JPH046906Y2 - - Google Patents
Info
- Publication number
- JPH046906Y2 JPH046906Y2 JP1985047409U JP4740985U JPH046906Y2 JP H046906 Y2 JPH046906 Y2 JP H046906Y2 JP 1985047409 U JP1985047409 U JP 1985047409U JP 4740985 U JP4740985 U JP 4740985U JP H046906 Y2 JPH046906 Y2 JP H046906Y2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- porous body
- wall
- heat insulating
- insulating material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Laminated Bodies (AREA)
Description
【考案の詳細な説明】
産業上の利用分野
本考案は、加熱炉の排気口などを断熱するため
に用いる通気性断熱材に関する。[Detailed Description of the Invention] Industrial Application Field The present invention relates to a breathable heat insulating material used to insulate an exhaust port of a heating furnace.
従来の技術及びその問題点
従来、加熱炉の排気口などに、目の細かな六角
筒状セルを多数連設することにより形成されたセ
ラミツク製ハニカム構造体、或いは略斜め8の字
状に連設した一対の円筒状セルを多数連設するこ
とにより形成されたセラミツク製ロールコア構造
体等の多数の筒状セルが連設されてなる壁状構造
をなしたセラミツク多孔体や、セラミツクフオー
ム等の三次元網状の格子構造を有し内部を流体が
通過する際に流体が格子に衝突を繰り返しながら
流動するようになした網状構造のセラミツク多孔
体を通気性断熱材として配設し、加熱炉からの放
射冷却を遮断し、また排気ガスの熱エネルギーを
この排気ガスが通気性断熱材内を通過するときに
熱交換して通気性断熱材からの輻射熱として加熱
側に放射することにより、排気ガスの熱エネルギ
ーを直接再利用することが提案されている(例え
ば、特開昭58−27920号公報、同58−32090号公
報、“省エネルギーVol.35,No.13,1983,39−45
頁”など)。Conventional technology and its problems Conventionally, a ceramic honeycomb structure formed by connecting a large number of fine hexagonal cylindrical cells in a row at the exhaust port of a heating furnace, or a ceramic honeycomb structure formed by connecting a large number of fine-mesh hexagonal cylindrical cells in a row, or a ceramic honeycomb structure formed by connecting a number of fine hexagonal cylindrical cells in a row in a substantially diagonal figure-8 shape has been used. Ceramic porous bodies with a wall-like structure formed by connecting a large number of cylindrical cells, ceramic roll core structures formed by connecting a large number of pairs of cylindrical cells, ceramic foam, etc. A porous ceramic body with a three-dimensional network structure that allows the fluid to flow while repeatedly colliding with the grid as it passes through the interior is installed as an air permeable heat insulating material, allowing the fluid to flow from the heating furnace. By blocking the radiation cooling of the exhaust gas, and by exchanging heat energy of the exhaust gas as it passes through the breathable insulation material and radiating it to the heating side as radiant heat from the breathable insulation material, the exhaust gas is It has been proposed to directly reuse the thermal energy of
page” etc.).
しかし、セラミツク多孔体をこの種の用途に使
用する場合、セラミツク多孔体内の流体の通過す
る上流側と下流側との間に数百℃の温度差が生じ
ることがあり、その大きい熱応力のためにセラミ
ツク多孔体が破損するという問題があつた。この
場合、特にハニカム構造体は、急激な温度変化が
生じる条件下で使用するとその角部からの亀裂が
発生して破損し易いものであつた。 However, when porous ceramic bodies are used for this type of application, a temperature difference of several hundred degrees Celsius may occur between the upstream and downstream sides of the porous ceramic body through which the fluid passes, and this is due to the large thermal stress. There was a problem that the ceramic porous body was damaged. In this case, especially when the honeycomb structure is used under conditions where a sudden temperature change occurs, cracks occur from the corners and the honeycomb structure is easily damaged.
問題点を解決するための手段及びその作用
本考案は、上記事情に鑑みたなされたもので、
大きな熱応力が発生する用途に使用しても熱応力
によつて破損し易い通気性断熱材を提供するた
め、多数の筒状セルが連設されてなる壁状構造を
有するセラミツク多孔体の前記筒状セルを構成す
る壁体に、その軸方向一端側が外部に開放した中
空部を形成すると共に、この壁状構造を有するセ
ラミツク多孔体の前記中空部が閉塞した軸方向他
端面に、非直線状の内部連通空間を有する三次元
網状構造、即ち三次元網状の格子構造を有し内部
を流体が通過する際に流体が格子に衝突を繰り返
しながら流動するようになした網状構造のセラミ
ツク多孔体を積層したものである。Means for solving the problem and its effect The present invention was made in view of the above circumstances,
In order to provide a breathable heat insulating material that is easily damaged by thermal stress even when used in applications where large thermal stress is generated, the above-mentioned ceramic porous body having a wall-like structure consisting of a large number of cylindrical cells connected in series is used. A hollow portion is formed in the wall constituting the cylindrical cell, and one axial end thereof is open to the outside, and a non-linear A ceramic porous body with a three-dimensional network structure having a three-dimensional internal communication space, that is, a three-dimensional network-like lattice structure, in which the fluid flows while repeatedly colliding with the lattice as it passes through the interior. It is a layered structure.
即ち、本考案の通気性断熱材は、通常上述した
壁状構造のセラミツク多孔体を高温の上流側、網
状構造のセラミツク多孔体を低温の下流側として
使用するものであるが、上流側の壁状構造をなし
たセラミツク多孔体の筒状セルを構成する壁体に
軸方向一端側(上流側)が開放した中空部を形成
することにより、このセラミツク多孔体の熱によ
る変形を起り易くし、これによつて壁状構造の多
孔体内の温度差により発生する熱応力を低減する
と共に、更に上述した2層構造とすることによ
り、上流側の壁状構造のセラミツク多孔体に生じ
た熱応力が下流側の網状構造のセラミツク多孔体
に直接伝達するのを防止し、これによつて熱応力
を低減し、破損を防止したものである。 That is, in the breathable heat insulating material of the present invention, the ceramic porous body with the above-mentioned wall-like structure is normally used on the high-temperature upstream side, and the network-structured porous ceramic body is used on the low-temperature downstream side. By forming a hollow part that is open at one end (upstream side) in the axial direction in the wall constituting the cylindrical cell of the ceramic porous body having a shaped structure, the ceramic porous body is made more likely to deform due to heat, This reduces the thermal stress generated due to temperature differences within the porous body of the wall-like structure, and furthermore, by adopting the above-mentioned two-layer structure, the thermal stress generated in the ceramic porous body of the wall-like structure on the upstream side is reduced. This prevents thermal stress from being directly transmitted to the ceramic porous body with a network structure on the downstream side, thereby reducing thermal stress and preventing damage.
以下、本考案の一実施例につき図面を参照して
説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
実施例
第1図は本考案の一実施例を示すもので、この
通気性断熱材1は、六角筒状セル2が多数連設さ
れてなるハニカム構造を有する壁状構造の第1セ
ラミツク多孔体3の前記筒状セル2を構成する壁
体4内に、その軸方向一端側が外部に開放した中
空部5を形成すると共に、前記第1セラミツク多
孔体3の軸方向他端面(中空部5が開放されてい
ない側の面)に、非直線状の内部連通空間を有す
る三次元網状構造、即ち三次元網状の格子構造を
有し内部を流体が通過する際に流体が格子に衝突
を繰り返しながら流動するようになした網状構造
を有する板状の第2セラミツク多孔体6を積層し
たものである。Embodiment FIG. 1 shows an embodiment of the present invention, in which the breathable heat insulating material 1 is made of a first ceramic porous body having a wall-like structure having a honeycomb structure in which a large number of hexagonal cylindrical cells 2 are arranged in series. A hollow portion 5 is formed in the wall 4 constituting the cylindrical cell 2 of No. 3, and one axial end thereof is open to the outside, and the other axial end surface of the first ceramic porous body 3 (the hollow portion 5 The non-open side surface has a three-dimensional network structure with a non-linear internal communication space, that is, a three-dimensional network lattice structure, and as the fluid passes through the interior, the fluid repeatedly collides with the lattice. This is a stack of plate-shaped second ceramic porous bodies 6 having a fluidized network structure.
また、第2図は本考案の他の実施例を示すもの
で、この通気性断熱材1は、略斜め8の字状に連
設した一対の円状の筒状セル2,2′が多数連設
されてなるロールコア構造を有する壁状構造の第
1セラミツク多孔体3の前記筒状セル2,2′を
構成する壁体4内に、その軸方向一端側が外部に
下方した中空部5を形成すると共に、前記第1セ
ラミツク多孔体3の軸方向他端面(中空部5が開
放されていない側の面)に、第1図に示したと同
様の網状構造の第2セラミツク多孔体6を積層し
たものである。 FIG. 2 shows another embodiment of the present invention, in which the breathable heat insulating material 1 has a large number of paired circular cylindrical cells 2, 2' arranged in a substantially diagonal figure 8 shape. A hollow portion 5 is provided in the wall 4 constituting the cylindrical cells 2, 2' of the first ceramic porous body 3 having a wall-like structure and having a continuous roll core structure. At the same time, a second ceramic porous body 6 having a network structure similar to that shown in FIG. This is what I did.
この場合、上記壁状構造の第1セラミツク多孔
体3の中空部5は、各筒状セル2,2′の壁体4
内において壁体4の周方向に沿つてもかつ筒状セ
ル2,2′の壁体4内に形成された各中空部5が
互に順次連続した状態に形成されている。また、
中空部5は、第3図に示したように壁体4内に軸
方向に沿つて壁体4一端面から他端面近傍まで連
続した状態に形成されている。従つて、これによ
り筒状セル2の壁体4はその厚さ方向に沿つて2
つに分割され、他端部においてこれら両分割壁4
a,4aが一体に連結していると共に、一端部に
おいては両分割壁4a,4aが互に自由状態にあ
るので、一端部側において厚さ方向に動き易くな
り、熱変形と易くなるように形成されている。 In this case, the hollow portion 5 of the first ceramic porous body 3 having the wall-like structure is formed by the wall 4 of each cylindrical cell 2, 2'.
The hollow portions 5 formed within the wall 4 of the cylindrical cells 2, 2' along the circumferential direction of the wall 4 are continuous with each other. Also,
As shown in FIG. 3, the hollow portion 5 is formed in the wall 4 in a continuous state along the axial direction from one end surface of the wall 4 to the vicinity of the other end surface. Therefore, as a result, the wall body 4 of the cylindrical cell 2 has two parts along its thickness direction.
divided into two dividing walls 4 at the other end.
a, 4a are integrally connected, and both dividing walls 4a, 4a are mutually free at one end, so that it is easy to move in the thickness direction on the one end side and easily cause thermal deformation. It is formed.
上述した各実施例の第1セラミツク多孔体3
は、ハニカム構造或いはロールコア構造のセラミ
ツク多孔体において、筒状セル2を構成する壁体
4にその軸方向一端側が外部に開放した中空部5
が形成され、しかもこれによつて各筒状セル2は
上述したようにその壁体4が2つに分割された如
き状態に形成され、特に一端部側はこれら両分割
壁4a,4aが互に自由状態にあり、厚さ方向に
動き易く、熱変形し易いので、第1セラミツク多
孔体3に昇温、降温に基づく大きな温度差が与え
られ、かなりの熱衝撃が生じても熱応力が極めて
良好に分散され、従つて第1セラミツク多孔体3
は熱応力によつて容易に破損することがないもの
である。 First ceramic porous body 3 of each embodiment described above
In a ceramic porous body having a honeycomb structure or a roll core structure, a hollow part 5 is formed in the wall body 4 constituting the cylindrical cell 2, and one end in the axial direction thereof is open to the outside.
is formed, and as a result, each cylindrical cell 2 is formed in such a state that its wall body 4 is divided into two parts, as described above, and especially on one end side, these two dividing walls 4a, 4a are mutually separated. Since it is in a free state, easily moves in the thickness direction, and is easily deformed by heat, the first ceramic porous body 3 is subjected to a large temperature difference due to temperature rise and fall, and even if a considerable thermal shock occurs, thermal stress is not caused. very well dispersed and therefore the first ceramic porous body 3
shall not be easily damaged by thermal stress.
なお、本考案セラミツクに係る壁構造の第1多
孔体及びこれを構成する筒状セルの形状は上記実
施例に制限されるものではなく、筒状セルが多数
連設されたいずれの形状をも採用することができ
る。例えば、筒状セルは六角筒状の代りに八角筒
状等の多角筒状に形成したり、円筒状のル代りに
楕円筒状に形成したりなど、種々変形可能である
が、このように多角筒状を多数連設したハニカム
構造のセラミツク多孔体及び円筒状又は楕円筒状
セルを多数連設したロールコア構造のセラミツク
多孔体が好適であり、とりわけ後者のロールコア
構造体は角部がなく、応力が集中し難いため有効
である。また、筒状セルは必要により傾斜させた
状態に形成し得る。ここで、第1セラミツク多孔
体3は、筒状セル2,2′の横幅d(円筒状セルの
場合は直径、または楕円筒状セルにあつては短
径)を5〜30mm、高さ(第1セラミツク多孔体3
の厚さ)hを10〜100mm、更に筒状セル2,2′を
傾斜状態に形成する場合はその傾斜角度θを20°
〜70°にすることが好ましく、これにより排気ガ
ス中のダストの蓄積による目詰まりに基づく圧力
損失の増大、燃焼阻害が抑制され、放射冷却が良
好に遮断されると共に、耐熱衝撃性、強度の大き
い通気性断熱材が得られる。これに対し、前記横
幅dが5mmより小さいと圧力損失が高い上、排気
ガス中のダストが通路(空洞部7)に蓄積して目
詰まりを起し易くなり、このため圧力損失が比較
的短時間の使用で増大するので不適当であり、ま
た30mmを越えると空隙率が大きくなり、排気ガス
と熱交換を行なうべきセラミツク壁の表面積が相
対的に小さくなつて排気ガスからの断熱材への伝
熱が少なくなると共に、放射冷却が大きくなるの
で、本考案通気性断熱材に用いるには不適当であ
る。更に、筒状セル2,2′の高さ(セラミツク
多孔体3の厚さ)hが10mmより小さいとセラミツ
ク壁の表面積が小さくなつて排気ガスからの断熱
材への伝熱が少なくなり、不適当であり、また
100mmを越えると空気抵抗の増大やダストの目詰
まりが起こし易くなり、不適当である。なお、前
記横幅dの好適範囲は7〜18mm、高さhの好適範
囲は15〜30mmである。 Note that the shape of the first porous body with the wall structure according to the ceramic of the present invention and the cylindrical cells constituting it are not limited to the above embodiments, and may have any shape in which a large number of cylindrical cells are arranged in series. Can be adopted. For example, the cylindrical cell can be modified in various ways, such as being formed into a polygonal cylindrical shape such as an octagonal cylindrical shape instead of a hexagonal cylindrical shape, or formed into an elliptical cylindrical shape instead of a cylindrical shape. A ceramic porous body with a honeycomb structure in which a large number of polygonal cylinders are arranged in a row and a ceramic porous body in a roll core structure in which a large number of cylindrical or elliptical cylindrical cells are arranged in a row are suitable, and in particular, the latter roll core structure has no corners, This is effective because stress is difficult to concentrate. Further, the cylindrical cell may be formed in an inclined state if necessary. Here, the first ceramic porous body 3 has a width d (diameter in the case of a cylindrical cell, or a short axis in the case of an elliptical cylindrical cell) of the cylindrical cells 2, 2' of 5 to 30 mm, and a height ( First ceramic porous body 3
thickness) h is 10 to 100 mm, and if the cylindrical cells 2, 2' are formed in an inclined state, the inclination angle θ is 20°.
It is preferable to set the angle to ~70°.This suppresses the increase in pressure loss and combustion inhibition due to clogging caused by the accumulation of dust in the exhaust gas, effectively blocks radiation cooling, and improves thermal shock resistance and strength. A large amount of breathable insulation is obtained. On the other hand, if the width d is smaller than 5 mm, the pressure loss will be high, and the dust in the exhaust gas will accumulate in the passage (cavity 7) and easily cause clogging, so the pressure loss will be relatively short. This is inappropriate because it increases with use over time, and if it exceeds 30 mm, the porosity increases, and the surface area of the ceramic wall that should exchange heat with the exhaust gas becomes relatively small, making it difficult for the exhaust gas to pass into the insulation material. Since heat transfer is reduced and radiation cooling is increased, it is unsuitable for use in the breathable insulation material of the present invention. Furthermore, if the height (h) of the cylindrical cells 2, 2' (thickness of the ceramic porous body 3) is smaller than 10 mm, the surface area of the ceramic wall will become smaller, and heat transfer from the exhaust gas to the heat insulating material will decrease, resulting in poor performance. appropriate and also
If it exceeds 100 mm, it is unsuitable because it increases air resistance and tends to cause dust clogging. The preferred range for the width d is 7 to 18 mm, and the preferred range for the height h is 15 to 30 mm.
また、本考案においては、筒状セルの壁体に形
成する中空部の形状は上記実施例に限定されない
が、第3図に示したように壁体の周方向に沿つた
状態で連続的にしかも壁体の一端面から多端面近
傍に達する状態で形成することが好適である。こ
の場合、中空部の厚さは壁体の厚さ1/10〜1/2と
することが好ましく、中空部の深さは壁体の高さ
の9/10〜3/10とすることが好ましい。 In addition, in the present invention, the shape of the hollow portion formed in the wall of the cylindrical cell is not limited to the above embodiment, but as shown in FIG. Moreover, it is preferable to form the wall from one end surface to the vicinity of the other end surface. In this case, the thickness of the hollow part is preferably 1/10 to 1/2 the thickness of the wall, and the depth of the hollow part is preferably 9/10 to 3/10 of the height of the wall. preferable.
また、本考案通気性断熱材に用いる網状構造を
なした第2セラミツク多孔体6としては、特開昭
58−32090号公報に記載されたようなセル膜のな
い軟質ポリウレタンフオームにセラミツク泥漿を
付着させたものを焼結して得られる非直線状の内
部連通空間を有する三次元網状骨格構造をなした
該ポリウレタンフオームと同一形状のセラミツク
フオームが好適に使用できる。この場合、上記セ
ラミツクフオームとしては、その嵩比重が0.25〜
0.7であり、内部連通空間の平均直径が0.2〜10mm
であり、空隙率が75〜95%であり、かつ空気の圧
力損失が毎秒風速1mで1cmの厚みを通過するの
に水柱0.1〜40mmであるものが好適であるが、圧
力損失の低減を目的として内部連通空間の平均直
径が1〜10mmのものを用いることが特に好まし
い。 Further, as the second ceramic porous body 6 having a network structure used in the breathable heat insulating material of the present invention,
A three-dimensional network skeletal structure with a non-linear internal communication space obtained by sintering a ceramic slurry attached to a soft polyurethane foam without a cell membrane as described in Publication No. 58-32090. Ceramic foam having the same shape as the polyurethane foam can be suitably used. In this case, the bulk specific gravity of the ceramic foam is 0.25~
0.7, and the average diameter of the internal communication space is 0.2~10mm
It is preferable that the porosity is 75 to 95% and the pressure loss of air is 0.1 to 40 mm when passing through a thickness of 1 cm at a wind speed of 1 m/s, but the purpose is to reduce pressure loss. It is particularly preferable to use one in which the average diameter of the internal communication space is 1 to 10 mm.
更に、網状構造をなした第2セラミツク多孔体
6としては、セラミツク泥漿をヌードル状に押し
出したものを多孔性をもたせて光が直進しないよ
うに重ね合せ、これを焼成することにより得られ
るセラミツクヌードルをも好適に使用でき、本考
案においては下流側層に上記セラミツクフオーム
やセラミツクヌードルの如く非直線状の内部連通
空間を有し、内部を光が直進しない第2セラミツ
ク多孔体6を配設することにより、良好な放射冷
却の遮断作用を有する通気性断熱材を得ることが
できる。なお、セラミツクヌードルとしてはその
嵩比重、内部連通空間の平均直径、空隙率、空気
の圧力損失が上述したセラミツクフオームと同様
のものを用いることが好ましい。 Furthermore, the second ceramic porous body 6 having a network structure is a ceramic noodle obtained by extruding ceramic slurry into noodle shapes, stacking them so that they have porosity so that light does not pass straight through, and firing them. In the present invention, a second ceramic porous body 6 is disposed in the downstream layer, which has a non-linear internal communication space such as the ceramic foam or ceramic noodle, and through which light does not travel straight. By doing so, it is possible to obtain a breathable heat insulating material having a good radiation cooling blocking effect. It is preferable to use a ceramic noodle having a bulk specific gravity, an average diameter of an internal communication space, a porosity, and an air pressure loss similar to the above-mentioned ceramic foam.
また、網状構造を有する第2セラミツク多孔体
6の厚さは、壁状構造を有する第1セラミツク多
孔体3の厚さの1/3〜3倍とすることが好適であ
る。 The thickness of the second ceramic porous body 6 having a network structure is preferably 1/3 to 3 times the thickness of the first ceramic porous body 3 having a wall structure.
更に、第1セラミツク多孔体に第2セラミツク
多孔体を積層してなる本考案断熱材は、空気の圧
力損失が毎秒風速1mで1cmの厚みを通過するの
に水柱0.05〜10mm、特に0.1〜1mmとすることが
好ましい。 Furthermore, the heat insulating material of the present invention, which is formed by laminating a second ceramic porous body on a first ceramic porous body, has a pressure loss of 0.05 to 10 mm, particularly 0.1 to 1 mm, in the water column when air passes through a thickness of 1 cm at a wind speed of 1 m per second. It is preferable that
本考案通気性断熱材は、例えば紙又はプラスチ
ツクフイルムにより形成された第1図Aに示した
如き形状のハニカム体、或いは第2図Aに示した
如き形状のロールコア体の軸方向他端面に板状に
形成したセル膜のない軟質ポリウレタンフオーム
を積層一体化したものを芯材とし、これにセラミ
ツクを付着させて乾燥したり、或いはハニカム体
又はロールコア体とセル膜のない軟質ポリウレタ
ンフオームとをそれぞれ芯材として用い、これら
芯材にそれぞれセラミツクを付着させてからセラ
ミツクが未乾燥の状態の時にこれら積層一体化し
て乾燥した後、ハニカム体又はロールコア体の軸
方向一端面に付着したセラミツク泥漿を芯材が現
れるまで除去し、次いでこれを焼結することによ
つて製造することができる。この場合、芯材は炭
化除去され、これにより中空部が形成されるもの
である。 The breathable heat insulating material of the present invention is a honeycomb body formed of paper or plastic film and having the shape shown in FIG. 1A, or a plate on the other axial end surface of a roll core body having the shape shown in FIG. A core material is made by laminating and integrating soft polyurethane foam without a cell membrane formed into a shape, and ceramic is attached to this and dried, or a honeycomb body or a roll core body and a soft polyurethane foam without a cell membrane are each laminated. Ceramic is used as a core material, and after the ceramics are attached to each of these core materials, the ceramics are laminated and integrated when the ceramics are not dried, and after drying, the ceramic slurry attached to one axial end surface of the honeycomb body or roll core body is used as a core material. It can be produced by removing until the material is exposed and then sintering it. In this case, the core material is carbonized and removed, thereby forming a hollow portion.
なお、芯材にセラミツク泥漿を付着させ、これ
を乾燥、焼結し、芯材を炭化した後、ハニカム体
又はロールコア体の軸方向一端面のセラミツクを
中空部が現れるまで除去する方法も採用され得る
が、この方法はセラミツク多孔体の破損が生じ易
いため、あまり推賞されない。 Additionally, a method of attaching ceramic slurry to the core material, drying and sintering it, carbonizing the core material, and then removing the ceramic from one end surface in the axial direction of the honeycomb body or roll core body until a hollow portion appears is also adopted. However, this method is not recommended because it tends to cause damage to the porous ceramic body.
ここで、第2図Aに示した第1セラミツク多孔
体は、特に一枚の長帯状の紙又はプラスチツクフ
イルムを略斜め8の字体を形成するように屈曲す
ると共に、この8の字体が連続状態で多数帯状に
並設するように屈曲することにより形成された紙
製もしくはプラスチツクフイルム製ロールコア、
又はこのロールコアの複数個を縦方向に配置し、
互に接着した第2図Aに示した如き形状のものに
セラミツク泥漿を付着させ、上述したようなセラ
ミツク泥漿の除去処理を行なつた後、これを乾
燥、焼成することによつて簡単に製造することが
できる。 Here, the first ceramic porous body shown in FIG. 2A is made by bending a long strip of paper or plastic film to form a substantially diagonal 8 character, and the 8 character is continuous. paper or plastic film roll cores formed by bending them so that they are arranged in a large number of strips,
Or, by arranging a plurality of these roll cores in the vertical direction,
It is easily manufactured by attaching ceramic slurry to mutually bonded objects having the shape shown in FIG. 2A, removing the ceramic slurry as described above, and then drying and firing them. can do.
また、上述したように、第2セラミツク多孔体
をセル膜のない軟質ポリウレタンフオームから形
成されたセラミツクフオームにて構成することに
より、正十二面体の稜の部分のみからなる籠形の
セラミツクフオームが得られ、これは空隙率が大
きいので圧力損失が少ない状態で流体が通過する
と共に、内部連通空間が入り組んでいるので、被
処理流体がこの内部連通空間を通過する際格子と
確実に接触し、その効果を有効に発揮する。この
セラミツクフオームの一例を第3図に示すと、8
はこのセラミツクフオームの骨格格子であり、こ
れは三次元網状構造を有し、このセラミツクフオ
ームを製造するのに用いたセル膜のない軟質ポリ
ウレタンフオームと同一形状を有する。9は、こ
の格子8によつて規定される三次元網状の入り組
んだ非直線状の内部連通空間であり、流体流路を
構成するもので、上述したように高温流体がこの
内部連通空間(流路)を通過する際、格子8に高
温流体が確実に衝突し、接触して、格子8に熱が
伝導されるものである。 Furthermore, as described above, by constructing the second ceramic porous body with a ceramic foam formed from a soft polyurethane foam without a cell membrane, a cage-shaped ceramic foam consisting only of the edge portion of a regular dodecahedron can be formed. This is because the porosity is large, so the fluid passes through with little pressure loss, and the internal communication space is intricate, so when the fluid to be treated passes through this internal communication space, it makes sure to contact the grid. Make effective use of its effects. An example of this ceramic foam is shown in Fig. 3.
is the skeletal lattice of this ceramic foam, which has a three-dimensional network structure and has the same shape as the flexible polyurethane foam without cell membrane used to manufacture this ceramic foam. Reference numeral 9 denotes a three-dimensional network-like intricate non-linear internal communication space defined by this lattice 8, which constitutes a fluid flow path, and as described above, high-temperature fluid flows through this internal communication space (flow When passing through the grid 8, the high-temperature fluid collides with the grid 8, contacts it, and conducts heat to the grid 8.
なお、セラミツクの種類に特に制限はないが、
耐熱衝撃性の点からコージライト、ムライト、ア
ルミナ、炭化珪素などが用いられる。 There are no particular restrictions on the type of ceramic, but
From the viewpoint of thermal shock resistance, cordierite, mullite, alumina, silicon carbide, etc. are used.
本考案通気性断熱材は、ガス、石油等の燃料を
燃焼して加熱する加熱炉の排気口、排気通路等に
装着することにより用いることができ、例えば第
1セラミツク多孔体を上流側(高温側)、第2セ
ラミツク多孔体を下流側とし、第1セラミツク多
孔体の中空部開放側の面が排気ガス入口面となる
ように排気口、排気通路を覆い、或いは被加熱物
を覆うようにして配設する。第5図は、本考案通
気性断熱材の一使用態様を示すもので、図中10
は一端面(下端面)が閉塞され、かつ他端面(上
端部)の排気管11が連結された筒状の加熱炉で
あり、この加熱炉10内には、石油等の被加熱物
が流れるリボイラーチユーブ12が配設され、上
記加熱炉10の一端壁13にはガスバーナー14
が取り付けられていると共に、加熱炉10内の他
端部には、その他開口部15を閉塞して本考案の
通気性断熱材1がその第1セラミツク多孔体3を
上流側(一端側)、第2セラミツク多孔体6を下
流側(他端側)にして配設されている。この加熱
炉10は、リボイラーチユーブ12内を石油等の
被加熱物がその入口端12aから出口端12bへ
流れ、この際ガスバーナー14によつて燃焼せし
められたガスの燃焼熱によつて加熱されるもので
あるが、この燃焼排ガスは加熱炉10内をその他
端開口部15に向けて流れる。この場合、この他
端開口部15近傍には該開口部15を閉塞して通
気性断熱材1が配設されているので、燃焼排ガス
はまずこの通気性断熱材1の第1セラミツク多孔
体3を構成する筒状セル2,2′内を流れ、次い
で第2セラミツク多孔体3の非直線状内部連通空
間9に流入し、排ガスは第2セラミツク多孔体3
の格子8と接触、衝突を繰り返しながら該内部連
通空間9を通過し、更に他端開口部15より排気
管11内を通つて排出されるものである。 The breathable heat insulating material of the present invention can be used by being attached to the exhaust port, exhaust passage, etc. of a heating furnace that heats by burning fuel such as gas or oil. side), the second porous ceramic body is on the downstream side, and the surface of the first ceramic porous body on the open side of the hollow part is the exhaust gas inlet surface, covering the exhaust port, the exhaust passage, or covering the object to be heated. and place it. Figure 5 shows one mode of use of the breathable heat insulating material of the present invention.
is a cylindrical heating furnace that is closed at one end (lower end) and connected to an exhaust pipe 11 at the other end (upper end), and a material to be heated such as oil flows inside this heating furnace 10. A reboiler tube 12 is provided, and a gas burner 14 is provided on one end wall 13 of the heating furnace 10.
is attached to the other end of the heating furnace 10, and the other opening 15 is closed, and the breathable heat insulating material 1 of the present invention is installed so that the first ceramic porous body 3 is placed on the upstream side (one end side), It is arranged with the second ceramic porous body 6 on the downstream side (the other end side). In this heating furnace 10, a substance to be heated such as oil flows in a reboiler tube 12 from an inlet end 12a to an outlet end 12b, and at this time, it is heated by the combustion heat of gas combusted by a gas burner 14. However, this combustion exhaust gas flows inside the heating furnace 10 toward the other end opening 15. In this case, since the breathable heat insulating material 1 is disposed in the vicinity of the other end opening 15 to close the opening 15, the combustion exhaust gas first passes through the first ceramic porous body 3 of the breathable heat insulating material 1. The exhaust gas flows through the cylindrical cells 2 and 2' constituting the second ceramic porous body 3, and then flows into the non-linear internal communication space 9 of the second ceramic porous body 3.
It passes through the internal communication space 9 while repeatedly coming into contact with and colliding with the grid 8 , and is further discharged through the exhaust pipe 11 through the opening 15 at the other end.
従つて、上記燃焼排ガスは、単に他端開口部1
5より排出されるものではなく、通気性断熱材1
を通り、これと熱交換された後、排出されるもの
である。 Therefore, the combustion exhaust gas simply flows through the other end opening 1.
Breathable insulation material 1, not those discharged from 5.
After passing through and exchanging heat with this, it is discharged.
それ故、被加熱物は加熱側からの輻射熱によつ
て加熱されると共に、通気性断熱材による加熱側
からの輻射熱の反射熱及び通気性断熱材中を高温
の排気ガスが通過することによつて生じる熱交換
に基づく通気性断熱材からの輻射熱によつても加
熱され、従つて従来は逃散して被加熱物の加熱に
利用されなかつた廃熱を被加熱物の加熱に使用す
ることができるので、非常に加熱効率が高いもの
である。しかも、上述したように壁状構造をなし
た第1セラミツク多孔体を構成する筒状セルの横
幅、高さや、網状構成をなした第2セラミツク多
孔体の嵩比重、内部連通空間の平均直径、空隙
率、空気の圧力損失を特定の範囲とした場合は、
熱応力を分散させる効果が高く、耐熱衝撃性が良
好であると共に、排気ガス中のダストの堆積が少
なく、目詰りが生じ難いので加熱炉などの燃焼阻
害を起こし難いものである。 Therefore, the object to be heated is heated by the radiant heat from the heating side, and also by the reflected heat of the radiant heat from the heating side by the air-permeable insulation material and the high-temperature exhaust gas passing through the air-permeable insulation material. It is also heated by radiant heat from the breathable insulation material based on the heat exchange that occurs, and therefore waste heat that conventionally was dissipated and was not used to heat the object to be heated can be used to heat the object to be heated. Therefore, the heating efficiency is extremely high. Moreover, as described above, the width and height of the cylindrical cells constituting the first ceramic porous body having a wall-like structure, the bulk specific gravity of the second ceramic porous body having a net-like structure, the average diameter of the internal communication space, When the porosity and air pressure loss are set to a specific range,
It has a high effect of dispersing thermal stress, has good thermal shock resistance, and has little dust accumulation in the exhaust gas and is less likely to become clogged, so it is less likely to inhibit combustion in a heating furnace or the like.
なお、本考案通気性断熱材の配設態様は任意で
あるが、上述したように壁状構造をなした第1セ
ラミツク多孔体の中空部開放側が流体が流入する
上流側、即ち高温側となるように配設することが
好ましく、このように熱による第1セラミツク多
孔体の変形が特に生じ易い中空部開放側を高温側
とすることにより、第1セラミツク多孔体内の上
流側と下流側との間の温度差によつて生じる熱応
力が良好に分散され、破損が確実に防止されると
共に、温度の低い下流側に排ガス中に含まれる熱
との交換効率が高く、かつ光が直進せず放射冷却
を防ぐ構造である網状構造の第2セラミツク多孔
体を配することにより、優れた断熱性を得ること
ができる。 The arrangement of the breathable heat insulating material of the present invention is arbitrary, but as described above, the open side of the hollow part of the first ceramic porous body having a wall-like structure is the upstream side where the fluid flows, that is, the high temperature side. It is preferable to arrange the first porous ceramic body in this manner, and by setting the open side of the hollow part where deformation of the first ceramic porous body is particularly likely to occur due to heat as the high temperature side, the connection between the upstream side and the downstream side in the first porous ceramic body is Thermal stress caused by temperature differences between By disposing the second ceramic porous body having a network structure that prevents radiation cooling, excellent heat insulation properties can be obtained.
更に、本考案の通気性断熱材には、必要に応じ
て例えば重油バーナー加熱炉で発生するNOxを
除去する触媒作用を付加させることができ、その
他の構成についても本考案の要旨を逸脱しない範
囲で種々変更して差支えない。 Furthermore, the breathable heat insulating material of the present invention can be added with a catalytic action to remove NOx generated in a heavy oil burner heating furnace, if necessary, and other configurations may also be made within the scope of the gist of the present invention. You can make various changes.
考案の効果
以上説明したように、本考案に係る通気性断熱
材は、体熱応力性に優れ、通気性断熱材として大
きな熱応力が発生する用途に用いられた場合でも
破損し難いと共に、断熱効果の高いものである。Effects of the invention As explained above, the breathable heat insulating material according to the present invention has excellent body heat stress resistance, is difficult to break even when used as a breathable heat insulating material in applications where large thermal stress is generated, and is resistant to heat insulation. It is highly effective.
第1図は本考案の一実施例に係る通気性断熱材
を示すもので、Aは斜視図、Bは部分拡大横断面
図、第2図は本考案の実施例に係る通気性断熱材
を示すもので、Aは斜視図、Bは部分拡大横断面
図、第3図は第1図−線に沿つた断面図、第
4図はセラミツクフオームの一例を示す一部省略
拡大斜視図、第5図は本考案の通気性断熱材の一
使用態様を示す概略断面図である。
1……通気性断熱材、2,2′……筒状セル、
3……第1セラミツク多孔体、4……壁体、5…
…中空部、6……第2セラミツク多孔体、7……
空洞部、8……骨格格子、9……非直線状内部連
通空間。
Fig. 1 shows a breathable heat insulating material according to an embodiment of the present invention, A is a perspective view, B is a partially enlarged cross-sectional view, and Fig. 2 shows a breathable heat insulating material according to an embodiment of the present invention. 3 is a sectional view along the line of FIG. 1, FIG. 4 is a partially omitted enlarged perspective view showing an example of ceramic foam, and FIG. FIG. 5 is a schematic cross-sectional view showing one mode of use of the breathable heat insulating material of the present invention. 1... Breathable heat insulating material, 2, 2'... Cylindrical cell,
3...First ceramic porous body, 4...Wall body, 5...
...Hollow part, 6...Second ceramic porous body, 7...
Cavity part, 8... Skeleton lattice, 9... Non-linear internal communication space.
Claims (1)
有するセラミツク多孔体の前記筒状セルを構成
する壁体に、その軸方向一端側が外部に開放し
た中空部を形成すると共に、この壁状構造を有
するセラミツク多孔体の前記中空部が閉塞した
軸方向他端面に、非直線上の内部連通空間を有
する三次元網状構造のセラミツク多孔体を積層
してなることを特徴とする通気性断熱材。 2 壁状構造のセラミツク多孔体が、多角状の筒
状セルを多数連接することにより形成されたハ
ニカム構造体である実用新案登録請求の範囲第
1項記載の通気性断熱材。 3 壁状構造のセラミツク多孔体が、略斜め8の
字状に連接した一対の円筒状又は楕円筒状セル
を多数連接することにより形成されたロールコ
ア構造体である実用新案登録請求の範囲第1項
記載の通気性断熱材。 4 壁状構造のセラミツク多孔体を構成する筒状
セルの横幅が5〜30mmであり、高さが10〜100
mmである実用新案登録請求の範囲第2項又は第
3項記載の通気性断熱材。 5 三次元網状構造のセラミツク多孔体が、セル
膜のない軟質ポリウレタンフオームにセラミツ
ク泥漿を付着させたものを焼結して得られる該
ポリウレタンフオームと同形状のセラミツクフ
オームである実用新案登録請求の範囲第1項乃
至第4項いずれか記載の通気性断熱材。 6 三次元網状構造のセラミツク多孔体が、ヌー
ドル状のセラミツクを重ね合せて形成したセラ
ミツクヌードルである実用新案登録請求の範囲
第1項乃至第4項いずれか記載の通気性断熱
材。 7 セラミツクフオーム又はセラミツクヌードル
として、嵩比重が0.25〜0.7であり、内部連通
空間の平均直径が0.2〜10mmであり、空隙率が
75〜95%であり、かつ空気の圧力損失が毎秒風
速1mで1cmの厚みを通過するのに水柱0.1〜
40mmのものを用いた実用新案登録請求の範囲第
5項又は第6項記載の通気性断熱材。[Claims for Utility Model Registration] 1. A hollow portion whose one axial end side is open to the outside in a wall constituting the cylindrical cells of a ceramic porous body having a wall-like structure formed by connecting a large number of cylindrical cells. and a ceramic porous body having a three-dimensional network structure having a non-linear internal communication space is laminated on the other axial end face of the ceramic porous body having a wall-like structure with the hollow portion closed. A breathable insulation material featuring: 2. The breathable heat insulating material according to claim 1, wherein the ceramic porous body having a wall-like structure is a honeycomb structure formed by connecting a large number of polygonal cylindrical cells. 3. Utility model registration claim 1, which is a roll core structure in which a porous ceramic body with a wall-like structure is formed by connecting a large number of a pair of cylindrical or elliptical cylindrical cells connected in a substantially diagonal figure 8 shape. Breathable insulation material as described in Section. 4 The width of the cylindrical cells constituting the wall-like porous ceramic body is 5 to 30 mm, and the height is 10 to 100 mm.
The breathable heat insulating material according to claim 2 or 3 of the utility model registration claim, which is mm. 5 Claims for registration of a utility model in which the ceramic porous body with a three-dimensional network structure is a ceramic foam having the same shape as a polyurethane foam obtained by sintering a soft polyurethane foam without a cell membrane and a ceramic slurry attached thereto. The breathable heat insulating material according to any one of items 1 to 4. 6. The breathable heat insulating material according to any one of claims 1 to 4, wherein the ceramic porous body having a three-dimensional network structure is a ceramic noodle formed by overlapping noodle-shaped ceramics. 7. As a ceramic foam or ceramic noodle, the bulk specific gravity is 0.25 to 0.7, the average diameter of the internal communication space is 0.2 to 10 mm, and the porosity is
75 to 95%, and the pressure loss of air is 0.1 to 0.1 in water column when passing through a thickness of 1 cm at a wind speed of 1 m/s.
The breathable heat insulating material according to claim 5 or 6 of the utility model registration claim using a material having a diameter of 40 mm.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1985047409U JPH046906Y2 (en) | 1985-03-29 | 1985-03-29 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1985047409U JPH046906Y2 (en) | 1985-03-29 | 1985-03-29 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS61162434U JPS61162434U (en) | 1986-10-08 |
| JPH046906Y2 true JPH046906Y2 (en) | 1992-02-25 |
Family
ID=30562711
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1985047409U Expired JPH046906Y2 (en) | 1985-03-29 | 1985-03-29 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH046906Y2 (en) |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS57209892A (en) * | 1981-06-19 | 1982-12-23 | Bridgestone Tire Co Ltd | Gas permeable heat insulating material |
| JPS58151382A (en) * | 1982-02-26 | 1983-09-08 | 株式会社ブリヂストン | Porous ceramic structure |
-
1985
- 1985-03-29 JP JP1985047409U patent/JPH046906Y2/ja not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| JPS61162434U (en) | 1986-10-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3982981A (en) | Unitary honeycomb structure and method of making it | |
| EP1983166B1 (en) | Honeycomb filter | |
| US7169203B2 (en) | Honeycomb structure | |
| US7294316B2 (en) | Honeycomb structure, honeycomb filter and processes for the production thereof | |
| KR100602867B1 (en) | Honeycomb filter | |
| EP0037236B1 (en) | Ceramic recuperative heat exchanger and a method for producing the same | |
| US8999479B2 (en) | Honeycomb structure and bonded type honeycomb structure | |
| SE443228B (en) | ROTATING SEGMENTED SINTERED CERAMIC VEHICLE EXCHANGE AND SET FOR ITS MANUFACTURING | |
| WO2012133848A1 (en) | Sealed honeycomb structure | |
| US4740406A (en) | Porous ceramic structure | |
| US9072997B2 (en) | Substrate with sinuous web and particulate filter incorporating the same | |
| JP2006281134A (en) | Honeycomb structure | |
| JP6014526B2 (en) | Honeycomb structure | |
| US9168479B2 (en) | Plugged honeycomb structure | |
| US20200101410A1 (en) | Honeycomb filter | |
| JPH046906Y2 (en) | ||
| JP2011056463A (en) | Honeycomb structure | |
| CN110500163B (en) | Honeycomb structure | |
| GB1579693A (en) | Heated head assembly for stirling engine | |
| JP2010188231A (en) | Honeycomb structure | |
| US9555359B2 (en) | Plugged honeycomb structure | |
| JP5972816B2 (en) | Honeycomb structure | |
| US20080209893A1 (en) | Exhaust aftertreatment system having a diesel particulate filter manufactured for reducing thermal gradients | |
| US20180264452A1 (en) | Honeycomb structure | |
| US11471869B2 (en) | Honeycomb structure |