WO2020031780A1 - Method for manufacturing heat exchanger - Google Patents

Method for manufacturing heat exchanger Download PDF

Info

Publication number
WO2020031780A1
WO2020031780A1 PCT/JP2019/029706 JP2019029706W WO2020031780A1 WO 2020031780 A1 WO2020031780 A1 WO 2020031780A1 JP 2019029706 W JP2019029706 W JP 2019029706W WO 2020031780 A1 WO2020031780 A1 WO 2020031780A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
forming
heat exchanger
flow
heat medium
Prior art date
Application number
PCT/JP2019/029706
Other languages
French (fr)
Japanese (ja)
Inventor
祥啓 古賀
建人 櫻井
長谷川 学
則義 宮嶋
彰洋 大井
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2020031780A1 publication Critical patent/WO2020031780A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone

Definitions

  • the present invention relates to a method for manufacturing a heat exchanger.
  • Patent Literature 1 describes a method for manufacturing a heat exchanger.
  • a plurality of ribs 53 are formed on the surface of a ceramic sheet material 51 using a cylindrical roller 52.
  • a laminate is prepared by laminating a plurality of sheet members 51 having the ribs 53 formed thereon, and the laminate is fired, and the fired laminate is housed in a case to manufacture a heat exchanger.
  • the plurality of ribs 53 are provided continuously from one end of the sheet material 51 to the other end thereof. Since the fluid flows between the plurality of ribs 53 along the ribs 53, the flow of the fluid tends to be in a rectified state. When the flow of the fluid is in a rectified state, it is difficult to perform heat transport. Therefore, there is a problem that the heat exchange efficiency is low.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method of manufacturing a heat exchanger that can improve heat exchange efficiency.
  • a method for manufacturing a heat exchanger includes a plurality of first flow paths, a plurality of second flow paths, and a partition wall that partitions the first flow path and the second flow path.
  • the first molded body is formed with the plurality of protrusions scattered in the flow direction of the first fluid and the direction intersecting the flow direction, so that the first fluid flowing through the first flow passage is formed. It becomes difficult to form a boundary layer that inhibits the transfer of heat formed between the fluid and the partition wall that forms the first flow passage. Thereby, heat transfer of the first fluid flowing through the first flow passage can be promoted, so that heat exchange efficiency can be improved.
  • the tip of the convex portion of the first molded body is brought into contact with the first molded body or the second molded body superimposed on the first molded body. May be. According to the above configuration, heat conduction between the first molded body provided with the convex part and another first molded body or the second molded body laminated on the first molded body via the convex part. Can be promoted. Therefore, the heat exchange efficiency can be improved.
  • the convex portion in the first forming step, may be formed by press forming. According to the above configuration, by forming the projections by press molding, it becomes easy to make the projections finer or to form the projections in a dense state.
  • a side wall is provided at a pair of opposite ends of the first molded body on which the protrusion is formed, and the side wall may be formed by the press molding. . According to the above configuration, since the convex portion and the side wall can be formed at the same time, the heat exchanger can be manufactured efficiently.
  • the protrusion may be formed to have a prismatic or elliptical shape. According to the above configuration, the flow resistance of the first fluid in the convex portion can be reduced, and the heat transport can be further promoted.
  • the heat exchange efficiency of the heat exchanger can be improved.
  • FIG. 2 is a sectional view taken along line 2-2 of FIG. 1.
  • FIG. 3 is a sectional view taken along line 3-3 in FIG. 1.
  • Explanatory drawing of a molding process Explanatory drawing of a 1st shaping
  • Explanatory drawing of a lamination process Explanatory drawing which shows the state which arrange
  • the heat exchanger 10 of the present embodiment includes a first circulation part (gas circulation part 20) having a first circulation passage (gas circulation passage R1) and a second circulation passage (heat medium circulation passage). R2) and a second circulation section (heat medium circulation section 30).
  • Heat medium circulating portions 30 are arranged at both ends in the juxtaposition direction, and three layers of gas circulating portions 20 are arranged inside each heat medium circulating portion 30.
  • One layer of the heat medium circulation unit 30 is arranged inside the gas circulation unit 20. The heat exchange is performed between the gas flowing through the gas flow passage R1 and the liquid heat medium flowing through the heat medium flow passage R2.
  • the heat medium circulating portion 30 includes a bottom wall 31 formed of a rectangular plate, a side wall 32 erected from a pair of opposite ends of the bottom wall 31, And a central wall 33 standing from the bottom wall 31 at an intermediate position of the side wall 32.
  • the heat medium circulating unit 30 is configured in the same shape as the bottom wall 31, and includes a top wall 34 disposed on the side wall 32 and the center wall 33.
  • two through holes C2 forming the heat medium flow passage R2 are formed between the bottom wall 31 and the top wall 34. Therefore, the bottom wall 31, the side wall 32, the center wall 33, and the top wall 34 function as partition walls that partition the heat medium passage R2.
  • the heat medium circulating sections 30 located at the center and the lower end of the heat exchanger 10 in FIG. 1 use the bottom wall 21 of the gas circulating section 20 described later as the top wall 34.
  • the heat medium circulating portions 30 located at the central portion and the lower end portion of the heat exchanger 10 also use the bottom wall 21 of the gas circulating portion 20 laminated on the upper side as the top wall 34.
  • the direction in which the through-holes C2 extend in the heat exchanger 10 is referred to as “width direction DX”, the direction in which the through-holes C2 are arranged is referred to as “front-back direction DY”, And the direction in which the heat medium circulating unit 30 is juxtaposed is referred to as “vertical direction DZ”.
  • an inlet 15a for the heat medium is formed at one end of the through hole C2 in the width direction DX, and an outlet 15b for the heat medium is formed at the other end of the through hole C2 in the width DX.
  • a heat medium passage R2 is formed between the inflow port 15a and the outflow port 15b.
  • the thickness of the bottom wall 31 and the top wall 34 in the heat medium circulating portion 30 is preferably, for example, 0.1 to 1.0 mm.
  • the thickness of the side wall 32 and the center wall 33 in the heat medium circulating section 30 is preferably, for example, 0.1 to 1.0 mm.
  • a known liquid heat medium can be used as the heat medium flowing through the heat medium flow passage R2
  • Known heat media include, for example, cooling water (Long Life Coolant: LLC) and organic solvents such as ethylene glycol.
  • the gas flow portion 20 includes a bottom wall 21 formed of a rectangular plate, and a side wall 22 erected from a pair of opposite ends of the bottom wall 21 in the width direction DX. And a top wall 23 configured in the same shape as the bottom wall 21 and disposed on the side wall 22.
  • a through hole C ⁇ b> 1 forming the gas flow path R ⁇ b> 1 is formed between the bottom wall 21 and the top wall 23. Therefore, the bottom wall 21, the side wall 22, and the top wall 23 function as partition walls that partition the gas passage R1.
  • the gas flow section 20 located below the heat medium flow section 30 in FIG. 1 uses the bottom wall 31 of the heat medium flow section 30 as the top wall 23.
  • the gas circulation unit 20 located below the portion where the gas circulation units 20 are stacked uses the bottom wall 21 of the gas circulation unit 20 located above as the top wall 23. That is, the gas distribution unit 20 also uses the heat medium distribution unit 30 or the bottom walls 31 and 21 of the gas distribution unit 20 stacked on the upper side as the top wall 23.
  • a gas inlet 16a is formed at one end of the through-hole C1 in the front-rear direction DY, and a gas outlet 16b is formed at the other end of the through-hole C1 in the front-rear direction.
  • a gas flow passage R1 is formed between the gas flow passage 16 and the outlet 16b.
  • a plurality of projections 25 are provided in a dotted manner in a gas flow direction and a direction intersecting the gas flow direction.
  • a plurality of protrusions 25 are provided along the front-rear direction DY that is the gas flow direction
  • a plurality of protrusions 25 are provided along the width direction DX that intersects the gas flow direction.
  • the plurality of protrusions 25 have a row of protrusions arranged at equal intervals along the width direction DX, and the plurality of protrusions 25 are aligned along the front-rear direction DY.
  • a plurality are arranged at intervals.
  • Convex rows adjacent to each other in the front-rear direction DY are arranged such that the positions of the convex sections 25 are shifted in the width direction DX by ⁇ of the interval between the convex sections 25 in each convex row. In other words, in every other row of convex portions in the front-back direction DY, the positions of the convex portions 25 in the width direction DX are the same.
  • the projection 25 has a tapered shape protruding in a curved shape.
  • the cross-sectional shape orthogonal to the width direction DX and the cross-sectional shape orthogonal to the front-rear direction DY are both shapes obtained by cutting an ellipse along a short axis.
  • the cross-sectional shape of the convex portion 25 is an elliptical shape extending in the front-rear direction DY.
  • the dimension in the vertical direction DZ, which is the height of the projection 25, may be equal to the dimension in the vertical direction DZ of the side wall 22, and is preferably, for example, 1.0 to 4.0 mm.
  • the dimension of the projection 25 in the width direction DX is preferably, for example, 0.1 to 1.0 mm.
  • the dimension of the protrusion 25 in the front-rear direction DY is preferably, for example, 1.0 to 5.0 mm.
  • the interval in the width direction DX between the projections 25 in the row of projections is preferably, for example, 0.4 to 4.0 mm.
  • the distance between the rows of convex portions in the front-rear direction is preferably, for example, 1.0 to 5.0 mm.
  • the thickness of the bottom wall 21 and the top wall 23 in the gas flow section 20 is preferably, for example, 0.1 to 1.0 mm.
  • the thickness of the side wall 22 in the gas flow section 20 is preferably, for example, 0.1 to 1.0 mm.
  • Examples of the gas flowing through the gas flow passage R1 include an exhaust gas of an internal combustion engine and an intake gas to the internal combustion engine.
  • the material forming the heat medium distribution unit 30 and the gas distribution unit 20 is a silicon carbide material containing silicon carbide as a main component.
  • a material containing silicon carbide as a main component has high thermal conductivity and can increase heat exchange efficiency.
  • main component means 50% by mass or more.
  • the heat exchanger 10 is configured in a state where the gas circulation unit 20 and the heat medium circulation unit 30 are connected.
  • the through-hole C2 of the heat medium circulating section 30 and the through-hole C1 of the gas circulating section 20 are configured to extend in directions orthogonal to each other.
  • the through hole C2 of the heat medium circulating portion 30 is configured to extend in the width direction DX
  • the through hole C1 of the gas circulating portion 20 is configured to extend in the front-rear direction DY. Then, heat exchange is performed between the gas flowing through the through-hole C1 of the gas flow part 20 and the heat medium flowing through the through-hole C2 of the heat medium flow part 30 via the partition wall.
  • the heat exchanger 10 is manufactured through a molding process, a degreasing process, and an impregnation process described below.
  • the forming step includes a first forming step of forming a sheet-shaped first formed body 18, a second forming step of forming a sheet-shaped second formed body 19, and forming the first formed body 18 and the second formed body 19. And a laminating step of laminating.
  • First molding step As a raw material composition used for molding the first molded body 18, a clay-like mixture containing silicon carbide particles, an organic binder, and a dispersion medium is prepared.
  • organic binder examples include polyvinyl alcohol, methyl cellulose, ethyl cellulose, and carboxymethyl cellulose.
  • these organic binders methyl cellulose and carboxymethyl cellulose are particularly preferred. Further, only one kind of the above organic binders may be used, or two or more kinds may be used in combination.
  • dispersion medium examples include water and organic solvents.
  • organic solvent examples include ethanol. Further, only one of the above dispersion media may be used, or two or more of them may be used in combination.
  • Other components may be further contained in the mixture.
  • Other components include, for example, ceramic particles, a plasticizer, and a lubricant made of a material other than silicon carbide.
  • the ceramic particles made of a material other than silicon carbide include ceramic particles made of a carbide such as tantalum carbide and tungsten carbide, and nitrides such as aluminum nitride, silicon nitride, and boron nitride.
  • the plasticizer include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether.
  • the lubricant include glycerin.
  • a rectangular plate-shaped molded body 17 is formed using the clay-like mixture.
  • the molded body 17 can be molded by, for example, extrusion molding.
  • the rectangular plate-shaped molded body 17 is press-formed to form a bottom wall 21 made of a rectangular plate material and a pair of opposite sides in the width direction DX of the bottom wall 21.
  • the first molded body 18 having the side wall 22 erected from the end is molded.
  • the bottom wall 21 is provided with a plurality of projections 25 projecting upward in the vertical direction DZ.
  • a flat mold (not shown) is arranged below the rectangular plate-shaped molded body 17, and the upper and lower surfaces of the first molded body 18 are located above the rectangular plate-shaped molded body 17.
  • An oppositely configured mold (not shown) is arranged, and pressing is performed in a direction in which the molds approach each other from above and below.
  • the first molded body 18 having the convex portions 25 and the side walls 22 is obtained by pressing the rectangular plate-shaped molded body 17 in the thickness direction. Since the convex portions 25 according to the shape of the mold can be produced by press molding, it becomes easy to make the convex portions 25 finer or to form the convex portions 25 in a dense state.
  • the sheet-shaped second formed body 19 having the side wall 32 and the central wall 33 is formed by press-forming the rectangular plate-shaped formed body 17.
  • a flat plate-shaped mold (not shown) is arranged below the rectangular plate-shaped molded body 17, and the upper and lower surfaces of the second molded body 19 are located above the rectangular plate-shaped molded body 17. Is performed by placing a mold (not shown) having the reverse configuration and pressing the mold in a direction in which the molds approach each other from above and below.
  • the second molded body 19 having the side wall 32 and the center wall 33 is obtained by pressing the rectangular plate-shaped molded body 17 in the thickness direction.
  • the first compact 18 and the second compact 19 are laminated in a predetermined order to form a compact (laminated body 24).
  • the bottom wall 21 of the other first compact 18 or the bottom wall 31 of the second compact 19 is placed on the side wall 32 of the second molded body 19.
  • a rectangular plate material separately molded using the same clay-like mixture as the raw material composition of the second molded body is arranged as the top wall 34.
  • the upper surface side of the first molded body 18 constitutes a gas flow section 20 through a degreasing step and an impregnation step described later.
  • the upper surface side of the second molded body 19 constitutes the heat medium flowing section 30 through a degreasing step and an impregnation step described later.
  • the first molded body 18 and the second molded body 19 may be laminated via an adhesive layer.
  • a mixture of an inorganic binder and inorganic particles can be used.
  • the inorganic binder include silica sol and alumina sol, and examples of the inorganic particles include silicon carbide and silicon nitride.
  • a drying process is performed on the stacked body 24 as necessary. Specific examples of the drying treatment include a drying treatment using a microwave dryer, a hot air dryer, a dielectric dryer, a reduced pressure dryer, a vacuum dryer, a freeze dryer, or the like.
  • the degreasing step is a step of heating and burning off the organic components contained in the laminate. Through the degreasing step, a porous body having a skeleton portion arranged in a state where the silicon carbide particles are in contact with each other is obtained.
  • the impregnation step is a step of impregnating the interior of the porous partition wall with metallic silicon. Through the impregnation step, metallic silicon is filled between the silicon carbide particles constituting the partition wall.
  • the degreasing step and the impregnating step are continuously performed by multi-stage heat treatment in different temperature ranges.
  • the laminate 24 is placed in a heat-resistant container 40 having a bottomed box shape made of graphite or the like.
  • FIG. 8 illustrates the laminated body 24 with its cross-sectional shape omitted.
  • the stacked body 24 is placed on the support 41 disposed on the bottom surface of the container 40, and thus is disposed in the container 40 via the support 41.
  • the support 41 is formed in a size and a shape that comes into contact with only a part of the lower surface of the laminate 24, and supports the laminate 24 at one or several points on the lower surface of the laminate 24.
  • the number of supports 41 may be one or more.
  • Examples of the shape of the support 41 include a prism, a cylinder, a truncated pyramid, and a truncated cone.
  • the truncated pyramid shape and the truncated cone shape are particularly preferable in that the number of contacts with the lower surface of the laminate 24 can be reduced.
  • the support member 41 is formed of a porous material having continuous pores large enough to cause a capillary phenomenon.
  • the porous material forming the support 41 include a porous material made of silicon carbide and a porous material made of carbon such as graphite.
  • the porosity of the porous material constituting the support 41 is, for example, 20 to 60%.
  • Solid metal silicon 42 such as powder, granule, or lump is placed in the gap S between the bottom surface of the container 40 and the laminate 24 placed on the support 41.
  • the metal silicon 42 it is preferable to use metal silicon having a purity of less than 98%.
  • Solid metallic silicon tends to have a lower melting point as its purity decreases. Therefore, by using low-purity metallic silicon, the heating temperature required for the impregnation step can be kept low. As a result, manufacturing costs can be reduced.
  • the purity of the metallic silicon is, for example, 95% or more.
  • the amount of the metallic silicon 42 contained in the container 40 is, for example, an amount corresponding to the sum of the pore volume of the porous body obtained from the laminate 24 and the pore volume of the support 41 (for example, 1.00 to 1.00 of the above sum). 1.05 times the volume).
  • the porosity of the heat exchanger 10 can approach 0%.
  • the usage amount of the metal silicon 42 is suppressed, and the manufacturing cost can be suppressed.
  • the container 40 is placed under an inert atmosphere such as argon or nitrogen or under vacuum using a known heating means such as a firing furnace. Heat. At this time, the container 40 is subjected to multi-stage heating in different temperature ranges.
  • the primary heating is performed by raising the temperature in the container 40 to the first temperature and maintaining the temperature at the first temperature for a certain time. Thereafter, the temperature inside the container 40 is increased to a second temperature higher than the first temperature, and is maintained for a certain period of time to perform secondary heating. Then, the temperature in the container 40 is decreased.
  • Primary heating is a heat treatment corresponding to the degreasing step.
  • the first temperature of the primary heating is a temperature at which the organic components are burned off and lower than the melting point of metallic silicon, and is set according to the type of the organic components contained in the laminate 24. By the primary heating, the organic components contained in the laminate 24 are burned off, and the laminate 24 becomes porous. At this time, since the temperature (first temperature) in the container 40 is lower than the melting point of the metal silicon, the metal silicon 42 contained in the container 40 is maintained in a solid state.
  • the first temperature is preferably, for example, a temperature of 400 ° C. or more and 1400 ° C. or less, and more preferably a temperature of 450 ° C. or more and 1000 ° C. or less.
  • the first temperature can be a range in which the above upper and lower limits are arbitrarily combined, and can be a range in which an intermediate value between the above upper and lower limits is arbitrarily combined.
  • Primary heating is preferably performed until the organic components contained in the laminate 24 are completely removed.
  • a heating time for forming a porous body from which organic components contained in the laminate 24 have been removed is measured in advance, and the temperature in the container 40 is set to the first temperature with the elapse of the heating time. To the second temperature.
  • Secondary heating is a heat treatment corresponding to the impregnation step.
  • the second temperature of the secondary heating is set to be equal to or higher than the melting point of metallic silicon.
  • the metal silicon 42 contained in the container 40 is melted.
  • the molten metal silicon enters the gaps of the silicon carbide particles constituting the partition wall of the porous body through the support 41 made of a porous material by the capillary phenomenon, and the gaps are impregnated with the metal silicon 42.
  • the boundary portion between the heat medium flowing portion and the gas flowing portion in the porous body is also impregnated with the metallic silicon 42 so that the boundary portion between the heat medium flowing portion and the gas flowing portion disappears.
  • the second temperature is preferably, for example, a temperature of 1420 ° C. or higher. By setting the second temperature in the above temperature range, it is possible to more reliably impregnate the metal silicon.
  • the second temperature is, for example, preferably 2000 ° C. or lower, and more preferably 1900 ° C. or lower.
  • the second temperature is preferably lower than the sintering temperature of silicon carbide contained in the mixture used in the molding step (for example, 2000 ° C. or lower).
  • the obtained heat exchanger 10 is in a non-sintered state in which most of the constituent silicon carbide particles are not sintered but exist independently. Become. This unsintered state has a high Young's modulus and is hardly deformed, and is useful as a heat exchanger.
  • the secondary heating is preferably performed until the metal silicon is sufficiently impregnated into the gaps between the silicon carbide particles constituting each wall of the porous body.
  • the amount of the metal silicon 42 contained in the container 40 is an amount corresponding to the sum of the pore volume of the porous body and the pore volume of the support 41, all the metal silicon 42 is impregnated. Thus, it can be determined that the metal silicon has been sufficiently impregnated.
  • a plurality of gas flow paths R1, a plurality of heat medium flow paths R2, and partition walls that partition the gas flow paths R1 and the heat medium flow paths R2 are provided.
  • the heat exchanger 10 in which heat exchange is performed between the flowing gas and the liquid heat medium flowing through the heat medium flow passage R2 via the partition wall can be obtained.
  • the molding step is a sheet-like portion in which a gas flow path is formed in the molded body, and a plurality of protrusions scattered in a gas flow direction and a direction intersecting the flow direction are provided on the surface. It has a first molding step of molding the first molded body.
  • the method includes a second forming step of forming a second formed body having a portion for forming a heat medium passage in the formed body, and a laminating step of stacking the first formed body and the second formed body.
  • the gas flowing through the gas flow portion has a curved line between the plurality of protrusions. Distribute regularly. This makes it difficult to form a boundary layer that hinders the transfer of heat formed between the gas and the partition wall that forms the gas flow passage. Heat transport can be facilitated. Therefore, the heat exchange efficiency can be improved.
  • the tip of the projection of the first molded body is brought into contact with the first molded body or the second molded body superimposed on the first molded body.
  • the convex portion heat conduction between the first molded body provided with the convex portion and another first molded body or second molded body laminated on the first molded body can be promoted. . Therefore, the heat exchange efficiency can be improved.
  • the convex portions are formed by press forming.
  • press molding By forming the protrusions by press molding, it becomes easy to make the protrusions finer or to form the protrusions in a dense state.
  • the first fluid flowing through the first flow passage is not limited to gas.
  • the second fluid flowing through the second flow passage is not limited to the heat medium.
  • the first fluid may be a heat carrier and the second fluid may be a gas. Both the first fluid and the second fluid may be gas or both may be heat medium.
  • the fluid flowing through the first flow passage and the second flow passage is not limited to the first fluid and the second fluid.
  • the second fluid and a third fluid different from the second fluid may flow through the second flow passage.
  • the lamination form of the gas circulation part and the heat medium circulation part is not limited to the mode in which three gas circulation parts and one heat medium circulation part are alternately laminated.
  • the lamination form of the gas circulation section and the heat medium circulation section can be appropriately selected.
  • the heat medium inlet is formed on one end side in the width direction DX of the heat medium flowing portion, and the heat medium outlet is formed on the other end side in the width direction DX.
  • the present invention is not limited to this mode. .
  • An outlet for the heat medium may be formed at one end of the width direction DX, and an inlet for the heat medium may be formed at the other end of the width DX.
  • the position of the inflow port and the outflow port of the gas flow section may be reversed.
  • the convex portion 25 has a tapered shape protruding in a curved shape as shown in FIGS.
  • the fluid can flow through the gap between the two convex portions 25 adjacent in the width direction DX, but the distance between the two convex portions 25 adjacent in the width direction DX, that is, The width of the gap continuously changes in the front-rear direction DY due to the outer surface of the projection 25 having a curved shape in plan view.
  • the resistance of the plurality of protrusions 25 to the fluid is not constant in the front-rear direction DY, and increases and / or decreases, for example, continuously.
  • the distance between the two convex portions 25 adjacent in the width direction DX that is, the width of the gap continuously changes in the vertical direction DZ due to the tapered shape of the convex portions 25.
  • the resistance of the plurality of protrusions 25 to the fluid is not constant in the vertical direction DZ, and increases and / or decreases, for example, continuously. This is advantageous for causing non-uniformity of the fluid velocity in the vertical direction DZ, and is advantageous for making it difficult for the fluid flow to be in a rectified state.
  • the shape of the projection is not limited to the shape of the present embodiment.
  • a shape in which the vertical cross section of the convex portion is tapered linearly such as a trapezoidal shape, may be used.
  • the convex portion having such a shape is advantageous in causing non-uniformity in the fluid velocity at least in the vertical direction DZ, and is advantageous in making it difficult for the fluid flow to be in a rectified state.
  • the convex portion does not need to have a tapered shape, and may have a columnar shape or a prismatic shape.
  • the convex portion having such a shape is advantageous in causing non-uniformity of the fluid velocity at least in the front-rear direction DY, and is advantageous in making it difficult for the fluid flow to be in a rectified state.
  • the tip of the convex portion does not have to be in contact with the lower surface of another gas circulation portion or the heat medium circulation portion that is overlapped with the gas circulation portion. That is, the height of the convex portion may be lower than the height of the side wall of the gas flow portion.
  • the cross-sectional shape of the convex portion 25 of the present embodiment is configured such that the lower surface side of the bottom wall 21 is a flat surface, but is not limited to this mode.
  • the pressing step instead of using a flat plate-shaped mold below the rectangular plate-shaped molded body, by using a mold protruding upward, for example, as shown in FIG.
  • a convex portion 25 having a concave portion 26 formed on the side may be formed.
  • convex part 25 may be provided in both the upper surface side and the lower surface side of bottom wall 21 of gas circulation part 20.
  • the method of forming the convex portion is not limited to press molding.
  • the convex portion may be separately molded and joined to the bottom wall of the first molded body, or the first molded body may be injection molded.
  • the arrangement of the protrusions is not limited to the arrangement of the present embodiment.
  • the configuration is not limited to the configuration in which the plurality of protrusions have the protrusion rows arranged at equal intervals along the width direction DX, and the plurality of protrusion rows are arranged at equal intervals along the front-rear direction DY. .
  • a configuration in which the protrusions are arranged irregularly (randomly) may be employed.
  • the side wall of the first molded body is formed by press molding, but is not limited to this mode.
  • the separately formed side walls may be joined.
  • only the projection may be formed by press molding.
  • the side wall of the second molded body is formed by press molding, but is not limited to this mode.
  • the second molded body may be extruded with the bottom wall and the side wall integrated. After separately forming the bottom wall and the side wall, both may be joined.
  • the heat medium circulating portion is not limited to a mode in which two through holes forming the heat medium flow passage are formed.
  • three or more through holes may be formed.
  • the central wall may be omitted and one through hole may be formed.
  • the heat medium circulating section is not limited to the form formed using the sheet-shaped second molded body.
  • a honeycomb structure in which a plurality of cells are arranged may be used as the heat medium circulating unit.
  • a baking step may be inserted between the degreasing step and the impregnation step. By firing the degreased porous body, it is possible to improve the strength of the porous body and prevent the porous body from being damaged in the impregnation step.
  • the temperature can be 2100 ° C. to 2250 ° C.
  • the holding time can be 1 to 5 hours.
  • R1 first flow path (gas flow path)
  • R2 second flow path (heat medium flow path)
  • 10 heat exchanger
  • 18 first molded body
  • 19 second molded body.

Abstract

This method for manufacturing a heat exchanger includes a molding step in which a raw material composition containing silicon carbide particles is used to form a molded body which is provided with first flow passages R1 and a plurality of second flow passages R2. This molding step includes: a first molding step for forming a sheet-like first molded body which forms the first flow passages R1 in the molded body, and which has on the surface thereof a plurality of protrusions 25 scattered in the flow direction of a first fluid and in a direction crossing said flow direction; a second molding step for forming a sheet-like second molded body which forms the second flow passages R2 in the molded body; and a stacking step for stacking the first molded body and the second molded body together.

Description

熱交換器の製造方法Heat exchanger manufacturing method
 本発明は、熱交換器の製造方法に関する。 The present invention relates to a method for manufacturing a heat exchanger.
 特許文献1には、熱交換器の製造方法について記載されている。
 この製造方法では、図13に示すように、セラミック製のシート材51の表面に円筒状のローラー52を用いて複数のリブ53を形成している。リブ53を形成したシート材51を複数積層して積層体を作製し、積層体を焼成し、焼成後の積層体をケースに収納して熱交換器を製造する。
Patent Literature 1 describes a method for manufacturing a heat exchanger.
In this manufacturing method, as shown in FIG. 13, a plurality of ribs 53 are formed on the surface of a ceramic sheet material 51 using a cylindrical roller 52. A laminate is prepared by laminating a plurality of sheet members 51 having the ribs 53 formed thereon, and the laminate is fired, and the fired laminate is housed in a case to manufacture a heat exchanger.
特開2002-5593号公報JP-A-2002-5593
 特許文献1の熱交換器では、複数のリブ53は、シート材51の一端側の端部から他端側の端部まで連続して設けられている。流体は、複数のリブ53の間をリブ53に沿って流通するため、流体の流れが整流状態となりやすい。流体の流れが整流状態であると、熱輸送を行いにくい。そのため、熱交換効率が低いという課題を有している。本発明は、こうした事情に鑑みてなされたものであり、その目的は、熱交換効率を向上させることができる熱交換器の製造方法を提供することにある。 In the heat exchanger of Patent Document 1, the plurality of ribs 53 are provided continuously from one end of the sheet material 51 to the other end thereof. Since the fluid flows between the plurality of ribs 53 along the ribs 53, the flow of the fluid tends to be in a rectified state. When the flow of the fluid is in a rectified state, it is difficult to perform heat transport. Therefore, there is a problem that the heat exchange efficiency is low. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method of manufacturing a heat exchanger that can improve heat exchange efficiency.
 本開示の或る態様に従う熱交換器の製造方法は、複数の第1流通路と、複数の第2流通路と、上記第1流通路と上記第2流通路を区画する区画壁とを備え、上記第1流通路を流通する第1流体と、上記第2流通路を流通する第2流体との間で上記区画壁を介して熱交換が行われる炭化ケイ素製の熱交換器の製造方法であって、炭化ケイ素粒子を含む原料組成物を用いて、上記第1流通路及び上記第2流通路を備える成形体を成形する成形工程と、上記成形体を脱脂して多孔体を作製する脱脂工程と、上記多孔体に金属ケイ素を含浸させる含浸工程とを有し、上記成形工程は、上記成形体における上記第1流通路を形成する部位であって、上記第1流体の流通方向及び当該流通方向に交差する方向に点在する複数の凸部が表面に設けられたシート状の第1成形体を成形する第1成形工程と、上記成形体における上記第2流通路を形成する部位を有する第2成形体を成形する第2成形工程と、上記第1成形体と上記第2成形体を積層する積層工程とを有する。 A method for manufacturing a heat exchanger according to an aspect of the present disclosure includes a plurality of first flow paths, a plurality of second flow paths, and a partition wall that partitions the first flow path and the second flow path. A method of manufacturing a heat exchanger made of silicon carbide in which heat exchange is performed between the first fluid flowing through the first flow passage and the second fluid flowing through the second flow passage via the partition wall. And a forming step of forming a molded body having the first flow passage and the second flow passage by using a raw material composition containing silicon carbide particles, and degreasing the molded body to produce a porous body. A degreasing step, and an impregnating step of impregnating the porous body with metallic silicon, wherein the forming step is a part of the formed body where the first flow passage is formed, and a flow direction of the first fluid and A plurality of projections scattered in a direction intersecting the distribution direction are provided on the surface. A first molding step of molding a first molded body having a shape, a second molding step of molding a second molded body having a portion forming the second flow passage in the molded body, And a laminating step of laminating the second molded body.
 上記構成によれば、第1成形体に、第1流体の流通方向及び当該流通方向に交差する方向に点在する複数の凸部が形成されることによって、第1流通路を流通する第1流体と第1流通路を形成する区画壁との間に形成される熱の移動を阻害する境界層ができにくくなる。これにより、第1流通路を流通する第1流体の熱輸送を促進させることができるため、熱交換効率を向上させることができる。 According to the above configuration, the first molded body is formed with the plurality of protrusions scattered in the flow direction of the first fluid and the direction intersecting the flow direction, so that the first fluid flowing through the first flow passage is formed. It becomes difficult to form a boundary layer that inhibits the transfer of heat formed between the fluid and the partition wall that forms the first flow passage. Thereby, heat transfer of the first fluid flowing through the first flow passage can be promoted, so that heat exchange efficiency can be improved.
 本開示の或る態様では、上記積層工程において、上記第1成形体の上記凸部の先端を、上記第1成形体に重ねられた上記第1成形体又は上記第2成形体に当接させてよい。上記構成によれば、凸部を介して、凸部が設けられた第1成形体と、この第1成形体に積層された他の第1成形体又は第2成形体との間における熱伝導を促進させることができる。そのため、熱交換効率を向上させることができる。 In one aspect of the present disclosure, in the laminating step, the tip of the convex portion of the first molded body is brought into contact with the first molded body or the second molded body superimposed on the first molded body. May be. According to the above configuration, heat conduction between the first molded body provided with the convex part and another first molded body or the second molded body laminated on the first molded body via the convex part. Can be promoted. Therefore, the heat exchange efficiency can be improved.
 本開示の或る態様では、上記第1成形工程において、上記凸部はプレス成形で形成されてよい。上記構成によれば、凸部をプレス成形で形成することにより、凸部を微細化したり、凸部を密集した状態で形成することが容易になる。 In one embodiment of the present disclosure, in the first forming step, the convex portion may be formed by press forming. According to the above configuration, by forming the projections by press molding, it becomes easy to make the projections finer or to form the projections in a dense state.
 本開示の或る態様では、上記凸部が形成された第1成形体における互いに反対側の一対の端部には、側壁が設けられており、上記側壁は、上記プレス成形で形成されてよい。上記構成によれば、凸部と側壁を同時に成形することができるため、熱交換器を効率良く製造することができる。 According to an aspect of the present disclosure, a side wall is provided at a pair of opposite ends of the first molded body on which the protrusion is formed, and the side wall may be formed by the press molding. . According to the above configuration, since the convex portion and the side wall can be formed at the same time, the heat exchanger can be manufactured efficiently.
 本開示の或る態様では、上記凸部は、角柱状もしくは楕円柱状となるように形成されてよい。上記構成によれば、凸部における第1流体の流通抵抗を小さくすることができるとともに、熱輸送をさらに促進させることでできる。 In one embodiment of the present disclosure, the protrusion may be formed to have a prismatic or elliptical shape. According to the above configuration, the flow resistance of the first fluid in the convex portion can be reduced, and the heat transport can be further promoted.
 本開示の一以上の態様によれば、熱交換器の熱交換効率を向上させることができる。 According to one or more aspects of the present disclosure, the heat exchange efficiency of the heat exchanger can be improved.
熱交換器の斜視図。The perspective view of a heat exchanger. 図1の2-2線断面図。FIG. 2 is a sectional view taken along line 2-2 of FIG. 1. 図1の3-3線断面図。FIG. 3 is a sectional view taken along line 3-3 in FIG. 1. 成形工程の説明図。Explanatory drawing of a molding process. 第1成形工程の説明図。Explanatory drawing of a 1st shaping | molding process. 第2成形工程の説明図。Explanatory drawing of a 2nd shaping | molding process. 積層工程の説明図。Explanatory drawing of a lamination process. 容器内に積層体を配置した状態を示す説明図。Explanatory drawing which shows the state which arrange | positioned the laminated body in the container. 容器内の温度変化を示すグラフ。4 is a graph showing a temperature change in the container. 凸部の幅方向の断面図。Sectional drawing of the width direction of a convex part. 変更例の凸部の幅方向の断面図。Sectional drawing of the width direction of the convex part of the example of a change. 別の変更例の凸部の幅方向の断面図。Sectional drawing of the width direction of the convex part of another modification. 従来技術の熱交換器における成形工程の説明図。Explanatory drawing of the shaping process in the heat exchanger of a prior art.
 以下、熱交換器の一実施形態を説明する。
 図1に示すように、本実施形態の熱交換器10は、第1流通路(ガス流通路R1)を備える第1流通部(ガス流通部20)と、第2流通路(熱媒体流通路R2)を備える第2流通部(熱媒体流通部30)とが並設された状態で構成されている。並設方向の両端部に熱媒体流通部30が配置され、各熱媒体流通部30の内側にそれぞれ3層のガス流通部20が配置されている。ガス流通部20の内側に1層の熱媒体流通部30が配置されている。そして、ガス流通路R1を流通するガスと、熱媒体流通路R2を流通する液状の熱媒体との間で、熱交換が行われるように構成されている。
Hereinafter, an embodiment of the heat exchanger will be described.
As shown in FIG. 1, the heat exchanger 10 of the present embodiment includes a first circulation part (gas circulation part 20) having a first circulation passage (gas circulation passage R1) and a second circulation passage (heat medium circulation passage). R2) and a second circulation section (heat medium circulation section 30). Heat medium circulating portions 30 are arranged at both ends in the juxtaposition direction, and three layers of gas circulating portions 20 are arranged inside each heat medium circulating portion 30. One layer of the heat medium circulation unit 30 is arranged inside the gas circulation unit 20. The heat exchange is performed between the gas flowing through the gas flow passage R1 and the liquid heat medium flowing through the heat medium flow passage R2.
 次に、熱媒体流通部30について説明する。
 図1、2に示すように、熱媒体流通部30は、矩形状の板材で構成される底壁31と、底壁31の互いに反対側の一対の端部から立設する側壁32と、各側壁32の中間位置で底壁31から立設する中央壁33とを備える。熱媒体流通部30は、底壁31と同一形状で構成され、側壁32及び中央壁33上に配置される天壁34を備える。側壁32及び中央壁33上に天壁34が配置されることによって、底壁31と天壁34との間に熱媒体流通路R2を構成する2つの貫通孔C2が形成されている。そのため、底壁31、側壁32、中央壁33、及び、天壁34は、熱媒体流通路R2を区画する区画壁として機能する。
Next, the heat medium circulating unit 30 will be described.
As shown in FIGS. 1 and 2, the heat medium circulating portion 30 includes a bottom wall 31 formed of a rectangular plate, a side wall 32 erected from a pair of opposite ends of the bottom wall 31, And a central wall 33 standing from the bottom wall 31 at an intermediate position of the side wall 32. The heat medium circulating unit 30 is configured in the same shape as the bottom wall 31, and includes a top wall 34 disposed on the side wall 32 and the center wall 33. By disposing the top wall 34 on the side wall 32 and the center wall 33, two through holes C2 forming the heat medium flow passage R2 are formed between the bottom wall 31 and the top wall 34. Therefore, the bottom wall 31, the side wall 32, the center wall 33, and the top wall 34 function as partition walls that partition the heat medium passage R2.
 図1における熱交換器10の中央部と下端部に位置する熱媒体流通部30は、天壁34として、後述するガス流通部20の底壁21を用いている。すなわち、熱交換器10の中央部と下端部に位置する熱媒体流通部30は、上側に積層されたガス流通部20の底壁21を、天壁34として兼用している。 熱 The heat medium circulating sections 30 located at the center and the lower end of the heat exchanger 10 in FIG. 1 use the bottom wall 21 of the gas circulating section 20 described later as the top wall 34. In other words, the heat medium circulating portions 30 located at the central portion and the lower end portion of the heat exchanger 10 also use the bottom wall 21 of the gas circulating portion 20 laminated on the upper side as the top wall 34.
 ここで、図1に示すように、熱交換器10において貫通孔C2の延びる方向を「幅方向DX」といい、貫通孔C2の配列する方向を「前後方向DY」といい、ガス流通部20と熱媒体流通部30との並設方向を「上下方向DZ」という。 Here, as shown in FIG. 1, the direction in which the through-holes C2 extend in the heat exchanger 10 is referred to as “width direction DX”, the direction in which the through-holes C2 are arranged is referred to as “front-back direction DY”, And the direction in which the heat medium circulating unit 30 is juxtaposed is referred to as “vertical direction DZ”.
 図2に示すように、貫通孔C2の幅方向DX一端側に熱媒体の流入口15aが形成されるとともに、貫通孔C2の幅方向DX他端側に熱媒体の流出口15bが形成され、流入口15aと流出口15bの間に熱媒体流通路R2が形成されている。熱媒体流通部30における底壁31及び天壁34の厚さは、例えば0.1~1.0mmであることが好ましい。熱媒体流通部30における側壁32及び中央壁33の厚さは、例えば0.1~1.0mmであることが好ましい。熱媒体流通路R2を流通する熱媒体としては、例えば、公知の液状の熱媒体を用いることができる。公知の熱媒体としては、例えば、冷却水(Long Life Coolant:LLC)や、エチレングリコール等の有機溶剤が挙げられる。 As shown in FIG. 2, an inlet 15a for the heat medium is formed at one end of the through hole C2 in the width direction DX, and an outlet 15b for the heat medium is formed at the other end of the through hole C2 in the width DX. A heat medium passage R2 is formed between the inflow port 15a and the outflow port 15b. The thickness of the bottom wall 31 and the top wall 34 in the heat medium circulating portion 30 is preferably, for example, 0.1 to 1.0 mm. The thickness of the side wall 32 and the center wall 33 in the heat medium circulating section 30 is preferably, for example, 0.1 to 1.0 mm. As the heat medium flowing through the heat medium flow passage R2, for example, a known liquid heat medium can be used. Known heat media include, for example, cooling water (Long Life Coolant: LLC) and organic solvents such as ethylene glycol.
 次に、ガス流通部20について説明する。
 図1、3に示すように、ガス流通部20は、矩形状の板材で構成される底壁21と、底壁21の幅方向DXに互いに反対側の一対の端部から立設する側壁22と、底壁21と同一形状で構成され、側壁22上に配置される天壁23とを備える。側壁22上に天壁23が配置されることによって、底壁21と天壁23との間にガス流通路R1を構成する貫通孔C1が形成されている。そのため、底壁21、側壁22、及び、天壁23は、ガス流通路R1を区画する区画壁として機能する。
Next, the gas circulation unit 20 will be described.
As shown in FIGS. 1 and 3, the gas flow portion 20 includes a bottom wall 21 formed of a rectangular plate, and a side wall 22 erected from a pair of opposite ends of the bottom wall 21 in the width direction DX. And a top wall 23 configured in the same shape as the bottom wall 21 and disposed on the side wall 22. By disposing the top wall 23 on the side wall 22, a through hole C <b> 1 forming the gas flow path R <b> 1 is formed between the bottom wall 21 and the top wall 23. Therefore, the bottom wall 21, the side wall 22, and the top wall 23 function as partition walls that partition the gas passage R1.
 図1における熱媒体流通部30の下側に位置するガス流通部20は、天壁23として、熱媒体流通部30の底壁31を用いている。また、ガス流通部20同士が積層された箇所における下側に位置するガス流通部20は、天壁23として、上側に位置するガス流通部20の底壁21を用いている。すなわち、ガス流通部20は、上側に積層された熱媒体流通部30又はガス流通部20の底壁31、21を、天壁23として兼用している。 ガ ス The gas flow section 20 located below the heat medium flow section 30 in FIG. 1 uses the bottom wall 31 of the heat medium flow section 30 as the top wall 23. In addition, the gas circulation unit 20 located below the portion where the gas circulation units 20 are stacked uses the bottom wall 21 of the gas circulation unit 20 located above as the top wall 23. That is, the gas distribution unit 20 also uses the heat medium distribution unit 30 or the bottom walls 31 and 21 of the gas distribution unit 20 stacked on the upper side as the top wall 23.
 図3に示すように、貫通孔C1の前後方向DY一端側にガスの流入口16aが形成されるとともに、貫通孔C1の前後方向他端側にガスの流出口16bが形成され、流入口16aと流出口16bの間にガス流通路R1が形成されている。 As shown in FIG. 3, a gas inlet 16a is formed at one end of the through-hole C1 in the front-rear direction DY, and a gas outlet 16b is formed at the other end of the through-hole C1 in the front-rear direction. A gas flow passage R1 is formed between the gas flow passage 16 and the outlet 16b.
 ガス流通部20の底壁21の表面には、ガスの流通方向、及び、ガスの流通方向に交差する方向に、複数の凸部25が点在する状態で設けられている。すなわち、凸部25は、ガスの流通方向である前後方向DYに沿って複数設けられているとともに、ガスの流通方向に交差する方向である幅方向DXに沿って複数設けられている。具体的には、図3に示すように、複数の凸部25は、幅方向DXに沿って等間隔で配列した凸部列を有し、この凸部列が、前後方向DYに沿って等間隔で複数並設されている。前後方向DYに隣り合う凸部列は、各凸部列における凸部25同士の間隔の1/2だけ凸部25の位置が幅方向DXにずれて並設されている。すなわち、前後方向DYにおける一つおきの凸部列において、幅方向DXにおける凸部25の位置が同じ位置となるように構成されている。 On the surface of the bottom wall 21 of the gas flow section 20, a plurality of projections 25 are provided in a dotted manner in a gas flow direction and a direction intersecting the gas flow direction. In other words, a plurality of protrusions 25 are provided along the front-rear direction DY that is the gas flow direction, and a plurality of protrusions 25 are provided along the width direction DX that intersects the gas flow direction. Specifically, as shown in FIG. 3, the plurality of protrusions 25 have a row of protrusions arranged at equal intervals along the width direction DX, and the plurality of protrusions 25 are aligned along the front-rear direction DY. A plurality are arranged at intervals. Convex rows adjacent to each other in the front-rear direction DY are arranged such that the positions of the convex sections 25 are shifted in the width direction DX by の of the interval between the convex sections 25 in each convex row. In other words, in every other row of convex portions in the front-back direction DY, the positions of the convex portions 25 in the width direction DX are the same.
 図1、3に示すように、凸部25は、湾曲状に突出した先細形状となっている。具体的には、幅方向DXに直交する断面形状及び前後方向DYに直交する断面形状が、共に、楕円形を短軸に沿って切断した形状となっている。凸部25の横断面形状は、前後方向DYに延びた楕円形状となっている。凸部25の高さである上下方向DZの寸法は、側壁22の上下方向DZの寸法と等しくてよく、例えば1.0~4.0mmであることが好ましい。凸部25の幅方向DXの寸法は、例えば0.1~1.0mmであることが好ましい。凸部25の前後方向DYの寸法は、例えば1.0~5.0mmであることが好ましい。凸部列における凸部25同士の幅方向DXの間隔は、例えば0.4~4.0mmであることが好ましい。凸部列同士の前後方向の間隔は、例えば1.0~5.0mmであることが好ましい。 凸 As shown in FIGS. 1 and 3, the projection 25 has a tapered shape protruding in a curved shape. Specifically, the cross-sectional shape orthogonal to the width direction DX and the cross-sectional shape orthogonal to the front-rear direction DY are both shapes obtained by cutting an ellipse along a short axis. The cross-sectional shape of the convex portion 25 is an elliptical shape extending in the front-rear direction DY. The dimension in the vertical direction DZ, which is the height of the projection 25, may be equal to the dimension in the vertical direction DZ of the side wall 22, and is preferably, for example, 1.0 to 4.0 mm. The dimension of the projection 25 in the width direction DX is preferably, for example, 0.1 to 1.0 mm. The dimension of the protrusion 25 in the front-rear direction DY is preferably, for example, 1.0 to 5.0 mm. The interval in the width direction DX between the projections 25 in the row of projections is preferably, for example, 0.4 to 4.0 mm. The distance between the rows of convex portions in the front-rear direction is preferably, for example, 1.0 to 5.0 mm.
 ガス流通部20における底壁21、及び、天壁23の厚さは、例えば0.1~1.0mmであることが好ましい。ガス流通部20における側壁22の厚さは、例えば0.1~1.0mmであることが好ましい。ガス流通路R1を流通するガスとしては、例えば、内燃機関の排気ガス、内燃機関への吸気ガスが挙げられる。 底 The thickness of the bottom wall 21 and the top wall 23 in the gas flow section 20 is preferably, for example, 0.1 to 1.0 mm. The thickness of the side wall 22 in the gas flow section 20 is preferably, for example, 0.1 to 1.0 mm. Examples of the gas flowing through the gas flow passage R1 include an exhaust gas of an internal combustion engine and an intake gas to the internal combustion engine.
 熱媒体流通部30、及び、ガス流通部20を構成する材料は、炭化ケイ素を主成分として含む炭化ケイ素製の材料である。炭化ケイ素を主成分として含む材料は、熱伝導率が高く、熱交換効率を高くすることができる。ここで、「主成分」とは、50質量%以上を意味するものとする。 (4) The material forming the heat medium distribution unit 30 and the gas distribution unit 20 is a silicon carbide material containing silicon carbide as a main component. A material containing silicon carbide as a main component has high thermal conductivity and can increase heat exchange efficiency. Here, “main component” means 50% by mass or more.
 次に、熱交換器10の流路構成について説明する。
 図1に示すように、熱交換器10は、ガス流通部20と熱媒体流通部30が接続された状態で構成されている。そして、熱媒体流通部30の貫通孔C2とガス流通部20の貫通孔C1とは、互いに直交する方向に延びるように構成されている。具体的には、熱媒体流通部30の貫通孔C2は、幅方向DXに延びるように構成され、ガス流通部20の貫通孔C1は、前後方向DYに延びるように構成されている。そして、ガス流通部20の貫通孔C1を流通するガスと、熱媒体流通部30の貫通孔C2を流通する熱媒体との間で、区画壁を介して熱交換が行われる。
Next, the flow path configuration of the heat exchanger 10 will be described.
As shown in FIG. 1, the heat exchanger 10 is configured in a state where the gas circulation unit 20 and the heat medium circulation unit 30 are connected. The through-hole C2 of the heat medium circulating section 30 and the through-hole C1 of the gas circulating section 20 are configured to extend in directions orthogonal to each other. Specifically, the through hole C2 of the heat medium circulating portion 30 is configured to extend in the width direction DX, and the through hole C1 of the gas circulating portion 20 is configured to extend in the front-rear direction DY. Then, heat exchange is performed between the gas flowing through the through-hole C1 of the gas flow part 20 and the heat medium flowing through the through-hole C2 of the heat medium flow part 30 via the partition wall.
 図4~9に基づいて、熱交換器10の一製造方法について説明する。
 熱交換器10は、以下に記載する成形工程、脱脂工程、含浸工程を経ることにより製造される。
One manufacturing method of the heat exchanger 10 will be described with reference to FIGS.
The heat exchanger 10 is manufactured through a molding process, a degreasing process, and an impregnation process described below.
 (成形工程)
 成形工程は、シート状の第1成形体18を成形する第1成形工程と、シート状の第2成形体19を成形する第2成形工程と、第1成形体18と第2成形体19を積層する積層工程とを有する。
(Molding process)
The forming step includes a first forming step of forming a sheet-shaped first formed body 18, a second forming step of forming a sheet-shaped second formed body 19, and forming the first formed body 18 and the second formed body 19. And a laminating step of laminating.
 [第1成形工程]
 第1成形体18の成形に用いる原料組成物として、炭化ケイ素粒子と、有機バインダーと、分散媒とを含有する粘土状の混合物を調製する。
[First molding step]
As a raw material composition used for molding the first molded body 18, a clay-like mixture containing silicon carbide particles, an organic binder, and a dispersion medium is prepared.
 有機バインダーとしては、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロースが挙げられる。これらの有機バインダーの中でも、メチルセルロース、カルボキシメチルセルロースが特に好ましい。また、上記の有機バインダーのうちの一種のみを用いてもよいし、二種以上を併用してもよい。 Examples of the organic binder include polyvinyl alcohol, methyl cellulose, ethyl cellulose, and carboxymethyl cellulose. Among these organic binders, methyl cellulose and carboxymethyl cellulose are particularly preferred. Further, only one kind of the above organic binders may be used, or two or more kinds may be used in combination.
 分散媒としては、例えば、水、有機溶剤が挙げられる。有機溶剤としては、例えば、エタノールが挙げられる。また、上記の分散媒のうちの一種のみを用いてもよいし、二種以上を併用してもよい。 Examples of the dispersion medium include water and organic solvents. Examples of the organic solvent include ethanol. Further, only one of the above dispersion media may be used, or two or more of them may be used in combination.
 また、混合物中にその他の成分を更に含有させてもよい。その他の成分としては、例えば、炭化ケイ素以外の材質からなるセラミック粒子、可塑剤、潤滑剤が挙げられる。炭化ケイ素以外の材質からなるセラミック粒子としては、炭化タンタル、炭化タングステン等の炭化物、窒化アルミニウム、窒化ケイ素、窒化ホウ素等の窒化物からなるセラミック粒子が挙げられる。可塑剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物が挙げられる。潤滑剤としては、例えば、グリセリンが挙げられる。 In addition, other components may be further contained in the mixture. Other components include, for example, ceramic particles, a plasticizer, and a lubricant made of a material other than silicon carbide. Examples of the ceramic particles made of a material other than silicon carbide include ceramic particles made of a carbide such as tantalum carbide and tungsten carbide, and nitrides such as aluminum nitride, silicon nitride, and boron nitride. Examples of the plasticizer include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether. Examples of the lubricant include glycerin.
 図4に示すように、この粘土状の混合物を用いて、矩形板状の成形体17を成形する。この成形体17は、例えば、押出成形により成形することができる。
 次に、図5に示すように、矩形板状の成形体17をプレス成形して、矩形状の板材で構成される底壁21と、底壁21の幅方向DXに互いに反対側の一対の端部から立設する側壁22とを有する第1成形体18を成形する。底壁21には、上下方向DZ上方に突出した凸部25が複数点在した状態で設けられている。プレス成形は、矩形板状の成形体17の下方に平板状の金型(図示せず)を配置するとともに、矩形板状の成形体17の上方に第1成形体18の上面と凹凸関係が逆に構成された金型(図示せず)を配置して、上下両方から金型同士が近づく方向にプレスして行う。矩形板状の成形体17が厚さ方向に押圧されることによって、凸部25と側壁22とを有する第1成形体18が得られる。プレス成形によって、金型の形状に応じた凸部25を作製することができるため、凸部25を微細化したり、凸部25を密集した状態で形成することが容易になる。
As shown in FIG. 4, a rectangular plate-shaped molded body 17 is formed using the clay-like mixture. The molded body 17 can be molded by, for example, extrusion molding.
Next, as shown in FIG. 5, the rectangular plate-shaped molded body 17 is press-formed to form a bottom wall 21 made of a rectangular plate material and a pair of opposite sides in the width direction DX of the bottom wall 21. The first molded body 18 having the side wall 22 erected from the end is molded. The bottom wall 21 is provided with a plurality of projections 25 projecting upward in the vertical direction DZ. In the press molding, a flat mold (not shown) is arranged below the rectangular plate-shaped molded body 17, and the upper and lower surfaces of the first molded body 18 are located above the rectangular plate-shaped molded body 17. An oppositely configured mold (not shown) is arranged, and pressing is performed in a direction in which the molds approach each other from above and below. The first molded body 18 having the convex portions 25 and the side walls 22 is obtained by pressing the rectangular plate-shaped molded body 17 in the thickness direction. Since the convex portions 25 according to the shape of the mold can be produced by press molding, it becomes easy to make the convex portions 25 finer or to form the convex portions 25 in a dense state.
 [第2成形工程]
 第2成形体19の成形に用いる原料組成物としては、第1成形体18と同じ原料組成物からなる粘土状の混合物を用いる。この粘土状の混合物を用いて、第1成形工程と同様に矩形板状の成形体17を成形する。
[Second molding step]
As a raw material composition used for molding the second molded body 19, a clay-like mixture composed of the same raw material composition as the first molded body 18 is used. Using this clay-like mixture, a rectangular plate-like molded body 17 is molded in the same manner as in the first molding step.
 次に、図6に示すように、矩形板状の成形体17をプレス成形して、側壁32と、中央壁33とを有するシート状の第2成形体19を成形する。プレス成形には、矩形板状の成形体17の下方に平板状の金型(図示せず)を配置するとともに、矩形板状の成形体17の上方に第2成形体19の上面と凹凸関係が逆に構成された金型(図示せず)を配置して、上下両方から金型同士が近づく方向にプレスして行う。矩形板状の成形体17が厚さ方向に押圧されることによって、側壁32と中央壁33を有する第2成形体19が得られる。 (6) Next, as shown in FIG. 6, the sheet-shaped second formed body 19 having the side wall 32 and the central wall 33 is formed by press-forming the rectangular plate-shaped formed body 17. In the press molding, a flat plate-shaped mold (not shown) is arranged below the rectangular plate-shaped molded body 17, and the upper and lower surfaces of the second molded body 19 are located above the rectangular plate-shaped molded body 17. Is performed by placing a mold (not shown) having the reverse configuration and pressing the mold in a direction in which the molds approach each other from above and below. The second molded body 19 having the side wall 32 and the center wall 33 is obtained by pressing the rectangular plate-shaped molded body 17 in the thickness direction.
 [積層工程]
 図7に示すように、第1成形体18と第2成形体19を所定の順番で積層して、成形体(積層体24)を形成する。第1成形体18の側壁22上に、他の第1成形体18の底壁21又は第2成形体19の底壁31が載置される。また、第2成形体19の側壁32上に、第1成形体18の底壁21が載置される。上端に位置する第2成形体19の上部には、天壁34として、別途、第2成形体の原料組成物と同じ粘土状の混合物を用いて成形した矩形状の板材を配置する。第1成形体18に設けられた凸部25と側壁22は、同じ高さで構成されているため、第1成形体18の側壁22上に載置された他の第1成形体18の底壁21の下面、又は、第2成形体19の底壁31の下面に、凸部25の先端が当接した状態となる。第1成形体18の上面側は、後述の脱脂工程及び含浸工程を経て、ガス流通部20を構成する。第2成形体19の上面側は、後述の脱脂工程及び含浸工程を経て、熱媒体流通部30を構成する。
[Lamination process]
As shown in FIG. 7, the first compact 18 and the second compact 19 are laminated in a predetermined order to form a compact (laminated body 24). On the side wall 22 of the first compact 18, the bottom wall 21 of the other first compact 18 or the bottom wall 31 of the second compact 19 is placed. The bottom wall 21 of the first molded body 18 is placed on the side wall 32 of the second molded body 19. On the upper part of the second molded body 19 located at the upper end, a rectangular plate material separately molded using the same clay-like mixture as the raw material composition of the second molded body is arranged as the top wall 34. Since the convex portion 25 and the side wall 22 provided on the first molded body 18 have the same height, the bottom of the other first molded body 18 placed on the side wall 22 of the first molded body 18 The lower end of the wall 21 or the lower end of the bottom wall 31 of the second molded body 19 is brought into contact with the tip of the projection 25. The upper surface side of the first molded body 18 constitutes a gas flow section 20 through a degreasing step and an impregnation step described later. The upper surface side of the second molded body 19 constitutes the heat medium flowing section 30 through a degreasing step and an impregnation step described later.
 第1成形体18と第2成形体19は、接着剤層を介して積層させてもよい。接着剤としては、無機バインダーと無機粒子の混合物を用いることができる。無機バインダーとしては、シリカゾル、アルミナゾルが挙げられ、無機粒子としては炭化ケイ素、窒化ケイ素が挙げられる。必要に応じて、積層体24に対して乾燥処理を行う。乾燥処理の具体的方法としては、例えば、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等を用いた乾燥処理が挙げられる。 The first molded body 18 and the second molded body 19 may be laminated via an adhesive layer. As the adhesive, a mixture of an inorganic binder and inorganic particles can be used. Examples of the inorganic binder include silica sol and alumina sol, and examples of the inorganic particles include silicon carbide and silicon nitride. A drying process is performed on the stacked body 24 as necessary. Specific examples of the drying treatment include a drying treatment using a microwave dryer, a hot air dryer, a dielectric dryer, a reduced pressure dryer, a vacuum dryer, a freeze dryer, or the like.
 (脱脂工程)
 脱脂工程は、積層体を加熱することによって、積層体に含まれる有機分を焼失させる工程である。脱脂工程を経ることにより、炭化ケイ素粒子同士が接触した状態で配置された骨格部分を有する多孔体が得られる。
(Degreasing process)
The degreasing step is a step of heating and burning off the organic components contained in the laminate. Through the degreasing step, a porous body having a skeleton portion arranged in a state where the silicon carbide particles are in contact with each other is obtained.
 (含浸工程)
 含浸工程は、多孔体の区画壁の内部に金属ケイ素を含浸させる工程である。含浸工程を経ることにより、区画壁を構成する炭化ケイ素粒子間に金属ケイ素が充填される。
(Impregnation step)
The impregnation step is a step of impregnating the interior of the porous partition wall with metallic silicon. Through the impregnation step, metallic silicon is filled between the silicon carbide particles constituting the partition wall.
 ここで、本実施形態の製造方法では、脱脂工程及び含浸工程を、異なる温度域による多段階の加熱処理によって連続的に行う。
 図8に示すように、グラファイト等からなる有底箱状の耐熱性の容器40内に積層体24を配置する。図8では、積層体24について、その断面形状を省略して図示している。積層体24は、容器40の底面に配置された支持具41の上に載置されることにより、支持具41を介して容器40内に配置される。支持具41は、積層体24の下面の一部のみに接触する大きさ及び形状に形成されており、積層体24の下面の一点又は数点において積層体24を支持する。支持具41の数は単数であってもよいし、複数であってもよい。
Here, in the manufacturing method of the present embodiment, the degreasing step and the impregnating step are continuously performed by multi-stage heat treatment in different temperature ranges.
As shown in FIG. 8, the laminate 24 is placed in a heat-resistant container 40 having a bottomed box shape made of graphite or the like. FIG. 8 illustrates the laminated body 24 with its cross-sectional shape omitted. The stacked body 24 is placed on the support 41 disposed on the bottom surface of the container 40, and thus is disposed in the container 40 via the support 41. The support 41 is formed in a size and a shape that comes into contact with only a part of the lower surface of the laminate 24, and supports the laminate 24 at one or several points on the lower surface of the laminate 24. The number of supports 41 may be one or more.
 支持具41の形状としては、例えば、角柱状、円柱状、角錐台状、円錐台状が挙げられる。これらの中でも、積層体24の下面との接点を少なくできる点で、角錐台状、円錐台状が特に好ましい。 形状 Examples of the shape of the support 41 include a prism, a cylinder, a truncated pyramid, and a truncated cone. Among these, the truncated pyramid shape and the truncated cone shape are particularly preferable in that the number of contacts with the lower surface of the laminate 24 can be reduced.
 支持具41は、毛細管現象を生じさせる程度の大きさの連続した気孔を有する多孔質材により構成される。支持具41を構成する多孔質材としては、例えば、炭化ケイ素からなる多孔質材、黒鉛等の炭素からなる多孔質材が挙げられる。支持具41を構成する多孔質材の気孔率は、例えば、20~60%である。 The support member 41 is formed of a porous material having continuous pores large enough to cause a capillary phenomenon. Examples of the porous material forming the support 41 include a porous material made of silicon carbide and a porous material made of carbon such as graphite. The porosity of the porous material constituting the support 41 is, for example, 20 to 60%.
 また、容器40の底面と支持具41に載置された積層体24との間の隙間Sに粉末状、粒状、塊状等の固体状の金属ケイ素42を配置する。金属ケイ素42としては、その純度が98%未満の金属ケイ素を用いることが好ましい。固体状の金属ケイ素は、その純度が低くなるにしたがって融点が低くなる傾向がある。そのため、低純度の金属ケイ素を用いることにより、含浸工程に要する加熱温度を低く抑えることができる。その結果、製造コストを抑制することができる。なお、金属ケイ素の純度は、例えば、95%以上である。 {Circle around (4)} Solid metal silicon 42 such as powder, granule, or lump is placed in the gap S between the bottom surface of the container 40 and the laminate 24 placed on the support 41. As the metal silicon 42, it is preferable to use metal silicon having a purity of less than 98%. Solid metallic silicon tends to have a lower melting point as its purity decreases. Therefore, by using low-purity metallic silicon, the heating temperature required for the impregnation step can be kept low. As a result, manufacturing costs can be reduced. The purity of the metallic silicon is, for example, 95% or more.
 容器40内に収容される金属ケイ素42の量は、例えば、積層体24から得られる多孔体の気孔容積と支持具41の気孔容積の和に相当する量(例えば、上記和の1.00~1.05倍の体積に相当する量)とする。この場合には、熱交換器10の気孔率を0%に近づけることができる。また、金属ケイ素42の使用量が抑えられて、製造コストを抑制することができる。 The amount of the metallic silicon 42 contained in the container 40 is, for example, an amount corresponding to the sum of the pore volume of the porous body obtained from the laminate 24 and the pore volume of the support 41 (for example, 1.00 to 1.00 of the above sum). 1.05 times the volume). In this case, the porosity of the heat exchanger 10 can approach 0%. In addition, the usage amount of the metal silicon 42 is suppressed, and the manufacturing cost can be suppressed.
 上記のように、容器40内に積層体及び金属ケイ素42を配置した状態として、焼成炉等の公知の加熱手段を用いて、アルゴンや窒素等の不活性雰囲気下又は真空下にて容器40を加熱する。このとき、容器40に対して異なる温度域による多段階の加熱を行う。 As described above, with the laminate and the metal silicon 42 arranged in the container 40, the container 40 is placed under an inert atmosphere such as argon or nitrogen or under vacuum using a known heating means such as a firing furnace. Heat. At this time, the container 40 is subjected to multi-stage heating in different temperature ranges.
 具体的には、図9に示すように、容器40内の温度を、第1温度まで昇温させ、第1温度にて一定時間、保持することにより一次加熱を行う。その後、容器40内の温度を、第1温度よりも高い第2温度まで昇温させ、一定時間、保持することにより二次加熱を行う。その後、容器40内の温度を降下させる。 Specifically, as shown in FIG. 9, the primary heating is performed by raising the temperature in the container 40 to the first temperature and maintaining the temperature at the first temperature for a certain time. Thereafter, the temperature inside the container 40 is increased to a second temperature higher than the first temperature, and is maintained for a certain period of time to perform secondary heating. Then, the temperature in the container 40 is decreased.
 一次加熱は、脱脂工程に相当する加熱処理である。一次加熱の第1温度は、有機分が焼失する温度かつ金属ケイ素の融点未満の温度であり、積層体24に含まれる有機分の種類に応じて設定される。一次加熱により、積層体24に含まれる有機分が焼失して、積層体24は多孔体となる。このとき、容器40内の温度(第1温度)は、金属ケイ素の融点未満の温度であるため、容器40内に収容された金属ケイ素42は、固体の状態が維持される。 Primary heating is a heat treatment corresponding to the degreasing step. The first temperature of the primary heating is a temperature at which the organic components are burned off and lower than the melting point of metallic silicon, and is set according to the type of the organic components contained in the laminate 24. By the primary heating, the organic components contained in the laminate 24 are burned off, and the laminate 24 becomes porous. At this time, since the temperature (first temperature) in the container 40 is lower than the melting point of the metal silicon, the metal silicon 42 contained in the container 40 is maintained in a solid state.
 第1温度は、例えば、400℃以上1400℃以下の温度であることが好ましく、450℃以上1000℃以下の温度であることがより好ましい。第1温度は、上記の上限及び下限を任意に組み合わせた範囲とすることができ、上記の上限及び下限の間の中間値を任意に組み合わせた範囲とすることができる。第1温度を上記温度範囲に設定することにより、金属ケイ素42の溶融を抑制しつつ、積層体24に含まれる有機分をより確実に焼失させることができる。 The first temperature is preferably, for example, a temperature of 400 ° C. or more and 1400 ° C. or less, and more preferably a temperature of 450 ° C. or more and 1000 ° C. or less. The first temperature can be a range in which the above upper and lower limits are arbitrarily combined, and can be a range in which an intermediate value between the above upper and lower limits is arbitrarily combined. By setting the first temperature within the above temperature range, it is possible to more reliably burn off the organic components contained in the laminate 24 while suppressing the melting of the metal silicon 42.
 一次加熱は、積層体24に含まれる有機分が完全に除去されるまで行うことが好ましい。例えば、事前の予備試験により、積層体24に含まれる有機分が除去された状態の多孔体となる加熱時間を測定しておき、その加熱時間の経過をもって、容器40内の温度を第1温度から第2温度に昇温する。 Primary heating is preferably performed until the organic components contained in the laminate 24 are completely removed. For example, by a preliminary test, a heating time for forming a porous body from which organic components contained in the laminate 24 have been removed is measured in advance, and the temperature in the container 40 is set to the first temperature with the elapse of the heating time. To the second temperature.
 二次加熱は、含浸工程に相当する加熱処理である。二次加熱の第2温度は、金属ケイ素の融点以上に設定される。二次加熱により、容器40内に収容された金属ケイ素42が溶融する。そして、溶融した金属ケイ素は、毛細管現象によって、多孔質材からなる支持具41を通じて多孔体の区画壁を構成する炭化ケイ素粒子の隙間に入り込み、その隙間に金属ケイ素42が含浸される。このとき、多孔体における熱媒体流通部及びガス流通部間の境界部分にも金属ケイ素42が含浸されることにより、熱媒体流通部及びガス流通部間の境界部分は消失する。 Secondary heating is a heat treatment corresponding to the impregnation step. The second temperature of the secondary heating is set to be equal to or higher than the melting point of metallic silicon. By the secondary heating, the metal silicon 42 contained in the container 40 is melted. Then, the molten metal silicon enters the gaps of the silicon carbide particles constituting the partition wall of the porous body through the support 41 made of a porous material by the capillary phenomenon, and the gaps are impregnated with the metal silicon 42. At this time, the boundary portion between the heat medium flowing portion and the gas flowing portion in the porous body is also impregnated with the metallic silicon 42 so that the boundary portion between the heat medium flowing portion and the gas flowing portion disappears.
 これにより、区画壁を構成する炭化ケイ素粒子の隙間に金属ケイ素42が含浸されており、複数の熱媒体流通部及びガス流通部が一体化してなる熱交換器10が得られる。
 第2温度は、例えば、1420℃以上の温度であることが好ましい。第2温度を上記温度範囲に設定することにより、金属ケイ素をより確実に含浸させることができる。
Thereby, the metal exchanger 42 is impregnated in the gaps between the silicon carbide particles constituting the partition wall, and the heat exchanger 10 in which the plurality of heat medium circulating portions and the gas circulating portions are integrated is obtained.
The second temperature is preferably, for example, a temperature of 1420 ° C. or higher. By setting the second temperature in the above temperature range, it is possible to more reliably impregnate the metal silicon.
 また、第2温度は、例えば、2000℃以下の温度であることが好ましく、1900℃以下の温度であることがより好ましい。第2温度を上記温度範囲に設定することにより、設備やエネルギー等の観点において、製造コストを抑制することができる。さらに、多孔体の熱膨張が抑制されて、熱膨張に起因する破損が生じ難くなる。 {Circle around (2)} The second temperature is, for example, preferably 2000 ° C. or lower, and more preferably 1900 ° C. or lower. By setting the second temperature within the above-mentioned temperature range, the production cost can be suppressed in terms of facilities and energy. Further, the thermal expansion of the porous body is suppressed, and damage due to the thermal expansion hardly occurs.
 また、第2温度は、成形工程に用いた混合物に含まれる炭化ケイ素の焼結温度未満(例えば、2000℃以下)の温度であることが好ましい。第2温度を上記温度範囲に設定することにより、得られる熱交換器10は、その構成成分である炭化ケイ素粒子の殆どが焼結されずに、それぞれ独立して存在する未焼結の状態となる。この未焼結の状態は、ヤング率が高く、変形し難い性質を有しており、熱交換器として有用である。 {Circle around (2)} The second temperature is preferably lower than the sintering temperature of silicon carbide contained in the mixture used in the molding step (for example, 2000 ° C. or lower). By setting the second temperature within the above-mentioned temperature range, the obtained heat exchanger 10 is in a non-sintered state in which most of the constituent silicon carbide particles are not sintered but exist independently. Become. This unsintered state has a high Young's modulus and is hardly deformed, and is useful as a heat exchanger.
 二次加熱は、多孔体の各壁を構成する炭化ケイ素粒子の隙間に金属ケイ素が十分に含浸されるまで行うことが好ましい。例えば、容器40内に収容される金属ケイ素42の量が、多孔体の気孔容積と支持具41の気孔容積の和に相当する量である場合には、全ての金属ケイ素42が含浸されたことをもって、金属ケイ素が十分に含浸されたと判断することができる。 The secondary heating is preferably performed until the metal silicon is sufficiently impregnated into the gaps between the silicon carbide particles constituting each wall of the porous body. For example, when the amount of the metal silicon 42 contained in the container 40 is an amount corresponding to the sum of the pore volume of the porous body and the pore volume of the support 41, all the metal silicon 42 is impregnated. Thus, it can be determined that the metal silicon has been sufficiently impregnated.
 そして、二次加熱の後は、容器40内の温度を降下させ、容器40から熱交換器10を取り出し、熱交換器10の下面に一体化している支持具41を分離する。これにより、熱交換器10が得られる。 (4) After the secondary heating, the temperature in the vessel 40 is lowered, the heat exchanger 10 is taken out of the vessel 40, and the support 41 integrated with the lower surface of the heat exchanger 10 is separated. Thereby, the heat exchanger 10 is obtained.
 上記の含浸工程を経ることにより、複数のガス流通路R1と、複数の熱媒体流通路R2と、ガス流通路R1と熱媒体流通路R2を区画する区画壁とを備え、ガス流通路R1を流通するガスと、熱媒体流通路R2を流通する液状の熱媒体との間で区画壁を介して熱交換が行われる熱交換器10を得ることができる。 Through the above-described impregnation step, a plurality of gas flow paths R1, a plurality of heat medium flow paths R2, and partition walls that partition the gas flow paths R1 and the heat medium flow paths R2 are provided. The heat exchanger 10 in which heat exchange is performed between the flowing gas and the liquid heat medium flowing through the heat medium flow passage R2 via the partition wall can be obtained.
 次に、本実施形態の作用及び効果について記載する。
 (1)成形工程は、成形体におけるガス流通路を形成する部位であって、ガスの流通方向及び当該流通方向に交差する方向に点在する複数の凸部が表面に設けられたシート状の第1成形体を成形する第1成形工程を有する。また、成形体における熱媒体流通路を形成する部位を有する第2成形体を成形する第2成形工程と、第1成形体と第2成形体を積層する積層工程とを有する。
Next, the operation and effect of the present embodiment will be described.
(1) The molding step is a sheet-like portion in which a gas flow path is formed in the molded body, and a plurality of protrusions scattered in a gas flow direction and a direction intersecting the flow direction are provided on the surface. It has a first molding step of molding the first molded body. In addition, the method includes a second forming step of forming a second formed body having a portion for forming a heat medium passage in the formed body, and a laminating step of stacking the first formed body and the second formed body.
 第1成形体に、ガスの流通方向及び当該流通方向に交差する方向に点在する複数の凸部が形成されることによって、ガス流通部を流通するガスは、複数の凸部の間を曲線的に流通する。これにより、ガスとガス流通路を形成する区画壁との間に形成される熱の移動を阻害する境界層ができにくくなるため、ガスが整流状態で流通する従来の態様に比べて、ガスによる熱輸送を促進させることができる。したがって、熱交換効率を向上させることができる。 By forming a plurality of protrusions scattered in the gas flow direction and a direction intersecting the flow direction on the first molded body, the gas flowing through the gas flow portion has a curved line between the plurality of protrusions. Distribute regularly. This makes it difficult to form a boundary layer that hinders the transfer of heat formed between the gas and the partition wall that forms the gas flow passage. Heat transport can be facilitated. Therefore, the heat exchange efficiency can be improved.
 (2)積層工程において、第1成形体の凸部の先端を、第1成形体に重ねられた第1成形体又は第2成形体に当接させる。凸部を介して、凸部が設けられた第1成形体と、この第1成形体に積層された他の第1成形体又は第2成形体との間における熱伝導を促進させることができる。したがって、熱交換効率を向上させることができる。 (2) In the laminating step, the tip of the projection of the first molded body is brought into contact with the first molded body or the second molded body superimposed on the first molded body. Via the convex portion, heat conduction between the first molded body provided with the convex portion and another first molded body or second molded body laminated on the first molded body can be promoted. . Therefore, the heat exchange efficiency can be improved.
 (3)第1成形工程において、凸部はプレス成形で形成される。凸部をプレス成形で形成することにより、凸部を微細化したり、凸部を密集した状態で形成することが容易になる。 (3) In the first forming step, the convex portions are formed by press forming. By forming the protrusions by press molding, it becomes easy to make the protrusions finer or to form the protrusions in a dense state.
 (4)凸部が形成された第1成形体における互いに反対側の一対の端部には、側壁が設けられており、側壁は、プレス成形で形成される。したがって、凸部と側壁を同時に成形することができるため、熱交換器を効率良く製造することができる。 (4) Side walls are provided at a pair of opposite ends of the first formed body on which the convex portions are formed, and the side walls are formed by press molding. Therefore, since the convex portion and the side wall can be formed at the same time, the heat exchanger can be manufactured efficiently.
 (5)凸部は、先細形状となるように形成されている。したがって、凸部におけるガスの流通抵抗を小さくすることができる。
 本実施形態は、次のように変更して実施することも可能である。また、上記実施形態の構成や以下の変更例に示す構成を適宜組み合わせて実施することも可能である。
(5) The projection is formed to have a tapered shape. Therefore, the flow resistance of the gas in the convex portion can be reduced.
This embodiment can be implemented with the following modifications. Further, the configuration of the above-described embodiment and the configuration shown in the following modified examples can be appropriately combined and implemented.
 ・第1流通路を流通する第1流体は、ガスに限定されない。第2流通路を流通する第2流体は、熱媒体に限定されない。第1流体が熱媒体であり、第2流体がガスであってもよい。第1流体と第2流体が両方ともガスであってもよいし、両方とも熱媒体であってもよい。 The first fluid flowing through the first flow passage is not limited to gas. The second fluid flowing through the second flow passage is not limited to the heat medium. The first fluid may be a heat carrier and the second fluid may be a gas. Both the first fluid and the second fluid may be gas or both may be heat medium.
 ・第1流通路及び第2流通路を流通する流体は、第1流体及び第2流体のみに限定されない。例えば、第2流通路に第2流体と、第2流体とは異なる第3流体を流通させてもよい。 The fluid flowing through the first flow passage and the second flow passage is not limited to the first fluid and the second fluid. For example, the second fluid and a third fluid different from the second fluid may flow through the second flow passage.
 ・ガス流通部と熱媒体流通部の積層形態は、3層のガス流通部と1層の熱媒体流通部を交互に積層した態様に限定されない。ガス流通部と熱媒体流通部の積層形態は、適宜選択することができる。 · The lamination form of the gas circulation part and the heat medium circulation part is not limited to the mode in which three gas circulation parts and one heat medium circulation part are alternately laminated. The lamination form of the gas circulation section and the heat medium circulation section can be appropriately selected.
 ・本実施形態では、熱媒体流通部の幅方向DX一端側に熱媒体の流入口が形成され、幅方向DX他端側に熱媒体の流出口が形成されていたが、この態様に限定されない。幅方向DX一端側に熱媒体の流出口が形成され、幅方向DX他端側に熱媒体の流入口が形成されていてもよい。ガス流通部も同様に、流入口と流出口の位置が逆であってもよい。 In the present embodiment, the heat medium inlet is formed on one end side in the width direction DX of the heat medium flowing portion, and the heat medium outlet is formed on the other end side in the width direction DX. However, the present invention is not limited to this mode. . An outlet for the heat medium may be formed at one end of the width direction DX, and an inlet for the heat medium may be formed at the other end of the width DX. Similarly, the position of the inflow port and the outflow port of the gas flow section may be reversed.
 ・凸部25は、図1、3、5に示すように、湾曲状に突出した先細形状となっていることが好ましい。例えば、図3に示す例では、流体は、幅方向DXに隣接する2つの凸部25の間の隙間を流れることができるが、幅方向DXに隣接する2つの凸部25の間の距離すなわち隙間の幅は、凸部25の外表面が平面視で湾曲形状であることによって、前後方向DYに連続的に変化する。流体に対する複数の凸部25による抵抗が前後方向DYにおいて一定でなく、例えば連続的に、増加及び/または減少する。これは、前後方向DYにおける流体速度の不均一さを生じさせるのに有利であり、流体の流れが整流状態となりにくくするのに有利である。また、図5から明白であるが、幅方向DXに隣接する2つの凸部25の間の距離すなわち隙間の幅は、凸部25の先細形状によって、上下方向DZに連続的に変化する。流体に対する複数の凸部25による抵抗が上下方向DZにおいて一定でなく、例えば連続的に、増加及び/または減少する。これは、上下方向DZにおける流体速度の不均一さを生じさせるのに有利であり、流体の流れが整流状態となりにくくするのに有利である。しかし、凸部の形状は、本実施形態の形状に限定されない。例えば、凸部の縦断面が台形状のような直線的に先細となる形状であってもよい。このような形状を有する凸部は、少なくとも上下方向DZにおける流体速度の不均一さを生じさせるのに有利であり、流体の流れが整流状態となりにくくするのに有利である。凸部は、先細形状でなくてもよく、円柱状や、角柱状であってもよい。このような形状を有する凸部は、少なくとも前後方向DYにおける流体速度の不均一さを生じさせるのに有利であり、流体の流れが整流状態となりにくくするのに有利である。 It is preferable that the convex portion 25 has a tapered shape protruding in a curved shape as shown in FIGS. For example, in the example shown in FIG. 3, the fluid can flow through the gap between the two convex portions 25 adjacent in the width direction DX, but the distance between the two convex portions 25 adjacent in the width direction DX, that is, The width of the gap continuously changes in the front-rear direction DY due to the outer surface of the projection 25 having a curved shape in plan view. The resistance of the plurality of protrusions 25 to the fluid is not constant in the front-rear direction DY, and increases and / or decreases, for example, continuously. This is advantageous for causing non-uniformity of the fluid velocity in the front-rear direction DY, and is advantageous for making it difficult for the fluid flow to be in a rectified state. In addition, as is apparent from FIG. 5, the distance between the two convex portions 25 adjacent in the width direction DX, that is, the width of the gap continuously changes in the vertical direction DZ due to the tapered shape of the convex portions 25. The resistance of the plurality of protrusions 25 to the fluid is not constant in the vertical direction DZ, and increases and / or decreases, for example, continuously. This is advantageous for causing non-uniformity of the fluid velocity in the vertical direction DZ, and is advantageous for making it difficult for the fluid flow to be in a rectified state. However, the shape of the projection is not limited to the shape of the present embodiment. For example, a shape in which the vertical cross section of the convex portion is tapered linearly, such as a trapezoidal shape, may be used. The convex portion having such a shape is advantageous in causing non-uniformity in the fluid velocity at least in the vertical direction DZ, and is advantageous in making it difficult for the fluid flow to be in a rectified state. The convex portion does not need to have a tapered shape, and may have a columnar shape or a prismatic shape. The convex portion having such a shape is advantageous in causing non-uniformity of the fluid velocity at least in the front-rear direction DY, and is advantageous in making it difficult for the fluid flow to be in a rectified state.
 ・凸部の先端は、ガス流通部に重ねられた他のガス流通部又は熱媒体流通部の下面に当接していなくてもよい。すなわち、凸部の高さは、ガス流通部の側壁の高さより低くてもよい。 (4) The tip of the convex portion does not have to be in contact with the lower surface of another gas circulation portion or the heat medium circulation portion that is overlapped with the gas circulation portion. That is, the height of the convex portion may be lower than the height of the side wall of the gas flow portion.
 ・図10に示すように、本実施形態の凸部25の断面形状は、底壁21の下面側が平面で構成されるが、この態様に限定されない。プレス工程において、矩形板状の成形体の下方に平板状の金型を用いることに代えて、上方に突出した金型を用いることによって、例えば、図11に示すような、底壁21の下面側に凹部26が形成された凸部25を形成してもよい。底壁21の下面側に凹部26が形成されることによって、下面側の表面積を大きくすることができる。 As shown in FIG. 10, the cross-sectional shape of the convex portion 25 of the present embodiment is configured such that the lower surface side of the bottom wall 21 is a flat surface, but is not limited to this mode. In the pressing step, instead of using a flat plate-shaped mold below the rectangular plate-shaped molded body, by using a mold protruding upward, for example, as shown in FIG. A convex portion 25 having a concave portion 26 formed on the side may be formed. By forming the concave portion 26 on the lower surface side of the bottom wall 21, the surface area on the lower surface side can be increased.
 ・図12に示すように、凸部25は、ガス流通部20の底壁21の上面側と下面側の両方に設けられていてもよい。
 ・凸部の形成方法は、プレス成形に限定されない。例えば、別途、凸部のみを成形しておいて、第1成形体の底壁上に接合してもよいし、第1成形体を射出成形してもよい。
-As shown in Drawing 12, convex part 25 may be provided in both the upper surface side and the lower surface side of bottom wall 21 of gas circulation part 20.
-The method of forming the convex portion is not limited to press molding. For example, only the convex portion may be separately molded and joined to the bottom wall of the first molded body, or the first molded body may be injection molded.
 ・凸部の配置構成は、本実施形態の配置構成に限定されない。すなわち、複数の凸部が、幅方向DXに沿って等間隔で配列した凸部列を有し、この凸部列が、前後方向DYに沿って等間隔で複数並設された構成に限定されない。複数の凸部が、ガスの流通方向及び当該流通方向に交差する方向に点在していれば、例えば、凸部が不規則(ランダム)に配置された構成であってもよい。 · The arrangement of the protrusions is not limited to the arrangement of the present embodiment. In other words, the configuration is not limited to the configuration in which the plurality of protrusions have the protrusion rows arranged at equal intervals along the width direction DX, and the plurality of protrusion rows are arranged at equal intervals along the front-rear direction DY. . As long as the plurality of protrusions are scattered in the gas flow direction and the direction intersecting the flow direction, for example, a configuration in which the protrusions are arranged irregularly (randomly) may be employed.
 ・本実施形態において、第1成形体の側壁は、プレス成形によって形成されていたが、この態様に限定されない。例えば、プレス成形によって凸部を形成した後、別途成形した側壁を接合してもよい。また、底壁と側壁が一体となった状態で押出し成形した後、プレス成形で凸部のみを形成してもよい。 In the present embodiment, the side wall of the first molded body is formed by press molding, but is not limited to this mode. For example, after the projections are formed by press molding, the separately formed side walls may be joined. Alternatively, after extrusion molding in a state where the bottom wall and the side wall are integrated, only the projection may be formed by press molding.
 ・本実施形態において、第2成形体の側壁は、プレス成形によって形成されていたが、この態様に限定されない。例えば、第2成形体を、底壁と側壁が一体となった状態で押出し成形してもよい。底壁と側壁を別々に成形した後、両者を接合してもよい。 In the present embodiment, the side wall of the second molded body is formed by press molding, but is not limited to this mode. For example, the second molded body may be extruded with the bottom wall and the side wall integrated. After separately forming the bottom wall and the side wall, both may be joined.
 ・熱媒体流通部は、熱媒体流通路を構成する2つの貫通孔が形成された態様に限定されない。各側壁の中間位置に設けられた中央壁に代えて、複数の立壁を設けることによって、3つ以上の貫通孔が形成されていてもよい。中央壁を省略して、1つの貫通孔が形成されていてもよい。 (4) The heat medium circulating portion is not limited to a mode in which two through holes forming the heat medium flow passage are formed. By providing a plurality of standing walls instead of the central wall provided at an intermediate position of each side wall, three or more through holes may be formed. The central wall may be omitted and one through hole may be formed.
 ・熱媒体流通部は、シート状の第2成形体を用いて形成する態様に限定されない。熱媒体流通部として、複数のセルが配列したハニカム構造体を用いてもよい。
 ・脱脂工程と含侵工程の間に焼成工程を入れてもよい。脱脂された多孔体を焼成することにより、多孔体の強度を向上させ、含侵工程において破損することを防ぐことができる。焼成工程では、温度を2100℃~2250℃、保持時間を1~5時間とすることができる。
The heat medium circulating section is not limited to the form formed using the sheet-shaped second molded body. A honeycomb structure in which a plurality of cells are arranged may be used as the heat medium circulating unit.
A baking step may be inserted between the degreasing step and the impregnation step. By firing the degreased porous body, it is possible to improve the strength of the porous body and prevent the porous body from being damaged in the impregnation step. In the firing step, the temperature can be 2100 ° C. to 2250 ° C., and the holding time can be 1 to 5 hours.
 R1…第1流通路(ガス流通路)、R2…第2流通路(熱媒体流通路)、10…熱交換器、18…第1成形体、19…第2成形体。 R1: first flow path (gas flow path), R2: second flow path (heat medium flow path), 10: heat exchanger, 18: first molded body, 19: second molded body.

Claims (5)

  1.  複数の第1流通路と、複数の第2流通路と、前記第1流通路と前記第2流通路を区画する区画壁とを備え、前記第1流通路を流通する第1流体と、前記第2流通路を流通する第2流体との間で前記区画壁を介して熱交換が行われる炭化ケイ素製の熱交換器の製造方法であって、
     炭化ケイ素粒子を含む原料組成物を用いて、前記第1流通路及び前記第2流通路を備える成形体を成形する成形工程と、
     前記成形体を脱脂して多孔体を作製する脱脂工程と、
     前記多孔体に金属ケイ素を含浸させる含浸工程とを有し、
     前記成形工程は、
     前記成形体における前記第1流通路を形成する部位であって、前記第1流体の流通方向及び当該流通方向に交差する方向に点在する複数の凸部が表面に設けられたシート状の第1成形体を成形する第1成形工程と、
     前記成形体における前記第2流通路を形成する部位を有する第2成形体を成形する第2成形工程と、
     前記第1成形体と前記第2成形体を積層する積層工程とを有することを特徴とする熱交換器の製造方法。
    A plurality of first flow paths, a plurality of second flow paths, a partition wall that partitions the first flow path and the second flow path, a first fluid flowing through the first flow path, A method for producing a silicon carbide heat exchanger in which heat exchange is performed between the second fluid flowing through a second flow passage and the second fluid through the partition wall,
    Using a raw material composition containing silicon carbide particles, a forming step of forming a formed body having the first flow path and the second flow path;
    A degreasing step of degreasing the molded body to produce a porous body,
    Impregnation step of impregnating the porous body with metal silicon,
    The molding step includes:
    A sheet-like portion having a surface on which a plurality of protrusions scattered in a flow direction of the first fluid and a direction intersecting the flow direction are provided on a surface of the molded body, where the first flow passage is formed. A first molding step of molding one molded body;
    A second forming step of forming a second formed body having a portion forming the second flow passage in the formed body;
    A method for manufacturing a heat exchanger, comprising: a laminating step of laminating the first molded body and the second molded body.
  2.  前記積層工程において、前記第1成形体の前記凸部の先端を、前記第1成形体に重ねられた前記第1成形体又は前記第2成形体に当接させる請求項1に記載の熱交換器の製造方法。 2. The heat exchange according to claim 1, wherein, in the laminating step, a tip of the protrusion of the first molded body is brought into contact with the first molded body or the second molded body superimposed on the first molded body. Method of manufacturing the vessel.
  3.  前記第1成形工程において、前記凸部はプレス成形で形成される請求項1又は2に記載の熱交換器の製造方法。 The method according to claim 1 or 2, wherein in the first forming step, the protrusion is formed by press forming.
  4.  前記凸部が形成された第1成形体における互いに反対側の一対の端部には、側壁が設けられており、
     前記側壁は、プレス成形で形成される請求項1~3のいずれか一項に記載の熱交換器の製造方法。
    Side walls are provided at a pair of opposite ends of the first molded body on which the convex portions are formed,
    The method for manufacturing a heat exchanger according to claim 1, wherein the side wall is formed by press molding.
  5.  前記凸部は、角柱状もしくは楕円柱状となるように形成されている請求項1~4のいずれか一項に記載の熱交換器の製造方法。 方法 The method for manufacturing a heat exchanger according to any one of claims 1 to 4, wherein the convex portion is formed to have a prismatic or elliptical columnar shape.
PCT/JP2019/029706 2018-08-10 2019-07-29 Method for manufacturing heat exchanger WO2020031780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-150946 2018-08-10
JP2018150946A JP2020026908A (en) 2018-08-10 2018-08-10 Method for producing heat exchanger

Publications (1)

Publication Number Publication Date
WO2020031780A1 true WO2020031780A1 (en) 2020-02-13

Family

ID=69414139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029706 WO2020031780A1 (en) 2018-08-10 2019-07-29 Method for manufacturing heat exchanger

Country Status (2)

Country Link
JP (1) JP2020026908A (en)
WO (1) WO2020031780A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172964U (en) * 1986-04-18 1987-11-02
JPH05164492A (en) * 1991-12-18 1993-06-29 Mitsubishi Electric Corp Plate type heat exchanger
JP2005289744A (en) * 2004-03-31 2005-10-20 Toshiba Corp Method for manufacturing reaction sintered silicon carbide structure
US20090294113A1 (en) * 2008-06-03 2009-12-03 Korea Atomic Energy Research Institute Heat exchanger
US20110000624A1 (en) * 2007-12-21 2011-01-06 Nederlandse Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek Tno Multiple connected channel micro evaporator
WO2011071161A1 (en) * 2009-12-11 2011-06-16 日本碍子株式会社 Heat exchanger
US20150010874A1 (en) * 2013-07-03 2015-01-08 Oregon State University Microscale combustor-heat exchanger
JP2017106648A (en) * 2015-12-07 2017-06-15 大日本印刷株式会社 Heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172964U (en) * 1986-04-18 1987-11-02
JPH05164492A (en) * 1991-12-18 1993-06-29 Mitsubishi Electric Corp Plate type heat exchanger
JP2005289744A (en) * 2004-03-31 2005-10-20 Toshiba Corp Method for manufacturing reaction sintered silicon carbide structure
US20110000624A1 (en) * 2007-12-21 2011-01-06 Nederlandse Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek Tno Multiple connected channel micro evaporator
US20090294113A1 (en) * 2008-06-03 2009-12-03 Korea Atomic Energy Research Institute Heat exchanger
WO2011071161A1 (en) * 2009-12-11 2011-06-16 日本碍子株式会社 Heat exchanger
US20150010874A1 (en) * 2013-07-03 2015-01-08 Oregon State University Microscale combustor-heat exchanger
JP2017106648A (en) * 2015-12-07 2017-06-15 大日本印刷株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP2020026908A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US7294316B2 (en) Honeycomb structure, honeycomb filter and processes for the production thereof
US7138002B2 (en) Honeycomb structure and process for production thereof
US20100270011A1 (en) Ceramics heat exchanger and production method thereof
US20120241439A1 (en) Heater
WO2009110400A1 (en) Kiln tool plate for firing ceramic
KR20040054710A (en) Honeycomb filter
US9238190B2 (en) Plugged honeycomb structure
EP2484504A1 (en) Honeycomb structure and method for manufacturing same
WO2019176898A1 (en) Heat exchanger production method
US9168479B2 (en) Plugged honeycomb structure
WO2020031780A1 (en) Method for manufacturing heat exchanger
JP6956050B2 (en) How to make a heat exchanger
JP2019174012A (en) Heat exchanger
US8101269B2 (en) Porous fired body and manufacturing method thereof
US8945698B2 (en) Honeycomb structure and method for manufacturing the same
US9333683B2 (en) Honeycomb structure and method for manufacturing the same
WO2009093691A1 (en) Sintering method for honeycomb compact
JP2019174013A (en) Method for manufacturing heat exchanger
JP7018342B2 (en) Heat exchanger
WO2009093690A1 (en) Sintering method for honeycomb compact
WO2019176897A1 (en) Method for producing honeycomb structure
JP6352696B2 (en) Heat exchanger
JP2023140155A (en) Method and apparatus for producing multiple shrink-fitting members
JPH0979774A (en) Corrugated ceramic plate laminated heat storage body
JPH046906Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846161

Country of ref document: EP

Kind code of ref document: A1