WO2021161473A1 - Wireless communication device, wireless communication system and wireless resource selection method - Google Patents

Wireless communication device, wireless communication system and wireless resource selection method Download PDF

Info

Publication number
WO2021161473A1
WO2021161473A1 PCT/JP2020/005648 JP2020005648W WO2021161473A1 WO 2021161473 A1 WO2021161473 A1 WO 2021161473A1 JP 2020005648 W JP2020005648 W JP 2020005648W WO 2021161473 A1 WO2021161473 A1 WO 2021161473A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
unit
wireless communication
wireless
terminal device
Prior art date
Application number
PCT/JP2020/005648
Other languages
French (fr)
Japanese (ja)
Inventor
紅陽 陳
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2020/005648 priority Critical patent/WO2021161473A1/en
Publication of WO2021161473A1 publication Critical patent/WO2021161473A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication device, a wireless communication system, and a wireless resource selection method.
  • the traffic of mobile terminals occupies most of the network resources.
  • the traffic used by mobile terminals tends to increase in the future.
  • Non-Patent Documents 13 to 39 technical studies are underway by the 3GPP working group (for example, TSG-RAN WG1, TSG-RAN WG2, etc.), and the first edition of the standard document was issued in December 2017. (Non-Patent Documents 13 to 39).
  • 5G is often classified into eMBB (Enhanced Mobile Broad Band), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication). It is supposed to support the use case of.
  • eMBB Enhanced Mobile Broad Band
  • Massive MTC Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communication
  • V2X Vehicle to Everything
  • V2X is, for example, V2V (Vehicle to Vehicle) that communicates between automobiles using a side link channel, V2P (Vehicle to Pedestrian) that communicates between automobiles and pedestrians, and road infrastructure such as automobiles and signs.
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to Network
  • V2X may be described as X2V (Everything to Vehicle). In this case, for example, V2X represents transmitting a signal from the automobile to another device, and X2V represents transmitting a signal from the other device to the automobile.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared CHannle
  • V2X as a method of allocating resources, for example, there are a method of centrally controlling by a mobile communication system and a method of autonomously controlling each terminal device that implements V2X.
  • the method of centrally controlling the mobile communication system is applicable when the terminal device that implements V2X is in the coverage of the mobile communication system, and is also called mode 3 in LTE V2X.
  • the method in which each terminal device autonomously controls is applicable even if the terminal device does not live in the coverage of the mobile communication system, and is also called mode 4 in LTE V2X.
  • mode 4 since communication between the terminal device for resource allocation and the mobile communication system is not performed, the transmission delay when transmission data is generated in the terminal device is shortened, and a strict delay request is satisfied. Is possible.
  • each terminal device senses the frequency band used for V2X, excludes resources that are likely to be used by other terminal devices based on the sensing result, and selects a resource to be used for data transmission. do.
  • mode 3 in LTE V2X corresponds to mode 1 of NR (New Radio) -V2X
  • mode 4 in LTE V2X corresponds to mode 2 of NR-V2X.
  • 3GPP TS 22.186 V16.2.0 (2019-06) 3GPP TS 36.211 V16.0.0 (2019-12) 3GPP TS 36.212 V16.0.0 (2019-12) 3GPP TS 36.213 V16.0.0 (2019-12) 3GPP TS 36.300 V16.0.0 (2019-12) 3GPP TS 36.321 V15.8.0 (2019-12) 3GPP TS 36.322 V15.3.0 (2019-09) 3GPP TS 36.323 V15.5.0 (2019-12) 3GPP TS 36.331 V15.8.0 (2019-12) 3GPP TS 36.413 V16.0.0 (2019-12) 3GPP TS 36.423 V16.0.0 (2019-12) 3GPP TS 36.425 V15.0.0 (2018-06) 3GPP TS 37.340 V16.0.0 (2019-12) 3GPP TS 38.201 V16.0.0 (2019-12) 3GPP TS 38.202 V16.0.0 (2019-12) 3GPP TS 38.211 V16
  • the terminal device that receives the data determines whether or not the data addressed to the own device is transmitted by monitoring the control channel. to decide. That is, the terminal device that transmits the data transmits the data using the wireless resource allocated by the mobile communication system, but the terminal device that receives the data constantly monitors the control channel and sends the data addressed to the own device. Judge the presence or absence. Therefore, the power consumption of the terminal device increases due to the demodulation and decoding of the control channel.
  • the disclosed technology has been made in view of such a point, and an object thereof is to provide a wireless communication device, a wireless communication system, and a wireless resource selection method capable of suppressing an increase in power consumption.
  • the wireless communication device disclosed in the present application includes a determination unit that determines a wireless resource to skip sensing in sensing for investigating the usage status of a wireless resource by a wireless communication device other than the own device, and the determination unit.
  • a sensing unit that executes sensing while skipping the wireless resource determined by the sensor, a selection unit that selects a wireless resource to be used for data transmission based on the result of sensing by the sensing unit, and a selection unit that is selected by the selection unit. It has a transmission unit that transmits data using the wireless resources.
  • the wireless communication device According to one aspect of the wireless communication device, the wireless communication system, and the wireless resource selection method disclosed in the present application, it is possible to suppress an increase in power consumption.
  • FIG. 1 is a diagram showing a configuration example of a wireless communication system according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of a terminal device according to the first embodiment.
  • FIG. 3 is a block diagram showing a configuration of a skip control unit according to the first embodiment.
  • FIG. 4 is a flow chart showing a radio resource selection method according to the first embodiment.
  • FIG. 5 is a diagram showing an example of a sensing window.
  • FIG. 6 is a diagram illustrating selection of radio resources.
  • FIG. 7 is a block diagram showing a configuration of a skip control unit according to the second embodiment.
  • FIG. 8 is a flow chart showing a radio resource selection method according to the second embodiment.
  • FIG. 9 is a block diagram showing a configuration of a skip control unit according to the third embodiment.
  • FIG. 10 is a flow chart showing a radio resource selection method according to the third embodiment.
  • FIG. 11 is a diagram showing a configuration example of the wireless communication system according to the fourth embodiment.
  • FIG. 12 is a block diagram showing a configuration of the base station apparatus according to the fourth embodiment.
  • FIG. 13 is a block diagram showing the configuration of the terminal device according to the fourth embodiment.
  • FIG. 1 is a diagram showing a configuration example of a wireless communication system according to the first embodiment.
  • the wireless communication system includes a terminal device V-UE mounted on an automobile and a terminal device P-UE possessed by a pedestrian.
  • the terminal device V-UE and the terminal device P-UE are wireless communication devices capable of wireless communication.
  • the terminal device V-UE and the terminal device P-UE each group cast data to the terminal devices belonging to the same group.
  • the terminal device V-UE and the terminal device P-UE autonomously select the radio resource used for transmitting the data. Specifically, the terminal device V-UE and the terminal device P-UE estimate the radio resources used by other devices by sensing all available frequency bands in the sensing window for a predetermined period. Then, the terminal device V-UE and the terminal device P-UE exclude the radio resources estimated to be used by other devices from the timing selection window after the sensing window, and transmit the data. Select the wireless resource to use.
  • the terminal device V-UE and the terminal device P-UE When sensing the radio resource of the sensing window, the terminal device V-UE and the terminal device P-UE each determine the priority level of their own device, and skip the sensing of the radio resource according to the priority level. That is, the terminal device V-UE and the terminal device P-UE do not sense all the radio resources, but sense some radio resources while skipping according to the priority level. As a result, the terminal device V-UE and the terminal device P-UE can suppress an increase in power consumption during sensing.
  • FIG. 2 is a block diagram showing the configuration of the terminal device 100 which is the same as the terminal device V-UE and the terminal device P-UE.
  • the terminal device 100 shown in FIG. 2 has a processor 110, a memory 120, and a wireless communication unit 130.
  • the processor 110 includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), etc., and controls the entire terminal device 100 in an integrated manner.
  • the processor 110 includes a control information generation unit 111, a transmission data generation unit 112, a transmission control unit 113, a reception control unit 114, a skip control unit 115, a sensing unit 116, and a resource selection unit 117.
  • the control information generation unit 111 generates control information such as SCI.
  • control information generated by the control information generation unit 111 information on the data coding rate and modulation method, information for specifying the radio resource of the data channel used for data transmission, and radio resource used for data retransmission are specified. Information to be done is included.
  • the transmission data generation unit 112 generates transmission data to be transmitted to another terminal device.
  • the transmitted data is group cast to a plurality of terminal devices belonging to the same group as the terminal device 100, for example. Further, the transmission data generation unit 112 generates a presence / absence confirmation request requesting the skip control unit 115 to transmit a presence / absence confirmation signal in order to confirm the existence of surrounding terminal devices in response to an instruction.
  • the transmission control unit 113 encodes and modulates the control information and transmission data, maps them to radio resources, and generates a transmission signal. At this time, the transmission control unit 113 maps the control information and the transmission data to the radio resource designated by the resource selection unit 117. Then, the transmission control unit 113 causes the wireless communication unit 130 to transmit a transmission signal including control information and transmission data. Further, the transmission control unit 113 causes the wireless communication unit 130 to transmit the existence / absence confirmation request generated by the transmission data generation unit 112.
  • the reception control unit 114 acquires a received signal from the wireless communication unit 130 and executes reception processing for the received signal. Specifically, the reception control unit 114 executes demodulation and decoding of the control channel to acquire control information, and demodulates and decodes the data channel according to the control information. When the reception control unit 114 receives the presence / absence confirmation signal as a response to the presence / absence confirmation request, the reception control unit 114 outputs the presence / absence confirmation signal to the skip control unit 115.
  • the skip control unit 115 acquires the presence / absence confirmation signal and calculates the density of the terminal device around the terminal device 100. Then, the skip control unit 115 determines the priority level of sensing in the terminal device 100 according to the density of the terminal device, and instructs the sensing unit 116 of the radio resource for skipping the sensing according to the priority level. At this time, the skip control unit 115 determines that if the density of the terminal device around the terminal device 100 is high, the priority level of sensing is high, and the radio resources skipped in the sensing are reduced. On the other hand, if the density of the terminal device around the terminal device 100 is low, the skip control unit 115 determines that the priority level of sensing is low, and increases the number of radio resources skipped in sensing.
  • the radio resource to be skipped may be, for example, a radio resource arranged periodically, or a radio resource arranged at a position that is a constant multiple of a predetermined period. Further, the cycle of the wireless resource to be sensed may be set so that the wireless resource other than the wireless resource to be sensed is skipped. In this way, the frequency of skipping wireless resources in sensing may be adjusted.
  • the skip control unit 115 instructs the transmission data generation unit 112 to transmit the existence / absence confirmation request in order to transmit the existence / absence confirmation signal to the terminal devices around the terminal device 100.
  • the detailed configuration of the skip control unit 115 will be described in detail later.
  • the sensing unit 116 senses the wireless resource in the sensing window and investigates the usage status of the wireless resource. Specifically, the sensing unit 116 demodulates and decodes the control channel in the sensing window using a predetermined number of slots in all frequency bands that can be used for data transmission as the sensing window, and confirms the usage status of the data channel. At the same time, the received power of the data channel in the sensing window is measured. At this time, the sensing unit 116 skips the radio resource instructed by the skip control unit 115 and executes sensing. That is, the sensing unit 116 executes decoding of the control channel and measurement of the received power of the data channel, for example, every other slot in the sensing window according to the instruction from the skip control unit 115.
  • the resource selection unit 117 selects a wireless resource to be used for data transmission based on the result of sensing by the sensing unit 116. Specifically, the resource selection unit 117 selects a radio resource that is estimated not to be used by another terminal device as a result of sensing from the timing selection window after the sensing window. That is, the resource selection unit 117 selects the radio resource from the selection window by excluding the radio resource that is known to be used by another terminal device as a result of decoding the control channel in the sensing window. .. Further, the resource selection unit 117 selects the radio resource from the selection window by excluding the radio resource that is predicted to be used by another terminal device as a result of measuring the received power of the data channel in the sensing window. do.
  • the memory 120 includes, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory), and stores information used for processing by the processor 110.
  • a RAM Random Access Memory
  • ROM Read Only Memory
  • the wireless communication unit 130 transmits / receives signals to / from other terminal devices. Specifically, the wireless communication unit 130 performs a predetermined wireless transmission process on the transmission signal and wirelessly transmits the transmission signal to another terminal device via the antenna. Further, the wireless communication unit 130 wirelessly receives a signal via the antenna and performs a predetermined wireless reception process on the received signal.
  • FIG. 3 is a block diagram showing the configuration of the skip control unit 115 according to the first embodiment.
  • the skip control unit 115 includes a presence / absence confirmation request unit 101, a presence / absence confirmation signal acquisition unit 102, a density calculation unit 103, and a priority level determination unit 104.
  • the existence / non-existence confirmation request unit 101 instructs the transmission data generation unit 112 to transmit the existence / non-existence confirmation request in order to transmit the existence / non-existence confirmation signal from the terminal devices around the terminal device 100.
  • the existence / non-existence confirmation request unit 101 may instruct the transmission of the existence / non-existence confirmation request when the data to be transmitted is generated, or may instruct the transmission of the existence / non-existence confirmation request at a predetermined cycle. Further, when each terminal device is set in advance to transmit a presence / absence confirmation signal or a signal similar thereto, the presence / absence confirmation request may not be transmitted from the terminal device 100. In this case, the presence / absence confirmation request unit 101 is also unnecessary.
  • the presence / absence confirmation signal acquisition unit 102 acquires the presence / absence confirmation signal transmitted from another terminal device and received by the wireless communication unit 130.
  • the presence / absence confirmation signal includes, for example, identification information of the terminal device of the transmission source, type information indicating whether the terminal device of the transmission source is a terminal device mounted on an automobile or a terminal device possessed by a pedestrian, and a transmission source. Information on the moving speed and moving direction of the terminal device of the above may be included.
  • the density calculation unit 103 estimates the distance between the terminal device that is the source of the presence / absence confirmation signal and the terminal device 100, and calculates the density of the terminal device around the terminal device 100. That is, the density calculation unit 103 calculates the propagation loss from the received power of the presence / absence confirmation signal, and estimates the distance to the terminal device of the transmission source based on the propagation loss. Then, the density calculation unit 103 calculates the density of the terminal device around the terminal device 100 from the number of terminal devices whose distance from the terminal device 100 is included in the predetermined range.
  • the priority level determination unit 104 determines the priority level of sensing in the terminal device 100 according to the density of the terminal device around the terminal device 100. Specifically, the priority level determination unit 104 determines that the higher the density of the surrounding terminal devices, the higher the priority level of sensing, and the lower the density of the surrounding terminal devices, the lower the priority level of sensing. do. Then, the priority level determination unit 104 determines the radio resource to be skipped in the sensing window according to the priority level of sensing, and instructs the sensing unit 116 to skip the sensing of the determined radio resource. At this time, the priority level determination unit 104 reduces the number of radio resources to be skipped as the priority level is higher, and increases the number of radio resources to be skipped as the priority level is lower.
  • the existence / absence confirmation request unit 101 instructs the transmission data generation unit 112 to confirm the existence of surrounding terminal devices, and the transmission data generation unit
  • the existence confirmation request is generated by 112.
  • the existence confirmation request is transmitted from the antenna via the transmission control unit 113 and the wireless communication unit 130 (step S101).
  • the presence / absence confirmation request is received by the terminal devices around the terminal device 100, and these terminal devices transmit a presence / absence confirmation signal as a response to the presence / absence confirmation request.
  • the presence / absence confirmation signal transmitted from the surrounding terminal device is received by the wireless communication unit 130 (step S102), and is acquired by the presence / absence confirmation signal acquisition unit 102 via the reception control unit 114.
  • the density calculation unit 103 calculates the density of the terminal device around the terminal device 100 using the presence / absence confirmation signal (step S103). Specifically, for example, the propagation loss is calculated from the received power of the presence / absence confirmation signal, and the distance from the terminal device of the source of the presence / absence confirmation signal to the terminal device 100 is estimated. Then, the density of the terminal device around the terminal device 100 is calculated from the number of the terminal devices located within a predetermined distance from the terminal device 100. The calculated density is notified to the priority level determination unit 104.
  • the priority level determination unit 104 determines the priority level of sensing according to the density of the surrounding terminal devices (step S104). Specifically, if the density of surrounding terminal devices is high, there is a high possibility that a collision will occur in the selection of wireless resources, so it is judged that the priority level of sensing is high. On the other hand, if the density of surrounding terminal devices is low, it is judged that the priority level of sensing is low because the possibility of collision in selecting wireless resources is low.
  • the radio resource to skip sensing is determined according to the priority level. That is, the higher the priority level, the less radio resources are skipped, and the lower the priority level, the more radio resources are skipped.
  • the skipping of the determined radio resource is instructed from the priority level determination unit 104 to the sensing unit 116.
  • the sensing unit 116 executes sensing of the radio resource while skipping the instructed radio resource (step S105). Specifically, the decoding of the control channel and the reception power measurement of the data channel are executed for the sensing window having a predetermined time width for all the frequency bands that can be used for data transmission.
  • the sensing window includes, for example, a plurality of subchannels sch # 0 to # 3 in the frequency direction and a plurality of slots # 0 to # n in the time direction, as shown in FIG. Of these, according to the instruction from the priority level determination unit 104, for example, the sensing of slots # 1, # 3, # 5, # 7, and # 9 indicated by hatching in the figure is skipped, and the control channels of the other slots are decoded. At the same time, the received power of the data channel is measured.
  • the radio resources in the sensing window are sensed while being skipped according to the instruction from the priority level determination unit 104.
  • decoding the control channel in the sensing window and measuring the received power of the data channel is omitted for some radio resources. Therefore, the processing amount related to sensing can be reduced, and the increase in power consumption can be suppressed.
  • the resource selection unit 117 selects the wireless resource to be used for data transmission (step S106). Specifically, for example, as shown in FIG. 6, the selection window 152 is set at a timing after the sensing window 151, and the radio resources estimated to be used by other terminal devices are excluded from the sensing result. , The radio resource in the selection window 152 is selected. That is, as a result of decoding the control channel in the sensing window 151, the radio resource found to be used by the other terminal device and the received power of the data channel in the sensing window 151 are measured, and as a result, the other terminal device. The radio resources in the selection window 152 are selected, excluding the radio resources presumed to be used by.
  • the selected radio resource is notified to the transmission control unit 113, and control information and transmission data are mapped to this radio resource. Then, the transmission signal obtained by the mapping is transmitted from the antenna via the wireless communication unit 130 (step S107).
  • the density of the surrounding terminal devices is calculated using the presence / absence confirmation signal transmitted from the surrounding terminal devices, and sensing is executed while skipping wireless resources according to the density. do. Therefore, sensing is not executed for all the wireless resources in the sensing window, the processing amount related to sensing can be reduced, and the increase in power consumption can be suppressed.
  • the configuration of the wireless communication system and the terminal device 100 according to the second embodiment is the same as that of the first embodiment (FIGS. 1 and 2), the description thereof will be omitted.
  • the configuration of the skip control unit 115 is different from that of the first embodiment.
  • FIG. 7 is a block diagram showing the configuration of the skip control unit 115 according to the second embodiment.
  • the same parts as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted.
  • the skip control unit 115 includes a presence / absence confirmation request unit 101, a presence / absence confirmation signal acquisition unit 102, a shortest distance calculation unit 201, and a priority level determination unit 202.
  • the shortest distance calculation unit 201 estimates the distance between the terminal device of the source of the existence confirmation signal and the terminal device 100, and calculates the shortest distance to the terminal device closest to the terminal device 100. That is, the shortest distance calculation unit 201 calculates, for example, the propagation loss from the received power of the presence / absence confirmation signal, and estimates the distance to the terminal device of the transmission source based on the propagation loss. Then, the shortest distance calculation unit 201 specifies the shortest distance closest to the terminal device 100 from the distance to the terminal device of the transmission source of each presence / absence confirmation signal. In other words, the shortest distance calculation unit 201 specifies the distance to the terminal device located closest to the terminal device 100 as the shortest distance.
  • the priority level determination unit 202 determines the priority level of sensing in the terminal device 100 according to the shortest distance from the terminal device 100. Specifically, the priority level determination unit 202 determines that the smaller the shortest distance, the higher the priority level of sensing, and the larger the shortest distance, the lower the priority level of sensing. Then, the priority level determination unit 202 determines the radio resource to be skipped in the sensing window according to the priority level of sensing, and instructs the sensing unit 116 to skip the sensing of the determined radio resource. That is, the priority level determination unit 202 reduces the number of radio resources to be skipped as the priority level is higher, and increases the number of radio resources to be skipped as the priority level is lower.
  • a presence / absence confirmation request is transmitted (step S101).
  • the presence / absence confirmation request is received by the terminal devices around the terminal device 100, and these terminal devices transmit a presence / absence confirmation signal in response to the presence / absence confirmation request.
  • the presence / absence confirmation signal transmitted from the surrounding terminal device is received by the wireless communication unit 130 (step S102), and is acquired by the presence / absence confirmation signal acquisition unit 102 via the reception control unit 114.
  • the shortest distance calculation unit 201 calculates the shortest distance to the terminal device closest to the terminal device 100 using the presence / absence confirmation signal (step S201). Specifically, for example, the propagation loss is calculated from the received power of the presence / absence confirmation signal, and the distance from the terminal device of the source of the presence / absence confirmation signal to the terminal device 100 is estimated. Then, among the plurality of terminal devices that have transmitted the presence / absence confirmation signal, the terminal device having the shortest distance to the terminal device 100 is specified, and the distance to this terminal device is the shortest distance. The shortest distance is notified to the priority level determination unit 202.
  • the priority level determination unit 202 determines the priority level of sensing according to the shortest distance (step S202). Specifically, if the shortest distance is small, there is a possibility that highly urgent data transmission / reception may occur, and since the certainty of sensing is required, it is judged that the priority level of sensing is high. On the other hand, if the shortest distance is large, it is unlikely that highly urgent data transmission / reception will occur, so it is judged that the priority level of sensing is low.
  • the radio resource to skip sensing is determined according to the priority level. That is, the higher the priority level, the less radio resources are skipped, and the lower the priority level, the more radio resources are skipped.
  • the skipping of the determined radio resource is instructed from the priority level determination unit 202 to the sensing unit 116.
  • the sensing unit 116 executes sensing of the radio resource while skipping the instructed radio resource (step S105). That is, the radio resources in the sensing window are sensed while being skipped according to the instruction from the priority level determination unit 202. Therefore, the processing amount related to sensing can be reduced, and the increase in power consumption can be suppressed.
  • the resource selection unit 117 selects the wireless resource to be used for data transmission (step S106).
  • the selected radio resource is notified to the transmission control unit 113, and control information and transmission data are mapped to this radio resource.
  • the transmission signal obtained by the mapping is transmitted from the antenna via the wireless communication unit 130 (step S107).
  • the shortest distance to the nearest terminal device is calculated using the presence / absence confirmation signal transmitted from the surrounding terminal device, and the radio resource is set according to the shortest distance. Perform sensing while skipping. Therefore, sensing is not executed for all the wireless resources in the sensing window, the processing amount related to sensing can be reduced, and the increase in power consumption can be suppressed.
  • the feature of the third embodiment is that the priority level of sensing is determined according to the channel busy ratio (CBR: Channel Busy Ratio).
  • the configuration of the wireless communication system and the terminal device 100 according to the third embodiment is the same as that of the first embodiment (FIGS. 1 and 2), the description thereof will be omitted.
  • the configuration of the skip control unit 115 is different from that of the first embodiment.
  • FIG. 9 is a block diagram showing the configuration of the skip control unit 115 according to the third embodiment.
  • the skip control unit 115 includes a CBR calculation unit 301 and a priority level determination unit 302.
  • the CBR calculation unit 301 acquires the sensing result when sensing is executed without skipping from the sensing unit 116, and calculates the CBR from the sensing result. That is, the CBR calculation unit 301 acquires the sensing result executed before the sensing unit 116 receives the skip instruction. This sensing result indicates whether or not all the radio resources in the sensing window are being used by other terminal devices. Therefore, the CBR calculation unit 301 calculates the ratio of the radio resources being used by the other terminal device as the CBR among the radio resources of the entire sensing window.
  • the priority level determination unit 302 determines the priority level of sensing in the terminal device 100 according to the CBR. Specifically, the priority level determination unit 302 determines that the larger the CBR, the higher the priority level of sensing, and the smaller the CBR, the lower the priority level of sensing. Then, the priority level determination unit 302 determines the radio resource to be skipped in the sensing window according to the priority level of sensing, and instructs the sensing unit 116 to skip the sensing of the determined radio resource. That is, the priority level determination unit 302 reduces the number of radio resources to be skipped as the priority level is higher, and increases the number of radio resources to be skipped as the priority level is lower.
  • the sensing unit 116 sets the sensing window at a predetermined cycle, for example, and executes sensing of all the radio resources in the sensing window (step S301).
  • the sensing result is acquired by the CBR calculation unit 301, and the ratio of the radio resources being used by another terminal device in the sensing window is calculated as CBR (step S302).
  • the calculated CBR is notified to the priority level determination unit 302.
  • the priority level determination unit 302 determines the priority level of sensing according to the CBR (step S303). Specifically, if the CBR is large, there is a high possibility that a collision will occur in the selection of radio resources, so it is judged that the priority level of sensing is high. On the other hand, if the CBR is small, it is judged that the priority level of sensing is low because the possibility of collision occurring in the selection of radio resources is small.
  • the radio resource to skip sensing is determined according to the priority level. That is, the higher the priority level, the less radio resources are skipped, and the lower the priority level, the more radio resources are skipped.
  • the skipping of the determined radio resource is instructed from the priority level determination unit 302 to the sensing unit 116.
  • the sensing unit 116 executes sensing of the radio resource while skipping the instructed radio resource (step S105). That is, the radio resources in the sensing window are sensed while being skipped according to the instruction from the priority level determination unit 302. Therefore, the processing amount related to sensing can be reduced, and the increase in power consumption can be suppressed.
  • the resource selection unit 117 selects the wireless resource to be used for data transmission (step S106).
  • the selected radio resource is notified to the transmission control unit 113, and control information and transmission data are mapped to this radio resource.
  • the transmission signal obtained by the mapping is transmitted from the antenna via the wireless communication unit 130 (step S107).
  • the channel busy ratio in the sensing window is calculated from the sensing result executed without skipping, and the sensing is executed while skipping the radio resource according to the channel busy ratio. .. Therefore, sensing is not executed for all the wireless resources in the sensing window, the processing amount related to sensing can be reduced, and the increase in power consumption can be suppressed.
  • the priority level of sensing may be determined by combining two or more CBRs in the density of surrounding terminal devices, the shortest distance to the nearest terminal device, and the sensing result executed without skipping. ..
  • the sensing is skipped in units of slots in the time direction, but the skip does not necessarily have to be in units of slots. That is, for example, sensing may be skipped in units of sub-channels in the frequency direction, or sensing may be skipped in different time cycles in each sub-channel.
  • the transmitting terminal device When the terminal device performs wireless communication using the side link, the transmitting terminal device requests the mobile communication system to allocate wireless resources, and transmits data using the wireless resources allocated by the mobile communication system. I have something to do. At this time, the terminal device on the transmitting side transmits the control information for designating the destination of the data to the control channel of the radio resource allocated by the mobile communication system. The terminal device on the receiving side constantly monitors the control channel used in the side link, and receives the data of the corresponding data channel when the control information indicating that there is data destined for the own device is obtained.
  • the terminal device on the receiving side constantly monitors the control channel used in the side link, the power consumption increases. Therefore, in the fourth embodiment, a case of suppressing an increase in power consumption in a wireless communication system to which wireless resources are allocated by a mobile communication system will be described.
  • FIG. 11 is a diagram showing a configuration example of the wireless communication system according to the fourth embodiment.
  • the wireless communication system includes a terminal device V-UE mounted on an automobile, a terminal device P-UE possessed by a pedestrian, and a base station device 200 of a mobile communication system.
  • the terminal device V-UE and the terminal device P-UE each request the base station device 200 to allocate wireless resources when transmitting data to other terminal devices. Then, the terminal device V-UE and the terminal device P-UE transmit data using the radio resources allocated by the base station device 200. Further, the terminal device V-UE and the terminal device P-UE provide control information for specifying the radio resource used for transmitting the data addressed to the own device when the data addressed to the own device is transmitted from the other terminal device. Received from the base station device 200. Then, the terminal device V-UE and the terminal device P-UE receive the data transmitted from the other terminal device to the own device according to the control information received from the base station device 200.
  • FIG. 12 is a block diagram showing the configuration of the base station apparatus 200 according to the fourth embodiment.
  • the base station apparatus 200 shown in FIG. 12 includes a wireless communication unit 210, a processor 220, and a memory 230.
  • the wireless communication unit 210 transmits and receives signals to and from a terminal device belonging to the wireless communication system. Specifically, the wireless communication unit 210 performs a predetermined wireless transmission process on the transmission signal and wirelessly transmits the transmission signal to the terminal device via the antenna. Further, the wireless communication unit 210 wirelessly receives a signal via the antenna and performs a predetermined wireless reception process on the received signal.
  • the processor 220 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire base station apparatus 200 in an integrated manner. Specifically, the processor 220 includes a reception control unit 221, a side link control unit 222, a control information generation unit 223, a transmission data generation unit 224, and a transmission control unit 225.
  • the reception control unit 221 acquires a reception signal from the wireless communication unit 210 and executes reception processing for the reception signal. Specifically, the reception control unit 221 demodulates and decodes the control channel including the request for allocation of radio resources by the terminal device. Then, the reception control unit 221 outputs the radio resource allocation request to the side link control unit 222.
  • the side link control unit 222 controls communication by side links between terminal devices belonging to the wireless communication system. Specifically, the side link control unit 222 allocates the radio resource for data transmission to the terminal device in response to the request for allocation of the radio resource from the terminal device. Then, the side link control unit 222 notifies the control information generation unit 223 of the information for identifying the allocated radio resource for data transmission.
  • the control information generation unit 223 generates the first control information including the information that identifies the radio resource assigned to the terminal device for data transmission.
  • This first control information includes information that identifies the control channel and the data channel used by the terminal device that transmits the data.
  • the control information generation unit 223 also generates second control information to be transmitted to the terminal device of the data reception destination.
  • This second control information includes information that identifies the data channel to which the data reception destination is the destination. Further, the second control information may include wake-up information for activating the terminal device in sleep mode.
  • the transmission data generation unit 224 generates transmission data when data to be transmitted to the terminal device is generated.
  • the transmission control unit 225 encodes and modulates the first control information, the second control information, and the transmission data, maps them to the radio resource, and generates a transmission signal. Specifically, the transmission control unit 225 maps the first control information to, for example, individual PDCCHs (Physical Downlink Control Channels), and maps the second control information to group PDCCHs for a plurality of terminal devices that receive data. do. Then, the transmission control unit 225 causes the wireless communication unit 210 to transmit a transmission signal including the first control information, the second control information, and the transmission data.
  • PDCCHs Physical Downlink Control Channels
  • the memory 230 includes, for example, a RAM or a ROM, and stores information used for processing by the processor 220.
  • FIG. 13 is a block diagram showing a configuration of a terminal device 100 that receives data transmitted from another terminal device using a side link.
  • the terminal device 100 shown in FIG. 13 has a processor 110 having a configuration different from that of the terminal device 100 shown in FIG. That is, the processor 110 includes a network reception control unit 411, a resource identification unit 412, and a side link reception control unit 413.
  • the network reception control unit 411 acquires the reception signal received from the base station device 200 from the wireless communication unit 130, and executes reception processing for the reception signal. Specifically, the network reception control unit 411 executes demodulation and decoding of the control channel including the second control information. Then, the network reception control unit 411 outputs the second control information to the resource identification unit 412. The network reception control unit 411 activates the sleeping terminal device 100 when the terminal device 100 is operating even during the sleep and the second control information includes the wakeup information.
  • the resource specifying unit 412 specifies the radio resource of the data channel destined for the terminal device 100 with reference to the second control information. That is, the resource specifying unit 412 specifies the radio resource of the data channel to which the data addressed to the terminal device 100 is transmitted, which is the radio resource allocated by the base station device 200 for the communication using the side link.
  • the side link reception control unit 413 acquires a received signal received from another terminal device using the side link from the wireless communication unit 130, and executes reception processing for the received signal. Specifically, the side link reception control unit 413 demodulates and decodes the data channel specified by the resource identification unit 412. At this time, the side link reception control unit 413 executes demodulation and decoding of the control channel corresponding to the data channel, and executes demodulation and decoding of the data channel according to the obtained control information.
  • the terminal device that transmits data using the side link requests the base station device 200 to allocate the radio resource, and the base station device 200 allocates the radio resource and then first.
  • the control information is transmitted to the terminal device from which the data is transmitted.
  • the base station device transmits the second control information including the information of the allocated radio resource to the terminal device 100 of the data reception destination. Therefore, the terminal device 100 can specify the radio resource used for transmitting data to its own device from the second control information without constantly monitoring the control channel used in the side link. As a result, the power for monitoring the control channel can be reduced and the increase in power consumption can be suppressed.
  • the base station device allocates radio resources to the communication using the side link, and transmits the first control information for identifying the allocated radio resources to the terminal device of the data transmission source.
  • the second control information is also transmitted to the terminal device of the data receiving destination.
  • the terminal device of the data receiving destination identifies the radio resource including the data addressed to its own device from the second control information, and executes the receiving process. Therefore, the terminal device of the data receiving destination does not need to constantly monitor the control channel used in the side link, and can reduce the power related to the monitoring of the control channel and suppress the increase in power consumption.

Abstract

A wireless communication device (100) comprises: a determination unit (115) that determines a wireless resource for which sensing is to be skipped in sensing for investigating the status of wireless resources being used by wireless communication devices other than the local device; a sensing unit (116) that executes sensing while skipping the wireless resource determined by the determination unit (115); a selection unit (117) that selects, on the basis of a result of the sensing by the sensing unit (116), a wireless resource to be used for transmitting data; and a transmission unit (113, 130) that transmits the data by use of the wireless resource selected by the selection unit (117).

Description

無線通信装置、無線通信システム及び無線リソース選択方法Wireless communication device, wireless communication system and wireless resource selection method
 本発明は、無線通信装置、無線通信システム及び無線リソース選択方法に関する。 The present invention relates to a wireless communication device, a wireless communication system, and a wireless resource selection method.
 現在のネットワークにおいては、モバイル端末(スマートフォンやフィーチャーホン)のトラフィックがネットワークのリソースの大半を占めている。また、モバイル端末が使用するトラフィックは、今後も拡大していく傾向にある。 In the current network, the traffic of mobile terminals (smartphones and feature phones) occupies most of the network resources. In addition, the traffic used by mobile terminals tends to increase in the future.
 一方で、IoT(Internet of Things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開に合わせて、多様な要求条件を持つサービスに対応することが求められている。そのため、第5世代移動体通信(5G又は、NR(New Radio))の通信規格では、4G(第4世代移動体通信)の標準技術(例えば、非特許文献2~12)に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が求められている。 On the other hand, in line with the development of IoT (Internet of Things) services (for example, monitoring systems for transportation systems, smart meters, devices, etc.), it is required to support services with various requirements. Therefore, in the communication standard of the 5th generation mobile communication (5G or NR (New Radio)), in addition to the standard technology of 4G (4th generation mobile communication) (for example, Non-Patent Documents 2 to 12), further There is a demand for technology that realizes high data rates, large capacities, and low delays.
 なお、第5世代通信規格については、3GPPの作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められており、2017年12月に標準規格書の初版が出されている(非特許文献13~39)。 Regarding the 5th generation communication standard, technical studies are underway by the 3GPP working group (for example, TSG-RAN WG1, TSG-RAN WG2, etc.), and the first edition of the standard document was issued in December 2017. (Non-Patent Documents 13 to 39).
 上述したように、多種多様なサービスに対応するために、5Gでは、eMBB(Enhanced Mobile Broad Band)、Massive MTC(Machine Type Communications)、及びURLLC(Ultra-Reliable and Low Latency Communication)に分類される多くのユースケースのサポートを想定している。 As mentioned above, in order to support a wide variety of services, 5G is often classified into eMBB (Enhanced Mobile Broad Band), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication). It is supposed to support the use case of.
 また、3GPPの作業部会では、V2X(Vehicle to Everything)通信についても議論されている。V2Xは、例えば、サイドリンクチャネルを用いて、自動車間通信を行うV2V(Vehicle to Vehicle)、自動車と歩行者(Pedestrian)間で通信を行うV2P(Vehicle to Pedestrian)、自動車と標識等の道路インフラ間で通信を行うV2I(Vehicle to Infrastructure)、及び自動車とネットワーク間で通信を行うV2N(Vehicle to Network)等の総称である。V2Xに関する規定は、例えば非特許文献1に記載されている。なお、V2Xは、X2V(Everything to Vehicle)と記載しても良い。この場合、例えば、V2Xは、自動車から他の装置に信号を送信することを表し、X2Vは、他の装置から自動車に信号を送信することを表す。 In addition, the 3GPP working group is also discussing V2X (Vehicle to Everything) communication. V2X is, for example, V2V (Vehicle to Vehicle) that communicates between automobiles using a side link channel, V2P (Vehicle to Pedestrian) that communicates between automobiles and pedestrians, and road infrastructure such as automobiles and signs. It is a general term for V2I (Vehicle to Infrastructure) that communicates between vehicles and V2N (Vehicle to Network) that communicates between automobiles and networks. The provisions regarding V2X are described in, for example, Non-Patent Document 1. In addition, V2X may be described as X2V (Everything to Vehicle). In this case, for example, V2X represents transmitting a signal from the automobile to another device, and X2V represents transmitting a signal from the other device to the automobile.
 V2Xにおけるリソース配置に関しては、制御チャネル(PSCCH:Physical Sidelink Control CHannel)及びデータチャネル(PSSCH:Physical Sidelink Shared CHannle)を隣接させる配置方法と、制御チャネル及びデータチャネルを隣接させない方法とがある。なお、PSCCHのリソースには、例えば、対応するPSSCHのデータの変調方式及び符号化率に関する情報などを含むSCI(Sidelink Control Information)がマッピングされる。 Regarding resource allocation in V2X, there are an arrangement method in which a control channel (PSCCH: Physical Sidelink Control Channel) and a data channel (PSSCH: Physical Sidelink Shared CHannle) are adjacent to each other, and a method in which the control channel and the data channel are not adjacent to each other. The PSCCH resource is mapped to, for example, SCI (Sidelink Control Information) including information on the modulation method and coding rate of the corresponding PSCCH data.
 また、V2Xでは、リソースを割り当てる方式として、例えば、移動体通信システムが集中的に制御する方式と、V2Xを実施する各端末装置が自律的に制御する方式とがある。移動体通信システムが集中的に制御する方式は、V2Xを実施する端末装置が移動体通信システムのカバレージに在圏する際に適用可能であり、LTEV2Xでは、モード3とも呼ばれる。一方、各端末装置が自律的に制御する方式は、端末装置が移動体通信システムのカバレージに在圏しなくても適用可能であり、LTEV2Xではモード4とも呼ばれる。モード4では、リソースの割り当てのための端末装置と移動体通信システムとの間の通信が行われないため、端末装置において送信データが発生した場合の送信遅延が短縮され、厳しい遅延要求を満たすことが可能である。モード4においては、各端末装置は、V2Xに用いられる周波数帯域をセンシングし、センシングの結果に基づいて他の端末装置が使用する可能性が高いリソースを除外し、データの送信に用いるリソースを選択する。 Further, in V2X, as a method of allocating resources, for example, there are a method of centrally controlling by a mobile communication system and a method of autonomously controlling each terminal device that implements V2X. The method of centrally controlling the mobile communication system is applicable when the terminal device that implements V2X is in the coverage of the mobile communication system, and is also called mode 3 in LTE V2X. On the other hand, the method in which each terminal device autonomously controls is applicable even if the terminal device does not live in the coverage of the mobile communication system, and is also called mode 4 in LTE V2X. In mode 4, since communication between the terminal device for resource allocation and the mobile communication system is not performed, the transmission delay when transmission data is generated in the terminal device is shortened, and a strict delay request is satisfied. Is possible. In mode 4, each terminal device senses the frequency band used for V2X, excludes resources that are likely to be used by other terminal devices based on the sensing result, and selects a resource to be used for data transmission. do.
 なお、LTEV2Xにおけるモード3は、NR(New Radio)-V2Xのモード1に対応し、LTEV2Xにおけるモード4は、NR-V2Xのモード2に対応する。 Note that mode 3 in LTE V2X corresponds to mode 1 of NR (New Radio) -V2X, and mode 4 in LTE V2X corresponds to mode 2 of NR-V2X.
特開2017-139658号公報JP-A-2017-139658 国際公開第2019/044208号International Publication No. 2019/044208
 しかしながら、V2Xにおける無線リソースの選択では、消費電力が増大するという問題がある。すなわち、例えば、端末装置がセンシングによってデータの送信に用いる無線リソースを選択する場合には、この端末装置は、V2Xに用いられるすべての周波数帯域を対象に所定期間継続してセンシングを実行する。センシングにおいては、制御チャネルの復調及び復号や、データチャネルの受信電力測定などが実行されるため、センシング中の端末装置の処理量が多くなり、消費電力が増大する。 However, there is a problem that power consumption increases when selecting wireless resources in V2X. That is, for example, when the terminal device selects a radio resource to be used for data transmission by sensing, the terminal device continuously performs sensing for a predetermined period of time for all frequency bands used for V2X. In sensing, demodulation and decoding of the control channel, measurement of the received power of the data channel, and the like are executed, so that the processing amount of the terminal device during sensing increases and the power consumption increases.
 また、移動体通信システムが無線リソースの割り当てを集中的に制御する場合であっても、データを受信する端末装置は、制御チャネルを監視することにより自装置宛てのデータが送信されたか否かを判断する。つまり、データを送信する端末装置は、移動体通信システムによって割り当てられた無線リソースを用いてデータを送信するが、データを受信する端末装置は、常に制御チャネルを監視して自装置宛てのデータの有無を判断する。このため、制御チャネルの復調及び復号により、端末装置の消費電力が増大する。 Further, even when the mobile communication system centrally controls the allocation of wireless resources, the terminal device that receives the data determines whether or not the data addressed to the own device is transmitted by monitoring the control channel. to decide. That is, the terminal device that transmits the data transmits the data using the wireless resource allocated by the mobile communication system, but the terminal device that receives the data constantly monitors the control channel and sends the data addressed to the own device. Judge the presence or absence. Therefore, the power consumption of the terminal device increases due to the demodulation and decoding of the control channel.
 開示の技術は、かかる点に鑑みてなされたものであって、消費電力の増大を抑制することができる無線通信装置、無線通信システム及び無線リソース選択方法を提供することを目的とする。 The disclosed technology has been made in view of such a point, and an object thereof is to provide a wireless communication device, a wireless communication system, and a wireless resource selection method capable of suppressing an increase in power consumption.
 本願が開示する無線通信装置は、1つの態様において、自装置以外の他の無線通信装置による無線リソースの使用状況を調査するセンシングにおいてセンシングをスキップする無線リソースを決定する決定部と、前記決定部によって決定された無線リソースをスキップしながらセンシングを実行するセンシング部と、前記センシング部によるセンシングの結果に基づいて、データの送信に使用する無線リソースを選択する選択部と、前記選択部によって選択された無線リソースを用いてデータを送信する送信部とを有する。 In one embodiment, the wireless communication device disclosed in the present application includes a determination unit that determines a wireless resource to skip sensing in sensing for investigating the usage status of a wireless resource by a wireless communication device other than the own device, and the determination unit. A sensing unit that executes sensing while skipping the wireless resource determined by the sensor, a selection unit that selects a wireless resource to be used for data transmission based on the result of sensing by the sensing unit, and a selection unit that is selected by the selection unit. It has a transmission unit that transmits data using the wireless resources.
 本願が開示する無線通信装置、無線通信システム及び無線リソース選択方法の1つの態様によれば、消費電力の増大を抑制することができるという効果を奏する。 According to one aspect of the wireless communication device, the wireless communication system, and the wireless resource selection method disclosed in the present application, it is possible to suppress an increase in power consumption.
図1は、実施の形態1に係る無線通信システムの構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a wireless communication system according to the first embodiment. 図2は、実施の形態1に係る端末装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a terminal device according to the first embodiment. 図3は、実施の形態1に係るスキップ制御部の構成を示すブロック図である。FIG. 3 is a block diagram showing a configuration of a skip control unit according to the first embodiment. 図4は、実施の形態1に係る無線リソース選択方法を示すフロー図である。FIG. 4 is a flow chart showing a radio resource selection method according to the first embodiment. 図5は、センシングウインドウの一例を示す図である。FIG. 5 is a diagram showing an example of a sensing window. 図6は、無線リソースの選択を説明する図である。FIG. 6 is a diagram illustrating selection of radio resources. 図7は、実施の形態2に係るスキップ制御部の構成を示すブロック図である。FIG. 7 is a block diagram showing a configuration of a skip control unit according to the second embodiment. 図8は、実施の形態2に係る無線リソース選択方法を示すフロー図である。FIG. 8 is a flow chart showing a radio resource selection method according to the second embodiment. 図9は、実施の形態3に係るスキップ制御部の構成を示すブロック図である。FIG. 9 is a block diagram showing a configuration of a skip control unit according to the third embodiment. 図10は、実施の形態3に係る無線リソース選択方法を示すフロー図である。FIG. 10 is a flow chart showing a radio resource selection method according to the third embodiment. 図11は、実施の形態4に係る無線通信システムの構成例を示す図である。FIG. 11 is a diagram showing a configuration example of the wireless communication system according to the fourth embodiment. 図12は、実施の形態4に係る基地局装置の構成を示すブロック図である。FIG. 12 is a block diagram showing a configuration of the base station apparatus according to the fourth embodiment. 図13は、実施の形態4に係る端末装置の構成を示すブロック図である。FIG. 13 is a block diagram showing the configuration of the terminal device according to the fourth embodiment.
 以下、本願が開示する無線通信装置、無線通信システム及び無線リソース選択方法の実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。 Hereinafter, embodiments of the wireless communication device, the wireless communication system, and the wireless resource selection method disclosed in the present application will be described in detail with reference to the drawings. The present invention is not limited to this embodiment.
(実施の形態1)
 図1は、実施の形態1に係る無線通信システムの構成例を示す図である。図1に示すように、無線通信システムは、自動車に搭載される端末装置V-UEと、歩行者が所持する端末装置P-UEとを有する。端末装置V-UE及び端末装置P-UEは、無線通信することができる無線通信装置である。
(Embodiment 1)
FIG. 1 is a diagram showing a configuration example of a wireless communication system according to the first embodiment. As shown in FIG. 1, the wireless communication system includes a terminal device V-UE mounted on an automobile and a terminal device P-UE possessed by a pedestrian. The terminal device V-UE and the terminal device P-UE are wireless communication devices capable of wireless communication.
 端末装置V-UE及び端末装置P-UEは、それぞれ同じグループに所属する端末装置に対してデータをグループキャストする。このとき、端末装置V-UE及び端末装置P-UEは、データを送信するために使用する無線リソースを自律的に選択する。具体的には、端末装置V-UE及び端末装置P-UEは、所定期間のセンシングウインドウにおいて、使用可能な全周波数帯域をセンシングすることにより、他の装置によって使用される無線リソースを推定する。そして、端末装置V-UE及び端末装置P-UEは、センシングウインドウより後のタイミングの選択ウインドウから、他の装置によって使用されると推定された無線リソースを除外して、データを送信するために使用する無線リソースを選択する。 The terminal device V-UE and the terminal device P-UE each group cast data to the terminal devices belonging to the same group. At this time, the terminal device V-UE and the terminal device P-UE autonomously select the radio resource used for transmitting the data. Specifically, the terminal device V-UE and the terminal device P-UE estimate the radio resources used by other devices by sensing all available frequency bands in the sensing window for a predetermined period. Then, the terminal device V-UE and the terminal device P-UE exclude the radio resources estimated to be used by other devices from the timing selection window after the sensing window, and transmit the data. Select the wireless resource to use.
 端末装置V-UE及び端末装置P-UEは、センシングウインドウの無線リソースをセンシングする際、それぞれ自装置の優先レベルを決定し、優先レベルに応じて無線リソースのセンシングをスキップする。すなわち、端末装置V-UE及び端末装置P-UEは、すべての無線リソースをセンシングするのではなく、優先レベルに応じてスキップしながら一部の無線リソースをセンシングする。これにより、端末装置V-UE及び端末装置P-UEは、センシングの際の消費電力の増大を抑制することができる。 When sensing the radio resource of the sensing window, the terminal device V-UE and the terminal device P-UE each determine the priority level of their own device, and skip the sensing of the radio resource according to the priority level. That is, the terminal device V-UE and the terminal device P-UE do not sense all the radio resources, but sense some radio resources while skipping according to the priority level. As a result, the terminal device V-UE and the terminal device P-UE can suppress an increase in power consumption during sensing.
 図2は、端末装置V-UE及び端末装置P-UEと同一の端末装置100の構成を示すブロック図である。図2に示す端末装置100は、プロセッサ110、メモリ120及び無線通信部130を有する。 FIG. 2 is a block diagram showing the configuration of the terminal device 100 which is the same as the terminal device V-UE and the terminal device P-UE. The terminal device 100 shown in FIG. 2 has a processor 110, a memory 120, and a wireless communication unit 130.
 プロセッサ110は、例えばCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)又はDSP(Digital Signal Processor)などを備え、端末装置100の全体を統括制御する。具体的には、プロセッサ110は、制御情報生成部111、送信データ生成部112、送信制御部113、受信制御部114、スキップ制御部115、センシング部116及びリソース選択部117を有する。 The processor 110 includes, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), etc., and controls the entire terminal device 100 in an integrated manner. Specifically, the processor 110 includes a control information generation unit 111, a transmission data generation unit 112, a transmission control unit 113, a reception control unit 114, a skip control unit 115, a sensing unit 116, and a resource selection unit 117.
 制御情報生成部111は、例えばSCIなどの制御情報を生成する。制御情報生成部111が生成する制御情報には、データの符号化率及び変調方式の情報、データの送信に用いられるデータチャネルの無線リソースを特定する情報、データの再送に用いられる無線リソースを特定する情報などが含まれている。 The control information generation unit 111 generates control information such as SCI. In the control information generated by the control information generation unit 111, information on the data coding rate and modulation method, information for specifying the radio resource of the data channel used for data transmission, and radio resource used for data retransmission are specified. Information to be done is included.
 送信データ生成部112は、他の端末装置へ送信する送信データを生成する。送信データは、例えば端末装置100と同一のグループに所属する複数の端末装置へグループキャストされる。また、送信データ生成部112は、スキップ制御部115からに指示に応じて、周囲の端末装置の存在を確認するために存否確認信号を送信するように要求する存否確認要求を生成する。 The transmission data generation unit 112 generates transmission data to be transmitted to another terminal device. The transmitted data is group cast to a plurality of terminal devices belonging to the same group as the terminal device 100, for example. Further, the transmission data generation unit 112 generates a presence / absence confirmation request requesting the skip control unit 115 to transmit a presence / absence confirmation signal in order to confirm the existence of surrounding terminal devices in response to an instruction.
 送信制御部113は、制御情報及び送信データを符号化及び変調して無線リソースにマッピングし、送信信号を生成する。このとき、送信制御部113は、リソース選択部117から指定された無線リソースに制御情報及び送信データをマッピングする。そして、送信制御部113は、制御情報及び送信データを含む送信信号を、無線通信部130から送信させる。また、送信制御部113は、送信データ生成部112によって生成された存否確認要求を、無線通信部130から送信させる。 The transmission control unit 113 encodes and modulates the control information and transmission data, maps them to radio resources, and generates a transmission signal. At this time, the transmission control unit 113 maps the control information and the transmission data to the radio resource designated by the resource selection unit 117. Then, the transmission control unit 113 causes the wireless communication unit 130 to transmit a transmission signal including control information and transmission data. Further, the transmission control unit 113 causes the wireless communication unit 130 to transmit the existence / absence confirmation request generated by the transmission data generation unit 112.
 受信制御部114は、無線通信部130から受信信号を取得し、受信信号に対する受信処理を実行する。具体的には、受信制御部114は、制御チャネルの復調及び復号を実行して制御情報を取得し、制御情報に従ってデータチャネルの復調及び復号を実行する。また、受信制御部114は、存否確認要求に対する応答として存否確認信号を受信した場合、この存否確認信号をスキップ制御部115へ出力する。 The reception control unit 114 acquires a received signal from the wireless communication unit 130 and executes reception processing for the received signal. Specifically, the reception control unit 114 executes demodulation and decoding of the control channel to acquire control information, and demodulates and decodes the data channel according to the control information. When the reception control unit 114 receives the presence / absence confirmation signal as a response to the presence / absence confirmation request, the reception control unit 114 outputs the presence / absence confirmation signal to the skip control unit 115.
 スキップ制御部115は、存否確認信号を取得し、端末装置100の周囲における端末装置の密度を算出する。そして、スキップ制御部115は、端末装置の密度に応じて端末装置100におけるセンシングの優先レベルを決定し、優先レベルに従ってセンシングをスキップする無線リソースをセンシング部116へ指示する。このとき、スキップ制御部115は、端末装置100の周囲における端末装置の密度が高ければ、センシングの優先レベルが高いと決定して、センシングにおいてスキップされる無線リソースを少なくする。一方、スキップ制御部115は、端末装置100の周囲における端末装置の密度が低ければ、センシングの優先レベルが低いと決定して、センシングにおいてスキップされる無線リソースを多くする。なお、スキップされる無線リソースは、例えば周期的に配置された無線リソースでも良いし、所定周期の定数倍の位置に配置された無線リソースでも良い。また、センシングする無線リソースの周期を設定し、センシング対象の無線リソース以外をスキップするようにしても良い。このように、センシングにおいて無線リソースをスキップする頻度を調整しても良い。 The skip control unit 115 acquires the presence / absence confirmation signal and calculates the density of the terminal device around the terminal device 100. Then, the skip control unit 115 determines the priority level of sensing in the terminal device 100 according to the density of the terminal device, and instructs the sensing unit 116 of the radio resource for skipping the sensing according to the priority level. At this time, the skip control unit 115 determines that if the density of the terminal device around the terminal device 100 is high, the priority level of sensing is high, and the radio resources skipped in the sensing are reduced. On the other hand, if the density of the terminal device around the terminal device 100 is low, the skip control unit 115 determines that the priority level of sensing is low, and increases the number of radio resources skipped in sensing. The radio resource to be skipped may be, for example, a radio resource arranged periodically, or a radio resource arranged at a position that is a constant multiple of a predetermined period. Further, the cycle of the wireless resource to be sensed may be set so that the wireless resource other than the wireless resource to be sensed is skipped. In this way, the frequency of skipping wireless resources in sensing may be adjusted.
 なお、スキップ制御部115は、端末装置100の周囲の端末装置に存否確認信号を送信させるため、存否確認要求を送信するように送信データ生成部112へ指示する。スキップ制御部115の詳細な構成については、後に詳述する。 Note that the skip control unit 115 instructs the transmission data generation unit 112 to transmit the existence / absence confirmation request in order to transmit the existence / absence confirmation signal to the terminal devices around the terminal device 100. The detailed configuration of the skip control unit 115 will be described in detail later.
 センシング部116は、送信すべきデータが発生した場合に、センシングウインドウ内の無線リソースをセンシングし、無線リソースの使用状況を調査する。具体的には、センシング部116は、データの送信に使用可能なすべての周波数帯域の所定数のスロットをセンシングウインドウとして、センシングウインドウ内の制御チャネルを復調及び復号し、データチャネルの使用状況を確認するとともに、センシングウインドウ内のデータチャネルの受信電力を測定する。このとき、センシング部116は、スキップ制御部115から指示される無線リソースをスキップしてセンシングを実行する。すなわち、センシング部116は、スキップ制御部115からの指示により、例えばセンシングウインドウ内の1スロットおきに、制御チャネルの復号及びデータチャネルの受信電力測定を実行する。 When data to be transmitted is generated, the sensing unit 116 senses the wireless resource in the sensing window and investigates the usage status of the wireless resource. Specifically, the sensing unit 116 demodulates and decodes the control channel in the sensing window using a predetermined number of slots in all frequency bands that can be used for data transmission as the sensing window, and confirms the usage status of the data channel. At the same time, the received power of the data channel in the sensing window is measured. At this time, the sensing unit 116 skips the radio resource instructed by the skip control unit 115 and executes sensing. That is, the sensing unit 116 executes decoding of the control channel and measurement of the received power of the data channel, for example, every other slot in the sensing window according to the instruction from the skip control unit 115.
 リソース選択部117は、センシング部116によるセンシングの結果に基づいて、データの送信に使用する無線リソースを選択する。具体的には、リソース選択部117は、センシングウインドウより後のタイミングの選択ウインドウから、センシングの結果、他の端末装置によって使用されないと推定される無線リソースを選択する。すなわち、リソース選択部117は、センシングウインドウ内の制御チャネルが復号された結果、他の端末装置によって使用されることが判明している無線リソースを除外して、選択ウインドウ内から無線リソースを選択する。また、リソース選択部117は、センシングウインドウ内のデータチャネルの受信電力が測定された結果、他の端末装置によって使用されると予測される無線リソースを除外して、選択ウインドウ内から無線リソースを選択する。 The resource selection unit 117 selects a wireless resource to be used for data transmission based on the result of sensing by the sensing unit 116. Specifically, the resource selection unit 117 selects a radio resource that is estimated not to be used by another terminal device as a result of sensing from the timing selection window after the sensing window. That is, the resource selection unit 117 selects the radio resource from the selection window by excluding the radio resource that is known to be used by another terminal device as a result of decoding the control channel in the sensing window. .. Further, the resource selection unit 117 selects the radio resource from the selection window by excluding the radio resource that is predicted to be used by another terminal device as a result of measuring the received power of the data channel in the sensing window. do.
 メモリ120は、例えばRAM(Random Access Memory)又はROM(Read Only Memory)などを備え、プロセッサ110による処理に用いられる情報を記憶する。 The memory 120 includes, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory), and stores information used for processing by the processor 110.
 無線通信部130は、他の端末装置との間で信号を送受信する。具体的には、無線通信部130は、送信信号に対して所定の無線送信処理を施し、アンテナを介して他の端末装置へ無線送信する。また、無線通信部130は、アンテナを介して信号を無線受信し、受信信号に対して所定の無線受信処理を施す。 The wireless communication unit 130 transmits / receives signals to / from other terminal devices. Specifically, the wireless communication unit 130 performs a predetermined wireless transmission process on the transmission signal and wirelessly transmits the transmission signal to another terminal device via the antenna. Further, the wireless communication unit 130 wirelessly receives a signal via the antenna and performs a predetermined wireless reception process on the received signal.
 図3は、実施の形態1に係るスキップ制御部115の構成を示すブロック図である。図3に示すように、スキップ制御部115は、存否確認要求部101、存否確認信号取得部102、密度算出部103及び優先レベル決定部104を有する。 FIG. 3 is a block diagram showing the configuration of the skip control unit 115 according to the first embodiment. As shown in FIG. 3, the skip control unit 115 includes a presence / absence confirmation request unit 101, a presence / absence confirmation signal acquisition unit 102, a density calculation unit 103, and a priority level determination unit 104.
 存否確認要求部101は、端末装置100の周囲の端末装置から存否確認信号を送信させるため、存否確認要求を送信するように送信データ生成部112へ指示する。存否確認要求部101は、例えば、送信すべきデータが発生した場合に存否確認要求の送信を指示しても良いし、所定の周期で存否確認要求の送信を指示しても良い。また、各端末装置が存否確認信号又はそれに類する信号を所定の周期で送信するようにあらかじめ設定されている場合には、存否確認要求が端末装置100から送信されなくても良い。この場合には、存否確認要求部101も不要である。 The existence / non-existence confirmation request unit 101 instructs the transmission data generation unit 112 to transmit the existence / non-existence confirmation request in order to transmit the existence / non-existence confirmation signal from the terminal devices around the terminal device 100. The existence / non-existence confirmation request unit 101 may instruct the transmission of the existence / non-existence confirmation request when the data to be transmitted is generated, or may instruct the transmission of the existence / non-existence confirmation request at a predetermined cycle. Further, when each terminal device is set in advance to transmit a presence / absence confirmation signal or a signal similar thereto, the presence / absence confirmation request may not be transmitted from the terminal device 100. In this case, the presence / absence confirmation request unit 101 is also unnecessary.
 存否確認信号取得部102は、他の端末装置から送信され無線通信部130によって受信された存否確認信号を取得する。存否確認信号には、例えば送信元の端末装置の識別情報、送信元の端末装置が自動車に搭載される端末装置であるか歩行者が所持する端末装置であるかなどを示す種別情報、送信元の端末装置の移動速度や移動方向に関する情報などが含まれていても良い。 The presence / absence confirmation signal acquisition unit 102 acquires the presence / absence confirmation signal transmitted from another terminal device and received by the wireless communication unit 130. The presence / absence confirmation signal includes, for example, identification information of the terminal device of the transmission source, type information indicating whether the terminal device of the transmission source is a terminal device mounted on an automobile or a terminal device possessed by a pedestrian, and a transmission source. Information on the moving speed and moving direction of the terminal device of the above may be included.
 密度算出部103は、存否確認信号の送信元の端末装置と端末装置100との間の距離を推定し、端末装置100の周囲における端末装置の密度を算出する。すなわち、密度算出部103は、例えば、存否確認信号の受信電力から伝搬損失を算出し、伝搬損失に基づいて送信元の端末装置までの距離を推定する。そして、密度算出部103は、端末装置100からの距離が所定範囲に含まれる端末装置の数から、端末装置100の周囲における端末装置の密度を算出する。 The density calculation unit 103 estimates the distance between the terminal device that is the source of the presence / absence confirmation signal and the terminal device 100, and calculates the density of the terminal device around the terminal device 100. That is, the density calculation unit 103 calculates the propagation loss from the received power of the presence / absence confirmation signal, and estimates the distance to the terminal device of the transmission source based on the propagation loss. Then, the density calculation unit 103 calculates the density of the terminal device around the terminal device 100 from the number of terminal devices whose distance from the terminal device 100 is included in the predetermined range.
 優先レベル決定部104は、端末装置100の周囲における端末装置の密度に応じて、端末装置100におけるセンシングの優先レベルを決定する。具体的には、優先レベル決定部104は、周囲の端末装置の密度が高いほど、センシングの優先レベルが高いと判断し、周囲の端末装置の密度が低いほど、センシングの優先レベルが低いと判断する。そして、優先レベル決定部104は、センシングの優先レベルに従ってセンシングウインドウ内でスキップする無線リソースを決定し、決定した無線リソースのセンシングをスキップするようにセンシング部116へ指示する。このとき、優先レベル決定部104は、優先レベルが高いほどスキップされる無線リソースを少なくし、優先レベルが低いほどスキップされる無線リソースを多くする。 The priority level determination unit 104 determines the priority level of sensing in the terminal device 100 according to the density of the terminal device around the terminal device 100. Specifically, the priority level determination unit 104 determines that the higher the density of the surrounding terminal devices, the higher the priority level of sensing, and the lower the density of the surrounding terminal devices, the lower the priority level of sensing. do. Then, the priority level determination unit 104 determines the radio resource to be skipped in the sensing window according to the priority level of sensing, and instructs the sensing unit 116 to skip the sensing of the determined radio resource. At this time, the priority level determination unit 104 reduces the number of radio resources to be skipped as the priority level is higher, and increases the number of radio resources to be skipped as the priority level is lower.
 次いで、上記のように構成された端末装置100によるリソース選択方法について、図4に示すフロー図を参照しながら説明する。 Next, the resource selection method by the terminal device 100 configured as described above will be described with reference to the flow chart shown in FIG.
 端末装置100において送信すべきデータが発生した場合、又は、所定の周期で、存否確認要求部101から送信データ生成部112へ周囲の端末装置の存否を確認するように指示され、送信データ生成部112によって存否確認要求が生成される。存否確認要求は、送信制御部113及び無線通信部130を経由してアンテナから送信される(ステップS101)。 When data to be transmitted is generated in the terminal device 100, or at a predetermined cycle, the existence / absence confirmation request unit 101 instructs the transmission data generation unit 112 to confirm the existence of surrounding terminal devices, and the transmission data generation unit The existence confirmation request is generated by 112. The existence confirmation request is transmitted from the antenna via the transmission control unit 113 and the wireless communication unit 130 (step S101).
 存否確認要求は、端末装置100の周囲の端末装置によって受信され、これらの端末装置は、存否確認要求に対する応答として存否確認信号を送信する。周囲の端末装置から送信された存否確認信号は、無線通信部130によって受信され(ステップS102)、受信制御部114を経由して存否確認信号取得部102によって取得される。 The presence / absence confirmation request is received by the terminal devices around the terminal device 100, and these terminal devices transmit a presence / absence confirmation signal as a response to the presence / absence confirmation request. The presence / absence confirmation signal transmitted from the surrounding terminal device is received by the wireless communication unit 130 (step S102), and is acquired by the presence / absence confirmation signal acquisition unit 102 via the reception control unit 114.
 そして、密度算出部103によって、存否確認信号を用いて端末装置100の周囲における端末装置の密度が算出される(ステップS103)。具体的には、例えば存否確認信号の受信電力から伝搬損失が算出され、存否確認信号の送信元の端末装置から端末装置100までの距離が推定される。そして、端末装置100から所定距離の範囲内に位置する端末装置の数から、端末装置100の周囲における端末装置の密度が算出される。算出された密度は、優先レベル決定部104へ通知される。 Then, the density calculation unit 103 calculates the density of the terminal device around the terminal device 100 using the presence / absence confirmation signal (step S103). Specifically, for example, the propagation loss is calculated from the received power of the presence / absence confirmation signal, and the distance from the terminal device of the source of the presence / absence confirmation signal to the terminal device 100 is estimated. Then, the density of the terminal device around the terminal device 100 is calculated from the number of the terminal devices located within a predetermined distance from the terminal device 100. The calculated density is notified to the priority level determination unit 104.
 そして、優先レベル決定部104によって、周囲の端末装置の密度に応じたセンシングの優先レベルが決定される(ステップS104)。具体的には、周囲の端末装置の密度が高ければ、無線リソースの選択において衝突が発生する可能性も大きいため、センシングの優先レベルが高いと判断される。一方、周囲の端末装置の密度が低ければ、無線リソースの選択において衝突が発生する可能性は小さいため、センシングの優先レベルが低いと判断される。 Then, the priority level determination unit 104 determines the priority level of sensing according to the density of the surrounding terminal devices (step S104). Specifically, if the density of surrounding terminal devices is high, there is a high possibility that a collision will occur in the selection of wireless resources, so it is judged that the priority level of sensing is high. On the other hand, if the density of surrounding terminal devices is low, it is judged that the priority level of sensing is low because the possibility of collision in selecting wireless resources is low.
 センシングの優先レベルが決定されると、優先レベルに従ってセンシングをスキップする無線リソースが決定される。すなわち、優先レベルが高いほどスキップされる無線リソースが少なくされ、優先レベルが低いほどスキップされる無線リソースが多くされる。決定された無線リソースのスキップは、優先レベル決定部104からセンシング部116へ指示される。 When the priority level of sensing is determined, the radio resource to skip sensing is determined according to the priority level. That is, the higher the priority level, the less radio resources are skipped, and the lower the priority level, the more radio resources are skipped. The skipping of the determined radio resource is instructed from the priority level determination unit 104 to the sensing unit 116.
 そして、センシング部116によって、指示された無線リソースをスキップしながら無線リソースのセンシングが実行される(ステップS105)。具体的には、データの送信に使用可能なすべての周波数帯域について所定時間の幅を有するセンシングウインドウを対象として、制御チャネルの復号及びデータチャネルの受信電力測定が実行される。センシングウインドウは、例えば図5に示すように、周波数方向に複数のサブチャネルsch#0~#3を含み、時間方向に複数のスロット#0~#nを含む。このうち、優先レベル決定部104からの指示により、例えば図中ハッチングで示すスロット#1、#3、#5、#7、#9のセンシングがスキップされ、その他のスロットの制御チャネルが復号されるとともに、データチャネルの受信電力が測定される。 Then, the sensing unit 116 executes sensing of the radio resource while skipping the instructed radio resource (step S105). Specifically, the decoding of the control channel and the reception power measurement of the data channel are executed for the sensing window having a predetermined time width for all the frequency bands that can be used for data transmission. The sensing window includes, for example, a plurality of subchannels sch # 0 to # 3 in the frequency direction and a plurality of slots # 0 to # n in the time direction, as shown in FIG. Of these, according to the instruction from the priority level determination unit 104, for example, the sensing of slots # 1, # 3, # 5, # 7, and # 9 indicated by hatching in the figure is skipped, and the control channels of the other slots are decoded. At the same time, the received power of the data channel is measured.
 このように、センシングウインドウ内の無線リソースが、優先レベル決定部104からの指示に応じてスキップされながらセンシングされる。換言すれば、センシングウインドウ内の制御チャネルの復号及びデータチャネルの受信電力測定が、一部の無線リソースについては省略される。このため、センシングに係る処理量を削減することができ、消費電力の増大を抑制することができる。 In this way, the radio resources in the sensing window are sensed while being skipped according to the instruction from the priority level determination unit 104. In other words, decoding the control channel in the sensing window and measuring the received power of the data channel is omitted for some radio resources. Therefore, the processing amount related to sensing can be reduced, and the increase in power consumption can be suppressed.
 センシングウインドウ内の無線リソースのセンシングが実行されると、リソース選択部117によって、データの送信に使用する無線リソースが選択される(ステップS106)。具体的には、例えば図6に示すように、センシングウインドウ151より後のタイミングで選択ウインドウ152が設定され、センシングの結果から他の端末装置によって使用されると推定される無線リソースを除外して、選択ウインドウ152内の無線リソースが選択される。すなわち、センシングウインドウ151内の制御チャネルが復号された結果、他の端末装置によって使用されると判明する無線リソースと、センシングウインドウ151内のデータチャネルの受信電力が測定された結果、他の端末装置によって使用されると推定される無線リソースとを除外して、選択ウインドウ152内の無線リソースが選択される。 When the wireless resource sensing in the sensing window is executed, the resource selection unit 117 selects the wireless resource to be used for data transmission (step S106). Specifically, for example, as shown in FIG. 6, the selection window 152 is set at a timing after the sensing window 151, and the radio resources estimated to be used by other terminal devices are excluded from the sensing result. , The radio resource in the selection window 152 is selected. That is, as a result of decoding the control channel in the sensing window 151, the radio resource found to be used by the other terminal device and the received power of the data channel in the sensing window 151 are measured, and as a result, the other terminal device. The radio resources in the selection window 152 are selected, excluding the radio resources presumed to be used by.
 選択された無線リソースは、送信制御部113へ通知され、この無線リソースに制御情報及び送信データがマッピングされる。そして、マッピングにより得られた送信信号は、無線通信部130を経由してアンテナから送信される(ステップS107)。 The selected radio resource is notified to the transmission control unit 113, and control information and transmission data are mapped to this radio resource. Then, the transmission signal obtained by the mapping is transmitted from the antenna via the wireless communication unit 130 (step S107).
 以上のように、本実施の形態によれば、周囲の端末装置から送信される存否確認信号を用いて周囲の端末装置の密度を算出し、密度に応じて無線リソースをスキップしながらセンシングを実行する。このため、センシングウインドウ内のすべての無線リソースを対象にセンシングが実行されることがなく、センシングに係る処理量を削減することができ、消費電力の増大を抑制することができる。 As described above, according to the present embodiment, the density of the surrounding terminal devices is calculated using the presence / absence confirmation signal transmitted from the surrounding terminal devices, and sensing is executed while skipping wireless resources according to the density. do. Therefore, sensing is not executed for all the wireless resources in the sensing window, the processing amount related to sensing can be reduced, and the increase in power consumption can be suppressed.
(実施の形態2)
 実施の形態2の特徴は、最も近くに存在する端末装置までの距離に応じてセンシングの優先レベルを決定する点である。
(Embodiment 2)
The feature of the second embodiment is that the priority level of sensing is determined according to the distance to the nearest terminal device.
 実施の形態2に係る無線通信システム及び端末装置100の構成は、実施の形態1(図1、2)と同様であるため、その説明を省略する。実施の形態2においては、スキップ制御部115の構成が実施の形態1とは異なる。 Since the configuration of the wireless communication system and the terminal device 100 according to the second embodiment is the same as that of the first embodiment (FIGS. 1 and 2), the description thereof will be omitted. In the second embodiment, the configuration of the skip control unit 115 is different from that of the first embodiment.
 図7は、実施の形態2に係るスキップ制御部115の構成を示すブロック図である。図7において、図3と同じ部分には同じ符号を付し、その説明を省略する。図7に示すように、スキップ制御部115は、存否確認要求部101、存否確認信号取得部102、最短距離算出部201及び優先レベル決定部202を有する。 FIG. 7 is a block diagram showing the configuration of the skip control unit 115 according to the second embodiment. In FIG. 7, the same parts as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted. As shown in FIG. 7, the skip control unit 115 includes a presence / absence confirmation request unit 101, a presence / absence confirmation signal acquisition unit 102, a shortest distance calculation unit 201, and a priority level determination unit 202.
 最短距離算出部201は、存否確認信号の送信元の端末装置と端末装置100との間の距離を推定し、端末装置100に最も近い端末装置までの最短距離を算出する。すなわち、最短距離算出部201は、例えば、存否確認信号の受信電力から伝搬損失を算出し、伝搬損失に基づいて送信元の端末装置までの距離を推定する。そして、最短距離算出部201は、それぞれの存否確認信号の送信元の端末装置までの距離から、最も端末装置100に近い最短距離を特定する。換言すれば、最短距離算出部201は、端末装置100の最も近くに位置する端末装置までの距離を最短距離として特定する。 The shortest distance calculation unit 201 estimates the distance between the terminal device of the source of the existence confirmation signal and the terminal device 100, and calculates the shortest distance to the terminal device closest to the terminal device 100. That is, the shortest distance calculation unit 201 calculates, for example, the propagation loss from the received power of the presence / absence confirmation signal, and estimates the distance to the terminal device of the transmission source based on the propagation loss. Then, the shortest distance calculation unit 201 specifies the shortest distance closest to the terminal device 100 from the distance to the terminal device of the transmission source of each presence / absence confirmation signal. In other words, the shortest distance calculation unit 201 specifies the distance to the terminal device located closest to the terminal device 100 as the shortest distance.
 優先レベル決定部202は、端末装置100からの最短距離に応じて、端末装置100におけるセンシングの優先レベルを決定する。具体的には、優先レベル決定部202は、最短距離が小さいほど、センシングの優先レベルが高いと判断し、最短距離が大きいほど、センシングの優先レベルが低いと判断する。そして、優先レベル決定部202は、センシングの優先レベルに従ってセンシングウインドウ内でスキップする無線リソースを決定し、決定した無線リソースのセンシングをスキップするようにセンシング部116へ指示する。すなわち、優先レベル決定部202は、優先レベルが高いほどスキップされる無線リソースを少なくし、優先レベルが低いほどスキップされる無線リソースを多くする。 The priority level determination unit 202 determines the priority level of sensing in the terminal device 100 according to the shortest distance from the terminal device 100. Specifically, the priority level determination unit 202 determines that the smaller the shortest distance, the higher the priority level of sensing, and the larger the shortest distance, the lower the priority level of sensing. Then, the priority level determination unit 202 determines the radio resource to be skipped in the sensing window according to the priority level of sensing, and instructs the sensing unit 116 to skip the sensing of the determined radio resource. That is, the priority level determination unit 202 reduces the number of radio resources to be skipped as the priority level is higher, and increases the number of radio resources to be skipped as the priority level is lower.
 次いで、上記のように構成された端末装置100によるリソース選択方法について、図8に示すフロー図を参照しながら説明する。図8において、図4と同じ部分には同じ符号を付し、その詳しい説明を省略する。 Next, the resource selection method by the terminal device 100 configured as described above will be described with reference to the flow chart shown in FIG. In FIG. 8, the same parts as those in FIG. 4 are designated by the same reference numerals, and detailed description thereof will be omitted.
 端末装置100において送信すべきデータが発生した場合、又は、所定の周期で、存否確認要求が送信される(ステップS101)。存否確認要求は、端末装置100の周囲の端末装置によって受信され、これらの端末装置は、存否確認要求に対する応答として存否確認信号を送信する。周囲の端末装置から送信された存否確認信号は、無線通信部130によって受信され(ステップS102)、受信制御部114を経由して存否確認信号取得部102によって取得される。 When data to be transmitted is generated in the terminal device 100, or at a predetermined cycle, a presence / absence confirmation request is transmitted (step S101). The presence / absence confirmation request is received by the terminal devices around the terminal device 100, and these terminal devices transmit a presence / absence confirmation signal in response to the presence / absence confirmation request. The presence / absence confirmation signal transmitted from the surrounding terminal device is received by the wireless communication unit 130 (step S102), and is acquired by the presence / absence confirmation signal acquisition unit 102 via the reception control unit 114.
 そして、最短距離算出部201によって、存否確認信号を用いて端末装置100に最も近い端末装置までの最短距離が算出される(ステップS201)。具体的には、例えば存否確認信号の受信電力から伝搬損失が算出され、存否確認信号の送信元の端末装置から端末装置100までの距離が推定される。そして、存否確認信号を送信した複数の端末装置のうち、端末装置100までの距離が最も小さい端末装置が特定され、この端末装置までの距離が最短距離となる。最短距離は、優先レベル決定部202へ通知される。 Then, the shortest distance calculation unit 201 calculates the shortest distance to the terminal device closest to the terminal device 100 using the presence / absence confirmation signal (step S201). Specifically, for example, the propagation loss is calculated from the received power of the presence / absence confirmation signal, and the distance from the terminal device of the source of the presence / absence confirmation signal to the terminal device 100 is estimated. Then, among the plurality of terminal devices that have transmitted the presence / absence confirmation signal, the terminal device having the shortest distance to the terminal device 100 is specified, and the distance to this terminal device is the shortest distance. The shortest distance is notified to the priority level determination unit 202.
 そして、優先レベル決定部202によって、最短距離に応じたセンシングの優先レベルが決定される(ステップS202)。具体的には、最短距離が小さければ、緊急性が高いデータの送受信が発生する可能性があり、センシングの確実性が求められるため、センシングの優先レベルが高いと判断される。一方、最短距離が大きければ、緊急性が高いデータの送受信が発生する可能性は低いため、センシングの優先レベルが低いと判断される。 Then, the priority level determination unit 202 determines the priority level of sensing according to the shortest distance (step S202). Specifically, if the shortest distance is small, there is a possibility that highly urgent data transmission / reception may occur, and since the certainty of sensing is required, it is judged that the priority level of sensing is high. On the other hand, if the shortest distance is large, it is unlikely that highly urgent data transmission / reception will occur, so it is judged that the priority level of sensing is low.
 センシングの優先レベルが決定されると、優先レベルに従ってセンシングをスキップする無線リソースが決定される。すなわち、優先レベルが高いほどスキップされる無線リソースが少なくされ、優先レベルが低いほどスキップされる無線リソースが多くされる。決定された無線リソースのスキップは、優先レベル決定部202からセンシング部116へ指示される。 When the priority level of sensing is determined, the radio resource to skip sensing is determined according to the priority level. That is, the higher the priority level, the less radio resources are skipped, and the lower the priority level, the more radio resources are skipped. The skipping of the determined radio resource is instructed from the priority level determination unit 202 to the sensing unit 116.
 そして、センシング部116によって、指示された無線リソースをスキップしながら無線リソースのセンシングが実行される(ステップS105)。すなわち、センシングウインドウ内の無線リソースが、優先レベル決定部202からの指示に応じてスキップされながらセンシングされる。このため、センシングに係る処理量を削減することができ、消費電力の増大を抑制することができる。 Then, the sensing unit 116 executes sensing of the radio resource while skipping the instructed radio resource (step S105). That is, the radio resources in the sensing window are sensed while being skipped according to the instruction from the priority level determination unit 202. Therefore, the processing amount related to sensing can be reduced, and the increase in power consumption can be suppressed.
 センシングウインドウ内の無線リソースのセンシングが実行されると、リソース選択部117によって、データの送信に使用する無線リソースが選択される(ステップS106)。選択された無線リソースは、送信制御部113へ通知され、この無線リソースに制御情報及び送信データがマッピングされる。そして、マッピングにより得られた送信信号は、無線通信部130を経由してアンテナから送信される(ステップS107)。 When the wireless resource sensing in the sensing window is executed, the resource selection unit 117 selects the wireless resource to be used for data transmission (step S106). The selected radio resource is notified to the transmission control unit 113, and control information and transmission data are mapped to this radio resource. Then, the transmission signal obtained by the mapping is transmitted from the antenna via the wireless communication unit 130 (step S107).
 以上のように、本実施の形態によれば、周囲の端末装置から送信される存否確認信号を用いて最も近くに位置する端末装置までの最短距離を算出し、最短距離に応じて無線リソースをスキップしながらセンシングを実行する。このため、センシングウインドウ内のすべての無線リソースを対象にセンシングが実行されることがなく、センシングに係る処理量を削減することができ、消費電力の増大を抑制することができる。 As described above, according to the present embodiment, the shortest distance to the nearest terminal device is calculated using the presence / absence confirmation signal transmitted from the surrounding terminal device, and the radio resource is set according to the shortest distance. Perform sensing while skipping. Therefore, sensing is not executed for all the wireless resources in the sensing window, the processing amount related to sensing can be reduced, and the increase in power consumption can be suppressed.
(実施の形態3)
 実施の形態3の特徴は、チャネルビジー比(CBR:Channel Busy Ratio)に応じてセンシングの優先レベルを決定する点である。
(Embodiment 3)
The feature of the third embodiment is that the priority level of sensing is determined according to the channel busy ratio (CBR: Channel Busy Ratio).
 実施の形態3に係る無線通信システム及び端末装置100の構成は、実施の形態1(図1、2)と同様であるため、その説明を省略する。実施の形態3においては、スキップ制御部115の構成が実施の形態1とは異なる。 Since the configuration of the wireless communication system and the terminal device 100 according to the third embodiment is the same as that of the first embodiment (FIGS. 1 and 2), the description thereof will be omitted. In the third embodiment, the configuration of the skip control unit 115 is different from that of the first embodiment.
 図9は、実施の形態3に係るスキップ制御部115の構成を示すブロック図である。図9に示すように、スキップ制御部115は、CBR算出部301及び優先レベル決定部302を有する。 FIG. 9 is a block diagram showing the configuration of the skip control unit 115 according to the third embodiment. As shown in FIG. 9, the skip control unit 115 includes a CBR calculation unit 301 and a priority level determination unit 302.
 CBR算出部301は、スキップせずにセンシングが実行された際のセンシング結果をセンシング部116から取得し、センシング結果からCBRを算出する。すなわち、CBR算出部301は、センシング部116がスキップの指示を受ける前に実行したセンシング結果を取得する。このセンシング結果は、センシングウインドウ内のすべての無線リソースがそれぞれ他の端末装置によって使用中であるか否かを示している。そこで、CBR算出部301は、センシングウインドウの全体の無線リソースのうち、他の端末装置によって使用中の無線リソースの割合をCBRとして算出する。 The CBR calculation unit 301 acquires the sensing result when sensing is executed without skipping from the sensing unit 116, and calculates the CBR from the sensing result. That is, the CBR calculation unit 301 acquires the sensing result executed before the sensing unit 116 receives the skip instruction. This sensing result indicates whether or not all the radio resources in the sensing window are being used by other terminal devices. Therefore, the CBR calculation unit 301 calculates the ratio of the radio resources being used by the other terminal device as the CBR among the radio resources of the entire sensing window.
 優先レベル決定部302は、CBRに応じて、端末装置100におけるセンシングの優先レベルを決定する。具体的には、優先レベル決定部302は、CBRが大きいほど、センシングの優先レベルが高いと判断し、CBRが小さいほど、センシングの優先レベルが低いと判断する。そして、優先レベル決定部302は、センシングの優先レベルに従ってセンシングウインドウ内でスキップする無線リソースを決定し、決定した無線リソースのセンシングをスキップするようにセンシング部116へ指示する。すなわち、優先レベル決定部302は、優先レベルが高いほどスキップされる無線リソースを少なくし、優先レベルが低いほどスキップされる無線リソースを多くする。 The priority level determination unit 302 determines the priority level of sensing in the terminal device 100 according to the CBR. Specifically, the priority level determination unit 302 determines that the larger the CBR, the higher the priority level of sensing, and the smaller the CBR, the lower the priority level of sensing. Then, the priority level determination unit 302 determines the radio resource to be skipped in the sensing window according to the priority level of sensing, and instructs the sensing unit 116 to skip the sensing of the determined radio resource. That is, the priority level determination unit 302 reduces the number of radio resources to be skipped as the priority level is higher, and increases the number of radio resources to be skipped as the priority level is lower.
 次いで、上記のように構成された端末装置100によるリソース選択方法について、図10に示すフロー図を参照しながら説明する。図10において、図4と同じ部分には同じ符号を付し、その詳しい説明を省略する。 Next, the resource selection method by the terminal device 100 configured as described above will be described with reference to the flow chart shown in FIG. In FIG. 10, the same parts as those in FIG. 4 are designated by the same reference numerals, and detailed description thereof will be omitted.
 センシング部116は、スキップ制御部115から無線リソースのスキップが指示される前に、例えば所定の周期でセンシングウインドウを設定し、センシングウインドウ内のすべての無線リソースのセンシングを実行する(ステップS301)。センシング結果は、CBR算出部301によって取得され、センシングウインドウ内の他の端末装置によって使用中の無線リソースの割合がCBRとして算出される(ステップS302)。算出されたCBRは、優先レベル決定部302へ通知される。 Before the skip control unit 115 instructs the skip control unit 115 to skip the radio resource, the sensing unit 116 sets the sensing window at a predetermined cycle, for example, and executes sensing of all the radio resources in the sensing window (step S301). The sensing result is acquired by the CBR calculation unit 301, and the ratio of the radio resources being used by another terminal device in the sensing window is calculated as CBR (step S302). The calculated CBR is notified to the priority level determination unit 302.
 そして、優先レベル決定部302によって、CBRに応じたセンシングの優先レベルが決定される(ステップS303)。具体的には、CBRが大きければ、無線リソースの選択において衝突が発生する可能性も大きいため、センシングの優先レベルが高いと判断される。一方、CBRが小さければ、無線リソースの選択において衝突が発生する可能性は小さいため、センシングの優先レベルが低いと判断される。 Then, the priority level determination unit 302 determines the priority level of sensing according to the CBR (step S303). Specifically, if the CBR is large, there is a high possibility that a collision will occur in the selection of radio resources, so it is judged that the priority level of sensing is high. On the other hand, if the CBR is small, it is judged that the priority level of sensing is low because the possibility of collision occurring in the selection of radio resources is small.
 センシングの優先レベルが決定されると、優先レベルに従ってセンシングをスキップする無線リソースが決定される。すなわち、優先レベルが高いほどスキップされる無線リソースが少なくされ、優先レベルが低いほどスキップされる無線リソースが多くされる。決定された無線リソースのスキップは、優先レベル決定部302からセンシング部116へ指示される。 When the priority level of sensing is determined, the radio resource to skip sensing is determined according to the priority level. That is, the higher the priority level, the less radio resources are skipped, and the lower the priority level, the more radio resources are skipped. The skipping of the determined radio resource is instructed from the priority level determination unit 302 to the sensing unit 116.
 そして、センシング部116によって、指示された無線リソースをスキップしながら無線リソースのセンシングが実行される(ステップS105)。すなわち、センシングウインドウ内の無線リソースが、優先レベル決定部302からの指示に応じてスキップされながらセンシングされる。このため、センシングに係る処理量を削減することができ、消費電力の増大を抑制することができる。 Then, the sensing unit 116 executes sensing of the radio resource while skipping the instructed radio resource (step S105). That is, the radio resources in the sensing window are sensed while being skipped according to the instruction from the priority level determination unit 302. Therefore, the processing amount related to sensing can be reduced, and the increase in power consumption can be suppressed.
 センシングウインドウ内の無線リソースのセンシングが実行されると、リソース選択部117によって、データの送信に使用する無線リソースが選択される(ステップS106)。選択された無線リソースは、送信制御部113へ通知され、この無線リソースに制御情報及び送信データがマッピングされる。そして、マッピングにより得られた送信信号は、無線通信部130を経由してアンテナから送信される(ステップS107)。 When the wireless resource sensing in the sensing window is executed, the resource selection unit 117 selects the wireless resource to be used for data transmission (step S106). The selected radio resource is notified to the transmission control unit 113, and control information and transmission data are mapped to this radio resource. Then, the transmission signal obtained by the mapping is transmitted from the antenna via the wireless communication unit 130 (step S107).
 以上のように、本実施の形態によれば、スキップせずに実行されたセンシング結果からセンシングウインドウ内におけるチャネルビジー比を算出し、チャネルビジー比に応じて無線リソースをスキップしながらセンシングを実行する。このため、センシングウインドウ内のすべての無線リソースを対象にセンシングが実行されることがなく、センシングに係る処理量を削減することができ、消費電力の増大を抑制することができる。 As described above, according to the present embodiment, the channel busy ratio in the sensing window is calculated from the sensing result executed without skipping, and the sensing is executed while skipping the radio resource according to the channel busy ratio. .. Therefore, sensing is not executed for all the wireless resources in the sensing window, the processing amount related to sensing can be reduced, and the increase in power consumption can be suppressed.
 なお、上記実施の形態1~3は、適宜組み合わせて実施することが可能である。すなわち、周囲の端末装置の密度、最も近くに位置する端末装置までの最短距離、及びスキップせずに実行されたセンシング結果におけるCBRを2つ以上組み合わせて、センシングの優先レベルが決定されても良い。 It should be noted that the above embodiments 1 to 3 can be carried out in combination as appropriate. That is, the priority level of sensing may be determined by combining two or more CBRs in the density of surrounding terminal devices, the shortest distance to the nearest terminal device, and the sensing result executed without skipping. ..
 また、上記実施の形態1~3においては、時間方向のスロット単位でセンシングがスキップされるものとしたが、スキップは、必ずしもスロット単位でなくても良い。すなわち、例えば周波数方向のサブチャネル単位でセンシングがスキップされたり、それぞれのサブチャネルにおいて異なる時間周期でセンシングがスキップされたりしても良い。 Further, in the above-described first to third embodiments, the sensing is skipped in units of slots in the time direction, but the skip does not necessarily have to be in units of slots. That is, for example, sensing may be skipped in units of sub-channels in the frequency direction, or sensing may be skipped in different time cycles in each sub-channel.
(実施の形態4)
 上記実施の形態1~3においては、端末装置が移動体通信システムに接続しておらず、自律的に無線リソースを選択してデータを送信する場合について説明した。しかしながら、移動体通信システムが端末装置に無線リソースを割り当てる場合にも、消費電力の増大を抑制することができる。
(Embodiment 4)
In the first to third embodiments, the case where the terminal device is not connected to the mobile communication system and autonomously selects a wireless resource to transmit data has been described. However, even when the mobile communication system allocates wireless resources to the terminal device, it is possible to suppress an increase in power consumption.
 端末装置がサイドリンクを用いて無線通信を実行する場合、送信側の端末装置が移動体通信システムに無線リソースの割り当てを要求し、移動体通信システムによって割り当てられた無線リソースを用いてデータを送信することがある。このとき、送信側の端末装置は、移動体通信システムによって割り当てられた無線リソースの制御チャネルに、データの宛先を指定する制御情報を含めて送信する。受信側の端末装置は、サイドリンクで用いられる制御チャネルを常時監視し、自装置を宛先とするデータがあることを示す制御情報が得られた場合に、対応するデータチャネルのデータを受信する。 When the terminal device performs wireless communication using the side link, the transmitting terminal device requests the mobile communication system to allocate wireless resources, and transmits data using the wireless resources allocated by the mobile communication system. I have something to do. At this time, the terminal device on the transmitting side transmits the control information for designating the destination of the data to the control channel of the radio resource allocated by the mobile communication system. The terminal device on the receiving side constantly monitors the control channel used in the side link, and receives the data of the corresponding data channel when the control information indicating that there is data destined for the own device is obtained.
 しかしながら、受信側の端末装置は、サイドリンクで用いられる制御チャネルを常時監視するため、消費電力が増大する。そこで、実施の形態4では、移動体通信システムによって無線リソースが割り当てられる無線通信システムにおいて、消費電力の増大を抑制する場合について説明する。 However, since the terminal device on the receiving side constantly monitors the control channel used in the side link, the power consumption increases. Therefore, in the fourth embodiment, a case of suppressing an increase in power consumption in a wireless communication system to which wireless resources are allocated by a mobile communication system will be described.
 図11は、実施の形態4に係る無線通信システムの構成例を示す図である。図11に示すように、無線通信システムは、自動車に搭載される端末装置V-UEと、歩行者が所持する端末装置P-UEと、移動体通信システムの基地局装置200とを有する。 FIG. 11 is a diagram showing a configuration example of the wireless communication system according to the fourth embodiment. As shown in FIG. 11, the wireless communication system includes a terminal device V-UE mounted on an automobile, a terminal device P-UE possessed by a pedestrian, and a base station device 200 of a mobile communication system.
 端末装置V-UE及び端末装置P-UEは、それぞれ他の端末装置へデータを送信する場合に、基地局装置200に対して無線リソースの割り当てを要求する。そして、端末装置V-UE及び端末装置P-UEは、基地局装置200によって割り当てられた無線リソースを用いてデータを送信する。また、端末装置V-UE及び端末装置P-UEは、他の端末装置から自装置宛てのデータが送信される場合に、自装置宛てのデータの送信に用いられる無線リソースを特定する制御情報を基地局装置200から受信する。そして、端末装置V-UE及び端末装置P-UEは、基地局装置200から受信した制御情報に従って、他の端末装置から自装置宛てに送信されたデータを受信する。 The terminal device V-UE and the terminal device P-UE each request the base station device 200 to allocate wireless resources when transmitting data to other terminal devices. Then, the terminal device V-UE and the terminal device P-UE transmit data using the radio resources allocated by the base station device 200. Further, the terminal device V-UE and the terminal device P-UE provide control information for specifying the radio resource used for transmitting the data addressed to the own device when the data addressed to the own device is transmitted from the other terminal device. Received from the base station device 200. Then, the terminal device V-UE and the terminal device P-UE receive the data transmitted from the other terminal device to the own device according to the control information received from the base station device 200.
 図12は、実施の形態4に係る基地局装置200の構成を示すブロック図である。図12に示す基地局装置200は、無線通信部210、プロセッサ220及びメモリ230を有する。 FIG. 12 is a block diagram showing the configuration of the base station apparatus 200 according to the fourth embodiment. The base station apparatus 200 shown in FIG. 12 includes a wireless communication unit 210, a processor 220, and a memory 230.
 無線通信部210は、無線通信システムに属する端末装置との間で信号を送受信する。具体的には、無線通信部210は、送信信号に対して所定の無線送信処理を施し、アンテナを介して端末装置へ無線送信する。また、無線通信部210は、アンテナを介して信号を無線受信し、受信信号に対して所定の無線受信処理を施す。 The wireless communication unit 210 transmits and receives signals to and from a terminal device belonging to the wireless communication system. Specifically, the wireless communication unit 210 performs a predetermined wireless transmission process on the transmission signal and wirelessly transmits the transmission signal to the terminal device via the antenna. Further, the wireless communication unit 210 wirelessly receives a signal via the antenna and performs a predetermined wireless reception process on the received signal.
 プロセッサ220は、例えばCPU、FPGA又はDSPなどを備え、基地局装置200の全体を統括制御する。具体的には、プロセッサ220は、受信制御部221、サイドリンク制御部222、制御情報生成部223、送信データ生成部224及び送信制御部225を有する。 The processor 220 includes, for example, a CPU, FPGA, DSP, etc., and controls the entire base station apparatus 200 in an integrated manner. Specifically, the processor 220 includes a reception control unit 221, a side link control unit 222, a control information generation unit 223, a transmission data generation unit 224, and a transmission control unit 225.
 受信制御部221は、無線通信部210から受信信号を取得し、受信信号に対する受信処理を実行する。具体的には、受信制御部221は、端末装置による無線リソースの割当要求を含む制御チャネルの復調及び復号を実行する。そして、受信制御部221は、無線リソースの割当要求をサイドリンク制御部222へ出力する。 The reception control unit 221 acquires a reception signal from the wireless communication unit 210 and executes reception processing for the reception signal. Specifically, the reception control unit 221 demodulates and decodes the control channel including the request for allocation of radio resources by the terminal device. Then, the reception control unit 221 outputs the radio resource allocation request to the side link control unit 222.
 サイドリンク制御部222は、無線通信システムに属する端末装置間のサイドリンクによる通信を制御する。具体的には、サイドリンク制御部222は、端末装置からの無線リソースの割当要求に応じて、この端末装置にデータ送信用の無線リソースを割り当てる。そして、サイドリンク制御部222は、割り当てたデータ送信用の無線リソースを特定する情報を制御情報生成部223に通知する。 The side link control unit 222 controls communication by side links between terminal devices belonging to the wireless communication system. Specifically, the side link control unit 222 allocates the radio resource for data transmission to the terminal device in response to the request for allocation of the radio resource from the terminal device. Then, the side link control unit 222 notifies the control information generation unit 223 of the information for identifying the allocated radio resource for data transmission.
 制御情報生成部223は、データ送信用に端末装置に割り当てられた無線リソースを特定する情報を含む第1制御情報を生成する。この第1制御情報は、データの送信元の端末装置が使用する制御チャネル及びデータチャネルを特定する情報を含む。また、制御情報生成部223は、データの受信先の端末装置へ送信される第2制御情報も生成する。この第2制御情報は、データの受信先が宛先となっているデータチャネルを特定する情報を含む。また、第2制御情報は、スリープ中の端末装置を起動させるウェイクアップ情報を含んでいても良い。 The control information generation unit 223 generates the first control information including the information that identifies the radio resource assigned to the terminal device for data transmission. This first control information includes information that identifies the control channel and the data channel used by the terminal device that transmits the data. The control information generation unit 223 also generates second control information to be transmitted to the terminal device of the data reception destination. This second control information includes information that identifies the data channel to which the data reception destination is the destination. Further, the second control information may include wake-up information for activating the terminal device in sleep mode.
 送信データ生成部224は、端末装置へ送信すべきデータが発生した場合に、送信データを生成する。 The transmission data generation unit 224 generates transmission data when data to be transmitted to the terminal device is generated.
 送信制御部225は、第1制御情報、第2制御情報及び送信データを符号化及び変調して無線リソースにマッピングし、送信信号を生成する。具体的には、送信制御部225は、例えば個別のPDCCH(Physical Downlink Control CHannel)に第1制御情報をマッピングし、データの受信先となる複数の端末装置に対するグループPDCCHに第2制御情報をマッピングする。そして、送信制御部225は、第1制御情報、第2制御情報及び送信データを含む送信信号を、無線通信部210から送信させる。 The transmission control unit 225 encodes and modulates the first control information, the second control information, and the transmission data, maps them to the radio resource, and generates a transmission signal. Specifically, the transmission control unit 225 maps the first control information to, for example, individual PDCCHs (Physical Downlink Control Channels), and maps the second control information to group PDCCHs for a plurality of terminal devices that receive data. do. Then, the transmission control unit 225 causes the wireless communication unit 210 to transmit a transmission signal including the first control information, the second control information, and the transmission data.
 メモリ230は、例えばRAM又はROMなどを備え、プロセッサ220による処理に用いられる情報を記憶する。 The memory 230 includes, for example, a RAM or a ROM, and stores information used for processing by the processor 220.
 図13は、他の端末装置からサイドリンクを用いて送信されるデータを受信する端末装置100の構成を示すブロック図である。図13において、図2と同じ部分には同じ符号を付し、その説明を省略する。図13に示す端末装置100は、図2に示す端末装置100とは異なる構成のプロセッサ110を有する。すなわち、プロセッサ110は、ネットワーク受信制御部411、リソース特定部412及びサイドリンク受信制御部413を有する。 FIG. 13 is a block diagram showing a configuration of a terminal device 100 that receives data transmitted from another terminal device using a side link. In FIG. 13, the same parts as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. The terminal device 100 shown in FIG. 13 has a processor 110 having a configuration different from that of the terminal device 100 shown in FIG. That is, the processor 110 includes a network reception control unit 411, a resource identification unit 412, and a side link reception control unit 413.
 ネットワーク受信制御部411は、基地局装置200から受信した受信信号を無線通信部130から取得し、受信信号に対する受信処理を実行する。具体的には、ネットワーク受信制御部411は、第2制御情報を含む制御チャネルの復調及び復号を実行する。そして、ネットワーク受信制御部411は、第2制御情報をリソース特定部412へ出力する。なお、ネットワーク受信制御部411は、端末装置100がスリープ中も稼働しており、第2制御情報がウェイクアップ情報を含む場合には、スリープ中の端末装置100を起動させる。 The network reception control unit 411 acquires the reception signal received from the base station device 200 from the wireless communication unit 130, and executes reception processing for the reception signal. Specifically, the network reception control unit 411 executes demodulation and decoding of the control channel including the second control information. Then, the network reception control unit 411 outputs the second control information to the resource identification unit 412. The network reception control unit 411 activates the sleeping terminal device 100 when the terminal device 100 is operating even during the sleep and the second control information includes the wakeup information.
 リソース特定部412は、第2制御情報を参照して、端末装置100を宛先とするデータチャネルの無線リソースを特定する。すなわち、リソース特定部412は、サイドリンクを用いる通信のために基地局装置200が割り当てた無線リソースであって、端末装置100宛てのデータが送信されるデータチャネルの無線リソースを特定する。 The resource specifying unit 412 specifies the radio resource of the data channel destined for the terminal device 100 with reference to the second control information. That is, the resource specifying unit 412 specifies the radio resource of the data channel to which the data addressed to the terminal device 100 is transmitted, which is the radio resource allocated by the base station device 200 for the communication using the side link.
 サイドリンク受信制御部413は、サイドリンクを用いて他の端末装置から受信した受信信号を無線通信部130から取得し、受信信号に対する受信処理を実行する。具体的には、サイドリンク受信制御部413は、リソース特定部412によって特定されたデータチャネルの復調及び復号を実行する。このとき、サイドリンク受信制御部413は、データチャネルに対応する制御チャネルの復調及び復号を実行し、得られた制御情報に応じてデータチャネルの復調及び復号を実行する。 The side link reception control unit 413 acquires a received signal received from another terminal device using the side link from the wireless communication unit 130, and executes reception processing for the received signal. Specifically, the side link reception control unit 413 demodulates and decodes the data channel specified by the resource identification unit 412. At this time, the side link reception control unit 413 executes demodulation and decoding of the control channel corresponding to the data channel, and executes demodulation and decoding of the data channel according to the obtained control information.
 本実施の形態においては、サイドリンクを用いてデータを送信する端末装置が基地局装置200に対して無線リソースの割り当てを要求し、基地局装置200は、無線リソースを割り当てた上で、第1制御情報をデータの送信元の端末装置へ送信する。一方、基地局装置は、割り当てた無線リソースの情報を含む第2制御情報をデータの受信先の端末装置100へ送信する。このため、端末装置100は、サイドリンクで用いられる制御チャネルを常時監視しなくても、自装置宛てのデータの送信に用いられる無線リソースを第2制御情報から特定することができる。結果として、制御チャネルの監視に係る電力を削減し、消費電力の増大を抑制することができる。 In the present embodiment, the terminal device that transmits data using the side link requests the base station device 200 to allocate the radio resource, and the base station device 200 allocates the radio resource and then first. The control information is transmitted to the terminal device from which the data is transmitted. On the other hand, the base station device transmits the second control information including the information of the allocated radio resource to the terminal device 100 of the data reception destination. Therefore, the terminal device 100 can specify the radio resource used for transmitting data to its own device from the second control information without constantly monitoring the control channel used in the side link. As a result, the power for monitoring the control channel can be reduced and the increase in power consumption can be suppressed.
 以上のように、本実施の形態によれば、基地局装置は、サイドリンクを用いる通信に無線リソースを割り当て、割り当てた無線リソースを特定する第1制御情報をデータの送信元の端末装置へ送信するとともに、第2制御情報をデータの受信先の端末装置へも送信する。そして、データの受信先の端末装置は、第2制御情報から自装置宛てのデータを含む無線リソースを特定し、受信処理を実行する。このため、データの受信先の端末装置は、サイドリンクで用いられる制御チャネルを常時監視する必要がなく、制御チャネルの監視に係る電力を削減し、消費電力の増大を抑制することができる。 As described above, according to the present embodiment, the base station device allocates radio resources to the communication using the side link, and transmits the first control information for identifying the allocated radio resources to the terminal device of the data transmission source. At the same time, the second control information is also transmitted to the terminal device of the data receiving destination. Then, the terminal device of the data receiving destination identifies the radio resource including the data addressed to its own device from the second control information, and executes the receiving process. Therefore, the terminal device of the data receiving destination does not need to constantly monitor the control channel used in the side link, and can reduce the power related to the monitoring of the control channel and suppress the increase in power consumption.
 110 プロセッサ
 111 制御情報生成部
 112 送信データ生成部
 113 送信制御部
 114 受信制御部
 115 スキップ制御部
 116 センシング部
 117 リソース選択部
 120 メモリ
 130 無線通信部
 101 存否確認要求部
 102 存否確認信号取得部
 103 密度算出部
 104、202、302 優先レベル決定部
 201 最短距離算出部
 301 CBR算出部
110 Processor 111 Control information generation unit 112 Transmission data generation unit 113 Transmission control unit 114 Reception control unit 115 Skip control unit 116 Sensing unit 117 Resource selection unit 120 Memory 130 Wireless communication unit 101 Presence / absence confirmation request unit 102 Presence / absence confirmation signal acquisition unit 103 Density Calculation unit 104, 202, 302 Priority level determination unit 201 Shortest distance calculation unit 301 CBR calculation unit

Claims (8)

  1.  自装置以外の他の無線通信装置による無線リソースの使用状況を調査するセンシングにおいてセンシングをスキップする無線リソースを決定する決定部と、
     前記決定部によって決定された無線リソースをスキップしながらセンシングを実行するセンシング部と、
     前記センシング部によるセンシングの結果に基づいて、データの送信に使用する無線リソースを選択する選択部と、
     前記選択部によって選択された無線リソースを用いてデータを送信する送信部と
     を有することを特徴とする無線通信装置。
    A decision unit that determines the wireless resource to skip sensing in sensing that investigates the usage status of wireless resources by wireless communication devices other than the own device, and
    A sensing unit that executes sensing while skipping the radio resources determined by the determination unit, and
    A selection unit that selects wireless resources to be used for data transmission based on the result of sensing by the sensing unit, and a selection unit.
    A wireless communication device including a transmission unit that transmits data using a wireless resource selected by the selection unit.
  2.  前記決定部は、
     自装置以外の他の無線通信装置の密度を算出する算出部を有し、
     算出された密度が高いほど、センシングをスキップする無線リソースを少なくする
     ことを特徴とする請求項1記載の無線通信装置。
    The decision unit
    It has a calculation unit that calculates the density of wireless communication devices other than its own device.
    The wireless communication device according to claim 1, wherein the higher the calculated density, the smaller the number of wireless resources for which sensing is skipped.
  3.  前記決定部は、
     自装置から他の無線通信装置までの距離を算出する算出部を有し、
     算出された距離が小さいほど、センシングをスキップする無線リソースを少なくする
     ことを特徴とする請求項1記載の無線通信装置。
    The decision unit
    It has a calculation unit that calculates the distance from its own device to another wireless communication device.
    The wireless communication device according to claim 1, wherein the smaller the calculated distance, the smaller the number of wireless resources for which sensing is skipped.
  4.  前記センシング部は、
     所定条件の無線リソースについて、スキップせずにセンシングを実行し、
     前記決定部は、
     スキップせずに実行されたセンシングの結果から、他の無線通信装置によって使用中の無線リソースの割合を示す比を算出する算出部を有し、
     算出された比が高いほど、センシングをスキップする無線リソースを少なくする
     ことを特徴とする請求項1記載の無線通信装置。
    The sensing unit
    Executes sensing without skipping for wireless resources under predetermined conditions,
    The decision unit
    It has a calculation unit that calculates the ratio indicating the ratio of wireless resources in use by other wireless communication devices from the result of sensing executed without skipping.
    The wireless communication device according to claim 1, wherein the higher the calculated ratio, the smaller the number of wireless resources for which sensing is skipped.
  5.  前記センシング部は、
     制御チャネルを復号することによりデータチャネルの使用状況を確認するとともに、データチャネルの受信電力を測定する
     ことを特徴とする請求項1記載の無線通信装置。
    The sensing unit
    The wireless communication device according to claim 1, wherein the usage status of the data channel is confirmed by decoding the control channel, and the received power of the data channel is measured.
  6.  前記制御チャネルは、
     PSCCH(Physical Sidelink Control CHannel)であり、
     前記データチャネルは、
     PSSCH(Physical Sidelink Shared CHannel)である
     ことを特徴とする請求項5記載の無線通信装置。
    The control channel
    PSCCH (Physical Sidelink Control CHannel)
    The data channel
    The wireless communication device according to claim 5, wherein the wireless communication device is a PSSCH (Physical Sidelink Shared CHannel).
  7.  第1の無線通信装置と、前記第1の無線通信装置と無線通信可能な第2の無線通信装置とを有する無線通信システムであって、
     前記第1の無線通信装置は、
     前記第2の無線通信装置を含む他の無線通信装置による無線リソースの使用状況を調査するセンシングにおいてセンシングをスキップする無線リソースを決定する決定部と、
     前記決定部によって決定された無線リソースをスキップしながらセンシングを実行するセンシング部と、
     前記センシング部によるセンシングの結果に基づいて、データの送信に使用する無線リソースを選択する選択部と、
     前記選択部によって選択された無線リソースを用いてデータを送信する送信部と
     を有することを特徴とする無線通信システム。
    A wireless communication system including a first wireless communication device and a second wireless communication device capable of wireless communication with the first wireless communication device.
    The first wireless communication device is
    A determination unit for determining the wireless resource to be skipped in sensing for investigating the usage status of the wireless resource by another wireless communication device including the second wireless communication device, and a determination unit.
    A sensing unit that executes sensing while skipping the radio resources determined by the determination unit, and
    A selection unit that selects wireless resources to be used for data transmission based on the result of sensing by the sensing unit, and a selection unit.
    A wireless communication system including a transmission unit that transmits data using a radio resource selected by the selection unit.
  8.  無線通信装置によって実行される無線リソース選択方法であって、
     他の無線通信装置による無線リソースの使用状況を調査するセンシングにおいてセンシングをスキップする無線リソースを決定し、
     決定された無線リソースをスキップしながらセンシングを実行し、
     センシングの結果に基づいて、データの送信に使用する無線リソースを選択し、
     選択された無線リソースを用いてデータを送信する
     処理を有することを特徴とする無線リソース選択方法。
    A wireless resource selection method performed by a wireless communication device.
    Investigate the usage status of wireless resources by other wireless communication devices Determine the wireless resources to skip sensing in sensing
    Perform sensing while skipping determined radio resources,
    Based on the sensing results, select the radio resources to use to send the data,
    A radio resource selection method comprising a process of transmitting data using a selected radio resource.
PCT/JP2020/005648 2020-02-13 2020-02-13 Wireless communication device, wireless communication system and wireless resource selection method WO2021161473A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005648 WO2021161473A1 (en) 2020-02-13 2020-02-13 Wireless communication device, wireless communication system and wireless resource selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005648 WO2021161473A1 (en) 2020-02-13 2020-02-13 Wireless communication device, wireless communication system and wireless resource selection method

Publications (1)

Publication Number Publication Date
WO2021161473A1 true WO2021161473A1 (en) 2021-08-19

Family

ID=77292376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005648 WO2021161473A1 (en) 2020-02-13 2020-02-13 Wireless communication device, wireless communication system and wireless resource selection method

Country Status (1)

Country Link
WO (1) WO2021161473A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534290A (en) * 2012-09-27 2015-11-26 日本電気株式会社 Scan control system, method and program
JP2017208796A (en) * 2016-05-12 2017-11-24 ソニー株式会社 Communication device, communication method, and computer program
WO2020021690A1 (en) * 2018-07-26 2020-01-30 株式会社Nttドコモ User device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534290A (en) * 2012-09-27 2015-11-26 日本電気株式会社 Scan control system, method and program
JP2017208796A (en) * 2016-05-12 2017-11-24 ソニー株式会社 Communication device, communication method, and computer program
WO2020021690A1 (en) * 2018-07-26 2020-01-30 株式会社Nttドコモ User device

Similar Documents

Publication Publication Date Title
US10952254B2 (en) Network routing system, method, and computer program product
CN110249690B (en) V2X communication method performed by V2X terminal in wireless communication system and terminal using the same
EP3497985B1 (en) Clear-to-send (cts) power control in sidelink
US8611914B2 (en) Inter base station communication for joint resource management
CN107852649B (en) Method, base station, infrastructure node and terminal for measuring and delay-sensitive vehicle-related communication
CN112385280A (en) Techniques for sidelink feedback transmission
WO2020035142A1 (en) Devices and methods for receiver-based sidelink resource selection
EP3821624B1 (en) Relaying for vehicular communications
EP3442284B1 (en) Method and user equipment for resource allocation of vehicle network
KR20140124088A (en) Apparatus and method for performing device to device communication in an wireless communication system
JPWO2020039487A1 (en) Terminal equipment, base station equipment, and communication systems
JPWO2020031346A1 (en) Communication equipment, base station equipment, and communication methods
WO2020144813A1 (en) Communication device and wireless communication system
WO2021161473A1 (en) Wireless communication device, wireless communication system and wireless resource selection method
WO2020105191A1 (en) Communication device and wireless communication system
US20110064060A1 (en) Method For Allocating Wireless Resource, Base Station, And Mobile Station
WO2020217501A1 (en) Communication device and wireless communication system
WO2022029943A1 (en) Terminal device, radio communication system and radio communication method
JP2021521696A (en) Resource allocation method and equipment in wireless communication system
JP7176572B2 (en) Communication device, wireless communication system and resource selection method
JPWO2020031355A1 (en) Terminal equipment and wireless communication system
WO2022059212A1 (en) Terminal device, wireless communication system, and resource selection method
WO2021205627A1 (en) Wireless communication device, wireless communication system, and power control method
JP7347545B2 (en) Wireless communication device, wireless communication system, and wireless communication method
WO2021205628A1 (en) Radio communication device, radio communication system, and power control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP