WO2022029943A1 - Terminal device, radio communication system and radio communication method - Google Patents

Terminal device, radio communication system and radio communication method Download PDF

Info

Publication number
WO2022029943A1
WO2022029943A1 PCT/JP2020/030095 JP2020030095W WO2022029943A1 WO 2022029943 A1 WO2022029943 A1 WO 2022029943A1 JP 2020030095 W JP2020030095 W JP 2020030095W WO 2022029943 A1 WO2022029943 A1 WO 2022029943A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
terminal device
data
transmission
radio resource
Prior art date
Application number
PCT/JP2020/030095
Other languages
French (fr)
Japanese (ja)
Inventor
ジヤンミン ウ-
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2020/030095 priority Critical patent/WO2022029943A1/en
Publication of WO2022029943A1 publication Critical patent/WO2022029943A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • the present invention relates to a terminal device, a wireless communication system, and a wireless communication method.
  • the traffic of mobile terminals occupies most of the network resources.
  • the traffic used by mobile terminals tends to continue to grow.
  • 5G is often classified into eMBB (Enhanced Mobile Broad Band), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication). It is supposed to support the use case of.
  • eMBB Enhanced Mobile Broad Band
  • Massive MTC Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communication
  • NR-V2X New Radio Vehicle to Everything
  • V2V Vehicle to Vehicle
  • V2P Vehicle to Pedestrian
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to Network
  • a control channel (PSCCH: Physical Sidelink Control CHannel) and a data channel (PSSCH: Physical Sidelink Shared CHannle) are TDM (Time Division Multiplexing) or FDM (Frequency Division Multiplexing).
  • SCI Servicelink Control Information
  • PSFCH Physical Sidelink Feedback CHannel
  • the NR-V2X has a mode 1 in which the base station device determines the radio resource used for data transmission of the terminal device, and a mode 2 in which the terminal device autonomously determines the radio resource. Therefore, in the case of repeated transmission, if the transmission mode of each transmission is not carefully determined, the utilization efficiency of radio resources may decrease, and the required high reliability and low delay may not be achieved.
  • the disclosed technology has been made in view of the above points, and is a terminal device, a wireless communication system, and a wireless communication method capable of improving the utilization efficiency of wireless resources and realizing high reliability and low delay of communication.
  • the purpose is to provide.
  • the terminal device disclosed in the present application has, in one embodiment, a wireless communication unit for transmitting and receiving signals, and a processor connected to the wireless communication unit, wherein the processor is a QoS (QoS) required for data to be transmitted.
  • QoS QoS
  • Quality of Service information is acquired, and based on the acquired QoS information, multiple transmission modes corresponding to QoS are assigned to the logical channel, and multiple radios within the allowable delay until the data is transmitted.
  • a resource is selected, and a process of repeatedly transmitting the data from the wireless communication unit using the selected plurality of wireless resources is executed.
  • the wireless communication system and the wireless communication method disclosed in the present application it is possible to improve the utilization efficiency of wireless resources and realize high reliability and low delay of communication.
  • FIG. 1 is a diagram showing a configuration of a wireless communication system according to an embodiment.
  • FIG. 2 is a block diagram showing a configuration of a terminal device according to an embodiment.
  • FIG. 3 is a diagram showing a specific example of mode 1 (dynamic grant).
  • FIG. 4 is a diagram showing a specific example of mode 1 (setting grant).
  • FIG. 5 is a diagram showing a specific example of the mode 2.
  • FIG. 6 is a block diagram showing a configuration of a base station device according to an embodiment.
  • FIG. 7 is a flow chart showing a wireless communication method according to an embodiment.
  • FIG. 8 is a diagram showing a specific example of radio resource allocation.
  • FIG. 1 is a diagram showing a configuration of a wireless communication system according to an embodiment. As shown in FIG. 1, for example, a plurality of terminal devices 100 mounted on an automobile are located in a cell capable of communicating with the base station device 200.
  • the terminal device 100 executes wireless communication with another terminal device 100. Specifically, the terminal device 100 performs a unicast to transmit data to any one terminal device 100, or a group cast to transmit data to a plurality of terminal devices 100 belonging to the same group. At this time, the terminal device 100 repeatedly transmits the same data a plurality of times. That is, the terminal device 100 determines a transmission mode and radio resource to be used for a plurality of transmissions, and repeatedly transmits data using the determined transmission mode and radio resource. The terminal device 100 determines the transmission mode and the radio resource according to the QoS (Quality of Service) required for the data.
  • QoS Quality of Service
  • the base station device 200 When the base station device 200 receives a scheduling request (SR: Scheduling Request) requesting the allocation of radio resources from the terminal device 100, the base station device 200 executes scheduling for determining the allocation of radio resources. Then, the base station device 200 transmits the information of the allocated radio resource to the terminal device 100 that is the transmission source of the SR. Further, the base station device 200 allocates periodic radio resources to each terminal device 100 regardless of the presence or absence of SR, and the information of the radio resources assigned to each terminal device 100 is transmitted to each terminal device 100 in advance. Send.
  • SR Scheduling Request
  • the transmission mode in which the base station device 200 allocates radio resources and the terminal device 100 transmits data using the allocated radio resources is sometimes called "mode 1".
  • the information of the radio resource allocated by the base station device 200 according to the SR from the terminal device 100 is referred to as "Dynamic Grant", and the base station device is irrespective of the presence or absence of the SR.
  • Information on periodic radio resources allocated by 200 may be referred to as "Configured Grant”.
  • the base station apparatus 200 includes the information of the radio resource allocated from the resource pool for mode 1 in the dynamic grant or the setting grant and transmits the information.
  • FIG. 2 is a block diagram showing the configuration of the terminal device 100 according to the embodiment.
  • the terminal device 100 shown in FIG. 2 has a wireless communication unit 110, a processor 120, and a memory 130.
  • the wireless communication unit 110 executes wireless communication with the other terminal device 100 and the base station device 200. That is, the wireless communication unit 110 performs a predetermined wireless transmission process on the transmission signal output from the processor 120, and transmits the transmission signal to the other terminal device 100 or the base station device 200 via the antenna. Further, the wireless communication unit 110 receives a signal from another terminal device 100 or a base station device 200 via an antenna, performs a predetermined wireless reception process on the received signal, and outputs the received signal to the processor 120.
  • the processor 120 includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), etc., and controls the entire terminal device 100 in an integrated manner.
  • the processor 120 includes a control information generation unit 121, a transmission data generation unit 122, a QoS information acquisition unit 123, a transmission mode determination unit 124, a transmission control unit 125, a reception control unit 126, a sensing unit 127, and a resource selection unit.
  • Has 128 has 128.
  • the control information generation unit 121 generates control information regarding the data included in the aperiodic packet when an aperiodic packet different from the periodically transmitted packet is generated in the upper layer. Specifically, the control information generation unit 121 generates SCI (Sidelink Control Information) including information for specifying a radio resource used for data transmission, for example.
  • SCI Servicelink Control Information
  • the aperiodic packet is a packet addressed to another terminal device 100.
  • the transmission data generation unit 122 generates transmission data to be transmitted to the terminal device 100 of the destination of the aperiodic packet when the aperiodic packet is generated in the upper layer. That is, the transmission data generation unit 122 generates transmission data from the data included in the aperiodic packet.
  • the QoS information acquisition unit 123 acquires the QoS information (hereinafter referred to as "QoS information") required for the data included in the aperiodic packet when the aperiodic packet occurs in the upper layer.
  • QoS information QoS information
  • the QoS information acquisition unit 123 has a delay allowed from the generation of an aperiodic packet to the transmission of transmission data (hereinafter referred to as “allowable delay"), and the reliability required for transmission data. And obtain QoS information indicating the priority of transmission data.
  • the reliability required for the transmission data includes, for example, required parameters such as PRR (Packet Reception Ratio) and PPPR (ProSe Per Packet Reliability). Further, as the priority of the transmission data, there is a parameter such as PPPP (Prose Per Packet Priority), for example.
  • the transmission mode determination unit 124 maps a logical channel (LCH: Logical CHannel) based on the QoS information acquired by the QoS information acquisition unit 123. For example, the transmission mode determination unit 124 allocates a logical channel that uses only mode 1 for data that requires highly reliable QoS, and mode 2 for data that requires low latency QoS. Allocate a logical channel that uses only. Further, the transmission mode determination unit 124 allocates a logical channel using both modes 1 and 2 for data for which high reliability and low latency QoS are required at the same time, for example.
  • the relationship between the logical channel and the transmission mode is preset, for example, by an RRC message. In this way, the transmission mode determination unit 124 determines the transmission mode of the control information and the transmission data addressed to the other terminal device 100 based on the QoS information.
  • the transmission mode determination unit 124 uses only the mode 1, the mode 1 in which the base station apparatus 200 uses a dynamic grant to allocate radio resources according to the SR, or the base station apparatus 200 is in advance. It is decided to use the mode 1 using the setting grant to allocate the periodic radio resource, and the radio resource of the mode 1 when the transmission data is repeatedly transmitted is determined. Further, the transmission mode determination unit 124 determines that the terminal device 100 autonomously selects the radio resource in the mode 2 when only the mode 2 is used, and the transmission mode determination unit 124 repeatedly transmits the transmission data. Determine wireless resources. Further, when both modes 1 and 2 are used, the transmission mode determination unit 124 repeatedly transmits transmission data by combining mode 1 using a dynamic grant, mode 1 using a setting grant, and mode 2. Determine the transmission mode and radio resources for the case. In this embodiment, a case where both modes 1 and 2 are mainly used will be described.
  • the transmission mode does not necessarily have to be associated with the logical channel, and is the identification information (for example, UE-ID) of the terminal device 100, the service ID of the IP (Internet Protocol) packet, the PQI (PC5 QoS ID) of the QoS flow, and the transmission mode. It may be associated with the identification information (for example, SLRB-ID) of the sidelink radio bearer (SLRB: Sidelink Radio Bearer). Further, the transmission mode may be associated with the LCH-ID of the logical channel used in the MAC (Media Access Control) layer. In general, by associating the transmission mode with the LCH-ID of the logical channel, control by the scheduler of the MAC layer becomes easy, and mapping between the transmission mode and the radio resource becomes easy. Therefore, in the present embodiment. Describes as assuming that the transmission mode is associated with the LCH-ID of the logical channel.
  • 3 to 5 are diagrams showing a method of determining the radio resources of the mode 1 using the dynamic grant, the mode 1 using the setting grant, and the mode 2, respectively.
  • the terminal device 100 is permitted to transmit the scheduling request (SR) within the allowable delay T d when the aperiodic packet occurs at the time T 0 .
  • SR is transmitted to the base station apparatus 200 at the timing set.
  • the base station apparatus 200 executes scheduling and determines the radio resource 310 to be allocated to the terminal apparatus 100 from the resource pool for mode 1.
  • the base station apparatus 200 transmits the information of the radio resource 310 assigned to the terminal apparatus 100 by, for example, PDCCH (Physical Downlink Control CHannel).
  • PDCCH Physical Downlink Control CHannel
  • the terminal device 100 identifies the radio resource 310 by receiving the information transmitted from the base station device 200, and uses the transmission channel 311 included in the radio resource 310 to control information and transmit to another terminal device 100. Send the data.
  • the transmission channel 311 includes, for example, PSCCH (Physical Sidelink Control CHannel) and PSCH (Physical Sidelink Shared CHannel).
  • the terminal device 100 monitors the feedback channel 312 included in the radio resource 310, and determines whether or not the transmission data transmitted using the transmission channel 311 needs to be retransmitted. That is, for example, when the NACK transmitted from the terminal device 100 of the destination of the transmission data is received on the feedback channel 312, the terminal device 100 determines that the transmission data needs to be retransmitted.
  • the terminal device 100 transmits the control information and the transmission data to the other terminal device 100 by using the radio resource 310 allocated according to the SR by the base station device 200. .. Therefore, the radio resource 310 is not used for transmission by the other terminal device 100, and a collision of radio resources does not occur.
  • the radio resource is allocated by the base station apparatus 200 according to the SR, the delay until the radio resource is allocated and the terminal apparatus 100 transmits the transmission data tends to be large.
  • periodic radio resources are previously generated from the resource pool for the mode 1 by, for example, an RRC (Radio Resource Control) message from the base station apparatus 200. It is assigned to the terminal device 100.
  • RRC Radio Resource Control
  • the terminal device 100 identifies the allocated radio resource 320 within the allowable delay Td , and uses the transmission channel 321 included in the radio resource 320 to use another terminal device 100.
  • the control information and transmission data addressed to the destination are transmitted.
  • the transmission channel 321 includes, for example, PSCCH and PSSCH.
  • the terminal device 100 monitors the feedback channel 322 included in the radio resource 320, and determines whether or not the transmission data transmitted using the transmission channel 321 needs to be retransmitted. That is, for example, when the NACK transmitted from the terminal device 100 of the destination of the transmission data is received on the feedback channel 322, the terminal device 100 determines that the transmission data needs to be retransmitted.
  • the terminal device 100 transmits the control information and the transmission data to the other terminal device 100 by using the radio resource 320 pre-allocated by the base station device 200. Therefore, it is unlikely that the radio resource 320 will be used for transmission by another terminal device 100, and collision of radio resources is unlikely to occur. On the other hand, depending on the timing of the radio resource allocated in advance, the delay until the terminal device 100 transmits the transmission data may increase.
  • the terminal device 100 senses the usage status of the resource pool for the mode 2 in a predetermined sensing window. That is, the terminal device 100 monitors the control information transmitted / received in the sensing window in the frequency band for mode 2, and investigates the usage status of the radio resource by the other terminal device 100.
  • the resource pool for mode 2 is a radio resource having a frequency band different from that of the resource pool for mode 1.
  • the terminal device 100 sets a selection window in the allowable delay T d , and predicts that it will not be used by another terminal device 100 in the selection window from the sensing result in the sensing window. Select the radio resources 330 and 340 to be used.
  • the terminal device 100 transmits control information and transmission data addressed to the other terminal device 100 by using the transmission channels 331 and 341 included in the radio resources 330 and 340.
  • Transmission channels 331, 341 include, for example, PSCCH and PSSCH.
  • the terminal device 100 monitors the feedback channels 332 and 342 included in the radio resources 330 and 340, and determines whether or not the transmission data transmitted using the transmission channels 331 and 341 needs to be retransmitted. That is, for example, when the NACK transmitted from the terminal device 100 of the destination of the transmission data is received on the feedback channels 332 and 342, the terminal device 100 determines that the transmission data needs to be retransmitted.
  • the terminal device 100 transmits the control information and the transmission data to the other terminal device 100 by using the radio resources 330 and 340 that are autonomously selected from the sensing result. Therefore, the radio resource 330 immediately after the generation of the aperiodic packet can be selected and the transmission data can be transmitted, and the delay can be reduced. On the other hand, the radio resource 330 may be used for transmission by another terminal device 100, and a collision of radio resources may occur.
  • the transmission mode determination unit 124 transmits using any of the modes 1, the mode 1 using the dynamic grant, the mode 1 using the setting grant, and the mode 2 based on the allowable delay included in the QoS information. Decide if you want to send the data repeatedly. In other words, the transmission mode determination unit 124 determines a plurality of radio resources for repeatedly transmitting the same control information and transmission data.
  • the transmission mode determination unit 124 sets the radio resource that can be used by the terminal device 100 included in the allowable delay of each mode as a radio resource candidate for transmission, and satisfies the required reliability indicated by the QoS information.
  • the minimum possible radio resource may be selected from the radio resource candidates.
  • the transmission mode determination unit 124 assigns a reliability index corresponding to each mode to the radio resource candidate of each mode, adds the reliability index in order from the radio resource candidate having the highest reliability index, and performs reliability.
  • a radio resource candidate whose sum of exponents is equal to or greater than a predetermined threshold value corresponding to the required reliability is selected as the radio resource used for transmission.
  • a mode 1 radio resource that uses a dynamic grant is given a confidence index ⁇ 1, n
  • a mode 1 type 1 radio resource that uses a set grant is given a confidence index ⁇ 2, n
  • a reliability index ⁇ 3, n is given to the mode 1 type 2 radio resource using the setting grant
  • a reliability index ⁇ 4, n is given to the mode 2 radio resource.
  • type 1 and type 2 of mode 1 using the setting grant differ in whether or not the base station apparatus 200 transmits the setting grant using only the RRC message.
  • n of each reliability index ⁇ 1, n , ⁇ 2, n , ⁇ 3, n , ⁇ 4, n is an index of the slot of the radio resource.
  • These reliability indexes ⁇ 1, n , ⁇ 2, n , ⁇ 3, n , ⁇ 4, n are estimated SINR (Signal to Interference and Noise Ratio) and mode 2 within the communication range. It is set from the channel busy ratio (CBR: Channel Busy Ratio) in. Normally, the higher the reliability mode, the higher the reliability index is given. For example, the reliability index ⁇ 1, n is the highest, the reliability indexes ⁇ 2, n , ⁇ 3, n are the next highest, and the reliability index ⁇ . 4, n may be the lowest.
  • the confidence indices ⁇ 1, n , ⁇ 2, n , ⁇ 3, n , ⁇ 4, n may be fixed values, may be changed semi-statically, or may be dynamic. May be changed.
  • the transmission mode determination unit 124 has reliability indexes ⁇ 1, n , ⁇ 2, n , ⁇ 3, n , ⁇ according to the mode as radio resource candidates that can be used by the terminal device 100 included in the allowable delay of each mode.
  • the radio resource candidates are arranged in descending order of reliability index.
  • the transmission mode determination unit 124 arranges the radio resource candidates with earlier timing (that is, n is smaller) first. Then, the transmission mode determination unit 124 adds the reliability indexes of the arranged radio resource candidates in order from the beginning, and adds when the sum of the reliability indexes reaches a predetermined threshold value corresponding to the required reliability. Select the mode and radio resource corresponding to the confidence index. As a result, the transmission mode determination unit 124 determines the transmission mode and the radio resource used for transmitting the control information and the transmission data.
  • the transmission control unit 125 controls repeated transmission of control information and transmission data using the transmission mode and radio resources determined by the transmission mode determination unit 124. Specifically, when the transmission control unit 125 transmits in mode 1 using the dynamic grant, the transmission control unit 125 transmits SR to the base station apparatus 200 to request the allocation of radio resources, and the allocated radio. Control information and transmission data are transmitted using resources. Further, when transmitting in mode 1 using the setting grant, the transmission control unit 125 transmits control information and transmission data using periodic radio resources allocated in advance from the base station apparatus 200. Further, when transmitting in mode 2, the transmission control unit 125 transmits control information and transmission data using the radio resource selected by the resource selection unit 128.
  • the transmission control unit 125 has the radio resources allocated to the terminal device 100 according to the SR, the periodic radio resources previously allocated to the terminal device 100, and the terminal device according to the determination by the transmission mode determination unit 124. Using the radio resource autonomously selected by 100, the control information and the transmission data are repeatedly transmitted. At this time, the transmission control unit 125 maps the transmission data held in the logical channel associated with the transmission mode and the control information generated in the physical layer to the radio resource. That is, the transmission control unit 125 together with the control information is the data held in any of the logical channel associated only with the mode 1, the logical channel associated only with the mode 2, and the logical channel associated with both the modes 1 and 2. , Map to the radio resource determined by the transmission mode determination unit 124.
  • the transmission control unit 125 maps the transmission data held in the logical channel mainly associated with both modes 1 and 2 to the physical channel.
  • the transmission control unit 125 transmits the transmission data held in the logical channel by a physical channel such as PSCCH and PSCH. That is, the transmission control unit 125 transmits control information through a control channel such as PSCCH, and transmits transmission data via a data channel such as PSSCH.
  • the reception control unit 126 acquires a received signal from the wireless communication unit 110 and executes reception processing for the received signal. Specifically, the reception control unit 126 executes demodulation and decoding of the control channel to acquire control information, and demodulates and decodes the data channel based on the control information.
  • the sensing unit 127 senses the usage status of the radio resource in the resource pool for mode 2 by the other terminal device 100. Specifically, the sensing unit 127 monitors the control information transmitted / received in the frequency band for mode 2 in a predetermined sensing window, and investigates the usage status of the radio resource by the other terminal device 100.
  • the resource selection unit 128 selects the radio resource to be used for transmission in mode 2 based on the result of sensing by the sensing unit 127. Specifically, the resource selection unit 128 sets a selection window within the allowable delay when an aperiodic packet occurs, and selects a radio resource predicted from the sensing result that it will not be used by another terminal device 100 in the selection window. do. The resource selection unit 128 notifies the transmission mode determination unit 124 of the selected radio resource as a radio resource candidate used for transmission in mode 2.
  • the memory 130 includes, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory), and stores information used for processing by the processor 120.
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • FIG. 6 is a block diagram showing the configuration of the base station apparatus 200 according to the embodiment.
  • the base station device 200 shown in FIG. 6 has a wireless communication unit 210, a processor 220, and a memory 230.
  • the wireless communication unit 210 executes wireless communication with the terminal device 100 located in the cell. That is, the wireless communication unit 210 performs a predetermined wireless transmission process on the transmission signal output from the processor 220, and transmits the transmission signal to the terminal device 100 via the antenna. Further, the wireless communication unit 210 receives a signal from the terminal device 100 via the antenna, performs a predetermined wireless reception process on the received signal, and outputs the received signal to the processor 220.
  • the processor 220 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire base station apparatus 200 in an integrated manner. Specifically, the processor 220 has a reception control unit 221, a scheduling unit 222, and a transmission control unit 223.
  • the reception control unit 221 acquires a received signal from the wireless communication unit 210 and executes reception processing for the received signal. Specifically, the reception control unit 221 acquires an SR requesting allocation of radio resources from the reception signal received from the terminal device 100.
  • the scheduling unit 222 executes scheduling for allocating wireless resources to wireless communication between the terminal devices 100. That is, when the SR is received from the terminal device 100, the scheduling unit 222 determines the radio resource to be allocated to the terminal device 100 from the resource pool for mode 1. Then, the scheduling unit 222 notifies the transmission control unit 223 of the determined radio resource.
  • This radio resource is a radio resource used for transmission in mode 1 using a dynamic grant.
  • the scheduling unit 222 executes scheduling for allocating periodic radio resources in advance to each of the terminal devices 100 located in the cell from the resource pool for mode 1. Then, the scheduling unit 222 notifies the transmission control unit 223 of the radio resources allocated to each terminal device 100.
  • This radio resource is a radio resource used for transmission in mode 1 using the setting grant.
  • the transmission control unit 223 controls the transmission of information for notifying the terminal device 100 of the scheduling result by the scheduling unit 222. Specifically, when SR is received from the terminal device 100, the transmission control unit 223 uses a control channel such as PDCCH to obtain information on radio resources used for transmission in mode 1 using a dynamic grant. It is transmitted to the terminal device 100. Further, the transmission control unit 223 transmits information on the radio resource used for transmission in mode 1 using the setting grant to the terminal device 100 as, for example, an RRC message. Further, the transmission control unit 223 activates or deactivates the radio resource used for transmission in mode 1 using the setting grant by using a control channel such as PDCCH.
  • a control channel such as PDCCH
  • the memory 230 includes, for example, a RAM or a ROM, and stores information used for processing by the processor 220.
  • a wireless communication method at the time of transmission by the terminal device 100 configured as described above will be described with reference to the flow chart shown in FIG. 7.
  • the following describes a wireless communication method in which an aperiodic packet different from a packet transmitted periodically is transmitted from a terminal device 100 located in a cell of a base station device 200 to another terminal device 100. explain.
  • control information generation unit 121 When an aperiodic packet is generated, the control information generation unit 121 generates control information regarding the data included in the aperiodic packet (step S101). That is, an SCI containing, for example, information that identifies a radio resource used to transmit data is generated. Further, the transmission data generation unit 122 generates transmission data from the data included in the aperiodic packet (step S102). The generated control information and transmission data are output to the transmission control unit 125.
  • the QoS information acquisition unit 123 acquires the QoS information required for the data included in the aperiodic packet (step S103). Specifically, it is used with QoS information indicating the allowable delay from the generation of aperiodic packets to the transmission of transmission data, the reliability required for transmission data, the priority of transmission data, and the like. Information on the transmission mode to be used is acquired. The acquired QoS information and the transmission mode information are notified to the transmission mode determination unit 124.
  • the transmission mode determination unit 124 transmits the control information and the transmission data by the radio resources of each of the mode 1 using the dynamic grant, the mode 1 using the setting grant, and the mode 2 within the allowable delay. It is specified as a radio resource candidate of (step S104). That is, a radio resource that may be allocated to the terminal device 100 by transmitting SR to the base station device 200 is specified as a mode 1 radio resource candidate using a dynamic grant. Further, among the periodic radio resources previously allocated to the terminal device 100 by the base station device 200, the radio resource within the allowable delay is specified as a mode 1 radio resource candidate using the setting grant. Further, the radio resource selected by the resource selection unit 128 is specified as a mode 2 radio resource candidate. These radio resource candidates are radio resources in the resource pool corresponding to the corresponding logical channel, mode 1 radio resources, mode 2 radio resources, or modes 1 and 2 radio resources.
  • the transmission mode determination unit 124 assigns a reliability index to each radio resource candidate (step S105). That is, each radio resource candidate is given a reliability index according to the mode. For example, a mode 1 radio resource candidate that uses a dynamic grant is given a confidence index ⁇ 1, n , and a mode 1 type 1 radio resource that uses a set grant is given a confidence index ⁇ 2, n . , The mode 1 type 2 radio resource using the setting grant is given a reliability index ⁇ 3, n , and the mode 2 radio resource is given a reliability index ⁇ 4, n .
  • the transmission mode determination unit 124 arranges the radio resource candidates in descending order of the reliability index.
  • radio resources with earlier timing that is, n of reliability indexes ⁇ 1, n , ⁇ 2, n , ⁇ 3, n , ⁇ 4, n is small
  • the reliability indexes of the arranged radio resource candidates are added from the beginning, and when the sum of the reliability indexes becomes equal to or greater than the threshold value corresponding to the reliability included in the QoS information, the added reliability index corresponds to the added reliability index.
  • the mode and radio resources will be used for transmission of control information and transmission data (step S106). That is, it is determined that a plurality of radio resources whose total reliability index is equal to or higher than a predetermined threshold are selected from the radio resource candidates in each mode, and control information and transmission data are repeatedly transmitted using the selected radio resources. Will be done.
  • the information of the radio resource determined by the transmission mode determination unit 124 is notified to the transmission control unit 125, and the transmission control unit 125 allocates the radio resource to the control information and the transmission data (step S107). That is, when the mode 1 radio resource using the dynamic grant is used for transmission, the SR is transmitted to the base station device 200 by the transmission control unit 125, and the radio resource notified from the base station device 200 by, for example, PDCCH. Is assigned to control information and transmission data. Further, when the mode 1 radio resource using the setting grant is used for transmission, the periodic radio resource allocated in advance is allocated to the control information and the transmission data. Further, when the radio resource of the mode 2 is used for transmission, the radio resource selected by the resource selection unit 128 is assigned to the control information and the transmission data.
  • control information and transmission data output from the transmission control unit 125 are transmitted from the wireless communication unit 110 via the antenna (step S108).
  • the control information is transmitted by the control channel (for example, PSCCH) included in the allocated radio resource
  • the transmission data is transmitted by the data channel (for example, PSCH) included in the allocated radio resource.
  • the control information and the transmission data are repeatedly transmitted using the radio resource whose sum of the reliability indexes is equal to or more than a predetermined threshold value, and can satisfy the QoS required for the aperiodic packet. In other words, it is possible to improve the utilization efficiency of wireless resources and realize high reliability and low delay of communication.
  • FIG. 8 is a diagram showing a specific example of a radio resource used for transmitting control information and transmission data.
  • a radio resource candidate within the allowable delay T d is specified.
  • the mode 1 radio resource 310 using the dynamic grant, the mode 1 radio resource 320 using the setting grant, and the mode 2 radio resource 330, 340 are specified as radio resource candidates.
  • the mode 1 radio resource using the dynamic grant is allocated by the base station apparatus 200 according to the SR, so that the delay tends to be large.
  • the radio resource in the mode 2 is autonomously selected by the terminal device 100 from the selection window, the delay can be small.
  • the index n 1 of the slot included in the radio resource 330 which is the radio resource candidate of mode 2 is the smallest, and the slot of the radio resource 310 which is the radio resource candidate of mode 1 using the dynamic grant is used.
  • Index n 4 is the largest.
  • the next smallest delay after the radio resource 330 is the radio resource 320 in mode 1 using the setting grant indicated by the slot index n 2 , and the next smallest delay is the slot index n 3 .
  • the mode 2 radio resource shown is 340.
  • the reliability index is assigned to these radio resource candidates 310 to 340.
  • the reliability index is a value corresponding to the reliability of each mode, and the higher the communication reliability of the mode, the higher the reliability index.
  • the reliability index of mode 1 using the dynamic grant that does not cause collision of radio resources is the highest and is “3”.
  • the reliability index of mode 1 using the setting grant in which collision of radio resources is unlikely to occur is "2”
  • the reliability index of mode 2 in which collision of radio resources can occur is "1”. .. Therefore, the reliability index of the radio resource 310 is "3"
  • the reliability index of the radio resource 320 is "2”
  • the reliability index of the radio resources 330 and 340 is "1".
  • the reliability index according to the mode is a value set from the estimated SINR within the communication range, the channel busy ratio in mode 2, and the like, and may be a fixed value or quasi-statically changed. It may be changed or it may be changed dynamically.
  • the radio resources 310 to 340 are arranged in descending order of the reliability index. At this time, if there are radio resource candidates having the same reliability index, the radio resource candidates having a smaller delay (that is, the index of the slot is smaller) are arranged first. Therefore, the radio resources 310 to 340 shown in FIG. 8 include a radio resource 310 (reliability index “3”), a radio resource 320 (reliability index “2”), and a radio resource 330 (reliability index “1”, slot n). 1 ), radio resource 340 (reliability index "1", slot n 3 ) are arranged in this order.
  • the reliability index is added in order from the first radio resource 310, and it is determined whether or not the sum of the reliability indexes is equal to or greater than the threshold value.
  • the threshold value is a reliability included in the QoS information and is a value corresponding to the reliability required for the transmission data.
  • the threshold value is “6”.
  • the transmission mode determination unit 124 controls the radio resources 310, 320, and 330 excluding the radio resource 340 as control information. Determined to be used for repeated transmission of transmission data. That is, the transmission mode determination unit 124 selects the minimum combination of radio resource candidates whose sum of the reliability indexes is equal to or greater than the threshold value, and determines the radio resource to be used for repeated transmission.
  • the same control information and transmission data are first transmitted using the mode 2 radio resource 330, then using the mode 1 radio resource 320 using the configuration grant, and finally the dynamic grant. Is transmitted using the mode 1 radio resource 310 with.
  • the transmission mode and the radio resources for repeated transmission can be efficiently determined.
  • the plurality of radio resources determined based on the QoS information are the minimum radio resources that satisfy the reliability required for the transmission data, the utilization efficiency of the radio resources is improved, and the communication reliability is improved. Low latency can be achieved.
  • the same data is obtained based on the QoS required for the aperiodic packet data. Determine the transmission mode and radio resources used for repetitive transmission. Then, the same data is repeatedly transmitted using the determined transmission mode and radio resource. Therefore, it is possible to satisfy the QoS required for data while using appropriate radio resources. In other words, it is possible to improve the utilization efficiency of wireless resources and realize high reliability and low delay of communication.
  • the transmission mode and the radio resource are determined based on QoS when an aperiodic packet is generated, but the same processing is applied to a periodic packet instead of the aperiodic packet. can do. That is, for periodic packets that occur periodically, the transmission mode and radio resources may be determined based on QoS.

Abstract

A terminal device (100) comprising a radio communication unit (110) that transmits and receives signals and a processor (120) that is connected to the radio communication unit (110), wherein the processor (120): acquires Quality of Service (QoS) information required by data to be transmitted; assigns, on the basis of the acquired QoS information, a logic channel a plurality of transmission modes corresponding to QoS; selects a plurality of radio resources within an allowable delay that is allowed until the transmission of the data; and uses the plurality of selected radio resources to execute a process of causing the data to be repetitively transmitted from the radio communication unit (110).

Description

端末装置、無線通信システム及び無線通信方法Terminal devices, wireless communication systems and wireless communication methods
 本発明は、端末装置、無線通信システム及び無線通信方法に関する。 The present invention relates to a terminal device, a wireless communication system, and a wireless communication method.
 現在のネットワークにおいては、モバイル端末(スマートフォンやフィーチャーホン)のトラフィックがネットワークのリソースの大半を占めている。また、モバイル端末が使用するトラフィックは、今後も拡大していく傾向にある。 In the current network, the traffic of mobile terminals (smartphones and feature phones) occupies most of the network resources. In addition, the traffic used by mobile terminals tends to continue to grow.
 一方で、IoT(Internet of Things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開に合わせて、多様な要求条件を持つサービスに対応することが求められている。そのため、第5世代移動体通信(5G又はNR(New Radio))の通信規格では、4G(第4世代移動体通信)の標準技術に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が求められている。 On the other hand, in line with the development of IoT (Internet of Things) services (for example, monitoring systems for transportation systems, smart meters, devices, etc.), it is required to support services with various requirements. Therefore, in the communication standard of the 5th generation mobile communication (5G or NR (New Radio)), in addition to the standard technology of 4G (4th generation mobile communication), the data rate is further increased, the capacity is increased, and the delay is low. There is a demand for technology that realizes this.
 なお、第5世代通信規格については、3GPP(Third Generation Partnership Project)の作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められており、2017年12月以降、標準規格書が更新されている(非特許文献2~28)。 Regarding the 5th generation communication standard, technical studies are underway in the working group of 3GPP (Third Generation Partnership Project) (for example, TSG-RAN WG1, TSG-RAN WG2, etc.), and the standard has been established since December 2017. The standard has been updated (Non-Patent Documents 2-28).
 上述したように、多種多様なサービスに対応するために、5Gでは、eMBB(Enhanced Mobile Broad Band)、Massive MTC(Machine Type Communications)、及びURLLC(Ultra-Reliable and Low Latency Communication)に分類される多くのユースケースのサポートを想定している。 As mentioned above, in order to support a wide variety of services, 5G is often classified into eMBB (Enhanced Mobile Broad Band), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication). It is supposed to support the use case of.
 また、3GPPの作業部会では、NR-V2X(New Radio Vehicle to Everything)通信についても議論されている。NR-V2Xは、例えば、サイドリンクチャネルを用いて、自動車間通信を行うV2V(Vehicle to Vehicle)、自動車と歩行者(Pedestrian)間で通信を行うV2P(Vehicle to Pedestrian)、自動車と標識等の道路インフラ間で通信を行うV2I(Vehicle to Infrastructure)、及び自動車とネットワーク間で通信を行うV2N(Vehicle to Network)等の総称である。V2Xに関する規定は、例えば非特許文献1に記載されている。 In addition, the 3GPP working group is also discussing NR-V2X (New Radio Vehicle to Everything) communication. NR-V2X is, for example, V2V (Vehicle to Vehicle) that communicates between vehicles using a side link channel, V2P (Vehicle to Pedestrian) that communicates between a vehicle and a pedestrian (Pedestrian), a vehicle and a sign, etc. It is a general term for V2I (Vehicle to Infrastructure) that communicates between road infrastructures and V2N (Vehicle to Network) that communicates between automobiles and networks. The provision regarding V2X is described in, for example, Non-Patent Document 1.
 NR-V2Xにおけるリソース配置に関しては、制御チャネル(PSCCH:Physical Sidelink Control CHannel)とデータチャネル(PSSCH:Physical Sidelink Shared CHannle)をTDM(Time Division Multiplexing)又はFDM(Frequency Division Multiplexing)させる配置方法がある。なお、PSCCHのリソースには、例えば、対応するPSSCHのデータの変調方式及び符号化率に関する情報などを含むSCI(Sidelink Control Information)がマッピングされる。また、サイドリンクのチャネル品質を向上するために、フィードバックチャネル(PSFCH:Physical Sidelink Feedback CHannel)が導入されている。 Regarding resource allocation in NR-V2X, there is an allocation method in which a control channel (PSCCH: Physical Sidelink Control CHannel) and a data channel (PSSCH: Physical Sidelink Shared CHannle) are TDM (Time Division Multiplexing) or FDM (Frequency Division Multiplexing). In addition, SCI (Sidelink Control Information) including information on the modulation method and the coding rate of the corresponding PSCH data is mapped to the PSCCH resource, for example. Further, in order to improve the channel quality of the side link, a feedback channel (PSFCH: Physical Sidelink Feedback CHannel) has been introduced.
特表2020-510378号公報Japanese Patent Publication No. 2020-510378 国際公開第2020/031282号International Publication No. 2020/031282
 ところで、NR-V2Xでは、通信の高信頼性を確保する方法として、同一のデータを繰り返し送信することが検討されている。すなわち、データの受信側の端末装置からの再送要求の有無に関わらず、データの送信側の端末装置が同一のデータを繰り返して送信することにより、データの復号精度を向上することが考えられている。 By the way, in NR-V2X, it is considered to repeatedly transmit the same data as a method of ensuring high reliability of communication. That is, it is conceivable that the data decoding accuracy is improved by repeatedly transmitting the same data by the data transmitting side terminal device regardless of whether or not there is a retransmission request from the data receiving side terminal device. There is.
 しかしながら、データの繰り返し送信が行われる場合に、毎回の送信に使用される無線リソースをどのように決定するかについては、まだ検討例がない。このため、繰り返し送信されるデータに対して効率良く無線リソースを割り当て、高信頼性及び低遅延を達成するのが困難であるという問題がある。 However, there is no study example on how to determine the wireless resource used for each transmission when the data is repeatedly transmitted. Therefore, there is a problem that it is difficult to efficiently allocate wireless resources to repeatedly transmitted data and achieve high reliability and low delay.
 特に、NR-V2Xには、端末装置のデータ送信に使用される無線リソースを基地局装置が決定するモード1と、端末装置が自律的に決定するモード2とがある。したがって、繰り返し送信が行われる場合には、各回の送信モードを慎重に決定しなければ、無線リソースの利用効率が低下し、要求される高信頼性及び低遅延が達成されない恐れがある。 In particular, the NR-V2X has a mode 1 in which the base station device determines the radio resource used for data transmission of the terminal device, and a mode 2 in which the terminal device autonomously determines the radio resource. Therefore, in the case of repeated transmission, if the transmission mode of each transmission is not carefully determined, the utilization efficiency of radio resources may decrease, and the required high reliability and low delay may not be achieved.
 開示の技術は、かかる点に鑑みてなされたものであって、無線リソースの利用効率を向上し、通信の高信頼性及び低遅延を実現することができる端末装置、無線通信システム及び無線通信方法を提供することを目的とする。 The disclosed technology has been made in view of the above points, and is a terminal device, a wireless communication system, and a wireless communication method capable of improving the utilization efficiency of wireless resources and realizing high reliability and low delay of communication. The purpose is to provide.
 本願が開示する端末装置は、1つの態様において、信号を送受信する無線通信部と、前記無線通信部に接続されるプロセッサとを有し、前記プロセッサは、送信されるデータに要求されるQoS(Quality of Service)情報を取得し、取得されたQoS情報に基づいて、QoSに対応する複数の送信モードを論理チャネルに割り当て、前記データが送信されるまでに許容される許容遅延内の複数の無線リソースを選択し、選択された複数の無線リソースを用いて前記データを前記無線通信部から繰り返し送信させる処理を実行する。 The terminal device disclosed in the present application has, in one embodiment, a wireless communication unit for transmitting and receiving signals, and a processor connected to the wireless communication unit, wherein the processor is a QoS (QoS) required for data to be transmitted. Quality of Service) information is acquired, and based on the acquired QoS information, multiple transmission modes corresponding to QoS are assigned to the logical channel, and multiple radios within the allowable delay until the data is transmitted. A resource is selected, and a process of repeatedly transmitting the data from the wireless communication unit using the selected plurality of wireless resources is executed.
 本願が開示する端末装置、無線通信システム及び無線通信方法の1つの態様によれば、無線リソースの利用効率を向上し、通信の高信頼性及び低遅延を実現することができるという効果を奏する。 According to one aspect of the terminal device, the wireless communication system and the wireless communication method disclosed in the present application, it is possible to improve the utilization efficiency of wireless resources and realize high reliability and low delay of communication.
図1は、一実施の形態に係る無線通信システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a wireless communication system according to an embodiment. 図2は、一実施の形態に係る端末装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a terminal device according to an embodiment. 図3は、モード1(動的グラント)の具体例を示す図である。FIG. 3 is a diagram showing a specific example of mode 1 (dynamic grant). 図4は、モード1(設定グラント)の具体例を示す図である。FIG. 4 is a diagram showing a specific example of mode 1 (setting grant). 図5は、モード2の具体例を示す図である。FIG. 5 is a diagram showing a specific example of the mode 2. 図6は、一実施の形態に係る基地局装置の構成を示すブロック図である。FIG. 6 is a block diagram showing a configuration of a base station device according to an embodiment. 図7は、一実施の形態に係る無線通信方法を示すフロー図である。FIG. 7 is a flow chart showing a wireless communication method according to an embodiment. 図8は、無線リソース割り当ての具体例を示す図である。FIG. 8 is a diagram showing a specific example of radio resource allocation.
 以下、本願が開示する端末装置、無線通信システム及び無線通信方法の一実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。 Hereinafter, an embodiment of the terminal device, the wireless communication system, and the wireless communication method disclosed in the present application will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.
 図1は、一実施の形態に係る無線通信システムの構成を示す図である。図1に示すように、例えば自動車に搭載される複数の端末装置100は、基地局装置200と通信可能なセル内に位置する。 FIG. 1 is a diagram showing a configuration of a wireless communication system according to an embodiment. As shown in FIG. 1, for example, a plurality of terminal devices 100 mounted on an automobile are located in a cell capable of communicating with the base station device 200.
 端末装置100は、他の端末装置100との間で無線通信を実行する。具体的には、端末装置100は、いずれか1つの端末装置100へデータを送信するユニキャストをしたり、同一のグループに属する複数の端末装置100へデータを送信するグループキャストをしたりする。このとき、端末装置100は、同一のデータを複数回送信する繰り返し送信を行う。すなわち、端末装置100は、複数回の送信に用いる送信モード及び無線リソースを決定し、決定した送信モード及び無線リソースを用いてデータを繰り返し送信する。端末装置100は、データに要求されるQoS(Quality of Service)に応じて送信モード及び無線リソースを決定する。 The terminal device 100 executes wireless communication with another terminal device 100. Specifically, the terminal device 100 performs a unicast to transmit data to any one terminal device 100, or a group cast to transmit data to a plurality of terminal devices 100 belonging to the same group. At this time, the terminal device 100 repeatedly transmits the same data a plurality of times. That is, the terminal device 100 determines a transmission mode and radio resource to be used for a plurality of transmissions, and repeatedly transmits data using the determined transmission mode and radio resource. The terminal device 100 determines the transmission mode and the radio resource according to the QoS (Quality of Service) required for the data.
 基地局装置200は、無線リソースの割り当てを要求するスケジューリングリクエスト(SR:Scheduling Request)を端末装置100から受信すると、無線リソースの割り当てを決定するスケジューリングを実行する。そして、基地局装置200は、SRの送信元の端末装置100に対して、割り当てた無線リソースの情報を送信する。また、基地局装置200は、各端末装置100に対して、SRの有無とは無関係に周期的な無線リソースを割り当て、それぞれの端末装置100に割り当てた無線リソースの情報をあらかじめ各端末装置100へ送信する。 When the base station device 200 receives a scheduling request (SR: Scheduling Request) requesting the allocation of radio resources from the terminal device 100, the base station device 200 executes scheduling for determining the allocation of radio resources. Then, the base station device 200 transmits the information of the allocated radio resource to the terminal device 100 that is the transmission source of the SR. Further, the base station device 200 allocates periodic radio resources to each terminal device 100 regardless of the presence or absence of SR, and the information of the radio resources assigned to each terminal device 100 is transmitted to each terminal device 100 in advance. Send.
 このように基地局装置200が無線リソースを割り当て、割り当てられた無線リソースを用いて端末装置100がデータを送信する送信モードは、「モード1」と呼ばれることがある。また、以下の説明においては、端末装置100からのSRに応じて基地局装置200が割り当てる無線リソースの情報を「動的グラント(Dynamic Grant)」といい、SRの有無とは無関係に基地局装置200が割り当てる周期的な無線リソースの情報を「設定グラント(Configured Grant)」ということがある。基地局装置200は、動的グラント又は設定グラントを送信する場合、モード1のためのリソースプールから割り当てられた無線リソースの情報を動的グラント又は設定グラントに含めて送信する。 The transmission mode in which the base station device 200 allocates radio resources and the terminal device 100 transmits data using the allocated radio resources is sometimes called "mode 1". Further, in the following description, the information of the radio resource allocated by the base station device 200 according to the SR from the terminal device 100 is referred to as "Dynamic Grant", and the base station device is irrespective of the presence or absence of the SR. Information on periodic radio resources allocated by 200 may be referred to as "Configured Grant". When transmitting the dynamic grant or the setting grant, the base station apparatus 200 includes the information of the radio resource allocated from the resource pool for mode 1 in the dynamic grant or the setting grant and transmits the information.
 図2は、一実施の形態に係る端末装置100の構成を示すブロック図である。図2に示す端末装置100は、無線通信部110、プロセッサ120及びメモリ130を有する。 FIG. 2 is a block diagram showing the configuration of the terminal device 100 according to the embodiment. The terminal device 100 shown in FIG. 2 has a wireless communication unit 110, a processor 120, and a memory 130.
 無線通信部110は、他の端末装置100及び基地局装置200との間で無線通信を実行する。すなわち、無線通信部110は、プロセッサ120から出力される送信信号に対して所定の無線送信処理を施し、アンテナを介して他の端末装置100又は基地局装置200へ送信する。また、無線通信部110は、アンテナを介して他の端末装置100又は基地局装置200から信号を受信し、受信信号に対して所定の無線受信処理を施し、受信信号をプロセッサ120へ出力する。 The wireless communication unit 110 executes wireless communication with the other terminal device 100 and the base station device 200. That is, the wireless communication unit 110 performs a predetermined wireless transmission process on the transmission signal output from the processor 120, and transmits the transmission signal to the other terminal device 100 or the base station device 200 via the antenna. Further, the wireless communication unit 110 receives a signal from another terminal device 100 or a base station device 200 via an antenna, performs a predetermined wireless reception process on the received signal, and outputs the received signal to the processor 120.
 プロセッサ120は、例えばCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)又はDSP(Digital Signal Processor)などを備え、端末装置100の全体を統括制御する。具体的には、プロセッサ120は、制御情報生成部121、送信データ生成部122、QoS情報取得部123、送信モード決定部124、送信制御部125、受信制御部126、センシング部127及びリソース選択部128を有する。 The processor 120 includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), etc., and controls the entire terminal device 100 in an integrated manner. Specifically, the processor 120 includes a control information generation unit 121, a transmission data generation unit 122, a QoS information acquisition unit 123, a transmission mode determination unit 124, a transmission control unit 125, a reception control unit 126, a sensing unit 127, and a resource selection unit. Has 128.
 制御情報生成部121は、定期的に送信されるパケットとは異なる非周期パケットが上位レイヤで発生した場合に、非周期パケットに含まれるデータに関する制御情報を生成する。具体的には、制御情報生成部121は、例えばデータの送信に用いられる無線リソースを特定する情報などを含むSCI(Sidelink Control Information)を生成する。なお、非周期パケットは、他の端末装置100宛てのパケットである。 The control information generation unit 121 generates control information regarding the data included in the aperiodic packet when an aperiodic packet different from the periodically transmitted packet is generated in the upper layer. Specifically, the control information generation unit 121 generates SCI (Sidelink Control Information) including information for specifying a radio resource used for data transmission, for example. The aperiodic packet is a packet addressed to another terminal device 100.
 送信データ生成部122は、非周期パケットが上位レイヤで発生した場合に、非周期パケットの宛先の端末装置100へ送信する送信データを生成する。すなわち、送信データ生成部122は、非周期パケットに含まれるデータから送信データを生成する。 The transmission data generation unit 122 generates transmission data to be transmitted to the terminal device 100 of the destination of the aperiodic packet when the aperiodic packet is generated in the upper layer. That is, the transmission data generation unit 122 generates transmission data from the data included in the aperiodic packet.
 QoS情報取得部123は、非周期パケットが上位レイヤで発生した場合に、非周期パケットに含まれるデータに要求されるQoSの情報(以下「QoS情報」という)を取得する。具体的には、QoS情報取得部123は、非周期パケットが発生してから送信データが送信されるまでに許容される遅延(以下「許容遅延」という)や、送信データに要求される信頼度や、送信データの優先度などを示すQoS情報を取得する。送信データに要求される信頼度としては、例えば要求されるPRR(Packet Reception Ratio)及びPPPR(ProSe Per Packet Reliability)などのパラメータがある。また、送信データの優先度としては、例えばPPPP(Prose Per Packet Priority)などのパラメータがある。 The QoS information acquisition unit 123 acquires the QoS information (hereinafter referred to as "QoS information") required for the data included in the aperiodic packet when the aperiodic packet occurs in the upper layer. Specifically, the QoS information acquisition unit 123 has a delay allowed from the generation of an aperiodic packet to the transmission of transmission data (hereinafter referred to as "allowable delay"), and the reliability required for transmission data. And obtain QoS information indicating the priority of transmission data. The reliability required for the transmission data includes, for example, required parameters such as PRR (Packet Reception Ratio) and PPPR (ProSe Per Packet Reliability). Further, as the priority of the transmission data, there is a parameter such as PPPP (Prose Per Packet Priority), for example.
 送信モード決定部124は、QoS情報取得部123によって取得されるQoS情報に基づいて、論理チャネル(LCH:Logical CHannel)をマッピングする。例えば、送信モード決定部124は、高信頼性のQoSが要求されるデータに対してはモード1のみを使用する論理チャネルを割り当て、低遅延性のQoSが要求されるデータに対してはモード2のみを使用する論理チャネルを割り当てる。さらに、送信モード決定部124は、例えば高信頼性及び低遅延性のQoSが同時に要求されるデータに対してはモード1、2の両方を使用する論理チャネルを割り当てる。論理チャネルと送信モードの関係は、例えばRRCメッセージによってあらかじめ設定されている。このように、送信モード決定部124は、QoS情報に基づいて、他の端末装置100宛ての制御情報及び送信データの送信モードを決定する。 The transmission mode determination unit 124 maps a logical channel (LCH: Logical CHannel) based on the QoS information acquired by the QoS information acquisition unit 123. For example, the transmission mode determination unit 124 allocates a logical channel that uses only mode 1 for data that requires highly reliable QoS, and mode 2 for data that requires low latency QoS. Allocate a logical channel that uses only. Further, the transmission mode determination unit 124 allocates a logical channel using both modes 1 and 2 for data for which high reliability and low latency QoS are required at the same time, for example. The relationship between the logical channel and the transmission mode is preset, for example, by an RRC message. In this way, the transmission mode determination unit 124 determines the transmission mode of the control information and the transmission data addressed to the other terminal device 100 based on the QoS information.
 具体的には、送信モード決定部124は、モード1のみを使用する場合には、基地局装置200がSRに応じて無線リソースを割り当てる動的グラントを用いるモード1、又は基地局装置200があらかじめ周期的な無線リソースを割り当てる設定グラントを用いるモード1を使用すると決定し、送信データを繰り返し送信する場合のモード1の無線リソースを決定する。また、送信モード決定部124は、モード2のみを使用する場合には、端末装置100が自律的に無線リソースを選択するモード2を使用すると決定し、送信データを繰り返し送信する場合のモード2の無線リソースを決定する。さらに、送信モード決定部124は、モード1、2の両方を使用する場合には、動的グラントを用いるモード1、設定グラントを用いるモード1、及びモード2を組み合わせて、送信データを繰り返し送信する場合の送信モード及び無線リソースを決定する。なお、本実施の形態においては、主にモード1、2の両方が使用される場合について説明する。 Specifically, when the transmission mode determination unit 124 uses only the mode 1, the mode 1 in which the base station apparatus 200 uses a dynamic grant to allocate radio resources according to the SR, or the base station apparatus 200 is in advance. It is decided to use the mode 1 using the setting grant to allocate the periodic radio resource, and the radio resource of the mode 1 when the transmission data is repeatedly transmitted is determined. Further, the transmission mode determination unit 124 determines that the terminal device 100 autonomously selects the radio resource in the mode 2 when only the mode 2 is used, and the transmission mode determination unit 124 repeatedly transmits the transmission data. Determine wireless resources. Further, when both modes 1 and 2 are used, the transmission mode determination unit 124 repeatedly transmits transmission data by combining mode 1 using a dynamic grant, mode 1 using a setting grant, and mode 2. Determine the transmission mode and radio resources for the case. In this embodiment, a case where both modes 1 and 2 are mainly used will be described.
 送信モードは、必ずしも論理チャネルに対応付けられていなくても良く、端末装置100の識別情報(例えばUE-ID)、IP(Internet Protocol)パケットのサービスID、QoSフローのPQI(PC5 QoS ID)、サイドリンク無線ベアラ(SLRB:Sidelink Radio Bearer)の識別情報(例えばSLRB-ID)と対応付けられても良い。また、送信モードは、MAC(Media Access Control)層で使用される論理チャネルのLCH-IDと対応付けられても良い。一般的には、送信モードが論理チャネルのLCH-IDと対応付けられることにより、MAC層のスケジューラによる制御が容易となり、送信モードと無線リソースのマッピングが簡便になることから、本実施の形態においては、送信モードが論理チャネルのLCH-IDと対応付けられるものとして説明する。 The transmission mode does not necessarily have to be associated with the logical channel, and is the identification information (for example, UE-ID) of the terminal device 100, the service ID of the IP (Internet Protocol) packet, the PQI (PC5 QoS ID) of the QoS flow, and the transmission mode. It may be associated with the identification information (for example, SLRB-ID) of the sidelink radio bearer (SLRB: Sidelink Radio Bearer). Further, the transmission mode may be associated with the LCH-ID of the logical channel used in the MAC (Media Access Control) layer. In general, by associating the transmission mode with the LCH-ID of the logical channel, control by the scheduler of the MAC layer becomes easy, and mapping between the transmission mode and the radio resource becomes easy. Therefore, in the present embodiment. Describes as assuming that the transmission mode is associated with the LCH-ID of the logical channel.
 ここで、それぞれの送信モードについて説明する。図3~5は、それぞれ動的グラントを用いるモード1、設定グラントを用いるモード1、及びモード2の無線リソースの決定方法を示す図である。 Here, each transmission mode will be described. 3 to 5 are diagrams showing a method of determining the radio resources of the mode 1 using the dynamic grant, the mode 1 using the setting grant, and the mode 2, respectively.
 まず、図3に示すように、動的グラントを用いるモード1においては、端末装置100は、時刻T0において非周期パケットが発生すると、許容遅延Td内のスケジューリングリクエスト(SR)の送信が許可されているタイミングにおいてSRを基地局装置200へ送信する。基地局装置200は、SRを受信するとスケジューリングを実行し、モード1用のリソースプールから端末装置100に割り当てる無線リソース310を決定する。そして、基地局装置200は、端末装置100に割り当てた無線リソース310の情報を、例えばPDCCH(Physical Downlink Control CHannel)によって送信する。 First, as shown in FIG. 3, in the mode 1 using the dynamic grant, the terminal device 100 is permitted to transmit the scheduling request (SR) within the allowable delay T d when the aperiodic packet occurs at the time T 0 . SR is transmitted to the base station apparatus 200 at the timing set. Upon receiving the SR, the base station apparatus 200 executes scheduling and determines the radio resource 310 to be allocated to the terminal apparatus 100 from the resource pool for mode 1. Then, the base station apparatus 200 transmits the information of the radio resource 310 assigned to the terminal apparatus 100 by, for example, PDCCH (Physical Downlink Control CHannel).
 端末装置100は、基地局装置200から送信される情報を受信することにより無線リソース310を特定し、無線リソース310に含まれる送信チャネル311を用いて、他の端末装置100宛ての制御情報及び送信データを送信する。送信チャネル311には、例えばPSCCH(Physical Sidelink Control CHannel)及びPSSCH(Physical Sidelink Shared CHannel)が含まれる。また、端末装置100は、無線リソース310に含まれるフィードバックチャネル312を監視し、送信チャネル311を用いて送信した送信データの再送が必要か否かを判定する。すなわち、例えば、送信データの宛先の端末装置100から送信されたNACKがフィードバックチャネル312において受信された場合には、端末装置100は、送信データの再送が必要であると判定する。 The terminal device 100 identifies the radio resource 310 by receiving the information transmitted from the base station device 200, and uses the transmission channel 311 included in the radio resource 310 to control information and transmit to another terminal device 100. Send the data. The transmission channel 311 includes, for example, PSCCH (Physical Sidelink Control CHannel) and PSCH (Physical Sidelink Shared CHannel). Further, the terminal device 100 monitors the feedback channel 312 included in the radio resource 310, and determines whether or not the transmission data transmitted using the transmission channel 311 needs to be retransmitted. That is, for example, when the NACK transmitted from the terminal device 100 of the destination of the transmission data is received on the feedback channel 312, the terminal device 100 determines that the transmission data needs to be retransmitted.
 このように、動的グラントを用いるモード1では、端末装置100は、基地局装置200によってSRに応じて割り当てられる無線リソース310を用いて、他の端末装置100へ制御情報及び送信データを送信する。このため、無線リソース310が他の端末装置100による送信に用いられることがなく、無線リソースの衝突が発生しない。一方で、SRに応じた基地局装置200による無線リソースの割り当てが行われるため、無線リソースが割り当てられて端末装置100が送信データを送信するまでの遅延が大きくなる傾向がある。 As described above, in the mode 1 using the dynamic grant, the terminal device 100 transmits the control information and the transmission data to the other terminal device 100 by using the radio resource 310 allocated according to the SR by the base station device 200. .. Therefore, the radio resource 310 is not used for transmission by the other terminal device 100, and a collision of radio resources does not occur. On the other hand, since the radio resource is allocated by the base station apparatus 200 according to the SR, the delay until the radio resource is allocated and the terminal apparatus 100 transmits the transmission data tends to be large.
 次に、図4に示すように、設定グラントを用いるモード1においては、例えば基地局装置200からのRRC(Radio Resource Control)メッセージなどによって、モード1用のリソースプールから周期的な無線リソースがあらかじめ端末装置100に割り当てられている。端末装置100は、時刻T0において非周期パケットが発生すると、許容遅延Td内の割り当てられた無線リソース320を特定し、無線リソース320に含まれる送信チャネル321を用いて、他の端末装置100宛ての制御情報及び送信データを送信する。送信チャネル321には、例えばPSCCH及びPSSCHが含まれる。また、端末装置100は、無線リソース320に含まれるフィードバックチャネル322を監視し、送信チャネル321を用いて送信した送信データの再送が必要か否かを判定する。すなわち、例えば、送信データの宛先の端末装置100から送信されたNACKがフィードバックチャネル322において受信された場合には、端末装置100は、送信データの再送が必要であると判定する。 Next, as shown in FIG. 4, in the mode 1 using the setting grant, periodic radio resources are previously generated from the resource pool for the mode 1 by, for example, an RRC (Radio Resource Control) message from the base station apparatus 200. It is assigned to the terminal device 100. When an aperiodic packet occurs at time T0 , the terminal device 100 identifies the allocated radio resource 320 within the allowable delay Td , and uses the transmission channel 321 included in the radio resource 320 to use another terminal device 100. The control information and transmission data addressed to the destination are transmitted. The transmission channel 321 includes, for example, PSCCH and PSSCH. Further, the terminal device 100 monitors the feedback channel 322 included in the radio resource 320, and determines whether or not the transmission data transmitted using the transmission channel 321 needs to be retransmitted. That is, for example, when the NACK transmitted from the terminal device 100 of the destination of the transmission data is received on the feedback channel 322, the terminal device 100 determines that the transmission data needs to be retransmitted.
 このように、設定グラントを用いるモード1では、端末装置100は、基地局装置200によってあらかじめ割り当てられる無線リソース320を用いて、他の端末装置100へ制御情報及び送信データを送信する。このため、無線リソース320が他の端末装置100による送信に用いられる可能性が小さく、無線リソースの衝突が発生しにくい。一方で、あらかじめ割り当てられる無線リソースのタイミングによっては、端末装置100が送信データを送信するまでの遅延が大きくなることがある。 As described above, in the mode 1 using the setting grant, the terminal device 100 transmits the control information and the transmission data to the other terminal device 100 by using the radio resource 320 pre-allocated by the base station device 200. Therefore, it is unlikely that the radio resource 320 will be used for transmission by another terminal device 100, and collision of radio resources is unlikely to occur. On the other hand, depending on the timing of the radio resource allocated in advance, the delay until the terminal device 100 transmits the transmission data may increase.
 次に、図5に示すように、モード2においては、端末装置100は、所定のセンシングウインドウにおいてモード2用のリソースプールの使用状況をセンシングする。すなわち、端末装置100は、モード2用の周波数帯域においてセンシングウインドウ内で送受信される制御情報を監視し、他の端末装置100による無線リソースの使用状況を調査する。なお、モード2用のリソースプールは、モード1用のリソースプールとは異なる周波数帯域の無線リソースである。端末装置100は、時刻T0において非周期パケットが発生すると、許容遅延Td内に選択ウインドウを設定し、センシングウインドウにおけるセンシングの結果から、選択ウインドウ内で他の端末装置100によって使用されないと予測される無線リソース330、340を選択する。 Next, as shown in FIG. 5, in the mode 2, the terminal device 100 senses the usage status of the resource pool for the mode 2 in a predetermined sensing window. That is, the terminal device 100 monitors the control information transmitted / received in the sensing window in the frequency band for mode 2, and investigates the usage status of the radio resource by the other terminal device 100. The resource pool for mode 2 is a radio resource having a frequency band different from that of the resource pool for mode 1. When an aperiodic packet occurs at time T 0 , the terminal device 100 sets a selection window in the allowable delay T d , and predicts that it will not be used by another terminal device 100 in the selection window from the sensing result in the sensing window. Select the radio resources 330 and 340 to be used.
 そして、端末装置100は、無線リソース330、340に含まれる送信チャネル331、341を用いて、他の端末装置100宛ての制御情報及び送信データを送信する。送信チャネル331、341には、例えばPSCCH及びPSSCHが含まれる。また、端末装置100は、無線リソース330、340に含まれるフィードバックチャネル332、342を監視し、送信チャネル331、341を用いて送信した送信データの再送が必要か否かを判定する。すなわち、例えば、送信データの宛先の端末装置100から送信されたNACKがフィードバックチャネル332、342において受信された場合には、端末装置100は、送信データの再送が必要であると判定する。 Then, the terminal device 100 transmits control information and transmission data addressed to the other terminal device 100 by using the transmission channels 331 and 341 included in the radio resources 330 and 340. Transmission channels 331, 341 include, for example, PSCCH and PSSCH. Further, the terminal device 100 monitors the feedback channels 332 and 342 included in the radio resources 330 and 340, and determines whether or not the transmission data transmitted using the transmission channels 331 and 341 needs to be retransmitted. That is, for example, when the NACK transmitted from the terminal device 100 of the destination of the transmission data is received on the feedback channels 332 and 342, the terminal device 100 determines that the transmission data needs to be retransmitted.
 このように、モード2では、端末装置100は、センシングの結果から自律的に選択する無線リソース330、340を用いて、他の端末装置100へ制御情報及び送信データを送信する。このため、非周期パケットが発生した直後の無線リソース330を選択して送信データを送信することができ、遅延を小さくすることができる。一方で、無線リソース330が他の端末装置100による送信に用いられる可能性があり、無線リソースの衝突が発生することがある。 As described above, in the mode 2, the terminal device 100 transmits the control information and the transmission data to the other terminal device 100 by using the radio resources 330 and 340 that are autonomously selected from the sensing result. Therefore, the radio resource 330 immediately after the generation of the aperiodic packet can be selected and the transmission data can be transmitted, and the delay can be reduced. On the other hand, the radio resource 330 may be used for transmission by another terminal device 100, and a collision of radio resources may occur.
 図2に戻って、送信モード決定部124は、QoS情報に含まれる許容遅延に基づいて、動的グラントを用いるモード1、設定グラントを用いるモード1、及びモード2のうちどのモードを用いて送信データを繰り返し送信するかを決定する。換言すれば、送信モード決定部124は、同一の制御情報及び送信データを繰り返して送信するための複数の無線リソースを決定する。 Returning to FIG. 2, the transmission mode determination unit 124 transmits using any of the modes 1, the mode 1 using the dynamic grant, the mode 1 using the setting grant, and the mode 2 based on the allowable delay included in the QoS information. Decide if you want to send the data repeatedly. In other words, the transmission mode determination unit 124 determines a plurality of radio resources for repeatedly transmitting the same control information and transmission data.
 このとき、送信モード決定部124は、各モードの許容遅延内に含まれる端末装置100が使用可能な無線リソースを送信に用いる無線リソース候補とし、QoS情報が示す要求される信頼度を満たすことができる最小限の無線リソースを無線リソース候補から選択するようにしても良い。具体的には、送信モード決定部124は、各モードの無線リソース候補にそれぞれモードに応じた信頼度指数を付与し、信頼度指数が高い無線リソース候補から順に信頼度指数を加算し、信頼度指数の和が要求される信頼度に対応する所定の閾値以上となる無線リソース候補を送信に用いる無線リソースとして選択する。 At this time, the transmission mode determination unit 124 sets the radio resource that can be used by the terminal device 100 included in the allowable delay of each mode as a radio resource candidate for transmission, and satisfies the required reliability indicated by the QoS information. The minimum possible radio resource may be selected from the radio resource candidates. Specifically, the transmission mode determination unit 124 assigns a reliability index corresponding to each mode to the radio resource candidate of each mode, adds the reliability index in order from the radio resource candidate having the highest reliability index, and performs reliability. A radio resource candidate whose sum of exponents is equal to or greater than a predetermined threshold value corresponding to the required reliability is selected as the radio resource used for transmission.
 例えば、動的グラントを用いるモード1の無線リソースには信頼度指数α1,nを付与し、設定グラントを用いるモード1のタイプ1の無線リソースには信頼度指数α2,nを付与し、設定グラントを用いるモード1のタイプ2の無線リソースには信頼度指数α3,nを付与し、モード2の無線リソースには信頼度指数α4,nを付与する。なお、設定グラントを用いるモード1のタイプ1とタイプ2とは、基地局装置200がRRCメッセージのみを用いて設定グラントを送信するか否かが異なる。また、各信頼度指数α1,n、α2,n、α3,n、α4,nのnは、無線リソースのスロットのインデックスである。 For example, a mode 1 radio resource that uses a dynamic grant is given a confidence index α 1, n , and a mode 1 type 1 radio resource that uses a set grant is given a confidence index α 2, n . A reliability index α 3, n is given to the mode 1 type 2 radio resource using the setting grant, and a reliability index α 4, n is given to the mode 2 radio resource. It should be noted that type 1 and type 2 of mode 1 using the setting grant differ in whether or not the base station apparatus 200 transmits the setting grant using only the RRC message. Further, n of each reliability index α 1, n , α 2, n , α 3, n , α 4, n is an index of the slot of the radio resource.
 これらの信頼度指数α1,n、α2,n、α3,n、α4,nは、通信範囲(communication range)内での推定されるSINR(Signal to Interference and Noise Ratio)やモード2におけるチャネルビジー比(CBR:Channel Busy Ratio)などから設定される。通常は、信頼度が高いモードほど高い信頼度指数が付与され、例えば信頼度指数α1,nが最も高く、信頼度指数α2,n、α3,nが次に高く、信頼度指数α4,nが最も低くなるようにしても良い。信頼度指数α1,n、α2,n、α3,n、α4,nは、固定値であっても良いし、準静的に(semi-statically)変更されても良いし、動的に変更されても良い。 These reliability indexes α 1, n , α 2, n , α 3, n , α 4, n are estimated SINR (Signal to Interference and Noise Ratio) and mode 2 within the communication range. It is set from the channel busy ratio (CBR: Channel Busy Ratio) in. Normally, the higher the reliability mode, the higher the reliability index is given. For example, the reliability index α 1, n is the highest, the reliability indexes α 2, n , α 3, n are the next highest, and the reliability index α. 4, n may be the lowest. The confidence indices α 1, n , α 2, n , α 3, n , α 4, n may be fixed values, may be changed semi-statically, or may be dynamic. May be changed.
 送信モード決定部124は、各モードの許容遅延内に含まれる端末装置100が使用可能な無線リソース候補にモードに応じた信頼度指数α1,n、α2,n、α3,n、α4,nを付与すると、信頼度指数が高い順に無線リソース候補を並べる。このとき、送信モード決定部124は、信頼度指数が同じ無線リソース候補がある場合には、より早いタイミングの(すなわち、nが小さい)無線リソース候補を先に並べる。そして、送信モード決定部124は、並べた無線リソース候補の信頼度指数を先頭から順に加算し、信頼度指数の和が要求される信頼度に対応する所定の閾値以上となった時点で、加算された信頼度指数に対応するモード及び無線リソースを選択する。これにより、送信モード決定部124は、制御情報及び送信データの送信に用いられる送信モード及び無線リソースを決定する。 The transmission mode determination unit 124 has reliability indexes α 1, n , α 2, n , α 3, n , α according to the mode as radio resource candidates that can be used by the terminal device 100 included in the allowable delay of each mode. When 4, n is given, the radio resource candidates are arranged in descending order of reliability index. At this time, when there are radio resource candidates having the same reliability index, the transmission mode determination unit 124 arranges the radio resource candidates with earlier timing (that is, n is smaller) first. Then, the transmission mode determination unit 124 adds the reliability indexes of the arranged radio resource candidates in order from the beginning, and adds when the sum of the reliability indexes reaches a predetermined threshold value corresponding to the required reliability. Select the mode and radio resource corresponding to the confidence index. As a result, the transmission mode determination unit 124 determines the transmission mode and the radio resource used for transmitting the control information and the transmission data.
 送信制御部125は、送信モード決定部124によって決定された送信モード及び無線リソースを用いて、制御情報及び送信データの繰り返し送信を制御する。具体的には、送信制御部125は、動的グラントを用いるモード1で送信を行う場合には、基地局装置200に対してSRを送信して無線リソースの割り当てを要求し、割り当てられた無線リソースを用いて制御情報及び送信データを送信する。また、送信制御部125は、設定グラントを用いるモード1で送信を行う場合には、基地局装置200からあらかじめ割り当てられた周期的な無線リソースを用いて制御情報及び送信データを送信する。さらに、送信制御部125は、モード2で送信を行う場合には、リソース選択部128によって選択された無線リソースを用いて制御情報及び送信データを送信する。 The transmission control unit 125 controls repeated transmission of control information and transmission data using the transmission mode and radio resources determined by the transmission mode determination unit 124. Specifically, when the transmission control unit 125 transmits in mode 1 using the dynamic grant, the transmission control unit 125 transmits SR to the base station apparatus 200 to request the allocation of radio resources, and the allocated radio. Control information and transmission data are transmitted using resources. Further, when transmitting in mode 1 using the setting grant, the transmission control unit 125 transmits control information and transmission data using periodic radio resources allocated in advance from the base station apparatus 200. Further, when transmitting in mode 2, the transmission control unit 125 transmits control information and transmission data using the radio resource selected by the resource selection unit 128.
 このように、送信制御部125は、送信モード決定部124による決定に従って、SRに応じて端末装置100に割り当てられた無線リソース、あらかじめ端末装置100に割り当てられた周期的な無線リソース、及び端末装置100が自律的に選択した無線リソースを用いて、制御情報及び送信データの繰り返し送信を実行する。このとき、送信制御部125は、送信モードに対応付けられた論理チャネルに保持された送信データと、物理レイヤで生成された制御情報とを無線リソースにマッピングする。すなわち、送信制御部125は、モード1のみに関連付けられる論理チャネル、モード2のみに関連付けられる論理チャネル、及びモード1、2の両方に関連付けられる論理チャネルのいずれかに保持されたデータを制御情報とともに、送信モード決定部124によって決定された無線リソースにマッピングする。 As described above, the transmission control unit 125 has the radio resources allocated to the terminal device 100 according to the SR, the periodic radio resources previously allocated to the terminal device 100, and the terminal device according to the determination by the transmission mode determination unit 124. Using the radio resource autonomously selected by 100, the control information and the transmission data are repeatedly transmitted. At this time, the transmission control unit 125 maps the transmission data held in the logical channel associated with the transmission mode and the control information generated in the physical layer to the radio resource. That is, the transmission control unit 125 together with the control information is the data held in any of the logical channel associated only with the mode 1, the logical channel associated only with the mode 2, and the logical channel associated with both the modes 1 and 2. , Map to the radio resource determined by the transmission mode determination unit 124.
 本実施の形態においては、送信制御部125は、主にモード1、2の両方に関連付けられる論理チャネルに保持された送信データを物理チャネルにマッピングする。送信制御部125は、論理チャネルに保持される送信データを、例えばPSCCH及びPSSCHなどの物理チャネルによって送信する。すなわち、送信制御部125は、制御情報を例えばPSCCHなどの制御チャネルによって送信し、送信データをPSSCHなどのデータチャネルによって送信する。 In the present embodiment, the transmission control unit 125 maps the transmission data held in the logical channel mainly associated with both modes 1 and 2 to the physical channel. The transmission control unit 125 transmits the transmission data held in the logical channel by a physical channel such as PSCCH and PSCH. That is, the transmission control unit 125 transmits control information through a control channel such as PSCCH, and transmits transmission data via a data channel such as PSSCH.
 受信制御部126は、無線通信部110から受信信号を取得し、受信信号に対する受信処理を実行する。具体的には、受信制御部126は、制御チャネルの復調及び復号を実行して制御情報を取得し、制御情報に基づいてデータチャネルの復調及び復号を実行する。 The reception control unit 126 acquires a received signal from the wireless communication unit 110 and executes reception processing for the received signal. Specifically, the reception control unit 126 executes demodulation and decoding of the control channel to acquire control information, and demodulates and decodes the data channel based on the control information.
 センシング部127は、他の端末装置100によるモード2用のリソースプールの無線リソースの使用状況をセンシングする。具体的には、センシング部127は、所定のセンシングウインドウにおいてモード2用の周波数帯域で送受信される制御情報を監視し、他の端末装置100による無線リソースの使用状況を調査する。 The sensing unit 127 senses the usage status of the radio resource in the resource pool for mode 2 by the other terminal device 100. Specifically, the sensing unit 127 monitors the control information transmitted / received in the frequency band for mode 2 in a predetermined sensing window, and investigates the usage status of the radio resource by the other terminal device 100.
 リソース選択部128は、センシング部127によるセンシングの結果に基づいて、モード2の送信に使用する無線リソースを選択する。具体的には、リソース選択部128は、非周期パケットが発生すると許容遅延内に選択ウインドウを設定し、選択ウインドウ内で他の端末装置100によって使用されないとセンシング結果から予測される無線リソースを選択する。リソース選択部128は、選択した無線リソースをモード2の送信に用いる無線リソース候補として、送信モード決定部124へ通知する。 The resource selection unit 128 selects the radio resource to be used for transmission in mode 2 based on the result of sensing by the sensing unit 127. Specifically, the resource selection unit 128 sets a selection window within the allowable delay when an aperiodic packet occurs, and selects a radio resource predicted from the sensing result that it will not be used by another terminal device 100 in the selection window. do. The resource selection unit 128 notifies the transmission mode determination unit 124 of the selected radio resource as a radio resource candidate used for transmission in mode 2.
 メモリ130は、例えばRAM(Random Access Memory)又はROM(Read Only Memory)などを備え、プロセッサ120による処理に用いられる情報を記憶する。 The memory 130 includes, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory), and stores information used for processing by the processor 120.
 図6は、一実施の形態に係る基地局装置200の構成を示すブロック図である。図6に示す基地局装置200は、無線通信部210、プロセッサ220及びメモリ230を有する。 FIG. 6 is a block diagram showing the configuration of the base station apparatus 200 according to the embodiment. The base station device 200 shown in FIG. 6 has a wireless communication unit 210, a processor 220, and a memory 230.
 無線通信部210は、セル内に位置する端末装置100との間で無線通信を実行する。すなわち、無線通信部210は、プロセッサ220から出力される送信信号に対して所定の無線送信処理を施し、アンテナを介して端末装置100へ送信する。また、無線通信部210は、アンテナを介して端末装置100から信号を受信し、受信信号に対して所定の無線受信処理を施し、受信信号をプロセッサ220へ出力する。 The wireless communication unit 210 executes wireless communication with the terminal device 100 located in the cell. That is, the wireless communication unit 210 performs a predetermined wireless transmission process on the transmission signal output from the processor 220, and transmits the transmission signal to the terminal device 100 via the antenna. Further, the wireless communication unit 210 receives a signal from the terminal device 100 via the antenna, performs a predetermined wireless reception process on the received signal, and outputs the received signal to the processor 220.
 プロセッサ220は、例えばCPU、FPGA又はDSPなどを備え、基地局装置200の全体を統括制御する。具体的には、プロセッサ220は、受信制御部221、スケジューリング部222及び送信制御部223を有する。 The processor 220 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire base station apparatus 200 in an integrated manner. Specifically, the processor 220 has a reception control unit 221, a scheduling unit 222, and a transmission control unit 223.
 受信制御部221は、無線通信部210から受信信号を取得し、受信信号に対する受信処理を実行する。具体的には、受信制御部221は、端末装置100から受信される受信信号から、無線リソースの割り当てを要求するSRを取得する。 The reception control unit 221 acquires a received signal from the wireless communication unit 210 and executes reception processing for the received signal. Specifically, the reception control unit 221 acquires an SR requesting allocation of radio resources from the reception signal received from the terminal device 100.
 スケジューリング部222は、受信制御部221によってSRが取得されると、端末装置100間の無線通信に無線リソースを割り当てるスケジューリングを実行する。すなわち、スケジューリング部222は、端末装置100からSRが受信されると、モード1用のリソースプールから端末装置100に割り当てる無線リソースを決定する。そして、スケジューリング部222は、決定した無線リソースを送信制御部223へ通知する。この無線リソースは、動的グラントを用いるモード1での送信に使用される無線リソースである。 When the SR is acquired by the reception control unit 221, the scheduling unit 222 executes scheduling for allocating wireless resources to wireless communication between the terminal devices 100. That is, when the SR is received from the terminal device 100, the scheduling unit 222 determines the radio resource to be allocated to the terminal device 100 from the resource pool for mode 1. Then, the scheduling unit 222 notifies the transmission control unit 223 of the determined radio resource. This radio resource is a radio resource used for transmission in mode 1 using a dynamic grant.
 また、スケジューリング部222は、モード1用のリソースプールから、セル内に位置する端末装置100それぞれにあらかじめ周期的な無線リソースを割り当てるスケジューリングを実行する。そして、スケジューリング部222は、各端末装置100に割り当てた無線リソースを送信制御部223へ通知する。この無線リソースは、設定グラントを用いるモード1での送信に使用される無線リソースである。 Further, the scheduling unit 222 executes scheduling for allocating periodic radio resources in advance to each of the terminal devices 100 located in the cell from the resource pool for mode 1. Then, the scheduling unit 222 notifies the transmission control unit 223 of the radio resources allocated to each terminal device 100. This radio resource is a radio resource used for transmission in mode 1 using the setting grant.
 送信制御部223は、スケジューリング部222によるスケジューリングの結果を端末装置100へ通知する情報の送信を制御する。具体的には、送信制御部223は、端末装置100からSRが受信された場合、動的グラントを用いるモード1での送信に使用される無線リソースの情報を例えばPDCCHなどの制御チャネルを用いて端末装置100へ送信する。また、送信制御部223は、設定グラントを用いるモード1での送信に使用される無線リソースの情報を例えばRRCメッセージとして端末装置100へ送信する。さらに、送信制御部223は、設定グラントを用いるモード1での送信に利用される無線リソースを、PDCCHなどの制御チャネルを用いてアクティブ化(Activation)又は非アクティブ化(Deactivation)する。 The transmission control unit 223 controls the transmission of information for notifying the terminal device 100 of the scheduling result by the scheduling unit 222. Specifically, when SR is received from the terminal device 100, the transmission control unit 223 uses a control channel such as PDCCH to obtain information on radio resources used for transmission in mode 1 using a dynamic grant. It is transmitted to the terminal device 100. Further, the transmission control unit 223 transmits information on the radio resource used for transmission in mode 1 using the setting grant to the terminal device 100 as, for example, an RRC message. Further, the transmission control unit 223 activates or deactivates the radio resource used for transmission in mode 1 using the setting grant by using a control channel such as PDCCH.
 メモリ230は、例えばRAM又はROMなどを備え、プロセッサ220による処理に用いられる情報を記憶する。 The memory 230 includes, for example, a RAM or a ROM, and stores information used for processing by the processor 220.
 次いで、上記のように構成された端末装置100による送信時の無線通信方法について、図7に示すフロー図を参照しながら説明する。以下においては、基地局装置200のセル内に位置する端末装置100から他の端末装置100に対して、定期的に送信されるパケットとは異なる非周期パケットが送信される場合の無線通信方法について説明する。 Next, a wireless communication method at the time of transmission by the terminal device 100 configured as described above will be described with reference to the flow chart shown in FIG. 7. The following describes a wireless communication method in which an aperiodic packet different from a packet transmitted periodically is transmitted from a terminal device 100 located in a cell of a base station device 200 to another terminal device 100. explain.
 非周期パケットが発生すると、制御情報生成部121によって、非周期パケットに含まれるデータに関する制御情報が生成される(ステップS101)。すなわち、例えばデータの送信に用いられる無線リソースを特定する情報などを含むSCIが生成される。また、送信データ生成部122によって、非周期パケットに含まれるデータから送信データが生成される(ステップS102)。生成された制御情報及び送信データは、送信制御部125へ出力される。 When an aperiodic packet is generated, the control information generation unit 121 generates control information regarding the data included in the aperiodic packet (step S101). That is, an SCI containing, for example, information that identifies a radio resource used to transmit data is generated. Further, the transmission data generation unit 122 generates transmission data from the data included in the aperiodic packet (step S102). The generated control information and transmission data are output to the transmission control unit 125.
 一方、QoS情報取得部123によって、非周期パケットに含まれるデータに要求されるQoS情報が取得される(ステップS103)。具体的には、非周期パケットが発生してから送信データが送信されるまでに許容される許容遅延や、送信データに要求される信頼度や、送信データの優先度などを示すQoS情報と使用する送信モードの情報とが取得される。取得されたQoS情報及び送信モードの情報は、送信モード決定部124へ通知される。 On the other hand, the QoS information acquisition unit 123 acquires the QoS information required for the data included in the aperiodic packet (step S103). Specifically, it is used with QoS information indicating the allowable delay from the generation of aperiodic packets to the transmission of transmission data, the reliability required for transmission data, the priority of transmission data, and the like. Information on the transmission mode to be used is acquired. The acquired QoS information and the transmission mode information are notified to the transmission mode determination unit 124.
 そして、送信モード決定部124によって、動的グラントを用いるモード1、設定グラントを用いるモード1及びモード2それぞれの無線リソースであって許容遅延内の無線リソースが、制御情報及び送信データを送信するための無線リソース候補として特定される(ステップS104)。すなわち、基地局装置200に対してSRを送信することにより端末装置100に割り当てられる可能性がある無線リソースが動的グラントを用いるモード1の無線リソース候補として特定される。また、基地局装置200によってあらかじめ端末装置100に割り当てられた周期的な無線リソースのうち、許容遅延内の無線リソースが設定グラントを用いるモード1の無線リソース候補として特定される。さらに、リソース選択部128によって選択された無線リソースがモード2の無線リソース候補として特定される。これらの無線リソース候補は、対応する論理チャネルに応じたリソースプールの無線リソースであり、モード1の無線リソース、モード2の無線リソース、又はモード1、2の無線リソースである。 Then, the transmission mode determination unit 124 transmits the control information and the transmission data by the radio resources of each of the mode 1 using the dynamic grant, the mode 1 using the setting grant, and the mode 2 within the allowable delay. It is specified as a radio resource candidate of (step S104). That is, a radio resource that may be allocated to the terminal device 100 by transmitting SR to the base station device 200 is specified as a mode 1 radio resource candidate using a dynamic grant. Further, among the periodic radio resources previously allocated to the terminal device 100 by the base station device 200, the radio resource within the allowable delay is specified as a mode 1 radio resource candidate using the setting grant. Further, the radio resource selected by the resource selection unit 128 is specified as a mode 2 radio resource candidate. These radio resource candidates are radio resources in the resource pool corresponding to the corresponding logical channel, mode 1 radio resources, mode 2 radio resources, or modes 1 and 2 radio resources.
 各モードの無線リソース候補が特定されると、送信モード決定部124によって、それぞれの無線リソース候補に信頼度指数が割り当てられる(ステップS105)。すなわち、それぞれの無線リソース候補に、モードに応じた信頼度指数が付与される。例えば、動的グラントを用いるモード1の無線リソース候補には信頼度指数α1,nが付与され、設定グラントを用いるモード1のタイプ1の無線リソースには信頼度指数α2,nが付与され、設定グラントを用いるモード1のタイプ2の無線リソースには信頼度指数α3,nが付与され、モード2の無線リソースには信頼度指数α4,nが付与される。 When the radio resource candidate of each mode is specified, the transmission mode determination unit 124 assigns a reliability index to each radio resource candidate (step S105). That is, each radio resource candidate is given a reliability index according to the mode. For example, a mode 1 radio resource candidate that uses a dynamic grant is given a confidence index α 1, n , and a mode 1 type 1 radio resource that uses a set grant is given a confidence index α 2, n . , The mode 1 type 2 radio resource using the setting grant is given a reliability index α 3, n , and the mode 2 radio resource is given a reliability index α 4, n .
 そして、送信モード決定部124によって、信頼度指数が高い順に無線リソース候補が並べられる。このとき、信頼度指数が等しい無線リソース候補については、より早いタイミングの(すなわち、信頼度指数α1,n、α2,n、α3,n、α4,nのnが小さい)無線リソース候補が先に並べられる。そして、並べられた無線リソース候補の信頼度指数が先頭から加算され、信頼度指数の和がQoS情報に含まれる信頼度に対応する閾値以上となる時点で、加算された信頼度指数に対応するモード及び無線リソースが、制御情報及び送信データの送信に用いられると決定される(ステップS106)。つまり、各モードの無線リソース候補から、信頼度指数の合計が所定の閾値以上となる複数の無線リソースが選択され、選択された無線リソースを用いて制御情報及び送信データを繰り返し送信することが決定される。 Then, the transmission mode determination unit 124 arranges the radio resource candidates in descending order of the reliability index. At this time, for radio resource candidates with the same reliability index, radio resources with earlier timing (that is, n of reliability indexes α 1, n , α 2, n , α 3, n , α 4, n is small) Candidates are listed first. Then, the reliability indexes of the arranged radio resource candidates are added from the beginning, and when the sum of the reliability indexes becomes equal to or greater than the threshold value corresponding to the reliability included in the QoS information, the added reliability index corresponds to the added reliability index. It is determined that the mode and radio resources will be used for transmission of control information and transmission data (step S106). That is, it is determined that a plurality of radio resources whose total reliability index is equal to or higher than a predetermined threshold are selected from the radio resource candidates in each mode, and control information and transmission data are repeatedly transmitted using the selected radio resources. Will be done.
 送信モード決定部124によって決定された無線リソースの情報は、送信制御部125へ通知され、送信制御部125によって、制御情報及び送信データに無線リソースが割り当てられる(ステップS107)。すなわち、動的グラントを用いるモード1の無線リソースが送信に使用される場合には、送信制御部125によってSRが基地局装置200へ送信され、基地局装置200から例えばPDCCHによって通知される無線リソースが制御情報及び送信データに割り当てられる。また、設定グラントを用いるモード1の無線リソースが送信に使用される場合には、あらかじめ割り当てられた周期的な無線リソースが制御情報及び送信データに割り当てられる。さらに、モード2の無線リソースが送信に使用される場合には、リソース選択部128によって選択された無線リソースが制御情報及び送信データに割り当てられる。 The information of the radio resource determined by the transmission mode determination unit 124 is notified to the transmission control unit 125, and the transmission control unit 125 allocates the radio resource to the control information and the transmission data (step S107). That is, when the mode 1 radio resource using the dynamic grant is used for transmission, the SR is transmitted to the base station device 200 by the transmission control unit 125, and the radio resource notified from the base station device 200 by, for example, PDCCH. Is assigned to control information and transmission data. Further, when the mode 1 radio resource using the setting grant is used for transmission, the periodic radio resource allocated in advance is allocated to the control information and the transmission data. Further, when the radio resource of the mode 2 is used for transmission, the radio resource selected by the resource selection unit 128 is assigned to the control information and the transmission data.
 そして、送信制御部125から出力される制御情報及び送信データは、無線通信部110からアンテナを介して送信される(ステップS108)。このとき、制御情報は、割り当てられた無線リソースに含まれる制御チャネル(例えばPSCCH)によって送信され、送信データは、割り当てられた無線リソースに含まれるデータチャネル(例えばPSSCH)によって送信される。これにより、制御情報及び送信データは、信頼度指数の和が所定の閾値以上となる無線リソースを用いて繰り返し送信されることになり、非周期パケットに要求されるQoSを満たすことができる。換言すれば、無線リソースの利用効率を向上し、通信の高信頼性及び低遅延を実現することができる。 Then, the control information and transmission data output from the transmission control unit 125 are transmitted from the wireless communication unit 110 via the antenna (step S108). At this time, the control information is transmitted by the control channel (for example, PSCCH) included in the allocated radio resource, and the transmission data is transmitted by the data channel (for example, PSCH) included in the allocated radio resource. As a result, the control information and the transmission data are repeatedly transmitted using the radio resource whose sum of the reliability indexes is equal to or more than a predetermined threshold value, and can satisfy the QoS required for the aperiodic packet. In other words, it is possible to improve the utilization efficiency of wireless resources and realize high reliability and low delay of communication.
 次に、モード1、2の両方に対応する論理チャネルが使用される場合の送信モード決定部124による送信モードの決定の具体例について説明する。図8は、制御情報及び送信データの送信に用いられる無線リソースの具体例を示す図である。 Next, a specific example of determining the transmission mode by the transmission mode determination unit 124 when the logical channels corresponding to both modes 1 and 2 are used will be described. FIG. 8 is a diagram showing a specific example of a radio resource used for transmitting control information and transmission data.
 図8に示すように、時刻T0において非周期パケットが発生すると、許容遅延Td内の無線リソース候補が特定される。ここでは、動的グラントを用いるモード1の無線リソース310、設定グラントを用いるモード1の無線リソース320、モード2の無線リソース330、340が無線リソース候補として特定されるものとする。一般に、動的グラントを用いるモード1の無線リソースは、SRに応じて基地局装置200が割り当てるものであるため、遅延が大きくなる傾向がある。一方、モード2の無線リソースは、端末装置100が選択ウインドウから自律的に選択するものであるため、遅延が小さくて済む。 As shown in FIG. 8, when an aperiodic packet occurs at time T 0 , a radio resource candidate within the allowable delay T d is specified. Here, it is assumed that the mode 1 radio resource 310 using the dynamic grant, the mode 1 radio resource 320 using the setting grant, and the mode 2 radio resource 330, 340 are specified as radio resource candidates. In general, the mode 1 radio resource using the dynamic grant is allocated by the base station apparatus 200 according to the SR, so that the delay tends to be large. On the other hand, since the radio resource in the mode 2 is autonomously selected by the terminal device 100 from the selection window, the delay can be small.
 このため、図8においては、モード2の無線リソース候補である無線リソース330に含まれるスロットのインデックスn1が最も小さく、動的グラントを用いるモード1の無線リソース候補である無線リソース310のスロットのインデックスn4が最も大きい。また、無線リソース330の次に遅延が小さいのは、スロットのインデックスn2で示される設定グラントを用いるモード1の無線リソース320であり、その次に遅延が小さいのは、スロットのインデックスn3で示されるモード2の無線リソース340である。 Therefore, in FIG. 8, the index n 1 of the slot included in the radio resource 330 which is the radio resource candidate of mode 2 is the smallest, and the slot of the radio resource 310 which is the radio resource candidate of mode 1 using the dynamic grant is used. Index n 4 is the largest. The next smallest delay after the radio resource 330 is the radio resource 320 in mode 1 using the setting grant indicated by the slot index n 2 , and the next smallest delay is the slot index n 3 . The mode 2 radio resource shown is 340.
 無線リソース候補310~340が特定されると、これらの無線リソース候補310~340に信頼度指数が割り当てられる。信頼度指数は、それぞれのモードの信頼度に応じた値であり、通信の信頼度が高いモードほど信頼度指数が高くなる。ここでは、無線リソースの衝突が発生しない動的グラントを用いるモード1の信頼度指数が最も高く「3」であるものとする。また、無線リソースの衝突が発生しにくい設定グラントを用いるモード1の信頼度指数が「2」であり、無線リソースの衝突が発生し得るモード2の信頼度指数が「1」であるものとする。したがって、無線リソース310の信頼度指数は「3」であり、無線リソース320の信頼度指数は「2」であり、無線リソース330、340の信頼度指数は「1」である。 When the radio resource candidates 310 to 340 are specified, the reliability index is assigned to these radio resource candidates 310 to 340. The reliability index is a value corresponding to the reliability of each mode, and the higher the communication reliability of the mode, the higher the reliability index. Here, it is assumed that the reliability index of mode 1 using the dynamic grant that does not cause collision of radio resources is the highest and is “3”. Further, it is assumed that the reliability index of mode 1 using the setting grant in which collision of radio resources is unlikely to occur is "2", and the reliability index of mode 2 in which collision of radio resources can occur is "1". .. Therefore, the reliability index of the radio resource 310 is "3", the reliability index of the radio resource 320 is "2", and the reliability index of the radio resources 330 and 340 is "1".
 なお、モードに応じた信頼度指数は、通信範囲内での推定されるSINRやモード2におけるチャネルビジー比などから設定される値であり、固定値であっても良いし、準静的に変更されても良いし、動的に変更されても良い。 The reliability index according to the mode is a value set from the estimated SINR within the communication range, the channel busy ratio in mode 2, and the like, and may be a fixed value or quasi-statically changed. It may be changed or it may be changed dynamically.
 無線リソース310~340に信頼度指数が割り当てられると、信頼度指数が高い順に無線リソース310~340が並べられる。このとき、信頼度指数が同じ無線リソース候補がある場合には、より遅延が小さい(すなわち、スロットのインデックスが小さい)無線リソース候補が先に並べられる。したがって、図8に示す無線リソース310~340は、無線リソース310(信頼度指数「3」)、無線リソース320(信頼度指数「2」)、無線リソース330(信頼度指数「1」、スロットn1)、無線リソース340(信頼度指数「1」、スロットn3)の順に並べられる。 When the reliability index is assigned to the radio resources 310 to 340, the radio resources 310 to 340 are arranged in descending order of the reliability index. At this time, if there are radio resource candidates having the same reliability index, the radio resource candidates having a smaller delay (that is, the index of the slot is smaller) are arranged first. Therefore, the radio resources 310 to 340 shown in FIG. 8 include a radio resource 310 (reliability index “3”), a radio resource 320 (reliability index “2”), and a radio resource 330 (reliability index “1”, slot n). 1 ), radio resource 340 (reliability index "1", slot n 3 ) are arranged in this order.
 そして、先頭の無線リソース310から順に信頼度指数が加算され、信頼度指数の和が閾値以上になるか否かが判断される。閾値は、QoS情報に含まれる信頼度であって送信データに要求される信頼度に対応する値であり、ここでは、例えば閾値が「6」であるものとする。この場合、無線リソース310、320、330の信頼度指数の和が6となって閾値以上となるため、送信モード決定部124は、無線リソース340を除く無線リソース310、320、330を制御情報及び送信データの繰り返し送信に使用すると決定する。すなわち、送信モード決定部124は、信頼度指数の和が閾値以上となる最小限の無線リソース候補の組み合わせを選択し、繰り返し送信に使用する無線リソースに決定する。 Then, the reliability index is added in order from the first radio resource 310, and it is determined whether or not the sum of the reliability indexes is equal to or greater than the threshold value. The threshold value is a reliability included in the QoS information and is a value corresponding to the reliability required for the transmission data. Here, for example, it is assumed that the threshold value is “6”. In this case, since the sum of the reliability indexes of the radio resources 310, 320, and 330 becomes 6 and becomes equal to or more than the threshold value, the transmission mode determination unit 124 controls the radio resources 310, 320, and 330 excluding the radio resource 340 as control information. Determined to be used for repeated transmission of transmission data. That is, the transmission mode determination unit 124 selects the minimum combination of radio resource candidates whose sum of the reliability indexes is equal to or greater than the threshold value, and determines the radio resource to be used for repeated transmission.
 これにより、同一の制御情報及び送信データは、まずモード2の無線リソース330を使用して送信され、次に設定グラントを用いるモード1の無線リソース320を使用して送信され、最後に動的グラントを用いるモード1の無線リソース310を使用して送信される。このように、送信データに要求されるQoS情報に基づいて複数の無線リソースが決定されるため、繰り返し送信のための送信モード及び無線リソースを効率的に決定することができる。また、QoS情報に基づいて決定される複数の無線リソースは、送信データに要求される信頼度を満たす最小限の無線リソースであるため、無線リソースの利用効率を向上し、通信の高信頼性及び低遅延を実現することができる。 As a result, the same control information and transmission data are first transmitted using the mode 2 radio resource 330, then using the mode 1 radio resource 320 using the configuration grant, and finally the dynamic grant. Is transmitted using the mode 1 radio resource 310 with. As described above, since the plurality of radio resources are determined based on the QoS information required for the transmission data, the transmission mode and the radio resources for repeated transmission can be efficiently determined. Further, since the plurality of radio resources determined based on the QoS information are the minimum radio resources that satisfy the reliability required for the transmission data, the utilization efficiency of the radio resources is improved, and the communication reliability is improved. Low latency can be achieved.
 以上のように、本実施の形態によれば、定期的に送信されるパケットとは異なる非周期パケットが発生した場合に、非周期パケットのデータに要求されるQoSに基づいて、同一のデータの繰り返し送信に用いられる送信モード及び無線リソースを決定する。そして、決定された送信モード及び無線リソースを使用して、同一のデータを繰り返し送信する。このため、適切な無線リソースを使用しつつデータに要求されるQoSを満たすことができる。換言すれば、無線リソースの利用効率を向上し、通信の高信頼性及び低遅延を実現することができる。 As described above, according to the present embodiment, when an aperiodic packet different from the periodically transmitted packet is generated, the same data is obtained based on the QoS required for the aperiodic packet data. Determine the transmission mode and radio resources used for repetitive transmission. Then, the same data is repeatedly transmitted using the determined transmission mode and radio resource. Therefore, it is possible to satisfy the QoS required for data while using appropriate radio resources. In other words, it is possible to improve the utilization efficiency of wireless resources and realize high reliability and low delay of communication.
 なお、上記一実施の形態においては、非周期パケットが発生した場合にQoSに基づいて送信モード及び無線リソースを決定するものとして説明したが、非周期パケットではなく周期パケットに対しても同様に処理することができる。すなわち、周期的に発生する周期パケットについて、QoSに基づいて送信モード及び無線リソースを決定しても良い。 In the above embodiment, the transmission mode and the radio resource are determined based on QoS when an aperiodic packet is generated, but the same processing is applied to a periodic packet instead of the aperiodic packet. can do. That is, for periodic packets that occur periodically, the transmission mode and radio resources may be determined based on QoS.
 110、210 無線通信部
 120、220 プロセッサ
 121 制御情報生成部
 122 送信データ生成部
 123 QoS情報取得部
 124 送信モード決定部
 125、223 送信制御部
 126、221 受信制御部
 127 センシング部
 128 リソース選択部
 130、230 メモリ
 222 スケジューリング部
110, 210 Wireless communication unit 120, 220 Processor 121 Control information generation unit 122 Transmission data generation unit 123 QoS information acquisition unit 124 Transmission mode determination unit 125, 223 Transmission control unit 126, 221 Reception control unit 127 Sensing unit 128 Resource selection unit 130 , 230 Memory 222 Scheduling unit

Claims (8)

  1.  信号を送受信する無線通信部と、
     前記無線通信部に接続されるプロセッサとを有し、
     前記プロセッサは、
     送信されるデータに要求されるQoS(Quality of Service)情報を取得し、
     取得されたQoS情報に基づいて、QoSに対応する複数の送信モードを論理チャネルに割り当て、前記データが送信されるまでに許容される許容遅延内の複数の無線リソースを選択し、
     選択された複数の無線リソースを用いて前記データを前記無線通信部から繰り返し送信させる処理を実行する
     ことを特徴とする端末装置。
    A wireless communication unit that sends and receives signals,
    It has a processor connected to the wireless communication unit, and has a processor.
    The processor
    Acquires the QoS (Quality of Service) information required for the transmitted data,
    Based on the acquired QoS information, multiple transmit modes corresponding to QoS are assigned to the logical channel, and multiple radio resources within the allowable delay before the data is transmitted are selected.
    A terminal device characterized in that a process of repeatedly transmitting the data from the wireless communication unit using a plurality of selected wireless resources is executed.
  2.  前記選択する処理は、
     前記QoS情報によって示される信頼度であって前記データに要求される信頼度を満たすように前記複数の無線リソースを選択する
     ことを特徴とする請求項1記載の端末装置。
    The process to be selected is
    The terminal device according to claim 1, wherein the plurality of radio resources are selected so as to satisfy the reliability indicated by the QoS information and the reliability required for the data.
  3.  前記選択する処理は、
     基地局装置によって割り当てられる第1のモードの無線リソース及び自装置が自律的に選択する第2のモードの無線リソースから、前記複数の無線リソースを選択する
     ことを特徴とする請求項1記載の端末装置。
    The process to be selected is
    The terminal according to claim 1, wherein the plurality of radio resources are selected from the radio resources of the first mode allocated by the base station device and the radio resources of the second mode autonomously selected by the own device. Device.
  4.  前記選択する処理は、
     前記許容遅延内の無線リソースから前記データの送信に使用可能な前記第1のモード及び/又は前記第2のモードの無線リソース候補を特定し、
     特定した無線リソース候補それぞれに、モードに応じた信頼度指数を付与し、
     信頼度指数の和が所定の閾値以上となる最小限の無線リソース候補の組み合わせを選択する
     処理を含むことを特徴とする請求項3記載の端末装置。
    The process to be selected is
    From the radio resources within the permissible delay, the radio resource candidates of the first mode and / or the second mode that can be used for transmitting the data are identified.
    A reliability index according to the mode is given to each of the identified wireless resource candidates.
    The terminal device according to claim 3, further comprising a process of selecting a minimum combination of radio resource candidates whose sum of reliability indexes is equal to or greater than a predetermined threshold value.
  5.  前記信頼度指数は、
     固定値、準静的に変更される値、又は動的に変更される値である
     ことを特徴とする請求項4記載の端末装置。
    The reliability index is
    The terminal device according to claim 4, wherein the value is fixed, quasi-statically changed, or dynamically changed.
  6.  前記複数の送信モードは、
     端末装置の識別情報、IP(Internet Protocol)パケットのサービスID、QoSフローの識別情報、サイドリンク無線ベアラの識別情報、又は論理チャネルの識別情報に対応付けられる
     ことを特徴とする請求項1記載の端末装置。
    The plurality of transmission modes are
    The 1. Terminal device.
  7.  複数の端末装置を有する無線通信システムであって、
     少なくとも1つの端末装置は、
     信号を送受信する無線通信部と、
     前記無線通信部に接続されるプロセッサとを有し、
     前記プロセッサは、
     他の端末装置へ送信されるデータに要求されるQoS(Quality of Service)情報を取得し、
     取得されたQoS情報に基づいて、QoSに対応する複数の送信モードを論理チャネルに割り当て、前記データが送信されるまでに許容される許容遅延内の複数の無線リソースを選択し、
     選択された複数の無線リソースを用いて前記データを前記無線通信部から前記他の端末装置へ繰り返し送信させる処理を実行する
     ことを特徴とする無線通信システム。
    A wireless communication system having multiple terminal devices,
    At least one terminal device
    A wireless communication unit that sends and receives signals,
    It has a processor connected to the wireless communication unit, and has a processor.
    The processor
    Acquires QoS (Quality of Service) information required for data transmitted to other terminal devices,
    Based on the acquired QoS information, multiple transmit modes corresponding to QoS are assigned to the logical channel, and multiple radio resources within the allowable delay before the data is transmitted are selected.
    A wireless communication system characterized by executing a process of repeatedly transmitting the data from the wireless communication unit to the other terminal device using a plurality of selected wireless resources.
  8.  送信されるデータに要求されるQoS(Quality of Service)情報を取得し、
     取得されたQoS情報に基づいて、前記データが送信されるまでに許容される許容遅延内の複数の無線リソースを選択し、
     選択された複数の無線リソースを用いて前記データを繰り返し送信する
     処理を有することを特徴とする無線通信方法。
    Acquires the QoS (Quality of Service) information required for the transmitted data,
    Based on the acquired QoS information, select multiple radio resources within the permissible delay before the data is transmitted.
    A wireless communication method comprising a process of repeatedly transmitting the data using a plurality of selected wireless resources.
PCT/JP2020/030095 2020-08-05 2020-08-05 Terminal device, radio communication system and radio communication method WO2022029943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/030095 WO2022029943A1 (en) 2020-08-05 2020-08-05 Terminal device, radio communication system and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/030095 WO2022029943A1 (en) 2020-08-05 2020-08-05 Terminal device, radio communication system and radio communication method

Publications (1)

Publication Number Publication Date
WO2022029943A1 true WO2022029943A1 (en) 2022-02-10

Family

ID=80117796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030095 WO2022029943A1 (en) 2020-08-05 2020-08-05 Terminal device, radio communication system and radio communication method

Country Status (1)

Country Link
WO (1) WO2022029943A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533868A (en) * 2015-11-06 2018-11-15 サン パテント トラスト Sender user equipment and method
JP2019522430A (en) * 2016-07-18 2019-08-08 パナソニック インテレクチュアル プロパティ コーポレ Improved support for quality of service for V2X transmissions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018533868A (en) * 2015-11-06 2018-11-15 サン パテント トラスト Sender user equipment and method
JP2019522430A (en) * 2016-07-18 2019-08-08 パナソニック インテレクチュアル プロパティ コーポレ Improved support for quality of service for V2X transmissions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLE: "Resource allocations for UEs with simultaneous mode 1 & mode 2 configurations", 3GPP DRAFT; R2-1915778, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, United States; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051817364 *
INTERDIGITAL INC.: "RAN2 Aspects of Simultaneous Configuration of Mode 1 and Mode 2", 3GPP DRAFT; R2-1914872, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, US; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051816816 *

Similar Documents

Publication Publication Date Title
US11109403B2 (en) Method and apparatus for scheduling uplink data in mobile communication system
CN110521264B (en) Method for performing V2X communication performed by V2X terminal in wireless communication system and terminal using the same
CN110249690B (en) V2X communication method performed by V2X terminal in wireless communication system and terminal using the same
EP2547160B1 (en) Channel assigning in wireless communication systems
EP3354097B1 (en) Scheduling and transmitting control information and data for direct communication
KR101271526B1 (en) Channel allocating method, wireless communication system, and channel structure of wireless sections
CN112385280A (en) Techniques for sidelink feedback transmission
CN113785612A (en) Method and apparatus for measuring and reporting channel status in sidelink communications
EP3459313B1 (en) Method and apparatus for scheduling uplink data in mobile communication system
CN111742598A (en) Communication method and apparatus
US20210153170A1 (en) Terminal device, base-station device, and communication system
US10362594B2 (en) Scheduling in cellular networks
WO2020031346A1 (en) Communication device, base station device, and communication method
CN114175758A (en) Apparatus and method for processing transmission collision in wireless communication system
WO2022011699A1 (en) Communication method and sidelink device
EP3275258B1 (en) Scheduling in cellular networks
WO2020144813A1 (en) Communication device and wireless communication system
WO2022029943A1 (en) Terminal device, radio communication system and radio communication method
WO2020217501A1 (en) Communication device and wireless communication system
WO2022059212A1 (en) Terminal device, wireless communication system, and resource selection method
WO2019226098A1 (en) Methods, transmitting node and receiving user equipment for handling a pdu based on 3gpp release, version or feature
WO2021161473A1 (en) Wireless communication device, wireless communication system and wireless resource selection method
US20210368480A1 (en) Communication system and terminal device
WO2020031270A1 (en) Terminal device, wireless communication system and resource selection method
CN112771952A (en) Communication device and communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP