WO2020031715A1 - コンバインドサイクル発電プラント - Google Patents

コンバインドサイクル発電プラント Download PDF

Info

Publication number
WO2020031715A1
WO2020031715A1 PCT/JP2019/029167 JP2019029167W WO2020031715A1 WO 2020031715 A1 WO2020031715 A1 WO 2020031715A1 JP 2019029167 W JP2019029167 W JP 2019029167W WO 2020031715 A1 WO2020031715 A1 WO 2020031715A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
compressed air
way valve
heat exchanger
pressure
Prior art date
Application number
PCT/JP2019/029167
Other languages
English (en)
French (fr)
Inventor
肇 青木
星野 辰也
善幸 長谷川
哲也 原田
光 佐野
正憲 笠
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201980051956.5A priority Critical patent/CN112534120B/zh
Priority to KR1020217005227A priority patent/KR102420538B1/ko
Publication of WO2020031715A1 publication Critical patent/WO2020031715A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/18Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a combined cycle power plant.
  • the combined cycle power plant includes a gas turbine, a steam turbine, an exhaust heat recovery boiler, and the like, and employs a power generation system combining a gas turbine and a steam turbine.
  • exhaust gas after working in a gas turbine is guided to an exhaust heat recovery boiler, and steam is generated using heat of the exhaust gas, and the steam drives the steam turbine.
  • a high-pressure heat exchanger that generates high-pressure steam and a low-pressure heat exchanger that generates low-pressure steam are arranged in this order from the upstream side. Is provided.
  • the steam generated by the high-pressure heat exchanger and the steam generated by the low-pressure heat exchanger are sent to a steam turbine and contribute to the generation of rotational energy.
  • Patent Document 1 The steam turbine disclosed in Patent Document 1 is of a two-stage type including a high-pressure steam turbine driven by high-pressure steam and a low-pressure steam turbine connected to the high-pressure steam turbine by a shaft and driven by low-pressure steam.
  • some steam turbines are of a single-stage type in which low-pressure steam is introduced during the expansion process of high-pressure steam.
  • an object of the present invention is to provide a combined cycle power plant that can reduce the time required for generating steam by the low-pressure heat exchanger of the exhaust heat recovery boiler.
  • the combined cycle power plant of the present invention compresses air and has a compression port having an extraction port that is an outlet of the first compressed air that is in the process of being compressed and a discharge port that is an outlet of the second compressed air that is the air that has been compressed.
  • a gas turbine having an exhaust port, a turbine having an exhaust port, driven by combustion gas generated by combustion of fuel and the second compressed air, and exhausting exhaust gas from the exhaust port; and
  • a high-pressure heat exchanger that collects and produces steam at a first pressure, and a low-pressure heat exchanger that produces steam at a second pressure lower than the first pressure and is disposed downstream of the high-pressure heat exchanger
  • An exhaust heat recovery boiler a steam turbine driven by the steam generated by the exhaust heat recovery boiler, and one end connected to the extraction port of the compressor, and the other end inside the exhaust heat recovery boiler.
  • a first bleed pipe arranged in a region between the high-pressure heat exchanger and the low-pressure heat exchanger, a first flow control valve provided in the first bleed pipe, and one end of the discharge pipe of the compressor.
  • a second bleed pipe connected to an outlet and the other end connected to the first bleed pipe, a second flow control valve provided in the second bleed pipe, and the first flow rate when the gas turbine is started.
  • the first compressed air generated by the compressor is supplied to the region between the high-pressure heat exchanger and the low-pressure heat exchanger in the exhaust heat recovery boiler via the first bleeding pipe.
  • the second compressed air is sent to the area via a second bleed pipe.
  • the combined cycle power plant of the present invention is provided in the first bleeding pipe downstream of the first flow control valve, and has an inlet through which the first compressed air flows, and an outlet through which the first compressed air flows out.
  • a first three-way valve having a first outlet to allow the first compressed air to flow out to the area in the exhaust heat recovery boiler; a first three-way valve having the first outlet and the first outlet of the first three-way valve;
  • a first boiler upstream connection pipe for connecting to an exhaust heat recovery boiler, and an inflow port provided in the second bleeding pipe downstream of the second flow control valve, and through which the second compressed air flows;
  • a second three-way valve having a first outlet for discharging compressed air, and a second outlet for discharging the second compressed air toward the first bleed pipe; and a first outlet of the second three-way valve
  • the exhaust heat recovery boiler A second boiler upstream connection pipe that continues, a first temperature sensor that detects an ambient temperature in the area, and the first compressed air that is provided upstream of the first flow control valve in the first
  • a second temperature sensor that detects the temperature of the second compressed air and a third temperature sensor that is provided in the second bleed pipe upstream of the second flow control valve and detects the temperature of the second compressed air.
  • the control device is configured to perform a first process or a second process, and the first process includes a difference between a temperature detected by the second temperature sensor and a temperature detected by the first temperature sensor. Is higher than a first predetermined value, the first flow control valve is opened, the first outlet of the first three-way valve is closed, and the second outlet of the first three-way valve is closed.
  • the second temperature sensor When the difference between the temperature detected by the first temperature sensor and the temperature detected by the first temperature sensor becomes equal to or less than the first predetermined value, the second outlet of the first three-way valve is closed and the second outlet is closed. (1) The first outlet of the three-way valve is opened, or the first flow regulating valve is closed, and the second flow regulating valve is opened, and the first outlet of the second three-way valve is opened. In the open state to close the second outlet of the second three-way valve, wherein the second processing is performed by the temperature detected by the third temperature sensor and the temperature detected by the first temperature sensor.
  • the second flow control valve When the difference from the temperature is higher than a second predetermined value, the second flow control valve is opened, the first outlet of the second three-way valve is closed, and the second three-way valve is closed. Opening the second outlet, the temperature detected by the third temperature sensor and the When the difference from the temperature detected by the first temperature sensor becomes equal to or less than the second predetermined value, the second outlet of the second three-way valve is closed and the first outlet of the second three-way valve is closed.
  • the outlet is opened, or the second flow regulating valve is closed, and the first flow regulating valve is opened, and the first outlet of the first three-way valve is opened.
  • a process for closing the second outlet of the three-way valve may be performed.
  • the low-pressure heat exchanger when the low-pressure heat exchanger is warmed by the first compressed air or the second compressed air, the first compressed air or the second compressed air is extracted into the exhaust heat recovery boiler. Accordingly, surge can be prevented when the gas turbine is started, and low NOx operation can be performed when the gas turbine is operated.
  • the time until steam is generated by the low-pressure heat exchanger of the exhaust heat recovery boiler can be reduced.
  • FIG. 4 is a flowchart illustrating a flow of a process performed by the control device according to the first embodiment. It is a schematic structure figure of a combined cycle power plant concerning a 2nd embodiment of the present invention.
  • a combined cycle power plant 1 includes a gas turbine 2 connected to a generator (not shown), and a vertical structure that recovers heat from exhaust gas to generate steam.
  • the control device 12 is a computer having a memory such as a ROM and a RAM and a CPU, for example, and a program stored in the ROM is executed by the CPU.
  • the gas turbine 2 includes a compressor 21, a combustor (not shown), and a turbine 22 provided with an exhaust port 23.
  • the compressor 21 has a bleed port 24 that is an outlet of the first compressed air that is air in the middle of compression (air in the middle stage of the compressor) and a discharge port 25 that is an outlet of the second compressed air that is air that has been compressed. Have.
  • the second compressed air generated by the compressor 21 and the fuel are mixed and burned in the combustor, the generated combustion gas is supplied to the turbine 22, and the blades of the turbine 22 are rotated. It converts the thermal energy of the combustion gas into rotational kinetic energy.
  • Exhaust gas (combustion gas) from the turbine 22 is discharged from an exhaust port 23.
  • the fuel for the gas turbine 2 includes LNG (natural gas), hydrogen gas, by-product gas, and liquid fuel.
  • One end of the duct 4 is connected to the exhaust port 23, and the other end of the duct 4 is connected to the lower part of the heat recovery steam generator 3.
  • the exhaust gas discharged from the exhaust port 23 flows into the exhaust heat recovery boiler 3 through the duct 4.
  • the combined cycle power plant 1 further includes a smoke pipe 13 connected to the duct 4 and discharging exhaust gas from the gas turbine 2 into the atmosphere, and an exhaust bypass damper 41 provided in the duct 4.
  • the exhaust bypass damper 41 allows the exhaust gas to flow into the first position P1 or the exhaust heat recovery boiler 3 where the exhaust gas flows into the smoke pipe 13 and shuts off the exhaust gas into the exhaust heat recovery boiler 3 under the control of the controller 12. It is located at the second position P2 where the flow of exhaust gas into the smoke tube 13 is blocked.
  • the case where the exhaust bypass damper 41 is located at the first position P1 is a case where the exhaust heat recovery boiler 3 does not generate steam because the exhaust gas does not flow into the exhaust heat recovery boiler 3. That is, this is a case where power generation by a generator (not shown) connected to the steam turbine 50 is not performed.
  • the case where the exhaust bypass damper 41 is located at the second position P2 means that the exhaust gas flows into the exhaust heat recovery boiler 3, so that the power generation by the generator (not shown) connected to the gas turbine 2 and the steam This is a case where power generation by the generator connected to the turbine 50 is performed in combination.
  • FIG. 1 the state where the exhaust bypass damper 41 is located at the first position P1 is shown by a solid line, and the state where the exhaust bypass damper 41 is located at the second position P2 is shown by a two-dot chain line.
  • the exhaust heat recovery boiler 3 has a high pressure heat exchanger 31 and a low pressure heat exchanger 32.
  • the high-pressure heat exchanger 31 generates steam of the first pressure (high pressure) by performing heat exchange between the exhaust gas and one or both of water and steam.
  • the low-pressure heat exchanger 32 is disposed downstream of the high-pressure heat exchanger 31, and performs a heat exchange between the exhaust gas and one or both of water and steam to generate a second pressure lower than the first pressure. Generates 2 pressure (low pressure) steam.
  • the high-pressure heat exchanger 31 and the steam turbine 50 are connected by a pipe 51.
  • the low-pressure heat exchanger 32 and the steam turbine 50 are connected by a pipe 52 whose downstream end is located downstream of the downstream end of the pipe 51 in the steam turbine 50.
  • the steam generated by the high-pressure heat exchanger 31 is sent to the steam turbine 50 by the pipe 51, and the steam generated by the low-pressure heat exchanger 32 is sent to the steam turbine 50 by the pipe 52.
  • One end of the extraction pipe 5 is connected to the extraction port 24 of the compressor 21, and the other end is disposed in a region between the high-pressure heat exchanger 31 and the low-pressure heat exchanger 32 in the exhaust heat recovery boiler 3.
  • a portion (hereinafter, referred to as a preheating portion) of the bleeding pipe 5 including the other end disposed in the exhaust heat recovery boiler 3 is the entire surface of the low pressure heat exchanger 32 on the gas upstream side of a tube group (not shown). Are arranged so as to be covered by compressed air described later.
  • the preheating portion is provided with a plurality of holes (not shown) opened toward the low-pressure heat exchanger 32, and the first compressed air or the second compressed air described later flows out of the holes and has a low-pressure heat. It is supplied to the exchanger 32. Thus, the low-pressure heat exchanger 32 is warmed by the first compressed air or the second compressed air.
  • the flow control valve 19 is provided in the bleed pipe 5 and controls the amount of the first compressed air flowing in the bleed pipe 5. The operation of the flow control valve 19 is controlled by the control device 12.
  • the three-way valve 16 is provided at a position downstream of the flow control valve 19 in the bleeding pipe 5.
  • the three-way valve 16 has an inlet 16a into which the first compressed air flows, a first outlet 16b through which the first compressed air flows out, and a second outlet 16b through which the first compressed air flows out into the above-mentioned region in the heat recovery steam generator 3. It has an outlet 16c.
  • the operation of the three-way valve 16 is controlled by the control device 12.
  • the boiler upstream connection pipe 17 connects the first outlet 16 b of the three-way valve 16 and a portion of the duct 4 upstream of the exhaust bypass damper 41.
  • One end of the bleed pipe 26 is connected to the discharge port 25 of the compressor 21, and the other end is connected to a portion of the bleed pipe 5 downstream of the three-way valve 16.
  • the second compressed air from the compressor 21 is supplied to the region between the high-pressure heat exchanger 31 and the low-pressure heat exchanger 32 in the exhaust heat recovery boiler 3 via the extraction pipes 26 and 5. It has become.
  • the flow control valve 9 is provided in the bleed pipe 26 and controls the amount of the second compressed air flowing in the bleed pipe 26. The operation of the flow control valve 9 is controlled by the control device 12.
  • the three-way valve 6 is provided at a position downstream of the flow control valve 9 in the bleeding pipe 26.
  • the three-way valve 6 has an inlet 6a into which the second compressed air flows, a first outlet 6b through which the second compressed air flows out, and a second outlet 6b through which the second compressed air flows out into the above-mentioned area in the heat recovery steam generator 3. It has an outlet 6c.
  • the operation of the three-way valve 6 is controlled by the control device 12.
  • the boiler upstream connection pipe 8 connects the first outflow port 6 b of the three-way valve 6 to a portion of the duct 4 upstream of the exhaust bypass damper 41.
  • the temperature sensor 10 detects the temperature of the exhaust gas in the above region in the exhaust heat recovery boiler 3 and outputs a signal of the detection result to the control device 12.
  • the temperature sensor 18 is disposed upstream of the flow control valve 19 in the bleed pipe 5, detects the temperature of the first compressed air flowing in the bleed pipe 5, and outputs a signal of the detection result to the control device 12.
  • the temperature sensor 11 is disposed upstream of the flow control valve 9 in the bleed pipe 26, detects the temperature of the second compressed air flowing in the bleed pipe 26, and outputs a signal of the detection result to the control device 12.
  • control is performed when the gas turbine 2 is started, that is, when the difference between the temperature detected by the temperature sensor 18 and the temperature detected by the temperature sensor 10 is higher than a predetermined value (first predetermined value).
  • the device 12 opens the flow control valve 19 so as to open the bleeding pipe 5, closes the first outlet 16 b of the three-way valve 16, and opens the second outlet 16 c (first preliminary). Heat treatment).
  • the first compressed air from the compressor 21 is sent to the region between the high-pressure heat exchanger 31 and the low-pressure heat exchanger 32 in the exhaust heat recovery boiler 3 through the bleeding pipe 5.
  • the low-pressure heat exchanger 32 is warmed by the first compressed air.
  • the first pre-heat treatment and a second pre-heat treatment described below are performed when the exhaust bypass damper 41 is located at the second position P2.
  • the control device 12 maintains the open state of the flow control valve 19 and performs three-way operation.
  • the second outlet 16c of the valve 16 is closed and the first outlet 16b is open.
  • the first compressed air from the compressor 21 flows into the exhaust heat recovery boiler 3 through the boiler upstream connection pipe 17.
  • a surge at the time of starting the gas turbine 2 can be prevented.
  • control device 12 may perform the following second pre-heat treatment instead of the above-described first pre-heat treatment.
  • a predetermined value a predetermined value
  • the control device 12 opens the bleed pipe 26.
  • the flow control valve 9 is opened, the first outlet 6b of the three-way valve 6 is closed, and the second outlet 6c is opened.
  • the second compressed air from the compressor 21 is sent to the region between the high-pressure heat exchanger 31 and the low-pressure heat exchanger 32 in the exhaust heat recovery boiler 3 through the extraction pipes 26 and 5.
  • the low-pressure heat exchanger 32 is warmed by the second compressed air.
  • the control device 12 maintains the open state of the flow control valve 9 and performs three-way operation.
  • the second outlet 6c of the valve 6 is closed and the first outlet 6b is open.
  • the second compressed air from the compressor 21 flows into the exhaust heat recovery boiler 3 through the boiler upstream connection pipe 8.
  • the low NOx operation of the gas turbine 2 can be performed.
  • FIG. 2 is a flowchart showing a flow of the above-described first pre-heat treatment by the control device 12.
  • the control device 12 opens the flow control valve 19 so as to open the bleeding pipe 5, closes the first outlet 16b of the three-way valve 16, and opens the second outlet 16c (step S1). ).
  • the first compressed air from the compressor 21 flows into the region between the high-pressure heat exchanger 31 and the low-pressure heat exchanger 32 in the exhaust heat recovery boiler 3 through the extraction pipe 5.
  • the low-pressure heat exchanger 32 is warmed by the first compressed air.
  • the controller 12 determines that the difference between the temperature detected by the temperature sensor 18 (denoted as T2 in FIG. 2) and the temperature detected by the temperature sensor 10 (denoted as T1 in FIG. 2) is higher than a predetermined value. It is determined whether or not (step S2). If the difference is higher than the predetermined value (YES in step S2), the process proceeds to step S3, and if the difference is equal to or smaller than the predetermined value (NO in step S2), the process of step S2 is repeated.
  • step S3 the control device 12 maintains the open state of the flow regulating valve 19, closes the second outlet 16c of the three-way valve 16, and opens the first outlet 16b. Thereby, the first compressed air from the compressor 21 flows into the exhaust heat recovery boiler 3 through the boiler upstream connection pipe 17.
  • the first compressed air or the second compressed air from the compressor 21 is supplied to the high-pressure heat exchanger 31 and the low-pressure heat exchanger in the exhaust heat recovery boiler 3. 32.
  • the low-pressure heat exchanger 32 is warmed by the first compressed air or the second compressed air.
  • the time until steam is generated by the low-pressure heat exchanger 32 can be shortened.
  • the first compressed air is sent into the exhaust heat recovery boiler 3 via the boiler upstream connection pipe 17.
  • the second compressed air is sent into the exhaust heat recovery boiler 3 via the boiler upstream connection pipe 18.
  • the combined cycle power plant 1 a includes an intermediate-pressure heat exchanger 33 between the high-pressure heat exchanger 31 and the low-pressure heat exchanger 32 in the exhaust heat recovery boiler 3.
  • the medium-pressure heat exchanger 33 generates steam at a pressure between the first pressure and the second pressure described above.
  • the intermediate-pressure heat exchanger 33 and the steam turbine 50 are connected by a pipe 53 whose downstream end is located downstream of the downstream end of the pipe 51 and upstream of the downstream end of the pipe 52 in the steam turbine 50. Have been.
  • the steam generated by the intermediate-pressure heat exchanger 33 is sent to a steam turbine 50 via a pipe 53.
  • One end of the extraction pipe 5 is connected to the extraction port 24 of the compressor 21 as in the first embodiment, and the other end is connected between the medium-pressure heat exchanger 33 and the low-pressure heat exchanger 32 in the exhaust heat recovery boiler 3. Area.
  • the preheating portion is provided with a plurality of holes (not shown) opened toward the low-pressure heat exchanger 32, and the first compressed air or the second compressed air flowing out of the holes is supplied to the low-pressure heat exchanger. 32. Thereby, the low-pressure heat exchanger 32 is warmed.
  • the first compressed air or the second compressed air from the compressor 21 is exhausted when the gas turbine 2 is started, similarly to the combined cycle power plant 1 of the first embodiment. It is sent to a region in the heat recovery boiler 3 between the medium pressure heat exchanger 33 and the low pressure heat exchanger 32. Thereby, the low-pressure heat exchanger 32 is warmed. Thereby, the time until steam is generated by the low-pressure heat exchanger 32 can be shortened. Further, the effect that surge can be prevented at the time of starting the gas turbine 2 and the low NOx operation can be performed at the time of operating the gas turbine 2 is also exerted similarly to the first embodiment.
  • the exhaust heat recovery boiler 3 having the vertical structure is employed.
  • the invention is not limited thereto, and the exhaust heat recovery boiler having the horizontal structure may be employed.
  • the combined cycle power plants 1 and 1a provided with the smoke tubes 13 have been described.
  • the present invention is similarly applied to a combined cycle power plant not provided with the smoke tubes 13. be able to.
  • the single-stage type steam turbine 50 in which the low-pressure steam is introduced during the expansion process of the high-pressure steam has been described as an example.
  • the configuration of the steam turbine 50 is not limited to this. Instead, a two-stage type including a high-pressure steam turbine driven by high-pressure steam and a low-pressure steam turbine connected to the high-pressure steam turbine by a shaft and driven by low-pressure steam may be adopted.
  • the three-way valves 6 and 16 are employed.
  • the present invention is not limited to this.
  • an on-off valve is provided in the boiler upstream connection pipe 8 and An on-off valve may be provided on the upstream side of the downstream end of the extraction pipe 26.
  • an on-off valve may be provided on the boiler upstream connection pipe 17 and an on-off valve may be provided on the downstream side of the bleed pipe 5.
  • the first compressed air is extracted into the exhaust heat recovery boiler 3. Air may be extracted into the exhaust heat recovery boiler 3. Further, after the low-pressure heat exchanger 32 is heated by the second compressed air, the second compressed air is extracted into the exhaust heat recovery boiler 3. However, the first compressed air is extracted into the exhaust heat recovery boiler 3. May be.
  • the three-way valves 6 and 16 and the flow regulating valves 9 and 19 are configured to be controlled by the control device 12, but each control device for controlling these separately and independently is provided. You may.
  • Temperature sensor (first temperature sensor) 11 temperature sensor (third temperature sensor) 12 control device 16 three-way valve (first three-way valve) 17 Boiler upstream connection pipe (1st boiler upstream connection pipe) 18 Temperature sensor (second temperature sensor) 19 Flow control valve (first flow control valve) DESCRIPTION OF SYMBOLS 21 Compressor 22 Turbine 23 Exhaust port 24 Bleed port 25 Discharge port 31 High pressure heat exchanger 32 Low pressure heat exchanger 50 Steam turbine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

排熱回収ボイラの低圧熱交換器により蒸気が生成されるまでの時間を短縮することができるコンバインドサイクル発電プラントを提供する。コンバインドサイクル発電プラントは、第1圧力の蒸気を生成する高圧熱交換器、および第1圧力よりも低い第2圧力の蒸気を生成し、高圧熱交換器の下流側に配置された低圧熱交換器を有する排熱回収ボイラと、一端が圧縮機の抽気口に接続され、他端が排熱回収ボイラ内の高圧熱交換器と低圧熱交換器との間の領域に配置された第1抽気配管と、第1抽気配管に設けられた第1流量調整弁と、一端が圧縮機の吐出口に接続され、他端が第1抽気配管に接続された第2抽気配管と、第2抽気配管に設けられた第2流量調整弁と、ガスタービンの起動時に第1流量調整弁又は第2流量調整弁を開状態とする制御装置とを備えている。

Description

コンバインドサイクル発電プラント
 本発明は、コンバインドサイクル発電プラントに関する。
 近年、エネルギーをより効率的に利用するために、コンバインドサイクル発電プラントが使用されている。コンバインドサイクル発電プラントは、ガスタービン、蒸気タービン、排熱回収ボイラ等を備えており、ガスタービンと蒸気タービンとを組み合わせた発電方式を採用するものである。このようなコンバインドサイクル発電プラントでは、ガスタービンにて仕事をした後の排ガスを排熱回収ボイラに導き、排ガスの熱を利用して蒸気を発生させ、その蒸気により蒸気タービンを駆動する。
 例えば特許文献1の図9に記載されたコンバインドサイクル発電プラントにおける排熱回収ボイラには、高圧の蒸気を生成する高圧熱交換器および低圧の蒸気を生成する低圧熱交換器が上流側からこの順に設けられている。高圧熱交換器により生成された蒸気および低圧熱交換器により生成された蒸気は、蒸気タービンに送られて回転エネルギーの生成に寄与する。
特開2017-31859号公報
 特許文献1の蒸気タービンは、高圧蒸気により駆動される高圧蒸気タービンと、高圧蒸気タービンにシャフトにより連結され低圧蒸気により駆動される低圧蒸気タービンを含む二段タイプのものである。しかし、蒸気タービンには、高圧蒸気の膨張過程の途中で低圧蒸気が導入される一段タイプのものもある。
 ところで、排熱回収ボイラの起動時には、ガスタービンからの排ガスによって高圧熱交換器および低圧熱交換器の順で温められる。そのため、低圧熱交換器から蒸気が生成されるのは、高圧熱交換器から蒸気が生成された後となる。ここで、高圧熱交換器により生成される蒸気および低圧熱交換器により生成される蒸気の両方による仕事によって、蒸気タービンの出力が定格出力に達する。従って、迅速に発電を行う観点から、低圧熱交換器により蒸気が生成されるまでの時間を短縮することが望まれる。
 そこで、本発明は、排熱回収ボイラの低圧熱交換器により蒸気が生成されるまでの時間を短縮することができるコンバインドサイクル発電プラントを提供することを目的とする。
 本発明のコンバインドサイクル発電プラントは、空気を圧縮し、圧縮途中の空気である第1圧縮空気の出口である抽気口および圧縮終了の空気である第2圧縮空気の出口である吐出口を有する圧縮機と、排気口を有し、燃料と前記第2圧縮空気との燃焼によって生成された燃焼ガスにより駆動され、前記排気口から排ガスを排出するタービンとを有するガスタービンと、前記排ガスから熱を回収して、第1圧力の蒸気を生成する高圧熱交換器、および前記第1圧力よりも低い第2圧力の蒸気を生成し、前記高圧熱交換器の下流側に配置された低圧熱交換器を有する排熱回収ボイラと、前記排熱回収ボイラにより生成された前記蒸気により駆動される蒸気タービンと、一端が前記圧縮機の前記抽気口に接続され、他端が前記排熱回収ボイラ内の前記高圧熱交換器と前記低圧熱交換器との間の領域に配置された第1抽気配管と、前記第1抽気配管に設けられた第1流量調整弁と、一端が前記圧縮機の前記吐出口に接続され、他端が前記第1抽気配管に接続された第2抽気配管と、前記第2抽気配管に設けられた第2流量調整弁と、前記ガスタービンの起動時に、前記第1流量調整弁又は前記第2流量調整弁を開状態とする制御装置とを備えているものである。
 本発明に従えば、ガスタービンの起動時に、圧縮機により生成された第1圧縮空気が第1抽気配管を介して排熱回収ボイラ内の高圧熱交換器と低圧熱交換器との間の領域に送られ、又は、第2圧縮空気が第2抽気配管を介して前記領域に送られる。これにより、低圧熱交換器は第1圧縮空気又は第2圧縮空気によって温められる。これによって、低圧熱交換器により蒸気が生成されるまでの時間を短縮することができる。
 上記発明において、本発明のコンバインドサイクル発電プラントは、前記第1抽気配管において前記第1流量調整弁の下流側に設けられ、前記第1圧縮空気が流入する流入口、前記第1圧縮空気を流出させる第1流出口、および前記第1圧縮空気を前記排熱回収ボイラ内の前記領域に流出させる第2流出口を有する第1三方弁と、前記第1三方弁の前記第1流出口と前記排熱回収ボイラとを接続する第1ボイラ上流側接続配管と、前記第2抽気配管において前記第2流量調整弁の下流側に設けられ、前記第2圧縮空気が流入する流入口、前記第2圧縮空気を流出させる第1流出口、および前記第2圧縮空気を前記第1抽気配管の方に流出させる第2流出口を有する第2三方弁と、前記第2三方弁の前記第1流出口と前記排熱回収ボイラとを接続する第2ボイラ上流側接続配管と、前記領域の雰囲気温度を検出する第1温度センサと、前記第1抽気配管において前記第1流量調整弁よりも上流側に設けられ、前記第1圧縮空気の温度を検出する第2温度センサと、前記第2抽気配管において前記第2流量調整弁よりも上流側に設けられ、前記第2圧縮空気の温度を検出する第3温度センサと、をさらに備え、前記制御装置は、第1処理又は第2処理を行うように構成され、前記第1処理は、前記第2温度センサにより検出された温度と前記第1温度センサにより検出された温度との差が第1所定値よりも高い場合に、前記第1流量調整弁を開状態とすると共に前記第1三方弁の前記第1流出口を閉状態にしかつ前記第1三方弁の前記第2流出口を開状態にし、前記第2温度センサにより検出された温度と前記第1温度センサにより検出された温度との差が前記第1所定値以下になった際に、前記第1三方弁の前記第2流出口を閉状態にしかつ前記第1三方弁の前記第1流出口を開状態にする、又は前記第1流量調整弁を閉状態とすると共に前記第2流量調整弁を開状態にしかつ前記第2三方弁の前記第1流出口を開状態にして前記第2三方弁の前記第2流出口を閉状態にする処理であり、前記第2処理は、前記第3温度センサにより検出された温度と前記第1温度センサにより検出された温度との差が第2所定値よりも高い場合に、前記第2流量調整弁を開状態とすると共に前記第2三方弁の前記第1流出口を閉状態にしかつ前記第2三方弁の前記第2流出口を開状態にし、前記第3温度センサにより検出された温度と前記第1温度センサにより検出された温度との差が前記第2所定値以下になった際に、前記第2三方弁の前記第2流出口を閉状態にしかつ前記第2三方弁の前記第1流出口を開状態にする、又は前記第2流量調整弁を閉状態とすると共に前記第1流量調整弁を開状態にしかつ前記第1三方弁の前記第1流出口を開状態にして前記第1三方弁の前記第2流出口を閉状態にする処理であってもよい。
 上記構成に従えば、低圧熱交換器が第1圧縮空気又は第2圧縮空気により温まった際には、排熱回収ボイラ内に第1圧縮空気又は第2圧縮空気が抽気される。これにより、ガスタービンの起動時にはサージを防止することができ、ガスタービンの運転時には低NOx運転を行うことができる。
 本発明によれば、排熱回収ボイラの低圧熱交換器により蒸気が生成されるまでの時間を短縮することができる。
本発明の第1実施形態に係るコンバインドサイクル発電プラントの概略構成図である。 第1実施形態の制御装置の処理の流れを示すフローチャートである。 本発明の第2実施形態に係るコンバインドサイクル発電プラントの概略構成図である。
 (第1実施形態)
 以下、本発明に係る実施形態のコンバインドサイクル発電プラント(CCPP:Combined Cycle Power Plant)について図面を参照して説明する。以下に説明するコンバインドサイクル発電プラントは、本発明の一実施形態に過ぎない。従って、本発明は実施形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。
 図1に示すように、本発明の第1実施形態に係るコンバインドサイクル発電プラント1は、図示しない発電機に接続されたガスタービン2と、排ガスから熱を回収して蒸気を生成する竪型構造の排熱回収ボイラ3と、ダクト4と、抽気配管5,26と、ボイラ上流側接続配管8,17と、三方弁6,16と、流量調整弁9,19と、温度センサ10,11,18と、制御装置12と、蒸気タービン50とを備えている。制御装置12は、例えばROMやRAMなどのメモリおよびCPUを有するコンピュータであり、ROMに格納されたプログラムがCPUにより実行される。
 ガスタービン2は、圧縮機21、図示しない燃焼器、および排気口23が設けられたタービン22を備えている。圧縮機21は、圧縮途中の空気(圧縮機途中段の空気)である第1圧縮空気の出口である抽気口24、および圧縮終了の空気である第2圧縮空気の出口である吐出口25を有している。
 ガスタービン2においては、圧縮機21で生成された第2圧縮空気と燃料とを上記燃焼器で混合燃焼させ、発生した燃焼ガスをタービン22へ供給してタービン22の羽根を回転させることにより、燃焼ガスの熱エネルギーを回転運動エネルギーに変換する。タービン22からの排ガス(燃焼ガス)は排気口23から排出される。なお、ガスタービン2の燃料として、LNG(天然ガス)、水素ガス、副生ガス、および液体燃料等が挙げられる。
 ダクト4の一端は排気口23に接続されており、ダクト4の他端は排熱回収ボイラ3の下部に接続されている。排気口23から排出された排ガスはダクト4を通じて排熱回収ボイラ3内に流入される。
 また、コンバインドサイクル発電プラント1は、ダクト4に接続されガスタービン2からの排ガスを大気中に放出する煙管13と、ダクト4に設けられた排気バイパスダンパ41とをさらに備えている。
 排気バイパスダンパ41は、制御装置12の制御によって、排ガスを煙管13に流入させると共に排熱回収ボイラ3への排ガスの流入を遮断する第1位置P1又は排熱回収ボイラ3へ排ガスを流入させると共に煙管13への排ガスの流入を遮断する第2位置P2に位置される。排気バイパスダンパ41が第1位置P1に位置される場合とは、排ガスが排熱回収ボイラ3内に流入しないため、排熱回収ボイラ3による蒸気の生成が行われない場合である。即ち、蒸気タービン50に接続された図示しない発電機による発電が行われない場合である。これに対して、排気バイパスダンパ41が第2位置P2に位置される場合とは、排ガスが排熱回収ボイラ3内に流入するため、ガスタービン2に接続された図示しない発電機による発電と蒸気タービン50に接続された上記発電機による発電とが複合されて行われる場合である。なお、図1では、排気バイパスダンパ41が第1位置P1に位置された状態が実線により図示され、排気バイパスダンパ41が第2位置P2に位置された状態が二点鎖線により図示されている。
 排熱回収ボイラ3は、高圧熱交換器31および低圧熱交換器32を有している。高圧熱交換器31は、排ガスと、水および蒸気の一方又は両方との間で熱交換を行うことにより第1圧力(高圧)の蒸気を生成する。また、低圧熱交換器32は、高圧熱交換器31の下流側に配置されており、排ガスと、水および蒸気の一方又は両方との間で熱交換を行うことにより第1圧力よりも低い第2圧力(低圧)の蒸気を生成する。
 高圧熱交換器31と蒸気タービン50とは配管51により接続されている。また、低圧熱交換器32と蒸気タービン50とは、蒸気タービン50において下流端が配管51の下流端よりも下流側に配置された配管52により接続されている。高圧熱交換器31により生成された蒸気は配管51により蒸気タービン50に送られ、低圧熱交換器32により生成された蒸気は配管52により蒸気タービン50に送られる。
 抽気配管5の一端は圧縮機21の抽気口24に接続され、その他端は排熱回収ボイラ3内の高圧熱交換器31と低圧熱交換器32との間の領域に配置されている。本実施形態では、抽気配管5のうち、他端を含め排熱回収ボイラ3内に配置された部分(以下、予熱部分と記載)は低圧熱交換器32の図示しない管群のガス上流側全面を後述の圧縮空気によって覆えるように配置されている。上記の予熱部分には、低圧熱交換器32に向けて開口された複数の図示しない孔部が設けられており、この孔部から流出した第1圧縮空気又は後述の第2圧縮空気が低圧熱交換器32に向けて供給されるようになっている。これによって、低圧熱交換器32は第1圧縮空気又は第2圧縮空気により温められる。
 流量調整弁19は、抽気配管5に設けられており、抽気配管5内を流れる第1圧縮空気の量を制御する。流量調整弁19の動作は制御装置12により制御される。
 三方弁16は、抽気配管5において流量調整弁19よりも下流側の位置に設けられている。この三方弁16は、第1圧縮空気が流入する流入口16a、第1圧縮空気を流出させる第1流出口16b、および第1圧縮空気を排熱回収ボイラ3内の上記領域に流出させる第2流出口16cを有している。三方弁16の動作は制御装置12により制御される。ボイラ上流側接続配管17は、三方弁16の第1流出口16bとダクト4の排気バイパスダンパ41よりも上流側の部分とを接続している。
 抽気配管26の一端は圧縮機21の吐出口25に接続され、その他端は抽気配管5のうち三方弁16よりも下流側の部分に接続されている。この構成により、圧縮機21からの第2圧縮空気が抽気配管26,5を介して排熱回収ボイラ3内の高圧熱交換器31と低圧熱交換器32との間の領域に供給されるようになっている。
 流量調整弁9は、抽気配管26に設けられており、抽気配管26内を流れる第2圧縮空気の量を制御する。流量調整弁9の動作は制御装置12により制御される。
 三方弁6は、抽気配管26において流量調整弁9よりも下流側の位置に設けられている。この三方弁6は、第2圧縮空気が流入する流入口6a、第2圧縮空気を流出させる第1流出口6b、および第2圧縮空気を排熱回収ボイラ3内の上記領域に流出させる第2流出口6cを有している。三方弁6の動作は制御装置12により制御される。ボイラ上流側接続配管8は、三方弁6の第1流出口6bとダクト4の排気バイパスダンパ41よりも上流側の部分とを接続する。
 温度センサ10は、排熱回収ボイラ3内の上記領域の排ガス温度を検出し、その検出結果の信号を制御装置12に出力する。温度センサ18は、抽気配管5において流量調整弁19の上流側に配置され、抽気配管5内を流れる第1圧縮空気の温度を検出し、その検出結果の信号を制御装置12に出力する。温度センサ11は、抽気配管26において流量調整弁9の上流側に配置され、抽気配管26内を流れる第2圧縮空気の温度を検出し、その検出結果の信号を制御装置12に出力する。
 このような構成において、ガスタービン2の起動時、即ち温度センサ18により検出された温度と温度センサ10により検出された温度との差が所定値(第1所定値)よりも高い場合に、制御装置12は、抽気配管5を開放するように流量調整弁19を開状態とすると共に三方弁16の第1流出口16bを閉状態にしかつ第2流出口16cを開状態にする(第1予熱処理)。これにより、圧縮機21からの第1圧縮空気が抽気配管5を通じて排熱回収ボイラ3内の高圧熱交換器31と低圧熱交換器32との間の領域に送られる。これによって、低圧熱交換器32は第1圧縮空気により温められる。なお、第1予熱処理および後述の第2予熱処理は、排気バイパスダンパ41が第2位置P2に位置する場合に行われる。
 その後、制御装置12は、温度センサ18により検出された温度と温度センサ10により検出された温度との差が所定値以下になった際には、流量調整弁19の開状態を維持すると共に三方弁16の第2流出口16cを閉状態にしかつ第1流出口16bを開状態にする。これにより、圧縮機21からの第1圧縮空気は、ボイラ上流側接続配管17を通じて排熱回収ボイラ3内に流入する。このことによって、ガスタービン2の起動時のサージを防止することができる。
 ここで、制御装置12は、上記の第1予熱処理の代わりに、以下の第2予熱処理を行ってもよい。制御装置12は、温度センサ11により検出された温度と温度センサ10により検出された温度との差が所定値(第2所定値)よりも高い場合に、制御装置12は、抽気配管26を開放するように流量調整弁9を開状態とすると共に三方弁6の第1流出口6bを閉状態にしかつ第2流出口6cを開状態にする。これにより、圧縮機21からの第2圧縮空気が抽気配管26,5を通じて排熱回収ボイラ3内の高圧熱交換器31と低圧熱交換器32との間の領域に送られる。これによって、低圧熱交換器32は第2圧縮空気により温められる。その後、制御装置12は、温度センサ11により検出された温度と温度センサ10により検出された温度との差が所定値以下になった際には、流量調整弁9の開状態を維持すると共に三方弁6の第2流出口6cを閉状態にしかつ第1流出口6bを開状態にする。これにより、圧縮機21からの第2圧縮空気は、ボイラ上流側接続配管8を通じて排熱回収ボイラ3内に流入する。このことによって、ガスタービン2の低NOx運転を行うことができる。
 続いて、制御装置12による制御方法について説明する。図2は制御装置12による上述の第1予熱処理の流れを示すフローチャートである。
 制御装置12は、抽気配管5を開放するように流量調整弁19を開状態とすると共に三方弁16の第1流出口16bを閉状態にしかつ第2流出口16cを開状態にする(ステップS1)。これにより、圧縮機21からの第1圧縮空気が抽気配管5を通じて排熱回収ボイラ3内の高圧熱交換器31と低圧熱交換器32との間の領域に流入する。これによって、低圧熱交換器32は第1圧縮空気により温められる。
 続いて、制御装置12は、温度センサ18により検出された温度(図2ではT2と記載)と温度センサ10により検出された温度(図2ではT1と記載)との差が所定値よりも高いか否かを判別する(ステップS2)。上記差が所定値よりも高い場合には(ステップS2でYES)、ステップS3に進み、上記差が所定値以下である場合には(ステップS2でNO)、ステップS2の処理を繰り返す。
 ステップS3では、制御装置12は、流量調整弁19の開状態を維持すると共に三方弁16の第2流出口16cを閉状態にしかつ第1流出口16bを開状態にする。これにより、圧縮機21からの第1圧縮空気はボイラ上流側接続配管17を通じて排熱回収ボイラ3内に流入する。
 以上説明したように、本実施形態のコンバインドサイクル発電プラント1においては、圧縮機21からの第1圧縮空気又は第2圧縮空気が排熱回収ボイラ3内の高圧熱交換器31と低圧熱交換器32との間の領域に送られる。これにより、低圧熱交換器32は第1圧縮空気又は第2圧縮空気によって温められる。これによって、低圧熱交換器32により蒸気が生成されるまでの時間を短縮することができる。
 また、制御装置12による上述の第1予熱処理が終了した後、第1圧縮空気がボイラ上流側接続配管17を介して排熱回収ボイラ3内に送られる。或いは、制御装置12による上述の第2予熱処理が終了した後、第2圧縮空気がボイラ上流側接続配管18を介して排熱回収ボイラ3内に送られる。このような構成によって、ガスタービン2の起動時にはサージを防止することができ、ガスタービン2の運転時には低NOx運転を行うことができる。
 (第2実施形態)
 次に、本発明の第2実施形態に係るコンバインドサイクル発電プラント1aについて図面を参照しつつ説明する。なお、本実施形態においては、上述の第1実施形態と同一の構成部材には同一の符号を付与し、その説明を省略する。
 図3に示すように、第2実施形態に係るコンバインドサイクル発電プラント1aは、排熱回収ボイラ3内において、高圧熱交換器31と低圧熱交換器32との間に中圧熱交換器33を備えている。中圧熱交換器33は、上述した第1圧力と第2圧力との間の圧力の蒸気を生成する。中圧熱交換器33と蒸気タービン50とは、蒸気タービン50において下流端が配管51の下流端よりも下流側であってかつ配管52の下流端よりも上流側に配置された配管53により接続されている。中圧熱交換器33により生成された蒸気は配管53により蒸気タービン50に送られる。
 抽気配管5の一端は、第1実施形態と同様に圧縮機21の抽気口24に接続され、その他端は排熱回収ボイラ3内の中圧熱交換器33と低圧熱交換器32との間の領域に配置されている。抽気配管5のうち、他端を含め排熱回収ボイラ3内に配置された部分(予熱部分)は低圧熱交換器32の図示しない管群のガス上流側全面を圧縮空気によって覆えるように配置されている。上記の予熱部分には、低圧熱交換器32に向けて開口された複数の図示しない孔部が設けられており、この孔部から流出した第1圧縮空気又は第2圧縮空気が低圧熱交換器32に向けて供給される。これによって、低圧熱交換器32は温められる。
 第2実施形態のコンバインドサイクル発電プラント1aにおいても、第1実施形態のコンバインドサイクル発電プラント1と同様に、ガスタービン2の起動時に、圧縮機21からの第1圧縮空気又は第2圧縮空気が排熱回収ボイラ3内の中圧熱交換器33と低圧熱交換器32との間の領域に送られる。これにより、低圧熱交換器32は温められる。これによって、低圧熱交換器32により蒸気が生成されるまでの時間を短縮することができる。また、ガスタービン2の起動時にはサージを防止することができ、ガスタービン2の運転時には低NOx運転を行うことができるという効果も第1実施形態と同様に奏される。
 (他の実施形態)
 本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。例えば以下の通りである。
 上記第1および第2実施形態では、竪型構造の排熱回収ボイラ3を採用したが、これに限らず、横型構造の排熱回収ボイラを採用してもよい。
 また、上記第1および第2実施形態では、煙管13が設けられたコンバインドサイクル発電プラント1、1aについて説明したが、煙管13が設けられていないコンバインドサイクル発電プラントについても本発明を同様に適用することができる。
 また、上記第1および第2実施形態では、高圧蒸気の膨張過程の途中で低圧蒸気が導入される一段タイプの蒸気タービン50について例を挙げて説明したが、蒸気タービン50の構成はこれに限定されるものではなく、高圧蒸気により駆動される高圧蒸気タービンと、高圧蒸気タービンにシャフトにより連結され低圧蒸気により駆動される低圧蒸気タービンを含む二段タイプのものを採用してもよい。
 また、上記第1および第2実施形態では、三方弁6,16を採用したが、これに限定されるものではなく、三方弁6の代わりに、ボイラ上流側接続配管8に開閉弁を設けかつ抽気配管26の下流端の上流側に開閉弁を設けてもよい。また、三方弁16の代わりに、ボイラ上流側接続配管17に開閉弁を設けかつ抽気配管5の下流側部分に開閉弁を設けてもよい。
 また、上記第1および第2実施形態では、第1圧縮空気により低圧熱交換器32を温めた後、その第1圧縮空気を排熱回収ボイラ3内に抽気するようにしたが、第2圧縮空気を排熱回収ボイラ3内に抽気してもよい。また、第2圧縮空気により低圧熱交換器32を温めた後、その第2圧縮空気を排熱回収ボイラ3内に抽気するようにしたが、第1圧縮空気を排熱回収ボイラ3内に抽気してもよい。
 さらに、上記第1および第2実施形態では、三方弁6,16および流量調整弁9,19を制御装置12により制御するように構成したが、これらを別個独立して制御する各制御装置を設けてもよい。
 1 コンバインドサイクル発電プラント
 2 ガスタービン
 3 排熱回収ボイラ
 4 ダクト
 5 抽気配管(第1抽気配管)
 6 三方弁(第2三方弁)
 6a,16a 流入口
 6b,16b 第1流出口
 6c,16c 第2流出口
 8 ボイラ上流側接続配管(第2ボイラ上流側接続配管)
 9 流量調整弁(第2流量調整弁)
 10 温度センサ(第1温度センサ)
 11 温度センサ(第3温度センサ)
 12 制御装置
 16 三方弁(第1三方弁)
 17 ボイラ上流側接続配管(第1ボイラ上流側接続配管)
 18 温度センサ(第2温度センサ)
 19 流量調整弁(第1流量調整弁)
 21 圧縮機
 22 タービン
 23 排気口
 24 抽気口
 25 吐出口
 31 高圧熱交換器
 32 低圧熱交換器
 50 蒸気タービン
 

Claims (2)

  1.  空気を圧縮し、圧縮途中の空気である第1圧縮空気の出口である抽気口および圧縮終了の空気である第2圧縮空気の出口である吐出口を有する圧縮機と、排気口を有し、燃料と前記第2圧縮空気との燃焼によって生成された燃焼ガスにより駆動され、前記排気口から排ガスを排出するタービンとを有するガスタービンと、
     前記排ガスから熱を回収して、第1圧力の蒸気を生成する高圧熱交換器、および前記第1圧力よりも低い第2圧力の蒸気を生成し、前記高圧熱交換器の下流側に配置された低圧熱交換器を有する排熱回収ボイラと、
     前記排熱回収ボイラにより生成された前記蒸気により駆動される蒸気タービンと、
     一端が前記圧縮機の前記抽気口に接続され、他端が前記排熱回収ボイラ内の前記高圧熱交換器と前記低圧熱交換器との間の領域に配置された第1抽気配管と、
     前記第1抽気配管に設けられた第1流量調整弁と、
     一端が前記圧縮機の前記吐出口に接続され、他端が前記第1抽気配管に接続された第2抽気配管と、
     前記第2抽気配管に設けられた第2流量調整弁と、
     前記ガスタービンの起動時に、前記第1流量調整弁又は前記第2流量調整弁を開状態とする制御装置とを備えている、コンバインドサイクル発電プラント。
  2.  前記第1抽気配管において前記第1流量調整弁の下流側に設けられ、前記第1圧縮空気が流入する流入口、前記第1圧縮空気を流出させる第1流出口、および前記第1圧縮空気を前記排熱回収ボイラ内の前記領域に流出させる第2流出口を有する第1三方弁と、
     前記第1三方弁の前記第1流出口と前記排熱回収ボイラとを接続する第1ボイラ上流側接続配管と、
     前記第2抽気配管において前記第2流量調整弁の下流側に設けられ、前記第2圧縮空気が流入する流入口、前記第2圧縮空気を流出させる第1流出口、および前記第2圧縮空気を前記第1抽気配管の方に流出させる第2流出口を有する第2三方弁と、
     前記第2三方弁の前記第1流出口と前記排熱回収ボイラとを接続する第2ボイラ上流側接続配管と、
     前記領域の雰囲気温度を検出する第1温度センサと、
     前記第1抽気配管において前記第1流量調整弁よりも上流側に設けられ、前記第1圧縮空気の温度を検出する第2温度センサと、
     前記第2抽気配管において前記第2流量調整弁よりも上流側に設けられ、前記第2圧縮空気の温度を検出する第3温度センサと、をさらに備え、
     前記制御装置は、第1処理又は第2処理を行うように構成され、
     前記第1処理は、前記第2温度センサにより検出された温度と前記第1温度センサにより検出された温度との差が第1所定値よりも高い場合に、前記第1流量調整弁を開状態とすると共に前記第1三方弁の前記第1流出口を閉状態にしかつ前記第1三方弁の前記第2流出口を開状態にし、前記第2温度センサにより検出された温度と前記第1温度センサにより検出された温度との差が前記第1所定値以下になった際に、前記第1三方弁の前記第2流出口を閉状態にしかつ前記第1三方弁の前記第1流出口を開状態にする、又は前記第1流量調整弁を閉状態とすると共に前記第2流量調整弁を開状態にしかつ前記第2三方弁の前記第1流出口を開状態にして前記第2三方弁の前記第2流出口を閉状態にする処理であり、
     前記第2処理は、前記第3温度センサにより検出された温度と前記第1温度センサにより検出された温度との差が第2所定値よりも高い場合に、前記第2流量調整弁を開状態とすると共に前記第2三方弁の前記第1流出口を閉状態にしかつ前記第2三方弁の前記第2流出口を開状態にし、前記第3温度センサにより検出された温度と前記第1温度センサにより検出された温度との差が前記第2所定値以下になった際に、前記第2三方弁の前記第2流出口を閉状態にしかつ前記第2三方弁の前記第1流出口を開状態にする、又は前記第2流量調整弁を閉状態とすると共に前記第1流量調整弁を開状態にしかつ前記第1三方弁の前記第1流出口を開状態にして前記第1三方弁の前記第2流出口を閉状態にする処理である、請求項1に記載のコンバインドサイクル発電プラント。
     
PCT/JP2019/029167 2018-08-08 2019-07-25 コンバインドサイクル発電プラント WO2020031715A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980051956.5A CN112534120B (zh) 2018-08-08 2019-07-25 联合循环发电设备
KR1020217005227A KR102420538B1 (ko) 2018-08-08 2019-07-25 컴바인드 사이클 발전 플랜트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-149382 2018-08-08
JP2018149382A JP7153498B2 (ja) 2018-08-08 2018-08-08 コンバインドサイクル発電プラント

Publications (1)

Publication Number Publication Date
WO2020031715A1 true WO2020031715A1 (ja) 2020-02-13

Family

ID=69414136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029167 WO2020031715A1 (ja) 2018-08-08 2019-07-25 コンバインドサイクル発電プラント

Country Status (5)

Country Link
JP (1) JP7153498B2 (ja)
KR (1) KR102420538B1 (ja)
CN (1) CN112534120B (ja)
TW (1) TWI705183B (ja)
WO (1) WO2020031715A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422010A (en) * 1977-07-20 1979-02-19 Hitachi Ltd Denitrating ammonica pouring apparatus for gas turbine
JPS64326A (en) * 1987-06-23 1989-01-05 Hitachi Ltd Nox abating type gas turbine plant
JPH0626308A (ja) * 1992-07-09 1994-02-01 Toshiba Corp コンバインドサイクル発電プラント
JP2001349206A (ja) * 2000-06-06 2001-12-21 Toshiba Corp コンバインドサイクル発電プラントの脱硝制御方法および装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130108A (ja) 1998-10-28 2000-05-09 Toshiba Corp 複合サイクル発電プラントの起動方法
JP6188122B2 (ja) * 2012-01-10 2017-08-30 ゼネラル・エレクトリック・カンパニイ 複合サイクル発電プラント
JP6203600B2 (ja) * 2013-10-23 2017-09-27 三菱日立パワーシステムズ株式会社 コンバインドサイクルプラント
JP6495137B2 (ja) * 2015-07-31 2019-04-03 三菱日立パワーシステムズ株式会社 複合サイクル発電プラント及びその制御方法
KR102471507B1 (ko) 2015-09-11 2022-11-29 엘지디스플레이 주식회사 유기발광소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422010A (en) * 1977-07-20 1979-02-19 Hitachi Ltd Denitrating ammonica pouring apparatus for gas turbine
JPS64326A (en) * 1987-06-23 1989-01-05 Hitachi Ltd Nox abating type gas turbine plant
JPH0626308A (ja) * 1992-07-09 1994-02-01 Toshiba Corp コンバインドサイクル発電プラント
JP2001349206A (ja) * 2000-06-06 2001-12-21 Toshiba Corp コンバインドサイクル発電プラントの脱硝制御方法および装置

Also Published As

Publication number Publication date
JP7153498B2 (ja) 2022-10-14
TWI705183B (zh) 2020-09-21
KR20210033517A (ko) 2021-03-26
CN112534120B (zh) 2023-05-16
JP2020023942A (ja) 2020-02-13
KR102420538B1 (ko) 2022-07-13
TW202012767A (zh) 2020-04-01
CN112534120A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
US6782703B2 (en) Apparatus for starting a combined cycle power plant
JP5221443B2 (ja) 一軸型複合サイクル発電プラントの起動方法および一軸型複合サイクル発電プラント
US6089012A (en) Steam cooled gas turbine system
US20100170218A1 (en) Method for expanding compressor discharge bleed air
US6244039B1 (en) Combined cycle plant having a heat exchanger for compressed air
WO2015141458A1 (ja) コンバインドサイクルプラント、その制御方法、及びその制御装置
JP6870970B2 (ja) タービン抽出による蒸気発生システム
JP5050013B2 (ja) 複合発電プラント及びその制御方法
JP2000130108A (ja) 複合サイクル発電プラントの起動方法
WO2020031715A1 (ja) コンバインドサイクル発電プラント
JP2017110649A (ja) 排気ガスダンパおよび圧縮ガス供給源を介してガスタービン排気エネルギーを制御するためのシステムおよび方法
JP4862338B2 (ja) 多軸コンバインドサイクル発電設備
JP5734117B2 (ja) コンバインドサイクル発電プラント及びその運転方法
JP2002106305A (ja) コンバインドサイクル発電プラントの起動制御装置
JP5977504B2 (ja) 蒸気駆動発電プラント
WO2020031714A1 (ja) コンバインドサイクル発電プラント
JP2005344528A (ja) コンバインドサイクル発電プラントおよびその起動運転方法
JP3641518B2 (ja) コンバインドサイクルプラントの蒸気温度制御方法及び装置
JP3065794B2 (ja) 給水加熱装置
JP3943991B2 (ja) 燃料加熱装置及び燃料加熱方法及びガスタービン発電設備及び複合発電設備
JP7137398B2 (ja) コンバインドサイクル発電プラント
JP2004346945A (ja) コンバインドサイクルプラントの蒸気温度制御方法及び装置
JP2003343213A (ja) クローズド蒸気冷却ガスタービンコンバインドプラント
JP3112072B2 (ja) 加圧流動床プラントとその運転方法
Radovich Agile HRSG

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217005227

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19846155

Country of ref document: EP

Kind code of ref document: A1