WO2020030351A1 - Verfahren und vorrichtung zum betreiben eines verbrennungsmotors mit einem common-rail-einspritzsystem - Google Patents

Verfahren und vorrichtung zum betreiben eines verbrennungsmotors mit einem common-rail-einspritzsystem Download PDF

Info

Publication number
WO2020030351A1
WO2020030351A1 PCT/EP2019/067846 EP2019067846W WO2020030351A1 WO 2020030351 A1 WO2020030351 A1 WO 2020030351A1 EP 2019067846 W EP2019067846 W EP 2019067846W WO 2020030351 A1 WO2020030351 A1 WO 2020030351A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
rail
internal combustion
combustion engine
curve
Prior art date
Application number
PCT/EP2019/067846
Other languages
English (en)
French (fr)
Inventor
Joerg Schmitt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US17/264,091 priority Critical patent/US11346299B2/en
Priority to CN201980052273.1A priority patent/CN112513446A/zh
Publication of WO2020030351A1 publication Critical patent/WO2020030351A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1405Neural network control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation

Definitions

  • the invention relates to methods for operating an internal combustion engine with a common rail injection system, in particular based on a quantity of fuel to be determined. Furthermore, the present invention relates to methods for modeling the amount of fuel injected in an internal combustion engine with a common rail injection system.
  • fuel is injected into the cylinders from a high-pressure accumulator via injection valves directly into the combustion chambers of the cylinders.
  • the amount of fuel injected is currently determined based on the rail pressure curve in the high-pressure accumulator, by valve lifts and opening times of the injection valves. These parameters and also other parameters, in particular component parameters, have a high tolerance. In order to compensate for these tolerances, in particular over the service life, the injected quantity is to be estimated on the basis of the rail pressure curve, the rail pressure curve also being subject to a number of tolerances. For example, there are manufacturing tolerances in the volume of the common rail injection system, tolerances in the fuel properties that depend on the type of fuel, and measurement tolerances in the measurement of the fuel temperature. rature and the rail pressure. Rail pressure-based quantity estimation methods therefore have large tolerances regardless of the determination of the injected fuel quantity. Therefore, the amount of fuel injected cannot easily be reliably determined by a physical model.
  • the document DE 10 2005 006 361 A1 describes a method for operating an internal combustion engine, in which the fuel is at least temporarily conveyed into a fuel collecting line, to which at least one injector is connected, and in which a pressure difference, which line occurs with at least one injection, is detected.
  • the fuel rail is assumed to be an essentially closed system and the pressure difference is detected on a time basis.
  • the publication DE 10 2014 215 618 A1 relates to a method for determining an injection quantity of fuel which is taken from a high-pressure accumulator and injected into one or more combustion chambers of an internal combustion engine.
  • the course of the fuel pressure in the high-pressure accumulator is recorded and a frequency-transformed course of the fuel pressure is determined.
  • the injection quantity is determined from a component belonging to the ignition frequency of the internal combustion engine in the frequency-transformed course of the fuel pressure.
  • a method for determining at least one injection fuel quantity in an internal combustion engine with a common rail injection system with the aid of a rail pressure sensor and a motor control with an artificial neural network is known from the document DE 10 2004 031 006 A1.
  • the neural network is used to enable injection quantity determination from rail pressure data in real time. For this purpose, absolute values of the rail pressure curve are determined and fed to the neural network as an input variable vector.
  • a method for operating an internal combustion engine with a common rail injection system is provided as a function of an injection fuel quantity, with the following steps:
  • the above method for operating the internal combustion engine is based on a determination of an injected fuel quantity depending on a course of a fuel pressure in a high-pressure accumulator of the common rail injection system (rail pressure course).
  • This course of the fuel pressure is subject to a number of tolerances.
  • the modeling is carried out using a trainable model, in particular with the aid of a non-parametric model, such as a Gaussian process model, or a neural network.
  • An essential idea of the above method is to design the model so that it is as independent as possible of the tolerances of the tolerant parameters.
  • the dependency of the pressure drop Ap resulting in the high-pressure accumulator due to the injection of a quantity of fuel results as: for the injection fuel volume AV and c 2 (p, T)
  • the injection fuel quantity can thus be specified as a volume-related injection fuel quantity AV or as a mass-related injection fuel quantity Am.
  • the factor Variables subject to tolerance such as an absolute rail pressure p in the high-pressure accumulator, a fuel temperature T in the high-pressure accumulator and a storage volume V of the high-pressure accumulator and a compressibility K or c 2 .
  • the tolerance-related variables When training a non-parametric model, the tolerance-related variables must be simulated in their possible tolerance ranges in order to obtain corresponding training data for the model to be modeled. This is complex, and it is therefore proposed to carry out the estimation of the injected fuel quantity only on the basis of a course of the relative pressure in the high-pressure accumulator and to take no other influencing variables into account in the training method that affect the structure of the high-pressure accumulator and the fuel stored therein.
  • the magnitudes of the absolute pressure, the temperature and the high-pressure storage volume as well as the compressibility of the fuel should be explicitly avoided, depending on the type of fuel used.
  • the training of the non-parametric model based only on the relative pressure curve of the rail pressure is very easy to carry out, and it is thus possible in a very short test bench time to adapt the model to the individual internal combustion engine.
  • the influences of the individual tolerance-dependent parameters are learned in the relative pressure curve, so that the injection fuel quantity by means of a suitable formulation of an input variable vector that shows the curve of the relative pressure in the high-pressure accumulator describes, is possible.
  • the relative pressure curve can be determined as a function of a reference rail pressure, which results as the mean or initial value of a rail pressure curve in a current or previous work cycle of the internal combustion engine.
  • the injection fuel quantity can be determined as a function of a pressure difference between a maximum rail pressure and a minimum rail pressure.
  • the information on the relative pressure curve can be specified as a relative pressure curve information which represents at least part of an input variable vector for the trained function model.
  • the relative pressure history information can include one or more of the following information:
  • an FFT coefficient i.e. size of a harmonic
  • a first FFT coefficient from a Fourier transformation of the rail pressure curve.
  • the injection quantity can also be determined with a speed specification, which in particular corresponds to an average speed of the internal combustion engine during the current working cycle, or a load specification.
  • Figure 1 is a schematic representation of an engine system with a
  • FIG. 2 shows a functional circuit diagram to illustrate the function for determining an injected fuel quantity based on a profile of the rail pressure in the high-pressure accumulator of the common rail injection system
  • FIG. 3 shows a functional circuit diagram to illustrate the function for determining an injected fuel quantity based on a profile of the rail pressure in the high-pressure accumulator of the common rail injection system according to a further embodiment
  • Figure 4 shows a time pressure curve of the rail pressure in the range of 2000 bar.
  • FIG. 1 shows a schematic illustration of an engine system 1 with an internal combustion engine 2 with a plurality of cylinders 3 and a common rail injection system 4.
  • the common rail injection system 4 has a customary structure and comprises one injection valve 41 for each the cylinder 3, via which fuel from a high-pressure accumulator 42 can be injected into the cylinders 3.
  • the high-pressure accumulator 42 is connected to a high-pressure pump 43 in order to keep fuel that has been pre-conveyed by a feed pump 44 from a fuel tank 5 under high pressure in the high-pressure accumulator 42.
  • the high-pressure accumulator 42 is connected to an adjustable pressure control valve 45 in order to maintain a rail pressure in the high-pressure accumulator 42. H. to set the pressure of the fuel in the high-pressure accumulator 42 to a predetermined target rail pressure.
  • fuel can be supplied to the high-pressure accumulator 42 via the high-pressure pump 43 and fuel can be returned to the fuel tank 5 via the pressure-regulating valve 45.
  • the engine system 1 is controlled by an engine control unit 10, which detects sensor signals for controlling the internal combustion engine and outputs corresponding actuating signals to actuators of the engine system 1.
  • the engine control unit 10 thus detects the rail pressure via a rail pressure sensor 46 in the high pressure accumulator 42. Furthermore, the engine control unit 10 controls actuators of the engine system 1 based on manipulated variables and based on a predetermined target engine torque, which can be determined, for example, from a predetermined driver's desired torque.
  • the engine control unit 10 includes, among other functions, a function for determining an injected fuel quantity.
  • the amount of injection fuel is required to operate the engine system 1, since an established engine torque can be derived or determined from this. In addition, this can be used to check the plausibility and adapt the function of the injection valves in order to be able to set the actual injection fuel quantity more precisely.
  • the injected fuel quantity can be determined from a pressure curve of the rail pressure in the high-pressure accumulator 42 by means of a trained, parameter-free function model.
  • the trained function model can for example be a non-parametric function model, such as B. be a Gaussian process model or a neural network.
  • B volume-related injection fuel quantity
  • c 2 p, T
  • p corresponds to the absolute rail pressure in the high-pressure accumulator 42
  • Dr corresponds to a drop in the rail pressure (pressure difference) caused by the injection
  • T to a fuel temperature in the high-pressure accumulator 42
  • V to a storage volume of the high-pressure accumulator 42
  • K or c 2 to a compressibility of the Fuel depends on the rail pressure p and the fuel temperature T.
  • the function K or c 2 represents the compressibility of the fuel, which can depend on the type of fuel.
  • the determination of the fuel type, the determination of the absolute rail pressure p, the determination of the fuel temperature T in the high-pressure accumulator 42 and the determination of the actual volume V of the high-pressure accumulator 42 are subject to tolerance, the determination of the absolute rail pressure p in particular being highly error-prone.
  • the use of a physical model that depicts the above relationship is out of the question, since errors in the various influencing variables can increase and thus lead to unusable model values for the injection fuel quantities to be determined.
  • a functional model can be trained for the factor X, which depends on the influencing variables fuel type, absolute rail pressure p, fuel temperature T in the high-pressure accumulator 42 and volume of the high-pressure accumulator 42, but not every tolerance can be taken into account of the above influencing variables vary in a test bench in order to cover all possible system states.
  • the targeted variation of the storage volume V of the high-pressure store 42 is difficult to accomplish, since this would be associated with the removal and installation of different high-pressure stores.
  • the variation of the fuel type over all fuels occurring in practice is also very complex.
  • the pressure curve p in the high-pressure accumulator 42 reflects the influences of the above-mentioned influencing variables. This takes place independently of the absolute rail pressure in the high-pressure accumulator 42.
  • a trainable function model can be trained using the pressure variation or a pressure change curve based on an absolute reference pressure value, the absolute reference pressure value being a mean pressure value of a previous work cycle or a cycle input pressure (as the first rail pressure value of the current work cycle).
  • the duty cycle relates to the four-stroke operation of a cylinder and corresponds to a double rotation of the crankshaft or a period of time required for this.
  • the measurement of the absolute rail pressure p in the high-pressure accumulator 42 can be seriously faulty, measurements of the pressure fluctuations of the Rail pressure p, ie the relative pressure curve, can be carried out relatively accurately and without errors.
  • Such a pressure change curve of the rail pressure in the high-pressure accumulator 42 also depicts the physical conditions of the common rail injection system 4 well and also has a reduced error.
  • the trained function model is provided in such a way that it only processes information on the relative pressure profile of the rail pressure in the high-pressure accumulator 42, but not information on the type of fuel, the absolute rail pressure p, the fuel temperature T and the volume V of the high-pressure accumulator 42. This avoids from the outset that erroneous variables are included in the learning process for the trainable functional model.
  • FIG. 2 shows a function diagram that can be implemented in the engine control unit 10 in accordance with an embodiment.
  • a curve of the rail pressure p is recorded via the rail pressure sensor 46 at least for the current working cycle and stored in a suitable manner.
  • the engine speed or some other load specification of the internal combustion engine 2 can be stored in a speed storage block 12.
  • the stored course of the absolute rail pressure p is processed in a pressure change course block 13 in order to obtain a relative pressure course of the rail pressure p.
  • This can take place on the basis of the absolute reference rail pressure, which corresponds to an average value of the rail pressure during one or more working cycles, a value of the absolute rail pressure p at the beginning of the current working cycle or a maximum value of the rail pressure p during the working cycle.
  • a differential pressure block 14 the pressure difference Dr between a maxi- mum rail pressure P ma x and a minimum rail pressure p m m may be determined within a working beitszyklus (see Figure 3).
  • the relative pressure curve is processed in a curve specification block 15 in order to describe the relative pressure curve in a suitable manner for processing in the functional model.
  • the relative pressure curve is used as a relative pressure History provided. A suitable compromise should be assumed between the number of input variables provided and the level of detail in the description of the relative pressure curve.
  • course information block 15 a relative pressure course information is available.
  • the relative pressure profile information can now be provided together with a speed specification, which for example corresponds to an average speed of the internal combustion engine 2 during the current working cycle, or another load specification as an input variable vector for a function model block 16.
  • the function model implemented in the function model block 16 now determines the factor X based on the relative pressure curve represented by the input variable vector.
  • the factor X is derived from the relative pressure curve information.
  • the differential pressure can now be divided by the determined factor X in order to obtain the injection fuel quantity AV, Am.
  • the relative pressure curve of the rail pressure p in the high-pressure accumulator 42 can be specified in various ways by the relative pressure curve information, which can be used separately or in combination in the form of the relative pressure curve information of the input variable vector for the trainable function model:
  • Equidistant temporary or with respect to a crankshaft angle in the current work cycle
  • support points of the relative rail pressure values can be specified, the support points covering the entire work cycle, i. H. two crankshaft revolutions.
  • a time gradient of the pressure drop from a maximum pressure or a minimum pressure of the relative pressure curve can be used.
  • the first FFT coefficient and / or one or more further FFT coefficients from a Fourier transformation of the rail pressure curve can be used.
  • FIG. 3 shows a function diagram that can be implemented in engine control unit 10 in accordance with a further embodiment.
  • the components corresponding to the embodiment in FIG. 2 are designated 1, 12 ′′, 13 ′′, 15 ′′ and 16 ′′.
  • the pressure difference in the differential pressure block 14
  • the course information block 15 ' in which the pressure difference is determined directly or indirectly as part of the relative pressure course and as an input variable for the function model block 16 ' provided.
  • the function model is specified such that the injection fuel quantity AV, Am is determined directly depending on the relative pressure profile.
  • a factor X is learned in a test bench for different operating points of the internal combustion engine, in particular at different speeds and load torques and the relative pressure curve information, which is derived from an actual injection fuel quantity and a differential pressure between one Maximum pressure and a minimum pressure of the relative pressure curve, in particular as a quotient.
  • the actual quantity of injection fuel can be calculated from a motor torque using known models.

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Verbrennungsmotors (2) mit einem Common-Rail-Einspritzsystem (4) abhängig von einer Einspritzkraftstoffmenge, mit folgenden Schritten: -Bestimmen einer Angabe zu einem Relativdruckverlauf aus einem Verlauf eines absoluten Raildrucks in einem Hochdruckspeicher (42) des Common-Rail-Einspritzsystems (4); -Bestimmen der Einspritzkraftstoffmenge abhängig von der Angabe zu dem Relativdruckverlauf und mithilfe eines trainierten Funktionsmodells, insbesondere eines nicht-parametrischen Funktionsmodells oder eines neuronalen Netzes, -Betreiben des Verbrennungsmotors (2) abhängig von der Einspritzkraftstoffmenge.

Description

Beschreibung
Titel
Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors mit einem Common-Rail-Einspritzsystem
Technisches Gebiet
Die Erfindung betrifft Verfahren zum Betreiben eines Verbrennungsmotors mit ei- nem Common-Rail-Einspritzsystem, insbesondere basierend auf einer zu ermit- telnden Kraftstoffmenge. Weiterhin betrifft die vorliegende Erfindung Verfahren zum Modellieren der eingespritzten Kraftstoffmenge bei einem Verbrennungsmo- tor mit einem Common-Rail-Einspritzsystem.
Technischer Hintergrund
In Verbrennungsmotoren mit einem Common-Rail-Einspritzsystem wird Kraftstoff in die Zylinder aus einem Hochdruckspeicher über Einspritzventile direkt in die Brennräume der Zylinder eingespritzt.
Die eingespritzte Kraftstoffmenge wird derzeit basierend auf dem Raildruckverlauf in dem Hochdruckspeicher, durch Ventilhübe und Öffnungszeiten der Einspritz- ventile bestimmt. Diese Parameter und auch weitere Parameter, insbesondere Bauteilparameter, sind stark toleranzbehaftet. Um diese Toleranzen, insbesondere über Lebensdauer auszugleichen soll anhand des Raildruckverlaufs die einge- spritzte Menge geschätzt werden, wobei auch der Raildruckverlauf etlichen Tole- ranzen unterliegt. So bestehen Fertigungstoleranzen bei dem Volumen des Com- mon-Rail-Einspritzsystems, Toleranzen bei den Kraftstoffeigenschaften, die von der Kraftstoffart abhängen, Messtoleranzen bei der Messung der Kraftstofftempe- ratur und des Raildrucks. Daher weisen Raildruck-basierte Mengenschätzverfah- ren unabhängig von der Bestimmungsweise der eingespritzten Kraftstoffmenge große Toleranzen auf. Daher kann die eingespritzte Kraftstoffmenge nicht ohne weiteres durch ein physikalisches Modell zuverlässig bestimmt werden.
Beispielsweise beschreibt die Druckschrift DE 10 2005 006 361 A1 ein Verfahren zum Betreiben einer Brennkraftmaschine, bei dem der Kraftstoff wenigstens zeit- weise in eine Kraftstoffsammelleitung gefördert wird, an die mindestens ein Injek tor angeschlossen ist und bei dem eine Druckdifferenz, die in der Kraftstoffsam- melleitung bei mindestens einer Einspritzung auftritt, erfasst wird. Für die Erfas- sung der Druckdifferenz wird die Kraftstoffsammelleitung als ein im Wesentlichen geschlossenes System angenommen und die Druckdifferenz zeitbasiert detektiert.
Die Druckschrift DE 10 2014 215 618 A1 betrifft ein Verfahren zum Bestimmen einer Einspritzmenge von Kraftstoff, welcher aus einem Hochdruckspeicher ent- nommen und in einen oder mehrere Brennräume einer Brennkraftmaschine einge- spritzt wird. Der Verlauf des Kraftstoffdrucks im Hochdruckspeicher wird erfasst und ein frequenztransformierter Verlauf des Kraftstoffdrucks ermittelt. Aus einer zur Zündfrequenz der Brennkraftmaschine gehörigen Komponente im frequenz- transformierten Verlauf des Kraftstoffdrucks wird die Einspritzmenge ermittelt.
Aus der Druckschrift DE 10 2004 031 006 A1 ist ein Verfahren zur Bestimmung wenigstens einer Einspritz-Kraftstoffmenge in einem Verbrennungsmotor mit ei- nem Common-Rail-Einspritzsystem mithilfe eines Raildrucksensors und einer Mo- torsteuerung mit einem künstlichen neuronalen Netz bekannt. Das neuronale Netz wird verwendet, um eine Einspritzmengenbestimmung aus Raildruckdaten in Echt- zeit zu ermöglichen. Dazu werden Absolutwerte des Raildruckverlaufs ermittelt und als Eingangsgrößenvektor dem neuronalen Netz zugeführt.
Offenbarung der Erfindung
Erfindungsgemäß sind ein Verfahren zum Betreiben eines Verbrennungsmotors mit einem Common-Rail-Einspritzsystem gemäß Anspruch 1 sowie eine Vorrich- tung und ein Motorsystem gemäß den nebengeordneten Ansprüchen vorgesehen. Weitere Ausgestaltungen sind in den abhängigen Ansprüchen angegeben.
Gemäß einem ersten Aspekt ist ein Verfahren zum Betreiben eines Verbrennungs- motors mit einem Common-Rail-Einspritzsystem abhängig von einer Einspritz- kraftstoffmenge vorgesehen, mit folgenden Schritten:
Bestimmen einer Angabe zu einem Relativdruckverlauf aus einem Verlauf ei- nes absoluten Raildrucks in einem Hochdruckspeicher des Common-Rail-Ein- spritzsystems;
Bestimmen der Einspritzkraftstoffmenge abhängig von der Angabe zu dem Re- lativdruckverlauf und mithilfe eines trainierten Funktionsmodells, insbesondere eines nicht-parametrischen Funktionsmodells oder eines neuronalen Netzes, und
Betreiben des Verbrennungsmotors abhängig von der Einspritzkraftstoff- menge.
Das obige Verfahren zum Betreiben des Verbrennungsmotors basiert auf einer Bestimmung einer eingespritzten Kraftstoffmenge abhängig von einem Verlauf ei- nes Kraftstoffdrucks in einem Hochdruckspeicher des Common-Rail-Einspritzsys- tems (Raildruckverlauf). Dieser Verlauf des Kraftstoffdrucks unterliegt etlichen To- leranzen. Die Modellierung erfolgt durch ein trainierbares Modell, insbesondere mithilfe eines nicht-parametrischen Modells, wie beispielsweise eines Gauß-Pro- zess-Modells, bzw. eines neuronalen Netzwerks. Eine wesentliche Idee des obi- gen Verfahrens besteht darin, das Modell so auszubilden, dass es möglichst von den Toleranzen der toleranzbehafteten Parameter unabhängig ist. Die Abhängig- keit des in dem Hochdruckspeicher aufgrund der Einspritzung einer Kraftstoff- menge resultierenden Druckabfalls Ap ergibt sich als:
Figure imgf000005_0001
für das Einspritz-Kraftstoffvolumen AV und c2(p, T )
Ap Am
V für die Einspritz-Kraftstoffmasse Am. Somit kann die Einspritzkraftstoffmenge als volumenbezogene Einspritz-Kraftstoff- menge AV oder als massenbezogene Einspritz-Kraftstoffmenge Am angegeben werden.
Man erkennt, dass der Faktor
Figure imgf000006_0001
toleranzbehaftete Größen, wie ei- nen absoluten Raildruck p in dem Hochdruckspeicher, eine Kraftstofftemperatur T in dem Hochdruckspeicher und ein Speichervolumen V des Hochdruckspeichers sowie eine Kompressibilität K bzw. c2 aufweist.
Bei einem Training eines nicht-parametrischen Modells müssen die toleranzbehaf- teten Größen in ihren möglichen Toleranzbereichen nachgebildet werden, um ent- sprechende Trainingsdaten für das zu modellierende Modell zu erhalten. Dies ist aufwendig, und es wird daher vorgeschlagen, die Abschätzung der eingespritzten Kraftstoffmenge lediglich basierend auf einem Verlauf des Relativdrucks in dem Hochdruckspeicher durchzuführen und beim Trainingsverfahren keine sonstigen den Aufbau des Hochdruckspeichers und des darin gespeicherten Kraftstoffes be- treffenden Einflussgrößen zu berücksichtigen. Insbesondere soll explizit auf die Berücksichtigung der Größen des Absolutdrucks, der Temperatur und des Hoch- druckspeichervolumens sowie der Kompressibilität des Kraftstoffs abhängig von der verwendeten Kraftstoffart verzichtet werden.
Das Trainieren des nicht-parametrischen Modells lediglich basierend auf dem Re- lativdruckverlauf des Raildrucks ist sehr einfach durchführbar, und es ist somit in sehr kurzer Prüfstandszeit möglich, das Modell an den individuellen Verbren- nungsmotor anzupassen. Durch die von den oben genannten Einflussgrößen un- abhängige Betrachtung des Relativdruckverlaufs werden die Einflüsse der einzel- nen toleranzbehafteten Parameter in dem Relativdruckverlauf subsummiert ge- lernt, so dass die Einspritz-Kraftstoffmenge durch eine geeignete Formulierung ei- nes Eingangsgrößenvektors, der den Verlauf des Relativdrucks in dem Hoch- druckspeicher beschreibt, möglich ist.
Weiterhin kann der Relativdruckverlauf abhängig von einem Referenzraildruck be- stimmt werden, der sich als Mittelwert oder Anfangswert eines Raildruckverlaufs in einem aktuellen oder vorangegangenen Arbeitszyklus des Verbrennungsmotors ergibt. Gemäß einer Ausführungsform kann die Einspritzkraftstoffmenge abhängig von ei- ner Druckdifferenz zwischen einem maximalen Raildruck und einem minimalen Raildruck bestimmt werden.
Weiterhin kann die Angabe zu dem Relativdruckverlaufs als eine Relativdruckver- laufsinformation angegeben werden, die zumindest einen Teil eines Eingangsgrö- ßenvektors für das trainierte Funktionsmodell darstellt.
Insbesondere kann die Relativdruckverlaufsinformation eine oder mehrere der fol- genden Informationen umfassen:
zeitlich oder bezüglich eines Kurbelwellenwinkels im aktuellen Arbeitszyklus äquidistante Werte des Relativdruckverlaufs;
einen zeitlichen Gradienten eines Druckabfalls von einem Maximaldruck oder einem Minimaldruck des Relativdruckverlaufs; und
einen FFT-Koeffizienten (d.h. Größe einer Harmonischen), insbesondere einen ersten FFT-Koeffizienten, aus einer Fourier-Transformation des Raildruckver- laufs.
Weiterhin kann die Einspritzmenge zusätzlich mit einer Drehzahlangabe, die ins- besondere einer Durchschnittsdrehzahl des Verbrennungsmotors während des aktuellen Arbeitszyklusses entspricht, oder einer Lastangabe bestimmt werden.
Kurzbeschreibung der Zeichnungen
Ausführungsformen werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:
Figur 1 eine schematische Darstellung eines Motorsystems mit einem
Verbrennungsmotor und einem Common-Rail-Einspritzsys- tem;
Figur 2 ein Funktionsschaltbild zur Veranschaulichung der Funktion zum Ermitteln einer eingespritzten Kraftstoffmenge basierend auf einem Verlauf des Raildrucks im Hochdruckspeicher des Common-Rail-Einspritzsystems; Figur 3 ein Funktionsschaltbild zur Veranschaulichung der Funktion zum Ermitteln einer eingespritzten Kraftstoffmenge basierend auf einem Verlauf des Raildrucks im Hochdruckspeicher des Common-Rail-Einspritzsystems gemäß einer weiteren Aus- führungsform; und
Figur 4 ein zeitlicher Druckverlauf des Raildrucks im Bereich von 2000 bar.
Beschreibung von Ausführungsformen
Figur 1 zeigt eine schematische Darstellung eines Motorsystems 1 mit einem Ver- brennungsmotor 2 mit mehreren Zylindern 3 und einem Common-Rail-Ein- spritzsystem 4. Das Common-Rail-Einspritzsystem 4 weist einen üblichen Aufbau auf und umfasst je ein Einspritzventil 41 für jeden der Zylinder 3, über die Kraftstoff aus einem Hochdruckspeicher 42 in die Zylinder 3 eingespritzt werden kann. Der Hochdruckspeicher 42 ist mit einer Hochdruckpumpe 43 verbunden, um von einer Förderpumpe 44 aus einem Kraftstofftank 5 vorgeförderten Kraftstoff unter einem hohen Druck in dem Hochdruckspeicher 42 zu halten.
Weiterhin ist der Hochdruckspeicher 42 mit einem einstellbaren Druckregelventil 45 verbunden, um einen Raildruck in dem Hochdruckspeicher 42, d. h. den Druck des Kraftstoffs in dem Hochdruckspeicher 42, auf einen vorgegebenen Soll-Rail- druck einzustellen. Zur Regelung des Raildrucks kann über die Hochdruckpumpe 43 Kraftstoff dem Hochdruckspeicher 42 zugeführt und über das Druckregelventil 45 Kraftstoff in den Kraftstofftank 5 zurückgeführt werden.
Die Steuerung des Motorsystems 1 erfolgt durch ein Motorsteuergerät 10, das zur Steuerung des Verbrennungsmotors Sensorsignale erfasst und entsprechende Stellsignale an Aktuatoren des Motorsystems 1 ausgibt. So erfasst das Motorsteu- ergerät 10 über einen Raildrucksensor 46 in dem Hochdruckspeicher 42 den Rail druck. Weiterhin steuert das Motorsteuergerät 10 Aktuatoren des Motorsystems 1 basie- rend auf Stellgrößen und basierend auf einem vorgegebenen Soll-Motormoment an, das beispielsweise aus einem vorgegebenen Fahrerwunschmoment ermittelt werden kann.
Das Motorsteuergerät 10 umfasst neben anderen Funktionen eine Funktion zur Ermittlung einer eingespritzten Einspritz-Kraftstoffmenge. Die Einspritz-Kraftstoff- menge wird zum Betreiben des Motorsystems 1 benötigt, da daraus ein gestelltes Motormoment abgeleitet bzw. ermittelt werden kann. Zudem kann diese zur Plau- sibilisierung und Adaption der Funktion der Einspritzventile verwendet werden, um die tatsächliche Einspritz-Kraftstoffmenge genauer einstellen zu können.
Die Einspritz-Kraftstoffmenge kann durch ein trainiertes parameterfreies Funkti- onsmodell aus einem Druckverlauf des Raildrucks in dem Hochdruckspeicher 42 ermittelt werden. Das trainierte Funktionsmodell kann beispielsweise ein nicht-pa- rametrisches Funktionsmodell, wie z. B. ein Gaußprozessmodell oder ein neuro- nales Netz sein. Im Allgemeinen ergibt sich für die eingespritzte Einspritz-Kraft- stoffmenge folgende Beziehung:
Figure imgf000009_0001
als volumenbezogene Einspritz-Kraftstoffmenge AV (Einspritz-Kraftstoffvolumen) und c2(p, T )
Dr Am
V als massenbezogene Einspritz-Kraftstoffmenge Am (Einspritz-Kraftstoffmasse).
Dabei entsprechen p dem absoluten Raildruck in dem Hochdruckspeicher 42, Dr einem durch die Einspritzung bewirkten Abfall des Raildrucks (Druckdifferenz), T einer Kraftstofftemperatur in dem Hochdruckspeicher 42 und V einem Speichervo- lumen des Hochdruckspeichers 42 sowie K bzw. c2 einer eine Kompressibilität des Kraftstoffs abhängig vom Raildruck p und der Kraftstofftemperatur T. Die Funk- tion K bzw. c2 bildet die Kompressibilität des Kraftstoffs, die von der Kraftstoffart abhängen kann, ab. Die Bestimmung der Kraftstoffart, die Bestimmung des absoluten Raildrucks p, die Bestimmung der Kraftstofftemperatur T in dem Hochdruckspeicher 42 sowie die Bestimmung des tatsächlichen Volumens V des Hochdruckspeichers 42 sind tole- ranzbehaftet, wobei insbesondere die Bestimmung des absoluten Raildrucks p stark fehlerbehaftet ist. Die Verwendung eines physikalischen Modells, das die obige Beziehung abbildet, kommt nicht in Betracht, da Fehler der verschiedenen Einflussgrößen sich verstärken können und so zu unbrauchbaren Modellwerten für zu bestimmende Einspritz-Kraftstoffmengen führen.
Es wird daher vorgeschlagen, mithilfe eines trainierbaren Funktionsmodells den gesamten Faktor X=
Figure imgf000010_0002
bzw.
Figure imgf000010_0001
Figure imgf000010_0003
zwischen der Druckdifferenz und der Kraft- stoffmenge entsprechend obiger Formel zu bestimmen. Zwar lässt sich für den Faktor X, der von den Einflussgrößen Kraftstoffart, absoluter Raildruck p, Kraft- stofftemperatur T in dem Hochdruckspeicher 42 und Volumen des Hochdruckspei- chers 42 abhängt, ein Funktionsmodell trainieren, jedoch lassen sich zur Berück- sichtigung von Toleranzen nicht jede der obigen Einflussgrößen in einem Prüf- stand variieren, um alle möglichen Systemzustände abzudecken. Insbesondere die gezielte Variation des Speichervolumens V des Hochdruckspeichers 42 ist schwierig zu bewerkstelligen, da diese mit dem Aus- und Einbau verschiedener Hochdruckspeicher verbunden wäre. Auch die Variation der Kraftstoffart über alle im Praxisbetrieb vorkommenden Kraftstoffe ist sehr aufwendig.
Es wurde festgestellt, dass der Druckverlauf p in dem Hochdruckspeicher 42 die Einflüsse der oben genannten Einflussgrößen widerspiegelt. Dies erfolgt unabhän- gig von dem absoluten Raildruck in dem Hochdruckspeicher 42. Somit kann ein trainierbares Funktionsmodell mithilfe der Druckvariation bzw. einem Druckände- rungsverlauf basierend auf einem absoluten Referenzdruckwert trainiert werden, wobei der absolute Referenzdruckwert einem Druckmittelwert eines vorangegan- genen Arbeitszyklus oder einem Zykluseingangsdrucks (als ersten Raildruckwert des aktuellen Arbeitszyklusses) entsprechen kann. Der Arbeitszyklus bezieht sich auf den Viertaktbetrieb eines Zylinders und entspricht einer zweifachen Umdre- hung der Kurbelwelle bzw. einer dafür benötigten Zeitdauer.
Während die Messung des absoluten Raildrucks p in dem Hochdruckspeicher 42 stark fehlerbehaftet sein kann, können Messungen der Druckschwankungen des Raildrucks p, d. h. des relativen Druckverlaufs, relativ genau und fehlerfrei durch- geführt werden. Ein solcher Druckänderungsverlauf des Raildrucks in dem Hoch- druckspeicher 42 bildet darüber hinaus die physikalischen Gegebenheiten des Common-Rail-Einspritzsystems 4 gut ab und weist zudem einen reduzierten Feh- ler auf. Insbesondere wird das trainierte Funktionsmodell so bereitgestellt, dass es lediglich Angaben zu dem relativen Druckverlauf des Raildrucks in dem Hoch- druckspeicher 42 verarbeitet, nicht jedoch Angaben zur Kraftstoffart, zum absolu- ten Raildruck p, zur Kraftstofftemperatur T und zum Volumen V des Hochdruck- speichers 42. Dadurch wird von vornherein vermieden, dass fehlerbehaftete Grö- ßen in den Lernprozess für das trainierbare Funktionsmodell einbezogen werden.
In Figur 2 ist ein in dem Motorsteuergerät 10 implementierbares Funktionsdia- gramm entsprechend einer Ausführungsform dargestellt.
In einem Raildruckspeicherblock 1 1 wird über den Raildrucksensor 46 ein Verlauf des Raildrucks p zumindest für den aktuellen Arbeitszyklus aufgezeichnet und in geeigneter Weise gespeichert. Zudem kann in einem Drehzahlspeicherblock 12 die Motordrehzahl oder eine sonstige Lastangabe des Verbrennungsmotors 2 ge- speichert werden.
In einem Druckänderungsverlaufblock 13 wird der gespeicherte Verlauf des abso- luten Raildrucks p verarbeitet, um einen Relativdruckverlauf des Raildrucks p zu erhalten. Dies kann basierend auf dem absoluten Referenzraildruck erfolgen, der einem Mittelwert des Raildrucks während eines oder mehrerer Arbeitszyklen, ei- nes Werts des absoluten Raildruck p am Anfang des aktuellen Arbeitszyklusses oder eines maximalen Werts des Raildrucks p während des Arbeitszyklusses ent- spricht.
In einem Differenzdruckblock 14 kann die Druckdifferenz Dr zwischen einem ma- ximalen Raildruck pmax und einem minimalen Raildruck pmm innerhalb eines Ar- beitszyklus ermittelt werden (siehe Figur 3).
Zudem wird der Relativdruckverlauf in einem Verlaufsangabeblock 15 so verarbei- tet, um den Relativdruckverlauf in geeigneterWeise zur Verarbeitung in dem Funk- tionsmodell zu beschreiben. Dabei wird der Relativdruckverlauf als Relativdruck- Verlaufangabe bereitgestellt. Dabei soll ein geeigneter Kompromiss zwischen An- zahl der bereitgestellten Eingangsgrößen und dem Detailgrad der Beschreibung des Relativdruckverlaufs angenommen werden. Als Ergebnis des Verlaufsangab- eblocks 15 steht eine Relativdruckverlaufsinformation zur Verfügung.
Die Relativdruckverlaufsinformation kann nun gemeinsam mit einer Drehzahlan- gabe, die beispielsweise einer Durchschnittsdrehzahl des Verbrennungsmotors 2 während des aktuellen Arbeitszklusses entspricht, oder einer sonstigen Lastan- gabe als Eingangsgrößenvektor für einen Funktionsmodellblock 16 bereitgestellt werden. Das in dem Funktionsmodellblock 16 implementierte Funktionsmodell be- stimmt nun den Faktor X basierend auf dem durch den Eingangsgrößenvektor dar- gestellten Relativdruckverlauf.
Somit wird in dem Funktionsmodellblock 16, in dem das nicht-parametrische Funk- tionsmodell, wie z. B. das Gaußprozessmodell oder das neuronale Netz implemen- tiert ist, aus der Relativdruckverlaufsinformation der Faktor X abgeleitet.
In einem Divisionsblock 17 kann nun der Differenzdruck durch den bestimmten Faktor X dividiert werden, um die Einspritz-Kraftstoffmenge AV, Am zu erhalten.
Der Relativdruckverlauf des Raildrucks p in dem Hochdruckspeicher 42 kann auf verschiedene Arten durch die Relativdruckverlaufsinformation angegeben werden, die separat oder in Kombination in Form der Relativdruckverlaufsinformation des Eingangsgrößenvektors für das trainierbare Funktionsmodell verwendet werden können:
Es können äquidistante (zeitlich oder bezüglich eines Kurbelwellenwinkels im aktuellen Arbeitszyklus) Stützstellen der relativen Raildruckwerte (bezo- gen auf den absoluten Referenzdruckwert) vorgegeben werden, wobei die Stützstellen den gesamten Arbeitszyklus, d. h. zwei Kurbelwellenumdrehun- gen, abdeckt.
Es kann ein zeitlicher Gradient des Druckabfalls von einem Maximaldruck oder einem Minimaldruck des Relativdruckverlaufs verwendet werden. Es kann der erste FFT-Koeffizient und/oder ein oder mehrere weitere FFT- Koeffizienten aus einer Fourier-Transformation des Raildruckverlaufs ver- wendet werden.
In Figur 3 ist ein in dem Motorsteuergerät 10 implementierbares Funktionsdia- gramm entsprechend einer weiteren Ausführungsform dargestellt.
Die der Ausführungsform der Figur 2 entsprechenden Komponenten sind mit 1 , 12‘, 13‘, 15‘ und 16‘ bezeichnet. Im Unterschied zur Ausführungsform der Figur 2 wird der Druckdifferenz (in dem Differenzdruckblock 14) nicht separat berechnet, sondern ist Bestandteil des Verlaufsangabeblocks 15‘, in dem die Druckdifferenz direkt oder indirekt als Teil des Relativdruckverlaufs ermittelt wird und als Ein- gangsgröße für den Funktionsmodellblock 16‘ bereitgestellt wird. Das Funktions- modell wird dabei so vorgegebenen, dass abhängig von der Relativdruckver- laufangabe die Einspritz-Kraftstoffmenge AV, Am direkt ermittelt wird.
Zum Training des trainierbaren Funktionsmodells wird in einem Prüfstand für ver- schiedene Betriebspunkte des Verbrennungsmotors, insbesondere bei verschie- denen Drehzahlen und Lastmomenten und der jeweiligen Relativdruckverlaufsin- formation, ein Faktor X eingelernt, der sich aus einer tatsächlichen Einspritzkraft- stoffmenge und einem Differenzdruck zwischen einem Maximaldruck und einem Minimaldruck des Relativdruckverlaufs, insbesondere als Quotient, ergibt. Die tat- sächliche Einspritzkraftstoffmenge kann mithilfe bekannter Modelle aus einem Mo- tormoment berechnet werden.

Claims

Ansprüche
1. Verfahren zum Betreiben eines Verbrennungsmotors (2) mit einem Common- Rail-Einspritzsystem (4) abhängig von einer Einspritzkraftstoffmenge, mit fol- genden Schritten:
Bestimmen einer Angabe zu einem Relativdruckverlauf aus einem Verlauf eines absoluten Raildrucks in einem Hochdruckspeicher (42) des Com- mon-Rail-Einspritzsystems (4);
Bestimmen der Einspritzkraftstoffmenge abhängig von der Angabe zu dem Relativdruckverlauf und mithilfe eines trainierten Funktionsmodells, insbesondere eines nicht-parametrischen Funktionsmodells oder eines neuronalen Netzes,
Betreiben des Verbrennungsmotors (2) abhängig von der Einspritzkraft- stoffmenge.
2. Verfahren nach Anspruch 1 , wobei der Relativdruckverlauf abhängig von ei- nem Referenzraildruck bestimmt wird, der einem Mittelwert, Anfangswert oder Maximalwert eines Raildruckverlaufs in einem aktuellen oder vorangegange- nen Arbeitszyklus des Verbrennungsmotors (2) entspricht.
3. Verfahren nach Anspruch 1 oder 2, wobei die Einspritzkraftstoffmenge als vo- lumenbezogene Einspritz-Kraftstoffmenge AV oder als massenbezogene Ein- spritz-Kraftstoffmenge Am angegeben wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Einspritzkraftstoff- menge abhängig von einer Druckdifferenz zwischen einem maximalen Rail- druck (pmax) und einem minimalen Raildruck (pmin) bestimmt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Angabe zu dem Rela- tivdruckverlauf als eine Relativdruckverlaufsinformation angegeben wird, die Teil eines Eingangsgrößenvektors für das trainierte Funktionsmodell darstellt.
6. Verfahren nach Anspruch 5, wobei die Relativdruckverlaufsinformation eine o- der mehrere der folgenden Informationen umfasst:
zeitlich oder bezüglich eines Kurbelwellenwinkels im aktuellen Arbeitszyk- lus äquidistante Werte des Relativdruckverlaufs;
einen zeitlichen Gradienten eines Druckabfalls von einem Maximaldruck oder einem Minimaldruck des Relativdruckverlaufs; und
einen FFT-Koeffizienten, insbesondere einen ersten FFT- Koeffizienten, aus einer Fourier-Transformation des Raildruckverlaufs.
7. Verfahren nach Anspruch 6, wobei die Einspritzmenge zusätzlich mit einer Drehzahlangabe, die insbesondere einer Durchschnittsdrehzahl des Verbren- nungsmotors (2) während des aktuellen Arbeitszyklusses entspricht, oder einer Lastangabe bestimmt wird.
8. Vorrichtung zum Betreiben eines Verbrennungsmotors (2) mit einem Common- Rail-Einspritzsystem (4) abhängig von einer Einspritzkraftstoffmenge, wobei die Vorrichtung ausgebildet ist, um:
eine Angabe zu einem Relativdruckverlauf aus einem Verlauf eines abso- luten Raildrucks in einem Hochdruckspeicher (42) des Common-Rail-Ein- spritzsystems (4) zu bestimmen;
die Einspritzkraftstoffmenge abhängig von der Angabe zu dem Relativ- druckverlauf und mithilfe eines trainierten Funktionsmodells, insbeson- dere eines nicht-parametrischen Funktionsmodells oder eines neuronalen Netzes zu bestimmen, und
den Verbrennungsmotor (2) abhängig von der Einspritzkraftstoffmenge zu betreiben.
9. Antriebssystem (1 , T) mit einem Verbrennungsmotor (2) mit einem Common- Rail-Einspritzsystem (4) und einer Vorrichtung nach Anspruch 8.
10. Computerprogramm, welches dazu eingerichtet ist, alle Schritte eines Verfah- rens nach einem der Ansprüche 1 bis 7 auszuführen.
1 1. Maschinenlesbares Speichermedium, auf welchem ein Computerprogramm nach Anspruch 10 gespeichert ist.
PCT/EP2019/067846 2018-08-06 2019-07-03 Verfahren und vorrichtung zum betreiben eines verbrennungsmotors mit einem common-rail-einspritzsystem WO2020030351A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/264,091 US11346299B2 (en) 2018-08-06 2019-07-03 Method and device for operating an internal combustion engine having a common-rail injection system
CN201980052273.1A CN112513446A (zh) 2018-08-06 2019-07-03 用于运行具有共轨喷射系统的燃烧马达的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018213114.7A DE102018213114A1 (de) 2018-08-06 2018-08-06 Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors mit einem Common-Rail-Einspritzsystem
DE102018213114.7 2018-08-06

Publications (1)

Publication Number Publication Date
WO2020030351A1 true WO2020030351A1 (de) 2020-02-13

Family

ID=67180783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/067846 WO2020030351A1 (de) 2018-08-06 2019-07-03 Verfahren und vorrichtung zum betreiben eines verbrennungsmotors mit einem common-rail-einspritzsystem

Country Status (4)

Country Link
US (1) US11346299B2 (de)
CN (1) CN112513446A (de)
DE (1) DE102018213114A1 (de)
WO (1) WO2020030351A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021212338A1 (de) 2020-11-11 2022-05-12 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Ermitteln einer eine Durchflussrate eines Kraftstoffinjektors charakterisierenden Größe
DE102021207799A1 (de) 2021-07-21 2023-01-26 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Ermitteln einer eine Durchflussrate eines Kraftstoffinjektors charakterisierenden Größe
DE102021211562A1 (de) 2021-10-13 2023-04-13 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Ermitteln von Freigabebedingungen für eine Funktion
DE102022202221A1 (de) 2022-03-04 2023-09-07 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Bestimmen eines Druckverlaufs in einem Fluidspeicher

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031006A1 (de) 2003-07-23 2005-04-28 Daimler Chrysler Ag Verbrennungsmotor und Verfahren zur Verbrennungskenngrößenbestimmung
DE102005006361A1 (de) 2005-02-11 2006-08-24 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102005058445B3 (de) * 2005-12-07 2007-04-26 Siemens Ag Verfahren zur Ermittlung einer in einen Zylinder einer Brennkraftmaschine mit einer Common-Rail-Einspritzanlage eingespritzten Kraftstoffmemge und Mittel zur Durchführung des Verfahrens
DE102014208379A1 (de) * 2014-05-06 2015-11-12 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln eines Funktionswerts eines bezüglich einer Eingangsgröße invertierten datenbasierten Funktionsmodells
DE102014215618A1 (de) 2014-08-07 2016-02-11 Robert Bosch Gmbh Bestimmen einer Einspritzmenge von Kraftstoff durch Frequenzanalyse eines Speicherdruckverlaufs
DE102016208980A1 (de) * 2016-05-24 2017-11-30 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018063A1 (de) * 1996-10-18 1998-04-30 Siemens Aktiengesellschaft Verfahren zur modellierung und steuerung eines dynamischen systems erster ordnung mit nichtlinearen eigenschaften
DE19740608C2 (de) * 1997-09-16 2003-02-13 Daimler Chrysler Ag Verfahren zur Bestimmung einer kraftstoffeinspritzbezogenen Kenngröße für einen Verbrennungsmotor mit Hochdruckspeicher-Einspritzanlage
DE102008021581B3 (de) * 2008-04-30 2009-11-26 Continental Automotive Gmbh Verfahren zur Bestimmung des Raildruckes in einem Common-Rail-System und Common-Rail-Einspritzsystem
DE102012203097B3 (de) * 2012-02-29 2013-04-11 Continental Automotive Gmbh Verfahren und Vorrichtung zum Bestimmen eines Fehlers einer Druckmessung in einem Druckbehälter
DE102013216192B4 (de) * 2013-08-14 2020-08-06 Mtu Friedrichshafen Gmbh Verfahren zur Bestimmung von wenigstens einem Einspritzparameter einer Brennkraftmaschine und Brennkraftmaschine
US9803576B2 (en) * 2016-02-16 2017-10-31 Robert Bosch Gmbh System and method to predict calibration values based on existing calibrations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031006A1 (de) 2003-07-23 2005-04-28 Daimler Chrysler Ag Verbrennungsmotor und Verfahren zur Verbrennungskenngrößenbestimmung
DE102005006361A1 (de) 2005-02-11 2006-08-24 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102005058445B3 (de) * 2005-12-07 2007-04-26 Siemens Ag Verfahren zur Ermittlung einer in einen Zylinder einer Brennkraftmaschine mit einer Common-Rail-Einspritzanlage eingespritzten Kraftstoffmemge und Mittel zur Durchführung des Verfahrens
DE102014208379A1 (de) * 2014-05-06 2015-11-12 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln eines Funktionswerts eines bezüglich einer Eingangsgröße invertierten datenbasierten Funktionsmodells
DE102014215618A1 (de) 2014-08-07 2016-02-11 Robert Bosch Gmbh Bestimmen einer Einspritzmenge von Kraftstoff durch Frequenzanalyse eines Speicherdruckverlaufs
DE102016208980A1 (de) * 2016-05-24 2017-11-30 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors

Also Published As

Publication number Publication date
CN112513446A (zh) 2021-03-16
US20210372342A1 (en) 2021-12-02
DE102018213114A1 (de) 2020-02-06
US11346299B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2020030351A1 (de) Verfahren und vorrichtung zum betreiben eines verbrennungsmotors mit einem common-rail-einspritzsystem
DE102006056708B4 (de) Verfahren, Vorrichtung und Computerprogramm zur Bestimmung zylinderindividueller Verbrennugsmerkmale einer Brennkraftmaschine
EP1716331B1 (de) Verfahren zur zylindergleichstellung bezüglich der kraftstoff-einspritzmengen bei einer brennkraftmaschine
DE102006034514B4 (de) Verfahren zur Steuerung einer Brennkraftmaschine
DE102013220589B3 (de) Verfahren zum Betrieb einer Brennkraftmaschine sowie Einrichtung zum Steuern und Regeln einer Brennkraftmaschine, Einspritzsystem und Brennkraftmaschine
WO2009000647A2 (de) Verfahren und vorrichtung zur diagnose eines mit einer kraftstoffverteilerleiste in verbindung stehenden einspritzventils einer brennkraftmaschine
DE102012218176A1 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems
DE102010013602A1 (de) Verfahren zur Erkennung eines Fehlverhaltens eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
DE10157641C2 (de) Verfahren zur Steuerung einer Brennkraftmaschine
DE102007060049A1 (de) Verfahren zur Bestimmung des Einspritzverlaufs eines Injektors
DE102006000456B4 (de) Vorrichtung und Verfahren zur Herstellung von Kraftstoffeinspritzsteuersystemen
DE102009018654B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102011050899A1 (de) Signalverlaufserfassungsvorrichtung für einen Kraftstoffdruck
WO2009095333A1 (de) Verfahren zur steuerung einer brennkraftmaschine
DE112013002475B4 (de) Kraftstoffeinspritzungs-Steuer- und Regelungsvorrichtung und Kraftstoffeinspritzungs-Steuer- und Regelungsverfahren für Verbrennungsmotor
DE102017217113A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors und elektronisches Steuergerät für einen Verbrennungsmotor
DE102012003581B3 (de) Leerlaufregler und Verfahren zum Betrieb von Brennkraftmaschinen
EP1347165B1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in eine Brennkraftmaschine
WO2012159841A2 (de) Verfahren zum betreiben einer brennkraftmaschine
WO2014202202A1 (de) Verfahren und steuerungseinrichtung zur korrektur der einspritzdauer von injektoren einer brennkraftmaschine
DE102018115305B3 (de) Verfahren zum Angleichen eines Einspritzverhaltens von Injektoren eines Verbrennungsmotors, Motorsteuergerät und Verbrennungsmotor
DE102008005154B4 (de) Verfahren und Vorrichtung zur Überwachung einer Motorsteuereinheit
EP2032824A1 (de) Verfahren und vorrichtung zur steuerung der kraftstoffzumessung in wenigstens einen brennraum einer brennkraftmaschine
DE102011100108B4 (de) Bestimmung einer Einspritzventilkennlinie und Verringerung eines Einspritzmengenunterschieds bei einem Verbrennungsmotor
DE102018205542A1 (de) Verfahren zum Vermessen und Betreiben einer elektrischen Fluidpumpe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19736366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19736366

Country of ref document: EP

Kind code of ref document: A1