WO2020031355A1 - Terminal device and radio communication system - Google Patents

Terminal device and radio communication system Download PDF

Info

Publication number
WO2020031355A1
WO2020031355A1 PCT/JP2018/029998 JP2018029998W WO2020031355A1 WO 2020031355 A1 WO2020031355 A1 WO 2020031355A1 JP 2018029998 W JP2018029998 W JP 2018029998W WO 2020031355 A1 WO2020031355 A1 WO 2020031355A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
transmission
resources
terminal device
mobile station
Prior art date
Application number
PCT/JP2018/029998
Other languages
French (fr)
Japanese (ja)
Inventor
紅陽 陳
ジヤンミン ウー
剛史 下村
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2020535451A priority Critical patent/JPWO2020031355A1/en
Priority to PCT/JP2018/029998 priority patent/WO2020031355A1/en
Publication of WO2020031355A1 publication Critical patent/WO2020031355A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a terminal device and a wireless communication system.
  • traffic of mobile terminals such as smartphones and future phones occupies most of the network resources.
  • the traffic used by mobile terminals tends to increase in the future.
  • Non-Patent Documents 2 to 12 In the communication standard of the fifth generation mobile communication (5G or NR (New @ Radio)), in addition to the standard technology of 4G (fourth generation mobile communication) (for example, Non-Patent Documents 2 to 12), higher communication standards are used. There is a need for a technology that achieves a higher data rate, larger capacity, and lower delay.
  • Technical studies on the fifth generation communication standard are being conducted by 3GPP working groups (eg, TSG-RAN @ WG1, TSG-RAN @ WG2, etc.) (Non-Patent Documents 13 to 39).
  • 5G is classified into eMBB (Enhanced Mobile Broadband), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication) in order to support a wide variety of services. It is intended to support many use cases.
  • the 3GPP Working Group is also discussing V2X (Vehicle to Everything) communication.
  • the 3GPP Working Group is also discussing D2D (Device to Device) communication. D2D communication is sometimes called side link communication.
  • V2X is being studied as an example of D2D communication.
  • the V2X communication is, for example, communication using a side link channel, and includes, for example, V2V (Vehicle to Vehicle) communication, V2P (Vehicle to Vehicle) communication, V2I (Vehicle to Infrastructure) communication, and the like.
  • V2V communication is communication between a car and a car
  • V2P communication is communication between a car and a pedestrian (Pedestrian)
  • V2I communication is communication between a car and a road infrastructure such as a sign.
  • the rules regarding V2X are described in Non-Patent Document 1, for example.
  • a method of allocating V2X resources of # 4G there are a method in which a mobile communication system performs centralized control and a method in which each terminal device implementing V2X performs autonomous control.
  • the system in which the mobile communication system performs centralized control is applicable when the terminal device implementing V2X is located in the coverage of the base station of the mobile communication system, and is also referred to as mode 3.
  • the method in which each terminal device controls autonomously is applicable even if the terminal device does not exist in coverage of the base station, and is also referred to as mode 4.
  • mode 4 communication for allocating resources between the terminal device and the base station is not performed.
  • Each terminal device in mode 4 senses the entire frequency band used for V2X communication.
  • each terminal device selects a resource to be allocated to packet transmission based on a result of sensing.
  • the terminal device sets the time width in the selection window according to the allowable maximum delay time allowable for packet transmission.
  • the terminal device sets a resource which is likely to be used by another terminal device in the selection window to be reserved, based on a sensing result from a point in time when the transmission request is detected until a predetermined period before.
  • the terminal device refers to the selection window, selects a free resource other than the reserved resource in the selection window, and allocates the selected free resource to packet transmission of the transmission request and transmits the packet.
  • the current resource allocation method may not be able to satisfy the service requirements of V2X (for example, NR-V2X) currently discussed in 3GPP. For example, when a transmission request for a packet requiring a low delay occurs, as a result of the sensing processing, the available resources for transmitting the transmission request packet are insufficient, the transmission request packet cannot be transmitted, and the service requirement is reduced. Can not be satisfied.
  • V2X for example, NR-V2X
  • the time width of the selection window is set according to the allowable maximum delay time of the packet transmission. Therefore, when the transmission request of the high priority packet is detected, the allowable maximum delay of the high priority packet transmission is detected. Since the time is shortened, the time width of the selection window is also shortened. Further, as the time width of the selection window becomes shorter, the amount of resources that can be allocated to packet transmission of a transmission request in the selection window also becomes smaller. As a result, the high priority packet cannot be transmitted within the allowable maximum delay time of the high priority packet due to the decrease in the resource amount, and the service requirement is not satisfied.
  • the disclosed technology has been made in view of the above, and has as its object to satisfy a request for an allowable maximum delay time according to a packet transmission of a transmission request.
  • a terminal device includes a determination unit, a generation unit, a transmission unit, and an assignment unit.
  • the determination unit determines that there is a shortage of resources to be allocated to data transmission of the transmission request among a plurality of resources that can be allocated to data transmission. Is determined.
  • the generating unit selects a resource reserved by another terminal device used for data transmission lower than the priority level of the data transmission of the transmission request when resources allocated to data transmission of the transmission request are insufficient, Generate a command to request release of the selected reserved resource.
  • the transmitting unit transmits the command generated by the generating unit to each of the other terminal devices.
  • the allocating unit 44 allocates resources released by other terminal devices to data transmission of a transmission request in response to the command.
  • the service requirement of the maximum allowable delay time according to the packet transmission of the transmission request can be satisfied.
  • FIG. 1 is an explanatory diagram illustrating an example of the wireless communication system according to the first embodiment.
  • FIG. 2 is an explanatory diagram illustrating an example of the sensing window and the selection window.
  • FIG. 3 is an explanatory diagram showing an example when the time width of the selection window changes according to the allowable maximum delay time of the transmission packet.
  • FIG. 4 is a block diagram illustrating an example of the mobile station according to the first embodiment.
  • FIG. 5 is a block diagram illustrating an example of a function of the V2V scheduler unit of the mobile station according to the first embodiment.
  • FIG. 6 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the first embodiment.
  • FIG. 7 is a flowchart illustrating an example of a processing operation of the mobile station related to the transmission-side assignment processing according to the first embodiment.
  • FIG. 8 is a flowchart illustrating an example of a processing operation of the mobile station related to the receiving-side release processing according to the first embodiment.
  • FIG. 9 is an explanatory diagram illustrating an example of the wireless communication system according to the second embodiment.
  • FIG. 10 is a flowchart illustrating an example of a processing operation of the member station related to the member-side assignment processing according to the second embodiment.
  • FIG. 11 is a flowchart illustrating an example of a processing operation of the head station related to the head-side assignment processing according to the second embodiment.
  • FIG. 12 is a flowchart illustrating an example of a processing operation of the member station related to the member-side release processing according to the second embodiment.
  • FIG. 13 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the third embodiment.
  • FIG. 14 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the fourth embodiment.
  • FIG. 15 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the fifth embodiment.
  • FIG. 16 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the sixth embodiment.
  • FIG. 13 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the third embodiment.
  • FIG. 14 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to
  • FIG. 17 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the seventh embodiment.
  • FIG. 18 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the eighth embodiment.
  • FIG. 19 is an explanatory diagram showing an example of an SCI format including information on a mute sign.
  • FIG. 20 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the ninth embodiment.
  • FIG. 21 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the tenth embodiment.
  • FIG. 1 is an explanatory diagram illustrating an example of the wireless communication system 1 according to the first embodiment.
  • the wireless communication system 1 illustrated in FIG. 1 includes a plurality of mobile stations 2 and a base station 3.
  • LTE-V2V Long Term Evolution-Vehicle to vehicle
  • the resource allocation method of V2V communication includes, for example, mode 3 and mode 4.
  • the present invention is applicable when the base station 3 controls resources intensively and the mobile station 2 performing V2V communication is located in the coverage of the base station 3. Further, in the wireless communication system 1B used in the mode 4, each mobile station 2 performing V2V communication controls autonomously, and the present invention is applicable even if the mobile station 2 does not exist in the coverage of the base station 3.
  • Each mobile station 2 in the wireless communication system 1B used in mode 4 senses a frequency band used for V2V communication. Specifically, the mobile station 2 receives the SCI (Side Link Control Channel) of the entire frequency band used for V2V communication during a predetermined sensing period, and measures the reception power of the corresponding subchannel. Then, the mobile station 2 determines whether or not another mobile station 2 is transmitting a signal in each subframe and subchannel. When detecting a transmission request for packet transmission, the mobile station 2 excludes resources that are likely to be used by other mobile stations 2 based on the sensing result, and selects a free resource to be allocated to packet transmission.
  • SCI System Link Control Channel
  • the mobile station 2 in mode 4 When the mobile station 2 in mode 4 detects a transmission request for packet transmission, it sets the time width of the selection window according to the allowable maximum delay time of the transmission packet. Then, based on the sensing result, the mobile station 2 sets a resource that is likely to be used by another mobile station 2 as a reserved resource in the selection window. Then, the mobile station 2 selects a free resource other than the reserved resource in the selection window, and allocates packet transmission to the selected free resource.
  • FIG. 2 is an explanatory diagram showing an example of the sensing window and the selection window.
  • the sensing window and the selection window illustrated in FIG. 2 are an example of the sensing window and the selection window of the V2V communication of the mobile station 2 of the UE 3 of the mode 4 wireless communication system 1B, for example.
  • the sensing window is a sensing result of receiving a PSCCH (Physical Side Link Control Channel) in a frequency band used for V2V communication, and capturing the usage status of resources of the mobile station 2 from the SCI in the PSCCH.
  • PSCCH Physical Side Link Control Channel
  • As the resource for example, three sub-channels are arranged for every 1 msec slot, and each sub-channel has control information as a V2V control signal and data as a V2V data signal.
  • the mobile station 2 of the UE 3 can know the reserved resources of each subchannel from the SCI in each PSCCH of the entire frequency band used for V2V communication.
  • the reason why the reserved resources of each subchannel are known from the SCI is that information included in the SCI can be decoded (decoded).
  • the UE 3 can measure PSSCH-RSRP and S-RSSI (side link RSSI) and can select one resource based on the measurement result.
  • the mobile station 2 of the UE 3 executes a sensing process of capturing a resource use state of another mobile station 2 based on a measurement result of whether or not the received power of each sub-channel exceeds a predetermined threshold.
  • the mobile station 2 is a sensing result captured by the mobile station 2 of the UE 3 and indicates resources used by the mobile stations 2 of the UE 1 and the UE 2.
  • the mobile station 2 of the UE 3 sets the time width of the packet transmission selection window, and based on the sensing result up to 1000 ms before the detection of the transmission request, the mobile station 2 of the UE 1 and the UE 2 Set a reserved resource in the selection window.
  • the mobile station 2 of the UE 3 selects a free resource other than the reserved resources in the selection window, and allocates a packet transmission of a transmission request to the selected free resource.
  • the mobile station 2 upon detecting a packet transmission request, changes the time width of the selection window according to the allowable maximum delay time of packet transmission.
  • the allowable maximum delay time specified in LTE is, for example, 20 ms to 100 ms, and the time width of the selected window is also 20 ms to 100 ms.
  • the mobile station 2 increases the predetermined threshold value of the received power of the resources of each sub-channel to 3 dB, thereby making the use state of the resources highly accurate. Will be captured. As a result, the mobile station 2 can recognize the use state of the resource within the selection window with high accuracy. The mobile station 2 randomly selects an available resource from the selection window, and allocates a packet transmission of a transmission request to the selected resource.
  • R16 @ NR-V2X has services of Advanced @ V2X, such as platooning, advanced driving, extended sensors and remote driving.
  • the platooning is, for example, a service in which a plurality of vehicles on which the mobile stations 2 are mounted automatically travel in a platoon.
  • the advanced driving is, for example, a service such as a support system for preventing a running vehicle equipped with the mobile station 2 from departing from the lane.
  • the extended sensor is a service that uses, for example, a sensor result detected by a vehicle equipped with the mobile station 2 in another vehicle equipped with another mobile station 2.
  • the remote driving is, for example, a driving service by remote control of a vehicle on which the mobile station 2 is mounted.
  • Service requirements for advanced driving include, for example, a payload of 2000 bytes, a maximum allowed delay (Max3end to end Latency) of 3 ms, a reliability of 99.999%, a data rate of 30 Mbps, and a minimum wireless range of 500 meters.
  • Wireless conditions are required.
  • wireless conditions are required such that the maximum allowable delay time is 3 ms, the reliability is 99.999%, the data rate is 50 Mbps, and the minimum wireless range is 200 meters.
  • FIG. 3 is an explanatory diagram showing an example when the time width of the selection window changes according to the allowable maximum delay time of the transmission packet. For example, in order to satisfy a service condition of 3 ms, which is an allowable maximum delay time of a high-priority packet, it is necessary to shorten the time width of the selection window from 100 ms to 3 ms as shown in FIG. However, for example, when the time width of the selection window is shortened according to the allowable maximum delay time of the high-priority packet, the number of resources in the selection window decreases, and the number of resources available in the selection window decreases. As a result, the V2V mobile station 2 may be unable to transmit a high-priority packet.
  • the mobile station 2 is required to secure resources to be allocated to the high-priority packet and satisfy the service requirements. .
  • FIG. 4 is a block diagram illustrating an example of the mobile station 2 according to the first embodiment.
  • the mobile station 2 illustrated in FIG. 2 includes a cellular antenna 11, a cellular receiving unit 12, a cyclic prefix (CP) removing unit 13, a fast Fourier transform (FFT) unit 14, a decoding unit 15, a scheduler 15, and a scheduler.
  • a part 16 Further, the mobile station 2 includes a data generating unit 17, a data encoding unit 18, an IFFT (Inverse Fast Fourier Transform) unit 19, a CP adding unit 20, and a cellular transmitting unit 21.
  • CP cyclic prefix
  • FFT fast Fourier transform
  • the mobile station 2 includes a V2V antenna 22, a V2V receiving unit 23, a V2V control decoding unit 24, a V2V data decoding unit 25, a mute indication decoding unit 26, a V2V scheduler unit 27, and a resource pool 28.
  • the mobile station 2 has a V2V control generation unit 29, a V2V data generation unit 30, a mute sign generation unit 31, and a V2V transmission unit 32.
  • the cellular antenna 11 transmits and receives a radio signal of a radio carrier used for the mode 3 radio communication system 1A, for example.
  • the cellular receiving unit 12 receives a radio signal through the cellular antenna 11, and performs a radio reception process such as down-conversion and A / D conversion on the received signal.
  • CP removing section 13 removes the CP added to the received signal in symbol units. Then, CP removing section 13 outputs the received signal after the CP removal to FFT section 14.
  • the FFT unit 14 performs a fast Fourier transform on the received signal output from the CP removing unit 13, and converts a time-domain received signal into a frequency-domain received signal.
  • the received signal includes data, a control signal, and the like transmitted from the base station 3.
  • the decoding unit 15 demodulates and decodes data from the received signal in the frequency domain converted by the FFT unit 14.
  • the decoding unit 15 demodulates and decodes the control signal from the converted frequency-domain received signal.
  • the scheduler unit 16 performs scheduling for allocating radio resources to data transmitted to and received from the base station 3. Specifically, the scheduler unit 16 performs uplink scheduling from the mobile station 2 to the base station 3, which allocates radio resources to data transmitted by each mobile station 2. The scheduler unit 16 performs scheduling of a downlink from the base station 3 to the mobile station 2.
  • the data generation unit 17 generates data to be transmitted to the base station 3.
  • the data encoding unit 18 encodes and modulates the generated data, and outputs the modulated data to the IFFT unit 19.
  • the IFFT unit 19 performs an inverse fast Fourier transform on the data output from the data generation unit 17, and converts a transmission signal in the frequency domain into a transmission signal in the time domain. Then, IFFT section 19 outputs the transmission signal in the time domain to CP adding section 20.
  • CP adding section 20 adds a CP to the transmission signal output from IFFT section 19 in symbol units. Then, CP adding section 20 outputs the transmission signal to which the CP has been added to cellular transmitting section 21.
  • the cellular transmission unit 21 performs radio transmission processing such as D / A conversion and up-conversion on the transmission signal, and transmits the radio signal through the cellular antenna 11.
  • the V2V antenna 22 transmits and receives, for example, a V2V communication wireless signal used for the mode 4 wireless communication system 1B.
  • the V2V receiving unit 23 receives a wireless signal through the V2V antenna 22, and performs a wireless receiving process such as down-conversion and A / D conversion on the received signal.
  • the V2V control decoding unit 24 decodes a V2V control signal included in the reception signal received and processed by the V2V reception unit 23.
  • the V2V control signal is control information in a sub-channel in the PSSCH in the received signal.
  • the V2V data decoding unit 25 decodes a V2V data signal included in the reception signal received and processed by the V2V reception unit 23.
  • the V2V data signal is data in a sub-channel in the PSSCH in the received signal.
  • the mute sign decoding unit 26 decodes the mute sign included in the reception signal processed by the V2V reception unit 23.
  • the mute indication is control information such as a command stored in a predetermined cycle in the received signal.
  • the mute indication is a command for requesting each mobile station 2 to release a specific reserved resource, which will be described later in detail.
  • the V2V scheduler unit 27 executes scheduling for allocating resources used for V2V communication to data transmitted / received to / from the V2V mobile station 2.
  • the resource pool 28 manages the use status of resources used for V2V communication, for example, information such as a sensing window and a selection window.
  • the V2V control generation unit 29 generates a V2V control signal to be transmitted to the destination mobile station 2, for example, a sub-channel control information.
  • the V2V data generation unit 30 generates a V2V data signal to be transmitted to the destination mobile station 2, for example, sub-channel data.
  • the mute sign generation unit 31 generates a mute sign to be broadcast-transmitted to each mobile station 2.
  • the V2V transmission unit 32 converts the V2V transmission signal including the V2V control signal generated by the V2V control generation unit 29 and the V2V data signal generated by the V2V data generation unit 30 into radio signals such as D / A conversion and up-conversion. Execute transmission processing. Then, the V2V transmission unit 32 transmits the V2V wireless signal after the execution of the wireless transmission process through the V2V antenna 22. The V2V transmission unit 32 performs wireless transmission processing such as D / A conversion and up-conversion on the mute sign generated by the mute sign generation unit 31, and broadcasts the mute sign to each mobile station 2 via the V2V antenna 22.
  • FIG. 5 is a block diagram illustrating an example of a function of the V2V scheduler unit 27 of the mobile station 2 according to the first embodiment.
  • the V2V scheduler unit 27 reads a program stored in a ROM (Read Only Memory) (not shown), and executes the read program, so that, for example, the determination unit 41, the generation unit 42, the transmission unit 43, the allocation unit The functions of 44 and the opening unit 45 are executed.
  • the determination unit 41 determines whether there is insufficient free resources to be used for high-priority packet transmission among a plurality of resources that can be allocated to V2V communication, based on the sensing result. Is determined.
  • the generation unit 42 selects a resource reserved by another mobile station 2 in low-priority packet transmission in which the priority level of packet transmission is lower when free resources used for high-priority packet transmission are insufficient. I do. Further, the generation unit 42 controls the mute sign generation unit 31 to generate a mute sign requesting release of the selected resource.
  • the mute indication includes resource information for identifying a resource to be muted which requests release of the selected resource. For the mute indication, for example, among the PSCCHs including the CRC, a PSSCH having a monitoring period described later is used.
  • the mute indicator has the same size (for example, a 16-bit or 32-bit configuration) as the SCI of control information and the like.
  • RNTI Radio Network Temporary Identifier
  • the transmission unit 43 controls the V2V transmission unit 32 to broadcast the generated mute indication to each of the other mobile stations 2.
  • the allocating unit 44 allocates high-priority packet transmission to a free resource released by another mobile station 2 according to the mute indication.
  • the release unit 45 determines whether the resource to be muted in the mute indication received from the other mobile station 2 is a resource reserved by the own station. The release unit 45 releases the reserved resource to be muted when the resource to be muted for the mute indication detected from the other mobile station 2 is the resource reserved by the own station.
  • FIG. 6 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the first embodiment.
  • the mobile station 2 uses a resource of a predetermined cycle in the same resource as the resource used for the V2V communication as the indication channel for transmitting the mute indication. Then, the mute indication is included in the control information in the resource of the predetermined cycle.
  • the mobile station 2 transmitting the mute indication broadcasts the mute indication to the other mobile stations 2 using the indication channel. Further, the mobile station 2 receiving the mute indication monitors the presence / absence of the mute indication using the indication channel of a predetermined cycle as a monitoring cycle.
  • the mobile station 2 transmitting the mute indication is the mobile station 2A, and the mobile station 2 of the mobile station 2 receiving the mute indication, in which the resource to be muted in the mute indication has been reserved by its own station, moves. Station 2B.
  • the mobile station 2A When the mobile station 2A detects a packet transmission request, the mobile station 2A captures a resource use state by another mobile station 2 based on a sensing result from the time when the transmission request is detected to a time 1000 ms before. The mobile station 2A sets the time width of the selection window according to the permissible maximum delay time of the transmission of the transmission request packet, and the available resources of the other mobile stations 2 are insufficient for the transmission of the transmission request packet. Is determined. The mobile station 2A allocates a free resource to the transmission data of the transmission request when there is no shortage of the free resource used for transmitting the transmission request packet.
  • the mobile station 2A selects the reserved resource having the lower priority level of the transmission request as the resource to be muted.
  • the mobile station 2A broadcasts a mute indication including resource information for identifying the selected resource to be muted to another mobile station 2 through the indication channel.
  • the mobile station 2 receiving the mute indication receives the mute indication through the indication channel
  • the mobile station 2 decodes the mute indication, extracts the resource information in the mute indication, and specifies the resource to be muted from the resource information. Further, the mobile station 2 determines whether or not the resource to be muted is a resource that has been reserved by the own station. Further, among the mobile stations 2 that have received the mute indication, the mobile station 2B releases the reserved resources since the resources to be muted are the resources reserved by the own station.
  • the mobile station 2A that has transmitted the mute indication allocates the packet transmission of the transmission request to the vacant resource to be muted released by the mobile station 2B according to the mute indication.
  • the mobile station 2A can allocate resources to transmission of a transmission request packet even if there are no or insufficient free resources due to resources reserved for low-priority packet transmission, for example.
  • the mobile station 2A of the UE 10 detects the transmission request of the high-priority packet as shown in FIG. 6, based on the sensing result from the time when the transmission request was detected to 1000 ms before, the resource of the other mobile station 2 Capture usage of. Further, the mobile station 2A of the UE 10 sets the time width of the selection window according to the allowable maximum delay time of the high-priority packet transmission, and uses the empty space to be used for the high-priority packet of the transmission request based on the usage status of the other mobile stations 2. Determine whether resources are insufficient.
  • the priority level of the transmission of the packet of the transmission request is lower than the high priority and the reserved resource of the lower priority is lower than the high priority based on the sensing result. Is selected as a resource to be muted.
  • the priority level of packet transmission of the mobile station 2A of the UE 10 is high priority, and the priority level of packet transmission used for resources reserved by the mobile station 2 of the UE 2 is low priority. Therefore, the mobile station 2A of the UE 10 selects the reserved resource of the mobile station 2B of the low-priority UE 2 having the lower priority of the packet transmission of the transmission request as the resource to be muted from the sensing result.
  • the mobile station 2A of the UE 10 generates a mute indication including resource information for identifying the selected resource to be muted.
  • the mobile station 2A of the UE 10 broadcasts a mute indication to each of the other mobile stations 2 at the timing of the indication channel monitoring cycle.
  • the mobile station 2B of the UE 2 When the mobile station 2B of the UE 2 detects the mute indication at the timing of the monitoring cycle, the mobile station 2B decodes the mute indication to extract the resource information, and specifies the resource to be muted from the extracted resource information. The mobile station 2B of the UE 2 releases the reserved resource because the resource indicated by the mute is a resource reserved by the own station.
  • the mobile station 2A of the UE 10 allocates the high-priority packet transmission of the transmission request to the free resources to be muted released by the mobile station 2A of the UE 2 according to the mute indication. As a result, the mobile station 2A of the UE 10 can realize high-priority packet transmission.
  • FIG. 7 is a flowchart illustrating an example of a processing operation of the mobile station 2A related to the transmission-side assignment processing according to the first embodiment.
  • the mobile station 2A on the transmitting side determines whether or not the transmission request of the mobile station has been detected (step S11).
  • the transmission request is, for example, a request for requesting transmission of a packet by the own station. If the mobile station 2A detects its own transmission request (Yes at step S11), the mobile station 2A determines whether the priority level of packet transmission of the transmission request is high priority (step S12).
  • the priority levels are, for example, two levels of high priority and low priority.
  • the mobile station 2A determines from the sensing result whether the free resources used for the transmission of the high priority packet of the transmission request are insufficient. (Step S13). If there is not enough free resources to use for high-priority packet transmission (Yes at Step S13), the mobile station 2A continues monitoring the sensing window (Step S14). The mobile station 2A selects a resource to be muted in the selection window based on the sensing result (step S15).
  • the mobile station 2A generates a mute indication including resource information for identifying the selected resource to be muted (step S16).
  • the mobile station 2A broadcasts the generated mute indication to each mobile station 2 on the indication channel shown in FIG. 6 (step S17).
  • the mobile station 2B releases the reserved resources because the resources to be muted in the mute indication are resources reserved by the own station. become.
  • the mobile station 2A allocates the resource to be muted to the packet transmission of the transmission request, executes the packet transmission (step S18), and ends the processing operation illustrated in FIG.
  • the mobile station 2A continues monitoring the sensing window (Step S19). Then, the mobile station 2A selects an available resource in the selection window based on the sensing result (step S20). Then, the mobile station 2A allocates the packet transmission of the transmission request to the selected resource, executes the packet transmission (step S21), and ends the processing operation illustrated in FIG. If the available resources are not insufficient (No at Step S13), the mobile station 2A determines that there is available resources that can be used for packet transmission of the transmission request, and proceeds to Step S19 to continue monitoring the sensing window. I do. If the mobile station 2A does not detect its own transmission request (No at Step S11), the mobile station 2A continues monitoring the sensing window (Step S22), and ends the processing operation illustrated in FIG.
  • the mobile station 2A When detecting the transmission request of the high-priority packet, the mobile station 2A executing the transmission-side allocation process shown in FIG. 7 determines whether there is insufficient free resources to use for transmitting the high-priority packet of the transmission request based on the sensing result. Determine whether or not. When the available resources are insufficient, the mobile station 2A selects a low-priority reserved resource having a lower priority level, and displays a mute indication including the selected reserved resource in the resources to be muted to each mobile station 2. Broadcast transmission. Further, the mobile station 2A allocates a high-priority packet transmission of a transmission request to a muted free resource released by the mobile station 2B according to the mute indication. As a result, the mobile station 2 can realize high-priority packet transmission even when the available resources are insufficient.
  • FIG. 8 is a flowchart illustrating an example of a processing operation of the mobile station 2 related to the receiving side release processing according to the first embodiment.
  • the mobile station 2 on the receiving side determines whether or not the current time is the monitoring cycle of the mute indication (step S31).
  • the monitoring cycle is a cycle at which the mute sign can be transmitted or received. If the current period is the monitoring period (Yes at Step S31), the mobile station 2 determines whether or not there is a mute indication from the mobile station 2A within the monitoring period (Step S32). When there is a mute indication within the monitoring period (Yes at Step S32), the mobile station 2 determines whether or not there is a resource reserved by the mobile station 2 (Step S33).
  • step S33 If there is a resource reserved in the mobile station 2 (Yes in step S33), the mobile station 2 decodes the mute indication to identify the resource to be muted from the resource information, and the resource reserved in the mobile station is the resource to be muted. Is determined (step S34). If the resource reserved by the mobile station 2 is a resource to be muted (Yes at step S34), the mobile station 2 releases the resource reserved by the mobile station 2 to be muted (step S35), and the processing operation shown in FIG. To end.
  • Step S34 the mobile station 2 is illustrated in FIG. The processing operation ends.
  • the mobile station 2 When detecting the mute indication, the mobile station 2 executing the receiving side release processing shown in FIG. 8 identifies the resource to be muted from the resource information in the mute indication, and replaces the resource reserved in its own station with the resource to be muted. Is determined. When the resource reserved by the mobile station 2 is a resource to be muted, the mobile station 2 releases the reserved resource to be muted. As a result, the mobile station 2A that has transmitted the mute indication can allocate the packet transmission of the transmission request to the free resource released according to the mute indication.
  • the mobile station 2 in the mode 4 of the first embodiment determines, based on the sensing result, whether or not the available resources used for transmitting the high-priority packet of the transmission request are insufficient. judge. If there are not enough free resources to use for high-priority packet transmission, the mobile station 2 selects a low-priority reserved resource and generates a mute indication that includes the selected reserved resource as a mute target resource. . Further, the mobile station 2 broadcasts the generated mute indication to each mobile station 2 on the indication channel. Further, the mobile station 2 allocates a high-priority packet transmission of a transmission request to a muted free resource released by another mobile station 2 according to the mute indication. As a result, the mobile station 2 can realize high-priority packet transmission in response to the transmission request even when the available resources are insufficient. The service requirement of the allowable maximum delay time according to the packet transmission of the transmission request can be satisfied.
  • the mobile station 2 in the mode 4 broadcasts the mute indication to the other mobile stations 2 by using the indication channel which is a resource of a predetermined period in the resources used for the V2V communication.
  • the mobile station 2 that receives the mute indication can also capture the mute indication of the indication channel while performing normal V2V communication sensing because the indication channel uses the resources of V2V communication.
  • each mobile station 2 traveling in a vehicle platoon forms a group, and one mobile station 2 in the group is a head station 2C, and other mobile stations 2 other than the head station 2C are member stations 2D, 2E, 2F. Therefore, an embodiment of the wireless communication system 1B having such a master-slave relationship will be described below as a second embodiment.
  • the same components as those of the wireless communication system 1 according to the first embodiment are denoted by the same reference numerals, and the description of the overlapping configurations and operations will be omitted.
  • FIG. 9 is an explanatory diagram illustrating an example of the wireless communication system 1 according to the second embodiment.
  • each mobile station 2 forms a group.
  • One mobile station 2 in the group functions as a head station 2C, and other mobile stations 2 other than the head station 2C function as member stations 2D, 2E, and 2F.
  • the member stations 2D, 2E, and 2F other than the head station 2C are, for example, a member station 2D that has requested high-priority packet transmission and a member station 2E that releases its reserved resources according to the mute indication.
  • the member station 2F in which the resource to be muted is unused.
  • the member station 2D When the member station 2D detects a transmission request for a high-priority packet, the member station 2D captures the resource usage status of another mobile station 2 based on the sensing result up to 1000 ms before the detection of the transmission request. The member station 2D sets the time width of the selection window according to the maximum permissible delay time of the transmission request, and due to the usage status of the other mobile stations 2, there is a shortage of free resources to be used for transmitting the transmission request with high priority. Is determined. If there is no shortage of free resources, the member station 2D allocates free resources to high-priority packet transmission of the transmission request.
  • the member station 2D selects a low-priority reserved resource having a lower priority level of packet transmission of the transmission request as a resource to be muted. .
  • the member station 2D transmits a mute request including resource information for identifying the selected resource to be muted to the head station 2C.
  • the head station 2C When the head station 2C detects the mute request from the member station 2D, the head station 2C broadcasts a mute indication including the resource information in the mute request to another mobile station (member station) 2 through the indication channel.
  • the mobile station (member station) 2 receives the mute indication through the indication channel, decodes the mute indication, and specifies the resource to be muted from the resource information in the mute indication. Further, the mobile station (member station) 2 determines whether or not the resource to be muted is a resource reserved by the mobile station. Further, the mobile station 2, for example, the member station 2E releases the reserved resource when the resource to be muted is a resource reserved by the own station.
  • the member station 2D that has transmitted the mute request allocates the high-priority packet transmission of the transmission request to the mute target free resource released by the member station 2E according to the mute indication. As a result, the member station 2D allocates a high-priority packet transmission to the free resource even when the free resource is insufficient in the selection window.
  • FIG. 10 is a flowchart illustrating an example of a processing operation of the member station 2D related to the member-side assignment processing according to the second embodiment.
  • the member station 2D determines whether the transmission request of the own station has been detected (step S41).
  • the transmission request is, for example, a request for requesting transmission of a packet. If the member station 2D detects its own transmission request (Yes at step S41), the member station 2D determines whether the priority level of packet transmission of the transmission request is high priority (step S42).
  • the priority levels are, for example, two levels of high priority and low priority.
  • the member station 2D determines whether or not there is insufficient free resources to be used for transmitting the high priority packet of the transmission request (Step S42). S43). If there is not enough free resources to use for high-priority packet transmission (Yes at Step S43), the member station 2D continues monitoring the sensing window (Step S44). The member station 2D selects a resource to be muted in the selection window based on the sensing result (step S45).
  • the member station 2D transmits a mute request including the selected resource to be muted to the head station 2C (step S46).
  • the head station 2C generates a mute indication in response to the mute request, and broadcasts the generated mute indication to each mobile station (member station) 2.
  • the mobile station 2 (member station 2E) releases the reserved resource.
  • the member station 2D allocates the resource to be muted released by the member station 2E to the high-priority packet transmission of the transmission request, executes the packet transmission (step S47), and ends the processing operation illustrated in FIG.
  • the member station 2D continues monitoring the sensing window (Step S48).
  • the member station 2D selects an available resource in the selection window based on the sensing result (step S49). Then, the member station 2D allocates the packet transmission of the transmission request to the selected resource, executes the packet transmission (step S50), and ends the processing operation illustrated in FIG.
  • the member station 2D determines that there is a free resource that can be allocated to packet transmission of the transmission request, and monitors the sensing window. The process moves to step S48 in order to continue.
  • the monitoring of the sensing window is continued (Step S51), and the processing operation illustrated in FIG. 10 ends.
  • the member station 2D When detecting the transmission request of the high-priority packet, the member station 2D executing the member-side allocation processing shown in FIG. 10 determines whether or not there is insufficient free resources to be used for the high-priority packet of the transmission request based on the sensing result. Is determined. When the available resources are insufficient, the member station 2D selects a reserved resource of low priority, sets the selected reserved resource as a resource to be muted, and issues a mute request including the resource to be muted to the head station 2C. Send to The member station 2D allocates a high-priority packet transmission of a transmission request to a mute target free resource released by the member station 2E according to the mute indication from the head station 2C. As a result, the member station 2D can execute high-priority packet transmission in response to the transmission request even when the available resources are insufficient.
  • FIG. 11 is a flowchart illustrating an example of a processing operation of the head station 2C related to the head-side assignment processing according to the second embodiment.
  • the head station 2C determines whether a transmission request of the head station has been detected (step S61).
  • the transmission request is, for example, a request for requesting transmission of a packet.
  • the head station 2C determines whether or not the priority level of packet transmission of the transmission request is high priority (Step S62).
  • the priority levels are, for example, two levels of high priority and low priority.
  • the head station 2C determines whether or not there is not enough free resources to use for the high priority packet transmission of the transmission request (Step S62). S63). When the available resources are insufficient (step S63: YES), the head station 2C continues monitoring the sensing window (step S64). The head station 2C selects a resource to be muted in the selection window based on the sensing result (step S65).
  • the head station 2C generates a mute indication including resource information for identifying the selected resource to be muted (step S66).
  • the head station 2C broadcasts the generated mute indication to each mobile station (member station) 2 that is a member station (step S67).
  • the mobile station (member station) 2 receives the mute indication from the head station 2C, and releases the reserved resource when the resource to be muted in the mute indication is a resource reserved by the own station. become.
  • the head station 2C allocates the resource to be muted to the high-priority packet transmission of the transmission request, executes the packet transmission (step S68), and ends the processing operation illustrated in FIG.
  • the head station 2C continues monitoring the sensing window (Step S69) and selects an available resource in the selection window based on the sensing result. (Step S70). Then, the head station 2C allocates the selected resource to the packet transmission of the transmission request, executes the packet transmission (step S71), and ends the processing operation illustrated in FIG.
  • the head station 2C determines that there is free resources available for packet transmission of the transmission request, and proceeds to step S69 to continue monitoring the sensing window. I do.
  • the head station 2C determines whether a mute request from the member station 2D has been detected (Step S72).
  • the head station 2C determines whether the priority level of the packet transmission of the transmission request related to the mute request is high priority (Step S73).
  • the head station 2C generates a mute indication including the resource to be muted in the mute request (Step S74).
  • the head station 2C broadcasts the mute indication to each mobile station (member station) 2 (step S75), and ends the processing operation shown in FIG. If the priority level of the packet transmission of the transmission request related to the mute request is not high priority (No at Step S73), the head station 2C continues monitoring the sensing window (Step S76) and ends the processing operation illustrated in FIG.
  • the head station 2C executing the head-side assignment processing shown in FIG. 11 receives a mute request related to a high-priority transmission request from the member station 2D, it generates a mute indication including resource information in the mute request.
  • the head station 2C broadcasts the generated mute indication to each mobile station (member station) 2.
  • the member station 2D allocates high-priority packet transmission to a mute target free resource released by the member station 2E according to the mute indication.
  • the member station 2D can execute high-priority packet transmission in response to the transmission request even when the available resources are insufficient.
  • FIG. 12 is a flowchart illustrating an example of a processing operation of the member station 2E related to the member-side release processing according to the second embodiment.
  • the member station 2E determines whether or not the current time is the monitoring cycle of the mute indication (step S81).
  • the monitoring cycle is a cycle for monitoring the mute sign. If the current period is the monitoring period (Yes at Step S81), the member station 2E determines whether or not there is a mute indication from the head station 2C within the monitoring period (Step S82). When there is a mute indication within the monitoring period (Yes at Step S82), the member station 2E determines whether there is a resource reserved at its own station (Step S83).
  • the member station 2E identifies the resource to be muted from the resource information by decoding the mute indication, and the resource reserved at the local station is the resource to be muted. Is determined (step S84).
  • Step S84 If the resource reserved by the own station is a resource to be muted (Yes at Step S84), the member station 2E releases the reserved resource that is a resource to be muted (Step S85), and performs the processing operation shown in FIG. finish.
  • the member station 2E continues monitoring the sensing window (step S86) when it is not in the monitoring cycle of the mute sign (No in step S81) or when there is no mute sign in the monitoring cycle (no in step S82), as shown in FIG.
  • the processing operation ends.
  • the member station 2E proceeds to Step S86 to continue monitoring. Transition.
  • the member station 2E When detecting the mute indication, the member station 2E executing the member-side release processing shown in FIG. 12 specifies the resource to be muted from the resource information in the mute indication, and replaces the resource reserved in its own station with the resource to be muted. Is determined. The member station 2E releases the reserved resource to be muted when the resource reserved at the own station is the resource to be muted. As a result, the member station 2D that has transmitted the mute indication can allocate and transmit the packet transmission of the transmission request to the free resource released according to the mute indication.
  • the member station 2D in the mode 4 of the second embodiment detects the transmission request of the high-priority packet, based on the sensing result, the member station 2D determines whether or not the available resources used for transmitting the high-priority packet of the transmission request are insufficient. judge. When the available resources are insufficient, the member station 2D selects a low-priority reserved resource, sets the selected reserved resource as a resource to be muted, and sends a mute request including the resource to be muted to the head station 2C. Send. When receiving the mute request from the member station 2D, the head station 2C broadcasts a mute indication including the resource to be muted in the mute request to each mobile station (member station) 2.
  • the member station 2E releases the reserved resource according to the mute indication, when the resource to be muted is the resource reserved by the own station. Then, the member station 2D allocates a high-priority packet transmission to a muted target free resource released by the member station 2E according to the mute indication. As a result, the member station 2D can execute high-priority packet transmission in response to the transmission request even when the available resources are insufficient.
  • the priority level of the packet transmission is two levels of the high priority and the low priority is exemplified.
  • the priority level is not limited to the two levels. It can be changed as appropriate.
  • an embodiment in which the priority levels of packet transmission are set to three levels will be described below as a third embodiment.
  • the same components as those of the first embodiment are denoted by the same reference numerals, and the description of the same components and operations will not be repeated.
  • FIG. 13 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the third embodiment.
  • the priority levels of the packet transmission are, for example, three levels of LV1 to LV3.
  • LV1 is the packet transmission with the highest priority level
  • LV2 is the packet transmission with the second priority level
  • LV3 is the third priority.
  • the maximum allowable delay time of packet transmission of LV1 is, for example, 3 msec
  • the maximum allowable delay time of packet transmission of LV2 is, for example, 10 msec
  • the maximum allowable delay time of packet transmission of LV3 is, for example, 15 msec.
  • the mobile station 2A of the UE 10 detects the transmission request of the packet transmission of the LV1 as illustrated in FIG. 13, the mobile station 2A of the other mobile station 2 based on the sensing result up to 1000 ms before the detection of the transmission request. Capture resource usage. Further, the mobile station 2A of the UE 10 sets the time width of the selection window according to the allowable maximum delay time of the transmission request of 3 ms, and the available resources used for transmitting the packet of the LV1 are insufficient due to the usage status of the other mobile stations 2. It is determined whether or not.
  • the mobile station of the UE 10 selects a reserved resource of LV2 or LV3 lower than the packet transmission priority level (LV1) as a resource to be muted because the available resources used for transmitting the packet of LV1 are insufficient. .
  • the priority level of packet transmission of the mobile station 2A of the UE 10 is "LV1”
  • the priority level of packet transmission used by the mobile station 2 of the UE 2 for reserved resources is "LV3”. Therefore, the mobile station 2A of the UE 10 selects the reserved resource of the mobile station 2 of the UE 2 of the LV 3 lower than the priority level LV1 of the packet transmission of the transmission request as the resource to be muted. Then, the mobile station 2A of the UE 10 generates a mute indication including resource information for identifying the selected resource to be muted.
  • the mobile station 2A of the UE 10 broadcasts a mute indication to each of the other mobile stations 2 at the timing of the monitoring cycle in the indication channel.
  • the mobile station 2B of the UE 2 receives the mute indication at the timing of the monitoring cycle, the mobile station 2B decodes the mute indication and specifies the resource to be muted from the resource information.
  • the mobile station 2B of the UE 2 releases the reserved resource because the resource to be muted is the resource reserved by the own station.
  • the mobile station 2A of the UE 10 allocates the packet transmission of the transmission request LV1 to the empty resource to be muted released by the mobile station 2A of the UE 2 according to the mute indication. As a result, the mobile station 2A of the UE 10 can execute the packet transmission of the LV1.
  • the mobile station 2A of the UE 10 detects the transmission request of the LV2 packet transmission, and if there is not enough free resources to use the LV2 packet transmission of the transmission request, the UE2 of the LV3 packet transmission lower than the LV2. Of the mobile station 2B that has been reserved. Then, the mobile station 2A of the UE 10 broadcasts a mute indication with the selected resource as a resource to be muted.
  • the mobile station 2B of the UE2 that has received the mute indication releases the reserved resource of the LV3 when the resource to be muted in the mute indication is a reserved resource.
  • the mobile station 2A of the UE 10 allocates the packet transmission of the transmission request LV2 to the resource released by the mobile station 2B of the UE 2.
  • the mute indication is broadcast-transmitted to another mobile station 2 using the indication channel which is a resource of a predetermined period in the resources used for the V2V communication.
  • the indication channel of the first embodiment is a part of the resources used for V2V communication, it is necessary to secure resources even when the mute indication is not transmitted. Therefore, it is conceivable that the resource use efficiency of the V2V communication is reduced. Therefore, a mute indication may be broadcast-transmitted to another mobile station 2 by using a resource of a predetermined cycle in a frequency band different from that used for the V2V communication for the indication channel. This will be described below.
  • the same components as those of the wireless communication system according to the first embodiment are denoted by the same reference numerals, and the description of the overlapping configurations and operations will be omitted.
  • FIG. 14 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the fourth embodiment.
  • the mobile station 2A uses a resource of a predetermined cycle in a frequency band different from a resource used for V2V communication for the indication channel.
  • the mobile station 2A transmitting the mute indication broadcasts the mute indication to the other mobile stations 2 using the indication channel.
  • the mobile station 2B receiving the mute indication monitors the presence / absence of the mute indication using the indication channel as a monitoring cycle.
  • the V2V communication and the mute indication communication can be used at the same time.
  • the mobile station 2A When the mobile station 2A detects a packet transmission request, the mobile station 2A captures the resource usage status of the other mobile station 2 based on the sensing result from the time when the transmission request was detected up to 1000 ms before. The mobile station 2A sets a selection window according to the maximum permissible delay time of the transmission request, and determines whether or not there is insufficient free resources to be used for high-priority packet transmission of the transmission request based on the usage status of the other mobile stations 2. Is determined. The mobile station 2A allocates a free resource to the transmission of the high-priority packet of the transmission request when there is no shortage of the free resources to be used for transmitting the high-priority packet of the transmission request.
  • the mobile station 2A selects the low-priority reserved resource as the resource to be muted.
  • the mobile station 2A cannot decode the mute indication of the monitoring cycle. Therefore, reserved resources used by the mobile station 2 using V2V communication at the same timing as the monitoring period are excluded from the resources to be muted.
  • the mobile station 2 since the mobile station 2 cannot simultaneously decode the mute indication of the monitoring period and the SCI of the V2V communication resource at the same timing, the mobile station 2 replaces the reserved resource of the V2V communication at the same timing as the monitoring period with the resource to be muted. Exclude from Then, the mobile station 2A broadcasts a mute indication including resource information for identifying the selected resource to be muted to another mobile station 2 through the indication channel.
  • the mobile station 2B receiving the mute indication monitors the monitoring cycle of the indication channel, and determines whether or not the mute indication has been received according to the monitoring cycle.
  • the mobile station 2B decodes the mute indication and identifies the resource to be muted from the resource information. Further, the mobile station 2B determines whether or not the resource to be muted is a resource that has been reserved by the own station. Further, when the resource to be muted is a resource reserved by the own station, the mobile station 2B releases the reserved resource.
  • the mobile station 2A that has transmitted the mute indication allocates the packet transmission of the transmission request to the free resource to be muted released according to the mute indication.
  • the mobile station 2A can allocate a free resource to high-priority packet transmission even when there is a shortage of free resources used for transmitting a transmission request packet.
  • the mobile station 2A of the UE 10 detects the transmission request of the high-priority packet as shown in FIG. 14, the mobile station 2A of the other mobile station 2 Capture usage of. Further, the mobile station 2A of the UE 10 sets the time width of the selection window according to the maximum allowable delay time of the transmission request, and uses the available resources for transmitting the high-priority packet of the transmission request based on the usage status of the other mobile stations 2. It is determined whether or not is insufficient.
  • the mobile station 2A of the UE 10 selects a reserved resource with a low priority as a resource to be muted, because there is not enough free resources to use for transmitting a high-priority packet for a transmission request.
  • the priority level of packet transmission of the transmission request of the mobile station 2A of the UE 10 is high priority, for example, the priority level of packet transmission allocated to the reserved resource by the mobile station 2B of the UE 2 is low priority.
  • the mobile station 2A of the UE 10 excludes the resources of the mobile station 2 of the UE2, UE4, and UE5 using the resources at the same timing as the monitoring cycle of the indication channel from the resources to be muted.
  • the mobile station 2A of the UE 10 selects a reserved resource of the mobile station 2B of the low-priority UE 1 having a low priority of transmission of a high-priority packet of a transmission request as a resource to be muted. Then, the mobile station 2A of the UE 10 generates a mute indication including resource information for identifying the selected resource to be muted. The mobile station 2A of the UE 10 broadcasts a mute indication to each of the other mobile stations 2 at the timing of the indication channel monitoring cycle.
  • the mobile station 2B of the UE 1 detects the mute indication at the timing of the monitoring cycle, the mobile station 2B decodes the mute indication and specifies the resource to be muted from the resource information. The mobile station 2B of the UE1 releases the reserved resource because the resource to be muted is the resource reserved by the own station.
  • the mobile station 2A of the UE 10 allocates the high-priority packet transmission of the transmission request to the free resource to be muted released by the mobile station 2B of the UE 1 according to the mute indication. As a result, the mobile station 2A of the UE 10 can execute high-priority packet transmission.
  • a resource of a predetermined cycle in a frequency band different from that used for V2V communication is used for the indication channel.
  • the number of resources to be muted in the mute indication of the fourth embodiment is exemplified as one, but the number is not limited to one, and may be plural, for example, and can be changed as appropriate. is there.
  • An embodiment in which two mute targets are included in the mute indication will be described below as a fifth embodiment.
  • the same components as those in the above embodiment are denoted by the same reference numerals, and the description of the same components and operations will not be repeated.
  • FIG. 15 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the fifth embodiment.
  • the number of resources to be muted in the mute indication of the fourth embodiment is one, whereas the number of resources to be muted in the mute indication of the fifth embodiment is two.
  • the case where two mute target lists are generated can be assumed, for example, when the head station 2C receives a mute request from the two member stations 2D.
  • the member station 2D of the UE 10 When the member station 2D of the UE 10 detects a transmission request for high-priority packet transmission, it captures the resource usage status of another mobile station 2 based on the sensing result up to 1000 ms before detecting the transmission request. .
  • the member station 2D of the UE 10 sets the time width of the selection window according to the allowable maximum delay time of the high-priority transmission request, and uses the idle state used for transmitting the high-priority packet of the transmission request based on the usage status of the other mobile stations 2. Determine whether resources are insufficient. If there is no shortage of free resources, the member station 2D of the UE 10 allocates free resources to high-priority packet transmission of the transmission request.
  • the member station 2D of the UE 10 selects a reserved resource of a low priority with a low priority of transmission of a high priority packet of a transmission request as a resource to be muted.
  • the member station 2D of the UE 10 selects, for example, a reserved resource used by the member station 2E of the low-priority UE 1 as a resource to be muted.
  • the member station 2D of the UE 10 transmits to the head station 2C a mute request including resource information for identifying the selected resource to be muted.
  • the member station 2D of the UE 11 detects the transmission request of the high-priority packet after the transmission request of the member station 2D of the UE 10 and before the monitoring period, based on the sensing result from the time when the transmission request was detected to 1000 ms before. , The resource usage status of the other mobile station 2 is captured.
  • the member station 2D of the UE 11 sets the time width of the selection window according to the allowable maximum delay time of the transmission request of the high-priority packet, and an available resource used for transmitting the transmission request packet is determined based on the usage status of the other mobile stations 2. Determine if there is a shortage. If there is no shortage of free resources, the member station 2D of the UE 11 allocates free resources to be used for transmitting a transmission request packet.
  • the member station 2D of the UE 11 selects a reserved resource lower than the priority level of packet transmission of the transmission request as a resource to be muted.
  • the member station 2D of the UE 11 selects, for example, a reserved resource used by the member station 2E of the low-priority UE 7 as a resource to be muted.
  • the member station 2D of the UE 11 transmits a mute request including resource information for identifying the selected resource to be muted to the head station 2C.
  • the head station 2C When the head station 2C detects the mute request from the member station 2D of the UE 10, the head station 2C extracts the resource information in the mute request. Further, when detecting the mute request from the member station 2D of the UE 10, the head station 2C extracts the resource information in the mute request. Similarly, when detecting the mute request from the member station 2D of the UE 11, the head station 2C extracts the resource information in the mute request. Then, the head station 2C generates a mute indication including the two resources to be muted extracted from the member stations 2D of the UE 10 and the UE 11.
  • the head station 2C broadcasts a mute indication including two resources to be muted to other mobile stations 2 through the indication channel.
  • the mobile station 2 decodes the mute indication and specifies the resource to be muted from the resource information. Further, the mobile station 2 determines whether or not the resource to be muted is a resource that has been reserved by the own station. Further, the mobile station 2, for example, the member station 2E of the UE1 and the UE7 releases the reserved resource when the resource to be muted is a resource reserved by the own station.
  • the member station 2D of the UE 10 that has transmitted the mute request allocates the packet transmission of the transmission request to the empty resource to be muted released by the member station 2E of the UE 1 according to the mute indication.
  • the member station 2D of the UE 10 allocates resources to the high-priority packet transmission of the transmission request even when the available resources are insufficient in the selection window.
  • the member station 2D of the UE 11 that has transmitted the mute request allocates the packet transmission of the transmission request to the empty resource to be muted released by the member station 2E of the UE 7 according to the mute indication.
  • the member station 2D of the UE 11 allocates resources to the high-priority packet transmission of the transmission request even when the available resources are insufficient in the selection window.
  • two muted resources can be stored in one mute indication, so that the transmission efficiency of the mute indication can be improved.
  • the mute indication is broadcast-transmitted to another mobile station 2 using the indication channel which is a resource of a predetermined cycle in the resources used for the V2V communication has been exemplified. Furthermore, the case where the number of resources to be muted in the mute sign is one has been exemplified, but a plurality of resources may be used, and an embodiment thereof will be described below as a sixth embodiment.
  • the same components as those in the first to third embodiments are denoted by the same reference numerals, and the description of the overlapping configurations and operations will be omitted.
  • FIG. 16 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the sixth embodiment.
  • the number of resources to be muted in the mute indication of the first embodiment is one, whereas the number of resources to be muted in the mute indication of the fifth embodiment is, for example, two.
  • the priority levels of packet transmission are, for example, three levels of LV1 to LV3.
  • the member station 2D of the UE 10 When the member station 2D of the UE 10 detects the transmission request of the packet transmission of the LV1, the member station 2D of the UE 10 captures the resource use status of the other mobile station 2 based on the sensing result up to 1000 ms before the detection of the transmission request. The member station 2D of the UE 10 sets the time width of the selection window according to the allowable maximum delay time of the packet transmission of the LV1, and the available resources used for transmitting the packet of the transmission request LV1 are determined based on the usage status of the other mobile stations 2. Determine if there is a shortage. If there is no shortage of free resources, the member station 2D of the UE 10 allocates free resources to the packet transmission of the LV1.
  • the member station 2D of the UE 10 selects the reserved resources of the LV3 lower than the priority level (LV1) of the packet transmission of the transmission request as the resources to be muted.
  • the member station 2D of the UE 10 selects, for example, a reserved resource of the LV 3 used by the member station 2E of the UE 2 as a resource to be muted.
  • the member station 2D of the UE 10 transmits to the head station 2C a mute request including resource information for identifying the selected resource to be muted.
  • the member station 2D of the UE 11 detects the transmission request of the LV1 after the transmission request of the member station 2D of the UE 10 and before the monitoring period, based on the sensing result from the time when the transmission request was detected to 1000 ms before. , The resource usage status of the other mobile station 2 is captured.
  • the member station 2D of the UE 11 sets the time width of the selection window according to the maximum permissible delay time of the transmission of the transmission request LV1 packet, and uses the time width of the transmission request LV1 packet based on the usage status of other mobile stations 2. It is determined whether or not free resources are insufficient. If there is no shortage of free resources, the member station 2D of the UE 11 allocates free resources to packet transmission of the transmission request LV1.
  • the member station 2D of the UE 11 selects the reserved resources of the LV3 lower than the priority level (LV1) of the packet transmission of the transmission request as the resources to be muted.
  • the member station 2D of the UE 11 selects, for example, a reserved resource of the LV 3 used by the member station 2E of the UE 1 as a resource to be muted.
  • the member station 2D of the UE 11 transmits a mute request including resource information for identifying the selected resource to be muted to the head station 2C.
  • the head station 2C When the head station 2C detects the mute request from the member station 2D of the UE 10, the head station 2C extracts the resource information in the mute request and specifies the resource to be muted. Similarly, when detecting the mute request from the member station 2D of the UE 11, the head station 2C extracts the resource information in the mute request. Then, the head station 2C generates a mute indication including two resources to be muted from the member stations 2D of the UE10 and the UE11.
  • the head station 2C broadcasts a mute indication including two resources to be muted to other mobile stations 2 through the indication channel.
  • the mobile station (member station) 2 receives the mute indication through the indication channel, decodes the mute indication, and specifies the resource to be muted from the resource information. Further, the mobile station 2 determines whether or not the resource to be muted is a resource that has been reserved by the own station. Further, the mobile station 2, for example, the member station 2E of the UE1 and the UE2 releases the reserved resource when the resource to be muted is a resource reserved by the own station.
  • the member station 2D of the UE 10 that has transmitted the mute request allocates the transmission request LV1 packet transmission to the muted target free resource of the released UE2 according to the mute indication.
  • the member station 2D of the UE 10 can execute transmission of the transmission request LV1 packet even when the available resources are insufficient in the selection window.
  • the member station 2D of the UE 11 that has transmitted the mute request allocates the packet transmission of the transmission request LV1 to the empty resource to be muted released by the member station 2E of the UE 1 according to the mute indication.
  • the member station 2D of the UE 11 can execute the packet transmission of the transmission request LV1 even when the available resources are insufficient in the selection window.
  • a mute indication can be stored in the SCI of each sub-channel.
  • the mute indication can store up to two resources to be muted. Therefore, in the monitoring cycle of the indication channel, up to six resources to be muted can be transmitted using three subchannels.
  • two muted resources can be stored in one mute indication, so that the transmission efficiency of the mute indication can be improved.
  • the resource is not limited to the resource for one slot, and may be a resource for a slot such as a half slot or two slots, for example, and can be changed as appropriate.
  • the mute indication in the above embodiment has exemplified the case where the resource information for identifying the resource to be muted is stored.
  • the mute indication may store, for example, information in the form of a bitmap so that the position of the resource to be muted in the selection window and whether or not each resource is reserved can be identified.
  • Embodiment 7 will be described below.
  • FIG. 17 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the seventh embodiment.
  • the mute indication divides the position of each resource in the selection window that fluctuates according to the maximum allowable delay time of packet transmission of the transmission request, and provides resource information in a bitmap format so that the position of the resource to be muted can be identified. Is stored. For example, when the allowable maximum delay time is 3 ms, the time width of the selected window is 3 ms. Therefore, the selection window can be partitioned into 3 ⁇ 3 nine resources.
  • the resource information in the bitmap format is partitioned into nine resources, and for example, resources to be muted are represented by “1”, and resources other than resources to be muted are represented by “0”.
  • the mobile station 2A of the UE 10 When the mobile station 2A of the UE 10 detects the transmission request of the high-priority packet transmission, the mobile station 2A of the UE 10 captures the usage status of the resources of the other mobile stations 2 based on the sensing result up to 1000 ms before detecting the transmission request. .
  • the mobile station 2A of the UE 10 sets a selection window according to the allowable maximum delay time of transmission of a high-priority packet of a transmission request, and uses a free space to be used for transmission of a high-priority packet of a transmission request based on the usage status of other mobile stations 2. Determine whether resources are insufficient.
  • the mobile station 2A of the UE 10 allocates a free resource to the transmission data of the transmission request when there is no shortage of the free resource used for transmitting the transmission request of the high-priority packet.
  • the mobile station 2A of the UE 10 assigns a low-priority reserved resource lower than the priority level (high-priority) of the packet transmission of the transmission request. Select as a resource to be muted. At this time, the mobile station 2A of the UE 10 selects, for example, a resource reserved by the mobile station 2B of the UE 1 for low-priority packet transmission as a resource to be muted.
  • the mobile station 2A of the UE 10 generates bitmap format resource information in which the position of the resource to be muted in the selection window is “1”, and the position of other resources other than the resource to be muted in the selection window is “0”. . Then, the mobile station 2A of the UE 10 generates a mute indication including the resource information in the bitmap format. Then, the mobile station 2A of the UE 10 broadcasts the mute indication to the other mobile stations 2 through the indication channel.
  • Each mobile station 2B monitors the monitoring cycle of the indication channel, and determines whether or not the mute indication has been received according to the monitoring cycle.
  • the mobile station 2B decodes the mute indication and specifies the resource position of the resource information in the mute indication.
  • the mobile station 2B determines whether the specified resource location is the same as the resource location reserved by the mobile station 2B.
  • the mobile station 2B of the UE 1 refers to the resource information in the bitmap format, and when the specified resource position is the same as the resource position reserved by the own station, the resource to be muted is the reserved resource of the own station. And release the reserved resource.
  • the mobile station 2A of the UE 10 that has transmitted the mute indication allocates the high-priority packet transmission of the transmission request to the empty resource to be muted released by the mobile station 2B of the UE 1 according to the mute indication.
  • the mobile station 2A of the UE 10 can execute high-priority packet transmission of the transmission request even when the available resources are insufficient.
  • the division of the resource position in the bitmap format may also vary according to the time width. Needless to say.
  • the identification information that enables the resource position in the selection window and the reservation status of each resource to be identified in the bitmap format is transmitted by the mute indication.
  • each mobile station 2 receiving the mute indication can easily identify the resource to be muted by referring to the resource information in the bitmap format.
  • the wireless communication system 1B of the V2V communication is illustrated, but the present invention is also applicable to, for example, V2X communication such as V2P communication and V2I communication.
  • the resource information of the first embodiment includes identification information for identifying the position of the resource to be muted.
  • the mobile station identification information for identifying the mobile station 2 using the resource and the priority level of packet transmission used for the resource may be included, and can be changed as appropriate.
  • the member station 2D of the second embodiment selects the resource to be muted with the lower priority level of the high-priority packet from the sensing result up to 1000 msec from the detection of the transmission request. I do. Then, the case where the member station 2D transmits the selected resource to be muted to the head station 2C as a mute request has been exemplified, but the present invention is not limited to this. For example, when detecting the transmission request of the high-priority packet, the member station 2D transmits the mute request to the head station 2C without selecting the resource to be muted.
  • the head station 2C may select the resource to be muted in response to the mute request, and may broadcast the mute indication including the resource information of the resource to be muted to other mobile stations, and may change it appropriately. In this case, when transmitting the mute indication, the head station 2C notifies the member station 2D that transmitted the mute request of the resource to be muted.
  • the case where the head station 2C receives a mute request from the plurality of member stations 2D is exemplified as the case where there are a plurality of resources to be muted.
  • the present invention is not limited to this, and is also applicable when a certain member station 2D detects a plurality of transmission requests.
  • FIG. 18 is an explanatory diagram showing an example of a mute sign transmission method and a mute operation according to the eighth embodiment. It is assumed that the mobile station 2A of the UE 10 has reserved V2V communication with a resource at a predetermined position (resource has been reserved).
  • the mobile station 2A of the UE 10 determines that the resource reserved by the mobile station 2A is smaller than the size of the high-priority packet of the transmission request, it adds the information of the mute indication to the control information (SCI) area of the reserved resource.
  • SCI control information
  • a part of the SCI for the data to be transmitted includes information for determining whether or not to execute the mute indication, or information on a mute indication indicating information on a muted target resource for which the mute indication is performed.
  • the other mobile station 2 detects the information of the SCI, decodes the information of the SCI, and decodes the information of the mute indication in the SCI.
  • the mobile station 2 decodes the information of the mute indication to determine whether or not there is information for releasing the resource to be muted. The other mobile station 2 determines whether the resource reserved by the own station is a resource to be muted. If the resource reserved by the mobile station 2 is a resource to be muted, the mobile station 2 releases the resource to be muted.
  • the mobile station 2A of the UE 10 detects a transmission request of a high-priority packet larger than the size of the resource reserved by the own station, the mobile station 2A based on the sensing result from the time when the transmission request was detected to 1000 ms before, The usage status of resources of another mobile station 2 is captured.
  • the mobile station 2A sets a selection window according to the maximum permissible delay time of the transmission request, and determines whether or not there is insufficient free resources to be used for high-priority packet transmission of the transmission request based on the usage status of the other mobile stations 2. Is determined.
  • the mobile station 2A of the UE 10 selects a reserved resource with a low priority as a resource to be muted when there is a shortage of free resources to be used for transmitting a high-priority packet for a transmission request. Then, the mobile station 2A adds the information of the mute indication including the resource information for identifying the selected resource to be muted to the SCI area in the reserved resource.
  • the mobile station 2 decodes the information of the SCI in each resource, and decodes the information of the mute indication in the SCI. Further, the mobile station 2 decodes the information of the mute indication to determine whether or not there is information for releasing the resource to be muted.
  • the mobile station 2B of the UE 2 determines whether or not the resource reserved by the own station is a resource to be muted. As illustrated in FIG. 18, the mobile station 2 ⁇ / b> B of the UE 2 releases the resource to be muted when the resource reserved in the own station is the resource to be muted.
  • the mobile station 2A of the UE 10 allocates the high-priority packet transmission of the transmission request to the reserved resources and the free resources to be muted released by the mobile station 2B of the UE 2 according to the mute indication. As a result, the mobile station 2A of the UE 10 allocates the high-priority packet transmission to the released free resources in addition to the reserved resources.
  • the mobile station 2A when the resources used for transmitting a high-priority packet for a transmission request are not enough resources reserved by the own station and the available resources are insufficient in the selection window.
  • the information of the mute indication is added to the SCI area in the reserved resource of.
  • Each mobile station 2 decodes the SCI of the frequency band of the V2V communication, and releases the resource to be muted when the resource to be muted is a resource reserved in the own station.
  • the mobile station 2A transmits the high-priority packet even if the resources used for transmitting the high-priority packet are not enough resources reserved by the own station and the available resources are insufficient in the selection window. Can be realized.
  • the mobile station 2 of the eighth embodiment does not reserve a dedicated resource to be used for the mute indication, and displays the mute indication in the SCI area within the resource reserved by the own station. Is added. As a result, even if there is no dedicated resource, the mute indication can be transmitted to each mobile station 2 using the SCI of the resource used by the own station, so that the radio efficiency of V2V communication can be improved.
  • FIG. 19 is an explanatory diagram showing an example of an SCI format including information on a mute sign.
  • the SCI format shown in FIG. 19 includes, for example, a time difference (Time @ Gap: time interval) between an initial transmission (initial @ transmission) and a retransmission (retransmission), a retransmission index, and frequency resources of the initial transmission and the retransmission. It has a location and a resource reservation.
  • the SCI format has, for example, a mute indication information bit, an MCS, a group destination ID, a priority information bit, and a retransmission index.
  • the time difference between the initial transmission and the retransmission is 4 bits
  • the retransmission index is 1 bit
  • the frequency resource position between the initial transmission and the retransmission is 8 bits
  • the resource reservation is 4 bits.
  • the MCS has 5 bits
  • the group destination ID has 8 bits
  • the priority information bit has 3 bits
  • the retransmission index has 1 bit
  • the mute indication information bit has 9 bits.
  • the mute indication information bit arranges resource information for identifying the position of the resource to be muted.
  • the mute indication information bits represent the resource position to be muted in a bitmap format of “9” bits.
  • the resource arrangement configuration in the selection window is partitioned into 2 ⁇ 2
  • the position of the resource to be muted is expressed in a bitmap format of “4” bits.
  • the resource arrangement configuration in the selection window is partitioned into 4 ⁇ 4
  • the position of the resource to be muted is expressed in a “16” bit bitmap format. Therefore, the number of mute indication information bits is appropriately changed according to the resource arrangement configuration in the selection window.
  • the mobile station 2 when there is a resource reserved in the mobile station 2, the mobile station 2 adds the information of the mute indication to the SCI in the resource reserved in the mobile station without securing a dedicated resource used for the mute indication. .
  • the mute indication in the bitmap format can be transmitted to each mobile station 2 using the SCI of the resource used by the own station, so that the radio efficiency of V2V communication can be improved.
  • FIG. 20 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the ninth embodiment.
  • the SCI area of the subchannel and the data area of the subchannel are in the same time area, whereas the subchannel of the ninth embodiment is different from the SCI area of the subchannel and the subchannel.
  • the data area of the channel is in a different time domain.
  • the time domain of the sub-channel data area of the mobile station 2A of the UE 10 and the SCI domain of the sub-channel of the mobile station 2A of the UE 10 are different. It is assumed that the mobile station 2A of the UE 10 has reserved V2V communication with a resource at a predetermined position (resource has been reserved).
  • the mobile station 2A of the UE 10 determines that the reserved resource is smaller than the size of the high-priority packet of the transmission request, the mobile station 2A adds the information of the mute indication to the SCI area of the reserved resource.
  • the SCI area of the sub-channel corresponding to the reserved resource and the data area of the sub-channel are in different time areas.
  • the other mobile station 2 detects the information of the SCI and decodes the information of the SCI, and decodes the information of the mute sign in the SCI. Further, the mobile station 2 decodes the information of the mute indication to determine whether or not there is information for releasing the resource to be muted. The other mobile station 2 determines whether the resource reserved by the own station is a resource to be muted. If the resource reserved by the mobile station 2 is a resource to be muted, the mobile station 2 releases the resource to be muted.
  • the mobile station 2A of the UE 10 detects a transmission request of a high-priority packet larger than the size of the resource reserved by the own station, the mobile station 2A based on the sensing result from the time when the transmission request was detected to 1000 ms before, The usage status of resources of another mobile station 2 is captured.
  • the mobile station 2A sets a selection window according to the maximum permissible delay time of the transmission request, and determines whether or not there is a shortage of available resources to be used for transmitting a high-priority packet of the transmission request based on the usage status of the other mobile stations 2. Is determined.
  • the mobile station 2A of the UE 10 selects a reserved resource with a low priority as a resource to be muted when there is a shortage of free resources to be used for transmitting a high-priority packet for a transmission request. Then, the mobile station 2A adds the information of the mute indication including the resource information for identifying the selected resource to be muted to the SCI area in the time area different from the data area of the reserved resource.
  • the mobile station 2 decodes the information of the SCI in each resource, and decodes the information of the mute indication in the SCI. Further, the mobile station 2 decodes the information of the mute indication to determine whether or not there is information for releasing the resource to be muted.
  • the mobile station 2B of the UE 2 determines whether or not the resource reserved by the own station is a resource to be muted. As shown in FIG. 20, when the resource reserved in the own station is the resource to be muted, the mobile station 2B of the UE 2 releases the resource to be muted.
  • the mobile station 2A of the UE 10 allocates the high-priority packet transmission of the transmission request to the reserved resources and the free resources to be muted released by the mobile station 2B of the UE 2 according to the mute indication. As a result, the mobile station 2A of the UE 10 allocates the high-priority packet transmission to the released free resources in addition to the reserved resources.
  • the mobile station 2A when the resources used for transmitting a high-priority packet for a transmission request are not enough resources reserved by the own station and the available resources are insufficient in the selection window, Adds the information of the mute indication to the SCI area in the reserved resource.
  • Each mobile station 2 decodes the SCI of the frequency band of the V2V communication, and releases the resource to be muted when the resource to be muted is a resource reserved in the own station.
  • the mobile station 2A can transmit the high-priority packet even if the resources used for transmitting the high-priority packet are not enough resources reserved by the own station and the available resources are insufficient in the selection window. Can be realized.
  • the mobile station 2 when there is a resource reserved by the own station, the mobile station 2 according to the ninth embodiment does not secure a dedicated resource used for the mute indication, and the data area and the time area within the resource reserved by the own station. Add mute sign information to different SCI areas. As a result, even if there is no dedicated resource, the mute indication can be transmitted to each mobile station 2 using the SCI of the resource used by the own station, so that the radio efficiency of V2V communication can be improved.
  • the mobile station 2 of the UE 10 may specify the resource to be muted based on the time domain or the frequency-time domain of the reserved resource, or may specify the resource to be muted based on the time domain to which the information of the mute indication is added.
  • the resource may be specified and can be changed as appropriate.
  • FIG. 21 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the tenth embodiment.
  • the mobile station 2 of the UE 10 secures resources for V2V communication resources according to the eighth embodiment in advance, and adds a mute indication to the SCI area in the same time area.
  • the information of the mute indication is added to the SCI area instead of the mobile station 2 of the UE 10 securing the resources in advance.
  • the resources of the three sub-channels in the same time domain illustrated in FIG. 21 include, for example, a resource of a frequency band in which three data regions are combined and a resource of a frequency band in which, for example, three SCI regions are combined. .
  • the mobile station 2A of the UE 10 when detecting the transmission request of the high-priority packet, captures the usage status of the resources of the other mobile stations 2 based on the sensing result from the time when the transmission request was detected to 1000 ms before. .
  • the mobile station 2A sets a selection window according to the maximum permissible delay time of the transmission request, and determines whether or not there is insufficient free resources to be used for high-priority packet transmission of the transmission request based on the usage status of the other mobile stations 2. Is determined.
  • the mobile station 2A of the UE 10 selects a reserved resource with a low priority as a resource to be muted when there is a shortage of free resources to be used for transmitting a high-priority packet for a transmission request.
  • two resources are selected as resources to be used for a high-priority packet of a transmission request. Then, the mobile station 2A of the UE 10 adds the information of the mute indication including the resource information for identifying the selected resource to be muted to the SCI area.
  • the mobile station 2 decodes the information of the SCI in each resource, and decodes the information of the mute indication in the SCI. Further, the mobile station 2 decodes the information of the mute indication to determine whether or not there is information for releasing the resource to be muted.
  • the mobile stations 2B of the UE1 and the UE2 determine whether or not the resource reserved by the own station is a resource to be muted. As shown in FIG. 20, when the resource reserved in the own station is a resource to be muted, the mobile station 2B of the UE 1 releases the resource to be muted. Similarly, the mobile station 2B of the UE2 releases the resource to be muted when the resource reserved in the own station is the resource to be muted as shown in FIG.
  • the mobile station 2A of the UE 10 allocates the high-priority packet transmission of the transmission request to the free resources to be muted released by the mobile stations 2B of the UE1 and the UE2 according to the mute indication. As a result, the mobile station 2A of the UE 10 allocates high-priority packet transmission to the released free resources.
  • the mobile station 2A adds the information of the mute indication to the SCI when the available resources used for transmitting the transmission request high-priority packet are insufficient.
  • Each mobile station 2 decodes the SCI of the frequency band of the V2V communication, and releases the reserved resource to be muted when the resource to be muted is a resource reserved by the own station.
  • the mobile station 2A can realize high-priority packet transmission even when there are insufficient free resources used for high-priority packet transmission.
  • the mobile station 2 adds the information of the mute indication to the SCI area without securing the dedicated resource used for the mute indication.
  • the mute indication can be transmitted to each mobile station 2 using the SCI even without a dedicated resource, so that the radio efficiency of V2V communication can be improved.
  • the resources of the V2 communication according to the tenth embodiment have exemplified the resource configuration having the frequency band in which the SCI area is combined and the frequency band in which the data area is combined in the same time domain
  • the present invention is not limited to this.
  • the resource configuration shown in FIG. 18 or the resource configuration shown in FIG. 20 may be used, and the mobile station 2A may add a mute indication to one SCI area in the resource, and can change it as appropriate.
  • the mute indication in the SCI area shown in FIG. 21 specifies the initial position of the resource, and specifies the resource to be muted by indicating a frequency domain or a time domain that is continuous from the initial position. Further, a plurality of resources to be muted may be indicated by the information of the mute indication. In this case, for example, a plurality of resources to be muted having a value indicating “1” out of 9 bits is easily released. The resources to be muted can be released.
  • the mute sign can be instructed by using the SCI. Therefore, it is possible to cope with the case where the packet size of the transmission request is larger than the resource for which the size is secured.
  • Examples 8 to 10 and Examples 1 to 7 can be used in combination.
  • the first mute target resource is indicated to each mobile station 2 by the mute indication described in the first embodiment.
  • a necessary resource may be transmitted to each mobile station 2 as a resource to be muted based on the first resource position to be muted, and may be appropriately changed. is there.

Abstract

The terminal device has a determination unit, a generation unit, a transmission unit, and an allocation unit. Upon detection of a transmission request for high-priority data to be directly communicated to another terminal device, the determination unit determines whether or not there are sufficient resources for allocation to the data transmission requested in the transmission request from among a plurality of resources which can be allocated for data transmission. When sufficient resources are not available for allocation to the data transmission of the transmission request of the transmission request, the generation unit selects resources reserved for other terminal devices for data transmissions lower in priority than the priority level of the data transmission of the transmission request and generates a command for requesting release of the selected reserved resources. The transmission unit transmits the command generated by the generation unit to each of the other terminal devices. The allocation unit allocates the resources released by the other terminal devices in response to the command to the data transmission of the transmission request. As a result, it is possible to satisfy the service requirement for the allowable maximum delay time corresponding to the data transmission of the transmission request.

Description

端末装置及び無線通信システムTerminal device and wireless communication system
 本発明は、端末装置及び無線通信システムに関する。 << The present invention relates to a terminal device and a wireless communication system.
 現在のネットワークは、例えば、スマートフォンやフューチャーホン等のモバイル端末のトラフィックがネットワークのリソースの大半を占めている。また、モバイル端末が使うトラフィックは、今後も拡大していく傾向にある。 In the current network, for example, traffic of mobile terminals such as smartphones and future phones occupies most of the network resources. In addition, the traffic used by mobile terminals tends to increase in the future.
 一方で、IoT(Internet of a Things)サービス、例えば、交通システム、スマートメータ、装置等の監視システム等のサービスの展開にあわせて、多種多様な要求条件のサービスに対応することが求められている。そのため、第5世代移動体通信(5G又はNR(New Radio))の通信規格では、4G(第4世代移動体通信)の標準技術(例えば、非特許文献2~12)に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が求められている。尚、第5世代通信規格については、3GPPの作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められている(非特許文献13~39)。 On the other hand, along with the development of IoT (Internet of Things) services, for example, services such as monitoring systems such as traffic systems, smart meters, and devices, it is required to support services with various requirements. . Therefore, in the communication standard of the fifth generation mobile communication (5G or NR (New @ Radio)), in addition to the standard technology of 4G (fourth generation mobile communication) (for example, Non-Patent Documents 2 to 12), higher communication standards are used. There is a need for a technology that achieves a higher data rate, larger capacity, and lower delay. Technical studies on the fifth generation communication standard are being conducted by 3GPP working groups (eg, TSG-RAN @ WG1, TSG-RAN @ WG2, etc.) (Non-Patent Documents 13 to 39).
 上記で述べたように、多種多様なサービスに対応するために、5Gでは、eMBB(Enhanced Mobile BroadBand)、Massive MTC(Machine Type Communications)、およびURLLC(Ultra-Reliable and Low Latency Communication)に分類される多くのユースケースのサポートを想定している。また、3GPPの作業部会では、V2X(Vehicle to Everying)通信についても議論されている。また、3GPPの作業部会では、D2D(Device to Device)通信についても議論されている。D2D通信は、サイドリンク通信と呼ばれることもある。また、D2D通信の一例として、V2Xが検討されている。V2X通信は、例えば、サイドリンクチャネルを使用した通信であって、例えば、V2V(Vehicle to Vehicle)通信、V2P(Vehicle to Pedestrian)通信や、V2I(Vehicle to Infrastructure)通信等がある。V2V通信は、自動車と自動車との間の通信、V2P通信は、自動車と歩行者(Pedestrian)との間の通信、V2I通信は、自動車と標識等の道路インフラとの間の通信である。V2Xに関する規定は、例えば、非特許文献1に記載されている。 As described above, 5G is classified into eMBB (Enhanced Mobile Broadband), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication) in order to support a wide variety of services. It is intended to support many use cases. The 3GPP Working Group is also discussing V2X (Vehicle to Everything) communication. The 3GPP Working Group is also discussing D2D (Device to Device) communication. D2D communication is sometimes called side link communication. Also, V2X is being studied as an example of D2D communication. The V2X communication is, for example, communication using a side link channel, and includes, for example, V2V (Vehicle to Vehicle) communication, V2P (Vehicle to Vehicle) communication, V2I (Vehicle to Infrastructure) communication, and the like. V2V communication is communication between a car and a car, V2P communication is communication between a car and a pedestrian (Pedestrian), and V2I communication is communication between a car and a road infrastructure such as a sign. The rules regarding V2X are described in Non-Patent Document 1, for example.
 4GのV2Xのリソースを割り当てる方式には、例えば、移動体通信システムが集中的に制御する方式と、V2Xを実施する各端末装置が自律的に制御する方式とがある。移動体通信システムが集中的に制御する方式は、V2Xを実施する端末装置が移動体通信システムの基地局のカバレージに在圏する際に適用可能であり、モード3とも呼ばれる。一方、各端末装置が自律的に制御する方式は、端末装置が基地局のカバレージに在圏しなくても適用可能であり、モード4とも呼ばれる。モード4では、端末装置と基地局との間でのリソースの割当のための通信が行われない。 As a method of allocating V2X resources of # 4G, for example, there are a method in which a mobile communication system performs centralized control and a method in which each terminal device implementing V2X performs autonomous control. The system in which the mobile communication system performs centralized control is applicable when the terminal device implementing V2X is located in the coverage of the base station of the mobile communication system, and is also referred to as mode 3. On the other hand, the method in which each terminal device controls autonomously is applicable even if the terminal device does not exist in coverage of the base station, and is also referred to as mode 4. In mode 4, communication for allocating resources between the terminal device and the base station is not performed.
 モード4での各端末装置は、V2X通信に用いられる周波数帯域全体をセンシングする。各端末装置は、パケットの送信要求を検出した場合、センシングの結果に基づいてパケット送信に割り当てるリソースを選択する。端末装置は、パケットの送信要求を検出すると、パケット送信に許容できる許容最大遅延時間に応じて選択ウインドウ内の時間幅を設定することになる。そして、端末装置は、送信要求を検出した時点から所定期間前までのセンシング結果に基づいて選択ウインドウ内で他の端末装置が使用する可能性が高いリソースを予約済みに設定する。そして、端末装置は、選択ウインドウを参照し、選択ウインドウ内に予約済みリソース以外の空きのリソースを選択し、選択した空きのリソースに送信要求のパケット送信を割当てて送信する。 端末 Each terminal device in mode 4 senses the entire frequency band used for V2X communication. When detecting a packet transmission request, each terminal device selects a resource to be allocated to packet transmission based on a result of sensing. Upon detecting the packet transmission request, the terminal device sets the time width in the selection window according to the allowable maximum delay time allowable for packet transmission. Then, the terminal device sets a resource which is likely to be used by another terminal device in the selection window to be reserved, based on a sensing result from a point in time when the transmission request is detected until a predetermined period before. Then, the terminal device refers to the selection window, selects a free resource other than the reserved resource in the selection window, and allocates the selected free resource to packet transmission of the transmission request and transmits the packet.
 しかし、現状のリソースの割当方法では、現在、3GPPで議論されているV2X(例えば、NR-V2X)のサービス要件を満たすことができない可能性がある。例えば、低遅延が要求されるパケットの送信要求が発生した場合に、センシング処理を行った結果、送信要求のパケットが送信可能な空きリソースが不足し、送信要求のパケットが送信できなくなり、サービス要件を満たすことができなくなる。 However, the current resource allocation method may not be able to satisfy the service requirements of V2X (for example, NR-V2X) currently discussed in 3GPP. For example, when a transmission request for a packet requiring a low delay occurs, as a result of the sensing processing, the available resources for transmitting the transmission request packet are insufficient, the transmission request packet cannot be transmitted, and the service requirement is reduced. Can not be satisfied.
 例えば、モード4での端末装置では、パケット送信の許容最大遅延時間に応じて選択ウインドウの時間幅を設定するため、高優先パケットの送信要求を検出した場合、高優先のパケット送信の許容最大遅延時間が短くなるため、選択ウインドウの時間幅も短くなる。更に、選択ウインドウの時間幅が短くなると、選択ウインドウ内で送信要求のパケット送信に割当可能なリソース量も少なくなる。その結果、リソース量の減少によって高優先パケットの許容最大遅延時間内に高優先パケットが送信できなくなり、サービス要件が満たさなくなる。 For example, in the terminal device in the mode 4, the time width of the selection window is set according to the allowable maximum delay time of the packet transmission. Therefore, when the transmission request of the high priority packet is detected, the allowable maximum delay of the high priority packet transmission is detected. Since the time is shortened, the time width of the selection window is also shortened. Further, as the time width of the selection window becomes shorter, the amount of resources that can be allocated to packet transmission of a transmission request in the selection window also becomes smaller. As a result, the high priority packet cannot be transmitted within the allowable maximum delay time of the high priority packet due to the decrease in the resource amount, and the service requirement is not satisfied.
 開示の技術は、上記に鑑みてなされたものであって、送信要求のパケット送信に応じた許容最大遅延時間の要求を満たすことができることを目的とする。 The disclosed technology has been made in view of the above, and has as its object to satisfy a request for an allowable maximum delay time according to a packet transmission of a transmission request.
 一つの態様の端末装置は、判定部と、生成部と、送信部と、割当部とを有する。判定部は、他の端末装置と直接通信する高優先のデータの送信要求を検出した場合に、データ送信に割当可能な複数のリソースの中で当該送信要求のデータ送信に割り当てるリソースが不足しているか否かを判定する。生成部は、送信要求のデータ送信に割り当てるリソースが不足している場合に、送信要求のデータ送信の優先レベルよりも下位のデータ送信に使用する他の端末装置が予約済みのリソースを選択し、選択した予約済みのリソースの開放を要求するコマンドを生成する。送信部は、生成部で生成したコマンドを各他の端末装置に送信する。割当部44は、コマンドに応じて他の端末装置が開放したリソースを送信要求のデータ送信に割り当てる。 端末 A terminal device according to one aspect includes a determination unit, a generation unit, a transmission unit, and an assignment unit. When detecting a transmission request for high-priority data that directly communicates with another terminal device, the determination unit determines that there is a shortage of resources to be allocated to data transmission of the transmission request among a plurality of resources that can be allocated to data transmission. Is determined. The generating unit selects a resource reserved by another terminal device used for data transmission lower than the priority level of the data transmission of the transmission request when resources allocated to data transmission of the transmission request are insufficient, Generate a command to request release of the selected reserved resource. The transmitting unit transmits the command generated by the generating unit to each of the other terminal devices. The allocating unit 44 allocates resources released by other terminal devices to data transmission of a transmission request in response to the command.
 一つの態様では、送信要求のパケット送信に応じた許容最大遅延時間のサービス要件を満たすことができる。 In one aspect, the service requirement of the maximum allowable delay time according to the packet transmission of the transmission request can be satisfied.
図1は、実施例1の無線通信システムの一例を示す説明図である。FIG. 1 is an explanatory diagram illustrating an example of the wireless communication system according to the first embodiment. 図2は、センシングウインドウ及び選択ウインドウの一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of the sensing window and the selection window. 図3は、送信パケットの許容最大遅延時間に応じて選択ウインドウの時間幅が変動する際の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example when the time width of the selection window changes according to the allowable maximum delay time of the transmission packet. 図4は、実施例1の移動局の一例を示すブロック図である。FIG. 4 is a block diagram illustrating an example of the mobile station according to the first embodiment. 図5は、実施例1の移動局のV2Vスケジューラ部の機能の一例を示すブロック図である。FIG. 5 is a block diagram illustrating an example of a function of the V2V scheduler unit of the mobile station according to the first embodiment. 図6は、実施例1のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。FIG. 6 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the first embodiment. 図7は、実施例1の送信側割当処理に関わる移動局の処理動作の一例を示すフロー図である。FIG. 7 is a flowchart illustrating an example of a processing operation of the mobile station related to the transmission-side assignment processing according to the first embodiment. 図8は、実施例1の受信側開放処理に関わる移動局の処理動作の一例を示すフロー図である。FIG. 8 is a flowchart illustrating an example of a processing operation of the mobile station related to the receiving-side release processing according to the first embodiment. 図9は、実施例2の無線通信システムの一例を示す説明図である。FIG. 9 is an explanatory diagram illustrating an example of the wireless communication system according to the second embodiment. 図10は、実施例2のメンバ側割当処理に関わるメンバ局の処理動作の一例を示すフロー図である。FIG. 10 is a flowchart illustrating an example of a processing operation of the member station related to the member-side assignment processing according to the second embodiment. 図11は、実施例2のヘッド側割当処理に関わるヘッド局の処理動作の一例を示すフロー図である。FIG. 11 is a flowchart illustrating an example of a processing operation of the head station related to the head-side assignment processing according to the second embodiment. 図12は、実施例2のメンバ側開放処理に関わるメンバ局の処理動作の一例を示すフロー図である。FIG. 12 is a flowchart illustrating an example of a processing operation of the member station related to the member-side release processing according to the second embodiment. 図13は、実施例3のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。FIG. 13 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the third embodiment. 図14は、実施例4のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。FIG. 14 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the fourth embodiment. 図15は、実施例5のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。FIG. 15 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the fifth embodiment. 図16は、実施例6のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。FIG. 16 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the sixth embodiment. 図17は、実施例7のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。FIG. 17 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the seventh embodiment. 図18は、実施例8のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。FIG. 18 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the eighth embodiment. 図19は、ミュート標示に関する情報を含むSCIフォーマットの一例を示す説明図である。FIG. 19 is an explanatory diagram showing an example of an SCI format including information on a mute sign. 図20は、実施例9のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。FIG. 20 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the ninth embodiment. 図21は、実施例10のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。FIG. 21 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the tenth embodiment.
 以下、本実施の形態について図面を参照して詳細に説明する。本明細書における課題及び実施例は一例であり、本願の権利範囲を限定するものではない。特に、記載の表現が異なっていたとしても技術的に同等であれば、異なる表現であっても本願の技術を適用可能であり、権利範囲を限定するものではない。そして、各実施の形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Hereinafter, this embodiment will be described in detail with reference to the drawings. The problems and examples in this specification are merely examples, and do not limit the scope of the present application. In particular, even if the expressions described are different, as long as they are technically equivalent, the technology of the present application can be applied to different expressions, and the scope of rights is not limited. The embodiments can be appropriately combined within a range that does not contradict processing contents.
 また、本明細書で使用している用語や記載した技術的内容は、3GPPなど通信に関する規格として仕様書や寄書に記載された用語や技術的内容が適宜用いられてもよい。このような仕様書としては、例えば、上述した3GPP TS 38.211 V15.1.0(2018-03)がある。 The terms and technical contents described in this specification may be the terms and technical contents described in specifications and contributions as communication standards such as 3GPP as appropriate. Such a specification is, for example, the above-mentioned 3GPPGPTS 38.211 V15.1.0 (2018-03).
 以下に、本願の開示する端末装置及び無線通信システムの実施例を、図面に基づいて詳細に説明する。なお、以下の実施例は開示の技術を限定するものではない。 Hereinafter, embodiments of the terminal device and the wireless communication system disclosed in the present application will be described in detail with reference to the drawings. The following embodiments do not limit the disclosed technology.
 図1は、実施例1の無線通信システム1の一例を示す説明図である。図1に示す無線通信システム1は、複数の移動局2と、基地局3とを有する。無線通信システム1には、移動局2を車両に配置し、移動局2間の直接通信を実現するリソース割当方式として、例えば、LTE-V2V(Long Term Evolution-Vehicle to Vehicle)がある。V2V通信のリソース割当方式には、例えば、モード3及びモード4がある。 FIG. 1 is an explanatory diagram illustrating an example of the wireless communication system 1 according to the first embodiment. The wireless communication system 1 illustrated in FIG. 1 includes a plurality of mobile stations 2 and a base station 3. In the wireless communication system 1, for example, LTE-V2V (Long Term Evolution-Vehicle to vehicle) is a resource allocation method for arranging the mobile station 2 in a vehicle and realizing direct communication between the mobile stations 2. The resource allocation method of V2V communication includes, for example, mode 3 and mode 4.
 モード3で使用する無線通信システム1Aでは、基地局3が集中的にリソースを制御し、V2V通信を実施する移動局2が基地局3のカバレージに在圏する際に適用可能である。また、モード4で使用する無線通信システム1Bでは、V2V通信を実施する各移動局2が自律的に制御し、移動局2が基地局3のカバレージに在圏しなくても適用可能である。 無線 In the wireless communication system 1A used in mode 3, the present invention is applicable when the base station 3 controls resources intensively and the mobile station 2 performing V2V communication is located in the coverage of the base station 3. Further, in the wireless communication system 1B used in the mode 4, each mobile station 2 performing V2V communication controls autonomously, and the present invention is applicable even if the mobile station 2 does not exist in the coverage of the base station 3.
 モード4で使用する無線通信システム1B内の各移動局2は、V2V通信に用いられる周波数帯域をセンシングする。具体的には、移動局2は、所定のセンシング期間において、V2V通信に用いられる周波数帯域全体のSCI(Side link Control Channel)を受信し、対応するサブチャネルの受信電力を計測する。そして、移動局2は、それぞれのサブフレーム及びサブチャネルにおいて他の移動局2が信号を送信しているか否かを判定する。移動局2は、パケット送信の送信要求を検出した場合、センシング結果に基づき、他の移動局2が使用する可能性が高いリソースを除外し、パケット送信に割り当てる空きリソースを選択する。モード4での移動局2は、パケット送信の送信要求を検出した場合、送信パケットの許容最大遅延時間に応じた選択ウインドウの時間幅を設定する。そして、移動局2は、センシング結果に基づいて、他の移動局2が使用する可能性の高いリソースを予約済みリソースとして選択ウインドウ内に設定する。そして、移動局2は、選択ウインドウ内に予約済みリソース以外の空きリソースを選択し、選択した空きリソースにパケット送信を割当てる。 移動 Each mobile station 2 in the wireless communication system 1B used in mode 4 senses a frequency band used for V2V communication. Specifically, the mobile station 2 receives the SCI (Side Link Control Channel) of the entire frequency band used for V2V communication during a predetermined sensing period, and measures the reception power of the corresponding subchannel. Then, the mobile station 2 determines whether or not another mobile station 2 is transmitting a signal in each subframe and subchannel. When detecting a transmission request for packet transmission, the mobile station 2 excludes resources that are likely to be used by other mobile stations 2 based on the sensing result, and selects a free resource to be allocated to packet transmission. When the mobile station 2 in mode 4 detects a transmission request for packet transmission, it sets the time width of the selection window according to the allowable maximum delay time of the transmission packet. Then, based on the sensing result, the mobile station 2 sets a resource that is likely to be used by another mobile station 2 as a reserved resource in the selection window. Then, the mobile station 2 selects a free resource other than the reserved resource in the selection window, and allocates packet transmission to the selected free resource.
 図2は、センシングウインドウ及び選択ウインドウの一例を示す説明図である。図2に示すセンシングウインドウ及び選択ウインドウは、例えば、モード4の無線通信システム1BのUE3の移動局2のV2V通信のセンシングウインドウ及び選択ウインドウの一例である。センシングウインドウは、V2V通信に使用する周波数帯域でPSCCH(Physical Side link Control Channel)を受信し、PSCCH内のSCIから移動局2のリソースの使用状況を捕捉したセンシング結果である。リソースは、例えば、1m秒のスロット毎に3個のサブチャネルを配置し、各サブチャネルは、V2Vの制御信号である制御情報と、V2Vのデータ信号であるデータとを有する。例えば、UE3の移動局2は、V2V通信に使用する周波数帯域全体の各PSCCH内のSCIから各サブチャネルの予約済みリソースは分かる。なお、SCIから各サブチャネルの予約済みリソースがわかるのは、SCIに含まれる情報を復号(解読)することができるからである。なお、UE3は、PSSCH-RSRPおよびS-RSSI(サイドリンクRSSI)を測定し、測定結果に基づいて1つのリソースを選択することが可能である。UE3の移動局2は、各サブチャネルの受信電力が所定閾値を超えているか否かの計測結果で他の移動局2によるリソースの使用状況を捕捉するセンシング処理を実行する。図2に示すセンシングウインドウは、UE3の移動局2が捕捉したセンシング結果であって、UE1及びUE2の移動局2が使用するリソースを示している。UE3の移動局2は、パケットの送信要求を検出すると、パケット送信の選択ウインドウの時間幅を設定し、送信要求の検出から1000m秒前までのセンシング結果に基づき、UE1及びUE2の移動局2で予約済みのリソースを選択ウインドウ内に設定する。UE3の移動局2は、選択ウインドウ内の予約済みリソース以外の空きリソースを選択し、選択した空きリソースに送信要求のパケット送信を割当てる。 FIG. 2 is an explanatory diagram showing an example of the sensing window and the selection window. The sensing window and the selection window illustrated in FIG. 2 are an example of the sensing window and the selection window of the V2V communication of the mobile station 2 of the UE 3 of the mode 4 wireless communication system 1B, for example. The sensing window is a sensing result of receiving a PSCCH (Physical Side Link Control Channel) in a frequency band used for V2V communication, and capturing the usage status of resources of the mobile station 2 from the SCI in the PSCCH. As the resource, for example, three sub-channels are arranged for every 1 msec slot, and each sub-channel has control information as a V2V control signal and data as a V2V data signal. For example, the mobile station 2 of the UE 3 can know the reserved resources of each subchannel from the SCI in each PSCCH of the entire frequency band used for V2V communication. The reason why the reserved resources of each subchannel are known from the SCI is that information included in the SCI can be decoded (decoded). Note that the UE 3 can measure PSSCH-RSRP and S-RSSI (side link RSSI) and can select one resource based on the measurement result. The mobile station 2 of the UE 3 executes a sensing process of capturing a resource use state of another mobile station 2 based on a measurement result of whether or not the received power of each sub-channel exceeds a predetermined threshold. The sensing window illustrated in FIG. 2 is a sensing result captured by the mobile station 2 of the UE 3 and indicates resources used by the mobile stations 2 of the UE 1 and the UE 2. When detecting the packet transmission request, the mobile station 2 of the UE 3 sets the time width of the packet transmission selection window, and based on the sensing result up to 1000 ms before the detection of the transmission request, the mobile station 2 of the UE 1 and the UE 2 Set a reserved resource in the selection window. The mobile station 2 of the UE 3 selects a free resource other than the reserved resources in the selection window, and allocates a packet transmission of a transmission request to the selected free resource.
 前述した通り、移動局2は、パケットの送信要求を検出すると、パケット送信の許容最大遅延時間に応じて選択ウインドウの時間幅を変動する。尚、例えば、LTEで規定する許容最大遅延時間は、例えば、20ms~100msのため、選択ウインドウの時間幅も20ms~100msとなる。 As described above, upon detecting a packet transmission request, the mobile station 2 changes the time width of the selection window according to the allowable maximum delay time of packet transmission. Note that, for example, the allowable maximum delay time specified in LTE is, for example, 20 ms to 100 ms, and the time width of the selected window is also 20 ms to 100 ms.
 また、移動局2は、センシング結果に基づき、選択ウインドウ内の予約済みリソースが80%以上になると、各サブチャネルのリソースの受信電力の所定閾値を3dBに増やすことでリソースの使用状況を高精度に捕捉することになる。その結果、移動局2は、選択ウインドウ内でリソースの使用状況を高精度に認識できる。移動局2は、選択ウインドウから利用可能なリソースをランダムに選択し、選択したリソースに送信要求のパケット送信を割当てることになる。 Further, based on the sensing result, when the reserved resources in the selection window become 80% or more, the mobile station 2 increases the predetermined threshold value of the received power of the resources of each sub-channel to 3 dB, thereby making the use state of the resources highly accurate. Will be captured. As a result, the mobile station 2 can recognize the use state of the resource within the selection window with high accuracy. The mobile station 2 randomly selects an available resource from the selection window, and allocates a packet transmission of a transmission request to the selected resource.
 しかしながら、R16 NR-V2Xには、例えば、隊列走行、先進運転、拡張センサや遠隔運転等のAdvanced V2Xのサービスがある。隊列走行は、例えば、移動局2が搭載された複数の車両が隊列を組んで自動走行するサービスである。先進運転は、例えば、移動局2が搭載された走行中の車両の車線逸脱を防止する支援システム等のサービスである。拡張センサは、例えば、移動局2が搭載された車両が検出したセンサ結果を他の移動局2が搭載された他の車両で使用するサービスである。遠隔運転は、例えば、移動局2が搭載された車両の遠隔操作による運転サービスである。 However, R16 @ NR-V2X has services of Advanced @ V2X, such as platooning, advanced driving, extended sensors and remote driving. The platooning is, for example, a service in which a plurality of vehicles on which the mobile stations 2 are mounted automatically travel in a platoon. The advanced driving is, for example, a service such as a support system for preventing a running vehicle equipped with the mobile station 2 from departing from the lane. The extended sensor is a service that uses, for example, a sensor result detected by a vehicle equipped with the mobile station 2 in another vehicle equipped with another mobile station 2. The remote driving is, for example, a driving service by remote control of a vehicle on which the mobile station 2 is mounted.
 先進運転のサービス要件には、例えば、ペイロードが2000バイト、許容最大遅延時間(Max end to end Latency)が3m秒、信頼度が99.999%、データレートが30Mbps、最小無線範囲が500メートルの無線条件が求められている。また、拡張センサには、例えば、許容最大遅延時間が3m秒、信頼度が99.999%、データレートが50Mbps、最小無線範囲が200メートルの無線条件が求められている。 Service requirements for advanced driving include, for example, a payload of 2000 bytes, a maximum allowed delay (Max3end to end Latency) of 3 ms, a reliability of 99.999%, a data rate of 30 Mbps, and a minimum wireless range of 500 meters. Wireless conditions are required. For the extended sensor, for example, wireless conditions are required such that the maximum allowable delay time is 3 ms, the reliability is 99.999%, the data rate is 50 Mbps, and the minimum wireless range is 200 meters.
 図3は、送信パケットの許容最大遅延時間に応じて選択ウインドウの時間幅が変動する際の一例を示す説明図である。例えば、高優先パケットの許容最大遅延時間である3m秒のサービス条件を満たすためには、図3に示すように選択ウインドウの時間幅を100m秒から3m秒に短くする必要がある。しかしながら、例えば、高優先パケットの許容最大遅延時間に応じて選択ウインドウの時間幅を短くした場合、選択ウインドウ内のリソース数が少なくなって、選択ウインドウ内で使用可能なリソース数が少なくなる。その結果、V2Vの移動局2では、高優先パケットが送信できなくなる場合も想定される。 FIG. 3 is an explanatory diagram showing an example when the time width of the selection window changes according to the allowable maximum delay time of the transmission packet. For example, in order to satisfy a service condition of 3 ms, which is an allowable maximum delay time of a high-priority packet, it is necessary to shorten the time width of the selection window from 100 ms to 3 ms as shown in FIG. However, for example, when the time width of the selection window is shortened according to the allowable maximum delay time of the high-priority packet, the number of resources in the selection window decreases, and the number of resources available in the selection window decreases. As a result, the V2V mobile station 2 may be unable to transmit a high-priority packet.
 そこで、移動局2は、高優先パケットの許容最大遅延時間に応じて選択ウインドウの時間幅が短くなった場合でも、高優先パケットに割り当てるリソースを確保してサービス要件を満たすことが求められている。 Therefore, even when the time width of the selection window is shortened according to the allowable maximum delay time of the high-priority packet, the mobile station 2 is required to secure resources to be allocated to the high-priority packet and satisfy the service requirements. .
 図4は、実施例1の移動局2の一例を示すブロック図である。図2に示す移動局2は、セルラーアンテナ11と、セルラー受信部12と、CP(Cyclic Prefix)除去部13と、FFT(Fast Fourier Transform:高速フーリエ変換)部14と、復号部15と、スケジューラ部16とを有する。更に、移動局2は、データ生成部17と、データ符号化部18と、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部19と、CP付加部20と、セルラー送信部21とを有する。更に、移動局2は、V2Vアンテナ22と、V2V受信部23と、V2V制御復号部24と、V2Vデータ復号部25と、ミュート標示復号部26と、V2Vスケジューラ部27と、リソースプール28とを有する。移動局2は、V2V制御生成部29と、V2Vデータ生成部30と、ミュート標示生成部31と、V2V送信部32とを有する。 FIG. 4 is a block diagram illustrating an example of the mobile station 2 according to the first embodiment. The mobile station 2 illustrated in FIG. 2 includes a cellular antenna 11, a cellular receiving unit 12, a cyclic prefix (CP) removing unit 13, a fast Fourier transform (FFT) unit 14, a decoding unit 15, a scheduler 15, and a scheduler. A part 16. Further, the mobile station 2 includes a data generating unit 17, a data encoding unit 18, an IFFT (Inverse Fast Fourier Transform) unit 19, a CP adding unit 20, and a cellular transmitting unit 21. Further, the mobile station 2 includes a V2V antenna 22, a V2V receiving unit 23, a V2V control decoding unit 24, a V2V data decoding unit 25, a mute indication decoding unit 26, a V2V scheduler unit 27, and a resource pool 28. Have. The mobile station 2 has a V2V control generation unit 29, a V2V data generation unit 30, a mute sign generation unit 31, and a V2V transmission unit 32.
 セルラーアンテナ11は、例えば、モード3の無線通信システム1Aに使用する無線キャリアの無線信号を送受信する。セルラー受信部12は、セルラーアンテナ11を通じて無線信号を受信し、その受信信号に対して、例えば、ダウンコンバート及びA/D変換等の無線受信処理を実行する。CP除去部13は、受信信号にシンボル単位で付加されたCPを除去する。そして、CP除去部13は、CP除去後の受信信号をFFT部14へ出力する。FFT部14は、CP除去部13から出力された受信信号を高速フーリエ変換し、時間領域の受信信号を周波数領域の受信信号に変換する。受信信号には、基地局3から送信されたデータや制御信号等が含まれる。復号部15は、FFT部14で変換後の周波数領域の受信信号からデータを復調及び復号する。復号部15は、変換後の周波数領域の受信信号から制御信号を復調及び復号する。 The cellular antenna 11 transmits and receives a radio signal of a radio carrier used for the mode 3 radio communication system 1A, for example. The cellular receiving unit 12 receives a radio signal through the cellular antenna 11, and performs a radio reception process such as down-conversion and A / D conversion on the received signal. CP removing section 13 removes the CP added to the received signal in symbol units. Then, CP removing section 13 outputs the received signal after the CP removal to FFT section 14. The FFT unit 14 performs a fast Fourier transform on the received signal output from the CP removing unit 13, and converts a time-domain received signal into a frequency-domain received signal. The received signal includes data, a control signal, and the like transmitted from the base station 3. The decoding unit 15 demodulates and decodes data from the received signal in the frequency domain converted by the FFT unit 14. The decoding unit 15 demodulates and decodes the control signal from the converted frequency-domain received signal.
 スケジューラ部16は、基地局3との間で送受信されるデータに無線リソースを割当てるスケジューリングを実行する。具体的には、スケジューラ部16は、各移動局2が送信するデータに無線リソースを割り当てる、移動局2から基地局3への上り回線のスケジューリングを実行する。スケジューラ部16は、基地局3から移動局2への下り回線のスケジューリングを実行する。 The scheduler unit 16 performs scheduling for allocating radio resources to data transmitted to and received from the base station 3. Specifically, the scheduler unit 16 performs uplink scheduling from the mobile station 2 to the base station 3, which allocates radio resources to data transmitted by each mobile station 2. The scheduler unit 16 performs scheduling of a downlink from the base station 3 to the mobile station 2.
 データ生成部17は、基地局3に送信するデータを生成する。データ符号化部18は、生成したデータを符号化及び変調し、変調後のデータをIFFT部19へ出力する。IFFT部19は、データ生成部17から出力されたデータを逆高速フーリエ変換し、周波数領域の送信信号を時間領域の送信信号に変換する。そして、IFFT部19は、時間領域の送信信号をCP付加部20へ出力する。CP付加部20は、IFFT部19から出力される送信信号にシンボル単位でCPを付加する。そして、CP付加部20は、CPが付加された送信信号をセルラー送信部21へ出力する。セルラー送信部21は、送信信号をD/A変換及びアップコンバート等の無線送信処理を実行し、セルラーアンテナ11を通じて無線信号を送信する。 The data generation unit 17 generates data to be transmitted to the base station 3. The data encoding unit 18 encodes and modulates the generated data, and outputs the modulated data to the IFFT unit 19. The IFFT unit 19 performs an inverse fast Fourier transform on the data output from the data generation unit 17, and converts a transmission signal in the frequency domain into a transmission signal in the time domain. Then, IFFT section 19 outputs the transmission signal in the time domain to CP adding section 20. CP adding section 20 adds a CP to the transmission signal output from IFFT section 19 in symbol units. Then, CP adding section 20 outputs the transmission signal to which the CP has been added to cellular transmitting section 21. The cellular transmission unit 21 performs radio transmission processing such as D / A conversion and up-conversion on the transmission signal, and transmits the radio signal through the cellular antenna 11.
 また、V2Vアンテナ22は、例えば、モード4の無線通信システム1Bに使用するV2V通信の無線信号を送受信する。V2V受信部23は、V2Vアンテナ22を通じて無線信号を受信し、その受信信号に対して、例えば、ダウンコンバート及びA/D変換等の無線受信処理を実行する。V2V制御復号部24は、V2V受信部23で受信処理した受信信号に含まれるV2Vの制御信号を復号化する。V2Vの制御信号は、受信信号内のPSSCH内のサブチャネル内の制御情報である。V2Vデータ復号部25は、V2V受信部23で受信処理した受信信号に含まれるV2Vのデータ信号を復号する。V2Vのデータ信号は、受信信号内のPSSCH内のサブチャネル内のデータである。ミュート標示復号部26は、V2V受信部23で受信処理した受信信号に含まれるミュート標示を復号する。ミュート標示は、受信信号内の所定周期に格納するコマンド等の制御情報である。ミュート標示は、詳細は後述するが、特定の予約済みのリソースの開放を各移動局2に要求するコマンドである。 The V2V antenna 22 transmits and receives, for example, a V2V communication wireless signal used for the mode 4 wireless communication system 1B. The V2V receiving unit 23 receives a wireless signal through the V2V antenna 22, and performs a wireless receiving process such as down-conversion and A / D conversion on the received signal. The V2V control decoding unit 24 decodes a V2V control signal included in the reception signal received and processed by the V2V reception unit 23. The V2V control signal is control information in a sub-channel in the PSSCH in the received signal. The V2V data decoding unit 25 decodes a V2V data signal included in the reception signal received and processed by the V2V reception unit 23. The V2V data signal is data in a sub-channel in the PSSCH in the received signal. The mute sign decoding unit 26 decodes the mute sign included in the reception signal processed by the V2V reception unit 23. The mute indication is control information such as a command stored in a predetermined cycle in the received signal. The mute indication is a command for requesting each mobile station 2 to release a specific reserved resource, which will be described later in detail.
 V2Vスケジューラ部27は、V2Vの移動局2との間で送受信されるデータにV2V通信に使用するリソースを割当てるスケジューリングを実行する。リソースプール28は、V2V通信に使用するリソースの使用状況、例えば、センシングウインドウや選択ウインドウ等の情報を管理している。V2V制御生成部29は、送信先の移動局2に送信するV2Vの制御信号、例えば、サブチャネルの制御情報を生成する。V2Vデータ生成部30は、送信先の移動局2に送信するV2Vのデータ信号、例えば、サブチャネルのデータを生成する。ミュート標示生成部31は、各移動局2にブロードキャスト送信するミュート標示を生成する。V2V送信部32は、V2V制御生成部29で生成したV2Vの制御信号と、V2Vデータ生成部30で生成したV2Vのデータ信号とを含むV2Vの送信信号をD/A変換及びアップコンバート等の無線送信処理を実行する。そして、V2V送信部32は、無線送信処理実行後のV2Vの無線信号を、V2Vアンテナ22を通じて送信する。V2V送信部32は、ミュート標示生成部31で生成したミュート標示をD/A変換及びアップコンバート等の無線送信処理を実行し、V2Vアンテナ22を通じてミュート標示を各移動局2にブロードキャスト送信する。 The V2V scheduler unit 27 executes scheduling for allocating resources used for V2V communication to data transmitted / received to / from the V2V mobile station 2. The resource pool 28 manages the use status of resources used for V2V communication, for example, information such as a sensing window and a selection window. The V2V control generation unit 29 generates a V2V control signal to be transmitted to the destination mobile station 2, for example, a sub-channel control information. The V2V data generation unit 30 generates a V2V data signal to be transmitted to the destination mobile station 2, for example, sub-channel data. The mute sign generation unit 31 generates a mute sign to be broadcast-transmitted to each mobile station 2. The V2V transmission unit 32 converts the V2V transmission signal including the V2V control signal generated by the V2V control generation unit 29 and the V2V data signal generated by the V2V data generation unit 30 into radio signals such as D / A conversion and up-conversion. Execute transmission processing. Then, the V2V transmission unit 32 transmits the V2V wireless signal after the execution of the wireless transmission process through the V2V antenna 22. The V2V transmission unit 32 performs wireless transmission processing such as D / A conversion and up-conversion on the mute sign generated by the mute sign generation unit 31, and broadcasts the mute sign to each mobile station 2 via the V2V antenna 22.
 図5は、実施例1の移動局2のV2Vスケジューラ部27の機能の一例を示すブロック図である。V2Vスケジューラ部27は、図示していないROM(Read Only Memory)内に格納されたプログラムを読み出し、読み出したプログラムを実行することで、例えば、判定部41、生成部42、送信部43、割当部44及び開放部45の機能を実行する。判定部41は、高優先パケットの送信要求を検出した場合に、センシング結果に基づき、V2V通信に割当可能な複数のリソースの中で高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する。生成部42は、高優先のパケット送信に使用する空きリソースが不足している場合に、パケット送信の優先レベルが下位である低優先のパケット送信で他の移動局2が予約済みのリソースを選択する。更に、生成部42は、選択したリソースの開放を要求するミュート標示を生成するようにミュート標示生成部31を制御する。ミュート標示には、選択したリソースの開放を要求するミュート対象のリソースを識別するリソース情報が含まれている。ミュート標示には、例えば、CRCを含むPSCCHの内、後述する監視周期のPSSCHを使用する。ミュート標示は、制御情報等のSCIと同一サイズ(例えば、16ビット又は32ビット構成)である。ミュート標示のSCIと他のSCIとの差異を明確にするため、ミュート標示のSCIには、RNTI(Radio Network Temporary Identifier)を格納する。尚、ミュート標示を受信する移動局2は、SCI内のRNTIでミュート標示のSCIを容易に識別できる。 FIG. 5 is a block diagram illustrating an example of a function of the V2V scheduler unit 27 of the mobile station 2 according to the first embodiment. The V2V scheduler unit 27 reads a program stored in a ROM (Read Only Memory) (not shown), and executes the read program, so that, for example, the determination unit 41, the generation unit 42, the transmission unit 43, the allocation unit The functions of 44 and the opening unit 45 are executed. When detecting the transmission request of the high-priority packet, the determination unit 41 determines whether there is insufficient free resources to be used for high-priority packet transmission among a plurality of resources that can be allocated to V2V communication, based on the sensing result. Is determined. The generation unit 42 selects a resource reserved by another mobile station 2 in low-priority packet transmission in which the priority level of packet transmission is lower when free resources used for high-priority packet transmission are insufficient. I do. Further, the generation unit 42 controls the mute sign generation unit 31 to generate a mute sign requesting release of the selected resource. The mute indication includes resource information for identifying a resource to be muted which requests release of the selected resource. For the mute indication, for example, among the PSCCHs including the CRC, a PSSCH having a monitoring period described later is used. The mute indicator has the same size (for example, a 16-bit or 32-bit configuration) as the SCI of control information and the like. In order to clarify the difference between the SCI of the mute indication and other SCIs, RNTI (Radio Network Temporary Identifier) is stored in the SCI of the mute indication. Note that the mobile station 2 receiving the mute indication can easily identify the SCI of the mute indication by the RNTI in the SCI.
 送信部43は、生成したミュート標示を各他の移動局2にブロードキャスト送信するようにV2V送信部32を制御する。割当部44は、ミュート標示に応じて他の移動局2が開放した空きリソースに高優先のパケット送信を割当てる。開放部45は、他の移動局2から受信したミュート標示内のミュート対象のリソースが自局で予約済みのリソースであるか否かを判定する。開放部45は、他の移動局2から検出したミュート標示のミュート対象のリソースが自局で予約済みのリソースの場合、ミュート対象の予約済みのリソースを開放する。 The transmission unit 43 controls the V2V transmission unit 32 to broadcast the generated mute indication to each of the other mobile stations 2. The allocating unit 44 allocates high-priority packet transmission to a free resource released by another mobile station 2 according to the mute indication. The release unit 45 determines whether the resource to be muted in the mute indication received from the other mobile station 2 is a resource reserved by the own station. The release unit 45 releases the reserved resource to be muted when the resource to be muted for the mute indication detected from the other mobile station 2 is the resource reserved by the own station.
 図6は、実施例1のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。移動局2は、V2V通信に使用するリソースと同一のリソース内の所定周期のリソースを、ミュート標示を送信する標示チャネルとして使用する。そして、所定周期のリソース内の制御情報にミュート標示を含める。ミュート標示を送信する移動局2は、標示チャネルを使用してミュート標示を他の移動局2にブロードキャスト送信する。また、ミュート標示を受信する移動局2は、所定周期の標示チャネルを監視周期としてミュート標示の有無を監視する。標示チャネルの期間は、前述した通り、V2V通信と同一のリソースを使用しているため、V2V通信ができない状態になる。尚、説明の便宜上、ミュート標示を送信する移動局2は移動局2A、ミュート標示を受信した移動局2の内、ミュート標示内のミュート対象のリソースが自局で予約済みの移動局2は移動局2Bとする。 FIG. 6 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the first embodiment. The mobile station 2 uses a resource of a predetermined cycle in the same resource as the resource used for the V2V communication as the indication channel for transmitting the mute indication. Then, the mute indication is included in the control information in the resource of the predetermined cycle. The mobile station 2 transmitting the mute indication broadcasts the mute indication to the other mobile stations 2 using the indication channel. Further, the mobile station 2 receiving the mute indication monitors the presence / absence of the mute indication using the indication channel of a predetermined cycle as a monitoring cycle. As described above, since the same resource is used as the V2V communication during the period of the indication channel, V2V communication cannot be performed. For convenience of explanation, the mobile station 2 transmitting the mute indication is the mobile station 2A, and the mobile station 2 of the mobile station 2 receiving the mute indication, in which the resource to be muted in the mute indication has been reserved by its own station, moves. Station 2B.
 移動局2Aは、パケットの送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2によるリソースの使用状況を捕捉する。移動局2Aは、送信要求のパケット送信の許容最大遅延時間に応じた選択ウインドウの時間幅を設定し、他の移動局2の使用状況から、送信要求のパケット送信に使用する空きリソースが不足しているか否かを判定する。移動局2Aは、送信要求のパケット送信に使用する空きリソースが不足していない場合、送信要求の送信データに空きリソースを割り当てる。 When the mobile station 2A detects a packet transmission request, the mobile station 2A captures a resource use state by another mobile station 2 based on a sensing result from the time when the transmission request is detected to a time 1000 ms before. The mobile station 2A sets the time width of the selection window according to the permissible maximum delay time of the transmission of the transmission request packet, and the available resources of the other mobile stations 2 are insufficient for the transmission of the transmission request packet. Is determined. The mobile station 2A allocates a free resource to the transmission data of the transmission request when there is no shortage of the free resource used for transmitting the transmission request packet.
 また、移動局2Aは、送信要求のパケット送信に使用する空きリソースが不足している場合、送信要求の優先レベルが下位の予約済みのリソースをミュート対象のリソースとして選択する。移動局2Aは、選択したミュート対象のリソースを識別するリソース情報を含むミュート標示を、標示チャネルを通じて他の移動局2にブロードキャスト送信する。 {Circle around (2)} When the available resources used for transmitting the transmission request packet are insufficient, the mobile station 2A selects the reserved resource having the lower priority level of the transmission request as the resource to be muted. The mobile station 2A broadcasts a mute indication including resource information for identifying the selected resource to be muted to another mobile station 2 through the indication channel.
 また、ミュート標示を受信する移動局2は、標示チャネルを通じてミュート標示を受信した場合、ミュート標示を解読してミュート標示内のリソース情報を抽出し、リソース情報からミュート対象のリソースを特定する。更に、移動局2は、ミュート対象のリソースが自局で予約済みのリソースであるか否かを判定する。更に、ミュート標示を受信した移動局2の内、移動局2Bは、ミュート対象のリソースが自局で予約済みのリソースであるため、当該予約済みのリソースを開放する。 In addition, when the mobile station 2 receiving the mute indication receives the mute indication through the indication channel, the mobile station 2 decodes the mute indication, extracts the resource information in the mute indication, and specifies the resource to be muted from the resource information. Further, the mobile station 2 determines whether or not the resource to be muted is a resource that has been reserved by the own station. Further, among the mobile stations 2 that have received the mute indication, the mobile station 2B releases the reserved resources since the resources to be muted are the resources reserved by the own station.
 そして、ミュート標示を送信した移動局2Aは、ミュート標示に応じて移動局2Bが開放したミュート対象の空きリソースに送信要求のパケット送信を割当てる。その結果、移動局2Aは、例えば、低優先のパケット送信で予約済みのリソースによって空きリソースがない、または不足している場合でも、送信要求のパケット送信にリソースを割当てることができる。 {Circle around (2)} The mobile station 2A that has transmitted the mute indication allocates the packet transmission of the transmission request to the vacant resource to be muted released by the mobile station 2B according to the mute indication. As a result, the mobile station 2A can allocate resources to transmission of a transmission request packet even if there are no or insufficient free resources due to resources reserved for low-priority packet transmission, for example.
 例えば、UE10の移動局2Aは、図6に示すように高優先パケットの送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。更に、UE10の移動局2Aは、高優先のパケット送信の許容最大遅延時間に応じて選択ウインドウの時間幅を設定し、他の移動局2の使用状況から送信要求の高優先パケットに使用する空きリソースが不足しているか否かを判定する。 For example, when the mobile station 2A of the UE 10 detects the transmission request of the high-priority packet as shown in FIG. 6, based on the sensing result from the time when the transmission request was detected to 1000 ms before, the resource of the other mobile station 2 Capture usage of. Further, the mobile station 2A of the UE 10 sets the time width of the selection window according to the allowable maximum delay time of the high-priority packet transmission, and uses the empty space to be used for the high-priority packet of the transmission request based on the usage status of the other mobile stations 2. Determine whether resources are insufficient.
 UE10の移動局2Aは、送信要求の高優先パケットに使用する空きリソースが不足しているため、センシング結果から送信要求のパケット送信の優先レベルが高優先よりも下位の低優先の予約済みのリソースをミュート対象のリソースとして選択する。尚、UE10の移動局2Aのパケット送信の優先レベルは高優先、UE2の移動局2が予約済みのリソースに使用するパケット送信の優先レベルは低優先とする。従って、UE10の移動局2Aは、センシング結果から送信要求のパケット送信の優先レベルが下位の低優先のUE2の移動局2Bの予約済みのリソースをミュート対象のリソースとして選択する。そして、UE10の移動局2Aは、選択したミュート対象のリソースを識別するリソース情報を含むミュート標示を生成する。UE10の移動局2Aは、標示チャネルの監視周期のタイミングでミュート標示を各他の移動局2にブロードキャスト送信する。 Since the mobile station 2A of the UE 10 lacks the free resources used for the high-priority packet of the transmission request, the priority level of the transmission of the packet of the transmission request is lower than the high priority and the reserved resource of the lower priority is lower than the high priority based on the sensing result. Is selected as a resource to be muted. Note that the priority level of packet transmission of the mobile station 2A of the UE 10 is high priority, and the priority level of packet transmission used for resources reserved by the mobile station 2 of the UE 2 is low priority. Therefore, the mobile station 2A of the UE 10 selects the reserved resource of the mobile station 2B of the low-priority UE 2 having the lower priority of the packet transmission of the transmission request as the resource to be muted from the sensing result. Then, the mobile station 2A of the UE 10 generates a mute indication including resource information for identifying the selected resource to be muted. The mobile station 2A of the UE 10 broadcasts a mute indication to each of the other mobile stations 2 at the timing of the indication channel monitoring cycle.
 また、UE2の移動局2Bは、監視周期のタイミングでミュート標示を検出した場合、ミュート標示を解読してリソース情報を抽出し、抽出したリソース情報からミュート対象のリソースを特定する。UE2の移動局2Bは、ミュート標示のリソースが自局で予約済みのリソースであるため、予約済みのリソースを開放する。 When the mobile station 2B of the UE 2 detects the mute indication at the timing of the monitoring cycle, the mobile station 2B decodes the mute indication to extract the resource information, and specifies the resource to be muted from the extracted resource information. The mobile station 2B of the UE 2 releases the reserved resource because the resource indicated by the mute is a resource reserved by the own station.
 更に、UE10の移動局2Aは、ミュート標示を送信した後、ミュート標示に応じてUE2の移動局2Aが開放したミュート対象の空きリソースに送信要求の高優先のパケット送信を割当てる。その結果、UE10の移動局2Aは、高優先のパケット送信を実現できる。 Further, after transmitting the mute indication, the mobile station 2A of the UE 10 allocates the high-priority packet transmission of the transmission request to the free resources to be muted released by the mobile station 2A of the UE 2 according to the mute indication. As a result, the mobile station 2A of the UE 10 can realize high-priority packet transmission.
 次に実施例1の無線通信システム1の内、モード4の無線通信システム1Bの動作について説明する。図7は、実施例1の送信側割当処理に関わる移動局2Aの処理動作の一例を示すフロー図である。送信側の移動局2Aは、自局の送信要求を検出したか否かを判定する(ステップS11)。尚、送信要求は、例えば、自局でパケットの送信を要求する要求である。移動局2Aは、自局の送信要求を検出した場合(ステップS11肯定)、送信要求のパケット送信の優先レベルが高優先であるか否かを判定する(ステップS12)。優先レベルは、前述した通り、例えば、高優先と低優先との2段階である。 Next, the operation of the mode 4 wireless communication system 1B of the wireless communication system 1 according to the first embodiment will be described. FIG. 7 is a flowchart illustrating an example of a processing operation of the mobile station 2A related to the transmission-side assignment processing according to the first embodiment. The mobile station 2A on the transmitting side determines whether or not the transmission request of the mobile station has been detected (step S11). The transmission request is, for example, a request for requesting transmission of a packet by the own station. If the mobile station 2A detects its own transmission request (Yes at step S11), the mobile station 2A determines whether the priority level of packet transmission of the transmission request is high priority (step S12). As described above, the priority levels are, for example, two levels of high priority and low priority.
 移動局2Aは、送信要求のパケット送信の優先レベルが高優先である場合(ステップS12肯定)、センシング結果から送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する(ステップS13)。移動局2Aは、高優先のパケット送信に使用する空きリソースが不足している場合(ステップS13肯定)、センシングウインドウのモニタを継続する(ステップS14)。移動局2Aは、センシング結果に基づき、選択ウインドウ内のミュート対象のリソースを選択する(ステップS15)。 When the priority level of the packet transmission of the transmission request is high priority (Yes at Step S12), the mobile station 2A determines from the sensing result whether the free resources used for the transmission of the high priority packet of the transmission request are insufficient. (Step S13). If there is not enough free resources to use for high-priority packet transmission (Yes at Step S13), the mobile station 2A continues monitoring the sensing window (Step S14). The mobile station 2A selects a resource to be muted in the selection window based on the sensing result (step S15).
 移動局2Aは、選択したミュート対象のリソースを識別するリソース情報を含むミュート標示を生成する(ステップS16)。移動局2Aは、生成したミュート標示を図6に示す標示チャネルで各移動局2にブロードキャスト送信する(ステップS17)。その結果、例えば、移動局2Bは、移動局2Aからのミュート標示を受信した場合に、ミュート標示内のミュート対象のリソースが自局で予約済みのリソースのため、予約済みのリソースを開放することになる。そして、移動局2Aは、ミュート対象のリソースを送信要求のパケット送信に割り当ててパケット送信を実行し(ステップS18)、図7に示す処理動作を終了する。 The mobile station 2A generates a mute indication including resource information for identifying the selected resource to be muted (step S16). The mobile station 2A broadcasts the generated mute indication to each mobile station 2 on the indication channel shown in FIG. 6 (step S17). As a result, for example, when the mobile station 2B receives the mute indication from the mobile station 2A, the mobile station 2B releases the reserved resources because the resources to be muted in the mute indication are resources reserved by the own station. become. Then, the mobile station 2A allocates the resource to be muted to the packet transmission of the transmission request, executes the packet transmission (step S18), and ends the processing operation illustrated in FIG.
 また、移動局2Aは、送信要求のパケット送信の優先レベルが高優先でない場合(ステップS12否定)、センシングウインドウのモニタを継続する(ステップS19)。そして、移動局2Aは、センシング結果に基づき、選択ウインドウ内の使用可能なリソースを選択する(ステップS20)。そして、移動局2Aは、選択リソースに送信要求のパケット送信を割当ててパケット送信を実行し(ステップS21)、図7に示す処理動作を終了する。また、移動局2Aは、空きリソースが不足していない場合(ステップS13否定)、送信要求のパケット送信に使用できる空きリソースがあると判断し、センシングウインドウのモニタを継続すべく、ステップS19に移行する。また、移動局2Aは、自局の送信要求を検出しなかった場合(ステップS11否定)、センシングウインドウのモニタを継続し(ステップS22)、図7に示す処理動作を終了する。 If the priority level of packet transmission of the transmission request is not high priority (No at Step S12), the mobile station 2A continues monitoring the sensing window (Step S19). Then, the mobile station 2A selects an available resource in the selection window based on the sensing result (step S20). Then, the mobile station 2A allocates the packet transmission of the transmission request to the selected resource, executes the packet transmission (step S21), and ends the processing operation illustrated in FIG. If the available resources are not insufficient (No at Step S13), the mobile station 2A determines that there is available resources that can be used for packet transmission of the transmission request, and proceeds to Step S19 to continue monitoring the sensing window. I do. If the mobile station 2A does not detect its own transmission request (No at Step S11), the mobile station 2A continues monitoring the sensing window (Step S22), and ends the processing operation illustrated in FIG.
 図7に示す送信側割当処理を実行する移動局2Aは、高優先パケットの送信要求を検出した場合、センシング結果に基づき、送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する。移動局2Aは、空きリソースが不足している場合、優先レベルが下位の低優先の予約済みリソースを選択し、選択した予約済みのリソースをミュート対象のリソースに含むミュート標示を各移動局2にブロードキャスト送信する。更に、移動局2Aは、移動局2Bがミュート標示に応じて開放したミュート対象の空きリソースに送信要求の高優先のパケット送信を割当てる。その結果、移動局2は、空きリソースが不足した場合でも、高優先のパケット送信を実現できる。 When detecting the transmission request of the high-priority packet, the mobile station 2A executing the transmission-side allocation process shown in FIG. 7 determines whether there is insufficient free resources to use for transmitting the high-priority packet of the transmission request based on the sensing result. Determine whether or not. When the available resources are insufficient, the mobile station 2A selects a low-priority reserved resource having a lower priority level, and displays a mute indication including the selected reserved resource in the resources to be muted to each mobile station 2. Broadcast transmission. Further, the mobile station 2A allocates a high-priority packet transmission of a transmission request to a muted free resource released by the mobile station 2B according to the mute indication. As a result, the mobile station 2 can realize high-priority packet transmission even when the available resources are insufficient.
 図8は、実施例1の受信側開放処理に関わる移動局2の処理動作の一例を示すフロー図である。受信側の移動局2は、現在がミュート標示の監視周期であるか否かを判定する(ステップS31)。尚、監視周期は、ミュート標示が送信又は受信できる周期である。移動局2は、現在が監視周期の場合(ステップS31肯定)、監視周期内に移動局2Aからミュート標示があるか否かを判定する(ステップS32)。移動局2は、監視周期内にミュート標示がある場合(ステップS32肯定)、自局で予約済みのリソースがあるか否かを判定する(ステップS33)。移動局2は、自局で予約済みのリソースがある場合(ステップS33肯定)、ミュート標示を解読してリソース情報からミュート対象のリソースを特定し、自局で予約済みのリソースがミュート対象のリソースであるか否かを判定する(ステップS34)。移動局2は、自局で予約済みのリソースがミュート対象のリソースの場合(ステップS34肯定)、ミュート対象である自局で予約済みのリソースを開放し(ステップS35)、図8に示す処理動作を終了する。 FIG. 8 is a flowchart illustrating an example of a processing operation of the mobile station 2 related to the receiving side release processing according to the first embodiment. The mobile station 2 on the receiving side determines whether or not the current time is the monitoring cycle of the mute indication (step S31). The monitoring cycle is a cycle at which the mute sign can be transmitted or received. If the current period is the monitoring period (Yes at Step S31), the mobile station 2 determines whether or not there is a mute indication from the mobile station 2A within the monitoring period (Step S32). When there is a mute indication within the monitoring period (Yes at Step S32), the mobile station 2 determines whether or not there is a resource reserved by the mobile station 2 (Step S33). If there is a resource reserved in the mobile station 2 (Yes in step S33), the mobile station 2 decodes the mute indication to identify the resource to be muted from the resource information, and the resource reserved in the mobile station is the resource to be muted. Is determined (step S34). If the resource reserved by the mobile station 2 is a resource to be muted (Yes at step S34), the mobile station 2 releases the resource reserved by the mobile station 2 to be muted (step S35), and the processing operation shown in FIG. To end.
 移動局2は、ミュート標示の監視周期でない場合(ステップS31否定)、又は監視周期内にミュート標示がない場合(ステップS32否定)、センシングウインドウのモニタを継続し(ステップS36)、図8に示す処理動作を終了する。また、移動局2は、予約済みのリソースがない場合(ステップS33否定)、又は、自局で予約済みのリソースがミュート標示内のミュート対象のリソースでない場合(ステップS34否定)、図8に示す処理動作を終了する。 If the mobile station 2 is not in the monitoring cycle of the mute indication (No at Step S31), or if there is no mute indication within the monitoring cycle (No at Step S32), the mobile station 2 continues monitoring the sensing window (Step S36), as shown in FIG. The processing operation ends. In addition, when there is no reserved resource (No in step S33), or when the resource reserved in the mobile station is not the resource to be muted in the mute indication (No in step S34), the mobile station 2 is illustrated in FIG. The processing operation ends.
 図8に示す受信側開放処理を実行する移動局2は、ミュート標示を検出した場合、ミュート標示内のリソース情報からミュート対象のリソースを特定し、自局で予約済みのリソースがミュート対象のリソースであるか否かを判定する。移動局2は、自局で予約済みのリソースがミュート対象のリソースである場合、ミュート対象の予約済みリソースを開放する。その結果、ミュート標示を送信した移動局2Aは、ミュート標示に応じて開放された空きリソースに送信要求のパケット送信を割当てることができる。 When detecting the mute indication, the mobile station 2 executing the receiving side release processing shown in FIG. 8 identifies the resource to be muted from the resource information in the mute indication, and replaces the resource reserved in its own station with the resource to be muted. Is determined. When the resource reserved by the mobile station 2 is a resource to be muted, the mobile station 2 releases the reserved resource to be muted. As a result, the mobile station 2A that has transmitted the mute indication can allocate the packet transmission of the transmission request to the free resource released according to the mute indication.
 実施例1のモード4での移動局2は、高優先パケットの送信要求を検出した場合、センシング結果に基づき、送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する。移動局2は、高優先のパケット送信に使用する空きリソースが不足している場合、低優先の予約済みリソースを選択し、選択した予約済みのリソースをミュート対象のリソースに含むミュート標示を生成する。更に、移動局2は、生成したミュート標示を標示チャネルで各移動局2にブロードキャスト送信する。更に、移動局2は、他の移動局2がミュート標示に応じて開放したミュート対象の空きリソースに送信要求の高優先のパケット送信を割当てる。その結果、移動局2は、空きリソースが不足した場合でも、送信要求に応じて高優先のパケット送信を実現できる。送信要求のパケット送信に応じた許容最大遅延時間のサービス要件を満たすことができる。 When detecting the transmission request of the high-priority packet, the mobile station 2 in the mode 4 of the first embodiment determines, based on the sensing result, whether or not the available resources used for transmitting the high-priority packet of the transmission request are insufficient. judge. If there are not enough free resources to use for high-priority packet transmission, the mobile station 2 selects a low-priority reserved resource and generates a mute indication that includes the selected reserved resource as a mute target resource. . Further, the mobile station 2 broadcasts the generated mute indication to each mobile station 2 on the indication channel. Further, the mobile station 2 allocates a high-priority packet transmission of a transmission request to a muted free resource released by another mobile station 2 according to the mute indication. As a result, the mobile station 2 can realize high-priority packet transmission in response to the transmission request even when the available resources are insufficient. The service requirement of the allowable maximum delay time according to the packet transmission of the transmission request can be satisfied.
 しかも、モード4での移動局2は、V2V通信に使用するリソース内の所定周期のリソースである標示チャネルを使用してミュート標示を他の移動局2にブロードキャスト送信した。その結果、ミュート標示を受信する移動局2は、標示チャネルがV2V通信のリソースを使用するため、通常のV2V通信のセンシングをしながら、標示チャネルのミュート標示も捕捉できる。 In addition, the mobile station 2 in the mode 4 broadcasts the mute indication to the other mobile stations 2 by using the indication channel which is a resource of a predetermined period in the resources used for the V2V communication. As a result, the mobile station 2 that receives the mute indication can also capture the mute indication of the indication channel while performing normal V2V communication sensing because the indication channel uses the resources of V2V communication.
 尚、上記実施例1のモード4の無線通信システム1Bでは、移動局2の主従を設定していない場合を例示した。しかしながら、例えば、自動車隊列走行の各移動局2は、グループを構成し、グループ内に1台の移動局2をヘッド局2C、ヘッド局2C以外の他の移動局2をメンバ局2D,2E,2Fとする。そこで、このような主従関係のある無線通信システム1Bの実施の形態につき、実施例2として以下に説明する。尚、実施例1の無線通信システム1と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。 In the wireless communication system 1B in the mode 4 of the first embodiment, the case where the master and the slave of the mobile station 2 are not set is illustrated. However, for example, each mobile station 2 traveling in a vehicle platoon forms a group, and one mobile station 2 in the group is a head station 2C, and other mobile stations 2 other than the head station 2C are member stations 2D, 2E, 2F. Therefore, an embodiment of the wireless communication system 1B having such a master-slave relationship will be described below as a second embodiment. The same components as those of the wireless communication system 1 according to the first embodiment are denoted by the same reference numerals, and the description of the overlapping configurations and operations will be omitted.
 図9は、実施例2の無線通信システム1の一例を示す説明図である。自動車隊列走行において各移動局2は、グループを構成する。グループ内の1台の移動局2をヘッド局2C、ヘッド局2C以外の他の移動局2をメンバ局2D,2E,2Fとして機能する。尚、ヘッド局2C以外のメンバ局2D、2E及び2Fは、例えば、高優先のパケット送信を要求したメンバ局2Dと、ミュート標示に応じて自局の予約済みのリソースを開放するメンバ局2Eと、ミュート対象のリソースが未使用のメンバ局2Fとを有する。 FIG. 9 is an explanatory diagram illustrating an example of the wireless communication system 1 according to the second embodiment. In the vehicle platooning, each mobile station 2 forms a group. One mobile station 2 in the group functions as a head station 2C, and other mobile stations 2 other than the head station 2C function as member stations 2D, 2E, and 2F. The member stations 2D, 2E, and 2F other than the head station 2C are, for example, a member station 2D that has requested high-priority packet transmission and a member station 2E that releases its reserved resources according to the mute indication. , And the member station 2F in which the resource to be muted is unused.
 メンバ局2Dが、高優先パケットの送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。メンバ局2Dは、送信要求の許容最大遅延時間に応じた選択ウインドウの時間幅を設定し、他の移動局2の使用状況から、送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する。メンバ局2Dは、空きリソースが不足していない場合、送信要求の高優先のパケット送信に空きリソースを割り当てる。 (4) When the member station 2D detects a transmission request for a high-priority packet, the member station 2D captures the resource usage status of another mobile station 2 based on the sensing result up to 1000 ms before the detection of the transmission request. The member station 2D sets the time width of the selection window according to the maximum permissible delay time of the transmission request, and due to the usage status of the other mobile stations 2, there is a shortage of free resources to be used for transmitting the transmission request with high priority. Is determined. If there is no shortage of free resources, the member station 2D allocates free resources to high-priority packet transmission of the transmission request.
 また、メンバ局2Dは、高優先のパケット送信に使用する空きリソースが不足している場合、送信要求のパケット送信の優先レベルが下位の低優先の予約済みのリソースをミュート対象のリソースとして選択する。メンバ局2Dは、選択したミュート対象のリソースを識別するリソース情報を含むミュート要求をヘッド局2Cに送信する。 Further, when there is a shortage of free resources to be used for high-priority packet transmission, the member station 2D selects a low-priority reserved resource having a lower priority level of packet transmission of the transmission request as a resource to be muted. . The member station 2D transmits a mute request including resource information for identifying the selected resource to be muted to the head station 2C.
 ヘッド局2Cは、メンバ局2Dからのミュート要求を検出した場合、ミュート要求内のリソース情報を含むミュート標示を、標示チャネルを通じて他の移動局(メンバ局)2にブロードキャスト送信する。ミュート標示を受信する移動局(メンバ局)2は、標示チャネルを通じてミュート標示を受信した場合、ミュート標示を解読してミュート標示内のリソース情報からミュート対象のリソースを特定する。更に、移動局(メンバ局)2は、ミュート対象のリソースが自局で予約済みのリソースであるか否かを判定する。更に、移動局2、例えば、メンバ局2Eは、ミュート対象のリソースが自局で予約済みのリソースの場合、当該予約済みのリソースを開放する。 When the head station 2C detects the mute request from the member station 2D, the head station 2C broadcasts a mute indication including the resource information in the mute request to another mobile station (member station) 2 through the indication channel. When receiving the mute indication, the mobile station (member station) 2 receives the mute indication through the indication channel, decodes the mute indication, and specifies the resource to be muted from the resource information in the mute indication. Further, the mobile station (member station) 2 determines whether or not the resource to be muted is a resource reserved by the mobile station. Further, the mobile station 2, for example, the member station 2E releases the reserved resource when the resource to be muted is a resource reserved by the own station.
 そして、ミュート要求を発信したメンバ局2Dは、メンバ局2Eがミュート標示に応じて開放したミュート対象の空きリソースに送信要求の高優先のパケット送信を割当てる。その結果、メンバ局2Dは、選択ウインドウ内に空きリソースが不足している場合でも、空きリソースに高優先のパケット送信を割当てる。 {Circle around (2)} The member station 2D that has transmitted the mute request allocates the high-priority packet transmission of the transmission request to the mute target free resource released by the member station 2E according to the mute indication. As a result, the member station 2D allocates a high-priority packet transmission to the free resource even when the free resource is insufficient in the selection window.
 次に実施例2の無線通信システム1の内、モード4の無線通信システム1Bの動作について説明する。図10は、実施例2のメンバ側割当処理に関わるメンバ局2Dの処理動作の一例を示すフロー図である。メンバ局2Dは、自局の送信要求を検出したか否かを判定する(ステップS41)。尚、送信要求は、例えば、パケットの送信を要求する要求である。メンバ局2Dは、自局の送信要求を検出した場合(ステップS41肯定)、送信要求のパケット送信の優先レベルが高優先であるか否かを判定する(ステップS42)。優先レベルは、例えば、高優先と低優先との2段階である。 Next, the operation of the wireless communication system 1B of mode 4 in the wireless communication system 1 of the second embodiment will be described. FIG. 10 is a flowchart illustrating an example of a processing operation of the member station 2D related to the member-side assignment processing according to the second embodiment. The member station 2D determines whether the transmission request of the own station has been detected (step S41). The transmission request is, for example, a request for requesting transmission of a packet. If the member station 2D detects its own transmission request (Yes at step S41), the member station 2D determines whether the priority level of packet transmission of the transmission request is high priority (step S42). The priority levels are, for example, two levels of high priority and low priority.
 メンバ局2Dは、送信要求のパケット送信の優先レベルが高優先である場合(ステップS42肯定)、送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する(ステップS43)。メンバ局2Dは、高優先のパケット送信に使用する空きリソースが不足している場合(ステップS43肯定)、センシングウインドウのモニタを継続する(ステップS44)。メンバ局2Dは、センシング結果に基づき、選択ウインドウ内のミュート対象のリソースを選択する(ステップS45)。 When the priority level of the packet transmission of the transmission request is high priority (Yes at Step S42), the member station 2D determines whether or not there is insufficient free resources to be used for transmitting the high priority packet of the transmission request (Step S42). S43). If there is not enough free resources to use for high-priority packet transmission (Yes at Step S43), the member station 2D continues monitoring the sensing window (Step S44). The member station 2D selects a resource to be muted in the selection window based on the sensing result (step S45).
 メンバ局2Dは、選択したミュート対象のリソースを含むミュート要求をヘッド局2Cに送信する(ステップS46)。その結果、ヘッド局2Cは、ミュート要求に応じてミュート標示を生成し、生成したミュート標示を各移動局(メンバ局)2にブロードキャスト送信する。そして、移動局2(メンバ局2E)は、受信したミュート標示内のミュート対象のリソースが自局で予約済みのリソースの場合、当該予約済みのリソースを開放することになる。そして、メンバ局2Dは、メンバ局2Eが開放したミュート対象のリソースを送信要求の高優先のパケット送信に割り当ててパケット送信を実行し(ステップS47)、図10に示す処理動作を終了する。 The member station 2D transmits a mute request including the selected resource to be muted to the head station 2C (step S46). As a result, the head station 2C generates a mute indication in response to the mute request, and broadcasts the generated mute indication to each mobile station (member station) 2. Then, if the resource to be muted in the received mute indication is a resource reserved by the own station, the mobile station 2 (member station 2E) releases the reserved resource. Then, the member station 2D allocates the resource to be muted released by the member station 2E to the high-priority packet transmission of the transmission request, executes the packet transmission (step S47), and ends the processing operation illustrated in FIG.
 また、メンバ局2Dは、送信要求のパケット送信の優先レベルが高優先でない場合(ステップS42否定)、センシングウインドウのモニタを継続する(ステップS48)。メンバ局2Dは、センシング結果に基づき、選択ウインドウ内の使用可能なリソースを選択する(ステップS49)。そして、メンバ局2Dは、選択リソースに送信要求のパケット送信を割当ててパケット送信を実行し(ステップS50)、図10に示す処理動作を終了する。また、メンバ局2Dは、高優先のパケット送信に使用する空きリソースが不足していない場合(ステップS43否定)、送信要求のパケット送信に割当可能な空きリソースがあると判断し、センシングウインドウのモニタを継続すべく、ステップS48に移行する。また、メンバ局2Dは、自局の送信要求を検出しなかった場合(ステップS41否定)、センシングウインドウのモニタを継続し(ステップS51)、図10に示す処理動作を終了する。 If the priority level of packet transmission of the transmission request is not high priority (No at Step S42), the member station 2D continues monitoring the sensing window (Step S48). The member station 2D selects an available resource in the selection window based on the sensing result (step S49). Then, the member station 2D allocates the packet transmission of the transmission request to the selected resource, executes the packet transmission (step S50), and ends the processing operation illustrated in FIG. If there is no shortage of free resources to be used for high-priority packet transmission (No at step S43), the member station 2D determines that there is a free resource that can be allocated to packet transmission of the transmission request, and monitors the sensing window. The process moves to step S48 in order to continue. In addition, when the member station 2D does not detect its own transmission request (No at Step S41), the monitoring of the sensing window is continued (Step S51), and the processing operation illustrated in FIG. 10 ends.
 図10に示すメンバ側割当処理を実行するメンバ局2Dは、高優先パケットの送信要求を検出した場合、センシング結果に基づき、送信要求の高優先のパケットに使用する空きリソースが不足しているか否かを判定する。メンバ局2Dは、空きリソースが不足している場合、低優先の予約済みリソースを選択し、選択した予約済みのリソースをミュート対象のリソースとし、当該ミュート対象のリソースを含むミュート要求をヘッド局2Cに送信する。メンバ局2Dは、ヘッド局2Cからのミュート標示に応じてメンバ局2Eが開放したミュート対象の空きリソースに送信要求の高優先のパケット送信を割当てる。その結果、メンバ局2Dは、空きリソースが不足した場合でも、送信要求に応じて高優先のパケット送信を実行できる。 When detecting the transmission request of the high-priority packet, the member station 2D executing the member-side allocation processing shown in FIG. 10 determines whether or not there is insufficient free resources to be used for the high-priority packet of the transmission request based on the sensing result. Is determined. When the available resources are insufficient, the member station 2D selects a reserved resource of low priority, sets the selected reserved resource as a resource to be muted, and issues a mute request including the resource to be muted to the head station 2C. Send to The member station 2D allocates a high-priority packet transmission of a transmission request to a mute target free resource released by the member station 2E according to the mute indication from the head station 2C. As a result, the member station 2D can execute high-priority packet transmission in response to the transmission request even when the available resources are insufficient.
 図11は、実施例2のヘッド側割当処理に関わるヘッド局2Cの処理動作の一例を示すフロー図である。ヘッド局2Cは、自局の送信要求を検出したか否かを判定する(ステップS61)。尚、送信要求は、例えば、パケットの送信を要求する要求である。ヘッド局2Cは、自局の送信要求を検出した場合(ステップS61肯定)、送信要求のパケット送信の優先レベルが高優先であるか否かを判定する(ステップS62)。優先レベルは、例えば、高優先と低優先との2段階である。 FIG. 11 is a flowchart illustrating an example of a processing operation of the head station 2C related to the head-side assignment processing according to the second embodiment. The head station 2C determines whether a transmission request of the head station has been detected (step S61). The transmission request is, for example, a request for requesting transmission of a packet. When the head station 2C detects its own transmission request (Yes at Step S61), the head station 2C determines whether or not the priority level of packet transmission of the transmission request is high priority (Step S62). The priority levels are, for example, two levels of high priority and low priority.
 ヘッド局2Cは、送信要求のパケット送信の優先レベルが高優先である場合(ステップS62肯定)、送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する(ステップS63)。ヘッド局2Cは、空きリソースが不足している場合(ステップS63肯定)、センシングウインドウのモニタを継続する(ステップS64)。ヘッド局2Cは、センシング結果に基づき、選択ウインドウ内のミュート対象のリソースを選択する(ステップS65)。 When the priority level of the packet transmission of the transmission request is high priority (Yes at Step S62), the head station 2C determines whether or not there is not enough free resources to use for the high priority packet transmission of the transmission request (Step S62). S63). When the available resources are insufficient (step S63: YES), the head station 2C continues monitoring the sensing window (step S64). The head station 2C selects a resource to be muted in the selection window based on the sensing result (step S65).
 ヘッド局2Cは、選択したミュート対象のリソースを識別するリソース情報を含むミュート標示を生成する(ステップS66)。ヘッド局2Cは、生成したミュート標示をメンバ局である各移動局(メンバ局)2にブロードキャスト送信する(ステップS67)。その結果、移動局(メンバ局)2は、ヘッド局2Cからのミュート標示を受信し、ミュート標示内のミュート対象のリソースが自局で予約済みのリソースの場合、予約済みのリソースを開放することになる。ヘッド局2Cは、ミュート対象のリソースを送信要求の高優先のパケット送信に割り当ててパケット送信を実行し(ステップS68)、図11に示す処理動作を終了する。 The head station 2C generates a mute indication including resource information for identifying the selected resource to be muted (step S66). The head station 2C broadcasts the generated mute indication to each mobile station (member station) 2 that is a member station (step S67). As a result, the mobile station (member station) 2 receives the mute indication from the head station 2C, and releases the reserved resource when the resource to be muted in the mute indication is a resource reserved by the own station. become. The head station 2C allocates the resource to be muted to the high-priority packet transmission of the transmission request, executes the packet transmission (step S68), and ends the processing operation illustrated in FIG.
 また、ヘッド局2Cは、送信要求の優先レベルが高優先でない場合(ステップS62否定)、センシングウインドウのモニタを継続し(ステップS69)、センシング結果に基づき、選択ウインドウ内の使用可能なリソースを選択する(ステップS70)。そして、ヘッド局2Cは、選択リソースを送信要求のパケット送信に割り当ててパケット送信を実行し(ステップS71)、図11に示す処理動作を終了する。 If the priority level of the transmission request is not high priority (No at Step S62), the head station 2C continues monitoring the sensing window (Step S69) and selects an available resource in the selection window based on the sensing result. (Step S70). Then, the head station 2C allocates the selected resource to the packet transmission of the transmission request, executes the packet transmission (step S71), and ends the processing operation illustrated in FIG.
 また、ヘッド局2Cは、空きリソースが不足していない場合(ステップS63否定)、送信要求のパケット送信に使用できる空きリソースがあると判断し、センシングウインドウのモニタを継続すべく、ステップS69に移行する。 If there is no shortage of free resources (No at step S63), the head station 2C determines that there is free resources available for packet transmission of the transmission request, and proceeds to step S69 to continue monitoring the sensing window. I do.
 また、ヘッド局2Cは、自局の送信要求を検出しなかった場合(ステップS61否定)、メンバ局2Dからのミュート要求を検出したか否かを判定する(ステップS72)。ヘッド局2Cは、メンバ局2Dからのミュート要求を検出した場合(ステップS72肯定)、ミュート要求に関わる送信要求のパケット送信の優先レベルが高優先であるか否かを判定する(ステップS73)。ヘッド局2Cは、ミュート要求に関わる送信要求のパケット送信の優先レベルが高優先の場合(ステップS73肯定)、ミュート要求内のミュート対象のリソースを含むミュート標示を生成する(ステップS74)。更に、ヘッド局2Cは、ミュート標示を各移動局(メンバ局)2にブロードキャスト送信し(ステップS75)、図11に示す処理動作を終了する。ヘッド局2Cは、ミュート要求に関わる送信要求のパケット送信の優先レベルが高優先でない場合(ステップS73否定)、センシングウインドウのモニタを継続し(ステップS76)、図11に示す処理動作を終了する。 If the head station 2C does not detect its own transmission request (No at Step S61), the head station 2C determines whether a mute request from the member station 2D has been detected (Step S72). When the head station 2C detects the mute request from the member station 2D (Yes at Step S72), the head station 2C determines whether the priority level of the packet transmission of the transmission request related to the mute request is high priority (Step S73). When the priority level of the packet transmission of the transmission request related to the mute request is high priority (Yes at Step S73), the head station 2C generates a mute indication including the resource to be muted in the mute request (Step S74). Further, the head station 2C broadcasts the mute indication to each mobile station (member station) 2 (step S75), and ends the processing operation shown in FIG. If the priority level of the packet transmission of the transmission request related to the mute request is not high priority (No at Step S73), the head station 2C continues monitoring the sensing window (Step S76) and ends the processing operation illustrated in FIG.
 図11に示すヘッド側割当処理を実行するヘッド局2Cは、メンバ局2Dから高優先の送信要求に関わるミュート要求を受信した場合、ミュート要求内のリソース情報を含むミュート標示を生成する。ヘッド局2Cは、生成したミュート標示を各移動局(メンバ局)2にブロードキャスト送信する。その結果、メンバ局2Dは、メンバ局2Eがミュート標示に応じて開放したミュート対象の空きリソースに高優先のパケット送信を割当てる。その結果、メンバ局2Dは、空きリソースが不足した場合でも、送信要求に応じて高優先のパケット送信を実行できる。 ヘ ッ ド When the head station 2C executing the head-side assignment processing shown in FIG. 11 receives a mute request related to a high-priority transmission request from the member station 2D, it generates a mute indication including resource information in the mute request. The head station 2C broadcasts the generated mute indication to each mobile station (member station) 2. As a result, the member station 2D allocates high-priority packet transmission to a mute target free resource released by the member station 2E according to the mute indication. As a result, the member station 2D can execute high-priority packet transmission in response to the transmission request even when the available resources are insufficient.
 図12は、実施例2のメンバ側開放処理に関わるメンバ局2Eの処理動作の一例を示すフロー図である。メンバ局2Eは、現在がミュート標示の監視周期であるか否かを判定する(ステップS81)。尚、監視周期は、ミュート標示を監視する周期である。メンバ局2Eは、現在が監視周期の場合(ステップS81肯定)、監視周期内にヘッド局2Cからのミュート標示があるか否かを判定する(ステップS82)。メンバ局2Eは、監視周期内にミュート標示がある場合(ステップS82肯定)、自局で予約済みのリソースがあるか否かを判定する(ステップS83)。メンバ局2Eは、自局で予約済みのリソースがある場合(ステップS83肯定)、ミュート標示を解読してリソース情報からミュート対象のリソースを特定し、自局で予約済みのリソースがミュート対象のリソースであるか否かを判定する(ステップS84)。 FIG. 12 is a flowchart illustrating an example of a processing operation of the member station 2E related to the member-side release processing according to the second embodiment. The member station 2E determines whether or not the current time is the monitoring cycle of the mute indication (step S81). The monitoring cycle is a cycle for monitoring the mute sign. If the current period is the monitoring period (Yes at Step S81), the member station 2E determines whether or not there is a mute indication from the head station 2C within the monitoring period (Step S82). When there is a mute indication within the monitoring period (Yes at Step S82), the member station 2E determines whether there is a resource reserved at its own station (Step S83). If there is a resource reserved at the own station (Yes at Step S83), the member station 2E identifies the resource to be muted from the resource information by decoding the mute indication, and the resource reserved at the local station is the resource to be muted. Is determined (step S84).
 メンバ局2Eは、自局で予約済みのリソースがミュート対象のリソースの場合(ステップS84肯定)、ミュート対象のリソースである予約済みのリソースを開放し(ステップS85)、図12に示す処理動作を終了する。メンバ局2Eは、ミュート標示の監視周期でない場合(ステップS81否定)、又は監視周期内にミュート標示がない場合(ステップS82否定)、センシングウインドウのモニタを継続し(ステップS86)、図12に示す処理動作を終了する。また、メンバ局2Eは、予約済みのリソースがない場合(ステップS83否定)、又は、自局で予約済みのリソースがミュート対象のリソースでない場合(ステップS84否定)、モニタを継続すべくステップS86に移行する。 If the resource reserved by the own station is a resource to be muted (Yes at Step S84), the member station 2E releases the reserved resource that is a resource to be muted (Step S85), and performs the processing operation shown in FIG. finish. The member station 2E continues monitoring the sensing window (step S86) when it is not in the monitoring cycle of the mute sign (No in step S81) or when there is no mute sign in the monitoring cycle (no in step S82), as shown in FIG. The processing operation ends. When there is no reserved resource (No at Step S83), or when the resource reserved at the own station is not a resource to be muted (No at Step S84), the member station 2E proceeds to Step S86 to continue monitoring. Transition.
 図12に示すメンバ側開放処理を実行するメンバ局2Eは、ミュート標示を検出した場合、ミュート標示内のリソース情報からミュート対象のリソースを特定し、自局で予約済みのリソースがミュート対象のリソースであるか否かを判定する。メンバ局2Eは、自局で予約済みのリソースがミュート対象のリソースである場合、ミュート対象の予約済みリソースを開放する。その結果、ミュート標示を送信したメンバ局2Dは、ミュート標示に応じて開放された空きリソースに送信要求のパケット送信を割当てて送信できる。 When detecting the mute indication, the member station 2E executing the member-side release processing shown in FIG. 12 specifies the resource to be muted from the resource information in the mute indication, and replaces the resource reserved in its own station with the resource to be muted. Is determined. The member station 2E releases the reserved resource to be muted when the resource reserved at the own station is the resource to be muted. As a result, the member station 2D that has transmitted the mute indication can allocate and transmit the packet transmission of the transmission request to the free resource released according to the mute indication.
 実施例2のモード4でのメンバ局2Dは、高優先パケットの送信要求を検出した場合、センシング結果に基づき、送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する。メンバ局2Dは、空きリソースが不足している場合、低優先の予約済みリソースを選択し、選択した予約済みのリソースをミュート対象のリソースとし、ミュート対象のリソースを含むミュート要求をヘッド局2Cに送信する。ヘッド局2Cは、メンバ局2Dからのミュート要求を受信した場合、ミュート要求内のミュート対象のリソースを含むミュート標示を各移動局(メンバ局)2にブロードキャスト送信する。メンバ局2Eは、ミュート標示に応じてミュート対象のリソースが自局で予約済みのリソースの場合、予約済みのリソースを開放する。そして、メンバ局2Dは、メンバ局2Eがミュート標示に応じて開放したミュート対象の空きリソースに高優先のパケット送信を割当てる。その結果、メンバ局2Dは、空きリソースが不足した場合でも、送信要求に応じて高優先のパケット送信を実行できる。 When the member station 2D in the mode 4 of the second embodiment detects the transmission request of the high-priority packet, based on the sensing result, the member station 2D determines whether or not the available resources used for transmitting the high-priority packet of the transmission request are insufficient. judge. When the available resources are insufficient, the member station 2D selects a low-priority reserved resource, sets the selected reserved resource as a resource to be muted, and sends a mute request including the resource to be muted to the head station 2C. Send. When receiving the mute request from the member station 2D, the head station 2C broadcasts a mute indication including the resource to be muted in the mute request to each mobile station (member station) 2. The member station 2E releases the reserved resource according to the mute indication, when the resource to be muted is the resource reserved by the own station. Then, the member station 2D allocates a high-priority packet transmission to a muted target free resource released by the member station 2E according to the mute indication. As a result, the member station 2D can execute high-priority packet transmission in response to the transmission request even when the available resources are insufficient.
 尚、上記実施例1及び2では、パケット送信の優先レベルが高優先及び低優先の2段階の場合を例示したが、優先レベルが2段階に限定されるものではなく、複数段であっても良く、適宜変更可能である。例えば、パケット送信の優先レベルを3段階にした場合の実施の形態につき、実施例3として以下に説明する。尚、実施例1と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。 In the first and second embodiments, the case where the priority level of the packet transmission is two levels of the high priority and the low priority is exemplified. However, the priority level is not limited to the two levels. It can be changed as appropriate. For example, an embodiment in which the priority levels of packet transmission are set to three levels will be described below as a third embodiment. The same components as those of the first embodiment are denoted by the same reference numerals, and the description of the same components and operations will not be repeated.
 図13は、実施例3のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。パケット送信の優先レベルは、例えば、LV1~LV3の3段階とし、LV1は、優先レベルが最上位のパケット送信、LV2は、優先レベルが第2位のパケット送信、LV3は、優先レベルが第3位のパケット送信とする。LV1のパケット送信の許容最大遅延時間は、例えば、3m秒、LV2のパケット送信の許容最大遅延時間は、例えば、10m秒、LV3のパケット送信の許容最大遅延時間は、例えば、15m秒とする。 FIG. 13 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the third embodiment. The priority levels of the packet transmission are, for example, three levels of LV1 to LV3. LV1 is the packet transmission with the highest priority level, LV2 is the packet transmission with the second priority level, and LV3 is the third priority. Packet transmission. The maximum allowable delay time of packet transmission of LV1 is, for example, 3 msec, the maximum allowable delay time of packet transmission of LV2 is, for example, 10 msec, and the maximum allowable delay time of packet transmission of LV3 is, for example, 15 msec.
 例えば、UE10の移動局2Aは、図13に示すようにLV1のパケット送信の送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。更に、UE10の移動局2Aは、送信要求の許容最大遅延時間3m秒に応じて選択ウインドウの時間幅を設定し、他の移動局2の使用状況からLV1のパケット送信に使用する空きリソースが不足しているか否かを判定する。 For example, when the mobile station 2A of the UE 10 detects the transmission request of the packet transmission of the LV1 as illustrated in FIG. 13, the mobile station 2A of the other mobile station 2 based on the sensing result up to 1000 ms before the detection of the transmission request. Capture resource usage. Further, the mobile station 2A of the UE 10 sets the time width of the selection window according to the allowable maximum delay time of the transmission request of 3 ms, and the available resources used for transmitting the packet of the LV1 are insufficient due to the usage status of the other mobile stations 2. It is determined whether or not.
 UE10の移動局は、LV1のパケット送信に使用する空きリソースが不足しているため、パケット送信の優先レベル(LV1)よりも下位のLV2又はLV3の予約済みのリソースをミュート対象のリソースとして選択する。尚、UE10の移動局2Aのパケット送信の優先レベルは“LV1”、例えば、UE2の移動局2が予約済みのリソースに使用するパケット送信の優先レベルは“LV3”とする。従って、UE10の移動局2Aは、送信要求のパケット送信の優先レベルLV1よりも下位のLV3のUE2の移動局2の予約済みのリソースをミュート対象のリソースとして選択する。そして、UE10の移動局2Aは、選択したミュート対象のリソースを識別するリソース情報を含むミュート標示を生成する。 The mobile station of the UE 10 selects a reserved resource of LV2 or LV3 lower than the packet transmission priority level (LV1) as a resource to be muted because the available resources used for transmitting the packet of LV1 are insufficient. . Note that the priority level of packet transmission of the mobile station 2A of the UE 10 is "LV1", and the priority level of packet transmission used by the mobile station 2 of the UE 2 for reserved resources is "LV3". Therefore, the mobile station 2A of the UE 10 selects the reserved resource of the mobile station 2 of the UE 2 of the LV 3 lower than the priority level LV1 of the packet transmission of the transmission request as the resource to be muted. Then, the mobile station 2A of the UE 10 generates a mute indication including resource information for identifying the selected resource to be muted.
 UE10の移動局2Aは、標示チャネル内の監視周期のタイミングでミュート標示を各他の移動局2にブロードキャスト送信する。UE2の移動局2Bは、監視周期のタイミングでミュート標示を受信した場合、ミュート標示を解読してリソース情報からミュート対象のリソースを特定する。UE2の移動局2Bは、ミュート対象のリソースが自局で予約済みのリソースであるため、予約済みのリソースを開放する。 The mobile station 2A of the UE 10 broadcasts a mute indication to each of the other mobile stations 2 at the timing of the monitoring cycle in the indication channel. When the mobile station 2B of the UE 2 receives the mute indication at the timing of the monitoring cycle, the mobile station 2B decodes the mute indication and specifies the resource to be muted from the resource information. The mobile station 2B of the UE 2 releases the reserved resource because the resource to be muted is the resource reserved by the own station.
 更に、UE10の移動局2Aは、ミュート標示を送信した後、ミュート標示に応じてUE2の移動局2Aが開放したミュート対象の空きリソースに送信要求のLV1のパケット送信を割当てる。その結果、UE10の移動局2Aは、LV1のパケット送信を実行できる。 (4) Further, after transmitting the mute indication, the mobile station 2A of the UE 10 allocates the packet transmission of the transmission request LV1 to the empty resource to be muted released by the mobile station 2A of the UE 2 according to the mute indication. As a result, the mobile station 2A of the UE 10 can execute the packet transmission of the LV1.
 また、UE10の移動局2Aが、LV2のパケット送信の送信要求を検出し、送信要求のLV2のパケット送信に使用する空きリソースが不足している場合、LV2よりも下位のLV3のパケット送信のUE2の移動局2Bで予約済みのリソースを選択する。そして、UE10の移動局2Aは、選択したリソースをミュート対象のリソースとしてミュート標示をブロードキャスト送信する。 Also, the mobile station 2A of the UE 10 detects the transmission request of the LV2 packet transmission, and if there is not enough free resources to use the LV2 packet transmission of the transmission request, the UE2 of the LV3 packet transmission lower than the LV2. Of the mobile station 2B that has been reserved. Then, the mobile station 2A of the UE 10 broadcasts a mute indication with the selected resource as a resource to be muted.
 そして、ミュート標示を受信したUE2の移動局2Bは、ミュート標示内のミュート対象のリソースが予約済みのリソースの場合、LV3の予約済みのリソースを開放する。そして、UE10の移動局2Aは、UE2の移動局2Bが開放したリソースに送信要求のLV2のパケット送信を割当てる。 移動 Then, the mobile station 2B of the UE2 that has received the mute indication releases the reserved resource of the LV3 when the resource to be muted in the mute indication is a reserved resource. Then, the mobile station 2A of the UE 10 allocates the packet transmission of the transmission request LV2 to the resource released by the mobile station 2B of the UE 2.
 また、上記実施例1の無線通信システム1では、V2V通信に使用するリソース内の所定周期のリソースである標示チャネルを使用してミュート標示を他の移動局2にブロードキャスト送信する場合を例示した。しかしながら、実施例1の標示チャネルは、V2V通信に使用するリソースの一部であるため、ミュート標示を送信しない場合にもリソースを確保する必要がある。従って、V2V通信のリソースの使用効率が低下する場合も考えられる。そこで、V2V通信に使用するリソースと異なる周波数帯域の所定周期のリソースを標示チャネルに使用してミュート標示を他の移動局2にブロードキャスト送信しても良く、その実施の形態につき、実施例4として以下に説明する。尚、実施例1の無線通信システムと同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。 Also, in the wireless communication system 1 according to the first embodiment, a case has been exemplified in which the mute indication is broadcast-transmitted to another mobile station 2 using the indication channel which is a resource of a predetermined period in the resources used for the V2V communication. However, since the indication channel of the first embodiment is a part of the resources used for V2V communication, it is necessary to secure resources even when the mute indication is not transmitted. Therefore, it is conceivable that the resource use efficiency of the V2V communication is reduced. Therefore, a mute indication may be broadcast-transmitted to another mobile station 2 by using a resource of a predetermined cycle in a frequency band different from that used for the V2V communication for the indication channel. This will be described below. The same components as those of the wireless communication system according to the first embodiment are denoted by the same reference numerals, and the description of the overlapping configurations and operations will be omitted.
 図14は、実施例4のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。移動局2Aは、V2V通信に使用するリソースと異なる周波数帯域の所定周期のリソースを標示チャネルに使用する。ミュート標示を送信する移動局2Aは、標示チャネルを使用してミュート標示を他の移動局2にブロードキャスト送信する。また、ミュート標示を受信する移動局2Bは、標示チャネルを監視周期としてミュート標示の有無を監視する。標示チャネルの期間は、前述した通り、V2V通信と異なる周波数帯域のリソースを使用しているため、V2V通信とミュート標示通信とが同時に使用できる状態である。 FIG. 14 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the fourth embodiment. The mobile station 2A uses a resource of a predetermined cycle in a frequency band different from a resource used for V2V communication for the indication channel. The mobile station 2A transmitting the mute indication broadcasts the mute indication to the other mobile stations 2 using the indication channel. Further, the mobile station 2B receiving the mute indication monitors the presence / absence of the mute indication using the indication channel as a monitoring cycle. As described above, since the resource of the frequency band different from that of the V2V communication is used during the period of the indication channel, the V2V communication and the mute indication communication can be used at the same time.
 移動局2Aは、パケットの送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。移動局2Aは、送信要求の許容最大遅延時間に応じた選択ウインドウを設定し、他の移動局2の使用状況から送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する。移動局2Aは、送信要求の高優先のパケット送信に使用する空きリソースが不足していない場合、送信要求の高優先のパケット送信に空きリソースを割り当てる。 When the mobile station 2A detects a packet transmission request, the mobile station 2A captures the resource usage status of the other mobile station 2 based on the sensing result from the time when the transmission request was detected up to 1000 ms before. The mobile station 2A sets a selection window according to the maximum permissible delay time of the transmission request, and determines whether or not there is insufficient free resources to be used for high-priority packet transmission of the transmission request based on the usage status of the other mobile stations 2. Is determined. The mobile station 2A allocates a free resource to the transmission of the high-priority packet of the transmission request when there is no shortage of the free resources to be used for transmitting the high-priority packet of the transmission request.
 また、移動局2Aは、送信要求の高優先のパケット送信に使用する空きリソースが不足している場合、低優先の予約済みのリソースをミュート対象のリソースとして選択する。この際、移動局2Aは、標示チャネルの監視周期と同一タイミングのV2V通信のリソースを使用中の場合、監視周期のミュート標示を解読できない。従って、監視周期と同一タイミングでV2V通信を使用中の移動局2が使用する予約済みのリソースは、ミュート対象のリソースから除外する。つまり、移動局2は、監視周期のミュート標示と同一タイミングのV2V通信のリソースのSCIとを同時に解読することができないため、監視周期と同一タイミングのV2V通信の予約済みのリソースをミュート対象のリソースから除外する。そして、移動局2Aは、選択したミュート対象のリソースを識別するリソース情報を含むミュート標示を、標示チャネルを通じて他の移動局2にブロードキャスト送信する。 {Circle around (2)} When the free resources used for transmitting the high-priority packet of the transmission request are insufficient, the mobile station 2A selects the low-priority reserved resource as the resource to be muted. At this time, if the mobile station 2A is using the resource of the V2V communication at the same timing as the monitoring cycle of the indication channel, the mobile station 2A cannot decode the mute indication of the monitoring cycle. Therefore, reserved resources used by the mobile station 2 using V2V communication at the same timing as the monitoring period are excluded from the resources to be muted. That is, since the mobile station 2 cannot simultaneously decode the mute indication of the monitoring period and the SCI of the V2V communication resource at the same timing, the mobile station 2 replaces the reserved resource of the V2V communication at the same timing as the monitoring period with the resource to be muted. Exclude from Then, the mobile station 2A broadcasts a mute indication including resource information for identifying the selected resource to be muted to another mobile station 2 through the indication channel.
 また、ミュート標示を受信する移動局2Bは、標示チャネルの監視周期を監視し、監視周期に応じてミュート標示を受信したか否かを判定する。移動局2Bは、ミュート標示を受信した場合、ミュート標示を解読してリソース情報からミュート対象のリソースを特定する。更に、移動局2Bは、ミュート対象のリソースが自局で予約済みのリソースであるか否かを判定する。更に、移動局2Bは、ミュート対象のリソースが自局で予約済みのリソースの場合、当該予約済みのリソースを開放する。 {Circle around (2)} The mobile station 2B receiving the mute indication monitors the monitoring cycle of the indication channel, and determines whether or not the mute indication has been received according to the monitoring cycle. When receiving the mute indication, the mobile station 2B decodes the mute indication and identifies the resource to be muted from the resource information. Further, the mobile station 2B determines whether or not the resource to be muted is a resource that has been reserved by the own station. Further, when the resource to be muted is a resource reserved by the own station, the mobile station 2B releases the reserved resource.
 そして、ミュート標示を送信した移動局2Aは、ミュート標示に応じて開放されたミュート対象の空きリソースに送信要求のパケット送信を割当てる。その結果、移動局2Aは、送信要求のパケット送信に使用する空きリソースが不足している場合でも、高優先のパケット送信に空きリソースを割当てることができる。 {Circle around (2)} Then, the mobile station 2A that has transmitted the mute indication allocates the packet transmission of the transmission request to the free resource to be muted released according to the mute indication. As a result, the mobile station 2A can allocate a free resource to high-priority packet transmission even when there is a shortage of free resources used for transmitting a transmission request packet.
 例えば、UE10の移動局2Aは、図14に示すように高優先パケットの送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。更に、UE10の移動局2Aは、送信要求の許容最大遅延時間に応じて選択ウインドウの時間幅を設定し、他の移動局2の使用状況から送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する。 For example, when the mobile station 2A of the UE 10 detects the transmission request of the high-priority packet as shown in FIG. 14, the mobile station 2A of the other mobile station 2 Capture usage of. Further, the mobile station 2A of the UE 10 sets the time width of the selection window according to the maximum allowable delay time of the transmission request, and uses the available resources for transmitting the high-priority packet of the transmission request based on the usage status of the other mobile stations 2. It is determined whether or not is insufficient.
 UE10の移動局2Aは、送信要求の高優先のパケット送信に使用する空きリソースが不足しているため、低優先の予約済みのリソースをミュート対象のリソースとして選択する。尚、UE10の移動局2Aの送信要求のパケット送信の優先レベルは高優先、例えば、UE2の移動局2Bが予約済みのリソースに割当済みのパケット送信の優先レベルは低優先とする。UE10の移動局2Aは、標示チャネルの監視周期と同一タイミングのリソースを使用中のUE2、UE4及びUE5の移動局2のリソースをミュート対象のリソースから除外する。従って、UE10の移動局2Aは、送信要求の高優先のパケット送信の優先レベルが下位の低優先のUE1の移動局2Bの予約済みのリソースをミュート対象のリソースとして選択する。そして、UE10の移動局2Aは、選択したミュート対象のリソースを識別するリソース情報を含むミュート標示を生成する。UE10の移動局2Aは、標示チャネルの監視周期のタイミングでミュート標示を各他の移動局2にブロードキャスト送信する。 The mobile station 2A of the UE 10 selects a reserved resource with a low priority as a resource to be muted, because there is not enough free resources to use for transmitting a high-priority packet for a transmission request. Note that the priority level of packet transmission of the transmission request of the mobile station 2A of the UE 10 is high priority, for example, the priority level of packet transmission allocated to the reserved resource by the mobile station 2B of the UE 2 is low priority. The mobile station 2A of the UE 10 excludes the resources of the mobile station 2 of the UE2, UE4, and UE5 using the resources at the same timing as the monitoring cycle of the indication channel from the resources to be muted. Accordingly, the mobile station 2A of the UE 10 selects a reserved resource of the mobile station 2B of the low-priority UE 1 having a low priority of transmission of a high-priority packet of a transmission request as a resource to be muted. Then, the mobile station 2A of the UE 10 generates a mute indication including resource information for identifying the selected resource to be muted. The mobile station 2A of the UE 10 broadcasts a mute indication to each of the other mobile stations 2 at the timing of the indication channel monitoring cycle.
 また、UE1の移動局2Bは、監視周期のタイミングでミュート標示を検出した場合、ミュート標示を解読してリソース情報からミュート対象のリソースを特定する。UE1の移動局2Bは、ミュート対象のリソースが自局で予約済みのリソースであるため、予約済みのリソースを開放する。 When the mobile station 2B of the UE 1 detects the mute indication at the timing of the monitoring cycle, the mobile station 2B decodes the mute indication and specifies the resource to be muted from the resource information. The mobile station 2B of the UE1 releases the reserved resource because the resource to be muted is the resource reserved by the own station.
 更に、UE10の移動局2Aは、ミュート標示を送信した後、ミュート標示に応じてUE1の移動局2Bが開放したミュート対象の空きリソースに送信要求の高優先のパケット送信を割当てる。その結果、UE10の移動局2Aは、高優先のパケット送信を実行できる。 Further, after transmitting the mute indication, the mobile station 2A of the UE 10 allocates the high-priority packet transmission of the transmission request to the free resource to be muted released by the mobile station 2B of the UE 1 according to the mute indication. As a result, the mobile station 2A of the UE 10 can execute high-priority packet transmission.
 実施例4では、V2V通信に使用するリソースと異なる周波数帯域の所定周期のリソースを標示チャネルに使用した。その結果、実施例1の標示チャネルに比較してV2V通信のリソースを使用しないため、V2V通信の無線効率の向上が図れる。 In the fourth embodiment, a resource of a predetermined cycle in a frequency band different from that used for V2V communication is used for the indication channel. As a result, since the resources of the V2V communication are not used as compared with the indication channel of the first embodiment, the wireless efficiency of the V2V communication can be improved.
 尚、上記実施例4のミュート標示内のミュート対象のリソース数は1個の場合を例示したが、1個に限定されるものではなく、例えば、複数個であっても良く、適宜変更可能である。ミュート標示内に2個のミュート対象のリソースを含む場合の実施の形態につき、実施例5として以下に説明する。尚、上記実施例と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。 Note that the number of resources to be muted in the mute indication of the fourth embodiment is exemplified as one, but the number is not limited to one, and may be plural, for example, and can be changed as appropriate. is there. An embodiment in which two mute targets are included in the mute indication will be described below as a fifth embodiment. The same components as those in the above embodiment are denoted by the same reference numerals, and the description of the same components and operations will not be repeated.
 図15は、実施例5のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。実施例4のミュート標示内のミュート対象のリソースは、1個であるのに対し、実施例5のミュート標示内のミュート対象のリソースは、2個である。2個のミュート対象のリストが生じる場合とは、例えば、ヘッド局2Cが2台のメンバ局2Dからミュート要求を受信した場合が想定できる。 FIG. 15 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the fifth embodiment. The number of resources to be muted in the mute indication of the fourth embodiment is one, whereas the number of resources to be muted in the mute indication of the fifth embodiment is two. The case where two mute target lists are generated can be assumed, for example, when the head station 2C receives a mute request from the two member stations 2D.
 UE10のメンバ局2Dが、高優先のパケット送信の送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。UE10のメンバ局2Dは、高優先の送信要求の許容最大遅延時間に応じた選択ウインドウの時間幅を設定し、他の移動局2の使用状況から送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する。UE10のメンバ局2Dは、空きリソースが不足していない場合、送信要求の高優先のパケット送信に空きリソースを割り当てる。 When the member station 2D of the UE 10 detects a transmission request for high-priority packet transmission, it captures the resource usage status of another mobile station 2 based on the sensing result up to 1000 ms before detecting the transmission request. . The member station 2D of the UE 10 sets the time width of the selection window according to the allowable maximum delay time of the high-priority transmission request, and uses the idle state used for transmitting the high-priority packet of the transmission request based on the usage status of the other mobile stations 2. Determine whether resources are insufficient. If there is no shortage of free resources, the member station 2D of the UE 10 allocates free resources to high-priority packet transmission of the transmission request.
 また、UE10のメンバ局2Dは、空きリソースが不足している場合、送信要求の高優先のパケット送信の優先レベルが下位の低優先の予約済みのリソースをミュート対象のリソースとして選択する。UE10のメンバ局2Dは、例えば、低優先のUE1のメンバ局2Eが使用する予約済みのリソースをミュート対象のリソースとして選択する。UE10のメンバ局2Dは、選択したミュート対象のリソースを識別するリソース情報を含むミュート要求をヘッド局2Cに送信する。 In addition, when the available resources are insufficient, the member station 2D of the UE 10 selects a reserved resource of a low priority with a low priority of transmission of a high priority packet of a transmission request as a resource to be muted. The member station 2D of the UE 10 selects, for example, a reserved resource used by the member station 2E of the low-priority UE 1 as a resource to be muted. The member station 2D of the UE 10 transmits to the head station 2C a mute request including resource information for identifying the selected resource to be muted.
 UE11のメンバ局2Dが、UE10のメンバ局2Dの送信要求後、かつ、監視期間前に高優先パケットの送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。UE11のメンバ局2Dは、高優先パケットの送信要求の許容最大遅延時間に応じた選択ウインドウの時間幅を設定し、他の移動局2の使用状況から送信要求のパケット送信に使用する空きリソースが不足しているか否かを判定する。UE11のメンバ局2Dは、空きリソースが不足していない場合、送信要求のパケット送信に使用する空きリソースを割り当てる。 When the member station 2D of the UE 11 detects the transmission request of the high-priority packet after the transmission request of the member station 2D of the UE 10 and before the monitoring period, based on the sensing result from the time when the transmission request was detected to 1000 ms before. , The resource usage status of the other mobile station 2 is captured. The member station 2D of the UE 11 sets the time width of the selection window according to the allowable maximum delay time of the transmission request of the high-priority packet, and an available resource used for transmitting the transmission request packet is determined based on the usage status of the other mobile stations 2. Determine if there is a shortage. If there is no shortage of free resources, the member station 2D of the UE 11 allocates free resources to be used for transmitting a transmission request packet.
 また、UE11のメンバ局2Dは、空きリソースが不足している場合、送信要求のパケット送信の優先レベルよりも下位の予約済みのリソースをミュート対象のリソースとして選択する。UE11のメンバ局2Dは、例えば、低優先のUE7のメンバ局2Eが使用する予約済みのリソースをミュート対象のリソースとして選択する。UE11のメンバ局2Dは、選択したミュート対象のリソースを識別するリソース情報を含むミュート要求をヘッド局2Cに送信する。 In addition, when the available resources are insufficient, the member station 2D of the UE 11 selects a reserved resource lower than the priority level of packet transmission of the transmission request as a resource to be muted. The member station 2D of the UE 11 selects, for example, a reserved resource used by the member station 2E of the low-priority UE 7 as a resource to be muted. The member station 2D of the UE 11 transmits a mute request including resource information for identifying the selected resource to be muted to the head station 2C.
 ヘッド局2Cは、UE10のメンバ局2Dからのミュート要求を検出した場合、ミュート要求内のリソース情報を抽出する。更に、ヘッド局2Cは、UE10のメンバ局2Dからのミュート要求を検出した場合、ミュート要求内のリソース情報を抽出する。同様に、ヘッド局2Cは、UE11のメンバ局2Dからのミュート要求を検出した場合、ミュート要求内のリソース情報を抽出する。そして、ヘッド局2Cは、UE10及びUE11のメンバ局2Dから抽出した2個のミュート対象のリソースを含むミュート標示を生成する。 When the head station 2C detects the mute request from the member station 2D of the UE 10, the head station 2C extracts the resource information in the mute request. Further, when detecting the mute request from the member station 2D of the UE 10, the head station 2C extracts the resource information in the mute request. Similarly, when detecting the mute request from the member station 2D of the UE 11, the head station 2C extracts the resource information in the mute request. Then, the head station 2C generates a mute indication including the two resources to be muted extracted from the member stations 2D of the UE 10 and the UE 11.
 ヘッド局2Cは、2個のミュート対象のリソースを含むミュート標示を、標示チャネルを通じて他の移動局2にブロードキャスト送信する。移動局2は、標示チャネルを通じてミュート標示を受信した場合、ミュート標示を解読してリソース情報からミュート対象のリソースを特定する。更に、移動局2は、ミュート対象のリソースが自局で予約済みのリソースであるか否かを判定する。更に、移動局2、例えば、UE1及びUE7のメンバ局2Eは、ミュート対象のリソースが自局で予約済みのリソースの場合、当該予約済みのリソースを開放する。 The head station 2C broadcasts a mute indication including two resources to be muted to other mobile stations 2 through the indication channel. When receiving the mute indication through the indication channel, the mobile station 2 decodes the mute indication and specifies the resource to be muted from the resource information. Further, the mobile station 2 determines whether or not the resource to be muted is a resource that has been reserved by the own station. Further, the mobile station 2, for example, the member station 2E of the UE1 and the UE7 releases the reserved resource when the resource to be muted is a resource reserved by the own station.
 そして、ミュート要求を発信したUE10のメンバ局2Dは、UE1のメンバ局2Eがミュート標示に応じて開放したミュート対象の空きリソースに送信要求のパケット送信を割当てる。その結果、UE10のメンバ局2Dは、選択ウインドウ内に空きリソースが不足している場合でも、送信要求の高優先のパケット送信にリソースを割当てる。 Then, the member station 2D of the UE 10 that has transmitted the mute request allocates the packet transmission of the transmission request to the empty resource to be muted released by the member station 2E of the UE 1 according to the mute indication. As a result, the member station 2D of the UE 10 allocates resources to the high-priority packet transmission of the transmission request even when the available resources are insufficient in the selection window.
 そして、ミュート要求を発信したUE11のメンバ局2Dは、UE7のメンバ局2Eがミュート標示に応じて開放したミュート対象の空きリソースに送信要求のパケット送信を割当てる。その結果、UE11のメンバ局2Dは、選択ウインドウ内に空きリソースが不足している場合でも、送信要求の高優先のパケット送信にリソースを割当てる。 Then, the member station 2D of the UE 11 that has transmitted the mute request allocates the packet transmission of the transmission request to the empty resource to be muted released by the member station 2E of the UE 7 according to the mute indication. As a result, the member station 2D of the UE 11 allocates resources to the high-priority packet transmission of the transmission request even when the available resources are insufficient in the selection window.
 実施例5では、1個のミュート標示に2個のミュート対象のリソースを格納可能にしたので、ミュート標示の送信効率の向上が図れる。 In the fifth embodiment, two muted resources can be stored in one mute indication, so that the transmission efficiency of the mute indication can be improved.
 上記実施例1の無線通信システム1では、V2V通信に使用するリソース内の所定周期のリソースである標示チャネルを使用してミュート標示を他の移動局2にブロードキャスト送信する場合を例示した。更に、ミュート標示内のミュート対象のリソース数が1個の場合を例示したが、複数個でも良く、その実施の形態につき、実施例6として以下に説明する。尚、実施例1乃至3と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。 In the wireless communication system 1 according to the first embodiment, the case where the mute indication is broadcast-transmitted to another mobile station 2 using the indication channel which is a resource of a predetermined cycle in the resources used for the V2V communication has been exemplified. Furthermore, the case where the number of resources to be muted in the mute sign is one has been exemplified, but a plurality of resources may be used, and an embodiment thereof will be described below as a sixth embodiment. The same components as those in the first to third embodiments are denoted by the same reference numerals, and the description of the overlapping configurations and operations will be omitted.
 図16は、実施例6のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。実施例1のミュート標示内のミュート対象のリソースの数は、1個であるのに対し、実施例5のミュート標示内のミュート対象のリソースの数は、例えば、2個である。例えば、2個のミュート対象のリソースが生じる場合とは、ヘッド局2Cが2台のメンバ局2Dからミュート要求を受信した場合である。また、パケット送信の優先レベルは、例えば、LV1~LV3の3段階とする。 FIG. 16 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the sixth embodiment. The number of resources to be muted in the mute indication of the first embodiment is one, whereas the number of resources to be muted in the mute indication of the fifth embodiment is, for example, two. For example, a case where two resources to be muted occur occurs when the head station 2C receives a mute request from two member stations 2D. Further, the priority levels of packet transmission are, for example, three levels of LV1 to LV3.
 UE10のメンバ局2Dが、LV1のパケット送信の送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。UE10のメンバ局2Dは、LV1のパケット送信の許容最大遅延時間に応じた選択ウインドウの時間幅を設定し、他の移動局2の使用状況から送信要求のLV1のパケット送信に使用する空きリソースが不足しているか否かを判定する。UE10のメンバ局2Dは、空きリソースが不足していない場合、LV1のパケット送信に空きリソースを割り当てる。 When the member station 2D of the UE 10 detects the transmission request of the packet transmission of the LV1, the member station 2D of the UE 10 captures the resource use status of the other mobile station 2 based on the sensing result up to 1000 ms before the detection of the transmission request. The member station 2D of the UE 10 sets the time width of the selection window according to the allowable maximum delay time of the packet transmission of the LV1, and the available resources used for transmitting the packet of the transmission request LV1 are determined based on the usage status of the other mobile stations 2. Determine if there is a shortage. If there is no shortage of free resources, the member station 2D of the UE 10 allocates free resources to the packet transmission of the LV1.
 また、UE10のメンバ局2Dは、空きリソースが不足している場合、送信要求のパケット送信の優先レベル(LV1)よりも下位のLV3の予約済みのリソースをミュート対象のリソースとして選択する。UE10のメンバ局2Dは、例えば、UE2のメンバ局2Eが使用するLV3の予約済みのリソースをミュート対象のリソースとして選択する。UE10のメンバ局2Dは、選択したミュート対象のリソースを識別するリソース情報を含むミュート要求をヘッド局2Cに送信する。 In addition, when the free resources are insufficient, the member station 2D of the UE 10 selects the reserved resources of the LV3 lower than the priority level (LV1) of the packet transmission of the transmission request as the resources to be muted. The member station 2D of the UE 10 selects, for example, a reserved resource of the LV 3 used by the member station 2E of the UE 2 as a resource to be muted. The member station 2D of the UE 10 transmits to the head station 2C a mute request including resource information for identifying the selected resource to be muted.
 また、UE11のメンバ局2Dが、UE10のメンバ局2Dの送信要求後、かつ、監視期間前にLV1の送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。UE11のメンバ局2Dは、送信要求のLV1のパケット送信の許容最大遅延時間に応じた選択ウインドウの時間幅を設定し、他の移動局2の使用状況から送信要求のLV1のパケット送信に使用する空きリソースが不足しているか否かを判定する。UE11のメンバ局2Dは、空きリソースが不足していない場合、送信要求のLV1のパケット送信に空きリソースを割り当てる。 Further, when the member station 2D of the UE 11 detects the transmission request of the LV1 after the transmission request of the member station 2D of the UE 10 and before the monitoring period, based on the sensing result from the time when the transmission request was detected to 1000 ms before. , The resource usage status of the other mobile station 2 is captured. The member station 2D of the UE 11 sets the time width of the selection window according to the maximum permissible delay time of the transmission of the transmission request LV1 packet, and uses the time width of the transmission request LV1 packet based on the usage status of other mobile stations 2. It is determined whether or not free resources are insufficient. If there is no shortage of free resources, the member station 2D of the UE 11 allocates free resources to packet transmission of the transmission request LV1.
 また、UE11のメンバ局2Dは、空きリソースが不足している場合、送信要求のパケット送信の優先レベル(LV1)よりも下位のLV3の予約済みのリソースをミュート対象のリソースとして選択する。UE11のメンバ局2Dは、例えば、UE1のメンバ局2Eが使用するLV3の予約済みのリソースをミュート対象のリソースとして選択する。UE11のメンバ局2Dは、選択したミュート対象のリソースを識別するリソース情報を含むミュート要求をヘッド局2Cに送信する。 In addition, when the free resources are insufficient, the member station 2D of the UE 11 selects the reserved resources of the LV3 lower than the priority level (LV1) of the packet transmission of the transmission request as the resources to be muted. The member station 2D of the UE 11 selects, for example, a reserved resource of the LV 3 used by the member station 2E of the UE 1 as a resource to be muted. The member station 2D of the UE 11 transmits a mute request including resource information for identifying the selected resource to be muted to the head station 2C.
 ヘッド局2Cは、UE10のメンバ局2Dからのミュート要求を検出した場合、ミュート要求内のリソース情報を抽出し、ミュート対象のリソースを特定する。同様に、ヘッド局2Cは、UE11のメンバ局2Dからのミュート要求を検出した場合、ミュート要求内のリソース情報を抽出する。そして、ヘッド局2Cは、UE10及びUE11のメンバ局2Dから2個のミュート対象のリソースを含むミュート標示を生成する。 When the head station 2C detects the mute request from the member station 2D of the UE 10, the head station 2C extracts the resource information in the mute request and specifies the resource to be muted. Similarly, when detecting the mute request from the member station 2D of the UE 11, the head station 2C extracts the resource information in the mute request. Then, the head station 2C generates a mute indication including two resources to be muted from the member stations 2D of the UE10 and the UE11.
 ヘッド局2Cは、2個のミュート対象のリソースを含むミュート標示を、標示チャネルを通じて他の移動局2にブロードキャスト送信する。ミュート標示を受信する移動局(メンバ局)2は、標示チャネルを通じてミュート標示を受信した場合、ミュート標示を解読してリソース情報からミュート対象のリソースを特定する。更に、移動局2は、ミュート対象のリソースが自局で予約済みのリソースであるか否かを判定する。更に、移動局2、例えば、UE1及びUE2のメンバ局2Eは、ミュート対象のリソースが自局で予約済みのリソースの場合、当該予約済みのリソースを開放する。 The head station 2C broadcasts a mute indication including two resources to be muted to other mobile stations 2 through the indication channel. When receiving the mute indication, the mobile station (member station) 2 receives the mute indication through the indication channel, decodes the mute indication, and specifies the resource to be muted from the resource information. Further, the mobile station 2 determines whether or not the resource to be muted is a resource that has been reserved by the own station. Further, the mobile station 2, for example, the member station 2E of the UE1 and the UE2 releases the reserved resource when the resource to be muted is a resource reserved by the own station.
 そして、ミュート要求を発信したUE10のメンバ局2Dは、ミュート標示に応じて開放されたUE2のミュート対象の空きリソースに送信要求のLV1のパケット送信を割当てる。その結果、UE10のメンバ局2Dは、選択ウインドウ内に空きリソースが不足している場合でも、送信要求のLV1のパケット送信を実行できる。 Then, the member station 2D of the UE 10 that has transmitted the mute request allocates the transmission request LV1 packet transmission to the muted target free resource of the released UE2 according to the mute indication. As a result, the member station 2D of the UE 10 can execute transmission of the transmission request LV1 packet even when the available resources are insufficient in the selection window.
 そして、ミュート要求を発信したUE11のメンバ局2Dは、UE1のメンバ局2Eがミュート標示に応じて開放したミュート対象の空きリソースに送信要求のLV1のパケット送信を割当てる。その結果、UE11のメンバ局2Dは、選択ウインドウ内に空きリソースが不足している場合でも、送信要求のLV1のパケット送信を実行できる。 Then, the member station 2D of the UE 11 that has transmitted the mute request allocates the packet transmission of the transmission request LV1 to the empty resource to be muted released by the member station 2E of the UE 1 according to the mute indication. As a result, the member station 2D of the UE 11 can execute the packet transmission of the transmission request LV1 even when the available resources are insufficient in the selection window.
 尚、標示チャネルの監視周期には、例えば、3個のサブチャネルのリソースを有するため、各サブチャネルのSCIにミュート標示を格納できる。しかも、ミュート標示は最大で2個のミュート対象のリソースを格納可能である。従って、標示チャネルの監視周期では、3個のサブチャネルを使用して最大6個までのミュート対象のリソースを送信することが可能になる。 In addition, since the monitoring cycle of the indication channel has, for example, three sub-channel resources, a mute indication can be stored in the SCI of each sub-channel. Moreover, the mute indication can store up to two resources to be muted. Therefore, in the monitoring cycle of the indication channel, up to six resources to be muted can be transmitted using three subchannels.
 実施例6では、1個のミュート標示に2個のミュート対象のリソースを格納可能にしたので、ミュート標示の送信効率の向上が図れる。 In the sixth embodiment, two muted resources can be stored in one mute indication, so that the transmission efficiency of the mute indication can be improved.
 尚、上記実施例では、V2V通信に使用する1スロット分のリソース内のSCIを使用してミュート標示を送信する場合を例示した。しかしながら、1スロット分のリソースに限定されるものではなく、例えば、半スロットや2スロット等のスロット分のリソースでも良く、適宜変更可能である。 In the above embodiment, the case where the mute indication is transmitted using the SCI in the resource for one slot used for V2V communication has been described as an example. However, the resource is not limited to the resource for one slot, and may be a resource for a slot such as a half slot or two slots, for example, and can be changed as appropriate.
 また、上記実施例のミュート標示は、ミュート対象のリソースを識別するリソース情報を格納する場合を例示した。しかしながら、ミュート標示は、例えば、選択ウインドウ内のミュート対象のリソースの位置及び各リソースの予約有無が識別可能になるようにビットマップ形式にした情報を格納しても良く、その実施の形態につき、実施例7として以下に説明する。 The mute indication in the above embodiment has exemplified the case where the resource information for identifying the resource to be muted is stored. However, the mute indication may store, for example, information in the form of a bitmap so that the position of the resource to be muted in the selection window and whether or not each resource is reserved can be identified. Embodiment 7 will be described below.
 図17は、実施例7のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。ミュート標示は、送信要求のパケット送信の許容最大遅延時間に応じて変動する選択ウインドウ内の各リソースの位置を区分し、ミュート対象のリソースの位置が識別可能になるようにビットマップ形式のリソース情報を格納する。例えば、許容最大遅延時間が3m秒の場合、選択ウインドウの時間幅が3m秒になる。従って、選択ウインドウは、3×3の9個のリソースに区画できる。ビットマップ形式のリソース情報は、9個のリソースに区画し、例えば、ミュート対象のリソースを“1”、ミュート対象のリソース以外のリソースを“0”で表現する。 FIG. 17 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the seventh embodiment. The mute indication divides the position of each resource in the selection window that fluctuates according to the maximum allowable delay time of packet transmission of the transmission request, and provides resource information in a bitmap format so that the position of the resource to be muted can be identified. Is stored. For example, when the allowable maximum delay time is 3 ms, the time width of the selected window is 3 ms. Therefore, the selection window can be partitioned into 3 × 3 nine resources. The resource information in the bitmap format is partitioned into nine resources, and for example, resources to be muted are represented by “1”, and resources other than resources to be muted are represented by “0”.
 UE10の移動局2Aは、高優先のパケット送信の送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。UE10の移動局2Aは、送信要求の高優先のパケット送信の許容最大遅延時間に応じた選択ウインドウを設定し、他の移動局2の使用状況から送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する。UE10の移動局2Aは、送信要求の高優先のパケット送信に使用する空きリソースが不足していない場合、送信要求の送信データに空きリソースを割り当てる。 When the mobile station 2A of the UE 10 detects the transmission request of the high-priority packet transmission, the mobile station 2A of the UE 10 captures the usage status of the resources of the other mobile stations 2 based on the sensing result up to 1000 ms before detecting the transmission request. . The mobile station 2A of the UE 10 sets a selection window according to the allowable maximum delay time of transmission of a high-priority packet of a transmission request, and uses a free space to be used for transmission of a high-priority packet of a transmission request based on the usage status of other mobile stations 2. Determine whether resources are insufficient. The mobile station 2A of the UE 10 allocates a free resource to the transmission data of the transmission request when there is no shortage of the free resource used for transmitting the transmission request of the high-priority packet.
 また、UE10の移動局2Aは、高優先のパケット送信に使用する空きリソースが不足している場合、送信要求のパケット送信の優先レベル(高優先)よりも下位の低優先の予約済みのリソースをミュート対象のリソースとして選択する。この際、UE10の移動局2Aは、例えば、UE1の移動局2Bが低優先のパケット送信に予約済みのリソースをミュート対象のリソースとして選択する。UE10の移動局2Aは、選択ウインドウ内のミュート対象のリソース位置を“1”、選択ウインドウ内のミュート対象のリソース以外の他のリソース位置を“0”とするビットマップ形式のリソース情報を生成する。そして、UE10の移動局2Aは、ビットマップ形式のリソース情報を含むミュート標示を生成する。そして、UE10の移動局2Aは、ミュート標示を、標示チャネルを通じて他の移動局2にブロードキャスト送信する。 Also, when the free resources used for high-priority packet transmission are insufficient, the mobile station 2A of the UE 10 assigns a low-priority reserved resource lower than the priority level (high-priority) of the packet transmission of the transmission request. Select as a resource to be muted. At this time, the mobile station 2A of the UE 10 selects, for example, a resource reserved by the mobile station 2B of the UE 1 for low-priority packet transmission as a resource to be muted. The mobile station 2A of the UE 10 generates bitmap format resource information in which the position of the resource to be muted in the selection window is “1”, and the position of other resources other than the resource to be muted in the selection window is “0”. . Then, the mobile station 2A of the UE 10 generates a mute indication including the resource information in the bitmap format. Then, the mobile station 2A of the UE 10 broadcasts the mute indication to the other mobile stations 2 through the indication channel.
 また、各移動局2Bは、標示チャネルの監視周期を監視し、監視周期に応じてミュート標示を受信したか否かを判定する。移動局2Bは、ミュート標示を受信した場合、ミュート標示を解読してミュート標示内のリソース情報のリソース位置を特定する。移動局2Bは、特定されたリソース位置が自局で予約済みのリソース位置と同一であるか否かを判定する。UE1の移動局2Bは、ビットマップ形式のリソース情報を参照し、特定されたリソース位置が自局で予約済みのリソース位置と同一の場合、ミュート対象のリソースが自局の予約済みのリソースであると判断し、当該予約済みのリソースを開放する。 {Circle around (2)} Each mobile station 2B monitors the monitoring cycle of the indication channel, and determines whether or not the mute indication has been received according to the monitoring cycle. When receiving the mute indication, the mobile station 2B decodes the mute indication and specifies the resource position of the resource information in the mute indication. The mobile station 2B determines whether the specified resource location is the same as the resource location reserved by the mobile station 2B. The mobile station 2B of the UE 1 refers to the resource information in the bitmap format, and when the specified resource position is the same as the resource position reserved by the own station, the resource to be muted is the reserved resource of the own station. And release the reserved resource.
 そして、ミュート標示を送信したUE10の移動局2Aは、UE1の移動局2Bがミュート標示に応じて開放したミュート対象の空きリソースに送信要求の高優先のパケット送信を割当てる。その結果、UE10の移動局2Aは、空きリソースが不足している場合でも、送信要求の高優先のパケット送信を実行できる。 Then, the mobile station 2A of the UE 10 that has transmitted the mute indication allocates the high-priority packet transmission of the transmission request to the empty resource to be muted released by the mobile station 2B of the UE 1 according to the mute indication. As a result, the mobile station 2A of the UE 10 can execute high-priority packet transmission of the transmission request even when the available resources are insufficient.
 尚、ビットマップ形式のリソース情報は、パケット送信の許容最大遅延時間に応じて選択ウインドウ内の時間幅が変動するため、その時間幅に応じてビットマップ形式のリソース位置の区画も変動することは言うまでもない。 Since the time width of the resource information in the bitmap format in the selection window varies according to the maximum permissible delay time of packet transmission, the division of the resource position in the bitmap format may also vary according to the time width. Needless to say.
 実施例7では、選択ウインドウ内のリソース位置及び各リソースの予約有無をビットマップ形式で識別可能にする識別情報をミュート標示で送信した。その結果、ミュート標示を受信した各移動局2は、ビットマップ形式のリソース情報を参照してミュート対象のリソースが簡単に識別できる。 In the seventh embodiment, the identification information that enables the resource position in the selection window and the reservation status of each resource to be identified in the bitmap format is transmitted by the mute indication. As a result, each mobile station 2 receiving the mute indication can easily identify the resource to be muted by referring to the resource information in the bitmap format.
 上記実施例では、V2V通信の無線通信システム1Bを例示したが、例えば、V2P通信やV2I通信等のV2X通信にも適用可能である。 In the above-described embodiment, the wireless communication system 1B of the V2V communication is illustrated, but the present invention is also applicable to, for example, V2X communication such as V2P communication and V2I communication.
 実施例1のリソース情報には、ミュート対象のリソース位置を識別する識別情報を含める場合を例示した。しかしながら、当該リソースを使用する移動局2を識別する移動局識別情報や当該リソースに使用するパケット送信の優先レベルを含めるようにしても良く、適宜変更可能である。 The example in which the resource information of the first embodiment includes identification information for identifying the position of the resource to be muted. However, the mobile station identification information for identifying the mobile station 2 using the resource and the priority level of packet transmission used for the resource may be included, and can be changed as appropriate.
 上記実施例2のメンバ局2Dは、高優先パケットの送信要求を検出した場合、送信要求を検出した時点から1000m秒までのセンシング結果から高優先パケットの優先レベルが下位のミュート対象のリソースを選択する。そして、メンバ局2Dは、選択したミュート対象のリソースをミュート要求としてヘッド局2Cに送信する場合を例示したが、これに限定されるものではない。例えば、メンバ局2Dは、高優先パケットの送信要求を検出した場合、ミュート対象のリソースを選択することなく、ミュート要求をヘッド局2Cに送信する。そして、ヘッド局2Cは、ミュート要求に応じてミュート対象のリソースを選択し、ミュート対象のリソースのリソース情報を含むミュート標示を他の移動局にブロードキャスト送信しても良く、適宜変更可能である。この場合、ヘッド局2Cは、ミュート標示を送信する際にミュート対象のリソースを、ミュート要求を発信したメンバ局2Dに通知しておくものとする。 When detecting the transmission request of the high-priority packet, the member station 2D of the second embodiment selects the resource to be muted with the lower priority level of the high-priority packet from the sensing result up to 1000 msec from the detection of the transmission request. I do. Then, the case where the member station 2D transmits the selected resource to be muted to the head station 2C as a mute request has been exemplified, but the present invention is not limited to this. For example, when detecting the transmission request of the high-priority packet, the member station 2D transmits the mute request to the head station 2C without selecting the resource to be muted. Then, the head station 2C may select the resource to be muted in response to the mute request, and may broadcast the mute indication including the resource information of the resource to be muted to other mobile stations, and may change it appropriately. In this case, when transmitting the mute indication, the head station 2C notifies the member station 2D that transmitted the mute request of the resource to be muted.
 また、上記実施例5及び6においてミュート対象のリソースが複数ある場合として、ヘッド局2Cが複数のメンバ局2Dからミュート要求を受信した場合を例示した。しかしながら、これに限定されるものではなく、あるメンバ局2Dが複数の送信要求を検出した場合にも適用可能である。 In the fifth and sixth embodiments, the case where the head station 2C receives a mute request from the plurality of member stations 2D is exemplified as the case where there are a plurality of resources to be muted. However, the present invention is not limited to this, and is also applicable when a certain member station 2D detects a plurality of transmission requests.
 図18は、実施例8のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。尚、UE10の移動局2Aが、所定の位置のリソースでV2V通信を予約済み(リソースを確保している)とする。 FIG. 18 is an explanatory diagram showing an example of a mute sign transmission method and a mute operation according to the eighth embodiment. It is assumed that the mobile station 2A of the UE 10 has reserved V2V communication with a resource at a predetermined position (resource has been reserved).
 UE10の移動局2Aは、送信要求の高優先パケットのサイズより自局で予約済みのリソースが小さいと判断された場合、予約済みのリソースの制御情報(SCI)領域にミュート標示の情報を付加する。要するに、送信するデータに対するSCIの一部には、ミュート標示を実行するか否かを判定する情報又は、ミュート標示を行うミュート対象のリソースに関する情報を示すミュート標示の情報が含まれている。その後、他の移動局2は、当該SCIの情報を検出してSCIの情報を解読し、SCI内のミュート標示の情報を解読する。更に、移動局2は、ミュート標示の情報を解読することで、ミュート対象のリソースを開放する情報があるか否かを判定する。他の移動局2は、自局で予約済みのリソースがミュート対象のリソースであるか否かを判定する。移動局2は、自局で予約済みのリソースがミュート対象のリソースの場合、ミュート対象のリソースを開放する。 When the mobile station 2A of the UE 10 determines that the resource reserved by the mobile station 2A is smaller than the size of the high-priority packet of the transmission request, it adds the information of the mute indication to the control information (SCI) area of the reserved resource. . In short, a part of the SCI for the data to be transmitted includes information for determining whether or not to execute the mute indication, or information on a mute indication indicating information on a muted target resource for which the mute indication is performed. After that, the other mobile station 2 detects the information of the SCI, decodes the information of the SCI, and decodes the information of the mute indication in the SCI. Further, the mobile station 2 decodes the information of the mute indication to determine whether or not there is information for releasing the resource to be muted. The other mobile station 2 determines whether the resource reserved by the own station is a resource to be muted. If the resource reserved by the mobile station 2 is a resource to be muted, the mobile station 2 releases the resource to be muted.
 例えば、UE10の移動局2Aは、自局で予約済みのリソースのサイズよりも大の高優先パケットの送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。移動局2Aは、送信要求の許容最大遅延時間に応じた選択ウインドウを設定し、他の移動局2の使用状況から送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する。UE10の移動局2Aは、送信要求の高優先のパケット送信に使用する空きリソースが不足している場合、低優先の予約済みのリソースをミュート対象のリソースとして選択する。そして、移動局2Aは、選択したミュート対象のリソースを識別するリソース情報を含むミュート標示の情報を予約済みのリソース内のSCI領域に追加する。 For example, when the mobile station 2A of the UE 10 detects a transmission request of a high-priority packet larger than the size of the resource reserved by the own station, the mobile station 2A based on the sensing result from the time when the transmission request was detected to 1000 ms before, The usage status of resources of another mobile station 2 is captured. The mobile station 2A sets a selection window according to the maximum permissible delay time of the transmission request, and determines whether or not there is insufficient free resources to be used for high-priority packet transmission of the transmission request based on the usage status of the other mobile stations 2. Is determined. The mobile station 2A of the UE 10 selects a reserved resource with a low priority as a resource to be muted when there is a shortage of free resources to be used for transmitting a high-priority packet for a transmission request. Then, the mobile station 2A adds the information of the mute indication including the resource information for identifying the selected resource to be muted to the SCI area in the reserved resource.
 移動局2は、各リソース内のSCIの情報を解読し、SCI内のミュート標示の情報を解読する。更に、移動局2は、ミュート標示の情報を解読することで、ミュート対象のリソースを開放する情報があるか否かを判定する。他の移動局2の内、UE2の移動局2Bは、自局で予約済みのリソースがミュート対象のリソースであるか否かを判定する。UE2の移動局2Bは、図18に示すように、自局で予約済みのリソースがミュート対象のリソースの場合、ミュート対象のリソースを開放する。 (4) The mobile station 2 decodes the information of the SCI in each resource, and decodes the information of the mute indication in the SCI. Further, the mobile station 2 decodes the information of the mute indication to determine whether or not there is information for releasing the resource to be muted. Among the other mobile stations 2, the mobile station 2B of the UE 2 determines whether or not the resource reserved by the own station is a resource to be muted. As illustrated in FIG. 18, the mobile station 2 </ b> B of the UE 2 releases the resource to be muted when the resource reserved in the own station is the resource to be muted.
 そして、UE10の移動局2Aは、予約済みのリソースと、ミュート標示に応じてUE2の移動局2Bが開放したミュート対象の空きリソースとに送信要求の高優先のパケット送信を割当てる。その結果、UE10の移動局2Aは、予約済みのリソースの他に、開放された空きリソースに高優先のパケット送信を割り当てる。 Then, the mobile station 2A of the UE 10 allocates the high-priority packet transmission of the transmission request to the reserved resources and the free resources to be muted released by the mobile station 2B of the UE 2 according to the mute indication. As a result, the mobile station 2A of the UE 10 allocates the high-priority packet transmission to the released free resources in addition to the reserved resources.
 実施例8の移動局2Aは、送信要求の高優先のパケット送信に使用するリソースが自局で予約済みのリソースでは足りず、かつ、選択ウインドウ内に空きリソースが不足している場合、自局の予約済みのリソース内のSCI領域にミュート標示の情報を付加する。各移動局2は、V2V通信の周波数帯域のSCIを解読し、ミュート対象のリソースが自局で予約済みのリソースの場合、ミュート対象のリソースを開放する。その結果、移動局2Aは、高優先のパケット送信に使用するリソースが自局で予約済みのリソースでは足りず、かつ、選択ウインドウ内に空きリソースが不足している場合でも、高優先のパケット送信を実現できる。 The mobile station 2A according to the eighth embodiment, when the resources used for transmitting a high-priority packet for a transmission request are not enough resources reserved by the own station and the available resources are insufficient in the selection window. The information of the mute indication is added to the SCI area in the reserved resource of. Each mobile station 2 decodes the SCI of the frequency band of the V2V communication, and releases the resource to be muted when the resource to be muted is a resource reserved in the own station. As a result, the mobile station 2A transmits the high-priority packet even if the resources used for transmitting the high-priority packet are not enough resources reserved by the own station and the available resources are insufficient in the selection window. Can be realized.
 更に、実施例8の移動局2は、自局で予約済みのリソースがある場合、ミュート標示に使用する専用のリソースを確保することなく、自局で予約済みのリソース内のSCI領域にミュート標示の情報を付加する。その結果、専用のリソースがなくても、自局で使用中のリソースのSCIを使用してミュート標示を各移動局2に送信できるため、V2V通信の無線効率の向上が図れる。 Further, when there is a resource reserved by the own station, the mobile station 2 of the eighth embodiment does not reserve a dedicated resource to be used for the mute indication, and displays the mute indication in the SCI area within the resource reserved by the own station. Is added. As a result, even if there is no dedicated resource, the mute indication can be transmitted to each mobile station 2 using the SCI of the resource used by the own station, so that the radio efficiency of V2V communication can be improved.
 図19は、ミュート標示に関する情報を含むSCIフォーマットの一例を示す説明図である。図19に示すSCIフォーマットは、例えば、初期送信(initial transmission)と再送信(retransmission)との間の時間差(Time Gap:時間間隔)と、再送信インデックスと、初期送信と再送信との周波数リソース位置と、リソース予約とを有する。SCIフォーマットは、例えば、ミュート標示情報ビットと、MCSと、グループ宛先IDと、優先情報ビットと、再送信インデックスとを有する。初期送信と再送信との間の時間差には4ビット、再送信インデックスには1ビット、初期送信と再送信との周波数リソース位置には8ビット、リソース予約には4ビットで構成する。MCSには5ビット、グループ宛先IDには8ビット、優先情報ビットには3ビット、再送信インデックスには1ビット、ミュート標示情報ビットには9ビットで構成する。 FIG. 19 is an explanatory diagram showing an example of an SCI format including information on a mute sign. The SCI format shown in FIG. 19 includes, for example, a time difference (Time @ Gap: time interval) between an initial transmission (initial @ transmission) and a retransmission (retransmission), a retransmission index, and frequency resources of the initial transmission and the retransmission. It has a location and a resource reservation. The SCI format has, for example, a mute indication information bit, an MCS, a group destination ID, a priority information bit, and a retransmission index. The time difference between the initial transmission and the retransmission is 4 bits, the retransmission index is 1 bit, the frequency resource position between the initial transmission and the retransmission is 8 bits, and the resource reservation is 4 bits. The MCS has 5 bits, the group destination ID has 8 bits, the priority information bit has 3 bits, the retransmission index has 1 bit, and the mute indication information bit has 9 bits.
 ミュート標示情報ビットは、ミュート対象のリソースの位置を識別するリソース情報を配置する。ミュート標示情報ビットは、図17に示すように、例えば選択ウインドウ内のリソース配置構成が3×3に区画される場合、「9」ビットのビットマップ形式でミュート対象のリソース位置を表現した。例えば、選択ウインドウ内のリソース配置構成が2×2に区画される場合、「4」ビットのビットマップ形式でミュート対象のリソース位置を表現する。また、選択ウインドウ内のリソース配置構成が4×4に区画される場合、「16」ビットのビットマップ形式でミュート対象のリソース位置を表現する。従って、選択ウインドウ内のリソース配置構成に応じてミュート標示情報ビットのビット数を適宜変更する。 The mute indication information bit arranges resource information for identifying the position of the resource to be muted. As shown in FIG. 17, for example, when the resource arrangement in the selection window is partitioned into 3 × 3, the mute indication information bits represent the resource position to be muted in a bitmap format of “9” bits. For example, when the resource arrangement configuration in the selection window is partitioned into 2 × 2, the position of the resource to be muted is expressed in a bitmap format of “4” bits. Further, when the resource arrangement configuration in the selection window is partitioned into 4 × 4, the position of the resource to be muted is expressed in a “16” bit bitmap format. Therefore, the number of mute indication information bits is appropriately changed according to the resource arrangement configuration in the selection window.
 更に、移動局2は、自局で予約済みのリソースがある場合、ミュート標示に使用する専用のリソースを確保することなく、自局で予約済みのリソース内のSCIにミュート標示の情報を付加する。その結果、専用のリソースがなくても、自局で使用中のリソースのSCIを使用してビットマップ形式のミュート標示を各移動局2に送信できるため、V2V通信の無線効率の向上が図れる。 Further, when there is a resource reserved in the mobile station 2, the mobile station 2 adds the information of the mute indication to the SCI in the resource reserved in the mobile station without securing a dedicated resource used for the mute indication. . As a result, even if there is no dedicated resource, the mute indication in the bitmap format can be transmitted to each mobile station 2 using the SCI of the resource used by the own station, so that the radio efficiency of V2V communication can be improved.
 図20は、実施例9のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。実施例8のサブチャネルは、当該サブチャネルのSCI領域と当該サブチャネルのデータ領域とが同一の時間領域にあるのに対し、実施例9のサブチャネルは、当該サブチャネルのSCI領域と当該サブチャネルのデータ領域とが異なる時間領域にある。図20に示すようにUE10の移動局2Aのサブチャネルのデータ領域とUE10の移動局2AのサブチャネルのSCI領域との時間領域が異なる。尚、UE10の移動局2Aが、所定の位置のリソースでV2V通信を予約済み(リソースを確保している)とする。 FIG. 20 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the ninth embodiment. In the subchannel of the eighth embodiment, the SCI area of the subchannel and the data area of the subchannel are in the same time area, whereas the subchannel of the ninth embodiment is different from the SCI area of the subchannel and the subchannel. The data area of the channel is in a different time domain. As shown in FIG. 20, the time domain of the sub-channel data area of the mobile station 2A of the UE 10 and the SCI domain of the sub-channel of the mobile station 2A of the UE 10 are different. It is assumed that the mobile station 2A of the UE 10 has reserved V2V communication with a resource at a predetermined position (resource has been reserved).
 UE10の移動局2Aは、送信要求の高優先パケットのサイズより自局で予約済みのリソースが小さいと判断された場合、予約済みのリソースのSCI領域にミュート標示の情報を付加する。尚、予約済みのリソースに相当するサブチャネルのSCI領域とサブチャネルのデータ領域とは異なる時間領域にある。 When the mobile station 2A of the UE 10 determines that the reserved resource is smaller than the size of the high-priority packet of the transmission request, the mobile station 2A adds the information of the mute indication to the SCI area of the reserved resource. The SCI area of the sub-channel corresponding to the reserved resource and the data area of the sub-channel are in different time areas.
 他の移動局2は、当該SCIの情報を検出してSCIの情報を解読し、SCI内のミュート標示の情報を解読する。更に、移動局2は、ミュート標示の情報を解読することで、ミュート対象のリソースを開放する情報があるか否かを判定する。他の移動局2は、自局で予約済みのリソースがミュート対象のリソースであるか否かを判定する。移動局2は、自局で予約済みのリソースがミュート対象のリソースの場合、ミュート対象のリソースを開放する。 The other mobile station 2 detects the information of the SCI and decodes the information of the SCI, and decodes the information of the mute sign in the SCI. Further, the mobile station 2 decodes the information of the mute indication to determine whether or not there is information for releasing the resource to be muted. The other mobile station 2 determines whether the resource reserved by the own station is a resource to be muted. If the resource reserved by the mobile station 2 is a resource to be muted, the mobile station 2 releases the resource to be muted.
 例えば、UE10の移動局2Aは、自局で予約済みのリソースのサイズよりも大の高優先パケットの送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。移動局2Aは、送信要求の許容最大遅延時間に応じた選択ウインドウを設定し、他の移動局2の使用状況から送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する。UE10の移動局2Aは、送信要求の高優先のパケット送信に使用する空きリソースが不足している場合、低優先の予約済みのリソースをミュート対象のリソースとして選択する。そして、移動局2Aは、選択したミュート対象のリソースを識別するリソース情報を含むミュート標示の情報を予約済みのリソースのデータ領域と異なる時間領域のSCI領域に追加する。 For example, when the mobile station 2A of the UE 10 detects a transmission request of a high-priority packet larger than the size of the resource reserved by the own station, the mobile station 2A based on the sensing result from the time when the transmission request was detected to 1000 ms before, The usage status of resources of another mobile station 2 is captured. The mobile station 2A sets a selection window according to the maximum permissible delay time of the transmission request, and determines whether or not there is a shortage of available resources to be used for transmitting a high-priority packet of the transmission request based on the usage status of the other mobile stations 2. Is determined. The mobile station 2A of the UE 10 selects a reserved resource with a low priority as a resource to be muted when there is a shortage of free resources to be used for transmitting a high-priority packet for a transmission request. Then, the mobile station 2A adds the information of the mute indication including the resource information for identifying the selected resource to be muted to the SCI area in the time area different from the data area of the reserved resource.
 移動局2は、各リソース内のSCIの情報を解読し、SCI内のミュート標示の情報を解読する。更に、移動局2は、ミュート標示の情報を解読することで、ミュート対象のリソースを開放する情報があるか否かを判定する。他の移動局2の内、UE2の移動局2Bは、自局で予約済みのリソースがミュート対象のリソースであるか否かを判定する。UE2の移動局2Bは、図20に示すように、自局で予約済みのリソースがミュート対象のリソースの場合、ミュート対象のリソースを開放する。 (4) The mobile station 2 decodes the information of the SCI in each resource, and decodes the information of the mute indication in the SCI. Further, the mobile station 2 decodes the information of the mute indication to determine whether or not there is information for releasing the resource to be muted. Among the other mobile stations 2, the mobile station 2B of the UE 2 determines whether or not the resource reserved by the own station is a resource to be muted. As shown in FIG. 20, when the resource reserved in the own station is the resource to be muted, the mobile station 2B of the UE 2 releases the resource to be muted.
 そして、UE10の移動局2Aは、予約済みのリソースと、ミュート標示に応じてUE2の移動局2Bが開放したミュート対象の空きリソースとに送信要求の高優先のパケット送信を割当てる。その結果、UE10の移動局2Aは、予約済みのリソースの他に、開放された空きリソースに高優先のパケット送信を割り当てる。 Then, the mobile station 2A of the UE 10 allocates the high-priority packet transmission of the transmission request to the reserved resources and the free resources to be muted released by the mobile station 2B of the UE 2 according to the mute indication. As a result, the mobile station 2A of the UE 10 allocates the high-priority packet transmission to the released free resources in addition to the reserved resources.
 実施例9の移動局2Aは、送信要求の高優先のパケット送信に使用するリソースが自局で予約済みのリソースでは足りず、かつ、選択ウインドウ内に空きリソースが不足している場合、自局で予約済みのリソース内のSCI領域にミュート標示の情報を付加する。各移動局2は、V2V通信の周波数帯域のSCIを解読し、ミュート対象のリソースが自局で予約済みのリソースの場合、ミュート対象のリソースを開放する。その結果、移動局2Aは、高優先のパケット送信に使用するリソースが自局で予約済みのリソースでは足りず、かつ、選択ウインドウ内に空きリソースが不足している場合でも、高優先のパケット送信を実現できる。 The mobile station 2A according to the ninth embodiment, when the resources used for transmitting a high-priority packet for a transmission request are not enough resources reserved by the own station and the available resources are insufficient in the selection window, Adds the information of the mute indication to the SCI area in the reserved resource. Each mobile station 2 decodes the SCI of the frequency band of the V2V communication, and releases the resource to be muted when the resource to be muted is a resource reserved in the own station. As a result, the mobile station 2A can transmit the high-priority packet even if the resources used for transmitting the high-priority packet are not enough resources reserved by the own station and the available resources are insufficient in the selection window. Can be realized.
 更に、実施例9の移動局2は、自局で予約済みのリソースがある場合、ミュート標示に使用する専用のリソースを確保することなく、自局で予約済みのリソース内のデータ領域と時間領域が異なるSCI領域にミュート標示の情報を付加する。その結果、専用のリソースがなくても、自局で使用中のリソースのSCIを使用してミュート標示を各移動局2に送信できるため、V2V通信の無線効率の向上が図れる。 Further, when there is a resource reserved by the own station, the mobile station 2 according to the ninth embodiment does not secure a dedicated resource used for the mute indication, and the data area and the time area within the resource reserved by the own station. Add mute sign information to different SCI areas. As a result, even if there is no dedicated resource, the mute indication can be transmitted to each mobile station 2 using the SCI of the resource used by the own station, so that the radio efficiency of V2V communication can be improved.
 尚、UE10の移動局2が予約済みのリソースの時間領域又は周波数-時間領域を基準にミュート対象のリソースを指定しても良いし、ミュート標示の情報を付与した時間領域を基準にミュート対象のリソースを指定しても良く、適宜変更可能である。 Note that the mobile station 2 of the UE 10 may specify the resource to be muted based on the time domain or the frequency-time domain of the reserved resource, or may specify the resource to be muted based on the time domain to which the information of the mute indication is added. The resource may be specified and can be changed as appropriate.
 図21は、実施例10のミュート標示の伝送方法及びミュート動作の一例を示す説明図である。実施例8のV2V通信のリソースは、UE10の移動局2が予めリソースを確保し、同一時間領域のSCI領域にミュート標示を付加している。これに対し、実施例10のV2V通信のリソースは、UE10の移動局2が予めリソースを確保しているのではなく、SCI領域にミュート標示の情報を付加している。 FIG. 21 is an explanatory diagram illustrating an example of a mute sign transmission method and a mute operation according to the tenth embodiment. The mobile station 2 of the UE 10 secures resources for V2V communication resources according to the eighth embodiment in advance, and adds a mute indication to the SCI area in the same time area. On the other hand, for the resources of the V2V communication of the tenth embodiment, the information of the mute indication is added to the SCI area instead of the mobile station 2 of the UE 10 securing the resources in advance.
 図21に示す同一時間領域の3個のサブチャネルのリソースは、例えば、3個のデータ領域を纏めた周波数帯域のリソースと、例えば、3個のSCI領域を纏めた周波数帯域のリソースとを有する。 The resources of the three sub-channels in the same time domain illustrated in FIG. 21 include, for example, a resource of a frequency band in which three data regions are combined and a resource of a frequency band in which, for example, three SCI regions are combined. .
 例えば、UE10の移動局2Aは、高優先パケットの送信要求を検出した場合、送信要求を検出した時点から1000m秒前までのセンシング結果に基づき、他の移動局2のリソースの使用状況を捕捉する。移動局2Aは、送信要求の許容最大遅延時間に応じた選択ウインドウを設定し、他の移動局2の使用状況から送信要求の高優先のパケット送信に使用する空きリソースが不足しているか否かを判定する。UE10の移動局2Aは、送信要求の高優先のパケット送信に使用する空きリソースが不足している場合、低優先の予約済みのリソースをミュート対象のリソースとして選択する。尚、図21に示す例では、送信要求の高優先パケットに使用するリソースとして2個のリソースを選択する。そして、UE10の移動局2Aは、選択したミュート対象のリソースを識別するリソース情報を含むミュート標示の情報をSCI領域に付加する。 For example, when detecting the transmission request of the high-priority packet, the mobile station 2A of the UE 10 captures the usage status of the resources of the other mobile stations 2 based on the sensing result from the time when the transmission request was detected to 1000 ms before. . The mobile station 2A sets a selection window according to the maximum permissible delay time of the transmission request, and determines whether or not there is insufficient free resources to be used for high-priority packet transmission of the transmission request based on the usage status of the other mobile stations 2. Is determined. The mobile station 2A of the UE 10 selects a reserved resource with a low priority as a resource to be muted when there is a shortage of free resources to be used for transmitting a high-priority packet for a transmission request. In the example shown in FIG. 21, two resources are selected as resources to be used for a high-priority packet of a transmission request. Then, the mobile station 2A of the UE 10 adds the information of the mute indication including the resource information for identifying the selected resource to be muted to the SCI area.
 移動局2は、各リソース内のSCIの情報を解読し、SCI内のミュート標示の情報を解読する。更に、移動局2は、ミュート標示の情報を解読することで、ミュート対象のリソースを開放する情報があるか否かを判定する。他の移動局2の内、UE1及びUE2の移動局2Bは、自局で予約済みのリソースがミュート対象のリソースであるか否かを判定する。UE1の移動局2Bは、図20に示すように、自局で予約済みのリソースがミュート対象のリソースの場合、ミュート対象のリソースを開放する。同様に、UE2の移動局2Bは、図20に示すように、自局で予約済みのリソースがミュート対象のリソースの場合、ミュート対象のリソースを開放する。 (4) The mobile station 2 decodes the information of the SCI in each resource, and decodes the information of the mute indication in the SCI. Further, the mobile station 2 decodes the information of the mute indication to determine whether or not there is information for releasing the resource to be muted. Among the other mobile stations 2, the mobile stations 2B of the UE1 and the UE2 determine whether or not the resource reserved by the own station is a resource to be muted. As shown in FIG. 20, when the resource reserved in the own station is a resource to be muted, the mobile station 2B of the UE 1 releases the resource to be muted. Similarly, the mobile station 2B of the UE2 releases the resource to be muted when the resource reserved in the own station is the resource to be muted as shown in FIG.
 そして、UE10の移動局2Aは、ミュート標示に応じてUE1及びUE2の移動局2Bが開放したミュート対象の空きリソースに送信要求の高優先のパケット送信を割当てる。その結果、UE10の移動局2Aは、開放された空きリソースに高優先のパケット送信を割り当てる。 Then, the mobile station 2A of the UE 10 allocates the high-priority packet transmission of the transmission request to the free resources to be muted released by the mobile stations 2B of the UE1 and the UE2 according to the mute indication. As a result, the mobile station 2A of the UE 10 allocates high-priority packet transmission to the released free resources.
 実施例10の移動局2Aは、送信要求の高優先のパケット送信に使用する空きリソースが不足している場合、SCIにミュート標示の情報を付加する。各移動局2は、V2V通信の周波数帯域のSCIを解読し、ミュート対象のリソースが自局で予約済みのリソースの場合、ミュート対象の予約済みのリソースを開放する。その結果、移動局2Aは、高優先のパケット送信に使用する空きリソースが不足している場合でも、高優先のパケット送信を実現できる。 The mobile station 2A according to the tenth embodiment adds the information of the mute indication to the SCI when the available resources used for transmitting the transmission request high-priority packet are insufficient. Each mobile station 2 decodes the SCI of the frequency band of the V2V communication, and releases the reserved resource to be muted when the resource to be muted is a resource reserved by the own station. As a result, the mobile station 2A can realize high-priority packet transmission even when there are insufficient free resources used for high-priority packet transmission.
 更に、実施例10の移動局2は、ミュート標示に使用する専用のリソースを確保することなく、SCI領域にミュート標示の情報を付加する。その結果、専用のリソースがなくても、SCIを使用してミュート標示を各移動局2に送信できるため、V2V通信の無線効率の向上が図れる。 Further, the mobile station 2 according to the tenth embodiment adds the information of the mute indication to the SCI area without securing the dedicated resource used for the mute indication. As a result, the mute indication can be transmitted to each mobile station 2 using the SCI even without a dedicated resource, so that the radio efficiency of V2V communication can be improved.
 尚、実施例10のV2通信のリソースは、同一時間領域におけるSCI領域を纏めた周波数帯域とデータ領域を纏めた周波数帯域とを有するリソース構成を例示したが、これに限定されるものではない。例えば、図18に示すリソース構成や図20に示すリソース構成でも良く、移動局2Aは、リソース内の一つのSCI領域にミュート標示を付加しても良く、適宜変更可能である。 Although the resources of the V2 communication according to the tenth embodiment have exemplified the resource configuration having the frequency band in which the SCI area is combined and the frequency band in which the data area is combined in the same time domain, the present invention is not limited to this. For example, the resource configuration shown in FIG. 18 or the resource configuration shown in FIG. 20 may be used, and the mobile station 2A may add a mute indication to one SCI area in the resource, and can change it as appropriate.
 尚、図21に示すSCI領域内のミュート標示は、リソースの初期位置を指定し、初期位置から連続する周波数領域又は時間領域を示すことでミュート対象のリソースを指定する。また、ミュート標示の情報で複数のミュート対象のリソースを示しても良く、この場合、例えば、9ビットの内、“1”を示す値のミュート対象のリソースを開放することで、簡単に複数のミュート対象のリソースを開放できる。 Note that the mute indication in the SCI area shown in FIG. 21 specifies the initial position of the resource, and specifies the resource to be muted by indicating a frequency domain or a time domain that is continuous from the initial position. Further, a plurality of resources to be muted may be indicated by the information of the mute indication. In this case, for example, a plurality of resources to be muted having a value indicating “1” out of 9 bits is easily released. The resources to be muted can be released.
 以上のように、実施例8乃至10は、SCIを用いて、ミュート標示の指示を行うことができる。そのため、送信要求のパケットサイズを確保しているリソースよりも大きい場合にも対応できる。尚、実施例8~10と実施例1~7を組み合わせても使用することができる。例えば、実施例1で説明したミュート標示で最初のミュート対象のリソースを各移動局2に指示する。更に、実施例8乃至10で説明したSCIを用いて、最初のミュート対象のリソース位置を基準に必要なリソース分をミュート対象のリソースとして各移動局2に送信しても良く、適宜変更可能である。 As described above, in the eighth to tenth embodiments, the mute sign can be instructed by using the SCI. Therefore, it is possible to cope with the case where the packet size of the transmission request is larger than the resource for which the size is secured. It should be noted that Examples 8 to 10 and Examples 1 to 7 can be used in combination. For example, the first mute target resource is indicated to each mobile station 2 by the mute indication described in the first embodiment. Further, using the SCI described in the eighth to tenth embodiments, a necessary resource may be transmitted to each mobile station 2 as a resource to be muted based on the first resource position to be muted, and may be appropriately changed. is there.
 1B 無線通信システム
 2,2A,2B 移動局
 2C ヘッド局
 2D メンバ局
 2E メンバ局
 41 判定部
 42 生成部
 43 送信部
 44 割当部
 45 開放部
1B Wireless communication system 2, 2A, 2B Mobile station 2C Head station 2D Member station 2E Member station 41 Judgment unit 42 Generation unit 43 Transmission unit 44 Assignment unit 45 Opening unit

Claims (12)

  1.  他の端末装置と直接通信する高優先のデータの送信要求を検出した場合に、データ送信に割当可能な複数のリソースの中で当該送信要求のデータ送信に割り当てるリソースが不足しているか否かを判定する判定部と、
     前記送信要求のデータ送信に割り当てるリソースが不足している場合に、前記送信要求のデータ送信の優先レベルよりも下位のデータ送信に使用する前記他の端末装置が予約済みのリソースを選択し、選択した予約済みのリソースの開放を要求するコマンドを生成する生成部と、
     前記生成部で生成した前記コマンドを前記各他の端末装置に送信する送信部と、
     前記コマンドに応じて前記他の端末装置が開放したリソースを前記送信要求のデータ送信に割り当てる割当部と
     を有することを特徴とする端末装置。
    When detecting a high-priority data transmission request for directly communicating with another terminal device, it is determined whether there is insufficient resource to be allocated to data transmission of the transmission request among a plurality of resources that can be allocated to data transmission. A determining unit for determining,
    When there are insufficient resources to be allocated to the data transmission of the transmission request, the other terminal device used for data transmission lower than the priority level of the data transmission of the transmission request selects a reserved resource, and selects A generation unit that generates a command requesting release of the reserved resource that has been
    A transmission unit that transmits the command generated by the generation unit to each of the other terminal devices,
    A allocating unit that allocates resources released by the other terminal device in response to the command to data transmission of the transmission request.
  2.  前記他の端末装置から受信した前記コマンドが開放を要求するリソースが自装置で予約済みのリソースである場合に当該予約済みのリソースを開放する開放部を有することを特徴とする請求項1に記載の端末装置。 The apparatus according to claim 1, further comprising: an opening unit that releases the reserved resource when the resource requested to be released by the command received from the other terminal device is a resource reserved by the own device. Terminal device.
  3.  前記送信部は、
     前記複数のリソース内の所定周期のリソースを使用して前記コマンドを前記各他の端末装置に送信することを特徴とする請求項1に記載の端末装置。
    The transmission unit,
    The terminal device according to claim 1, wherein the command is transmitted to each of the other terminal devices using a resource of a predetermined cycle in the plurality of resources.
  4.  前記コマンドは、前記リソースのサブチャネル内の制御情報に配置し、データ送信に使用する制御情報と識別可能になるように当該コマンドを識別する識別情報を有することを特徴とする請求項3に記載の端末装置。 4. The command according to claim 3, wherein the command is arranged in control information in a sub-channel of the resource, and has identification information for identifying the command so that the command can be identified from control information used for data transmission. Terminal device.
  5.  前記複数のリソースは、データを格納するデータ領域と、制御情報を格納する制御情報領域とを有し、
     前記送信部は、
     前記制御情報領域を使用して前記コマンドを前記各他の端末装置に送信することを特徴とする請求項1に記載の端末装置。
    The plurality of resources has a data area for storing data, and a control information area for storing control information,
    The transmission unit,
    The terminal device according to claim 1, wherein the command is transmitted to each of the other terminal devices using the control information area.
  6.  前記送信部は、
     前記複数のリソースと異なる周波数帯域の所定周期のリソースを使用して前記コマンドを前記各他の端末装置に送信することを特徴とする請求項1に記載の端末装置。
    The transmission unit,
    The terminal device according to claim 1, wherein the command is transmitted to each of the other terminal devices by using resources of a predetermined cycle in a frequency band different from the plurality of resources.
  7.  前記コマンドは、
     開放を要求するリソースを識別するリソース情報を含むことを特徴とする請求項1に記載の端末装置。
    The command is
    The terminal device according to claim 1, further comprising resource information for identifying a resource for which release is requested.
  8.  前記コマンドは、
     前記データ送信に使用する選択ウインドウ内の各リソースの位置及び各リソースの開放対象の有無をビットマップ形式で識別可能にしたリソース情報を含むことを特徴とする請求項1に記載の端末装置。
    The command is
    The terminal device according to claim 1, wherein the terminal device includes resource information in which a position of each resource in a selection window used for the data transmission and whether or not each resource is to be released can be identified in a bitmap format.
  9.  前記コマンドは、
     前記データ送信に使用する選択ウインドウ内の複数のリソースを区画し、区画したリソース毎に開放対象の有無をビット形式で識別可能にしたビットマップ形式のリソース情報を含むことを特徴とする請求項1に記載の端末装置。
    The command is
    2. A method according to claim 1, wherein a plurality of resources in the selection window used for the data transmission are partitioned, and resource information in a bitmap format in which the presence or absence of a release target can be identified in a bit format for each partitioned resource is included. A terminal device according to item 1.
  10.  他の端末装置と直接通信するデータの送信要求を検出した場合に、データ送信に割当可能な複数のリソースの中で当該送信要求のデータ送信に割り当てる割当部と、
     前記他の端末装置から自装置が予約済みのリソースの開放を要求するコマンドを受信し、当該コマンドが開放を要求する前記リソースが自装置で予約済みのリソースである場合に、当該予約済みのリソースを開放する開放部と
     を有することを特徴とする端末装置。
    When detecting a transmission request for data that directly communicates with another terminal device, an allocating unit that allocates data transmission of the transmission request among a plurality of resources that can be allocated for data transmission,
    If the own device receives a command requesting release of a reserved resource from the other terminal device, and the command requesting release is a resource reserved by the own device, the reserved resource A terminal device, comprising: an opening unit that opens the terminal.
  11.  第1の端末装置と、前記第1の端末装置と直接通信する第2の端末装置とを有する無線通信システムであって、
     前記第1の端末装置は、
     高優先のデータの送信要求を検出した場合に、データ送信に割当可能な複数のリソースの中で当該送信要求のデータ送信に割り当てるリソースが不足しているか否かを判定する判定部と、
     前記送信要求のデータ送信に割り当てるリソースが不足している場合に、前記送信要求のデータ送信の優先レベルよりも下位のデータ送信に使用する他の端末装置が予約済みのリソースを選択し、選択した予約済みのリソースの開放を要求するコマンドを生成する生成部と、
     前記生成部で生成した前記コマンドを前記各他の端末装置に送信する送信部と
    を有し、
     前記第2の端末装置は、
     前記第1の端末装置から受信した当該コマンドが開放を要求するリソースが自装置で予約済みのリソースである場合に前記予約済みのリソースを開放する開放部を有し、
     前記第1の端末装置は、
     前記コマンド送信後、前記第2の端末装置が開放したリソースを前記送信要求のデータ送信に割り当てる割当部
    を有することを特徴とする無線通信システム。
    A wireless communication system having a first terminal device and a second terminal device that directly communicates with the first terminal device,
    The first terminal device includes:
    When detecting a transmission request of high-priority data, a determination unit that determines whether there are insufficient resources to be allocated to data transmission of the transmission request among a plurality of resources that can be allocated to data transmission,
    When there are insufficient resources to be allocated to the data transmission of the transmission request, another terminal device used for data transmission lower than the priority level of the data transmission of the transmission request selects a reserved resource and selects A generation unit that generates a command requesting release of reserved resources;
    A transmitting unit that transmits the command generated by the generating unit to each of the other terminal devices,
    The second terminal device includes:
    An opening unit that releases the reserved resource when the resource requested to be released by the command received from the first terminal device is a resource reserved by the own device,
    The first terminal device includes:
    A wireless communication system, comprising: an assignment unit that assigns resources released by the second terminal device to data transmission of the transmission request after transmitting the command.
  12.  第1の端末装置と、前記第1の端末装置と直接通信する第2の端末装置と、前記第1の端末装置及び前記第2の端末装置と直接通信する第3の端末装置とを有する無線通信システムであって、
     前記第1の端末装置は、
     高優先のデータの送信要求を検出した場合に、データ送信に割当可能な複数のリソースの中で当該送信要求のデータ送信に割り当てるリソースが不足しているか否かを判定する判定部と、
     前記送信要求のデータ送信に割り当てるリソースが不足している場合に、前記送信要求のデータ送信の優先レベルよりも下位のデータ送信に使用する他の端末装置が予約済みのリソースを選択し、選択した予約済みのリソースの開放を要求する要求を生成し、生成した前記要求を前記第2の端末装置に送信する送信部と
    を有し、
     前記第2の端末装置は、
     前記第1の端末装置から前記要求を受信した場合に、前記要求に関わるリソースの開放を要求するコマンドを生成する生成部と、
     前記生成部で生成した前記コマンドを各他の端末装置に送信する送信部と
     を有し、
     前記第3の端末装置は、
     前記第2の端末装置から受信した前記コマンドが開放を要求するリソースが自装置で予約済みのリソースである場合に前記予約済みのリソースを開放する開放部を有し、
     前記第1の端末装置は、
     前記コマンド送信後、前記第3の端末装置が開放したリソースを前記送信要求のデータ送信に割り当てる割当部
    を有することを特徴とする無線通信システム。
    A wireless terminal comprising: a first terminal device; a second terminal device that directly communicates with the first terminal device; and a third terminal device that directly communicates with the first terminal device and the second terminal device. A communication system,
    The first terminal device includes:
    When detecting a transmission request of high-priority data, a determination unit that determines whether there are insufficient resources to be allocated to data transmission of the transmission request among a plurality of resources that can be allocated to data transmission,
    When there are insufficient resources to be allocated to the data transmission of the transmission request, another terminal device used for data transmission lower than the priority level of the data transmission of the transmission request selects a reserved resource and selects A transmission unit that generates a request for requesting release of reserved resources, and transmits the generated request to the second terminal device;
    The second terminal device includes:
    A generating unit that, when receiving the request from the first terminal device, generates a command requesting release of resources related to the request;
    A transmission unit that transmits the command generated by the generation unit to each of the other terminal devices,
    The third terminal device includes:
    The resource received by the command from the second terminal device has a release unit that releases the reserved resource when the resource requesting release is a resource reserved by the own device,
    The first terminal device includes:
    A wireless communication system, comprising: an allocating unit that allocates resources released by the third terminal device to data transmission of the transmission request after transmitting the command.
PCT/JP2018/029998 2018-08-09 2018-08-09 Terminal device and radio communication system WO2020031355A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020535451A JPWO2020031355A1 (en) 2018-08-09 2018-08-09 Terminal equipment and wireless communication system
PCT/JP2018/029998 WO2020031355A1 (en) 2018-08-09 2018-08-09 Terminal device and radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029998 WO2020031355A1 (en) 2018-08-09 2018-08-09 Terminal device and radio communication system

Publications (1)

Publication Number Publication Date
WO2020031355A1 true WO2020031355A1 (en) 2020-02-13

Family

ID=69413553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029998 WO2020031355A1 (en) 2018-08-09 2018-08-09 Terminal device and radio communication system

Country Status (2)

Country Link
JP (1) JPWO2020031355A1 (en)
WO (1) WO2020031355A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181708A1 (en) * 2020-03-13 2021-09-16 株式会社Nttドコモ Terminal and communication method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016538795A (en) * 2013-09-24 2016-12-08 クゥアルコム・インコーポレイテッドQualcomm Incorporated Control signaling to enable 2-hop orthogonalization for device-to-device broadcasts
JP2017515400A (en) * 2014-04-29 2017-06-08 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Method and apparatus for resource reuse
WO2018084094A1 (en) * 2016-11-02 2018-05-11 株式会社Nttドコモ User device and signal transmission method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170214542A1 (en) * 2014-07-08 2017-07-27 Philips Lighting Holding B.V. A method for commissioning a network node

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016538795A (en) * 2013-09-24 2016-12-08 クゥアルコム・インコーポレイテッドQualcomm Incorporated Control signaling to enable 2-hop orthogonalization for device-to-device broadcasts
JP2017515400A (en) * 2014-04-29 2017-06-08 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Method and apparatus for resource reuse
WO2018084094A1 (en) * 2016-11-02 2018-05-11 株式会社Nttドコモ User device and signal transmission method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAITO KENTARO: "The time slot assignment method considering the interference among the communication flows for TDMA-based bandwidth reservation in wireless meh networks", IEICE TECHNICAL REPORT, vol. 106, no. 358, 1 November 2006 (2006-11-01), pages 91 - 96 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181708A1 (en) * 2020-03-13 2021-09-16 株式会社Nttドコモ Terminal and communication method

Also Published As

Publication number Publication date
JPWO2020031355A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
EP3354097B1 (en) Scheduling and transmitting control information and data for direct communication
TWI687107B (en) Resource selection method and device
US10638284B2 (en) User apparatus, base station and notification method
CN110521264B (en) Method for performing V2X communication performed by V2X terminal in wireless communication system and terminal using the same
KR102524777B1 (en) Improved radio resource selection and detection for V2X transmission
JP6663076B2 (en) Information transmission method and user device
EP3836441A1 (en) Method, apparatus, and system for transmitting feedback information between internet of vehicles devices
US20190313405A1 (en) Data transmission method and device
CN110267311B (en) Communication method, network side equipment and terminal
KR102186377B1 (en) Indexing of subframe resources in D2D
KR102542905B1 (en) Network infrastructure-side network unit operation method, network infrastructure-side network unit, road-side network unit operation method, and road-side network unit
CN109155986B (en) Communication method and terminal
WO2022077384A1 (en) Resource selection method and apparatus
US20220360403A1 (en) Channel state information acquisition
CN111149400B (en) Method for directly connecting link data transmission, terminal equipment and network equipment
WO2020031355A1 (en) Terminal device and radio communication system
CN107432025B (en) Node and execution method thereof, relay node and execution method thereof
WO2020144813A1 (en) Communication device and wireless communication system
WO2020105191A1 (en) Communication device and wireless communication system
CN109845313B (en) Device-to-device data transmission method, device and system
WO2017135883A1 (en) Methods and apparatus for device-to-device communication in a wireless network
US20210368480A1 (en) Communication system and terminal device
WO2023115469A1 (en) Sidelink communication on unlicensed carriers
WO2022029943A1 (en) Terminal device, radio communication system and radio communication method
WO2021161473A1 (en) Wireless communication device, wireless communication system and wireless resource selection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535451

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929612

Country of ref document: EP

Kind code of ref document: A1