WO2020031500A1 - Wiring body, wiring board, and touch sensor - Google Patents

Wiring body, wiring board, and touch sensor Download PDF

Info

Publication number
WO2020031500A1
WO2020031500A1 PCT/JP2019/023527 JP2019023527W WO2020031500A1 WO 2020031500 A1 WO2020031500 A1 WO 2020031500A1 JP 2019023527 W JP2019023527 W JP 2019023527W WO 2020031500 A1 WO2020031500 A1 WO 2020031500A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring body
conductor
insulating
wiring
present
Prior art date
Application number
PCT/JP2019/023527
Other languages
French (fr)
Japanese (ja)
Inventor
雅晃 石井
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2020031500A1 publication Critical patent/WO2020031500A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a wiring body, a wiring board, and a touch sensor.
  • a wiring body for the designated countries for which incorporation by reference to the literature is permitted, the contents described in Japanese Patent Application No. 2018-151802 filed on August 10, 2018 in Japan are incorporated herein by reference, and the description of this specification is incorporated herein by reference. Part of
  • a mesh-shaped metal conductive layer provided on a transparent substrate there is known a mesh-shaped metal conductive layer in which the line width of the mesh of the metal conductive layer is changed to suppress the occurrence of moire at the time of attachment to a display (for example, Patent Document 1).
  • the problem to be solved by the present invention is to provide a touch panel capable of suppressing the occurrence of disconnection while suppressing the occurrence of moire.
  • a wiring body includes an insulating portion, and a conductor portion provided on the insulating portion, wherein the conductor portion includes a mesh-like electrode pattern having a plurality of thin wires crossing each other.
  • the plurality of thin lines include a first thin line extending in a first direction as a whole, and the first thin line has a zigzag shape that repeats a unit shape including a first portion and a second portion.
  • the first portion extends in a second direction different from the first direction, and the second portion is connected to an end of the first portion, , Extending in a third direction different from the first and second directions, and the first portion is a wiring body longer than the second portion.
  • the insulating portion may include a convex portion provided with the first fine wire.
  • a wiring board according to the present invention is a wiring board including the above wiring body and a support for supporting the wiring body.
  • a touch sensor according to the present invention is a touch sensor including the above-described wiring board.
  • a first thin line is formed by repeating a unit shape including a first portion extending in a second direction and a second portion extending in a third direction. Since it has a shape, generation of moire can be suppressed. Further, according to the present invention, since it is not necessary to make the width of the first fine line thinner than necessary, the occurrence of disconnection can also be suppressed.
  • FIG. 1 is an exploded perspective view showing a touch sensor according to the embodiment of the present invention.
  • FIG. 2 is a plan view showing a first conductor section and a first insulating section in the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a first thin line in the embodiment of the present invention, and is a cross-sectional view corresponding to line III-III in FIG.
  • FIG. 4 is an enlarged plan view showing a first electrode pattern according to the embodiment of the present invention, and is an enlarged view of a portion IV in FIG.
  • FIG. 5 is an enlarged plan view showing a first thin line in the embodiment of the present invention, and is an enlarged view of a portion V in FIG. 6A to 6E are cross-sectional views illustrating a method for manufacturing a touch sensor according to an embodiment of the present invention.
  • FIG. 7 is an enlarged plan view of an intaglio used when manufacturing a touch sensor in the embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing the touch sensor according to the present embodiment.
  • the touch sensor 1 illustrated in FIG. 1 is a capacitive touch panel sensor, and is used as an input device having a function of detecting a touch position, for example, in combination with a display device (not shown).
  • the display device is not particularly limited, and a liquid crystal display, an organic EL display, electronic paper, or the like can be used.
  • the touch sensor 1 has a detection electrode and a drive electrode (a first electrode pattern 31 and a second electrode pattern 51 described later) arranged so as to correspond to a display area of the display device. A predetermined voltage is periodically applied between the electrodes from an external circuit (not shown).
  • a touch sensor 1 for example, when an operator's finger (outer conductor) F approaches the touch sensor 1, a capacitor (electric capacity) is formed between the outer conductor F and the touch sensor 1, and two capacitors are formed. The electrical state between the electrodes changes.
  • the touch sensor 1 can detect an operation position of an operator based on an electrical change between two electrodes.
  • the touch sensor 1 includes a wiring board 2 including a support 5 and a wiring body 10, and a cover member 70 attached to one surface of the wiring board 2.
  • the wiring board 2 of the present embodiment is configured to have transparency (light transmission) as a whole in order to ensure the visibility of the display device.
  • the “wiring body 10” in the present embodiment corresponds to an example of the “wiring body” in the present invention
  • the “support 5” in the present embodiment corresponds to an example of the “support” in the present invention.
  • the “wiring board 2” in the embodiment corresponds to an example of the “wiring board” in the present invention.
  • the support 5 has a rectangular outer shape and is made of a transparent material.
  • a material constituting the support 5 include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide resin (PI), polyetherimide resin (PEI), polycarbonate (PC), and polyether ether ketone ( PEEK), liquid crystal polymer (LCP), cycloolefin polymer (COP), silicone resin (SI), acrylic resin, phenol resin, epoxy resin, glass, and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide resin
  • PEI polyetherimide resin
  • PC polycarbonate
  • PEEK polyether ether ketone
  • LCP liquid crystal polymer
  • COP cycloolefin polymer
  • SI silicone resin
  • acrylic resin phenol resin
  • epoxy resin epoxy resin
  • the wiring body 10 includes a first insulating portion 20, a first conductor portion 30, a second insulating portion 40, a second conductor portion 50, and a third insulating portion 60. And The wiring body 10 is configured to have transparency (light transmission) as a whole in order to ensure the visibility of the display device.
  • the first conductor portion 30 is disposed on the first insulating portion 20, and the second conductor portion 50 is disposed on the second insulating portion 40.
  • the second insulating section 40 is laminated on the section 20. That is, while the first conductor part 30 is arranged on one side of the second insulating part 40, the second conductor part 50 is arranged on the other side of the second insulating part 40.
  • the first conductor 30 and the second conductor 50 face each other via the second insulating section 40.
  • the second conductor 50 is arranged at a position closer to the side where the external conductor F contacts than the first conductor 30.
  • the first conductor portion 30 is located on the display device side, and the second conductor portion 50 is located on the operator side (the surface contacting the external conductor F).
  • the “first insulating section 20” in the present embodiment corresponds to an example of the “insulating section” in the present invention
  • the “first conductor section 30” in the present embodiment corresponds to the “conductor section” in the present invention. This corresponds to an example.
  • FIG. 2 is a plan view showing a first conductor portion and a first insulating portion in the present embodiment.
  • FIG. 3 is a cross-sectional view showing a first thin line in the present embodiment.
  • FIG. 4 is an enlarged plan view showing a first electrode pattern in the present embodiment, an enlarged view of a portion IV in FIG. 2, and
  • FIG. 5 is an enlarged plan view showing a first fine line in the present embodiment.
  • FIG. 5 is an enlarged view of a portion V in FIG.
  • the first insulating portion 20 has a rectangular outer shape, and holds the first conductor portion 30 on one main surface.
  • the first insulating section 20 is interposed between the first conductor section 30 and the support 5, and fixes the first conductor section 30 and the support 5 by bonding each other.
  • the first insulating portion 20 has a substantially flat flat portion 21 and a convex portion 22 protruding toward the conductor portion 30 (upward in FIG. 3).
  • the flat portion 21 has a substantially uniform thickness as a whole.
  • the convex portion 22 is provided on the flat portion 21 so as to correspond to the first conductive portion 30, and linearly extends so as to correspond to the first electrode pattern 31 and the first lead-out wiring pattern 35. are doing.
  • the conductor portion 30 is not provided on the flat portion 21.
  • the first insulating portion 20 is made of a resin material having transparency and electrical insulation.
  • the transparent resin material include, for example, an epoxy resin, an acrylic resin, a polyester resin, a urethane resin, a vinyl resin, a silicone resin, a phenol resin, a UV curable resin such as a polyimide resin, a thermosetting resin, or a thermoplastic resin. And the like.
  • the first conductor 30 is provided on the first insulating part 20 and is held by the first insulating part 20.
  • the first conductor 30 includes a plurality of conductive particles and a binder resin that binds the conductive particles.
  • the first conductor portion 30 is formed by printing and hardening a conductive paste.
  • Specific examples of the conductive paste include those formed by mixing conductive particles and a binder resin with water, a solvent, and various additives. Note that the binder resin may be omitted from the conductive paste.
  • the conductive particles include metal materials such as silver, copper, nickel, tin, bismuth, zinc, indium, and palladium, graphite, carbon black (furnace black, acetylene black, Ketjen black), carbon nanotube, and carbon nanotube. Carbon-based materials such as nanofibers can be used.
  • a metal salt may be used as the conductive particles.
  • Specific examples of the metal salt include the above-mentioned metal salts.
  • the binder resin include an acrylic resin, a polyester resin, an epoxy resin, a vinyl resin, a urethane resin, a phenol resin, a polyimide resin, a silicone resin, a fluorine resin, and the like.
  • the solvent examples include ⁇ -terpineol, butyl carbitol acetate, butyl carbitol, 1-decanol, butyl cellosolve, diethylene glycol monoethyl ether acetate, tetradecane, and the like.
  • the first conductor portion 30 includes a plurality of first electrode patterns 31 and a plurality of first lead-out wiring patterns 35.
  • the first electrode pattern 31 and the first lead-out wiring pattern 35 are formed on the convex portion 22 of the first insulating portion 20 and are located on the same plane (see FIG. 3).
  • the number of the first electrode patterns 31 is not particularly limited and can be set arbitrarily.
  • the number of the first lead-out wiring patterns 35 is not particularly limited, either, and depends on the number of the first electrode patterns 31. Is set.
  • Each first electrode pattern 31 is a band-shaped pattern extending in the X direction in the figure, and the plurality of first electrode patterns 31 are arranged in the Y direction in the figure.
  • Each of the first electrode patterns 31 has a mesh shape formed by intersecting a plurality of fine wires 32 and 33 with each other.
  • the mesh shape includes a rectangular unit mesh 311 that is repeatedly arranged. Have.
  • the first fine wire 32 is provided on the convex portion 22 of the first insulating portion 20, as shown in FIG.
  • the first fine wire 32 has a tapered shape that becomes gradually narrower as the distance from the first insulating portion 20 increases when a cross section of the fine wire 32 cut in the width direction is viewed.
  • the first contact surface 32a that contacts the convex portion 22 of the first insulating portion 20 is relatively positioned with respect to the second contact surface 32b that contacts the second insulating portion 40. It is rough.
  • the surface roughness Ra of the first contact surface 32a is 0.1 ⁇ m to 3 ⁇ m
  • the surface roughness Ra of the second contact surface 32b is 0.001 ⁇ m to 1.0 ⁇ m. It has become.
  • the surface roughness Ra is “arithmetic mean roughness Ra” defined by the JIS method (JIS B0601 (revised on March 21, 2013)).
  • the second fine wire 33 and other fine wires of the first lead-out wiring pattern 35 and the second conductor portion 50 also have the same cross-sectional shape as the first fine wire 32 shown in FIG. have.
  • each first thin line 32 as a whole intersects with a direction (X direction in the drawing) in which the first electrode pattern 31 extends (X direction).
  • m direction a direction intersecting with the m direction
  • n direction a direction intersecting with the m direction
  • the m direction in the present embodiment corresponds to an example of the first direction in the present invention.
  • the angle of intersection ⁇ in the m direction with respect to the X direction is preferably larger than 0 ° and equal to or smaller than 40 ° (0 ° ⁇ ⁇ 40 °).
  • the intersection angle ⁇ in the m direction with respect to the X direction is 30 °
  • the intersection angle in the n direction with respect to the m direction is 90 °
  • the intersection angle ⁇ in the n direction with respect to the X direction is 120. °.
  • the first fine line 32 is formed in a zigzag shape by repeating a plurality of unit shapes 323 each having a bent portion 324.
  • Each unit shape 323 is composed of first and second portions 321 and 322 interconnected by a bent portion 324.
  • a second portion 322 is connected to an end of the first portion 321, and an end of the second portion 322 is connected to a first portion 321 of an adjacent unit shape 323.
  • the first and second portions 321 and 322 have substantially the same width, specifically, have a width of 0.5 ⁇ m to 20 ⁇ m.
  • the unit shape 323 has a substantially constant width between the starting point P S and the end point P E, consequently, the first thin line 32 is substantially constant width over its entire length have.
  • “substantially the same” and “substantially constant” mean that the line width of the first fine line 32 is ⁇ 5% or less, preferably ⁇ 2.5%, relative to the average value of the line width. Or less, more preferably ⁇ 1.25% or less.
  • the length L1 of the first portion 321 is longer than the length L2 of the second portion 322.
  • the length L 1 of the first portion 321 is the length L 2 of the second portion 322 preferably satisfy the following expression (5).
  • L 1 is the length of the first portion 321 along the m direction
  • L 2 is the length of the second portion 322 along the m direction.
  • first portion 321 extends along the p direction
  • second portion extends along the q direction
  • first and second portions 321 and 322 extend.
  • the orientations are different from each other ( ⁇ 1 ⁇ ⁇ 2 ).
  • the first and second portions 321 and 322 are formed such that the p direction and the q direction satisfy the following equations (6) and (7).
  • ⁇ 1 is the angle between the m direction and the p direction
  • ⁇ 2 is the angle between the m direction and the q direction.
  • the rotational direction of the acute angle side from m direction to the p direction (direction of an arrow indicating the theta 1 in clockwise (FIG. 5)) to a positive angle expressed, expresses the opposite rotational direction (counterclockwise in FIG. 5 (direction of an arrow indicating the theta 2 in this figure)) at a negative angle to the p direction from the m direction.
  • the virtual straight line VL 1 which extends along the m direction, passes through both of the starting point P S and the end point P E of the unit shape 323.
  • the p direction in the present embodiment corresponds to an example of a second direction in the present invention
  • the q direction in the present embodiment corresponds to an example of a third direction in the present invention.
  • the width w of the first fine wire 32, the length L 0 of the unit shapes 323 along the m direction, satisfies the equation (8) below.
  • the length L 0 of the unit shape 323 is the sum of the length L 2 of the length L 1 and the second portion 323 of the first portion 322 of the above .
  • L 0 is equal to or more than w
  • L 0 is equal to or less than 10 ⁇ w in the following expression (8), the regularity of the overlap between the electrode pattern 31 and the sub-pixel or black matrix of the display device can be further reduced.
  • the length L 0 of the unit shapes 323 along the m direction is set so as to satisfy the following equation (10).
  • ⁇ L 0 is the standard deviation of the length L 0 of all the unit shapes 323 of the single first fine line 32.
  • the length L 0 of the unit shape 323 along the m direction and the pitch P of the unit mesh 311 of the first electrode pattern 31 along the m direction are given by the following expression (11). It is preferable to satisfy the following expression (12), and it is more preferable to satisfy the following expression (13).
  • the length L 0 of the unit shape 323 is 10 ⁇ m
  • the pitch P of the unit mesh 311 is 200 ⁇ m.
  • the pitch P is the distance between the centers of the thin lines 33 when they are adjacent to each other, and the distance between the virtual straight lines VL2 of the second thin lines 33 along the m direction.
  • This virtual straight line VL 2 is set in the same manner as the virtual straight line VL 1 of the first thin line 32 described above.
  • each of the second fine lines 33 also has a zigzag shape extending in the n direction as a whole, and the plurality of second fine lines 33 are arranged at substantially equal intervals in the m direction.
  • the second fine wire 33 is formed by repeating a unit shape 333 composed of the first and second portions 331 and 332 connected to each other by the bent portion 334, and is formed by the first fine wire 32 described above. And have basically the same shape. Note that the first thin line 32 and the second thin line 33 do not have to be substantially orthogonal.
  • one end of the first lead-out wiring pattern 35 is connected to one end in the longitudinal direction of each first electrode pattern 31.
  • the other end of each first lead-out wiring pattern 35 extends to the edge of the wiring body 10.
  • the other end of the first extraction wiring pattern 35 is electrically connected to an external circuit.
  • the second insulating portion 40 has a rectangular outer shape and is made of a transparent resin material.
  • the transparent resin material for example, the same material as the resin material forming the first insulating portion 20 can be used.
  • the second insulating section 40 is provided on the first insulating section 20 so as to cover the first conductor section 30.
  • the second insulating portion 40 has a convex portion corresponding to the second conductor portion 50, similarly to the first insulating portion 20 described above (see FIG. 3). Further, a cutout portion 41 is formed in the second insulating portion 40. The other end of the first extraction wiring pattern 35 is exposed from the notch 41.
  • the second conductor 50 is provided on the second insulating part 40 and is held by the second insulating part 40.
  • the second conductor portion 50 is formed by printing and curing a conductive paste.
  • the conductive paste the same as the conductive paste forming the first conductor portion 30 can be exemplified.
  • the second conductor 50 includes a plurality of second electrode patterns 51 and a plurality of second lead wiring patterns 55.
  • the second electrode pattern 51 and the second lead wiring pattern 55 are provided on a convex portion formed on the second insulating section 40 and are located on the same plane (see FIG. 3).
  • the number of the second electrode patterns 51 is not particularly limited and can be set arbitrarily.
  • the number of the second lead wiring patterns 55 is not particularly limited, either, and depends on the number of the second electrode patterns 51. Is set.
  • Each second electrode pattern 51 is a band-shaped pattern extending in the Y direction in the figure.
  • Each second electrode pattern 51 has a mesh shape formed by intersecting a plurality of fine lines 52 and 53 with each other.
  • the plurality of second electrode patterns 51 are arranged in the X direction in the drawing, and intersect with the first electrode patterns 31 when the touch sensor 1 is viewed from above.
  • the first thin line 52 of the second electrode pattern 51 has a zigzag shape extending in the m direction as a whole, like the first thin line 32 of the first electrode pattern 31 described above. Are arranged at substantially equal intervals in the n direction.
  • the second fine line 53 of the second electrode pattern 51 also has a zigzag shape extending in the n direction as a whole similarly to the second fine line 33 of the first electrode pattern 31 described above.
  • the second fine lines 53 are arranged at substantially equal intervals in the m direction.
  • the third insulating portion 60 has a rectangular outer shape and is made of a transparent resin material.
  • the transparent resin material for example, the same resin material as the resin material forming the first insulating portion 20 can be used.
  • the third insulating section 60 is provided on the second insulating section 40 so as to cover the second conductor section 50.
  • a cutout portion 61 is formed in the third insulating portion 60.
  • the other end of the second lead wiring pattern 55 is exposed from the notch 61.
  • the notch 61 overlaps the notch 41 of the second insulating portion 40, and the other end of the first lead-out wiring pattern 35 is also exposed from the notch 61.
  • the cover member 70 is attached to the wiring body 10 via the third insulating part 60.
  • the cover member 70 includes a transparent portion 71 that can transmit visible light, and a shielding portion 72 that blocks visible light.
  • the transparent part 71 is formed in a rectangular shape
  • the shielding part 72 is formed in a rectangular frame shape around the transparent part 71.
  • the cover member 70 has an adhesive layer (not shown) on the surface on the third insulating portion 60 side.
  • the same material as the above-described material forming the support 5 can be used.
  • the shielding portion 72 is formed by applying, for example, black ink to the outer peripheral portion of the back surface of the cover member 70.
  • the outer conductor F finger F contacts the cover member 70.
  • the cover member 70 may have a rigidity enough to support the wiring body 10.
  • the cover member 70 corresponds to an example of the support in the present invention.
  • the above-mentioned support 5 may be omitted.
  • the first thin line 32 has a zigzag shape formed by repeating the unit shape 323 including the first and second portions 321 and 322, and the first portion 321 The second portions 322 extend in mutually different directions. For this reason, the regularity of the overlap between the sub-pixels or the black matrix of the display device and the first electrode pattern 31 is reduced as compared with the linear thin line, so that the occurrence of moiré that occurs periodically is suppressed. Can be.
  • the occurrence of moiré is suppressed by changing the shape of the first fine wire 32 to the above-described zigzag shape instead of changing the width of the fine wire. For this reason, since it is not necessary to make the width of the first fine line 32 smaller than necessary, the occurrence of disconnection of the first fine line 32 can be suppressed.
  • the second fine wires 33 and the fine wires 52 and 53 of the second electrode pattern 51 also have a zigzag shape, so that it is possible to suppress the occurrence of disconnection while suppressing the occurrence of moire.
  • the first fine wire 32 since the first fine wire 32 has the zigzag shape as described above, the surface area of the first fine wire 32 increases. For this reason, the contact area between the first fine wire 32 and the second insulating portion 40 increases, so that the occurrence of separation at the interface between the first fine wire 32 and the second insulating portion 40 can be suppressed. .
  • the second fine wire 33 has a zigzag shape, so that it is possible to suppress the occurrence of separation at the interface between the second fine wire 33 and the second insulating portion 40.
  • the thin wires 52, 53 of the second electrode pattern 51 also have a zigzag shape, the contact area between the thin wires 52, 53 and the third insulating portion 60 increases. The occurrence of separation at the interface with the third insulating section 60 can be suppressed.
  • FIGS. 6A to 6E are cross-sectional views illustrating a method for manufacturing a touch sensor according to the present embodiment
  • FIG. 7 is an enlarged plan view of an intaglio used when manufacturing the touch sensor according to the present embodiment.
  • an intaglio 100 in which a concave portion 101 having a shape corresponding to the first conductive portion 30 is formed is prepared.
  • the material constituting the intaglio 100 include glasses such as nickel, silicon, and silicon dioxide, organic silicas, glassy carbon, thermoplastic resins, and photocurable resins.
  • a release layer (not shown) made of a carbon-based material, a silicone-based material, a fluorine-based material, a ceramic-based material, an aluminum-based material, or the like is formed in advance on the surface of the recess 101. Is preferred.
  • the concave portion 101 has a zigzag planar shape corresponding to the first and second fine lines 32 and 33.
  • FIG. 7 shows a planar shape of the concave portion 101 corresponding to the first and second fine lines 32 and 33 of the VII portion in FIG.
  • the recess 101 includes a first groove 102 corresponding to the first fine line 32 and a second groove 104 corresponding to the second fine line 33.
  • the first groove 102 is formed by repeating the unit shape 103 corresponding to the unit shape 323 of the first thin line 32
  • the second groove 104 corresponds to the unit shape 333 of the second thin line 33. It is formed by repeating the unit shape 105.
  • the recess 101 of the intaglio 100 is filled with a conductive material 110.
  • the conductive material 110 to be filled in the concave portions 101 of the first intaglio 100 the above-mentioned conductive paste is used.
  • the method for filling the conductive material 110 include a dispensing method, an ink-jet method, and a screen printing method.
  • the method of filling the conductive material 110 after coating by a slit coating method, a bar coating method, a blade coating method, a dip coating method, a spray coating method, or a spin coating method, the conductive coating applied to the portions other than the concave portion 101.
  • the method include wiping, scraping, sucking, sticking, rinsing, or blowing off the conductive material 110.
  • the first conductor portion 30 is formed by drying or heating the conductive material 110.
  • Conditions for drying or heating the conductive material 110 can be set as appropriate depending on the composition of the conductive material 110 or the like. Under the drying or heating conditions, the conductive material 110 contracts in volume, and the first contact surface 32a of the first conductor portion 30 having an uneven shape is formed. At this time, the outer surface except the upper surface of the conductive material 110 is formed in a shape along the concave portion 101.
  • the method for treating the conductive material 110 is not limited to heating. Irradiation with energy rays such as infrared rays, ultraviolet rays, and laser beams may be performed, or only drying may be performed. Further, these two or more processing methods may be combined.
  • a resin material 120 for forming the first insulating portion 20 is applied on the intaglio 100.
  • a resin material 120 the above-described material forming the first insulating portion 20 is used.
  • the method for applying the resin material 120 include a screen printing method, a spray coating method, a bar coating method, a dipping method, and an ink jet method. By this application, the resin material 120 enters the concave portion 101 where the first conductor portion 30 is formed.
  • the support 5 is placed on the resin material 120.
  • This arrangement is preferably performed under vacuum in order to suppress air bubbles from entering between the resin material 120 and the support 5.
  • the first insulating portion 20 having the convex portion 22 is formed.
  • Examples of a method for curing the resin material 120 include irradiation with energy rays such as ultraviolet rays and infrared laser light, heating, heating and cooling, and drying.
  • the support 5 is laminated after the resin material 120 is applied to the intaglio 100, but the present invention is not particularly limited to this.
  • the resin material 120 may be applied to the support 5 in advance, and the support 5 may be placed on the intaglio 100.
  • the second insulating part 40 and the second conductor part 50 can also be formed using an intaglio. That is, first, the second conductor portion 50 is formed in the same manner as in FIGS. 6A and 6B. Next, the side of the intermediate body 3 where the first conductor 30 is formed and the intaglio filled with the second conductor 50 are interposed via a resin material which is a precursor of the second insulating part 40. Glue. Next, after the resin material is cured to form the second insulating portion 40, the intermediate body 3 is released from the intaglio together with the second conductor portion 50 and the second insulating portion 40. Thereby, the wiring board 2 can be obtained.
  • the cover member 70 is attached to the main surface of the wiring board 2 on the side where the second conductor portion 50 is formed via the third insulating portion 60. As described above, the touch sensor 1 of the present embodiment can be obtained.
  • the first electrode pattern 31 has a band-shaped pattern, but the pattern shape of the first electrode pattern 31 is not particularly limited to this.
  • the first electrode pattern may have a so-called diamond pattern.
  • the second electrode pattern 51 may have a diamond pattern instead of the strip pattern.
  • the thin wires 32, 33 of the first conductor portion 30 and the thin wires 52, 53 of the second conductor portion 50 have trapezoidal cross-sectional shapes projecting upward as shown in FIG.
  • the present invention is not particularly limited to this.
  • the top surface of each thin line (the second contact surface 32b in FIG. 5) may have a curved shape that is convex upward. In this case, the top surface of each thin line is connected to two planes forming a tapered shape.
  • the fine wires 32, 33, 52, 53 of the first and second conductor portions 30, 50 are not only in addition to the above-described conductive layer containing the conductive particles, but also in comparison with the conductive layer. It may have a black layer having a low reflectance. This black layer is formed by printing a carbon paste, and contains a carbon-based material. The black layer is provided at a position closer to the side where the external conductor contacts than the conductive layer. That is, the conductive layer is located on the display device side, and the black layer is located on the operator side (the surface contacting the external conductor).
  • black metal oxide particles may be used instead of the carbon-based material.
  • a black layer can be formed by oxidizing the metal particles located on the operator side in the conductive layer.
  • the black layer may not have conductivity.
  • a black layer can be formed by printing black ink, and the black layer contains a black pigment.
  • a mounting target (a film, a surface glass, a polarizing plate, a display glass, or the like) is bonded to the lower surface of the first insulating unit 20, and the wiring body 10 is supported by the mounting target.
  • a release sheet may be provided on the lower surface of the first insulating portion 20, and the release sheet may be peeled off at the time of mounting and adhered to a mounting object to mount.
  • a mode in which a resin part that covers the wiring body 10 from the first insulating part 20 side is further provided, and the resin part is adhered to the above-described mounting object via the resin part and mounted is also possible.
  • a mode in which the third insulating portion 60 side is adhered to the above-described mounting target and mounted is also possible.
  • the mounting object on which the wiring body is mounted corresponds to an example of the support of the present invention.
  • the wiring body or the wiring board is described as being used for the touch sensor, but is not particularly limited to this.
  • the wiring body may be used as a heater by energizing the wiring body to generate heat by resistance heating or the like.
  • the wiring body may be used as an electromagnetic shield by grounding a part of the conductor of the wiring body.
  • a wiring body may be used as an antenna.
  • the mounting object on which the wiring body is mounted corresponds to an example of the support of the present invention.
  • Second lead-out wiring pattern 60 Third insulating portion 61... Cutout portion 70... Cover member 71. 02 ... first grooves 103 ... unit shaped 104 ... second grooves 105 ... unit shaped 110 ... conductive material 120 ... resin material F ... outer conductor

Abstract

A wiring body 10 is provided with an insulating part 20 and a conducting part 30 provided on the insulating part 20, wherein: the conducting part 30 includes a mesh-like electrode pattern 31 having a plurality of intercrossed fine wires 32, 33; the plurality of fine wires 32, 33 include first fine wires 32 extending as a whole in an m direction; each first fine wire 32 has a zigzag shape formed by repeating a unit shape 323 that includes a first part 321 and a second part 322; the first part 321 extends in a p direction different from the m direction; the second part 322 is connected to an end of the first part 321 and extends in a q direction different from the m direction and p direction; and the first part 321 is longer than the second part 322.

Description

配線体、配線板、及びタッチセンサWiring body, wiring board, and touch sensor
 本発明は、配線体、配線板、及びタッチセンサに関するものである。
 文献の参照による組み込みが認められる指定国については、2018年8月10日に日本国に出願された特願2018-151802に記載された内容を参照により本明細書に組み込み、本明細書の記載の一部とする。
The present invention relates to a wiring body, a wiring board, and a touch sensor.
For the designated countries for which incorporation by reference to the literature is permitted, the contents described in Japanese Patent Application No. 2018-151802 filed on August 10, 2018 in Japan are incorporated herein by reference, and the description of this specification is incorporated herein by reference. Part of
 透明基板上に設けられたメッシュ状の金属導電層として、当該金属導電層のメッシュの線幅を変動させることで、ディスプレイへの装着時のモアレの発生を抑制したものが知られている(例えば特許文献1参照)。 As a mesh-shaped metal conductive layer provided on a transparent substrate, there is known a mesh-shaped metal conductive layer in which the line width of the mesh of the metal conductive layer is changed to suppress the occurrence of moire at the time of attachment to a display (for example, Patent Document 1).
特開2009-252868号公報JP 2009-252868 A
 上記の金属導体層において視認性向上のためにメッシュの線幅を細くすると、最小の線幅を有する部分が更に細くなってしまうため、その部分で断線が発生してしまうおそれがある。 (4) When the line width of the mesh is reduced in the metal conductor layer for improving the visibility, the portion having the minimum line width is further reduced, and there is a possibility that disconnection may occur in the portion.
 本発明が解決しようとする課題は、モアレの発生を抑制しつつ断線の発生の抑制を図ることが可能なタッチパネルを提供することである。 The problem to be solved by the present invention is to provide a touch panel capable of suppressing the occurrence of disconnection while suppressing the occurrence of moire.
 [1]本発明に係る配線体は、絶縁部と、前記絶縁部上に設けられた導体部と、を備え、前記導体部は、相互に交差する複数の細線を有するメッシュ状の電極パターンを含み、複数の前記細線は、全体として第1の方向に延在する第1の細線を含み、前記第1の細線は、第1の部分と第2の部分を含む単位形状を繰り返すジグザグ形状を有しており、前記第1の部分は、前記第1の方向とは異なる第2の方向に延在し、前記第2の部分は、前記第1の部分の端部に連結されていると共に、前記第1及び第2の方向とは異なる第3の方向に延在しており、前記第1の部分は、前記第2の部分よりも長い配線体である。 [1] A wiring body according to the present invention includes an insulating portion, and a conductor portion provided on the insulating portion, wherein the conductor portion includes a mesh-like electrode pattern having a plurality of thin wires crossing each other. The plurality of thin lines include a first thin line extending in a first direction as a whole, and the first thin line has a zigzag shape that repeats a unit shape including a first portion and a second portion. The first portion extends in a second direction different from the first direction, and the second portion is connected to an end of the first portion, , Extending in a third direction different from the first and second directions, and the first portion is a wiring body longer than the second portion.
 [2]上記発明において、下記の(1)及び(2)式を満たしてもよい。
 0°<θ<45° … (1)
 θ-90°<θ<-θ … (2)
 但し、上記の(1)及び(2)式において、θは、前記第1の方向に対して前記第2の方向のなす角であり、θは、前記第1の方向に対して前記第3の方向のなす角である。
[2] In the above invention, the following formulas (1) and (2) may be satisfied.
0 ° <θ 1 <45 ° (1)
θ 1 −90 ° <θ 2 <−θ 1 (2)
However, in the above equations (1) and (2), θ 1 is an angle formed by the second direction with respect to the first direction, and θ 2 is the angle formed by the first direction with respect to the first direction. The angle formed by the third direction.
 [3]上記発明において、下記の(3)式を満たしてもよい。
 w≦L≦10×w … (3)
 但し、上記の(3)式において、wは、前記第1の細線の幅であり、Lは、前記単位形状の長さである。
[3] In the above invention, the following formula (3) may be satisfied.
w ≦ L 0 ≦ 10 × w (3)
However, in the above (3), w is a width of the first thin line, L 0 is the length of the unit shape.
 [4]上記発明において、下記の(4)式を満たしてもよい。
 σL≦5.0μm … (4)
 但し、上記の(4)式において、σLは、前記単位形状の長さLの標準偏差である。
[4] In the above invention, the following formula (4) may be satisfied.
σL 0 ≦ 5.0 μm (4)
However, in the above equation (4), σL 0 is the standard deviation of the length L 0 of the unit shape.
 [5]上記発明において、前記絶縁部は、前記第1の細線が設けられた凸部を含んでいてもよい。 [5] In the above invention, the insulating portion may include a convex portion provided with the first fine wire.
 [6]本発明に係る配線板は、上記の配線体と、前記配線体を支持する支持体と、を備えた配線板である。 [6] A wiring board according to the present invention is a wiring board including the above wiring body and a support for supporting the wiring body.
 [7]本発明に係るタッチセンサは、上記の配線板を備えたタッチセンサである。 [7] A touch sensor according to the present invention is a touch sensor including the above-described wiring board.
 本発明によれば、第1の細線が、第2の方向に延在する第1の部分と、第3の方向に延在する第2の部分を含む単位形状を繰り返すことで形成されたジグザグ形状を有しているので、モアレの発生の抑制を図ることができる。また、本発明によれば、第1の細線の幅を必要以上に細くする必要がないので、断線の発生を抑制することもできる。 According to the present invention, a first thin line is formed by repeating a unit shape including a first portion extending in a second direction and a second portion extending in a third direction. Since it has a shape, generation of moire can be suppressed. Further, according to the present invention, since it is not necessary to make the width of the first fine line thinner than necessary, the occurrence of disconnection can also be suppressed.
図1は、本発明の実施形態におけるタッチセンサを示す分解斜視図である。FIG. 1 is an exploded perspective view showing a touch sensor according to the embodiment of the present invention. 図2は、本発明の実施形態における第1の導体部及び第1の絶縁部を示す平面図である。FIG. 2 is a plan view showing a first conductor section and a first insulating section in the embodiment of the present invention. 図3は、本発明の実施形態における第1の細線を示す断面図であり、図2のIII-III線に対応した断面図である。FIG. 3 is a cross-sectional view showing a first thin line in the embodiment of the present invention, and is a cross-sectional view corresponding to line III-III in FIG. 図4は、本発明の実施形態における第1の電極パターンを示す拡大平面図であり、図2のIV部の拡大図である。FIG. 4 is an enlarged plan view showing a first electrode pattern according to the embodiment of the present invention, and is an enlarged view of a portion IV in FIG. 図5は、本発明の実施形態における第1の細線を示す拡大平面図であり、図4のV部の拡大図である。FIG. 5 is an enlarged plan view showing a first thin line in the embodiment of the present invention, and is an enlarged view of a portion V in FIG. 図6(a)~図6(e)は、本発明の実施形態におけるタッチセンサの製造方法を示す断面図である。6A to 6E are cross-sectional views illustrating a method for manufacturing a touch sensor according to an embodiment of the present invention. 図7は、本発明の実施形態においてタッチセンサを製造する際に用いられる凹版の拡大平面図である。FIG. 7 is an enlarged plan view of an intaglio used when manufacturing a touch sensor in the embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本実施形態におけるタッチセンサを示す分解斜視図である。図1に示すタッチセンサ1は、静電容量方式のタッチパネルセンサであり、例えば、表示装置(不図示)等と組み合わせて、タッチ位置を検出する機能を有する入力装置として用いられる。表示装置としては、特に限定されず、液晶ディスプレイ、有機ELディスプレイ、電子ペーパ等を用いることができる。このタッチセンサ1は、表示装置の表示領域に対応するように配置された検出電極と駆動電極(後述する第1の電極パターン31及び第2の電極パターン51)を有しており、この2つの電極の間には、外部回路(不図示)から所定電圧が周期的に印加されている。 FIG. 1 is an exploded perspective view showing the touch sensor according to the present embodiment. The touch sensor 1 illustrated in FIG. 1 is a capacitive touch panel sensor, and is used as an input device having a function of detecting a touch position, for example, in combination with a display device (not shown). The display device is not particularly limited, and a liquid crystal display, an organic EL display, electronic paper, or the like can be used. The touch sensor 1 has a detection electrode and a drive electrode (a first electrode pattern 31 and a second electrode pattern 51 described later) arranged so as to correspond to a display area of the display device. A predetermined voltage is periodically applied between the electrodes from an external circuit (not shown).
 このようなタッチセンサ1では、例えば、操作者の指(外部導体)Fがタッチセンサ1に接近すると、この外部導体Fとタッチセンサ1との間でコンデンサ(電気容量)が形成され、2つの電極間の電気的な状態が変化する。タッチセンサ1は、2つの電極間の電気的な変化に基づいて、操作者の操作位置を検出することができる。 In such a touch sensor 1, for example, when an operator's finger (outer conductor) F approaches the touch sensor 1, a capacitor (electric capacity) is formed between the outer conductor F and the touch sensor 1, and two capacitors are formed. The electrical state between the electrodes changes. The touch sensor 1 can detect an operation position of an operator based on an electrical change between two electrodes.
 タッチセンサ1は、図1に示すように、支持体5と配線体10を含む配線板2と、配線板2の片面に貼り付けられたカバー部材70と、を備えている。本実施形態の配線板2は、上記表示装置の視認性を確保するため、全体的に透明性(透光性)を有するように構成されている。本実施形態における「配線体10」が、本発明における「配線体」の一例に相当し、本実施形態における「支持体5」が、本発明における「支持体」の一例に相当し、本実施形態における「配線板2」が、本発明における「配線板」の一例に相当する。 As shown in FIG. 1, the touch sensor 1 includes a wiring board 2 including a support 5 and a wiring body 10, and a cover member 70 attached to one surface of the wiring board 2. The wiring board 2 of the present embodiment is configured to have transparency (light transmission) as a whole in order to ensure the visibility of the display device. The “wiring body 10” in the present embodiment corresponds to an example of the “wiring body” in the present invention, and the “support 5” in the present embodiment corresponds to an example of the “support” in the present invention. The “wiring board 2” in the embodiment corresponds to an example of the “wiring board” in the present invention.
 支持体5は、矩形状の外形を有し、透明性を有する材料で構成されている。この支持体5を構成する材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド樹脂(PI)、ポリエーテルイミド樹脂(PEI)、ポリカーボネート(PC)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、シクロオレフィンポリマー(COP)、シリコーン樹脂(SI)、アクリル樹脂、フェノール樹脂、エポキシ樹脂、ガラス等を用いることができる。この支持体5には、配線体10が貼り付けられており、支持体5によって配線体10が支持されている。この場合、支持体5は、配線体10を支持できる程度の剛性を有していることが好ましい。 The support 5 has a rectangular outer shape and is made of a transparent material. Examples of a material constituting the support 5 include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide resin (PI), polyetherimide resin (PEI), polycarbonate (PC), and polyether ether ketone ( PEEK), liquid crystal polymer (LCP), cycloolefin polymer (COP), silicone resin (SI), acrylic resin, phenol resin, epoxy resin, glass, and the like. The wiring body 10 is attached to the support 5, and the wiring body 10 is supported by the support 5. In this case, it is preferable that the support 5 has such a rigidity that the support 5 can support the wiring body 10.
 配線体10は、図1に示すように、第1の絶縁部20と、第1の導体部30と、第2の絶縁部40と、第2の導体部50と、第3の絶縁部60と、を備えている。この配線体10は、上記表示装置の視認性を確保するために、全体的に透明性(透光性)を有するように構成されている。 As shown in FIG. 1, the wiring body 10 includes a first insulating portion 20, a first conductor portion 30, a second insulating portion 40, a second conductor portion 50, and a third insulating portion 60. And The wiring body 10 is configured to have transparency (light transmission) as a whole in order to ensure the visibility of the display device.
 本実施形態では、第1の導体部30が第1の絶縁部20上に配置されていると共に、第2の導体部50が第2の絶縁部40上に配置されており、第1の絶縁部20に第2の絶縁部40が積層されている。すなわち、第1の導体部30が第2の絶縁部40の一方の側に配置されているのに対し、第2の導体部50が当該第2の絶縁部40の他方の側に配置されており、第2の絶縁部40を介して、第1の導体部30と第2の導体部50とが相互に対向している。そして、第2の導体部50は、第1の導体部30よりも、外部導体Fが接触する側に近い位置に配設されている。つまり、第1の導体部30が表示装置側に位置し、第2の導体部50が操作者側(外部導体Fが接触する面側)に位置している。本実施形態における「第1の絶縁部20」が、本発明における「絶縁部」の一例に相当する場合、本実施形態における「第1の導体部30」が、本発明における「導体部」の一例に相当する。 In the present embodiment, the first conductor portion 30 is disposed on the first insulating portion 20, and the second conductor portion 50 is disposed on the second insulating portion 40. The second insulating section 40 is laminated on the section 20. That is, while the first conductor part 30 is arranged on one side of the second insulating part 40, the second conductor part 50 is arranged on the other side of the second insulating part 40. In addition, the first conductor 30 and the second conductor 50 face each other via the second insulating section 40. The second conductor 50 is arranged at a position closer to the side where the external conductor F contacts than the first conductor 30. That is, the first conductor portion 30 is located on the display device side, and the second conductor portion 50 is located on the operator side (the surface contacting the external conductor F). When the “first insulating section 20” in the present embodiment corresponds to an example of the “insulating section” in the present invention, the “first conductor section 30” in the present embodiment corresponds to the “conductor section” in the present invention. This corresponds to an example.
 図2は本実施形態における第1の導体部及び第1の絶縁部を示す平面図で、図3は本実施形態における第1の細線を示す断面図であり、図2のIII-III線に対応した断面図、図4は本実施形態における第1の電極パターンを示す拡大平面図であり、図2のIV部の拡大図、図5は本実施形態における第1の細線を示す拡大平面図であり、図4のV部の拡大図である。 FIG. 2 is a plan view showing a first conductor portion and a first insulating portion in the present embodiment. FIG. 3 is a cross-sectional view showing a first thin line in the present embodiment. Corresponding cross-sectional views, FIG. 4 is an enlarged plan view showing a first electrode pattern in the present embodiment, an enlarged view of a portion IV in FIG. 2, and FIG. 5 is an enlarged plan view showing a first fine line in the present embodiment. FIG. 5 is an enlarged view of a portion V in FIG.
 図1及び図2に示すように、第1の絶縁部20は、矩形状の外形を有しており、一方側の主面で、第1の導体部30を保持している。この第1の絶縁部20は、第1の導体部30と支持体5との間に介在しており、第1の導体部30と支持体5とを相互に接着して固定している。 As shown in FIGS. 1 and 2, the first insulating portion 20 has a rectangular outer shape, and holds the first conductor portion 30 on one main surface. The first insulating section 20 is interposed between the first conductor section 30 and the support 5, and fixes the first conductor section 30 and the support 5 by bonding each other.
 図3に示すように、この第1の絶縁部20は、略平坦な平坦部21と、導体部30側(図3中の上方向)に向かって突出する凸部22と、を有している。平坦部21は、全体的に、略均一な厚さを有している。凸部22は、第1の導電部30に対応するように平坦部21上に設けられており、第1の電極パターン31や第1の引出配線パターン35に対応するように線状に延在している。一方、平坦部21上には導体部30が設けられていない。 As shown in FIG. 3, the first insulating portion 20 has a substantially flat flat portion 21 and a convex portion 22 protruding toward the conductor portion 30 (upward in FIG. 3). I have. The flat portion 21 has a substantially uniform thickness as a whole. The convex portion 22 is provided on the flat portion 21 so as to correspond to the first conductive portion 30, and linearly extends so as to correspond to the first electrode pattern 31 and the first lead-out wiring pattern 35. are doing. On the other hand, the conductor portion 30 is not provided on the flat portion 21.
 このような第1の絶縁部20は、透明性と電気絶縁性を有する樹脂材料で構成されている。この透明性を有する樹脂材料としては、例えば、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、ビニル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂等のUV硬化性樹脂、熱硬化性樹脂又は熱可塑性樹脂等を例示することができる。 The first insulating portion 20 is made of a resin material having transparency and electrical insulation. Examples of the transparent resin material include, for example, an epoxy resin, an acrylic resin, a polyester resin, a urethane resin, a vinyl resin, a silicone resin, a phenol resin, a UV curable resin such as a polyimide resin, a thermosetting resin, or a thermoplastic resin. And the like.
 図1及び図2に示すように、第1の導体部30は、第1の絶縁部20上に設けられており、第1の絶縁部20によって保持されている。第1の導体部30は、複数の導電性粒子と、導電性粒子同士を結着するバインダ樹脂とを含んでいる。この第1の導体部30は、導電性ペーストを印刷して硬化させることで形成されている。導電性ペーストの具体例としては、導電性粒子及びバインダ樹脂を、水、もしくは溶剤、及び各種添加剤に混合して構成されたものを例示することができる。なお、導電性ペーストからバインダ樹脂を省略してもよい。 及 び As shown in FIGS. 1 and 2, the first conductor 30 is provided on the first insulating part 20 and is held by the first insulating part 20. The first conductor 30 includes a plurality of conductive particles and a binder resin that binds the conductive particles. The first conductor portion 30 is formed by printing and hardening a conductive paste. Specific examples of the conductive paste include those formed by mixing conductive particles and a binder resin with water, a solvent, and various additives. Note that the binder resin may be omitted from the conductive paste.
 導電性粒子の具体例としては、銀、銅、ニッケル、スズ、ビスマス、亜鉛、インジウム、パラジウム等の金属材料や、グラファイト、カーボンブラック(ファーネスブラック、アセチレンブラック、ケッチェンブラック)、カーボンナノチューブ、カーボンナノファイバ等のカーボン系材料を挙げることができる。なお、導電性粒子として、金属塩を用いてもよい。金属塩の具体例としては、上述の金属の塩を挙げることができる。バインダ樹脂の具体例としては、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ビニル樹脂、ウレタン樹脂、フェノール樹脂、ポリイミド樹脂、シリコーン樹脂、フッ素樹脂等を挙げることができる。溶剤の具体例としては、α-テルピネオール、ブチルカルビトールアセテート、ブチルカルビトール、1-デカノール、ブチルセルソルブ、ジエチレングリコールモノエチルエーテルアセテート、テトラデカン等を挙げることができる。 Specific examples of the conductive particles include metal materials such as silver, copper, nickel, tin, bismuth, zinc, indium, and palladium, graphite, carbon black (furnace black, acetylene black, Ketjen black), carbon nanotube, and carbon nanotube. Carbon-based materials such as nanofibers can be used. Note that a metal salt may be used as the conductive particles. Specific examples of the metal salt include the above-mentioned metal salts. Specific examples of the binder resin include an acrylic resin, a polyester resin, an epoxy resin, a vinyl resin, a urethane resin, a phenol resin, a polyimide resin, a silicone resin, a fluorine resin, and the like. Specific examples of the solvent include α-terpineol, butyl carbitol acetate, butyl carbitol, 1-decanol, butyl cellosolve, diethylene glycol monoethyl ether acetate, tetradecane, and the like.
 第1の導体部30は、図1及び図2に示すように、複数の第1の電極パターン31と複数の第1の引出配線パターン35を含んでいる。第1の電極パターン31と第1の引出配線パターン35は、第1の絶縁部20の凸部22上に形成されており、同一平面上に位置している(図3参照)。なお、第1の電極パターン31の数は特に限定されず、任意に設定することができ、第1の引出配線パターン35の数も特に限定されず、第1の電極パターン31の数に応じて設定される。 1) As shown in FIGS. 1 and 2, the first conductor portion 30 includes a plurality of first electrode patterns 31 and a plurality of first lead-out wiring patterns 35. The first electrode pattern 31 and the first lead-out wiring pattern 35 are formed on the convex portion 22 of the first insulating portion 20 and are located on the same plane (see FIG. 3). The number of the first electrode patterns 31 is not particularly limited and can be set arbitrarily. The number of the first lead-out wiring patterns 35 is not particularly limited, either, and depends on the number of the first electrode patterns 31. Is set.
 それぞれの第1の電極パターン31は、図中X方向に延在している帯状のパターンであり、複数の第1の電極パターン31は、図中Y方向に並べられている。それぞれの第1の電極パターン31は、複数の細線32,33を相互に交差させることで形成されたメッシュ形状を有しており、このメッシュ形状は、繰り返し配列された矩形状の単位メッシュ311を有している。 Each first electrode pattern 31 is a band-shaped pattern extending in the X direction in the figure, and the plurality of first electrode patterns 31 are arranged in the Y direction in the figure. Each of the first electrode patterns 31 has a mesh shape formed by intersecting a plurality of fine wires 32 and 33 with each other. The mesh shape includes a rectangular unit mesh 311 that is repeatedly arranged. Have.
 第1の細線32は、図3に示すように、第1の絶縁部20の凸部22上に設けられている。このように、第1の細線32を凸部22上に形成することで、当該第1の細線32の強度の向上を図ることができる。第1の細線32は、当該細線32の幅方向に切断した断面を視た場合に、第1の絶縁部20から離れるに従い、次第に幅狭となるテーパ形状を有している。この第1の細線32において、第1の絶縁部20の凸部22と接触する第1の接触面32aは、第2の絶縁部40と接触する第2の接触面32bに対して相対的に粗くなっている。具体的には、第1の接触面32aの面粗さRaは、0.1μm~3μmであるのに対して、第2の接触面32bの面粗さRaは、0.001μm~1.0μmとなっている。この面粗さRaは、JIS法(JIS B0601(2013年3月21日改正))に定義される「算術平均粗さRa」である。なお、特に図示しないが、第2の細線33、並びに、第1の引出配線パターン35及び第2の導体部50の他の細線も、図3に示す第1の細線32と同じような断面形状を有している。 (3) The first fine wire 32 is provided on the convex portion 22 of the first insulating portion 20, as shown in FIG. By forming the first fine wires 32 on the convex portions 22 in this manner, the strength of the first fine wires 32 can be improved. The first fine wire 32 has a tapered shape that becomes gradually narrower as the distance from the first insulating portion 20 increases when a cross section of the fine wire 32 cut in the width direction is viewed. In the first fine wire 32, the first contact surface 32a that contacts the convex portion 22 of the first insulating portion 20 is relatively positioned with respect to the second contact surface 32b that contacts the second insulating portion 40. It is rough. Specifically, the surface roughness Ra of the first contact surface 32a is 0.1 μm to 3 μm, whereas the surface roughness Ra of the second contact surface 32b is 0.001 μm to 1.0 μm. It has become. The surface roughness Ra is “arithmetic mean roughness Ra” defined by the JIS method (JIS B0601 (revised on March 21, 2013)). Although not particularly shown, the second fine wire 33 and other fine wires of the first lead-out wiring pattern 35 and the second conductor portion 50 also have the same cross-sectional shape as the first fine wire 32 shown in FIG. have.
 本実施形態では、それぞれの第1の細線32は、図2及び図4に示すように、全体として、第1の電極パターン31の延在方向(図中X方向)に対して交差する方向(以下、「m方向」とも称する。)に沿って延在するジグザグ形状を有している。そして、複数の第1の細線32は、m方向に対して交差する方向(以下、「n方向」とも称する。)に実質的に等間隔で並べられている。本実施形態におけるm方向が、本発明における第1の方向の一例に相当する。 In the present embodiment, as shown in FIGS. 2 and 4, each first thin line 32 as a whole intersects with a direction (X direction in the drawing) in which the first electrode pattern 31 extends (X direction). Hereinafter, also referred to as “m direction”). The plurality of first fine lines 32 are arranged at substantially equal intervals in a direction intersecting with the m direction (hereinafter, also referred to as “n direction”). The m direction in the present embodiment corresponds to an example of the first direction in the present invention.
 なお、X方向に対するm方向の交差角度αは、0°より大きく40°以下であることが好ましい(0°<α≦40°)。特に限定されないが、一例を挙げれば、X方向に対するm方向の交差角度αは30°であり、m方向に対するn方向の交差角度は90°であり、X方向に対するn方向の交差角度βは120°である。 The angle of intersection α in the m direction with respect to the X direction is preferably larger than 0 ° and equal to or smaller than 40 ° (0 ° <α ≦ 40 °). Although not particularly limited, for example, the intersection angle α in the m direction with respect to the X direction is 30 °, the intersection angle in the n direction with respect to the m direction is 90 °, and the intersection angle β in the n direction with respect to the X direction is 120. °.
 具体的には、図4及び図5に示すように、この第1の細線32は、屈曲部324をそれぞれ有する複数の単位形状323を繰り返すことでジグザグ状に形成されている。個々の単位形状323は、屈曲部324で相互に連結された第1及び第2の部分321,322から構成されている。個々の単位形状323において第1の部分321の端部に第2の部分322が連結されており、当該第2の部分322の端部に隣の単位形状323の第1の部分321が連結されている。第1及び第2の部分321,322は、実質的に同一の幅を有しており、具体的には、0.5μm~20μmの幅を有している。従って、単位形状323は始点Pと終点Pの間で実質的に一定の幅を有しており、結果的に、第1の細線32は、その全長に亘って実質的に一定の幅を有している。なお、「実質的に同一」及び「実質的に一定」とは、第1の細線32の線幅が当該線幅の平均値に対して±5%以下であり、好ましくは±2.5%以下であり、より好ましくは±1.25%以下であることを意味する。 Specifically, as shown in FIGS. 4 and 5, the first fine line 32 is formed in a zigzag shape by repeating a plurality of unit shapes 323 each having a bent portion 324. Each unit shape 323 is composed of first and second portions 321 and 322 interconnected by a bent portion 324. In each unit shape 323, a second portion 322 is connected to an end of the first portion 321, and an end of the second portion 322 is connected to a first portion 321 of an adjacent unit shape 323. ing. The first and second portions 321 and 322 have substantially the same width, specifically, have a width of 0.5 μm to 20 μm. Thus, the unit shape 323 has a substantially constant width between the starting point P S and the end point P E, consequently, the first thin line 32 is substantially constant width over its entire length have. In addition, “substantially the same” and “substantially constant” mean that the line width of the first fine line 32 is ± 5% or less, preferably ± 2.5%, relative to the average value of the line width. Or less, more preferably ± 1.25% or less.
 本実施形態では、第1の部分321の長さLは、第2の部分322の長さLよりも長くなっている。特に限定されないが、第1の部分321の長さLと第2の部分322の長さLが、下記の(5)式を満たしていることが好ましい。下記の(5)式において、Lは、m方向に沿った第1の部分321の長さであり、Lは、m方向に沿った第2の部分322の長さである。 In the present embodiment, the length L1 of the first portion 321 is longer than the length L2 of the second portion 322. Is not particularly limited, the length L 1 of the first portion 321 is the length L 2 of the second portion 322 preferably satisfy the following expression (5). In the following equation (5), L 1 is the length of the first portion 321 along the m direction, L 2 is the length of the second portion 322 along the m direction.
 1/10×L≦L≦1/2×L … (5) 1/10 × L 1 ≦ L 2 ≦ 1/2 × L 1 (5)
 また、第1の部分321はp方向に沿って延在しているのに対し、第2の部分はq方向に沿って延在しており、第1及び第2の部分321,322の延在方向が相互に異なっている(θ≠-θ)。具体的には、p方向及びq方向が下記の(6)及び(7)式を満たすように、第1及び第2の部分321,322が形成されている。下記の(6)及び(7)式が満たされることで、n方向に沿った単位形状323の幅Lを小さくすることができ、第1の細線32が視認されてしまう可能性を低減することができる。 Further, while the first portion 321 extends along the p direction, the second portion extends along the q direction, and the first and second portions 321 and 322 extend. The orientations are different from each other (θ 1 ≠ −θ 2 ). Specifically, the first and second portions 321 and 322 are formed such that the p direction and the q direction satisfy the following equations (6) and (7). By the following (6) and (7) below is satisfied, it is possible to reduce the width L 3 of the unit shapes 323 along the n direction, the first thin line 32 to reduce the possibility that is visually recognized be able to.
 0°<θ<45° … (6)
 θ-90°<θ<-θ … (7)
0 ° <θ 1 <45 ° (6)
θ 1 −90 ° <θ 2 <−θ 1 (7)
 上記の(6)及び(7)式において、θは、m方向に対してp方向のなす角であり、θは、m方向に対してq方向のなす角である。但し、上記の(6)及び(7)式において、m方向からp方向への鋭角側の回転方向(図5において時計廻り(同図においてθを示す矢印の方向))を正の角度で表現し、m方向からp方向とは逆の回転方向(図5において反時計廻り(同図においてθを示す矢印の方向))を負の角度で表現している。なお、本実施形態において、m方向に沿って延在する仮想直線VLは、単位形状323の始点Pと終点Pの両方を通過する。本実施形態におけるp方向が、本発明における第2の方向の一例に相当し、本実施形態におけるq方向が、本発明における第3の方向の一例に相当する。 In the above equations (6) and (7), θ 1 is the angle between the m direction and the p direction, and θ 2 is the angle between the m direction and the q direction. However, in the above (6) and (7), the rotational direction of the acute angle side from m direction to the p direction (direction of an arrow indicating the theta 1 in clockwise (FIG. 5)) to a positive angle expressed, expresses the opposite rotational direction (counterclockwise in FIG. 5 (direction of an arrow indicating the theta 2 in this figure)) at a negative angle to the p direction from the m direction. In the present embodiment, the virtual straight line VL 1 which extends along the m direction, passes through both of the starting point P S and the end point P E of the unit shape 323. The p direction in the present embodiment corresponds to an example of a second direction in the present invention, and the q direction in the present embodiment corresponds to an example of a third direction in the present invention.
 また、本実施形態では、第1の細線32の幅wと、m方向に沿った単位形状323の長さLとが、下記の(8)式を満たしている。但し、下記の(9)式に示すように、単位形状323の長さLは、上述の第1の部分322の長さLと第2の部分323の長さLの合計である。下記の(8)式においてLがw以上であることで、単位形状323の長さLよりも第1の細線32が相対的に太くなることによる視認性の低下を抑制することができる。一方、下記の(8)式においてLが10×w以下であることで、表示装置のサブピクセルやブラックマトリクスと電極パターン31との重なりの規則性を一層低下させることができる。 Further, in the present embodiment, the width w of the first fine wire 32, the length L 0 of the unit shapes 323 along the m direction, satisfies the equation (8) below. However, as shown in (9) below, the length L 0 of the unit shape 323 is the sum of the length L 2 of the length L 1 and the second portion 323 of the first portion 322 of the above . In the following expression (8), when L 0 is equal to or more than w, it is possible to suppress a decrease in visibility due to the first thin line 32 being relatively thicker than the length L 0 of the unit shape 323. . On the other hand, when L 0 is equal to or less than 10 × w in the following expression (8), the regularity of the overlap between the electrode pattern 31 and the sub-pixel or black matrix of the display device can be further reduced.
 w≦L≦10×w … (8)
 L=L+L … (9)
w ≦ L 0 ≦ 10 × w (8)
L 0 = L 1 + L 2 (9)
 また、本実施形態では、m方向に沿った単位形状323の長さLが、下記の(10)式を満たすように設定されている。下記の(10)式において、σLは、単一の第1の細線32が有する全ての単位形状323の長さLの標準偏差である。 Further, in the present embodiment, the length L 0 of the unit shapes 323 along the m direction is set so as to satisfy the following equation (10). In the following expression (10), σL 0 is the standard deviation of the length L 0 of all the unit shapes 323 of the single first fine line 32.
 σL≦5.0μm … (10) σL 0 ≦ 5.0 μm (10)
 さらに、本実施形態では、m方向に沿った単位形状323の長さLと、第1の電極パターン31の単位メッシュ311のm方向に沿ったピッチPとが、下記の(11)式を満たしており、下記の(12)式を満たしていることが好ましく、下記の(13)式を満たしていることがより好ましい。特に限定されないが、一例を挙げれば、単位形状323の長さLが10μmであるのに対し、単位メッシュ311のピッチPが200μmである。なお、ピッチPは、図4に示すように、相互に隣り合う際2の細線33の中心間距離であり、当該第2の細線33の仮想直線VL同士のm方向に沿った距離である。この仮想直線VLは、上述の第1の細線32の仮想直線VLと同様の要領で設定される。 Further, in the present embodiment, the length L 0 of the unit shape 323 along the m direction and the pitch P of the unit mesh 311 of the first electrode pattern 31 along the m direction are given by the following expression (11). It is preferable to satisfy the following expression (12), and it is more preferable to satisfy the following expression (13). Although not particularly limited, for example, the length L 0 of the unit shape 323 is 10 μm, and the pitch P of the unit mesh 311 is 200 μm. As shown in FIG. 4, the pitch P is the distance between the centers of the thin lines 33 when they are adjacent to each other, and the distance between the virtual straight lines VL2 of the second thin lines 33 along the m direction. . This virtual straight line VL 2 is set in the same manner as the virtual straight line VL 1 of the first thin line 32 described above.
 5×L≦P≦200×L … (11)
 15×L≦P≦150×L … (12)
 20×L≦P≦100×L … (13)
5 × L 0 ≦ P ≦ 200 × L 0 (11)
15 × L 0 ≦ P ≦ 150 × L 0 (12)
20 × L 0 ≦ P ≦ 100 × L 0 (13)
 それぞれの第2の細線33も、図4に示すように、全体としてn方向に延在するジグザグ形状を有しており、複数の第2の細線33は、m方向に実質的に等間隔で並べられている。この第2の細線33は、屈曲部334で相互に連結された第1及び第2の部分331,332から構成された単位形状333を繰り返すことで形成されており、上述の第1の細線32と基本的に同様の形状を有している。なお、第1の細線32と第2の細線33が実質的に直交していなくてもよい。 As shown in FIG. 4, each of the second fine lines 33 also has a zigzag shape extending in the n direction as a whole, and the plurality of second fine lines 33 are arranged at substantially equal intervals in the m direction. Are lined up. The second fine wire 33 is formed by repeating a unit shape 333 composed of the first and second portions 331 and 332 connected to each other by the bent portion 334, and is formed by the first fine wire 32 described above. And have basically the same shape. Note that the first thin line 32 and the second thin line 33 do not have to be substantially orthogonal.
 図1及び図2に示すように、それぞれの第1の電極パターン31の長手方向一端には第1の引出配線パターン35の一端が接続されている。それぞれの第1の引出配線パターン35の他端は、配線体10の縁部まで延びている。この第1の引出配線パターン35の他端が、外部回路と電気的に接続される。 As shown in FIGS. 1 and 2, one end of the first lead-out wiring pattern 35 is connected to one end in the longitudinal direction of each first electrode pattern 31. The other end of each first lead-out wiring pattern 35 extends to the edge of the wiring body 10. The other end of the first extraction wiring pattern 35 is electrically connected to an external circuit.
 図1に示すように、第2の絶縁部40は、矩形状の外形を有し、透明性を有する樹脂材料で構成されている。この透明性を有する樹脂材料としては、例えば、上記の第1の絶縁部20を構成する樹脂材料と同様の材料を用いることができる。 As shown in FIG. 1, the second insulating portion 40 has a rectangular outer shape and is made of a transparent resin material. As the transparent resin material, for example, the same material as the resin material forming the first insulating portion 20 can be used.
 第2の絶縁部40は、第1の導体部30を覆うように第1の絶縁部20上に設けられている。この第2の絶縁部40には、上述の第1の絶縁部20と同様に、第2の導体部50に対応するように凸部が形成されている(図3参照)。また、この第2の絶縁部40には、切欠部41が形成されている。この切欠部41からは、第1の引出配線パターン35の他端が露出している。 The second insulating section 40 is provided on the first insulating section 20 so as to cover the first conductor section 30. The second insulating portion 40 has a convex portion corresponding to the second conductor portion 50, similarly to the first insulating portion 20 described above (see FIG. 3). Further, a cutout portion 41 is formed in the second insulating portion 40. The other end of the first extraction wiring pattern 35 is exposed from the notch 41.
 第2の導体部50は、第2の絶縁部40上に設けられており、第2の絶縁部40によって保持されている。この第2の導体部50は、導電性ペーストを印刷して硬化させることで形成されている。導電性ペーストの具体例としては、第1の導体部30を構成する導電性ペーストと同様のものを例示することができる。 The second conductor 50 is provided on the second insulating part 40 and is held by the second insulating part 40. The second conductor portion 50 is formed by printing and curing a conductive paste. As a specific example of the conductive paste, the same as the conductive paste forming the first conductor portion 30 can be exemplified.
 この第2の導体部50は、図1に示すように、複数の第2の電極パターン51と、複数の第2の引出配線パターン55と、を含んでいる。第2の電極パターン51と、第2の引出配線パターン55は、第2の絶縁部40に形成された凸部上に設けられており、同一平面上に位置している(図3参照)。なお、第2の電極パターン51の数は特に限定されず、任意に設定することができ、第2の引出配線パターン55の数も特に限定されず、第2の電極パターン51の数に応じて設定される。 (1) As shown in FIG. 1, the second conductor 50 includes a plurality of second electrode patterns 51 and a plurality of second lead wiring patterns 55. The second electrode pattern 51 and the second lead wiring pattern 55 are provided on a convex portion formed on the second insulating section 40 and are located on the same plane (see FIG. 3). The number of the second electrode patterns 51 is not particularly limited and can be set arbitrarily. The number of the second lead wiring patterns 55 is not particularly limited, either, and depends on the number of the second electrode patterns 51. Is set.
 それぞれの第2の電極パターン51は、図中Y方向に延在している帯状のパターンである。それぞれの第2の電極パターン51は、複数の細線52,53を相互に交差させることで形成されたメッシュ形状を有している。複数の第2の電極パターン51は、図中X方向に並べられており、タッチセンサ1を上側から見た場合に、第1の電極パターン31と交差している。 Each second electrode pattern 51 is a band-shaped pattern extending in the Y direction in the figure. Each second electrode pattern 51 has a mesh shape formed by intersecting a plurality of fine lines 52 and 53 with each other. The plurality of second electrode patterns 51 are arranged in the X direction in the drawing, and intersect with the first electrode patterns 31 when the touch sensor 1 is viewed from above.
 この第2の電極パターン51の第1の細線52は、上述の第1の電極パターン31の第1の細線32と同様に、全体としてm方向に延在するジグザグ形状を有しており、複数の第1の細線52は、n方向に実質的に等間隔で並べられている。第2の電極パターン51の第2の細線53も、上述の第1の電極パターン31の第2の細線33と同様に、全体としてn方向に延在するジグザグ形状を有しており、複数の第2の細線53は、m方向に実質的に等間隔で並べられている。 The first thin line 52 of the second electrode pattern 51 has a zigzag shape extending in the m direction as a whole, like the first thin line 32 of the first electrode pattern 31 described above. Are arranged at substantially equal intervals in the n direction. The second fine line 53 of the second electrode pattern 51 also has a zigzag shape extending in the n direction as a whole similarly to the second fine line 33 of the first electrode pattern 31 described above. The second fine lines 53 are arranged at substantially equal intervals in the m direction.
 第3の絶縁部60は、矩形状の外形を有し、透明性を有する樹脂材料で構成されている。この透明性を有する樹脂材料としては、例えば、上記の第1の絶縁部20を構成する樹脂材料と同様の樹脂材料を用いることができる。 The third insulating portion 60 has a rectangular outer shape and is made of a transparent resin material. As the transparent resin material, for example, the same resin material as the resin material forming the first insulating portion 20 can be used.
 第3の絶縁部60は、第2の導体部50を覆うように第2の絶縁部40上に設けられている。この第3の絶縁部60には、切欠部61が形成されている。この切欠部61からは、第2の引出配線パターン55の他端が露出している。また、この切欠部61は上述の第2の絶縁部40の切欠部41と重なっており、当該切欠部61から第1の引出配線パターン35の他端も露出している。 The third insulating section 60 is provided on the second insulating section 40 so as to cover the second conductor section 50. A cutout portion 61 is formed in the third insulating portion 60. The other end of the second lead wiring pattern 55 is exposed from the notch 61. The notch 61 overlaps the notch 41 of the second insulating portion 40, and the other end of the first lead-out wiring pattern 35 is also exposed from the notch 61.
 カバー部材70は、第3の絶縁部60を介して配線体10に貼り付けられている。カバー部材70は、図1に示すように、可視光線を透過することが可能な透明部71と、可視光線を遮蔽する遮蔽部72とを備えている。透明部71は、矩形状に形成され、遮蔽部72は、透明部71の周囲に矩形枠状に形成されている。なお、このカバー部材70は、第3の絶縁部60側の面に、特に図示しない接着層を有している。 The cover member 70 is attached to the wiring body 10 via the third insulating part 60. As shown in FIG. 1, the cover member 70 includes a transparent portion 71 that can transmit visible light, and a shielding portion 72 that blocks visible light. The transparent part 71 is formed in a rectangular shape, and the shielding part 72 is formed in a rectangular frame shape around the transparent part 71. Note that the cover member 70 has an adhesive layer (not shown) on the surface on the third insulating portion 60 side.
 カバー部材70を構成する透明な材料としては、上述の支持体5を構成する材料と同様のものを用いることができる。また、遮蔽部72は、カバー部材70の裏面の外周部に、例えば、黒色のインクを塗布することにより形成されている。本実施形態では、図1に示すように、このカバー部材70に外部導体F(指F)が接触する。 と し て As the transparent material forming the cover member 70, the same material as the above-described material forming the support 5 can be used. The shielding portion 72 is formed by applying, for example, black ink to the outer peripheral portion of the back surface of the cover member 70. In the present embodiment, as shown in FIG. 1, the outer conductor F (finger F) contacts the cover member 70.
 このカバー部材70が配線体10を支持できる程度の剛性を有していてもよい。この場合には、カバー部材70が本発明における支持体の一例に相当する。また、この場合に、上述の支持体5を省略してもよい。 カ バ ー The cover member 70 may have a rigidity enough to support the wiring body 10. In this case, the cover member 70 corresponds to an example of the support in the present invention. In this case, the above-mentioned support 5 may be omitted.
 以上のように、本実施形態では、第1の細線32が第1及び第2の部分321,322を含む単位形状323を繰り返すことで形成されたジグザグ形状を有し、第1の部分321と第2の部分322が相互に異なる方向に延在している。このため、直線状の細線と比較して、表示装置のサブピクセルやブラックマトリクスと第1の電極パターン31との重なりの規則性が低下するので、周期的に発生するモアレの発生を抑制することができる。 As described above, in the present embodiment, the first thin line 32 has a zigzag shape formed by repeating the unit shape 323 including the first and second portions 321 and 322, and the first portion 321 The second portions 322 extend in mutually different directions. For this reason, the regularity of the overlap between the sub-pixels or the black matrix of the display device and the first electrode pattern 31 is reduced as compared with the linear thin line, so that the occurrence of moiré that occurs periodically is suppressed. Can be.
 また、本実施形態では、細線の幅を変動させることに代えて、第1の細線32の形状を上述のようなジグザグ形状とすることでモアレの発生を抑制している。このため、第1の細線32の幅を必要以上に細くする必要がないので、当該第1の細線32の断線の発生も抑制することができる。 In addition, in the present embodiment, the occurrence of moiré is suppressed by changing the shape of the first fine wire 32 to the above-described zigzag shape instead of changing the width of the fine wire. For this reason, since it is not necessary to make the width of the first fine line 32 smaller than necessary, the occurrence of disconnection of the first fine line 32 can be suppressed.
 第2の細線33や第2の電極パターン51の細線52,53についても同様に、ジグザグ形状を有することで、モアレの発生を抑制しつつ断線の発生の抑制を図ることができる。 Similarly, the second fine wires 33 and the fine wires 52 and 53 of the second electrode pattern 51 also have a zigzag shape, so that it is possible to suppress the occurrence of disconnection while suppressing the occurrence of moire.
 また、本実施形態では、第1の細線32が上述のようなジグザグ形状を有しているので、当該第1の細線32の表面積が増加する。このため、第1の細線32と第2の絶縁部40との接触面積が増えるので、第1の細線32と第2の絶縁部40との間の界面の剥離の発生を抑制することができる。 Also, in the present embodiment, since the first fine wire 32 has the zigzag shape as described above, the surface area of the first fine wire 32 increases. For this reason, the contact area between the first fine wire 32 and the second insulating portion 40 increases, so that the occurrence of separation at the interface between the first fine wire 32 and the second insulating portion 40 can be suppressed. .
 第2の細線33についても同様に、ジグザグ形状を有していることで、第2の細線33と第2の絶縁部40との間の界面の剥離の発生を抑制することができる。また、第2の電極パターン51の細線52,53についても、ジグザグ形状を有していることで、細線52,53と第3の絶縁部60との接触面積が増えるので、細線52,53と第3の絶縁部60との間の界面の剥離の発生を抑制することができる。 Similarly, the second fine wire 33 has a zigzag shape, so that it is possible to suppress the occurrence of separation at the interface between the second fine wire 33 and the second insulating portion 40. Also, since the thin wires 52, 53 of the second electrode pattern 51 also have a zigzag shape, the contact area between the thin wires 52, 53 and the third insulating portion 60 increases. The occurrence of separation at the interface with the third insulating section 60 can be suppressed.
 次に、上記のタッチセンサ1の製造方法について、図6(a)~図7を参照しながら説明する。図6(a)~図6(e)は本実施形態におけるタッチセンサの製造方法を示す断面図、図7は本実施形態においてタッチセンサを製造する際に用いられる凹版の拡大平面図である。 Next, a method of manufacturing the above-described touch sensor 1 will be described with reference to FIGS. 6A to 6E are cross-sectional views illustrating a method for manufacturing a touch sensor according to the present embodiment, and FIG. 7 is an enlarged plan view of an intaglio used when manufacturing the touch sensor according to the present embodiment.
 まず、図6(a)に示すように、第1の導電部30に対応する形状の凹部101が形成された凹版100を準備する。この凹版100を構成する材料としては、ニッケル、シリコン、二酸化珪素等のガラス類、有機シリカ類、グラッシーカーボン、熱可塑性樹脂、光硬化性樹脂等を例示することができる。なお、離型性を向上するために、炭素系材料、シリコーン系材料、フッ素系材料、セラミック系材料、アルミニウム系材料等からなる離型層(不図示)を凹部101の表面に予め形成することが好ましい。 First, as shown in FIG. 6A, an intaglio 100 in which a concave portion 101 having a shape corresponding to the first conductive portion 30 is formed is prepared. Examples of the material constituting the intaglio 100 include glasses such as nickel, silicon, and silicon dioxide, organic silicas, glassy carbon, thermoplastic resins, and photocurable resins. In order to improve the releasability, a release layer (not shown) made of a carbon-based material, a silicone-based material, a fluorine-based material, a ceramic-based material, an aluminum-based material, or the like is formed in advance on the surface of the recess 101. Is preferred.
 本実施形態では、図7に示すように、凹部101は、第1及び第2の細線32,33に対応したジグザグな平面形状を有している。この図7は、図4のVII部の第1及び第2の細線32,33に対応した凹部101の平面形状を示している。具体的には、凹部101は、第1の細線32に対応した第1の溝102と、第2の細線33に対応した第2の溝104と、を含んでいる。第1の溝102は、第1の細線32の単位形状323に対応した単位形状103を繰り返すことで形成されており、第2の溝104は、第2の細線33の単位形状333に対応した単位形状105を繰り返すことで形成されている。 In the present embodiment, as shown in FIG. 7, the concave portion 101 has a zigzag planar shape corresponding to the first and second fine lines 32 and 33. FIG. 7 shows a planar shape of the concave portion 101 corresponding to the first and second fine lines 32 and 33 of the VII portion in FIG. Specifically, the recess 101 includes a first groove 102 corresponding to the first fine line 32 and a second groove 104 corresponding to the second fine line 33. The first groove 102 is formed by repeating the unit shape 103 corresponding to the unit shape 323 of the first thin line 32, and the second groove 104 corresponds to the unit shape 333 of the second thin line 33. It is formed by repeating the unit shape 105.
 次いで、上記の凹版100の凹部101に導電性材料110を充填する。第1の凹版100の凹部101に充填される導電性材料110としては、上述の導電性ペーストを用いる。導電性材料110の充填方法としては、例えば、ディスペンス法、インクジェット法、スクリーン印刷法を挙げることができる。或いは、導電性材料110の充填方法として、スリットコート法、バーコート法、ブレードコート法、ディップコート法、スプレーコート法、スピンコート法での塗工の後に、凹部101以外に塗工された導電性材料110を拭き取る、掻き取る、吸い取る、貼り取る、洗い流す、若しくは、吹き飛ばす方法も挙げることができる。 Next, the recess 101 of the intaglio 100 is filled with a conductive material 110. As the conductive material 110 to be filled in the concave portions 101 of the first intaglio 100, the above-mentioned conductive paste is used. Examples of the method for filling the conductive material 110 include a dispensing method, an ink-jet method, and a screen printing method. Alternatively, as a method of filling the conductive material 110, after coating by a slit coating method, a bar coating method, a blade coating method, a dip coating method, a spray coating method, or a spin coating method, the conductive coating applied to the portions other than the concave portion 101. Examples of the method include wiping, scraping, sucking, sticking, rinsing, or blowing off the conductive material 110.
 次に、図6(b)に示すように、導電性材料110を乾燥若しくは加熱することにより第1の導体部30を形成する。導電性材料110の乾燥若しくは加熱条件は、当該導電性材料110の組成等に応じて適宜設定することができる。この乾燥若しくは加熱条件により、導電性材料110が体積収縮し、第1の導体部30の凹凸状の第1の接触面32aが形成される。この際、導電性材料110の上面を除く外面は、凹部101に沿った形状に形成される。なお、導電性材料110の処理方法は加熱に限定されない。赤外線、紫外線、レーザー光等のエネルギー線を照射してもよいし、乾燥のみでもよい。また、これらの2種以上の処理方法を組合せてもよい。 Next, as shown in FIG. 6B, the first conductor portion 30 is formed by drying or heating the conductive material 110. Conditions for drying or heating the conductive material 110 can be set as appropriate depending on the composition of the conductive material 110 or the like. Under the drying or heating conditions, the conductive material 110 contracts in volume, and the first contact surface 32a of the first conductor portion 30 having an uneven shape is formed. At this time, the outer surface except the upper surface of the conductive material 110 is formed in a shape along the concave portion 101. Note that the method for treating the conductive material 110 is not limited to heating. Irradiation with energy rays such as infrared rays, ultraviolet rays, and laser beams may be performed, or only drying may be performed. Further, these two or more processing methods may be combined.
 次いで、図6(c)に示すように、第1の絶縁部20を形成するための樹脂材料120を凹版100上に塗布する。このような樹脂材料120としては、上述した第1の絶縁部20を構成する材料を用いる。樹脂材料120の塗布方法としては、スクリーン印刷法、スプレーコート法、バーコート法、ディップ法、インクジェット法等を例示することができる。この塗布により、第1の導体部30が形成された凹部101に樹脂材料120が入り込む。 Next, as shown in FIG. 6C, a resin material 120 for forming the first insulating portion 20 is applied on the intaglio 100. As such a resin material 120, the above-described material forming the first insulating portion 20 is used. Examples of the method for applying the resin material 120 include a screen printing method, a spray coating method, a bar coating method, a dipping method, and an ink jet method. By this application, the resin material 120 enters the concave portion 101 where the first conductor portion 30 is formed.
 次いで、図6(d)に示すように、樹脂材料120上に支持体5を載置する。この配置は、樹脂材料120と支持体5との間に気泡が入り込むことを抑制するために、真空下で行うことが好ましい。そして、樹脂材料120を硬化させることで、凸部22を有する第1の絶縁部20を形成する。樹脂材料120を硬化させる方法としては、紫外線、赤外線レーザー光等のエネルギー線照射、加熱、加熱冷却、乾燥等を例示することができる。 Next, as shown in FIG. 6D, the support 5 is placed on the resin material 120. This arrangement is preferably performed under vacuum in order to suppress air bubbles from entering between the resin material 120 and the support 5. Then, by curing the resin material 120, the first insulating portion 20 having the convex portion 22 is formed. Examples of a method for curing the resin material 120 include irradiation with energy rays such as ultraviolet rays and infrared laser light, heating, heating and cooling, and drying.
 なお、本実施形態では、樹脂材料120を凹版100に塗布した後に支持体5を積層しているが、特にこれに限定されない。例えば、樹脂材料120を支持体5に予め塗布しておき、当該支持体5を凹版100に載置してもよい。 In the present embodiment, the support 5 is laminated after the resin material 120 is applied to the intaglio 100, but the present invention is not particularly limited to this. For example, the resin material 120 may be applied to the support 5 in advance, and the support 5 may be placed on the intaglio 100.
 次いで、図6(e)に示すように、支持体5、第1の絶縁部20、及び、第1の導体部30を凹版100から離型させる。これにより、中間体3を得ることができる。 Next, as shown in FIG. 6E, the support 5, the first insulating part 20, and the first conductor part 30 are released from the intaglio 100. Thereby, Intermediate 3 can be obtained.
 第2の絶縁部40及び第2の導体部50も凹版を用いて形成することができる。すなわち、先ず、図6(a)及び図6(b)と同様の要領で、第2の導体部50を形成する。次いで、中間体3の第1の導体部30が形成されている側と、第2の導体部50が充填された凹版とを、第2の絶縁部40の前駆体となる樹脂材料を介して接着する。次いで、当該樹脂材料を硬化させて第2の絶縁部40を形成した後に、第2の導体部50及び第2の絶縁部40と共に凹版から中間体3を離型する。これにより、配線板2を得ることができる。 The second insulating part 40 and the second conductor part 50 can also be formed using an intaglio. That is, first, the second conductor portion 50 is formed in the same manner as in FIGS. 6A and 6B. Next, the side of the intermediate body 3 where the first conductor 30 is formed and the intaglio filled with the second conductor 50 are interposed via a resin material which is a precursor of the second insulating part 40. Glue. Next, after the resin material is cured to form the second insulating portion 40, the intermediate body 3 is released from the intaglio together with the second conductor portion 50 and the second insulating portion 40. Thereby, the wiring board 2 can be obtained.
 次いで、配線板2の第2の導体部50が形成されている側の主面に、第3の絶縁部60を介してカバー部材70を貼り付ける。以上により、本実施形態のタッチセンサ1を得ることができる。 Next, the cover member 70 is attached to the main surface of the wiring board 2 on the side where the second conductor portion 50 is formed via the third insulating portion 60. As described above, the touch sensor 1 of the present embodiment can be obtained.
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 例えば、上述の実施形態では、第1の電極パターン31が帯状のパターンを有しているが、第1の電極パターン31のパターン形状は、特にこれに限定されない。例えば、第1の電極パターンが、所謂、ダイヤモンドパターンを有してもよい。第2の電極パターン51についても同様に、帯状パターンに代えて、ダイヤモンドパターンを有してもよい。 For example, in the above-described embodiment, the first electrode pattern 31 has a band-shaped pattern, but the pattern shape of the first electrode pattern 31 is not particularly limited to this. For example, the first electrode pattern may have a so-called diamond pattern. Similarly, the second electrode pattern 51 may have a diamond pattern instead of the strip pattern.
 また、第1の導体部30の細線32,33及び第2の導体部50の細線52,53は、図3に示すように、上方に向かって凸状の台形の断面形状を有しているが、特にこれに限定されない。例えば、各細線の頂面(図5においては第2の接触面32b)が、上方に向かって凸状の曲面形状であってもよい。この場合、各細線の頂面は、テーパ形状を形成する二つの平面と接続されている。 Further, the thin wires 32, 33 of the first conductor portion 30 and the thin wires 52, 53 of the second conductor portion 50 have trapezoidal cross-sectional shapes projecting upward as shown in FIG. However, the present invention is not particularly limited to this. For example, the top surface of each thin line (the second contact surface 32b in FIG. 5) may have a curved shape that is convex upward. In this case, the top surface of each thin line is connected to two planes forming a tapered shape.
 また、視認性向上のために、第1及び第2の導体部30,50の細線32,33,52,53が、上述した導電性粒子を含有した導電層に加えて、当該導電層よりも低い反射率を有する黒色層を有していてもよい。この黒色層は、カーボンペーストを印刷することで形成されており、カーボン系材料を含有している。この黒色層は、導電層よりも、外部導体が接触する側に近い位置に配設されている。つまり、導電層が表示装置側に位置し、黒色層が操作者側(外部導体が接触する面側)に位置している。 In addition, in order to improve visibility, the fine wires 32, 33, 52, 53 of the first and second conductor portions 30, 50 are not only in addition to the above-described conductive layer containing the conductive particles, but also in comparison with the conductive layer. It may have a black layer having a low reflectance. This black layer is formed by printing a carbon paste, and contains a carbon-based material. The black layer is provided at a position closer to the side where the external conductor contacts than the conductive layer. That is, the conductive layer is located on the display device side, and the black layer is located on the operator side (the surface contacting the external conductor).
 なお、カーボン系材料に代えて、黒色の金属酸化物の粒子を用いてもよい。この場合には、導電層において操作者側に位置する金属粒子を酸化処理することで、黒色層を形成することができる。 Note that black metal oxide particles may be used instead of the carbon-based material. In this case, a black layer can be formed by oxidizing the metal particles located on the operator side in the conductive layer.
 或いは、この黒色層が導電性を有していなくてもよい。この場合には、例えば、黒インクを印刷することで黒色層を形成することができ、当該黒色層は黒色の顔料を含有している。 Alternatively, the black layer may not have conductivity. In this case, for example, a black layer can be formed by printing black ink, and the black layer contains a black pigment.
 また、上述の支持体5に代えて、第1の絶縁部20の下面に実装対象(フィルム、表面ガラス、偏光板、ディスプレイガラス等)を接着して、配線体10を実装対象により支持させる形態として配線体を構成してもよい。また、この場合に、当該第1の絶縁部20の下面に剥離シートを設け、実装時に当該剥離シートを剥がして実装対象に接着して実装する形態としてもよい。或いは、第1の絶縁部20側から配線体10を覆う樹脂部をさらに設け、当該樹脂部を介して、上述の実装対象に接着して実装する形態としてもよい。或いは、第3の絶縁部60側を上述の実装対象に接着して実装する形態としてもよい。これらの場合、配線体を実装する実装対象が本発明の支持体の一例に相当する。 In addition, instead of the above-described support 5, a mounting target (a film, a surface glass, a polarizing plate, a display glass, or the like) is bonded to the lower surface of the first insulating unit 20, and the wiring body 10 is supported by the mounting target. May be configured as a wiring body. Further, in this case, a release sheet may be provided on the lower surface of the first insulating portion 20, and the release sheet may be peeled off at the time of mounting and adhered to a mounting object to mount. Alternatively, a mode in which a resin part that covers the wiring body 10 from the first insulating part 20 side is further provided, and the resin part is adhered to the above-described mounting object via the resin part and mounted is also possible. Alternatively, a mode in which the third insulating portion 60 side is adhered to the above-described mounting target and mounted is also possible. In these cases, the mounting object on which the wiring body is mounted corresponds to an example of the support of the present invention.
 さらに、上述の実施形態では、配線体又は配線板は、タッチセンサに用いられるとして説明したが、特にこれに限定されない。例えば、配線体に通電して抵抗加熱等で発熱させることにより当該配線体をヒーターとして用いてもよい。また、配線体の導体部の一部を接地することにより当該配線体を電磁遮蔽シールドとして用いてもよい。また、配線体をアンテナとして用いてもよい。この場合、配線体を実装する実装対象が本発明の支持体の一例に相当する。 Further, in the above-described embodiment, the wiring body or the wiring board is described as being used for the touch sensor, but is not particularly limited to this. For example, the wiring body may be used as a heater by energizing the wiring body to generate heat by resistance heating or the like. Alternatively, the wiring body may be used as an electromagnetic shield by grounding a part of the conductor of the wiring body. Further, a wiring body may be used as an antenna. In this case, the mounting object on which the wiring body is mounted corresponds to an example of the support of the present invention.
1…タッチセンサ
 2…配線板
 3…中間体
 5…支持体
  10…配線体
   20…第1の絶縁部
    21…平坦部
    22…凸部
  30…第1の導体部
   31…第1の電極パターン
     311…単位メッシュ
    32…第1の細線
      32a…第1の接触面
      32b…第2の接触面
     321…第1の部分
     322…第2の部分
     323…単位形状
      324…屈曲部
    33…第2の細線
     331…第1の部分
     332…第2の部分
     333…単位形状
      334…屈曲部
   35…第1の引出配線パターン
  40…第2の絶縁部
   41…切欠部
  50…第2の導体部
   51…第2の電極パターン
   55…第2の引出配線パターン
  60…第3の絶縁部
   61…切欠部
  70…カバー部材
   71…透明部
   72…遮蔽部
100…凹版
 101…凹部
  102…第1の溝
   103…単位形状
  104…第2の溝
   105…単位形状
110…導電性材料
120…樹脂材料
F…外部導体
DESCRIPTION OF SYMBOLS 1 ... Touch sensor 2 ... Wiring board 3 ... Intermediate body 5 ... Support body 10 ... Wiring body 20 ... First insulating part 21 ... Flat part 22 ... Convex part 30 ... First conductor part 31 ... First electrode pattern 311 ... Unit mesh 32 ... First thin line 32a ... First contact surface 32b ... Second contact surface 321 ... First part 322 ... Second part 323 ... Unit shape 324 ... Bent part 33 ... Second thin line 331 ... first part 332 ... second part 333 ... unit shape 334 ... bend part 35 ... first lead-out wiring pattern 40 ... second insulating part 41 ... notch part 50 ... second conductor part 51 ... second Electrode pattern 55... Second lead-out wiring pattern 60... Third insulating portion 61... Cutout portion 70... Cover member 71. 02 ... first grooves 103 ... unit shaped 104 ... second grooves 105 ... unit shaped 110 ... conductive material 120 ... resin material F ... outer conductor

Claims (7)

  1.  絶縁部と、
     前記絶縁部上に設けられた導体部と、を備え、
     前記導体部は、相互に交差する複数の細線を有するメッシュ状の電極パターンを含み、
     複数の前記細線は、全体として第1の方向に延在する第1の細線を含み、
     前記第1の細線は、第1の部分と第2の部分を含む単位形状を繰り返すジグザグ形状を有しており、
     前記第1の部分は、前記第1の方向とは異なる第2の方向に延在し、
     前記第2の部分は、前記第1の部分の端部に連結されていると共に、前記第1及び第2の方向とは異なる第3の方向に延在しており、
     前記第1の部分は、前記第2の部分よりも長い配線体。
    An insulation section,
    And a conductor provided on the insulating portion,
    The conductor portion includes a mesh-shaped electrode pattern having a plurality of thin lines crossing each other,
    The plurality of thin lines include a first thin line extending in a first direction as a whole,
    The first thin line has a zigzag shape that repeats a unit shape including a first portion and a second portion,
    The first portion extends in a second direction different from the first direction;
    The second portion is connected to an end of the first portion and extends in a third direction different from the first and second directions;
    The first portion is a wiring body longer than the second portion.
  2.  請求項1に記載の配線体であって、
     下記の(1)及び(2)式を満たす配線体。
     0°<θ<45° … (1)
     θ-90°<θ<-θ … (2)
     但し、上記の(1)及び(2)式において、θは、前記第1の方向に対して前記第2の方向のなす角であり、θは、前記第1の方向に対して前記第3の方向のなす角である。
    The wiring body according to claim 1, wherein
    A wiring body satisfying the following expressions (1) and (2).
    0 ° <θ 1 <45 ° (1)
    θ 1 −90 ° <θ 2 <−θ 1 (2)
    However, in the above equations (1) and (2), θ 1 is an angle formed by the second direction with respect to the first direction, and θ 2 is an angle formed by the first direction with respect to the first direction. The angle formed by the third direction.
  3.  請求項1又は2に記載の配線体であって、
     下記の(3)式を満たす配線体。
     w≦L≦10×w … (3)
     但し、上記の(3)式において、wは、前記第1の細線の幅であり、Lは、前記単位形状の長さである。
    The wiring body according to claim 1 or 2,
    A wiring body satisfying the following expression (3).
    w ≦ L 0 ≦ 10 × w (3)
    However, in the above (3), w is a width of the first thin line, L 0 is the length of the unit shape.
  4.  請求項1~3のいずれか一項に記載の配線体であって、
     下記の(4)式を満たす配線体。
     σL≦5.0μm … (4)
     但し、上記の(4)式において、σLは、前記単位形状の長さLの標準偏差である。
    The wiring body according to any one of claims 1 to 3, wherein
    A wiring body satisfying the following expression (4).
    σL 0 ≦ 5.0 μm (4)
    However, in the above equation (4), σL 0 is the standard deviation of the length L 0 of the unit shape.
  5.  請求項1~4のいずれか一項に記載の配線体であって、
     前記絶縁部は、前記第1の細線が設けられた凸部を含む配線体。
    The wiring body according to any one of claims 1 to 4, wherein
    The wiring body, wherein the insulating portion includes a convex portion provided with the first fine wire.
  6.  請求項1~5のいずれか一項に記載の配線体と、
     前記配線体を支持する支持体と、を備えた配線板。
    A wiring body according to any one of claims 1 to 5,
    And a support for supporting the wiring body.
  7.  請求項6に記載の配線板を備えたタッチセンサ。 A touch sensor comprising the wiring board according to claim 6.
PCT/JP2019/023527 2018-08-10 2019-06-13 Wiring body, wiring board, and touch sensor WO2020031500A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018151802 2018-08-10
JP2018-151802 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020031500A1 true WO2020031500A1 (en) 2020-02-13

Family

ID=69414659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023527 WO2020031500A1 (en) 2018-08-10 2019-06-13 Wiring body, wiring board, and touch sensor

Country Status (1)

Country Link
WO (1) WO2020031500A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063460A (en) * 2012-09-20 2014-04-10 Samsung Electro-Mechanics Co Ltd Touch panel
JP2015022627A (en) * 2013-07-22 2015-02-02 グンゼ株式会社 Transparent planar substrate with electrode, and touch panel
JP2016081531A (en) * 2014-10-17 2016-05-16 株式会社半導体エネルギー研究所 Touch panel
US20170228070A1 (en) * 2014-09-08 2017-08-10 Touchnetix Limited Touch sensors
JP2018106507A (en) * 2016-12-27 2018-07-05 Smk株式会社 Manufacturing method of three-dimensional shaped touch panel sensor
JP2018124615A (en) * 2017-01-30 2018-08-09 株式会社フジクラ Wiring body, wiring substrate and touch sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063460A (en) * 2012-09-20 2014-04-10 Samsung Electro-Mechanics Co Ltd Touch panel
JP2015022627A (en) * 2013-07-22 2015-02-02 グンゼ株式会社 Transparent planar substrate with electrode, and touch panel
US20170228070A1 (en) * 2014-09-08 2017-08-10 Touchnetix Limited Touch sensors
JP2016081531A (en) * 2014-10-17 2016-05-16 株式会社半導体エネルギー研究所 Touch panel
JP2018106507A (en) * 2016-12-27 2018-07-05 Smk株式会社 Manufacturing method of three-dimensional shaped touch panel sensor
JP2018124615A (en) * 2017-01-30 2018-08-09 株式会社フジクラ Wiring body, wiring substrate and touch sensor

Similar Documents

Publication Publication Date Title
US10528160B2 (en) Wiring body, wiring board, and touch sensor
US10394401B2 (en) Wiring body, wiring board, and touch sensor
US20190018524A1 (en) Wiring body, wiring board, and touch sensor
JP6735212B2 (en) Wiring body, wiring board, touch sensor, and wiring body manufacturing method
JP6159904B2 (en) Wiring body, wiring board, and touch sensor
US20200064971A1 (en) Wiring body assembly, wiring board, and touch sensor
JP6483245B2 (en) Wiring body, wiring board, touch sensor, and manufacturing method of wiring body
WO2020031500A1 (en) Wiring body, wiring board, and touch sensor
JP6440526B2 (en) Wiring body
JP2020064403A (en) Wiring body, wiring board, and touch sensor
JP6577662B2 (en) Wiring body, wiring board, and touch sensor
JP2020173503A (en) Wiring body, wiring board, and touch sensor
JP2021002274A (en) Wiring body, wiring board, and touch sensor
JP2020047173A (en) Wiring body, wiring board, and touch sensor
JP2018060411A (en) Wiring body, wiring board, and touch sensor
JP6617190B2 (en) Wiring body
JP2018124615A (en) Wiring body, wiring substrate and touch sensor
JP2020021483A (en) Wiring body, wiring board, touch sensor, and method of manufacturing wiring body
JP2020091582A (en) Wiring body and wiring board and touch sensor
JP2020107586A (en) Wiring body, wiring board and touch sensor
JP2020061006A (en) Wiring body, wiring board and touch sensor, and manufacturing method for wiring body
JP2017040953A (en) Wiring body, structure with conductor layer, and touch sensor
JP2020021482A (en) Wiring body, wiring board, and touch sensor
JP2020047172A (en) Wiring body, wiring board, and touch sensor
JP2020101993A (en) Wiring body, wiring board, and touch sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP