 20 of the embodiment including the device 48 and the like is configured.
  • the program in this case may be a flowchart of the machine learning shown in FIG. If it is not provided with the processing laser irradiation device 30, the electric stage 46, the three-dimensional data measuring device 48, and the like, that is, if only the microcomputer corresponding to the system control unit 50 is provided, FIG.
  • steps S100 to S170 of the learning process is performed by previously irradiating the material of the processing object 10, the laser light parameter indicating the characteristic of the laser light applied to the processing object 10, and the laser light to the processing object 10 by another device. What is necessary is to acquire the three-dimensional shape data of the processed parts before and after and input the learning data.
  • learning data may be input to perform deep learning, or only learning results obtained by deep learning may be stored.
  • FIG. 9 is a flowchart illustrating an example of an optimization simulation process for simulating optimization of a laser beam parameter and a laser irradiation position in laser processing of a processing target.
  • the material and the target shape of the processing target are set (step S300), and the initial values of the processing conditions are set (step S310).
  • the processing conditions are a laser beam parameter and a laser irradiation location, and the initial values of the laser beam parameters are a wavelength, a pulse width, a pulse intensity, a spot diameter, a pulse number, and a fluence. May be determined according to the target shape.
  • the processing simulation is performed based on the input data, using the material of the processing target, the laser beam parameters, and the laser irradiation location as input data (step S320).
  • This processing simulation calculates the three-dimensional shape data (shape in the middle of processing) of the processing part after the irradiation of the laser beam based on the input data by applying the first learning result obtained in the learning process of FIG. 3 to the input data. Is what you do.
  • the difference between the obtained three-dimensional shape data of the processed portion (shape during the processing) and the target shape is calculated, and it is determined whether or not the difference is within an allowable range (step S330).
  • step S340 it is determined whether or not the cutting by laser processing of the processing portion is excessive cutting. If it is determined that the cutting is not excessive cutting, the processing conditions are adjusted based on the difference between the shape being processed and the target shape (step S360). The adjustment of the processing conditions may be such that, for example, an initial value is used for the laser light parameter, and only the laser irradiation position is adjusted so as to irradiate the laser light to a position where the difference between the shape being processed and the target shape is large. Then, both the laser beam parameter and the laser irradiation location may be adjusted. After adjusting the processing conditions, the process returns to step S320 in which the processing simulation is applied using the adjusted processing conditions as input data. The adjustment of the processing conditions and the processing simulation are repeated until the difference between the shape being processed and the target shape falls within an allowable range.
  • step S340 If it is determined in step S340 that overcutting has been performed, it is assumed that the machining simulation performed immediately before was not performed (step S350), and the shape during processing and the target shape as a result of the previously performed processing simulation Then, an adjustment different from the previous adjustment of the processing conditions is performed based on the difference between the two (step S360), and the process returns to step S320. Thereby, overcutting can be suppressed.
  • step S370 it is determined whether the number of repetitions of steps S310 to S370 has reached a predetermined number of calculations.
  • the process returns to the processing of setting the initial values of the processing conditions in step S310.
  • the initial values of the processing conditions it is possible to increase (or decrease) a predetermined amount each time the fluence of the laser beam parameter is repeated, or to increase (or decrease) the number of pulses by a predetermined number. .
  • step S380 When it is determined in step S370 that the number of repetitions of steps S310 to S370 has reached the predetermined number of calculations, each simulation result obtained by repeating steps S310 to S370 a predetermined number of times is output (step S380), and optimization is performed.
  • the simulation processing ends. For optimization, judgment is made based on the degree of difference (processing accuracy) between the three-dimensional shape data obtained by laser processing and the target shape, the energy required for laser processing, the time required for laser processing, etc., for each simulation result. Can be.
  • FIG. 10 shows an example of a simulation result of the relationship between the pulse energy and the total energy and the relationship between the pulse energy and the roughness of the bottom surface.
  • the total energy of the laser processing becomes maximum when the pulse energy is around 25 ⁇ J.
  • the bottom surface roughness pulse energy becomes minimum near 30 ⁇ J.
  • FIG. 11 shows the total fluence irradiated by the laser. In the figure, the value on the outermost side is 0, and the value is maximum at the thinnest point slightly inside the broken circle.
  • FIG. 12 shows three-dimensional shape data obtained by simulation and three-dimensional shape data obtained by laser processing using the processing conditions of the simulation result.
  • the left side is the three-dimensional shape data based on the simulation result
  • the right side is the three-dimensional shape data actually obtained by laser processing.
  • the three-dimensional shape data based on the simulation result agrees well with the three-dimensional shape data obtained after the actual laser processing.
  • the three-dimensional shape data based on the simulation result accurately matches the three-dimensional shape data obtained by actually performing the laser processing. Can be.
  • the present invention is applicable to the laser processing system manufacturing industry and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Evolutionary Computation (AREA)
  • Automation & Control Theory (AREA)
  • Software Systems (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Laser Beam Processing (AREA)

Abstract

【課題】レーザ加工の途中におけるレーザ光の照射の前後の加工部の加工の程度と加工対象物の材質と照射するレーザ光のパラメータとを学習する。 【解決手段】加工対象物の材質、加工対象物に照射したレーザ光の特性を示すレーザ光パラメータ、加工対象物にレーザ光を照射する前後の加工部のレーザ加工に伴う3次元形状を反映する前加工部データおよび後加工部データ、を用いて深層学習を行ない、加工対象物の材質、前加工部データ、レーザ光パラメータを入力データとしたときに入力データに係るレーザ光が照射された後の後加工部データを出力データとする第1関係を学習結果の一つとして得る。

Description

レーザ加工システムに用いられる機械学習方法、シミュレーション装置、レーザ加工システム並びにプログラム
 本発明は、レーザ加工システムに用いられる機械学習方法、シミュレーション装置、レーザ加工システム並びにプログラムに関する。
 従来、この種のレーザ加工システムに用いられる機械学習に関する技術としては、レーザ加工システムの状態量を観測する状態量観測部と、レーザ加工システムによる加工結果を取得する動作結果取得部と、状態量観測部からの出力および動作結果取得部からの出力を受け取り、レーザ加工条件データを、レーザ加工システムの状態量および加工結果に関連付けて学習する学習部と、学習部が学習したレーザ加工条件データを参照して、レーザ加工条件データを出力する意思決定部とを備える機械学習装置が提案されている(例えば、特許文献1参照)。この装置では、こうした機械学習により、最適な加工結果が得られるレーザ加工条件データを決定することができるとされている。
特開2017-164801号公報
 レーザ加工では、図13に示すように、照射パルス数に対して加工対象物から除去される除去体積(アブレーション体積)は非線形に増大し、照射するレーザ光のフルーエンス(単位面積当たりのパルスエネルギ)に対してもアブレーション体積は非線形に増大することが解っている。このため、加工対象物にパラメータを設定してレーザ光を照射しても、そのレーザ光の照射によるアブレーション加工がどの程度になるかを推測したり、加工対象物に特定の加工を施すためにレーザ光のパラメータをどのように設定するかについては極めて困難であった。上述の機械学習装置では、最適な加工結果が得られるレーザ加工条件データを決定することができるとされているが、レーザ加工の結果との関係での学習に過ぎず、レーザ加工の途中におけるレーザ光の照射の前後の加工部の加工の程度との関係での学習は行なわれていない。
 本発明のレーザ加工システムに用いられる機械学習方法は、レーザ加工の途中におけるレーザ光の照射の前後の加工部の加工の程度と加工対象物の材質と照射するレーザ光のパラメータとを学習することを主目的とする。
 本発明のレーザ加工システムに用いられるシミュレーション装置は、レーザ加工の途中におけるレーザ光の照射の前後の加工部の加工の程度と加工対象物の材質と照射するレーザ光のパラメータとの学習結果を用いたシミュレーションを行なうこと主目的とする。
 本発明のレーザ加工システムは、レーザ加工の精度を向上させることを主目的とする。
 本発明のプログラムは、コンピュータをレーザ加工の途中におけるレーザ光の照射の前後の加工部の加工の程度と加工対象物の材質と照射するレーザ光のパラメータとを学習する機械学習装置として機能させることを主目的とする。
 本発明のレーザ加工システムに用いられる機械学習方法、シミュレーション装置、レーザ加工システム並びにプログラムは、上述の主目的を達成するために以下の手段を採った。
 本発明の機械学習方法は、
 加工対象物にレーザ光を照射してアブレーション加工を行なうレーザ加工システムに用いられる機械学習方法であって、
 前記加工対象物の材質、前記加工対象物に照射したレーザ光の特性を示すレーザ光パラメータ、前記加工対象物に前記レーザ光を照射する前後の加工部のレーザ加工に伴う3次元形状を反映する前加工部データおよび後加工部データ、を用いて深層学習を行ない、加工対象物の材質、前加工部データ、レーザ光パラメータを入力データとしたときに前記入力データに係るレーザ光が照射された後の後加工部データを出力データとする第1関係を学習結果の一つとして得る、
 ことを特徴とする。
 この本発明の機械学習方法では、加工対象物の材質、加工対象物に照射したレーザ光の特性を示すレーザ光パラメータ、加工対象物にレーザ光を照射する前後の加工部のレーザ加工に伴う3次元形状を反映する前加工部データおよび後加工部データ、を用いて深層学習を行ない、この深層学習の結果(学習結果)として、加工対象物の材質、前加工部データ、レーザ光パラメータを入力データとしたときに入力データに係るレーザ光が照射された後の後加工部データを出力データとする第1関係を得る。ここで、前加工部データおよび後加工部データは、加工対象物にレーザ光を照射する前後の加工部のレーザ加工に伴う3次元形状を反映するデータであるから、レーザ加工前とレーザ加工の途中とにおけるレーザ光の照射の前後のデータや、レーザ加工の途中におけるレーザ光の照射の前後のデータ、レーザ加工の途中とレーザ加工後(加工完了後)とにおけるレーザ光の照射の前後のデータなども含まれる。これにより、レーザ加工の途中におけるレーザ光の照射の前後の加工部の加工の程度と加工対象物の材質と照射するレーザ光のパラメータとを学習することができ、加工対象物の材質、前加工部データ、レーザ光パラメータを入力データとしたときに入力データに係るレーザ光が照射された後の後加工部データを出力データとする第1関係を学習結果とすることができる。本発明の機械学習方法における「深層学習」は、前加工部データおよび後加工部データを用いており、後加工部データを出力データとする第1の関係を学習結果として得るから、基本的には教師ありの学習となる。また、「レーザ光パラメータ」は、波長、パルス幅、パルス強度、スポット径、パルス数、フルーエンス(単位面積当たりのパルスエネルギ)の少なくとも一部を用いることができ、「前加工部データ」および「後加工部データ」は、加工部の3次元形状データ、加工部の表面温度分布データ、加工部の色分布データの少なくとも一部を用いることができる。加工部の表面温度分布データや加工部の色分布データは、レーザ光の照射による温度の変化を示すものであり、3次元形状の変化のしやすさや変化によるものを反映すると考えられるからである。ここで、色分布データとしては、通常の色の分布のデータだけでなく、ラマンスペクトルデータや光反射率スペクトルデータなども含まれる。
 本発明の機械学習方法において、前記第1関係に基づいて、加工対象物の材質、前加工部データ、後加工部データを入力データとしたときに前記入力データに係る前加工部データの加工部の状態から後加工部データの加工部の状態とするのに必要な照射すべきレーザ光のレーザ光パラメータを出力データとする第2関係を学習結果の一つとして得るものとしてもよい。こうすれば、加工対象物の材質、前加工部データ、後加工部データを入力データとしたときに入力データに係る前加工部データの加工部の状態から後加工部データの加工部の状態とするのに必要な照射すべきレーザ光のレーザ光パラメータを出力データとする第2関係を学習結果として得ることができる。
 本発明のシミュレーション装置は、
 加工対象物にレーザ光を照射してアブレーション加工を行なうレーザ加工システムに用いられるシミュレーション装置であって、
 上述の本発明のいずれかの態様の機械学習方法により得られた学習結果、即ち、加工対象物の材質、加工対象物に照射したレーザ光の特性を示すレーザ光パラメータ、加工対象物にレーザ光を照射する前後の加工部のレーザ加工に伴う3次元形状を反映する前加工部データおよび後加工部データ、を用いて深層学習を行なって得られる、加工対象物の材質、前加工部データ、レーザ光パラメータを入力データとしたときに入力データに係るレーザ光が照射された後の後加工部データを出力データとする第1関係や、第1関係に基づいて、加工対象物の材質、前加工部データ、後加工部データを入力データとしたときに入力データに係る前加工部データの加工部の状態から後加工部データの加工部の状態とするのに必要な照射すべきレーザ光のレーザ光パラメータを出力データとする第2関係、を用いて前記入力データに対して前記出力データを出力する、
 ことを特徴とする。
 この本発明のシミュレーション装置では、加工対象物の材質、前加工部データ、レーザ光パラメータを入力データとしたときに入力データに係るレーザ光が照射された後の後加工部データを出力したり、加工対象物の材質、前加工部データ、後加工部データを入力データとしたときに入力データに係る前加工部データの加工部の状態から後加工部データの加工部の状態とするのに必要な照射すべきレーザ光のレーザ光パラメータを出力したりすることができる。これにより、レーザ加工の途中におけるレーザ光の照射の前後の加工部の加工の程度と加工対象物の材質と照射するレーザ光のパラメータとの学習結果を用いたシミュレーションを行なうことができる。
 この本発明のシミュレーション装置において、前記加工対象物の加工前の形状と目的形状とを入力し、加工途中の形状と目的形状との差分に応じて前記レーザ光パラメータとレーザ光照射箇所とを調整したデータを前記入力データとし、前記入力データに対して前記学習結果を適用して得られる加工シミュレーションの結果としての前記出力データを前記加工途中の形状とし、前記加工途中の形状と目的形状との差分が所定範囲内となるまで前記加工シミュレーションを繰り返すものとしてもよい。例えば、初期値として任意のレーザ光パラメータと任意数のレーザ照射箇所とを設定し、これに加工対象物の材質や加工前の形状などを加えて入力データとし、加工シミュレーションを適用して出力データ(入力データに係るレーザ光が照射された後の後加工部データ)を得る。得られた出力データは加工途中の形状として目的形状との差分が所定範囲内となっているか否かを判定する加工途中の形状と目的形状との差分が所定範囲内になっていないときにはその差分に応じてレーザ光パラメータとレーザ照射箇所とを調整して入力データとする。そして、調整した入力データに加工シミュレーションを適用して出力データを得る。こうした途中の形状と目的形状との差分に応じて入力データを調整する処理と、調整した入力データに対して加工シミュレーションを適用して出力データを得る処理と、加工途中の形状(出力データ)と目的形状との差分が所定範囲内となるまで繰り返す。こうした繰り返し処理の繰り返し数や繰り返し毎に調整されたレーザ光パラメータとレーザ照射箇所がシミュレーション結果となる。この場合、初期値を変更して複数回に亘ってシミュレーション結果を得ることにより、各シミュレーション結果におけるレーザ照射による総エネルギーや加工時間、加工精度などを比較することにより、レーザ加工の最適値を得ることができる。
 本発明の第1のレーザ加工システムは、
 加工対象物にレーザ光を照射してアブレーション加工を行なう加工用レーザ光照射装置と、前記加工対象物へのレーザ加工に伴う3次元形状を反映する加工部データを計測する加工部データ状計測装置と、前記加工用レーザ光照射装置を制御する制御装置と、を備えるレーザ加工システムであって、
 前記制御装置は、上述の本発明のいずれかの態様の機械学習方法を用いた学習を行ない、即ち、加工対象物の材質、加工対象物に照射したレーザ光の特性を示すレーザ光パラメータ、加工対象物にレーザ光を照射する前後の加工部のレーザ加工に伴う3次元形状を反映する前加工部データおよび後加工部データ、を用いて深層学習を行なって、加工対象物の材質、前加工部データ、レーザ光パラメータを入力データとしたときに入力データに係るレーザ光が照射された後の後加工部データを出力データとする第1関係を学習結果の一つとして得たり、第1関係に基づいて、加工対象物の材質、前加工部データ、後加工部データを入力データとしたときに入力データに係る前加工部データの加工部の状態から後加工部データの加工部の状態とするのに必要な照射すべきレーザ光のレーザ光パラメータを出力データとする第2関係を学習結果の一つとして得たりし、前記学習結果を用いて前記入力データに対する前記出力データに基づいて前記加工用レーザ光照射装置を制御する、
 ことを特徴とする。
 この本発明の第1のレーザ加工システムでは、上述の本発明のいずれかの態様の機械学習方法を用いた学習を行なうから、レーザ加工の途中におけるレーザ光の照射の前後の加工部の加工の程度と加工対象物の材質と照射するレーザ光のパラメータとの学習結果を用いてレーザ加工を行なうことができる。また、レーザ加工を行なう毎に第1関係や第2関係を学習するから、レーザ加工の精度を高くすることができる。
 本発明の第2のレーザ加工システムは、
 加工対象物にレーザ光を照射してアブレーション加工を行なう加工用レーザ光照射装置と、前記加工用レーザ光照射装置を制御する制御装置と、を備えるレーザ加工システムであって、
 前記制御装置は、上述の本発明のいずれかの態様の機械学習方法により得られた学習結果、即ち、加工対象物の材質、加工対象物に照射したレーザ光の特性を示すレーザ光パラメータ、加工対象物にレーザ光を照射する前後の加工部のレーザ加工に伴う3次元形状を反映する前加工部データおよび後加工部データ、を用いて深層学習を行なって得られる、加工対象物の材質、前加工部データ、レーザ光パラメータを入力データとしたときに入力データに係るレーザ光が照射された後の後加工部データを出力データとする第1関係や、第1関係に基づいて、加工対象物の材質、前加工部データ、後加工部データを入力データとしたときに入力データに係る前加工部データの加工部の状態から後加工部データの加工部の状態とするのに必要な照射すべきレーザ光のレーザ光パラメータを出力データとする第2関係、を用いて前記入力データに対する前記出力データに基づいて前記加工用レーザ光照射装置を制御する、
 ことを特徴とする。
 この本発明の第2のレーザ加工システムでは、上述の本発明のいずれかの態様の機械学習方法により得られた学習結果を用いるから、レーザ加工の途中におけるレーザ光の照射の前後の加工部の加工の程度と加工対象物の材質と照射するレーザ光のパラメータとの学習結果を用いてレーザ加工を行なうことができ、その結果、レーザ加工の精度を高くすることができる。
 本発明のプログラムは、
 コンピュータをレーザ加工システムに用いられる機械学習装置として機能させるプログラムであって、
 加工対象物の材質、前記加工対象物に照射したレーザ光の特性を示すレーザ光パラメータ、前記加工対象物に前記レーザ光を照射する前後の加工部のレーザ加工に伴う3次元形状を反映する前加工部データおよび後加工部データからなる複数のデータを入力するステップと、
 前記入力した複数のデータを用いて深層学習により、加工対象物の材質、前加工部データ、レーザ光パラメータを入力データとしたときに前記入力データに係るレーザ光が照射された後の後加工部データを出力データとする第1関係を学習結果の一つとして得るステップと、
 を有することを特徴とする。
 この本発明のプログラムでは、加工対象物の材質、加工対象物に照射したレーザ光の特性を示すレーザ光パラメータ、加工対象物にレーザ光を照射する前後の加工部のレーザ加工に伴う3次元形状を反映する前加工部データおよび後加工部データからなる複数のデータを入力し、入力した複数のデータを用いて深層学習により、加工対象物の材質、前加工部データ、レーザ光パラメータを入力データとしたときに入力データに係るレーザ光が照射された後の後加工部データを出力データとする第1関係を学習結果の一つとして得る。ここで、前加工部データおよび後加工部データは、加工対象物にレーザ光を照射する前後の加工部のレーザ加工に伴う3次元形状を反映するデータであるから、レーザ加工前とレーザ加工の途中とにおけるレーザ光の照射の前後のデータや、レーザ加工の途中におけるレーザ光の照射の前後のデータ、レーザ加工の途中とレーザ加工後(加工完了後)とにおけるレーザ光の照射の前後のデータなども含まれる。これにより、コンピュータをレーザ加工の途中におけるレーザ光の照射の前後の加工部の加工の程度と加工対象物の材質と照射するレーザ光のパラメータとを学習する機械学習装置として機能させることができる。なお、「深層学習」は、前加工部データおよび後加工部データを用いており、後加工部データを出力データとする第1の関係を学習結果として得るから、基本的には教師ありの学習となる。また、「レーザ光パラメータ」は、波長、パルス幅、パルス強度、パルス数、フルーエンス(単位面積当たりのパルスエネルギ)の少なくとも一部を用いることができ、「前加工部データ」および「後加工部データ」は、加工部の3次元データ、加工部の表面温度分布データ、加工部の色分布データの少なくとも一部を用いることができる。
 本発明のプログラムにおいて、前記第1関係に基づいて、加工対象物の材質、前加工部データ、後加工部データを入力データとしたときに前記入力データに係る前加工部データの加工部の状態から後加工部データの加工部の状態とするのに必要な照射すべきレーザ光のレーザ光パラメータを出力データとする第2関係を学習結果の一つとして得るステップを有するものとすることもできる。こうすれば、コンピュータを、加工対象物の材質、前加工部データ、後加工部データを入力データとしたときに入力データに係る前加工部データの加工部の状態から後加工部データの加工部の状態とするのに必要な照射すべきレーザ光のレーザ光パラメータを出力データとする第2関係を学習結果として得る機械学習装置として機能させることができる。
本発明の一実施例としてのレーザ加工システム20の構成の概略を示す構成図である。 実施例の深層学習を模式的に示す模式図である。 システム制御部50により実行される学習処理の一例を示すフローチャートである。 学習用データを取得する際のランダムな照射位置にランダムなレーザ光パラメータのレーザ光を7発照射したときのレーザ光の照射毎の3次元形状データの一例を示す説明図である。 加工対象物10に10μmずつ移動させて7発分を折り返しで順次照射したときのレーザ光の照射状態を示す説明図である。 パルスエネルギを50μJとしたときのレーザ光の照射数と加工部の折り返し方向の各位置における加工深さのシミュレーション結果と実験結果とを示す説明図である。 パルスエネルギを40μJ、50μJ、60μJとしてレーザ光を100発照射したときの加工部の折り返し方向の各位置における加工深さのシミュレーション結果と実験結果とを示す説明図である。 シリコンを材質とする加工対象物10にレーザ光を星形上に繰り返し照射したときの各位置における加工深さのシミュレーション結果と実験結果とを示す説明図である。 最適化シミュレーション処理の一例を示すフローチャートである。 レーザ加工する際のパルスエネルギーと総エネルギーとの関係およびパルスエネルギーと底面の粗さとの関係のシミュレーション結果の一例を示すグラフである。 レーザ照射されるトータルフルーエンスの一例を示す説明図である。 シミュレーション結果による3次元形状データとシミュレーション結果の加工条件を用いてレーザ加工したものの3次元形状データとのい比例を示す説明図である。 レーザ光の照射パルス数とフルーエンスと加工対象物から除去される除去体積との関係を説明する説明図である。
 次に、本発明を実施するための形態を実施例を用いて説明する。
 図1は、本発明の一実施例としてのレーザ加工システム20の構成の概略を示す構成図である。実施例のレーザ加工システム20は、図示するように、加工用のレーザ光を出力する加工用レーザ照射装置30と、加工用レーザ照射装置30から出力されて焦点レンズ42とミラー44により焦点や照射位置が調整されたレーザ光が照射される加工対象物10を載置する電動ステージ46と、加工対象物10の加工部の3次元形状データを計測する3次元データ計測器48と、システム全体を制御するシステム制御部50と、を備える。
 加工用レーザ照射装置30は、加工用のレーザ光を出力する加工用レーザ照射器32と、加工用レーザ照射器32からのレーザ光のパルス列から任意のタイミングで任意数のパルスを切り出すパルスピッカー34と、パルスピッカー34からのレーザ光の偏光方向を調整する1/2波長板35と、レーザ光のS偏光を反射すると共にP偏光を透過する偏光ビームスプリッタ36と、これらを制御するレーザ制御部38と、を備える。
  加工用レーザ照射器32は、例えば波長が800nm、パルス幅が35fs~10psで変更可能で、繰り返し周波数が1kHz、最大出力が6W、最大パルスエネルギが6mJ、フルーエンスが0.1~100J/cm2のレーザ光(パルスレーザ光)を出力可能なチタンサファイアレーザ照射器として構成されている。
 1/2波長板35と偏光ビームスプリッタ36は、音響光学素子(AOM)やニュートラルデンシティフィルタなどを代わりに用いることができる。
 レーザ制御部38は、図示しないがCPUを中心とするマイクロコンピュータとして構成されており、CPUの他にROMやRAM、フラッシュメモリ、入出力ポート、通信ポートなどを備える。レーザ制御部38は、通信ポートを介してシステム制御部50と通信している。レーザ制御部38は、システム制御部50からの制御信号に基づくレーザ光パラメータのレーザ光が出力されるように加工用レーザ照射器32を制御する。レーザ光パラメータは、波長、パルス幅、パルス強度、スポット径、パルス数、フルーエンス(単位面積当たりのパルスエネルギ)の少なくとも一部を用いることができる。また、レーザ制御部38は、システム制御部50からの制御信号に基づくレーザ光のパルス列を切り出すタイミングやパルス数となるようにパルスピッカー34を制御したり、システム制御部50からの制御信号に基づくレーザ光の偏光方向となるように1/2波長板35や偏光ビームスプリッタ36を制御する。
 電動ステージ46は、加工対象物10を3次元データ計測器48の計測位置に移動させるステージであり、実施例では、位置精度が0.5μmで移動可能距離が150mmのものを用いた。
 3次元計測器48は、例えば、白色干渉顕微鏡や走査式レーザ顕微鏡、X線CT(Computed Tomography:コンピュータ断層診断装置)、段差計、AMF(Atomic Force Microscope:原子間力顕微鏡)、ラマン顕微鏡など3次元形状を計測可能な装置を用いることができる。実施例では、測定精度として垂直分解能が1nm、水平分解能が0.2μm、測定時間が1~10秒の白色干渉顕微鏡を用いた。なお、3次元計測器48としてレーザ光と同一の光学系を用いるものとすれば、電動ステージ46は不要となる。3次元計測器48により計測される3次元形状データとしては、加工部の3次元形状データだけでなく、加工部の表面温度分布データや加工部の色分布データも含めることができる。加工部の表面温度分布データや加工部の色分布データは、レーザ光の照射による温度の変化を示すものであり、3次元形状の変化のしやすさや変化によるものを反映すると考えられるからである。ここで、色分布データとしては、通常の色の分布のデータだけでなく、ラマンスペクトルデータや光反射率スペクトルデータなども含まれる。
 システム制御部50は、図示しないが、CPUを中心とするマイクロコンピュータとして構成されており、CPUの他にROMやRAM、フラッシュメモリ、GPU(Graphics Processing Unit)、入出力ポート、通信ポートなどを備える。システム制御部50は機能的には、キーボードやマウスなどの入力部52と機械学習部54とを有する。システム制御部50には、入力部52からの入力データや、電動ステージ46における加工対象物10の位置信号、3次元計測器48からの3次元計測データなどが入力ポートを介して入力されている。また、システム制御部50からは、電動ステージ46への駆動制御信号、3次元計測器48への駆動制御信号などが出力ポートを介して出力されている。また、システム制御部50は、レーザ制御部38と通信しており、加工用レーザ照射装置30から出力したレーザ光のレーザ光パラメータを取得している。
 機械学習部54は、加工対象物10の材質と、加工対象物10の加工部に照射したレーザ光のレーザ光パラメータと、レーザ光の照射の前後の加工部の3次元形状データと、からなる学習用データを用いて深層学習を行ない、第1入力データとして加工対象物10の材質と加工対象物10の加工部に照射するレーザ光のレーザ光パラメータとレーザ光の照射前の加工部の3次元形状データとを与えたときに、第1出力データとしてのレーザ光の照射後の加工部の3次元形状データを推定するための関係を第1学習結果として得て学習結果56として記憶する。図2は、実施例の深層学習を模式的に示す模式図である。図示するように、実施例の深層学習は、レーザ光の照射後の加工部の3次元形状データが入力されていることから教師ありの畳み込みニューラルネットワークによるものであり、入力されるレーザ光パラメータが特徴ベクトルとなる。また、実施例では、第1学習結果に基づいて、第2入力データとして加工対象物10の材質とレーザ光の照射の前後の加工部の3次元形状データとを与えたときに、第2出力データとしての加工対象物10の加工部に照射すべきレーザ光のレーザ光パラメータを推定するための関係を第2学習結果として求め、これも学習結果56として記憶する。
 実施例のレーザ加工システム20は、電動ステージ46に載置された加工対象物10の加工部にレーザ光を照射してレーザ加工を行なうレーザ加工システムとして機能する他、電動ステージ46に載置された加工対象物10にレーザ光を照射する毎に電動ステージ46と3次元計測器48とを動作させて3次元形状データを取得し、機械学習部54で深層学習するレーザ加工システムに用いられる機械学習システムとしても機能する。また、実施例のレーザ加工システム20は、第1入力データや第2入力データを入力部52などから入力し、この第1入力データや第2入力データに対して機械学習部54の学習結果56における第1学習結果や第2学習結果を適用し、第1出力データや第2出力データを出力するレーザ加工システムに用いられるシミュレーション装置としても機能する。
 次に、実施例のレーザ加工システム20をレーザ加工システムに用いられる機械学習システムとして機能させたときの学習処理について説明する。図3は、実施例のレーザ加工システム20のシステム制御部50により実行される学習処理の一例を示すフローチャートである。学習処理では、まず、加工対象物10を電動ステージ46にセットし(ステップS100)、3次元計測器48によりレーザ加工前の加工部の3次元形状データを取得する(ステップS110)。所定範囲内(例えばレーザ光の照射が可能な範囲)においてランダムな照射位置にランダムなレーザ光パラメータを設定し(ステップS120)、設定したレーザ光パラメータのレーザ光を設定した照射位置に照射し(ステップS130)、3次元計測器48によりレーザ光を照射した後の3次元形状データを取得する(ステップS140)。こうしたステップS120~S140の処理を照射回数Nfが閾値Nfref(例えば100回や200回)に至るまで繰り返し実行する(ステップS150)。学習用データを取得する際のランダムな照射位置にランダムなレーザ光パラメータのレーザ光を7発照射したときのレーザ光の照射毎の3次元形状データの一例を図4に示す。図中、色の濃さは加工部の深さを示す。図示するように、加工対象物10のランダムな照射位置にランダムなレーザ光パラメータのレーザ光が照射されているのが解る。なお、図4の実験に用いたレーザ光のパルスエネルギは0.1μJ~100μJの範囲内でランダムなものとした。
 こうした処理(ステップS120~S150の処理)を同一の材質の加工対象物10の繰り返し回数Nnが閾値Nnref(例えば20回や30回)になるまで(ステップS160)、且つ、加工対象物10の材質数Nmが閾値Nmref(例えば5や10)になるまで(ステップS170)、ステップS100の新たな加工対象物10を電動ステージ46にセットする処理から繰り返し実行する。加工対象物10の材質としては、石英、銅、アルミニウム、炭素繊維強化プラスチック(CFRP: carbon fiber reinforced plastic)サファイア、シリコンなどを挙げることができる。いま、照射回数Nfの閾値Nfrefを200回とし、同一の材質の加工対象物10の繰り返し回数Nnの閾値Nnrefを20回とし、加工対象物10の材質数Nmの閾値Nmrefを5とすると、学習用データのデータ数は2万(200×20×5)となる。なお、学習用データは、レーザ光パラメータとレーザ光を照射する前後の3次元形状データである。
 こうして学習用データを取得すると、取得した学習用データに対してレーザ光パラメータを特徴ベクトルzとし、レーザ光の照射後の3次元形状データを例題の解とする教師ありの深層学習を行なう(ステップS180)。そして、第1入力データとして加工対象物10の材質と加工対象物10の加工部に照射するレーザ光のレーザ光パラメータとレーザ光の照射前の加工部の3次元形状データとを与えたときに、第1出力データとしてのレーザ光の照射後の加工部の3次元形状データを推定するための関係を第1学習結果として得てこれを記憶する(ステップS190)。続いて、第1学習結果に基づいて第2入力データとして加工対象物10の材質とレーザ光の照射の前後の加工部の3次元形状データとを与えたときに、第2出力データとしての加工対象物10の加工部に照射すべきレーザ光のレーザ光パラメータを推定するための関係を第2学習結果として導出し(ステップS200)、これを記憶し(ステップS210)、学習処理を終了する。
 次に、実施例のレーザ加工システム20により得られた学習結果に基づくシミュレーション結果と実験結果とについて説明する。シミュレーションおよび実験は、波長が800nm、スポット径が26μm、パルス幅が35fs、パルスエネルギが40μJ、50μJ、60μJのパルスエネルギ毎にレーザ光を、図5に示すように、石英を材質とする加工対象物10に10μmずつ移動させて7発分を折り返しで順次照射し、レーザ光の照射毎の加工部の折り返し方向の各位置における加工深さを求めた。なお、実験結果は、3次元計測器48による計測値である。パルスエネルギを50μJとしたときのレーザ光の照射数と加工部の折り返し方向の各位置における加工深さのシミュレーション結果と実験結果とを図6に示す。図示するように、シミュレーション結果と実験結果はよく一致する。パルスエネルギを40μJ、50μJ、60μJとしてレーザ光を100発照射したときの加工部の折り返し方向の各位置における加工深さのシミュレーション結果と実験結果とを図7に示す。図7では、パルスエネルギを40μJ、50μJ、60μJのときの縦軸のスケールを変更しているが、シミュレーション結果と実験結果はよく一致する。これにより、実施例のレーザ加工システム20による機械学習および学習結果が適切であることが解る。
 図8は、シリコンを材質とする加工対象物10に、波長が800nm、スポット径が26μm、パルス幅が35fs、パルスエネルギが50μJのレーザ光を、一辺125μmの星形に沿って12.5μmずつ照射位置を移動させながら500発照射したときの各位置における加工深さのシミュレーション結果と実験結果とを示す説明図である。図中、色の濃さが加工深さである。図示するように、シミュレーション結果と実験結果では、加工深さ形状(平均深さ、外周部の形状、線分交点で一段と深くなっている点)がよく一致している。
 以上説明した実施例のレーザ加工システム20では、加工対象物10の材質、加工対象物10に照射したレーザ光の特性を示すレーザ光パラメータ、加工対象物10にレーザ光を照射する前後の加工部の3次元形状データを用いて深層学習を行なう。第1入力データとして加工対象物10の材質と加工対象物10の加工部に照射するレーザ光のレーザ光パラメータとレーザ光の照射前の加工部の3次元形状データとを与えたときに、第1出力データとしてのレーザ光の照射後の加工部の3次元形状データを推定するための関係を第1学習結果として得る。これにより、レーザ加工の途中におけるレーザ光の照射の前後の加工部の3次元形状データと加工対象物10の材質とレーザ光のレーザ光パラメータとの関係を学習することができる。また、レーザ光の照射によって変化した加工対象物10の加工部の3次元形状を推定することができる。
 また、実施例のレーザ加工システム20では、第1学習結果に基づいて第2入力データとして加工対象物10の材質とレーザ光の照射の前後の加工部の3次元形状データとを与えたときに、第2出力データとしての加工対象物10の加工部に照射すべきレーザ光のレーザ光パラメータを推定するための関係を第2学習結果として導出する。これにより、加工対象物10の加工部を所望の形状とするのに必要なレーザ光のレーザ光パラメータを推定することができる。
 実施例のレーザ加工システム20における学習処理では、同一の材質の加工対象物10の他に異なる材質の加工対象物10についても学習用データを取得するものとしたが、同一の材質の加工対象物10に対してのみ学習データを取得するものとしてもよい。
 実施例のレーザ加工システム20における学習処理では、レーザ光を照射する毎に加工部の3次元形状データを取得するものとしたが、レーザ光を複数回照射する毎に、或いは、レーザ光をランダムな照射回数だけ照射する毎に加工部の3次元形状データを取得するものとしてもよい。この場合、複数回照射するレーザ光やランダムな照射回数だけ照射するレーザ光は同一のレーザ光パラメータとしてもよいし、異なるレーザ光パラメータとしてもよい。
 実施例のレーザ加工システム20の機械学習では、レーザ光の波長として800nmを用いたが、光による電子励起が加工に影響を及ぼす波長範囲、即ち、波長が193nm~5μmの範囲内のレーザ光についても適用可能である。
 実施例のレーザ加工システム20での機械学習では、レーザ光のパルス幅として35fsを用いたが、短パルスから超短パルスの範囲、即ち、パルス幅が10fs~100nsの範囲のレーザ光についても適用可能である。
 実施例のレーザ加工システム20では、図3の学習処理が実行されたときに機械学習が行なわれるものとしたが、図3の学習処理が終了した以降は、レーザ加工が行なわれる毎に或いは所定のタイミングでそれまでに蓄積した学習用データを用いて機械学習するものとしてもよい。
 実施例のレーザ加工システム20では、加工用レーザ照射装置30や電動ステージ46、3次元データ計測器48、システム制御部50を備え、レーザ光を照射する毎に加工部の3次元形状データを取得して学習用データを取得するものとしたが、本発明を機械学習装置の形態とした場合には、実施例のレーザ加工システム20と同様のハード構成とする他、システム制御部50だけを備えるハード構成としてもよい。この場合、図3の学習処理のステップS100~S170の処理を、予め他の装置により加工対象物10の材質、加工対象物10に照射したレーザ光の特性を示すレーザ光パラメータ、加工対象物10にレーザ光を照射する前後の加工部の3次元形状データを取得しておき、これらの学習用データを入力する処理とすればよい。
 本発明をコンピュータを機械学習装置として機能させるプログラムの形態とする場合には、この機械学習装置として機能するシステム制御部50の他に、加工用レーザ照射装置30や電動ステージ46、3次元データ計測器48などを備える実施例のレーザ加工システム20を構成したときのシステム制御部50に実行させるプログラムとしてもよい。この場合のプログラムとしては、図3の機械学習のフローチャートとすればよい。また、加工用レーザ照射装置30や電動ステージ46、3次元データ計測器48などを備え無いものとすれば、即ち、システム制御部50に相当するマイクロコンピュータだけを備えるものとすれば、図3の学習処理のステップS100~S170の処理を、予め他の装置により加工対象物10の材質、加工対象物10に照射したレーザ光の特性を示すレーザ光パラメータ、加工対象物10にレーザ光を照射する前後の加工部の3次元形状データを取得しておき、これらの学習用データを入力する処理とすればよい。
 本発明をシミュレーション装置の形態とする場合には、学習用データを入力して深層学習するものとしてもよいし、深層学習により得られる学習結果だけを記憶するものとしてもよい。
 本発明をシミュレーション装置の形態とした際の応用例の一例について説明する。図9は、加工対象物のレーザ加工におけるレーザ光パラメータやレーザ照射箇所の最適化をシミュレーションする最適化シミュレーション処理の一例を示すフローチャートである。この処理では、まず、加工対象物の材質や目的形状を設定し(ステップS300)、加工条件の初期値を設定する(ステップS310)。加工条件としてはレーザ光パラメータとレーザ照射箇所であり、レーザ光パラメータの初期値としては波長、パルス幅、パルス強度、スポット径、パルス数、フルーエンスを定め、レーザ照射箇所としては、照射するパルス数と目的形状に応じて定めればよい。
 加工条件の初期値を設定すると、加工対象物の材質やレーザ光パラメータ、レーザ照射箇所を入力データとし、入力データに基づいて加工シミュレーションを行なう(ステップS320)。この加工シミュレーションは、入力データに図3の学習処理で得られた第1学習結果を適用して入力データに基づくレーザ光の照射後の加工部の3次元形状データ(加工途中の形状)を計算するものである。次に、得られた加工部の3次元形状データ(加工途中の形状)と目的形状との差分を計算し、この差分が許容範囲内であるか否かを判定する(ステップS330)。差分が許容範囲内ではないと判定したときには、加工部のレーザ加工による切削が過切削であるか否かを判定する(ステップS340)。過切削ではないと判定したときには、加工途中の形状と目的形状との差分に基づいて加工条件を調整する(ステップS360)。加工条件の調整は、例えば、レーザ光パラメータについては初期値を用い、加工途中の形状と目的形状との差分が大きい箇所にレーザ光を照射するようにレーザ照射箇所だけを調整するものとしてもよいし、レーザ光パラメータとレーザ照射箇所の双方を調整するものとしてもよい。そして、加工条件を調整すると、調整した加工条件を入力データとして加工シミュレーションを適用するステップS320に戻る。こうした加工条件の調整と加工シミュレーションは加工途中の形状と目的形状との差分が許容範囲内となるまで繰り返される。
 ステップS340で過切削であると判定すると、直前に行なわれた加工シミュレーションについては行なわれなかったものとし(ステップS350)、その前に行なわれた加工シミュレーションの結果としての加工途中の形状と目的形状との差分に基づいて前回の加工条件の調整とは異なる調整を行なって(ステップS360)、ステップS320に戻る。これにより、過切削になることを抑止することができる。
 ステップS330で加工途中の形状と目的形状との差分が許容範囲内であると判定したときには、ステップS310~S370までの繰り返し回数が所定計算回数に至っているか否かを判定する(ステップS370)。所定計算回数に至っていないと判定したときには、ステップS310の加工条件の初期値の設定処理に戻る。この場合、加工条件の初期値としては、レーザ光パラメータのフルーエンスを繰り返す毎に所定量ずつ大きく(或いは小さく)したり、パルス数を所定数ずつ大きく(或いは小さく)したりすることなどが考えられる。
 ステップS370でステップS310~S370までの繰り返し回数が所定計算回数に至っていると判定したときには、ステップS310~S370までを所定回数繰り返したことにより得られる各シミュレーション結果を出力し(ステップS380)、最適化シミュレーション処理を終了する。最適化としては、各シミュレーション結果に対して、レーザ加工による3次元形状データと目的形状との差分の程度(加工精度)や、レーザ加工に必要なエネルギー、レーザ加工に要する時間などにより判断することができる。
 シリコンを材質とする加工対象物10に目的形状として直径80μm、深さ5μmの円筒形状の穴をレーザ加工する際のシミュレーションを行なった。レーザ照射箇所は平面において略均等になるようにした。図10に、パルスエネルギーと総エネルギーとの関係およびパルスエネルギーと底面の粗さとの関係のシミュレーション結果の一例を示す。図示するように、レーザ加工の総エネルギーは、パルスエネルギーが25μJ近傍で最大となる。底面の粗さパルスエネルギーが30μJ近傍で最小となる。図11にレーザ照射されるトータルフルーエンスを示す。図中、最外側は値0であり破線の円形状の若干内側の最も薄い箇所で最大となる。図12にシミュレーション結果による3次元形状データとシミュレーション結果の加工条件を用いてレーザ加工したものの3次元形状データとを示す。左側がシミュレーション結果による3次元形状データであり、右側が実際にレーザ加工したものの3次元形状データである。図示するように、シミュレーション結果による3次元形状データは実際にレーザ加工したものの3次元形状データによく一致するのが解る。
 以上の説明により、本発明をシミュレーション装置の形態としたときでも、シミュレーション結果による3次元形状データは実際にレーザ加工したものの3次元形状データに精度よく一致するから、レーザ加工の最適化を行なうことができる。
 以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
 本発明は、レーザ加工システムの製造産業などに利用可能である。

Claims (9)

  1.  加工対象物にレーザ光を照射してアブレーション加工を行なうレーザ加工システムに用いられる機械学習方法であって、
     前記加工対象物の材質、前記加工対象物に照射したレーザ光の特性を示すレーザ光パラメータ、前記加工対象物に前記レーザ光を照射する前後の加工部のレーザ加工に伴う3次元形状を反映する前加工部データおよび後加工部データ、を用いて深層学習を行ない、加工対象物の材質、前加工部データ、レーザ光パラメータを入力データとしたときに前記入力データに係るレーザ光が照射された後の後加工部データを出力データとする第1関係を学習結果の一つとして得る、
     ことを特徴とする機械学習方法。
  2.  請求項1記載の機械学習方法であって、
     前記第1関係に基づいて、加工対象物の材質、前加工部データ、後加工部データを入力データとしたときに前記入力データに係る前加工部データの加工部の状態から後加工部データの加工部の状態とするのに必要な照射すべきレーザ光のレーザ光パラメータを出力データとする第2関係を学習結果の一つとして得る、
     機械学習方法。
  3.  請求項1または2記載の機械学習方法であって、
     前記レーザ光パラメータは、波長、パルス幅、パルス強度、パルス数、フルーエンスの少なくとも一部であり、
     前記前加工部データおよび前記後加工部データは、前記加工部の3次元データ、前記加工部の表面温度分布データ、前記加工部の色分布データの少なくとも一部である、
     機械学習方法。
  4.  加工対象物にレーザ光を照射してアブレーション加工を行なうレーザ加工システムに用いられるシミュレーション装置であって、
     請求項1ないし3のうちのいずれか1つの請求項に記載の機械学習方法により得られた学習結果を用いて前記入力データに対して前記出力データを出力する、
     ことを特徴とするシミュレーション装置。
  5.  請求項4記載のシミュレーション装置であって、
     前記加工対象物の加工前の形状と目的形状とを入力し、加工途中の形状と目的形状との差分に応じて前記レーザ光パラメータとレーザ光照射箇所とを調整したデータを前記入力データとし、前記入力データに対して前記学習結果を適用して得られる加工シミュレーションの結果としての前記出力データを前記加工途中の形状とし、前記加工途中の形状と目的形状との差分が所定範囲内となるまで前記加工シミュレーションを繰り返す、
     シミュレーション装置。
  6.  加工対象物にレーザ光を照射してアブレーション加工を行なう加工用レーザ光照射装置と、前記加工対象物へのレーザ加工に伴う3次元形状を反映する加工部データを計測する加工部データ状計測装置と、前記加工用レーザ光照射装置を制御する制御装置と、を備えるレーザ加工システムであって、
     前記制御装置は、請求項1ないし3のうちのいずれか1つの請求項に記載の機械学習方法を用いた学習を行なうと共に、前記学習結果を用いて前記入力データに対する前記出力データに基づいて前記加工用レーザ光照射装置を制御する、
     ことを特徴とするレーザ加工システム。
  7.  加工対象物にレーザ光を照射してアブレーション加工を行なう加工用レーザ光照射装置と、前記加工用レーザ光照射装置を制御する制御装置と、を備えるレーザ加工システムであって、
     前記制御装置は、請求項1ないし3のうちのいずれか1つの請求項に記載の機械学習方法により得られた学習結果を用いて前記入力データに対する前記出力データに基づいて前記加工用レーザ光照射装置を制御する、
     ことを特徴とするレーザ加工システム。
  8.  コンピュータをレーザ加工システムに用いられる機械学習装置として機能させるプログラムであって、
     加工対象物の材質、前記加工対象物に照射したレーザ光の特性を示すレーザ光パラメータ、前記加工対象物に前記レーザ光を照射する前後の加工部のレーザ加工に伴う3次元形状を反映する前加工部データおよび後加工部データからなる複数のデータを入力するステップと、
     前記入力した複数のデータを用いて深層学習により、加工対象物の材質、前加工部データ、レーザ光パラメータを入力データとしたときに前記入力データに係るレーザ光が照射された後の後加工部データを出力データとする第1関係を学習結果の一つとして得るステップと、
     を有することを特徴とするプログラム。
  9.  請求項8記載のプログラムであって、
     前記第1関係に基づいて、加工対象物の材質、前加工部データ、後加工部データを入力データとしたときに前記入力データに係る前加工部データの加工部の状態から後加工部データの加工部の状態とするのに必要な照射すべきレーザ光のレーザ光パラメータを出力データとする第2関係を学習結果の一つとして得るステップ、
     を有するプログラム。
PCT/JP2019/030695 2018-08-06 2019-08-05 レーザ加工システムに用いられる機械学習方法、シミュレーション装置、レーザ加工システム並びにプログラム WO2020031948A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020535752A JPWO2020031948A1 (ja) 2018-08-06 2019-08-05 レーザ加工システムに用いられる機械学習方法、シミュレーション装置、レーザ加工システム並びにプログラム
CN201980051966.9A CN112543692A (zh) 2018-08-06 2019-08-05 使用于激光加工系统的机器学习方法、模拟装置、激光加工系统以及程序
US17/265,667 US20210299788A1 (en) 2018-08-06 2019-08-05 Machine learning method used for laser processing system, simulation apparatus, laser processing system and program
EP19846492.7A EP3834979A4 (en) 2018-08-06 2019-08-05 MACHINE TEACHING METHOD USED FOR A LASER PROCESSING SYSTEM, SIMULATION DEVICE, LASER PROCESSING SYSTEM AND PROGRAM
JP2023172717A JP2023171479A (ja) 2018-08-06 2023-10-04 レーザ加工システムに用いられる機械学習方法、シミュレーション装置、レーザ加工システム並びにプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-147383 2018-08-06
JP2018147383 2018-08-06

Publications (1)

Publication Number Publication Date
WO2020031948A1 true WO2020031948A1 (ja) 2020-02-13

Family

ID=69413751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030695 WO2020031948A1 (ja) 2018-08-06 2019-08-05 レーザ加工システムに用いられる機械学習方法、シミュレーション装置、レーザ加工システム並びにプログラム

Country Status (5)

Country Link
US (1) US20210299788A1 (ja)
EP (1) EP3834979A4 (ja)
JP (2) JPWO2020031948A1 (ja)
CN (1) CN112543692A (ja)
WO (1) WO2020031948A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021231558A1 (en) * 2020-05-12 2021-11-18 Standex International Corporation Determining a laser-engraved surface using a reduced-order model

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090352A (ja) * 2005-09-26 2007-04-12 Keyence Corp レーザ加工条件設定装置、レーザ加工条件設定方法、レーザ加工条件設定プログラム、コンピュータで読み取り可能な記録媒体及び記録した機器並びにレーザ加工装置
JP2014133248A (ja) * 2013-01-10 2014-07-24 Mitsubishi Heavy Ind Ltd 三次元レーザ加工機
JP2017164801A (ja) 2016-03-17 2017-09-21 ファナック株式会社 機械学習装置、レーザ加工システムおよび機械学習方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10489691B2 (en) * 2016-01-15 2019-11-26 Ford Global Technologies, Llc Fixation generation for machine learning
EP3257615A1 (en) * 2016-06-15 2017-12-20 Eidgenössische Materialprüfungs- und Forschungsanstalt EMPA Quality control of laser welding process
JP6708044B2 (ja) * 2016-07-28 2020-06-10 富士通株式会社 画像認識装置、画像認識プログラム、画像認識方法および認識装置
JP6438450B2 (ja) * 2016-11-29 2018-12-12 ファナック株式会社 レーザ加工ロボットの加工順序を学習する機械学習装置、ロボットシステムおよび機械学習方法
JP6457473B2 (ja) * 2016-12-16 2019-01-23 ファナック株式会社 ロボットおよびレーザスキャナの動作を学習する機械学習装置,ロボットシステムおよび機械学習方法
US11250312B2 (en) * 2017-10-31 2022-02-15 Levi Strauss & Co. Garments with finishing patterns created by laser and neural network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090352A (ja) * 2005-09-26 2007-04-12 Keyence Corp レーザ加工条件設定装置、レーザ加工条件設定方法、レーザ加工条件設定プログラム、コンピュータで読み取り可能な記録媒体及び記録した機器並びにレーザ加工装置
JP2014133248A (ja) * 2013-01-10 2014-07-24 Mitsubishi Heavy Ind Ltd 三次元レーザ加工機
JP2017164801A (ja) 2016-03-17 2017-09-21 ファナック株式会社 機械学習装置、レーザ加工システムおよび機械学習方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021231558A1 (en) * 2020-05-12 2021-11-18 Standex International Corporation Determining a laser-engraved surface using a reduced-order model
US20210356931A1 (en) * 2020-05-12 2021-11-18 Standex International Corporation Determining a laser-engraved surface using a reduced-order model
WO2021231561A1 (en) * 2020-05-12 2021-11-18 Standex International Corporation Determining of laser-engraving process parameter for a targeted surface geometry

Also Published As

Publication number Publication date
JP2023171479A (ja) 2023-12-01
EP3834979A4 (en) 2022-04-27
JPWO2020031948A1 (ja) 2021-08-10
US20210299788A1 (en) 2021-09-30
CN112543692A (zh) 2021-03-23
EP3834979A1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
JP7407736B2 (ja) レーザー加工パラメータを決定するための方法および該方法を使用するレーザー加工装置
JP2023171479A (ja) レーザ加工システムに用いられる機械学習方法、シミュレーション装置、レーザ加工システム並びにプログラム
CN109079328B (zh) 通过激光束加工工件的方法、激光刀具、激光加工机、及机器控制
JP2019089129A (ja) 3次元加工対象体のレーザパターニング装置および方法
JP2020514067A (ja) 材料の改変についてのコヒーレント撮像およびフィードバック制御のための方法およびシステム
JP2009504415A (ja) レーザーパルスで材料を除去する方法と装置
JP7023500B2 (ja) レーザ加工システム
CN105555463A (zh) 用具有波长和所选每脉冲能量的脉冲激光器对眼科镜片作标记的装置和方法
WO2019170286A1 (de) Verfahren und vorrichtung zum selbstoptimierenden, additiven herstellen von bauteilkomponenten
JP2011003630A (ja) レーザ照射装置、及びレーザ照射方法
Pong-Ryol et al. Laser micro-polishing for metallic surface using UV nano-second pulse laser and CW laser
JP5219623B2 (ja) レーザ加工制御装置およびレーザ加工装置
JP2022522255A (ja) レーザ誘発型屈折率変化を用いたスケーラブルな製造
US9694446B2 (en) Wall thickness compensation during laser orifice drilling
US20100051793A1 (en) Method for Energy Calibration of a Pulsed Laser System
Fuchs et al. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data
WO2015136948A1 (ja) レーザ加工方法
JP6584053B2 (ja) レーザ加工装置及びレーザ加工方法
KR102418701B1 (ko) 가공대상체의 레이저 패터닝 장치와 그 방법 및 그에 의하여 가공된 3차원 가공대상체
JP2011125867A (ja) レーザ加工方法
KR20160073785A (ko) 레이저 가공 시스템 및 이를 이용한 레이저 가공 방법
JP7118903B2 (ja) レーザピーニング装置およびレーザピーニング方法
JPH1015684A (ja) レーザ加工装置
JP6908438B2 (ja) 印刷装置
Mutapcic et al. A prototyping and microfabrication CAD/CAM tool for the excimer laser micromachining process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019846492

Country of ref document: EP

Effective date: 20210309