WO2020031602A1 - 無線通信装置および通信制御方法 - Google Patents

無線通信装置および通信制御方法 Download PDF

Info

Publication number
WO2020031602A1
WO2020031602A1 PCT/JP2019/027351 JP2019027351W WO2020031602A1 WO 2020031602 A1 WO2020031602 A1 WO 2020031602A1 JP 2019027351 W JP2019027351 W JP 2019027351W WO 2020031602 A1 WO2020031602 A1 WO 2020031602A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
unit
wireless communication
compression
rrh
Prior art date
Application number
PCT/JP2019/027351
Other languages
English (en)
French (fr)
Inventor
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2020536399A priority Critical patent/JPWO2020031602A1/ja
Priority to US17/257,019 priority patent/US11337081B2/en
Priority to CN201980051722.0A priority patent/CN112534863A/zh
Publication of WO2020031602A1 publication Critical patent/WO2020031602A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present disclosure relates to a wireless communication device and a communication control method.
  • a base station system that provides a wireless service includes a baseband processing unit (BBU; Base @ Band @ Unit) that processes a baseband signal, and a wireless unit (RRH; Remote) that transmits and receives radio waves from an antenna. Radio @ Head) is the mainstream.
  • BBU Base @ Band @ Unit
  • RRH wireless unit
  • Radio @ Head is the mainstream.
  • Documents that disclose such a separated base station include, for example, Patent Documents 1 and 2.
  • the BBU when the BBU is arranged on a cloud base on the network and the RRH is a simple configuration including an antenna, an RF circuit, and an AD / DA converter, the number of antennas is particularly small. It is important how to reduce the amount of data in the case of an increase.
  • a new and improved wireless communication capable of effectively reducing the amount of data between the RRH and the BBU in a configuration of a separated base station in which a BBU is arranged on a cloud base on a network.
  • a device and a communication control method are proposed.
  • the antenna device includes: an antenna element arranged two-dimensionally; and an arrangement unit that arranges IQ data of a signal output from the antenna element at each time while maintaining the arrangement of the antenna element.
  • a wireless communication device is provided.
  • a wireless communication apparatus including: a beam forming unit that performs a beam forming process on data.
  • a communication control method including:
  • acquiring IQ data of signals output from two-dimensionally arranged antenna elements performing compression processing on the IQ data, and setting the IQ data before the compression processing.
  • Performing a beamforming process on the data a communication control method is provided.
  • FIG. 3 is an explanatory diagram illustrating a schematic configuration of a RAN.
  • FIG. 3 is an explanatory diagram illustrating a schematic configuration of an NR. It is explanatory drawing which shows the example of arrangement
  • FIG. 9 is an explanatory diagram showing that data of a plurality of RRHs is aggregated by a switch before a BBU. It is an explanatory view showing a format of an I / Q data container.
  • FIG. 2 is an explanatory diagram illustrating a configuration example of an RRH according to an embodiment of the present disclosure.
  • FIG. 1 is an explanatory diagram illustrating a configuration example of an RRH according to an embodiment of the present disclosure.
  • FIG. 9 is an explanatory diagram illustrating an example in which data after AD conversion is stored as two-dimensional complex data. It is explanatory drawing which shows the example of an antenna element. It is explanatory drawing which shows the example of a storage of the data derived from a different polarization in a container.
  • FIG. 3 is an explanatory diagram illustrating an example of a transmission order in an optical fiber.
  • FIG. 3 is an explanatory diagram for explaining the meaning of compressing a signal of an array antenna.
  • FIG. 4 is an explanatory diagram showing a configuration in which a beamforming process is performed after an FFT (fast Fourier transform) in a BBU.
  • FIG. 3 is an explanatory diagram illustrating a functional configuration example of an RRH 100 and a BBU 200 according to an embodiment of the present disclosure.
  • FIG. 3 is an explanatory diagram illustrating a functional configuration example of an RRH 100 and a BBU 200 according to an embodiment of the present disclosure.
  • FIG. 4 is an explanatory diagram showing a format example of a weight vector.
  • FIG. 9 is an explanatory diagram showing a state in which data of a plurality of users is multiplexed.
  • FIG. 11 is an explanatory diagram illustrating a scheduling example.
  • FIG. 3 is an explanatory diagram illustrating a functional configuration example of an RRH 100 and a BBU 200 according to the embodiment.
  • FIG. 4 is an explanatory diagram illustrating an example of data transmitted from a BBU to an RRH. It is explanatory drawing which shows the example of the indicator which outputs to RRH from BBU. It is explanatory drawing which shows the example of the indicator which outputs to RRH from BBU.
  • the mainstream is a separated type base station that is separated into a baseband processing unit (BBU) that processes a baseband signal and a radio unit (RRH) that transmits and receives radio waves from an antenna.
  • BBU baseband processing unit
  • RRH radio unit
  • a general-purpose interface such as the CPRI (Common Public Radio Interface) standard is defined.
  • the baseband processing unit is also called a radio control device (Radio @ Equipment @ Controller: REC), and the radio unit is also called a radio device (Radio @ Equipment: RE).
  • user data also referred to as U-plane data, a digital baseband signal, or a data signal
  • IQ In-phase and quadrature
  • FIG. 1 is an explanatory diagram showing a schematic configuration of the RAN.
  • FIG. 2 is an explanatory diagram illustrating a schematic configuration of the NR.
  • EPC Evolved Packet Core
  • a feature of NR is that high-speed, large-capacity communication is realized using a frequency band from 6 GHz to 100 GHz.
  • the cellular system is composed of RAN and CN. Most of the cost of a cellular system is required in the RAN part. This is because, compared to CN, the number of units to be installed is thousands, which is very large. It is considered that the level of CN is several tens.
  • Base stations require a great deal of computer cost. However, the number of terminals connected to each base station changes with time. Not all base stations always use the maximum processing power. Therefore, if the capability of the computer of the base station can be shared among a plurality of base stations, the cost of the computer can be reduced. Also, the power consumed by the base station can be reduced.
  • the base station is composed of an analog part composed of an antenna and an RF circuit, an AD / DA converter arranged at the boundary between the analog part and the digital part, and a digital part for performing complicated digital signal processing.
  • the digital part can be constituted by an FPGA (Field Programmable Gate Array) or a DSP (Digital Signal Processor), but can also be processed by a general-purpose computer.
  • C-RAN Cloud RAN, Centralized RAN, Clean RAN
  • Cloud RAN Centralized RAN, Clean RAN
  • the function of the base station is separated into two, RRH and BBU.
  • the antenna, the RF circuit, and the AD / DA converter are arranged on the RRH, and the PHY / MAC digital signal processing portion of the other digital section is arranged on the BBU.
  • C-RAN processes the BBU part in the cloud.
  • the BBU portion arranged in the cloud can process the BBUs of a plurality of base stations by a common server, the cost of the base station can be reduced. Since a general-purpose processing server corresponding to the processing amount required for a plurality of base stations may be prepared, low cost can be realized.
  • base stations need to be located in many places.
  • the range covered by one base station becomes narrower, and it is required to arrange a large number of base stations. For this reason, there is a great demand for a further reduction in the cost of the RRH.
  • FIG. 3 shows a conceptual diagram in which a BBU is arranged in a server in a house, and an RRH is connected to a part of an outdoor antenna unit by a front hole which is an optical fiber.
  • the BBU is connected to the core network by an optical fiber serving as a backhaul.
  • the optical fiber is a typical example, and can be replaced with ADSL or wireless communication.
  • Table 1 shows examples of RRH functions
  • Table 2 shows examples of BBU functions.
  • the front hole is between RRH and BBU, and the backhaul is between BBU and S-GW.
  • the fronthaul is an interface required by separating a base station into RRH and BBU.
  • the front hall may be connected wirelessly, it is usually connected via a wired optical interface.
  • the communication speed required for the conventional fronthaul is a number generally said to be about 10 Gbps.
  • data flowing through the backhaul interface is a bit string determined from the signal points on the I / Q axis.
  • the information amount of data flowing to the backhaul interface is a bit string determined by integrating signals from a plurality of antennas, and thus remains at a maximum of several Gbps.
  • the backhaul becomes an interface between a gateway (S-GW in EPC terms) that bundles a plurality of base stations.
  • the switch at the preceding stage of the S-GW needs to bundle information from several tens to several thousands of base stations, and therefore requires a processing capacity of several terabits / s. Therefore, although data processing in the core network is not easy, the processing speed can be reduced by placing the BBU on the cloud side and offloading traffic. On the other hand, in the front hall, a speed of about 10 Gbps is required even with one line at present. Therefore, the front hall becomes a critical point.
  • the data transfer rate required at the fronthaul depends on the number of AD / DA converters. Usually, the AD converter often requires a larger number of bits than the DA converter. For example, if the AD converter expresses a waveform with 10 bits, the DA converter expresses the waveform with 8 bits. Naturally, as the number of bits of the AD converter increases, the data transfer rate required for the fronthaul increases.
  • the sampling rate of the AD converter also affects the data transfer rate.
  • the frequency bandwidth operated by the RAN is 20 MHz
  • an AD converter of 40 Msps (sampling @ per @ second) is required. This is due to the sampling theorem that sampling must be performed at twice the frequency being handled. Since a wide frequency bandwidth such as 1 GHz is assumed in the NR of 5 G, the sampling frequency required for the AD converter is 2 Gsps.
  • the next factor is the number of component carriers.
  • a maximum of 32 1 GHz wide component carriers (Component @ Career; CC) can be used. This is called carrier aggregation. As the number of component carriers increases, the burden on the front hall increases accordingly.
  • the next factor is the number of AD converters. For example, when there are 30 antennas, 30 AD converters are required.
  • Table 3 summarizes factors that affect the transfer speed of the fronthaul.
  • a DA / AD converter corresponding to all the antennas may be required. This is called Full Digital Antenna architecture.
  • the degree of freedom of the directivity of the antenna is the largest. Different antennas may have different directivities for different frequencies.
  • Analogue / Digital Hybrid Antenna architecture As shown in FIG. 4, the number of branches that can digitally adjust both the amplitude and the phase can be reduced by connecting to a plurality of antennas via a phase shifter that can adjust only the phase in the analog section. This is the architecture. Considering the effect on the front hall, it is desirable to use Hybrid Antenna Architecture that can reduce the number of branches.
  • Table 4 shows the required fronthaul throughput for each use case in consideration of the Hybrid Antenna architecture described above.
  • the speed of a normal Ethernet (registered trademark) cable is about 1 Gbps.
  • the maximum speed as a service is 1 Gbps. This is considered to be due to the fact that connection to an Ethernet (registered trademark) cable may not be able to be used effectively even at speeds of 1 Gbps or higher.
  • the optical fiber itself can transfer at 10 Gbps in the case of the time-division multiplexing method, and 10 Gbps when using the wavelength-division multiplexing method or multilevel modulation. It is considered that 10 Gbps is the maximum value as actually used commercially. Therefore, the communication speed that can be used for the fronthaul is 10 Gbps when a dedicated optical fiber is drawn in an outdoor RRH, and 1 Gbps when the RRH is drawn in a home. Of course, it is conceivable that communication at a higher speed can be used for the fronthaul.
  • Option 1 is 614.4 Mbit / s
  • Option 10 is a fronthaul capable of transmitting 24.33 Gbit / s. Basically, it specifies how to receive a synchronization signal and how to multiplex I / Q data by TDM, and does not specify how to reduce the number of signals to be transmitted.
  • the I / Q bit string itself defines one antenna and one carrier as an I / Q bit string (AxC container).
  • a plurality of antennas and component carriers are realized by multiplexing the AxC container.
  • CPRI is not a standard in 3GPP, it is defined as applicable to 3GPP. In the future, CPRI may be taken in for studying the 3GPP standard and standardized.
  • reception data and transmission data of base station In many cases, data received by the base station requires a larger data amount than data transmitted.
  • the present embodiment is applicable to both reception and transmission of the base station, but first, the technology will be described using the signal flow on the reception side of the base station. The reason is that the radio signal processing generally requires a larger signal processing capability on the receiving side, and the C-RAN is essentially aimed at reducing the signal processing on the receiving side. This is because it is important to explain with the processing of (1).
  • the access speed to the memory is 10 GB / s and the access speed to the HDD is 100 MB / s
  • a method of storing data in the hard disk and transferring the data to the cloud later using the fronthaul is used.
  • a method of preparing a different hard disk for, for example, one CC or one DA converter will be required.
  • the cost due to the memory becomes extremely large. Therefore, basically, it is less burdensome for the RRH to sequentially transmit data to the cloud using a wired network while processing data with the RRH.
  • the RRH stores information from AD converters corresponding to a plurality of antenna elements corresponding to one time in one container.
  • the RRH according to the present embodiment creates a data structure of the front hall by arranging the containers in time series. Correlated signals received by a plurality of antenna elements are stored in the same container by RRH, so that there is an advantage that compression is easy before storing in a container. Also, when processing data on the BBU side of the cloud, it is easier to process when information on a plurality of antenna elements arrives at the same time. This is because it is possible to solve the disadvantage that it is necessary to wait for data of a plurality of antenna elements when performing antenna signal processing on the BBU side.
  • the two-dimensional array antenna has a configuration in which antenna elements are arranged in a vertical direction and a horizontal direction.
  • the input of radio waves to each antenna element only has a different phase, and basically the same signal arrives. This is true when the signal source is far enough compared to the spacing between the elements of the antenna (called far solution approximation).
  • the phase difference between the antennas differs for each signal source.
  • the phase difference between the antennas is reduced. It can be compressed in an inclusive form.
  • the I / Q information is arranged like pixels of video data while maintaining the two-dimensional structure, and
  • the information of Q is packed in a container so as to keep the time, that is, data at different times becomes a two-dimensional image at different times.
  • two-dimensional discrete Fourier transform for image-based compression.
  • the input data to the two-dimensional discrete Fourier transform can be given as a complex number
  • two-dimensional complex data can be obtained from the data in which the antennas are arranged two-dimensionally. After the two-dimensional complex data is subjected to the two-dimensional Fourier transform, the low-frequency components are extracted, so that the data can be compressed.
  • FIG. 7 is an explanatory diagram illustrating a configuration example of the RRH according to the embodiment of the present disclosure.
  • the RRH 100 shown in FIG. 7 includes a two-dimensional array antenna 110, an RF circuit 120, an AD converter 130, a two-dimensional data generator 140, a data compressor 150, and an E / O converter 160.
  • the two-dimensional array antenna 110 is an antenna in which an antenna for receiving a radio wave from a terminal as a communication partner or transmitting a radio wave toward the terminal is arranged in an array. Is an analog circuit that executes a reception process on a signal received by the array antenna 110 of FIG.
  • the RF circuit 120 may include a mixer, a filter, an amplifier, and the like.
  • the AD converter 130 is a circuit that converts an analog signal output from the RF circuit 120 into a digital signal.
  • the two-dimensional data generator 140 generates two-dimensional complex data as described later from the data output by the AD converter 130.
  • the data compression unit 150 performs a compression process on the two-dimensional complex data generated by the two-dimensional data creation unit 140. At this time, the data compression unit 150 performs compression in consideration of the correlation between the antenna elements of the two-dimensional array antenna 110. Then, the E / O converter 160 converts the electric signal into an optical signal for transmission from the RRH to the BBU via an optical fiber.
  • FIG. 8 shows an example in which data after AD conversion from antennas arranged two-dimensionally is stored as two-dimensional complex data by the two-dimensional data creation unit 140.
  • D (i, j) indicates that the data is I / Q data corresponding to the i-th data in the vertical direction and the j-th data in the horizontal direction.
  • the data in FIG. 8 is the data of the two-dimensional antenna at one time
  • the data in FIG. 8 arranged in time series is a series of data.
  • the division of the container may be as shown in FIG. 8, or may be packed in the container at regular intervals.
  • the certain period of time is a unit of time of one sample of the AD converter.
  • the compression algorithm in the data compression unit 150 is informed of the number of vertical and horizontal images (4 ⁇ 4 in the example of FIG. 8). That becomes the interface between the container block (two-dimensional data creation unit 140) and the compression function (data compression unit 150).
  • This notification itself may be set as a configuration of the base station or may be set as a standard.
  • the connection between the antenna and the analog circuit may be changed in one RRH.
  • the RRH 100 rearranges the containers according to the change and notifies the BBU of the size of the array antenna array. That is, the RRH 100 may use only a part of the data from the two-dimensional array antenna 110 and store the data in the container by the two-dimensional data creation unit 140. Thereby, the BBU can decompress the compressed data even when the connection between the antenna and the analog circuit is changed in the RRH.
  • N antenna elements of 5G NR are arranged in the horizontal direction and M antenna elements in the vertical direction, N ⁇ M antenna elements are required as shown in FIG.
  • a method of preparing another set of N ⁇ M antenna elements using polarization may be used.
  • Antenna elements with different polarization planes are located at approximately the same location. It may be considered that two antenna elements for receiving different polarized waves are arranged at each of the N ⁇ M antenna elements.
  • Such an antenna is called a cross-polarized antenna.
  • a method of storing I / Q data in a container in such an antenna configuration will be described.
  • the RRH 100 stores data derived from different polarizations in a container so as not to be mixed with each other.
  • FIG. 10 is an explanatory diagram illustrating an example of storing data derived from different polarizations in a container. When an operation such as compression is applied to the stored data, the operation is performed separately so that data derived from different polarizations are not mixed.
  • FIG. 11 is an explanatory diagram showing an example of the order of transmission in the optical fiber when transmitting from the RRH 100 to the BBU 200.
  • an optical fiber in a system called a single core, data is transmitted sequentially. Therefore, data is transmitted from the RRH 100 to the BBU 200 via the optical fiber in the order as shown in FIG.
  • FIG. 12 illustrates the meaning of compressing the signal of the array antenna.
  • FIG. 12 shows a one-dimensional array antenna for the sake of simplicity.
  • signals that are the same but differ only in the phase difference based on the optical path difference length can be received by the array antenna. Therefore, in the case of FIG. 12, even if the number of antennas is large, there are essentially only two different signals, and even if there are many antennas, there are only two signals. That is, the data after the AD conversion includes a redundant signal.
  • the RRH 100 can efficiently compress the data while maintaining the antenna structure by applying the compression algorithm. Further, even if signals arriving from different directions arrive at resource blocks having different frequencies, the data compression unit 150 can compress the signal blocks while leaving these signal components.
  • beamforming realized in the analog domain can use only beams in the same direction at the same time, even at different frequencies.
  • beamforming is realized only in the digital domain. That is, as described above, since beamforming is performed in the frequency domain, it is possible to apply a beam having different directivity for each frequency.
  • the number of AD converters corresponding to the number of branches (N in the example of FIG. 4) is maintained until the beamforming process is applied to the data after AD conversion. It is necessary to handle I / Q data.
  • a beamforming process is located after an FFT (Fast Fourier Transform).
  • FIG. 13 is an explanatory diagram showing a configuration in which a beam forming process is performed after an FFT (Fast Fourier Transform) in a BBU.
  • the BBU 200 shown in FIG. 13 includes an O / E conversion unit 210, a data decompression unit 220, a fast Fourier transform unit 230, a beam forming unit 240, and a control unit 250.
  • the O / E converter 210 converts an optical signal sent from the RRH 100 via an optical fiber into an electric signal.
  • the data decompression unit 220 decompresses the data compressed by the RRH 100 and restores the data.
  • the fast Fourier transform unit 230 performs a fast Fourier transform process on the data restored by the data decompression unit 220.
  • the beamforming unit 240 performs the beamforming process on the data after the fast Fourier transform process has been performed by the fast Fourier transform unit 230.
  • the control unit 250 executes the basic functions of the BBU 200.
  • the basic functions of the BBU 200 include, for example, data decoding, scheduling, and QOS control.
  • the beamforming process by the beamforming unit 240 is specifically a multiplication process of antenna weights, and a process of multiplying the received data after the AD converter by the antenna weights (I / Q complex numbers) corresponding to each branch. It is. Therefore, the fronthaul has to carry I / Q data by the number of AD converters corresponding to the number of branches.
  • the beamforming process is performed in the time domain, that is, before the FFT for the base station used for the C-RAN.
  • the beamforming process (antenna weight multiplication process) is performed immediately after the AD converters substantially corresponding to the number of antenna elements.
  • FIG. 14 is an explanatory diagram illustrating a functional configuration example of the RRH 100 and the BBU 200 according to the embodiment of the present disclosure.
  • the beam forming unit 145 that performs the beam forming process is provided after the I / Q bit string generation block of the RRH 100 and before the data compression unit 150. Come.
  • the RRH 100 according to the embodiment of the present disclosure can reduce the amount of data to be transferred by performing beamforming processing at this position. For example, even when the RRH 100 has 200 antennas, if the MIMO data of one layer of one user is taken out, the data becomes one AD converter. That is, the RRH 100 according to the embodiment of the present disclosure can reduce the data amount to 1/200 by performing the beamforming process in the time domain.
  • control may be performed such that the base station does not perform multiplexing in the frequency direction by scheduling. .
  • the base station broadcasts the system information in advance to notify the terminal that the restriction of not performing multiplexing in the frequency direction is given to the terminal.
  • the antenna weighting coefficient used in the beamforming process is notified from the BBU 200 to the RRH 100. This is because the BBU 200 knows in which direction beamforming is required at each time. Therefore, the block diagram of the RRH 100 and the BBU 200 is as shown in FIG. 15 in consideration of notifying the antenna weight.
  • the RRH 100 is provided with an O / E converter 170
  • the BBU 200 is provided with an E / O converter 260.
  • the control unit 250 notifies the RRH 100 of information on the antenna weighting factor via the E / O conversion unit 260.
  • information on the antenna weight notified from BBU 200 is sent from O / E conversion section 170 to beamforming section 145. Thereby, the RRH 100 can obtain information on the antenna weight from the BBU 200.
  • the signal output from the antenna is multiplied by the weight coefficient of the array antenna to extract this different signal source.
  • the compression algorithm can also compress the signal in the time direction of one signal source.
  • beams in five directions can be used simultaneously on the same sample.
  • One beam at that time is a beam corresponding to the same direction over the entire frequency band. Therefore, it is possible to handle beams in a plurality of directions.
  • FIG. 16 is an explanatory diagram showing a format example of a weight vector used in the beam forming process.
  • the weight vector does not change from sample to sample.
  • the same weight vector is used for about several hundred samples. Therefore, when an effective weight vector is being transmitted from the base station to the terminal, the enable signal is set to 1 as shown in FIG.
  • the beam is processed in the time domain (before FFT).
  • the antenna configuration is such that 32 digital circuits are connected to eight analog Phase ⁇ shifters.
  • the analog Phase shifter can adjust only the phase.
  • Eight digital circuits can adjust both amplitude and phase.
  • the adjustment of the analog phase shifter is also performed at the RRH stage (in the time domain and before the FFT), but the control line for the phase adjustment comes from the BBU.
  • a signal that has been roughly subjected to analog beam processing becomes eight digital signals.
  • the BBU performs antenna signal processing on the eight digital signals. It is a feature of the present embodiment that the control of the phase shifter of the analog part is controlled from the BBU.
  • beamforming composed of Phase shifter cannot process beams in different directions using resources with different frequencies, so it is necessary to process data facing one terminal within a specific time. become.
  • the SN of the received data is originally bad and the transmitted signal is data of a low-order modulation method such as QPSK instead of 256QAM, there is no problem even if the I / Q data is largely compressed. There are many. Conventionally, there is no information on how much compression is possible, and compression cannot be performed efficiently.
  • the present embodiment is characterized in that an indicator relating to compression is transmitted from the BBU to the RRH.
  • ⁇ ⁇ ⁇ Data arrives at the base station in a state where data of a plurality of users are multiplexed. Therefore, a signal arriving at the same time often includes data of a plurality of users.
  • one user may be transmitting data using QPSK, while another user may be transmitting data using 256QAM.
  • FIG. 17 is an explanatory diagram showing a state in which data of a plurality of users is multiplexed.
  • FIG. 17 shows how data of different modulation schemes and coding rates from a plurality of users are multiplexed in the frequency direction. If the beamforming process is performed in the BBU, a large amount of data needs to be transmitted from the RRH to the BBU.
  • the data in the RRH is I / Q data, and the user cannot be separated at that stage. Therefore, since the I / Q data uniformly uses only QPSK, it cannot be said that the data can be largely compressed.
  • the scheduler in the MAC (Media Access Control) of the BBU performs scheduling so that different modulation schemes and coding rates are not assigned to resource blocks of different frequencies at the same time.
  • FIG. 18 is an explanatory diagram showing an example in which scheduling is performed so that different modulation schemes and coding rates are not assigned to resource blocks of the same time and different frequencies. Then, the BBU notifies the RRH of information on the modulation scheme and coding rate of I / Q data corresponding to each resource block.
  • FIG. 19 is an explanatory diagram showing a functional configuration example of the RRH 100 and the BBU 200 according to the present embodiment.
  • the BBU 200 notifies the RRH 100 of information on the modulation scheme and the coding rate for the I / Q bit string at a granularity corresponding to a resource block.
  • the RRH 100 can optimally perform compression using the information notified from the BBU 200.
  • the scheduler 252 in the MAC (control unit 250) of the BBU 200 may notify the RRH 100 of information on a representative modulation scheme and coding rate in resource blocks of the same time and of different frequencies.
  • the representative modulation scheme or coding rate may be, for example, a modulation scheme or coding rate capable of transmitting data with the largest amount of information.
  • the RRH 100 selects a compression ratio that does not increase noise excessively for the 64QAM coding rate 3/4 resource block, and compresses the I / Q bit sequence.
  • the information notified from the BBU 200 to the RRH 100 may be, for example, an indicator relating to compression and having a predetermined number of bits.
  • the indicator relating to compression is composed of 3 bits. Then, the BBU 200 may notify the RRH 100 of an indicator regarding compression as information that 0 is the highest compression ratio and 7 is the lowest compression ratio.
  • FIG. 20 is an explanatory diagram showing an example of information of an indicator notified from the BBU 200 to the RRH 100.
  • the BBU 200 thus generates information on the compression ratio for each resource block and notifies the RRH 100 of the information.
  • the RRH 100 performs a compression process on the I / Q bit string using the information on the compression ratio sent from the BBU 200.
  • One base station may simultaneously multiplex data of a plurality of users into resource blocks of the same time and the same frequency by spatial multiplexing.
  • the BBU 200 not only considers the modulation scheme and the coding rate of different resource blocks included in different frequencies in one time, but also uses multi-user MIMO (MU-MIMO) to assign different users to one resource.
  • MU-MIMO multi-user MIMO
  • An indicator related to compression is notified in consideration of the situation multiplexed in the block.
  • the amount of data flowing to a communication path (for example, an optical fiber) between the RRH 100 and the BBU 200 increases, and when a large amount of data is accumulated in a buffer mounted on the RRH 100, the RRH 100 Send a buffer status report.
  • a communication path for example, an optical fiber
  • the MAC scheduler mounted on the BBU 200 allocates the modulation scheme to the uplink resources permitted to the terminal. Is set to a low modulation scheme such as QPSK instead of 64QAM. Further, the scheduler may perform control such as limiting the number of terminals to be spatially multiplexed by MU-MIMO.
  • FIG. 21 is a flowchart showing an operation example of the RRH 100 and the BBU 200 according to the present embodiment.
  • the BBU 200 notifies a terminal about uplink scheduling (step S101).
  • the terminal transmits uplink data based on the scheduling notified from the BBU 200 (Step S102).
  • the RRH 100 generates an I / Q bit sequence from the data received from the terminal, and further compresses the generated I / Q bit sequence (step S103).
  • the RRH 100 After compressing the I / Q bit string, the RRH 100 checks the buffer status (step S104). If a large amount of data is accumulated in the buffer, the RRH 100 transmits a buffer status report to the BBU 200 (step S105). ).
  • the RRH 100 transmits the uplink data including the compressed I / Q bit sequence to the BBU 200 (Step S106).
  • the BBU 200 When the BBU 200 receives the uplink data from the RRH 100, the BBU 200 decompresses the received uplink data and executes a baseband process on the decompressed data (Step S107).
  • the BBU 200 notifies the terminal about the uplink scheduling in consideration of the buffer status report transmitted to the BBU 200 by the RRH 100 (step S108).
  • a plurality of RRHs are constantly receiving data from terminals. Sending an I / Q bit string generated by AD-converting all the received data to the BBU should be avoided as much as possible because the data amount is large. This is because, as shown in FIG. 5, a plurality of RRH data may cause a congestion at the switch.
  • the transmission power of the received signal may be very small.
  • MTC Machine Type Commination
  • the RRH acquires a command to acquire an I / Q from the BBU only when data is being received from the BBU.
  • the BBU scheduler notifies the RRH of such a command. For example, if there is meaningful data, the BBU notifies the RRH of 1; if it has no meaning, the BBU notifies the RRH of 0. Since the data itself is transmitted and received as a resource block, it actually becomes 1 or 0 at a break between resource blocks.
  • FIG. 22 is an explanatory diagram showing an example of data sent from the BBU to the RRH.
  • FIG. 22 shows a case where one OFDM corresponds to a unit of a resource block in the time direction. What is shown here is a case where uplink data exists or does not exist for each OFDM.
  • CoMP Coordinatd Multi-Point
  • a plurality of RRHs cooperate to transmit and receive data.
  • the three RRHs shown in FIG. 5 operate in cooperation, the uplink signals of one terminal are simultaneously received by the three RRHs, the received signals are transferred to the BBU, and the three signals are transmitted by the BBU.
  • This is a technique for improving the quality of reception by combining signals of two RRHs.
  • whether CoMP is performed with two RRHs or CoMP is performed with three RRHs differs depending on the situation. In such a case, transferring the I / Q data obtained in all the RRHs to the BBU wastefully uses the resources of the fronthaul.
  • the resources of the fronthaul are effectively used as follows.
  • RRH-1 When there is one RRH (referred to as RRH-1) to which UL is assigned by the scheduler, and no such scheduling information is output from the other two RRHs (referred to as RRH-2 and RRH-3). think of.
  • RRH-2 and RRH-3 the other two RRHs
  • the uplink data transmitted from the terminal is transmitted to the RRH-2 and RRH- at the timing when the uplink resource is allocated to the RRH-1 by the scheduler. 3 must also be received.
  • FIG. 22 is an explanatory diagram illustrating an example of an enable signal output from the BBU to the RRH.
  • uplink resource that may or may not have an uplink signal.
  • the uplink resources where there may be uplink signals are shown in Table 5 below.
  • FIG. 23 is an explanatory diagram illustrating an example of an indicator that is output from the BBU to the RRH.
  • FIG. 23 also shows an enable signal indicating a resource that ensures that uplink data arrives.
  • FIG. 23 shows an uncertain enable signal as an indicator that indicates the location of a resource where uplink data may come.
  • the uncertain enable signal is a signal that becomes 1 at the resource location where the data shown in Table 5 arrives.
  • the RRH determines that the I / Q data generated by the reception is not transferred to the BBU when the reception level is equal to or lower than a predetermined threshold value in the uplink resource for which the uncertain enable signal is 1. Can be. In order to realize this processing by RRH, it is desirable not to multiplex a resource to which uplink data is likely to come and a resource to which uplink data is known to surely come in the frequency direction.
  • RRH May follow scheduling towards resources for which it is known that uplink data will come reliably.
  • FIG. 24 is an explanatory diagram showing an example of an indicator output from the BBU to the RRH.
  • FIG. 24 shows that a resource to which uplink data is likely to come and a resource to which uplink data is known to surely come are multiplexed at the same time, for example, in the frequency direction (FDM multiplexing). It is an example of the indicator in the case of having done.
  • the enable signal and the uncertain enable signal are high at the same time.
  • the RRH performs the receiving process according to the scheduling of the resource for which the uplink data is known to come reliably, that is, according to the enable signal.
  • the RRH executes a process for reducing the amount of data transmitted to the BBU.
  • the processing for reducing the data amount includes compression of the I / Q bit string and selection of data to be transferred.
  • the RRH can acquire various information related to the reduction of the data amount from the BBU.
  • the RRH can execute a process for reducing the amount of data transmitted to the BBU based on information acquired from the BBU.
  • an operator or a user can arrange low-cost base stations in various places. Further, the operator can provide the user with a stable and inexpensive wireless communication environment by promoting effective use of the frequency. Then, the user can enjoy a service provided by a stable and inexpensive wireless communication environment.
  • the two-dimensional data creation unit 140 according to the present embodiment can function as an example of an arrangement unit according to the present disclosure.
  • the data compression unit 150 according to the present embodiment may function as an example of the compression unit according to the present disclosure.
  • each step in the processing executed by each device in this specification does not necessarily have to be processed in chronological order in the order described as a sequence diagram or a flowchart.
  • each step in the processing executed by each device may be processed in an order different from the order described in the flowchart, or may be processed in parallel.
  • a computer program for causing hardware such as a CPU, a ROM, and a RAM built in each device to exhibit the same function as the configuration of each device described above can be created.
  • a storage medium storing the computer program can be provided. Further, by configuring each functional block shown in the functional block diagram by hardware, a series of processing can be realized by hardware.
  • Antenna elements arranged two-dimensionally An arrangement unit that arranges IQ data of a signal output from the antenna element at each time while maintaining the arrangement of the antenna element;
  • a wireless communication device comprising: (2) The wireless communication device according to (1), further including a compression unit that performs a compression process on the two-dimensional IQ data arranged by the arrangement unit. (3) The wireless communication device according to (2), wherein the arrangement unit notifies the compression unit of information on the size of the two-dimensional array. (4) The wireless communication device according to (2) or (3), wherein the compression unit performs compression in consideration of a correlation between the antenna elements.
  • the antenna elements have different polarization planes
  • the wireless communication device acquires information about a weight coefficient used in the beamforming process from another device.
  • the beam forming unit includes: a notifying unit that notifies a device that performs wireless communication with the own device of information indicating that only a beam forming process in the same direction is to be performed at the same time resource; The wireless communication device according to (9).
  • the wireless communication device (11) The wireless communication device according to (10), wherein the notification unit notifies the information as system information.
  • the beamforming unit uses the same information on the weight coefficient over a predetermined number of samples.
  • a compression unit that performs compression processing on IQ data of a signal output from the antenna element;
  • a beam forming unit that performs a beam forming process on the IQ data before the compression process by the compression unit;
  • a wireless communication device comprising: (14) The wireless communication device according to (13), wherein the beamforming unit acquires information about a weight coefficient used in the beamforming process from another device.
  • the beamforming unit includes: a notification unit configured to notify information that only the beamforming process in the same direction is to be performed in the resource at the same time to a device that performs wireless communication with the own device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

2次元に配列されたアンテナ素子(110)と、前記アンテナ素子から出力される信号のIQデータを、前記アンテナ素子の配列を保った状態で時刻毎に配置する配置部(140)と、を備える、無線通信装置(100)が提供される。

Description

無線通信装置および通信制御方法
 本開示は、無線通信装置および通信制御方法に関する。
 現在、無線サービスを提供する基地局システムの構成として、ベースバンド信号を処理するベースバンド処理部(BBU;Base Band Unit)と、アンテナから電波を送信したり受信したりする無線部(RRH;Remote Radio Head)とに分離した形態の分離型基地局が主流となっている。そのような分離型基地局を開示した文献として、例えば特許文献1、2などがある。
特開2018-14697号公報 特開2018-23035号公報
 このような分離型基地局の構成のうち、BBUをネットワーク上のクラウドベースに配置し、RRHを、アンテナ、RF回路、およびAD/DA変換器という簡易な構成とした場合に、特にアンテナ数が増大した場合のデータ量をどのように抑えるかが重要となる。
 そこで、本開示では、BBUをネットワーク上のクラウドベースに配置した分離型基地局の構成においてRRHとBBUとの間のデータ量を効果的に削減することが可能な、新規かつ改良された無線通信装置及び通信制御方法を提案する。
 本開示によれば、2次元に配列されたアンテナ素子と、前記アンテナ素子から出力される信号のIQデータを、前記アンテナ素子の配列を保った状態で時刻毎に配置する配置部と、を備える、無線通信装置が提供される。
 また本開示によれば、2次元に配列されたアンテナ素子と、前記アンテナ素子から出力される信号のIQデータに対する圧縮処理を実行する圧縮部と、前記圧縮部による圧縮処理の前に、前記IQデータに対するビームフォーミング処理を実行するビームフォーミング部と、を備える、無線通信装置が提供される。
 また本開示によれば、2次元に配列されたアンテナ素子から出力される信号のIQデータを取得することと、前記IQデータを、前記アンテナ素子の配列を保った状態で時刻毎に配置することと、を含む、通信制御方法が提供される。
 また本開示によれば、2次元に配列されたアンテナ素子から出力される信号のIQデータを取得することと、前記IQデータに対する圧縮処理を実行することと、前記圧縮処理の前に、前記IQデータに対するビームフォーミング処理を実行することと、を含む、通信制御方法が提供される。
 以上説明したように本開示によれば、BBUをネットワーク上のクラウドベースに配置した分離型基地局の構成においてRRHとBBUとの間のデータ量を効果的に削減することが可能な、新規かつ改良された無線通信装置及び通信制御方法を提供することが出来る。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
RANの概略構成を示す説明図である。 NRの概略構成を示す説明図である。 RRHとBBUの配置例を示す説明図である。 Analogue/Digital Hybrid Antenna architectureを示す説明図である。 複数のRRHのデータをBBUの前のスイッチで集約することを示す説明図である。 I/Qのデータコンテナのフォーマットを示す説明図である。 本開示の実施の形態に係るRRHの構成例を示す説明図である。 AD変換後のデータを2次元の複素データとして格納する例を示す説明図である。 アンテナ素子の例を示す説明図である。 異なる偏波に由来するデータのコンテナへの格納例を示す説明図である。 光ファイバー内での送信の順番の例を示す説明図である。 アレーアンテナの信号を圧縮することの意味について説明するための説明図である。 BBUにおいてFFT(高速フーリエ変換)の後段にビームフォーミング処理を行う構成を示す説明図である。 本開示の実施の形態に係るRRH100とBBU200の機能構成例を示す説明図である。 本開示の実施の形態に係るRRH100とBBU200の機能構成例を示す説明図である。 重みベクトルのフォーマット例を示す説明図である。 複数のユーザのデータが多重された状態を示す説明図である。 スケジューリング例を示す説明図である。 本実施形態に係るRRH100とBBU200の機能構成例を示す説明図である。 BBU200からRRH100に通知するインジケータの情報の例を示す説明図である。 本実施形態に係るRRH100及びBBU200の動作例を示す流れ図である。 BBUからRRHに送られるデータの例を示す説明図である。 BBUからRRHに出力するインジケータの例を示す説明図である。 BBUからRRHに出力するインジケータの例を示す説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.本開示の実施の形態
  1.1.経緯
  1.2.実施形態の説明
  1.3.
 2.まとめ
 <1.本開示の実施の形態>
 [1.1.経緯]
 本開示の実施の形態について詳細に説明する前に、本開示の実施の形態の経緯について説明する。
 上述したように、ベースバンド信号を処理するベースバンド処理部(BBU)と、アンテナから電波を送信したり受信したりする無線部(RRH)とに分離した形態の分離型基地局が主流となっている。ここで、ベースバンド処理部と無線部との間のインターフェースとして、たとえば、CPRI(Common Public Radio Interface)規格などの汎用インターフェースが定義されている。CPRI規格において、ベースバンド処理部は無線制御装置(Radio Equipment Controller:REC)とも呼ばれ、無線部は無線装置(Radio Equipment:RE)とも呼ばれる。また、CPRI規格において、無線制御装置と無線装置との間で伝送されるユーザデータ(U-planeデータ、デジタルベースバンド信号、データ信号とも称呼する)はIQ(In-phase and Quadrature)データとも呼ばれる。
 (New Radio AccessとNew Coreについて)
 3GPP(Third Generation Partnership Project)では、LTE(Long Term Evolution)というRAN(Radio Access Network)の後継として、NR(New Radio Access)が検討されている。図1は、RANの概略構成を示す説明図である。図2は、NRの概略構成を示す説明図である。またEPC(Evolved Packet Core)というコアネットワーク(CN)の後継として、New Coreが検討されている。
 NRの特徴は、6GHz以上100GHzまでの周波数帯を用いて、高速大容量の通信を実現することである。セルラーシステムは、RANとCNで構成される。セルラーシステムの費用の大部分は、RAN部分で必要となる。CNと比べて、設置する台数が数千台となり、非常に数が多いからである。CNの方は、数十台のレベルであると考えられる。
 (C-RANについて)
 基地局は、非常に多くの計算機コストを必要とする。しかし、各基地局に接続する端末の数は、時間とともに変化する。全ての基地局で、処理能力の最大値を常に使用しているわけではない。従って、基地局の計算機の能力を複数の基地局間で共用することができれば、計算機のコストを下げることが可能になる。また、基地局で消費する電力を削減することもできる。
 基地局は、アンテナとRF回路とからなるアナログ部分、アナログ部分とデジタル部分境界に配置されるAD/DA変換器,複雑なデジタル信号処理を行うデジタル部分で構成されている。デジタル部分は、FPGA(Field Programmable Gate Array)やDSP(Digital Signal Processor)で構成することも可能であるが、汎用の計算機で処理することも可能になってきている。
 C-RAN(Cloud RAN、Centralized RAN、Clean RAN)は、ネットワーク側のサーバを使って膨大な計算量を処理することができるRANである。
 上述したように、基地局の機能をRRHとBBUの2つに分離した場合を考える。例えば、アンテナとRF回路とAD/DA変換器をRRHに配置し、それ以外のデジタル部のPHY/MACのデジタル信号処理部分をBBUに配置する。BBUの部分をクラウドで処理するのがC-RANである。
 クラウドに配置するBBUの部分は、複数の基地局のBBUを共通のサーバで処理することができるので、基地局のコストを下げることができる。複数の基地局に必要な処理量に対応する汎用の処理サーバを用意すればいいので、低コストが実現できる。
 一方、基地局は多くの場所に配置される必要がある。特に、使用する周波数が高くなってくると、一台の基地局がカバーする範囲が狭くなり、非常に多くの基地局を配置することが求められる。そのため、RRHのより一層の低コスト化が非常に求められている。
 以上より、将来のセルラーネットワークは、C-RANのRRHとBBUで構成される可能性が高いといえる。図3に、家屋内には、サーバの中にBBUを配置して、屋外のアンテナユニットの部分にRRHを光ファイバーであるフロントホールで接続している概念図を示す。BBUは、コアネットワークとバックホールである光ファイバーで繋がっている。もちろん、光ファイバーは、典型的な例であり、ADSLや無線通信で置き換えることも可能である。
 表1にRRHの機能の例を、表2にBBUの機能の例を、それぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (フロントホールとバックホール)
 図3に示すように、RRHとBBUの間がフロントホールであり、BBUとS-GWの間がバックホールになる。フロントホールは、基地局をRRHとBBUに分離することにより必要となったインターフェースである。フロントホールを無線で接続することもあるが、通常は、有線の光インターフェースで接続する。
 従来のフロントホールに求められる通信速度は、10Gbps程度が一般的に言われている数字である。フロントホールでは、AD変換後、またはDA変換前のデータを転送する必要があり、I/Q軸の信号点のままデータを転送する必要があり、そのため、フロントホールのインターフェースに必要とされるデータ転送速度は大きい。
 一方、バックホールのインターフェースに流れるデータは、I/Q軸の信号点から判定したビット列である。バックホールのインターフェースに流れるデータの情報量は、複数のアンテナからの信号を総合して判定したビット列になるため、最大でも数Gbpsに留まる。バックホールは、複数の基地局を束ねるゲートウェイ(EPCの言葉だとS-GW)との間のインターフェースになる。
 従って、S-GWの前段のスイッチは、数10から数1000もの基地局からの情報を束ねる必要があるため、数テラbit/sの処理能力が必要となる。よって、コアネットワークの中のデータ処理も決して楽ではないが、BBUをクラウド側に置き、トラフィックのオフロードを行うことにより、処理速度を減らすことができる。一方、フロントホールでは、1本の線で、現状でも、10Gbps程度の速度が求められる。従ってフロントホールがクリティカルポイントとなる。
 (フロントホールで求められるデータ転送速度)
 フロントホールで求められるデータ転送速度は、AD/DA変換器の数に依存する。通常は、AD変換器の方がDA変換器よりも多くのビット数を必要とすることが多い。例えば、AD変換器が10ビットで波形を表現するとしたら、DA変換器は8ビットで波形を表現する。当然、AD変換器のビット数が増えていくと、フロントホールに求められるデータ転送速度は増加していく。
 また、AD変換器のサンプリングレートもデータ転送速度に影響を与える。RANでオペレーションしている周波数帯域幅が20MHzの時には、40Msps(sampling per second)のAD変換器が必要となる。これは、扱っている周波数の2倍の周波数でサンプリングする必要があるというサンプリング定理によるものである。5GのNRでは、1GHz等の広帯域の周波数帯域幅が想定されているので、AD変換器に求められるサンプリング周波数は2Gspsになる。
 次に影響を与えるのが、コンポーネントキャリアの数である。1GHz幅のコンポーネントキャリア(Component Career;CC)を最大で32個使用することができる。これをキャリアアグリゲーションという。コンポーネントキャリアの数が増えれば、その分だけフロントホールへの負担が増加する。
 次に影響を与えるのが、AD変換器の数である。例えばアンテナが30本ある場合には、30個のAD変換器が必要となる。
 表3に、フロントホールの転送速度に影響を与える要素をまとめている。
Figure JPOXMLDOC01-appb-T000003
 表3によると、フロントホールの転送速度は、12×2G×32×32=24Tbpsが最大で必要となってしまう。
 (Hybrid Antenna architectureについて)
 例えば、256本のアンテナを基地局が備える場合に、その全てのアンテナに対応したDA/AD変換機が必要な場合がある。これをFull Digital Antenna architectureという。この場合は、全てのアンテナの振幅と位相をデジタル領域で調整することが可能となるので、アンテナの指向性の自由度は一番大きい。異なる周波数毎に異なるアンテナの指向性を持たせることもできる。
 しかしこの方法は、RFの回路も増大し、AD/DA変換機も多く必要とする。さらに、デジタル領域での信号処理量も増大する。
 そこで、考えられたのが、Analogue/Digital Hybrid Antenna architectureである。図4に示すように、アナログ部で、位相だけを調整できる位相調整器(phase shifter)を介して複数のアンテナにつなぐことにより、デジタル的に振幅/位相の両方を調整できるブランチの数を減らすというアーキテクチャである。フロントホールへの影響を考えると、ブランチ数を減らすことができるHybrid Antenna architectureを使用することが望ましい。
 (様々なユースケース)
 ここでは、上述のHybrid Antenna architectureも考慮して、ユースケース毎に必要なフロントホールのスループットを表4に示す。
Figure JPOXMLDOC01-appb-T000004
 通常のイーサネット(登録商標)ケーブルの速度は、1Gbps程度である。また、家庭まで光ファイバーが引かれているが、サービスとしての最大速度は、1Gbpsである。これは、イーサネット(登録商標)ケーブルと接続することを考えると、1Gbps以上の速度を出しても有効に活用出来ない可能性があるからだと考えられる。
 現状では、家庭内やオフィス内で許容できるフロントホールの速度は、1Gbps程度であるといえる。従って、現状では、ユースケース1のみがC-RANを実現できる。もちろん、それ以外のユースケースで、以下で説明する技術を適用できないわけではない。
 光ファイバー自体の能力は、時分割多重方式の場合は10Gbps、波長分割多重方式や多値変調を使用すると10Tbpsでの転送が可能である。実際に商用で使用されているものとしては、10Gbpsが最大値と考えられる。従って、屋外のRRHに専用の光ファイバーを引く場合には10Gbps、家庭内にRRHを引く場合には1Gbpsがフロントホールに使用できる通信速度となる。もちろん、それ以上の速度での通信をフロントホールに使用できることも考えられる。
 (Common Public Radio Interface(CPRI))
 CPRIの規格が存在する。Option1は、614.4Mbit/sであり、Option10は、24.33Gbit/sを送信可能なフロントホールになっている。基本的に、どのように同期信号を来るか、I/QデータをどのようにTDMで多重するかを規定しているものであり、どのように送信すべき信号を減らすかの規格ではない。
 I/Qのビット列自体は、1つのアンテナ、1つのキャリアのものをI/Qのビット列(AxCコンテナ)にして定義している。複数のアンテナとコンポーネントキャリアのものは、このAxCコンテナを多重することで行っている。なおCPRIは3GPPでの規格ではないが、3GPPに適用可能と規定されており、将来的には、CPRIを3GPPの規格検討のために取り込んで、規格化される可能性がある。
 (基地局の受信データと送信データについて)
 基地局が受信するデータの方が送信するデータよりも大きなデータ量を必要とする場合が多い。本実施形態は、基地局の受信と送信のどちらにも適用可能であるが、まずは、基地局の受信側の信号の流れを用いて技術を説明していく。この理由は、無線信号処理は、一般的に受信側の方が大きな信号処理能力を必要とし、C-RANは、本質的に受信側の信号処理の削減を狙ったものといえるため、受信側の処理で説明することが重要であると考えるからである。
 まとめると、フロントホールに求められるバックホールとの間のデータ転送量を減らしたい。RRHが生成するデータ全てを転送できる光ファイバーが仮に存在したとしても、図5に示すように、複数のRRHのデータをBBUの前のスイッチで集約することから、このスイッチでデータパケットが輻輳すると、パケットロスを引き起こす。従って、各RRHがBBUへ送信するデータ量を減らすことが常に求められている。
 前提として、メモリへのアクセス速度を10GB/s、HDDへのアクセス速度を100MB/sとした場合、ハードディスクへデータを溜め込んでおいて、後でフロントホールを使ってクラウドへデータを転送するという方法を採る場合には、例えば1CC分や1DA変換器分毎に、異なるハードディスクを用意する等の方法が必要となるだろう。アクセス速度がHDDより速いメモリを使ってデータを溜めるという方法もあるが、メモリによるコストが非常に大きくなる。従って、基本的には、RRHでデータを処理しながら、有線ネットワークを使用してクラウドへ順次送信してしまった方が、RRHの負担は少ない。
 そこで、本実施形態では、以下で説明するように、RRHがBBUへ送信するデータ量を効果的に削減し、RRHの処理負担を軽減させるための技術を説明する。
 [1.2.実施形態の説明]
 (1.I/Qのデータコンテナのフォーマット)
 1つのアンテナ、1つのコンポーネントキャリアに対応するビット列を一つの処理単位であるコンテナとして定義すると、図6に示すように、異なるアンテナ間の関係が完全に分離される。異なるアンテナで受信するデータに相関があることを用いて圧縮をすることを考えると、複数のアンテナの情報を一つのコンテナに格納した方が、圧縮アルゴリズムにより情報を圧縮し易い。
 本実施形態では、RRHは、1つの時刻に対応する複数のアンテナ素子に対応するAD変換器からの情報を1つのコンテナに格納する。そして本実施形態に係るRRHは、このコンテナを時系列的に並べることにより、フロントホールのデータ構造を作る。複数のアンテナ素子で受信した相関のある信号は、RRHで同じコンテナに格納されるため、コンテナに格納する前に圧縮がしやすいというメリットがある。また、クラウドのBBU側でデータを処理する場合も、複数のアンテナ素子の情報が同時刻に届いた方が処理しやすい。BBU側でアンテナ信号処理を行う時に、複数のアンテナ素子のデータを待つ必要があったという欠点を解決することができるからである。
 2次元アレーアンテナは、アンテナ素子が垂直方向と水平方向に配置された構成を有する。各アンテナ素子への電波の入力は、位相が異なっているだけであり、基本的に同じ信号が到来する。これは、信号発生源がアンテナの素子間の間隔に比べて十分に遠い場合に成り立つ(遠方解近似という)。
 従って、アンテナ素子間の情報を情報圧縮アルゴリズムで圧縮することが可能になる。信号発生源が到来する方向により、信号発生源ごとにアンテナ間の位相の差が異なることになるが、例えば、通常の動画像の圧縮に用いられる圧縮アルゴリズムを用いると、アンテナ間の位相差を包含した形で圧縮することができる。
 本実施形態では、2次元アレーアンテナのようにアンテナ素子を2次元に配置した場合には、その2次元構造を保ったままI/Qの情報を映像データの画素のように配置し、I/Qの情報を、時刻を保つように、すなわち、異なる時刻のデータは異なる時刻の2次元画像となるようにコンテナに詰めていく。
 ここで、画像にはI/Qという概念はないが、画像系の圧縮は、2次元離散フーリエ変換を基本とする方法がある。この場合、2次元離散フーリエ変換への入力データは、複素数で与えることができるので、アンテナを2次元に配置したデータからは、2次元の複素データが得られる。2次元の複素データを2次元フーリエ変換した後に、低周波数成分を取り出すことにより、データの圧縮が可能となる。
 図7は、本開示の実施の形態に係るRRHの構成例を示す説明図である。図7に示したRRH100は、2次元のアレーアンテナ110、RF回路120、AD変換部130、2次元データ作成部140、データ圧縮部150、E/O変換部160を含んで構成される。
 2次元のアレーアンテナ110は、通信相手となる端末からの電波を受信したり、端末に向けて電波を送信したりするアンテナがアレー状に配置されたものである、RF回路120は、2次元のアレーアンテナ110が受信した信号に対する受信処理を実行するアナログ回路である。RF回路120は、ミキサ、フィルタ及びアンプなどを含んでもよい。
 AD変換部130は、RF回路120が出力するアナログ信号をデジタル信号に変換する回路である。2次元データ作成部140は、AD変換部130が出力するデータから、後述するような2次元の複素データを生成する。データ圧縮部150は、2次元データ作成部140が生成した2次元の複素データに対する圧縮処理を実行する。この際、データ圧縮部150は、2次元のアレーアンテナ110のアンテナ素子間の相関を考慮して圧縮する。そしてE/O変換部160は、電気信号を、RRHから光ファイバーでBBUに送信するために光信号に変換する。
 図8は、2次元に配置されたアンテナからのAD変換後のデータを、2次元データ作成部140によって2次元の複素データとして格納する例を示す。D(i,j)は、垂直方向のi番目、水平方向のj番目に対応したI/Qデータであることを示している。
 図8のデータは、1つの時間での2次元アンテナのデータになるため、この図8のデータを時系列的に並べたものが一連のデータになる。コンテナの区切りは、図8に示したようなものにしても良いし、一定程度の時間ごとにコンテナに詰めても良い。ここで一定程度の時間とは、AD変換器の1サンプルの時間が単位である。
 ここで重要なのは、データ圧縮部150での圧縮アルゴリズムに対して、縦横の画像数(図8の例でいうと、4×4)という情報を伝えることである。それが、コンテナブロック(2次元データ作成部140)と圧縮機能(データ圧縮部150)との間のインターフェースになる。この通知自体は、基地局のコンフィギュレーションとして設定しても良いし、規格として定めても良い。
 なお、1つのRRHの中では、アナログ回路の数が限られている。そのため、1つのRRHの中で、アンテナとアナログ回路の接続を変更する場合がある。RRH100は、その場合に、アレーアンテナの水平方向と垂直方向のアンテナ数も変化するため、その変化に対応してコンテナを組み換え、そのアレーアンテナの配列のサイズをBBUに通知する。すなわち、RRH100は、2次元のアレーアンテナ110からのデータの内、一部のデータだけを用いて、2次元データ作成部140によってコンテナに格納しても良い。これによりBBUでは、RRHの中で、アンテナとアナログ回路の接続を変更した場合でも、圧縮されたデータを解凍することができる。
 (2.偏波を用いたアンテナシステムに対応したコンテナへの格納方法)
 5G NRのアンテナ素子は、水平方向にN、垂直方向にM個のアンテナ素子を配置した場合には、図9に示したようにN×M個のアンテナ素子が必要となる。加えて、偏波を用いて、さらにもう一組のN×M個のアンテナ素子を用意する方法が用いられる場合がある。異なる偏波面を有するアンテナ素子は、ほぼ同一の場所に置かれる。N×M個のアンテナ素子のそれぞれの場所には、異なる偏波を受信するアンテナ素子が2つ配置されていると考えても良い。そのようなアンテナはクロス偏波アンテナと呼ばれる。このようなアンテナ構成の場合のI/Qデータのコンテナへの格納方法を説明する。
 本実施形態に係るRRH100は、異なる偏波に由来するデータは、互いに混じり合わないようにコンテナに格納する。図10は、異なる偏波に由来するデータのコンテナへの格納例を示す説明図である。この格納されたデータに圧縮等の操作を加える場合も、異なる偏波に由来するデータが混じり合わないように別々に行う。
 図11は、RRH100からBBU200に送信する際の、光ファイバー内での送信の順番の例を示す説明図である。光ファイバーにおいて、シングルコアと呼ばれる方式では、データをシーケンシャルに送信している。従って、図11に示したような順番で、データがRRH100からBBU200に、光ファイバーを介して送信される。
 図12で、アレーアンテナの信号を圧縮することの意味について説明する。図12では、説明を簡単にするために、1次元アレーアンテナの図を示している。2つの異なる信号が送信され、一つの信号を異なるアンテナで受信する場合、信号は同一であるが、光路差長に基づいた位相差のみ異なる信号がアレーアンテナで受信できる。したがって、図12の場合には、アンテナ数が多くても、本質的には、2つの異なる信号のみ存在しており、多くのアンテナがあったとしても、2つの信号しかないことになる。つまり、AD変換後のデータには冗長な信号が含まれているということになる。
 従って、本実施形態に係るRRH100は、アンテナの構造を保ったままのデータに対して、圧縮アルゴリズムを適用することにより、効率よく圧縮することができる。また、周波数が異なるリソースブロックに異なる方角から到来する信号が来ていたとしても、データ圧縮部150は、これらの信号成分を残したまま圧縮することが可能である。
 (3.ビームフォーミングを考慮したI/Qビット列の生成)
 デジタル領域だけでビームフォーミングを実現する場合、周波数領域で異なるビームを用意することが可能である。従ってデジタル領域だけでビームフォーミングを実現する場合、異なる周波数では、異なるビームの方向を提供することが可能である。
 一方、アナログ領域で実現するビームフォーミングは、同じ時刻では、異なる周波数であっても同じ方角へのビームしか使用することができない。通常は、デジタル領域だけでビームフォーミングを実現する。すなわち先に述べたように、周波数領域でビームフォーミングを行うので、周波数毎に異なる指向性を持つビームを適用することができる。
 しかし、この方法をC-RANに適用すると、AD変換後のデータに対してビームフォーミング処理を適用するまでは、ブランチ数(図4の例ではN個)に対応するAD変換器の数だけ、I/Qデータを取り扱う必要がある。通常、受信時は、FFT(高速フーリエ変換)の後段にビームフォーミング処理が位置する。
 図13は、BBUにおいてFFT(高速フーリエ変換)の後段にビームフォーミング処理を行う構成を示す説明図である。図13に示したBBU200には、O/E変換部210、データ解凍部220、高速フーリエ変換部230、ビームフォーミング部240、および制御部250が備えられている。
 O/E変換部210は、光ファイバーでRRH100から送られてきた光信号を電気信号に変換する。データ解凍部220は、RRH100で圧縮されたデータを解凍してデータを復元する。高速フーリエ変換部230は、データ解凍部220によって復元されたデータに対する高速フーリエ変換処理を実行する。ビームフォーミング部240は、高速フーリエ変換部230により高速フーリエ変換処理が行われた後のデータに対してビームフォーミング処理を実行する。制御部250は、BBU200の基本機能を実行する。BBU200の基本機能としては、例えばデータのデコード、スケジューリング処理、QOS制御などがある。
 ビームフォーミング部240によるビームフォーミング処理は、具体的にはアンテナ重みの乗算処理であり、各ブランチに対応するアンテナ重み(I/Qの複素数)を受信したAD変換機後のデータに乗算するという処理である。従って、フロントホールは、ブランチ数に対応するAD変換器の数だけ、I/Qデータを運ぶ必要があった。
 そこで本実施形態では、C-RANに用いる基地局用としてビームフォーミング処理を時間領域、すなわちFFTの前で行う。ビームフォーミング処理を時間領域で行う場合には、実質的なアンテナ素子の数だけ存在するAD変換器の直後で、ビームフォーミング処理(アンテナ重み乗算処理)を実施する。これを行うことにより、AD変換器の数だけI/QデータをRRHからBBUに送信する必要があったのを、アンテナポートの数だけI/QデータをRRHからBBUに送信すれば良くなり、RRHからBBUへ送信されるデータ量を削減することが出来る。
 図14は、本開示の実施の形態に係るRRH100とBBU200の機能構成例を示す説明図である。図14に示したように、本開示の実施の形態では、ビームフォーミング処理を行うビームフォーミング部145を、RRH100のI/Qビット列の生成ブロックの後段で、かつ、データ圧縮部150の前段に持ってくる。
 本開示の実施の形態に係るRRH100は、この位置でビームフォーミング処理を行うことにより、転送するデータ量を削減することが出来る。例えば、RRH100が200本のアンテナを持っている場合でも、1台のユーザの1つのレイヤのMIMOのデータを取り出すと、AD変換機1つ分のデータになる。つまり、本開示の実施の形態に係るRRH100は、ビームフォーミング処理を時間領域で行うことでデータ量を1/200に削減できる。
 この方法を採用した場合、同時刻に、異なる周波数で、異なるフォーミングを行うことはできない。この制約に対しては、裏を返せば、各ユーザに対して、周波数方向での多重を行わなければ良いので、基地局がスケジューリングで周波数方向での多重を行わないような制御を行えば良い。ただし、基地局は、周波数方向での多重を行わないという制限をかけていることを、予めシステム情報としてブロードキャストして端末に通知しておく。
 ビームフォーミング処理において用いられるアンテナ重み係数は、BBU200からRRH100に通知される。各時間で、どの方向のビームフォーミングが必要であるかは、BBU200が把握しているからである。従って、RRH100とBBU200のブロック図は、このアンテナ重みを通知することを考慮すると図15のようになる。図15には、RRH100にO/E変換部170が設けられ、BBU200にE/O変換部260が設けられている。
 制御部250は、E/O変換部260を通じて、アンテナ重み係数に関する情報をRRH100に通知する。RRH100では、BBU200から通知されたアンテナ重みに関する情報が、O/E変換部170からビームフォーミング部145に送られる。これにより、RRH100はアンテナ重みに関する情報をBBU200から得ることが出来る。
 上述したように、異なる信号源が2つの場合、アレーアンテナのアンテナには、本質的に、光路差に基づいて位相だけ変化した信号が到来する。従って、アンテナの数が多くても本質的には、信号源の数だけ異なる信号が存在する。このビームフォーミングを考慮したI/Qビット列の生成では、アレーアンテナの重み係数を、アンテナから出力される信号に乗算することにより、この異なる信号源を取り出している。また圧縮アルゴリズムは、一つの信号源の時間方向の信号も圧縮することが可能である。
 ビームフォーミングを考慮したI/Qビット列の生成方法では、同一サンプルでは一つの方向のフォーミングのみを取り扱うということで説明した。確かにこの方法では、同一サンプルの周波数領域では、1つの方向のビームだけを取り扱う。しかし、同一サンプルで、異なる方向のビームが全く扱えないわけではない。
 例えば、5つの方向のビームを同時に同一サンプルで使用することができる。その時の一つのビームは、全周波数帯に渡って同一の方向に対応したビームということである。したがって、複数の方向のビームを扱うことが可能となる。
 図16は、ビームフォーミング処理で用いられる、重みベクトルのフォーマット例を示す説明図である。重みベクトルは、サンプル毎に変わるようなものではない。少なくとも、1リソースブロックの間は同じビームを使用することを考えると、例えば数100サンプル程度は、同じ重みベクトルが使用される。したがって、有効な重みベクトルを基地局から端末へ送信しているときは、図16のようにイネーブル信号を1にする。
 このビームフォーミングを考慮したI/Qビット列の生成方法では、時間領域(FFT前)でビームの処理をすると説明した。Hybrid Antenna architectureの場合には、表4のユースケース9に示したように32個のデジタル回路が、それぞれ8個のアナログ構成されたPhase shifterにつながっているアンテナ構成になる。このユースケースでは、合計で32×8=256個のアンテナを使ってビームフォーミングを行う。
 この場合、アナログのPhase shifterは、位相のみを調整できる。デジタルの8つの回路は、振幅と位相の両方を調整できる。このアナログのPhase shifterの調整も、RRHの段階(時間領域であり、FFT前でもある)で行うが、その位相の調整の制御線は、BBUから来るものである。大まかにアナログのビーム処理がなされた信号は、8本のデジタル信号になる。BBUは、この8本のデジタル信号に対してアンテナ信号処理を行う。アナログ部分のPhase shifterの位相の制御は、BBUから制御するということが本実施形態の特徴である。
 また、Phase shifterで構成するビームフォーミングは、周波数が異なるリソースを使って異なる方向のビームを作ることができないので、特定の時間内においては、一つの端末の方向を向いているデータを処理することになる。
 (4.RRHからBBUへ伝送するI/Qビット列の減少)
 データを大きく圧縮すると、データ量は少なくなるが、その代わりに圧縮されたデータを元に戻す時にデータが劣化する。圧縮率の調整は、例えば、2次元フーリエ変換を使って圧縮するようなアルゴリズムの場合は、低周波成分をどの程度送るかを調整することで行うことができる。データの劣化の典型的な例としては、圧縮されたデータを元に戻した時に、I/Q平面上のデータに雑音が印加されたようなデータである。
 受信データのSNが元々悪く、送信されている信号が256QAMではなく、QPSKのような低次変調方式のデータである場合には、I/Qデータを大きく圧縮してしまっても問題がないことが多い。従来は、そのような、どの程度圧縮可能かという情報が無く、圧縮を効率良く行うことができなかった。
 RRHとBBUの間に、RRHが送信する最大レートを転送する光ファイバーを敷設出来た場合であっても、さらに圧縮して、転送するデータの量を減らしたいという要求がある。図5に示したように、数多くのRRHがスイッチを介してBBUに接続されるため、そのスイッチへの負荷を減らさないとパケットロスが起こりうるからである。
 そこで本実施形態では、BBUからRRHに圧縮に関するインジケータを送信することを特徴とする。
 基地局には、複数のユーザのデータが多重された状態でデータが到来する。従って、同一時刻に到来した信号の中には、複数のユーザのデータが入っている場合が多い。ここで、あるユーザは、QPSKでデータを送信しているかもしれないが、別のユーザは、256QAMを用いてデータを送信しているかもしれない。
 AD変換後のI/Qデータの段階では、これらのユーザのデータは分離されていない。ユーザのデータが分離されるのは、ビームフォーミング処理を行い、その後にFFTを行って、データを周波数領域のデータに変換した後である。
 図17は、複数のユーザのデータが多重された状態を示す説明図である。図17には、周波数方向に複数のユーザからの異なる変調方式や符号化レートのデータが多重されている様子が示されている。BBUの中でビームフォーミング処理を行う構成とすると、RRHからBBUに大量のデータを送信する必要がある。
 従ってRRHからBBUへ送信するデータの量を減少させるためには、RRHで大きくデータを圧縮させなければならない。しかし、RRHの中のデータはI/Qデータであり、その段階では、ユーザの分離ができていない。従って、そのI/Qデータが一律にQPSKしか使っていないので大きく圧縮して良い、といえるわけではない。
 そこで、BBUのMAC(Media Access Control)の中にあるスケジューラは、同一の時間の異なる周波数のリソースブロックには、異なる変調方式や符号化レートを割り当てないようにスケジューリングを行う。
 図18は、同一の時間の異なる周波数のリソースブロックには、異なる変調方式や符号化レートを割り当てないようにスケジューリングを行った例を示す説明図である。そしてBBUは、各リソースブロックに対応するI/Qデータの変調方式や符号化レートの情報をRRHに通知する。
 図19は、本実施形態に係るRRH100とBBU200の機能構成例を示す説明図である。BBU200は、リソースブロックに相当する粒度で、I/Qビット列に対して、変調方式や符号化レートの情報をRRH100に通知する。RRH100は、BBU200から通知された情報を用いて、最適に圧縮を行うことができる。
 BBU200のMAC(制御部250)の中にあるスケジューラ252は、同一の時間の異なる周波数のリソースブロックの中の代表的な変調方式や符号化レートの情報をRRH100に通知してもよい。ここで、代表的な変調方式や符号化レートとは、例えば、最も多くの情報量でデータを送ることができる変調方式や符号化レートでもよい。
 例えば、変調方式は64QAMで、符号化レートは3/4のリソースブロックと、変調方式はQPSKで、符号化レートは1/2のリソースブロックとがあった場合を考える。この場合、その時刻のリソースブロックに対応するI/Qビット列には、変調方式は64QAMで、符号化レートは3/4のリソースブロックが含まれている。従って、RRH100は、その64QAMの符号化レート3/4のリソースブロックに対して、雑音が増えすぎないような圧縮率を選択して、I/Qビット列を圧縮する。
 BBU200からRRH100に通知する情報は、例えば、所定のビット数からなる、圧縮に関するインジケータであってもよい。0~7の8段階で圧縮率を規定する場合、圧縮に関するインジケータは3ビットで構成される。そして、0が最も圧縮率が高く、7が最も圧縮率が低い、という情報として、BBU200からRRH100に圧縮に関するインジケータを通知しても良い。
 図20は、BBU200からRRH100に通知するインジケータの情報の例を示す説明図である。BBU200は、このようにリソースブロック毎に圧縮率の情報を生成してRRH100に通知する。RRH100は、BBU200から送られてきた圧縮率の情報を用いて、I/Qビット列に対して圧縮処理を実行する。
 1台の基地局で、複数のユーザのデータを、空間多重で同時に同じ時間、同じ周波数のリソースブロックに多重する場合がある。この場合には、BBU200は、1つの時間における異なる周波数に含まれる異なるリソースブロックの変調方式や符号化レートを考慮するだけでなく、マルチユーザMIMO(MU-MIMO)で、異なるユーザが一つのリソースブロックに多重されている状況も考慮して、圧縮に関するインジケータを通知する。
 RRH100でデータを圧縮した結果、BBU200との間の通信路(例えば光ファイバー)へ流すデータ量が多くなり、RRH100に搭載しているバッファにデータが多く溜まった場合は、RRH100からBBU200に対して、バッファステータスレポートを送信する。
 BBU200でRRH100からバッファステータスレポートを受け取り、RRH100でのデータ量が多いことをBBU200で認識した場合には、BBU200に搭載しているMACのスケジューラは、端末に許可するアップリンクのリソースに割り当てる変調方式を、64QAM等ではなく、QPSKのような低い変調方式にする。またスケジューラは、MU-MIMOで空間多重する端末の数を制限する等の制御を行っても良い。
 図21は、本実施形態に係るRRH100及びBBU200の動作例を示す流れ図である。BBU200は、端末に対してアップリンクのスケジューリングに関する通知を行う(ステップS101)。端末は、BBU200から通知されたスケジューリングに基づいてアップリンクデータを送信する(ステップS102)。
 RRH100は、端末から受信したデータからI/Qビット列を生成し、さらに、その生成したI/Qビット列を圧縮する(ステップS103)。
 I/Qビット列を圧縮すると、続いてRRH100は、バッファステータスのチェックを行い(ステップS104)、バッファにデータが多く溜まった場合は、RRH100からBBU200に対して、バッファステータスレポートを送信する(ステップS105)。
 その後、RRH100は、BBU200に対して、圧縮したI/Qビット列からなるアップリンクデータを送信する(ステップS106)。
 BBU200は、RRH100からアップリンクデータを受信すると、受信したアップリンクデータの解凍、及び解凍後のデータに対するベースバンド処理を実行する(ステップS107)。
 そしてBBU200は、アップリンクデータに対するベースバンド処理を完了すると、端末に対して、RRH100がBBU200に送信したバッファステータスレポートを考慮した、アップリンクのスケジューリングに関する通知を行う(ステップS108)。
 複数のRRHは、端末からデータを常に受信している。この全ての受信データをAD変換して生成するI/Qビット列をBBUに送ることは、データ量が多いためになるべく避けたい。図5に示すように、複数のRRHのデータがスイッチでコンジェスチョンを起こす場合があるからである。
 そのため、RRHからBBUへ送信するデータ量をなるべく削減したい。しかし、RRHが全くデータを受信していないことを、AD変換器の受信データの大きさに基づいて判断することは可能かもしれないが、受信する信号の送信電力が非常に小さい場合がある。例えば、MTC(Machine Type Commination)端末が送信するデータを、複数回受信するUP link repetitionで、初めて受信できるようなケースである。従って、受信電力の大きさのみによってデータの有無を判断することは困難である。
 そこで、本実施形態に係るRRHは、BBUからデータを受信している時だけ、I/Qを取得するような指令をBBUから取得する。BBUのスケジューラは、そのような指令をRRHに通知する。例えば、意味があるデータがある場合には、BBUはRRHに1を通知し、意味がないデータの場合には、BBUはRRHに0を通知する。データ自体は、リソースブロックとして送受信しているため、実際には、リソースブロックの切れ目で1になったり0になったりすることになる。
 図22は、BBUからRRHに送られるデータの例を示す説明図である。図22では、1OFDMがリソースブロックの時間方向の単位に相当するケースを示している。ここで示しているのは、1OFDM毎にアップリンクデータが存在したり、また存在しなかったりするケースである。
 複数のRRHが協調動作してデータを送受信するCoMP(Coordinated Multi-Point、多地点協調)という方法がある。例えば、図5に示す3台のRRHが協調して動作し、1台の端末のアップリンク信号を、その3台のRRHが同時に受信して、その受信信号をBBUまで転送し、BBUで3台のRRHの信号を合成することにより、受信の品質を高める技術である。ここで、2台のRRHでCoMPを行うか、3台のRRHでCoMPを行うのかは、状況により異なる。このような場合に、全てのRRHで得られるI/QデータをBBUに転送することは、フロントホールのリソースを無駄に使用することになる。
 本実施形態では、以下のようにフロントホールのリソースを有効活用する。スケジューラによって、ULを割り当てている1つのRRH(RRH-1とする)があり、他の2つのRRH(RRH-2、RRH-3とする)からは、そのようなスケジューリング情報が出ていない場合を考える。このような場合であっても、CoMPを行う際には、スケジューラでRRH-1にアップリンクのリソースが割り当てられているタイミングで、端末から送信されたアップリンクデータを、RRH-2、RRH-3でも受信する必要がある。
 従って、BBUは、RRHに対して、I/Qデータを送信すべきかどうかを示すイネーブル信号を出力する。BBUは、イネーブル信号を出力する際には、受信したデータから生成するI/QデータがCoMPで使用されているデータであるかどうか、RRH間の協調受信を考慮する。図22は、BBUからRRHに出力するイネーブル信号の例を示す説明図である。
 端末からのアップリンク信号が確実に来ることが分かっているアップリンクリソースに加えて、アップリンク信号が有るかもしれないし、無いかもしれないというアップリンクリソースがある。アップリンク信号があるかもしれないアップリンクリソースを以下の表5に示す。
Figure JPOXMLDOC01-appb-T000005
 このようにアップリンクの信号が来るかもしれないし、来ないかもしれないアップリンクリソースにおいて、全ての時間のI/QデータをRRHからBBUに転送することは、非常に無駄である。
 本実施形態に係るBBUは、表5に示した信号が到達するリソースの場所を把握しているため、BBUからRRHに、アップリンクのデータが来る可能性があるリソースの場所をインジケータで示す。図23は、BBUからRRHに出力するインジケータの例を示す説明図である。
 図23には、アップリンクのデータが確実に到来するリソースを示すイネーブル信号も示してある。図23には、アップリンクのデータが来る可能性があるリソースの場所を示すインジケータとして、不確実なイネーブル信号を示している。不確実なイネーブル信号は、表5に示したデータが到来するリソースの場所では1となる信号である。
 RRHは、不確実なイネーブル信号が1であるアップリンクリソースにおいて、受信のレベルが所定の閾値以下の場合には、その受信により生成したI/QデータをBBUに転送をしないという判断を行うことができる。この処理をRRHで実現するためには、アップリンクのデータが来る可能性があるリソースと、アップリンクのデータが確実に来ることが分かっているリソースとは、周波数方向で多重しないことが望ましい。
 しかし、アップリンクのデータが来る可能性があるリソースと、アップリンクのデータが確実に来ることが分かっているリソースとを同一時間で、例えば周波数方向で(FDM多重)多重した場合には、RRHは、アップリンクのデータが確実に来ることが分かっているリソースの方のスケジューリングに従ってもよい。
 図24は、BBUからRRHに出力するインジケータの例を示す説明図である。図24に示したのは、アップリンクのデータが来る可能性があるリソースと、アップリンクのデータが確実に来ることが分かっているリソースとを同一時間で、例えば周波数方向で(FDM多重)多重した場合のインジケータの例である。
 図24の例では、イネーブル信号と、不確実なイネーブル信号とが同一時間でハイになっている。この場合は、RRHは、アップリンクのデータが確実に来ることが分かっているリソースの方のスケジューリングに従って、すなわち、イネーブル信号の方に従って受信処理を実行する。
 まとめると、本実施形態では、RRHはBBUへ送信するデータ量を削減するための処理を実行する。データ量を削減するための処理としては、上述したように、I/Qビット列の圧縮や、転送するデータの選択などがある。
 そして、RRHは、データ量の削減に関する様々な情報をBBUから取得することができる。RRHは、BBUから取得した情報に基づいて、BBUへ送信するデータ量を削減するための処理を実行することが出来る。
 <2.まとめ>
 本実施形態を適用することにより、オペレータやユーザは、低コスト基地局を様々な場所に配置することが可能になる。またオペレータは、周波数の有効利用を促進することにより、安定した安価な無線通信環境によるサービスをユーザに提供することができる。そしてユーザは、安定した安価な無線通信環境によるサービスを享受することが可能となる。
 ここで、本実施形態における2次元データ作成部140は、本開示の配置部の一例として機能しうる。また本実施形態におけるデータ圧縮部150は、本開示の圧縮部の一例として機能しうる。
 本明細書の各装置が実行する処理における各ステップは、必ずしもシーケンス図またはフローチャートとして記載された順序に沿って時系列に処理する必要はない。例えば、各装置が実行する処理における各ステップは、フローチャートとして記載した順序と異なる順序で処理されても、並列的に処理されてもよい。
 また、各装置に内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上述した各装置の構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供されることが可能である。また、機能ブロック図で示したそれぞれの機能ブロックをハードウェアで構成することで、一連の処理をハードウェアで実現することもできる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 2次元に配列されたアンテナ素子と、
 前記アンテナ素子から出力される信号のIQデータを、前記アンテナ素子の配列を保った状態で時刻毎に配置する配置部と、
を備える、無線通信装置。
(2)
 前記配置部が配置した2次元のIQデータに対する圧縮処理を行う圧縮部をさらに備える、前記(1)に記載の無線通信装置。
(3)
 前記配置部は、前記圧縮部へ2次元の配列のサイズの情報を通知する、前記(2)に記載の無線通信装置。
(4)
 前記圧縮部は、前記アンテナ素子間の相関を考慮して圧縮する、前記(2)または(3)に記載の無線通信装置。
(5)
 前記アンテナ素子は、それぞれ異なる偏波面を有し、
 前記配置部は、同一の時刻のIQデータであっても異なる偏波面からのデータは区別して配置する、前記(1)~(4)のいずれかに記載の無線通信装置。
(6)
 前記配置部は、一部の前記アンテナ素子から出力される信号のIQデータを配置する、前記(1)~(5)のいずれかに記載の無線通信装置。
(7)
 前記圧縮部による圧縮処理後のデータを他装置へ出力する出力部をさらに備える、前記(2)に記載の無線通信装置。
(8)
 前記圧縮部による圧縮処理の前に、前記配置部が配置した2次元のIQデータに対するビームフォーミング処理を実行するビームフォーミング部をさらに備える、前記(2)に記載の無線通信装置。
(9)
 前記ビームフォーミング部は、他装置から前記ビームフォーミング処理で用いる重み係数に関する情報を取得する、前記(8)に記載の無線通信装置。
(10)
 前記ビームフォーミング部は、同時刻のリソースでは同一の方角のビームフォーミング処理のみを実行する旨の情報を、自装置と無線通信を行う装置に対して通知する通知部を備える、前記(8)または(9)に記載の無線通信装置。
(11)
 前記通知部は、前記情報をシステム情報として通知する、前記(10)に記載の無線通信装置。
(12)
 前記ビームフォーミング部は、所定のサンプル数に渡って同一の前記重み係数に関する情報を使用する、前記(9)に記載の無線通信装置。
(13)
 2次元に配列されたアンテナ素子と、
 前記アンテナ素子から出力される信号のIQデータに対する圧縮処理を実行する圧縮部と、
 前記圧縮部による圧縮処理の前に、前記IQデータに対するビームフォーミング処理を実行するビームフォーミング部と、
を備える、無線通信装置。
(14)
 前記ビームフォーミング部は、他装置から前記ビームフォーミング処理で用いる重み係数に関する情報を取得する、前記(13)に記載の無線通信装置。
(15)
 前記ビームフォーミング部は、同時刻のリソースでは同一の方角のビームフォーミング処理のみを実行する旨の情報を、自装置と無線通信を行う装置に対して通知する通知部を備える、前記(13)または(14)に記載の無線通信装置。
(16)
 前記通知部は、前記情報をシステム情報として通知する、前記(15)に記載の無線通信装置。
(17)
 前記ビームフォーミング部は、所定のサンプル数に渡って同一の前記重み係数に関する情報を使用する、前記(14)に記載の無線通信装置。
(18)
 2次元に配列されたアンテナ素子から出力される信号のIQデータを取得することと、
 前記IQデータを、前記アンテナ素子の配列を保った状態で時刻毎に配置することと、を含む、通信制御方法。
(19)
 2次元に配列されたアンテナ素子から出力される信号のIQデータを取得することと、
 前記IQデータに対する圧縮処理を実行することと、
 前記圧縮処理の前に、前記IQデータに対するビームフォーミング処理を実行することと、を含む、通信制御方法。
 100  RRH
 200  BBU

Claims (19)

  1.  2次元に配列されたアンテナ素子と、
     前記アンテナ素子から出力される信号のIQデータを、前記アンテナ素子の配列を保った状態で時刻毎に配置する配置部と、
    を備える、無線通信装置。
  2.  前記配置部が配置した2次元のIQデータに対する圧縮処理を行う圧縮部をさらに備える、請求項1に記載の無線通信装置。
  3.  前記配置部は、前記圧縮部へ2次元の配列のサイズの情報を通知する、請求項2に記載の無線通信装置。
  4.  前記圧縮部は、前記アンテナ素子間の相関を考慮して圧縮する、請求項2に記載の無線通信装置。
  5.  前記アンテナ素子は、それぞれ異なる偏波面を有し、
     前記配置部は、同一の時刻のIQデータであっても異なる偏波面からのデータは区別して配置する、請求項1に記載の無線通信装置。
  6.  前記配置部は、一部の前記アンテナ素子から出力される信号のIQデータを配置する、請求項1に記載の無線通信装置。
  7.  前記圧縮部による圧縮処理後のデータを他装置へ出力する出力部をさらに備える、請求項2に記載の無線通信装置。
  8.  前記圧縮部による圧縮処理の前に、前記配置部が配置した2次元のIQデータに対するビームフォーミング処理を実行するビームフォーミング部をさらに備える、請求項2に記載の無線通信装置。
  9.  前記ビームフォーミング部は、他装置から前記ビームフォーミング処理で用いる重み係数に関する情報を取得する、請求項8に記載の無線通信装置。
  10.  前記ビームフォーミング部は、同時刻のリソースでは同一の方角のビームフォーミング処理のみを実行する旨の情報を、自装置と無線通信を行う装置に対して通知する通知部を備える、請求項8に記載の無線通信装置。
  11.  前記通知部は、前記情報をシステム情報として通知する、請求項10に記載の無線通信装置。
  12.  前記ビームフォーミング部は、所定のサンプル数に渡って同一の前記重み係数に関する情報を使用する、請求項9に記載の無線通信装置。
  13.  2次元に配列されたアンテナ素子と、
     前記アンテナ素子から出力される信号のIQデータに対する圧縮処理を実行する圧縮部と、
     前記圧縮部による圧縮処理の前に、前記IQデータに対するビームフォーミング処理を実行するビームフォーミング部と、
    を備える、無線通信装置。
  14.  前記ビームフォーミング部は、他装置から前記ビームフォーミング処理で用いる重み係数に関する情報を取得する、請求項13に記載の無線通信装置。
  15.  前記ビームフォーミング部は、同時刻のリソースでは同一の方角のビームフォーミング処理のみを実行する旨の情報を、自装置と無線通信を行う装置に対して通知する通知部を備える、請求項13に記載の無線通信装置。
  16.  前記通知部は、前記情報をシステム情報として通知する、請求項15に記載の無線通信装置。
  17.  前記ビームフォーミング部は、所定のサンプル数に渡って同一の前記重み係数に関する情報を使用する、請求項14に記載の無線通信装置。
  18.  2次元に配列されたアンテナ素子から出力される信号のIQデータを取得することと、
     前記IQデータを、前記アンテナ素子の配列を保った状態で時刻毎に配置することと、を含む、通信制御方法。
  19.  2次元に配列されたアンテナ素子から出力される信号のIQデータを取得することと、
     前記IQデータに対する圧縮処理を実行することと、
     前記圧縮処理の前に、前記IQデータに対するビームフォーミング処理を実行することと、を含む、通信制御方法。
PCT/JP2019/027351 2018-08-10 2019-07-10 無線通信装置および通信制御方法 WO2020031602A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020536399A JPWO2020031602A1 (ja) 2018-08-10 2019-07-10 無線通信装置および通信制御方法
US17/257,019 US11337081B2 (en) 2018-08-10 2019-07-10 Wireless communication apparatus and communication control method
CN201980051722.0A CN112534863A (zh) 2018-08-10 2019-07-10 无线通信设备及通信控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-151269 2018-08-10
JP2018151269 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020031602A1 true WO2020031602A1 (ja) 2020-02-13

Family

ID=69415509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027351 WO2020031602A1 (ja) 2018-08-10 2019-07-10 無線通信装置および通信制御方法

Country Status (4)

Country Link
US (1) US11337081B2 (ja)
JP (1) JPWO2020031602A1 (ja)
CN (1) CN112534863A (ja)
WO (1) WO2020031602A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022141410A1 (en) * 2020-12-31 2022-07-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for power indication information transmission
EP4120664A1 (en) * 2021-07-16 2023-01-18 SOLiD, INC. Fronthaul multiplexer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124608A (ja) * 2005-10-26 2007-05-17 Utstarcom Telecom Co Ltd 分散された基地局システムにおけるcpriベースのマルチプロトコル信号伝送方法および装置
JP2014513461A (ja) * 2011-03-23 2014-05-29 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 線形変換を用いるバックホール通信のための信号圧縮
JP2015185952A (ja) * 2014-03-20 2015-10-22 株式会社Nttドコモ 移動通信システム、基地局、およびユーザ装置
JP2017204714A (ja) * 2016-05-10 2017-11-16 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013396796B2 (en) * 2013-06-26 2017-02-23 Huawei Technologies Co., Ltd. Architecture and method in a wireless communication network
JP2018014697A (ja) 2016-07-22 2018-01-25 富士通株式会社 基地局システム、無線装置
JP6747153B2 (ja) 2016-08-04 2020-08-26 日本電気株式会社 リモートノード、センターノード、通信システム、通信端末、通信方法、及びプログラム
EP3529905B1 (en) * 2016-11-17 2020-10-14 Huawei Technologies Co., Ltd. Radio frequency signal receiving device and signal processing device
US10194441B2 (en) * 2016-12-20 2019-01-29 Nokia Solutions And Networks Oy Bandwidth reduction with beamforming and data compression
CN110785975B (zh) * 2017-06-28 2021-08-13 华为技术有限公司 上行mimo系统的子带压缩域处理
EP3682568B1 (en) * 2017-09-28 2023-11-29 Huawei Technologies Co., Ltd. Device and method for compressing and/or decompressing channel state information
US11303326B2 (en) * 2018-03-08 2022-04-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for handling antenna signals for transmission between a base unit and a remote unit of a base station system
EP3553967B1 (en) * 2018-04-12 2023-11-01 Nokia Technologies Oy System and method for data transmission between a server unit and a remote unit in a communication network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124608A (ja) * 2005-10-26 2007-05-17 Utstarcom Telecom Co Ltd 分散された基地局システムにおけるcpriベースのマルチプロトコル信号伝送方法および装置
JP2014513461A (ja) * 2011-03-23 2014-05-29 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 線形変換を用いるバックホール通信のための信号圧縮
JP2015185952A (ja) * 2014-03-20 2015-10-22 株式会社Nttドコモ 移動通信システム、基地局、およびユーザ装置
JP2017204714A (ja) * 2016-05-10 2017-11-16 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUNAGA, YASUHIKO: "Radio access network architecture evolution toward 5G", IEICE TECHNICAL REPORT, vol. 114, no. 254, 9 October 2014 (2014-10-09), pages 89 - 94, XP055579164, [retrieved on 20190827] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022141410A1 (en) * 2020-12-31 2022-07-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for power indication information transmission
EP4120664A1 (en) * 2021-07-16 2023-01-18 SOLiD, INC. Fronthaul multiplexer

Also Published As

Publication number Publication date
JPWO2020031602A1 (ja) 2021-09-24
CN112534863A (zh) 2021-03-19
US20210282027A1 (en) 2021-09-09
US11337081B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
RU2756893C2 (ru) Многоузловая система mimo-связи с формированием гибридной диаграммы направленности в архитектуре l1-разбиения
EP3915298B1 (en) Methods and apparatus for transmitting radio data over a fronthaul network
US20130279452A1 (en) Frequency domain transmission method and apparatus
WO2014076004A2 (en) Method and system for lossless compression and decompression of baseband digital signals in distributed lte-advanced radio access networks
JP5126352B2 (ja) 無線通信装置及び無線通信方法
TW201404088A (zh) 用來在頻率上壓縮多載波調製信號的方法及裝置
WO2020031602A1 (ja) 無線通信装置および通信制御方法
WO2021084010A1 (en) Communication devices and methods
US9398489B1 (en) Method and apparatus for context based data compression in a communication system
EP2911331B1 (en) Apparatus, method and computer program for controlling a transmission format, remote unit and central unit of a base station transceiver
KR101382420B1 (ko) 무선 네트워크에서 mimo를 수행하는 방법 및 이를 위한 장치
WO2020031710A1 (ja) 無線通信装置および通信制御方法
EP2720512B1 (en) Remote radio device and baseband processing node
US11153832B2 (en) Adaptive microwave communication link
CN116982298A (zh) 频谱整形
US9485688B1 (en) Method and apparatus for controlling error and identifying bursts in a data compression system
WO2020031808A1 (ja) 無線通信装置および通信制御方法
Nahum et al. Functional Split and Frequency-Domain Processing for Fronthaul Traffic Reduction
CN115189859B (zh) 5g-nr混合子载波低物理层下行数据处理的方法及系统
US20230171052A1 (en) Station and access point performing wlan-based communication, and operation methods thereof
Garg et al. Introduction to 5G New Radio
KR20230066275A (ko) 무선 통신 시스템에서 다중 안테나 기반의 프리코딩 방법 및 장치
EP3957120A1 (en) Central control unit, radio unit and methods in a wireless

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846567

Country of ref document: EP

Kind code of ref document: A1