WO2020030021A1 - 显示面板及显示设备 - Google Patents

显示面板及显示设备 Download PDF

Info

Publication number
WO2020030021A1
WO2020030021A1 PCT/CN2019/099701 CN2019099701W WO2020030021A1 WO 2020030021 A1 WO2020030021 A1 WO 2020030021A1 CN 2019099701 W CN2019099701 W CN 2019099701W WO 2020030021 A1 WO2020030021 A1 WO 2020030021A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
electrode
electrodes
electrode layer
Prior art date
Application number
PCT/CN2019/099701
Other languages
English (en)
French (fr)
Inventor
谭纪风
王维
赵文卿
孟宪东
孟宪芹
王方舟
高健
梁蓬霞
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/645,515 priority Critical patent/US11106074B2/en
Publication of WO2020030021A1 publication Critical patent/WO2020030021A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating

Definitions

  • the present application relates to the field of display technology, and in particular, the present application relates to a display panel and a display device.
  • Common LCD (liquid crystal display) panels that do not require polarizers apply an electrical signal to the liquid crystal layer to make the liquid crystal layer exhibit the effect of a liquid crystal grating.
  • common LCD panels have limited diffractive capabilities, so that only a small portion of light can be diffracted out of the panel. The light output efficiency of such an LCD panel is low, which limits the application of the LCD in some special scenarios (such as transparent display).
  • a display panel includes: a base substrate and a plurality of light-shielding strips arranged on the base substrate, wherein the base substrate includes a plurality of light-shielding regions defined by the plurality of light-shielding strips and a transparent region between the light-shielding regions.
  • a backlight module including a light guide plate and a light extraction grating, wherein the light extraction grating is configured to couple out light in the light guide plate; and a first portion located between the base substrate and the light guide plate
  • An electrode layer, a second electrode layer, and a liquid crystal layer wherein the first electrode layer includes a plurality of first electrodes spaced apart from each other, and the second electrode layer includes a plurality of second electrodes spaced apart from each other; wherein the first The electrode layer and the second electrode layer are configured to control the liquid crystal layer in response to a control signal so that the liquid crystal layer forms a plurality of liquid crystal grating periods, wherein the liquid crystal in each liquid crystal grating period includes a plurality of liquid crystals having different refractive indices And a refractive index of the plurality of segments increases in a direction perpendicular to an extending direction of the first electrode.
  • the first electrode layer and the second electrode layer are located on the same side of the liquid crystal layer and are electrically insulated, and the orthographic projections of the plurality of first electrodes on the backlight module are different from those of the backlight module.
  • the orthographic projections of the plurality of second electrodes on the backlight module are non-overlapping and each first electrode is configured to control the refractive indices of two of the segments.
  • one liquid crystal grating period of the plurality of liquid crystal grating periods corresponds to M electrodes
  • the M electrodes include a plurality of first electrodes and a plurality of second electrodes
  • the plurality of first electrodes The electrode and the plurality of second electrodes are located in different layers and there is no overlapping area of the orthographic projection on the backlight module.
  • the n-1th orthographic projection corresponds to The voltage difference between the electrode and the electrode corresponding to the nth orth normal projection is smaller than the voltage difference between the electrode corresponding to the nth orth normal projection and the electrode corresponding to the n + 1th orth normal projection, where M is greater than Or a positive integer of 3, n is a positive integer greater than or equal to 2, and M is greater than n.
  • the first electrode layer and the second electrode layer are both formed on one side of the base substrate, or the first electrode layer and the second electrode layer are both formed on the substrate One side of the backlight module.
  • the first electrode layer and the second electrode layer are located on different sides of the liquid crystal layer, and each of the plurality of first electrodes is on the backlight module.
  • the orthographic projection overlaps with the orthographic projection of the corresponding second electrode of the plurality of second electrodes on the backlight module, and each first electrode is configured to control the refractive index of one of the segments.
  • one liquid crystal grating period of the plurality of liquid crystal grating periods corresponds to J first electrodes, and among the J first electrodes, in response to the control signal, the kth first The voltage difference between the electrode and its corresponding second electrode is less than the voltage difference between the k + 1th first electrode and its corresponding second electrode, where J is a positive integer greater than or equal to 2, and k is greater than or equal to A positive integer of 1 and J is greater than k.
  • the first electrode layer is formed on one side of the base substrate and the second electrode layer is formed on one side of the backlight module, or the second electrode layer is formed on an One side of the base substrate and the first electrode layer are formed on one side of the backlight module.
  • the first electrode and the second electrode are strip electrodes that are parallel to each other.
  • the first electrodes corresponding to each liquid crystal grating period are arranged equidistantly, and the second electrodes corresponding to each liquid crystal grating period are arranged equidistantly.
  • a distance between two adjacent first electrodes of the plurality of first electrodes corresponding to each liquid crystal grating period is less than 1 micrometer, and the plurality of corresponding first liquid crystal grating periods corresponds to the plurality of first electrodes.
  • the distance between two adjacent second electrodes in the second electrode is less than 1 micron.
  • an orthographic projection of the light-shielding area on the backlight module covers the light extraction grating.
  • one to six liquid crystal grating periods are correspondingly provided with one to six of the first electrodes.
  • the liquid crystal layer includes a nematic liquid crystal.
  • the thickness of the liquid crystal layer ranges from 0.1 micrometer to 10 micrometers.
  • the backlight module includes a monochromatic light source located on a light incident surface of the light guide plate, and is configured to emit light to be coupled to the light guide plate via the light incident surface.
  • the display panel further includes a flat layer interposed between the backlight module and the diffractive element.
  • a display device including the display panel according to any embodiment of the present disclosure.
  • FIG. 1 schematically illustrates a cross-sectional view of a display panel according to an embodiment of the present disclosure
  • FIG. 2 schematically illustrates a specific structure of the display panel of FIG. 1;
  • FIG. 3 schematically illustrates a refractive index distribution of a liquid crystal layer in a display panel according to an embodiment of the present disclosure
  • FIG. 5 schematically illustrates an electric field distribution of a diffractive element of the display panel of FIG. 2;
  • FIG. 6 schematically illustrates another specific structure of the display panel of FIG. 1;
  • FIG. 7 schematically illustrates an electric field distribution of a diffractive element of the display panel of FIG. 6;
  • FIG. 8 schematically illustrates a top view of a display panel according to an embodiment of the present disclosure.
  • FIG. 9 schematically illustrates a light path diagram in a display panel according to an embodiment of the present disclosure.
  • LCD panels generally use a lower polarizer to polarize the light emitted by the backlight module, and then use a liquid crystal layer to modulate the light that has been polarized for the first time, and then use a color filter to filter the modulated light so that only a specific color of light Can pass through, and finally use the upper polarizer to analyze, so as to achieve the basic display function.
  • the upper polarizer, the lower polarizer, the color filter, and even the array substrate will affect the light output efficiency of the LCD. Therefore, the light output efficiency of common LCD panels is low. This limits the application of LCDs in certain special situations (such as transparent display).
  • the light emitting portion of the backlight module is aligned with the light-shielding area of the pixel.
  • the liquid crystal layer can be formed as a liquid crystal grating to diffract light emitted from the backlight module, so that the light originally irradiated to the light-shielding strip is changed in the traveling direction and irradiated to the light-transmitting area, thereby emitting from the display panel.
  • the conventional liquid crystal grating has a limited diffractive ability, and the maximum angle of its diffraction is 21.4 degrees.
  • the two electrode layers of a conventional liquid crystal layer are an entire common electrode and a pixel electrode separated from each other.
  • the liquid crystal grating driven by the electric field formed by such electrodes can only diffract a small part of the light from the light transmitting area. Most of the light is still blocked by the shading strips in the shading area.
  • the main efficiency of the diffracted light is concentrated on the 0th order and ⁇ 1st order.
  • the current diffraction efficiency is only 15%, making the light extraction efficiency low.
  • FIG. 1 schematically illustrates a cross-sectional view of a display panel according to an embodiment of the present disclosure.
  • the display panel 100 includes a base substrate 103 and a plurality of light shielding strips 1057 arranged on the base substrate.
  • the light-shielding strip defines a light-shielding region 1051 on the base substrate 103.
  • the light-transmitting area 1052 is arranged between the light-shielding areas.
  • the display panel 100 includes a plurality of pixel units 105 arranged in an array. Each pixel unit contains a fragment of a light-shielded area.
  • each pixel unit 105 includes a central light-shielding region 1052 and light-transmitting regions on both sides of the light-shielding region 1052.
  • the light-transmitting region 1051 may surround the periphery of the light-shielding region 1052.
  • the display panel 100 further includes a combination of the backlight module 101 and a first electrode layer, a second electrode layer, and a liquid crystal layer controlled by the backlight module 101 and the substrate substrate 103.
  • the assembly can also be briefly described as the diffractive element 104.
  • the diffractive element is located at the optical downstream of the backlight module.
  • optical downstream means that the diffractive element 104 is configured to receive light from the backlight module 101. .
  • FIG. 2 schematically illustrates a specific structure of the display panel of FIG. 1.
  • the backlight module 101 includes a light guide plate 1012 and a light extraction grating 1013.
  • the light extraction grating 1013 is configured to couple out light in the light guide plate 1012 and further collimate the light.
  • the light-shielding area 1052 includes a light-shielding strip 1057.
  • the light-shielding strip 1057 is strip-shaped, and can block out light that is decoupled and collimated without applying a control signal to the liquid crystal layer.
  • the light extraction grating 1013 collimates the coupled light in a direction perpendicular to the light-shielding strip 1057, so that when the control signal is not applied to the first electrode and the second electrode, the coupled-out and collimated light will be irradiated to the light-shielding strip 1057. on. At this time, the pixel unit 105 is displayed in black.
  • the display panel may include a first electrode layer 1041, a second electrode layer 1042, and a liquid crystal layer 1043 located between the base substrate and the light guide plate.
  • the first electrode layer 1041 includes a plurality of first electrodes 1045 spaced from each other.
  • the second electrode layer 1042 includes a plurality of second electrodes 1046 spaced from each other.
  • the display panel also includes a controller that generates a control signal.
  • the first electrode layer 1041 and the second electrode layer 1042 are configured to jointly control the liquid crystal layer 1043 in response to a control signal at the same time, so that the liquid crystal layer 1043 forms a plurality of liquid crystal grating periods.
  • the liquid crystal in each liquid crystal grating period includes a plurality of liquid crystal segments (referred to simply as segments) with different refractive indices. Each segment has an independent refractive index. The refractive index of each segment depends on the parameters of the electric field in which the segment is located, and the parameters of the electric field are determined by control signals applied to the first and second electrodes forming the electric field. In this application, the "corresponding relationship" between the liquid crystal grating period, the liquid crystal segment and the electrode means that the refractive index of the liquid crystal segment can be controlled by the electrode, and these liquid crystal stages form the liquid crystal grating period.
  • the first electrode 1045 of the first electrode layer 1041 and the second electrode 1046 of the second electrode layer 1042 of the present disclosure are both arranged in a spaced manner, so that the voltage of the first electrode and the second electrode can be controlled by a controller to control
  • the refractive index of each liquid crystal segment is such that the refractive index of a segment within a single liquid crystal grating period increases in a direction perpendicular to the extending direction of the first electrode.
  • the optical effect of the liquid crystal grating is equivalent to the optical effect of the blazed grating, which causes the light from the backlight module 101 to be diffracted by the diffractive element at a larger diffraction angle (for example, greater than 21.4 °) and emitted from the light transmission region 1051.
  • FIG. 3 schematically shows a refractive index profile in a plurality of liquid crystal grating periods of a local liquid crystal layer.
  • the arrow direction in FIG. 3 indicates a direction perpendicular to the extending direction of the first electrode 1045.
  • the refractive index of the liquid crystal segment increases in a direction perpendicular to the extending direction of the first electrode. Since the thickness of the liquid crystal layer is substantially the same, the change tendency of the refractive index is equal to the change tendency of the optical path difference. That is, in a liquid crystal grating period, the optical path difference is increasing along the direction perpendicular to the extending direction of the first electrode.
  • Such an optical path difference attribute of the liquid crystal grating of the present disclosure is basically consistent with the optical path difference attribute of the blazed grating, so that an optical effect substantially consistent with the blazed grating can be achieved, so that light incident on the liquid crystal layer is deflected at a larger diffraction angle. fold.
  • a liquid crystal grating period can include 2-6 liquid crystal segments. Since a first electrode can control 1-2 liquid crystal segments, a liquid crystal grating period corresponds to 1-6 first electrodes.
  • FIG. 4 schematically illustrates a diffracted light path diagram of a transmission type blazed grating.
  • the optical path difference ⁇ is the optical path difference between the center of the single slit aperture and the edge in the diffraction direction, which satisfies the following formula:
  • a blaze wavelength ⁇ can be obtained.
  • the refractive index of the liquid crystal segment within the period of the liquid crystal grating of the present application increases, which can be understood as the increase in the thickness of the segment under the condition that the refractive index does not change, which is equivalent to a blazed grating. Therefore, the liquid crystal layer in the display panel of the present disclosure can achieve an optical effect similar to a blazed grating under the control of the first electrode layer and the second electrode layer.
  • Slotted angle of the shining grating Reflects the trend of refractive index changes. Slot angle The larger the change rate of the refractive index of the liquid crystal segment is.
  • the grooved surface and the grating surface of the blazed grating are not parallel, and there is an angle between them (groove angle )
  • groove angle To separate the central principal maxima of a single grooved surface 401 from the interference zero-order principal maxima of each grooved surface, transfer the light energy from the interference zero-order principal maxima and concentrate them on a certain level of the spectrum to achieve the spectrum Shine.
  • the width a of the grooved surface 401 of the blazed grating is approximately equal to the width d (that is, the period) of the grating surface 402.
  • the spectra of other orders of the wavelength ⁇ almost coincide with the extremely small positions of the diffraction of the single grooved surface 401.
  • the spectral intensity is small.
  • the blazed spectrum accounts for more than 90% of the total light energy.
  • each period of the liquid crystal grating is divided into n stages to generate a multi-stage (step) phase profile grating. Adjacent steps will produce a phase difference of 2Pi / n, which achieves a phase modulation similar to that of a binary step grating to incident light.
  • Pi is the pi, and it can also be represented by the Greek letter ⁇ , which is a mathematical constant that exists in mathematics and physics.
  • a cycle can contain two, four, six or even more steps.
  • the increase direction of the refractive index of the liquid crystal segment in each liquid crystal grating period is the same as shown in FIG. 4, the light emitted by the backlight module after each liquid crystal grating period is deflected in the same direction. It can be understood that if the refractive index of the liquid crystal segments is arranged in the opposite direction, the light emitted by the backlight module is deflected toward the other side of the grating surface normal.
  • the refractive index of a liquid crystal segment in a part of the liquid crystal grating period can be made according to The refractive index of the liquid crystal segments in another part of the liquid crystal grating period is arranged in the opposite increasing direction.
  • the diffractive element 104 can adjust the propagation direction of the light emitted by the backlight module 101.
  • the amount of emitted light can be controlled by controlling the diffraction angle of the light, thereby achieving grayscale display.
  • the light emitted and collimated through the light extraction grating 1013 of the backlight module 101 irradiates the light-shielding strip 1057 and is absorbed. At this time, no light is emitted from the pixel, and the pixel is displayed in a dark state.
  • the refractive indexes of the liquid crystal layer 103 are adjusted to form the morphology of the blazed grating equivalently.
  • the liquid crystal layer 103 adjusts the phase of the collimated light, so that the propagation direction of the light emitted by the backlight module 101 is adjusted.
  • the diffractive element of the present disclosure can diffract light with a larger diffraction angle, so that more light is emitted from the light-transmitting region 1051 and partially blocked in the light-shielding region 1052, so as to achieve a technical effect of greatly increasing light-extraction efficiency.
  • the diffractive element 104 includes a first electrode layer 1041, a second electrode layer 1042, and a liquid crystal layer 1043.
  • the first electrode layer 1041 includes first electrodes 1045 arranged periodically.
  • the second electrode layer includes second electrodes 1046 arranged periodically.
  • both the first electrode layer 1042 and the second electrode layer 1043 are disposed on a base substrate.
  • the first electrode layer 1042 and the second electrode layer 1043 are both disposed on a light guide plate (ie, a backlight module).
  • the first electrode layer 1041 and the second electrode layer 1042 are configured to form an electric field to deflect liquid crystal molecules in the liquid crystal layer 1043, thereby adjusting the refractive index of the liquid crystal layer 1043 to form a blazed grating. Effect of liquid crystal grating.
  • the first electrodes 1045 may be arranged at equal intervals, and the second electrodes 1046 may also be arranged at equal intervals.
  • the distance between the two closest first electrodes 1045 in two adjacent liquid crystal grating periods is not necessarily equal to the distance between the first electrodes 1045 in a single optical period.
  • the distance between two closest second electrodes 1046 in two adjacent liquid crystal grating periods is not necessarily equal to the distance between the second electrodes 1046 in a single liquid crystal grating period.
  • the liquid crystal layer 1043 may be a nematic liquid crystal or other liquid crystals.
  • the thickness of the liquid crystal layer 1043 may be 0.1 ⁇ m to 10 ⁇ m, and is used to form a liquid crystal grating under the driving of the first electrode 1041 and the second electrode 1042.
  • the propagation direction of the incident light is changed, so that the light originally irradiated to the light-shielding strip 1057 is emitted from the light-transmitting area 1051.
  • Light having a larger light energy is emitted from the light-transmitting area 1051 to achieve a technical effect of greatly increasing light-extraction efficiency.
  • the first electrode layer 1041 and the second electrode layer 1042 are located on the same side of the liquid crystal layer 1043.
  • the first electrode layer 1041 and the second electrode 1042 are electrically insulated.
  • the orthographic projection of the first electrode 1045 on the backlight module 101 and the orthographic projection of the second electrode 1046 on the backlight module 101 do not overlap. If the base substrate 103 is used as a reference, there is no overlap between the orthographic projection of the first electrode 1045 on the base substrate 103 and the orthographic projection of the second electrode 1046 on the base substrate 103.
  • the first electrode layer 1041 and the second electrode layer 1042 can be electrically insulated by an insulating layer 1044.
  • the first electrode layer 1041 and the second electrode layer 1042 may be located on a side of the liquid crystal layer 1043 near the backlight module 101.
  • a voltage signal is applied to the first electrode 1045 and the second electrode 1046 to form an electric field.
  • the first electrodes 1045 and the second electrodes 1046 are staggered, that is, the orthographic projection of the first electrode 1045 on the backlight module 101 and the orthographic projection of the second electrode 1046 on the backlight module 101 do not overlap.
  • the resulting electric field is a horizontal electric field. Through the electric field, the refractive index of the liquid crystal layer 1043 can be changed, so that the liquid crystal layer 1043 can achieve the effect of a blazed grating.
  • FIG. 5 schematically illustrates an electric field distribution of the display panel of FIG. 2 in a display operation.
  • the controller By enabling the controller to independently supply power to each of the first electrode 1045 and each of the second electrode 1046, the electric field formed in the liquid crystal layer can be controlled so that the liquid crystal layer exhibits multiple liquid crystal grating periods, and each liquid crystal grating period includes a refractive index having a different refractive index. A plurality of segments, and the refractive indices of these regions increase in a direction perpendicular to the extending direction of the first electrode.
  • the strength of the electric field determines the refractive index of the liquid crystal segment, and the strength of the electric field depends on the voltage of the electrode forming the electric field
  • the voltage of each first electrode and the second electrode can be adjusted by the controller to adjust each liquid crystal cell.
  • the first electrode layer and the second electrode layer in FIG. 5 are arranged on the same layer of the liquid crystal layer, and the orthographic projections of the first electrode and the second electrode on the backlight module do not overlap.
  • the M first electrodes and second electrodes form M orthographic projections on the backlight module.
  • the second electrode 1046 and the first electrode 1045 on both sides form different electric fields
  • the first electrode 1045 and the second electrode 1046 on both sides form different electric fields.
  • the intensity of the electric field in one period is increased in a direction perpendicular to the extending direction of the first electrode.
  • the voltages of the respective first electrodes and the second electrodes may be set such that the interval between the first first electrode and the first second electrode in a direction perpendicular to the extending direction of the first electrode in the period of the liquid crystal grating
  • the voltage difference is less than the voltage difference between the first second electrode and the second first electrode
  • the voltage difference between the first second electrode and the second first electrode is less than the second first electrode and the second Voltage difference between two second electrodes, and so on.
  • the electrode corresponding to the (n-1) th orthographic projection and the nth orthographic projection in response to the control signal, the electrode corresponding to the (n-1) th orthographic projection and the nth orthographic projection
  • the voltage difference between the corresponding electrodes is smaller than the voltage difference between the electrode corresponding to the nth orth forward projection and the electrode corresponding to the n + 1th orth forward projection, where M is a positive integer greater than or equal to 3, n is a positive integer greater than or equal to 2, and M is greater than n.
  • one first electrode may form different and asymmetric electric fields with two adjacent second electrodes, respectively, so that the refractive indices of the liquid crystal segments in the two electric fields can be controlled individually.
  • each first electrode 1045 corresponds to two liquid crystal segments.
  • the electric field on both sides of each strip electrode is symmetrical, so the liquid crystal segment formed by these two electric fields
  • the refractive index of is the same and cannot be increased in a direction perpendicular to the extending direction of the first electrode, so the liquid crystal grating described in this disclosure cannot be formed.
  • FIG. 6 schematically illustrates a cross-sectional view of a display panel according to another implementation example of the present disclosure.
  • the first electrode layer 1041 and the second electrode layer 1042 are located on different sides of the liquid crystal layer 1043. That is, the liquid crystal layer 1043 is located between the first electrode layer 1041 and the second electrode layer 1042.
  • the first electrode layer 1041 may be located on the backlight module and the second electrode layer 1042 may be located on the base substrate 103.
  • the first electrode layer 1041 may be located on a base substrate and the second electrode layer 1042 may be located on a backlight module.
  • the first electrode 1045 and the second electrode 1046 are aligned, that is, the orthographic projection of the first electrode 1045 on the backlight module 101 and the orthographic projection of the second electrode 1046 on the backlight module 101 overlap.
  • a voltage signal is applied to the first electrode 1045 and the second electrode 1046 to form an electric field.
  • the first electrode 1045 and the second electrode 1045 are aligned and the electric field formed is a vertical electric field.
  • the electric field changes the refractive index of the liquid crystal layer 1043, so that the liquid crystal layer 1043 achieves the effect of a blazed grating.
  • FIG. 7 schematically illustrates an electric field distribution of the display panel of FIG. 6 in a display operation.
  • each first electrode 1045 corresponds to a liquid crystal segment.
  • the refractive index of each liquid crystal segment can be controlled independently, and the refractive indices of adjacent liquid crystal segments can be different, so that the liquid crystal layer can achieve a refractive index distribution such as a blazed grating, thereby achieving a large diffraction angle of the blazed grating.
  • the direction of the electric field is indicated by the arrow direction in FIG. 7, and the length of the dashed line represents the electric field strength.
  • the first electrode 1045 and the second electrode 1046 whose projections are superposed are made into a pair of electrodes. In order to form the electric field shown in FIG.
  • each pair of electrodes in a liquid crystal grating period can be powered by the controller.
  • the controller may make the voltage difference of the first pair of electrodes in a direction perpendicular to the extension direction of the first electrode smaller than the voltage difference of the second pair of electrodes, and the voltage difference of the second pair of electrodes is smaller than the voltage difference of the third pair of electrodes. . With this, the voltage difference between the electrode pairs is increased in a direction perpendicular to the extending direction of the first electrode.
  • a liquid crystal grating period includes J first electrodes, among the J first electrodes, in response to the control signal, the distance between the k-th first electrode and its corresponding second electrode
  • the voltage difference is less than the voltage difference between the k + 1th first electrode and its corresponding second electrode, where J is a positive integer greater than or equal to 2, k is a positive integer greater than or equal to 1, and J is greater than k.
  • the first electrode 1041 and the second electrode 1042 are parallel strip electrodes.
  • the distance between two adjacent first electrodes 1041, especially the first electrodes in a liquid crystal grating period may be less than 1 micron.
  • the distance between two adjacent second electrodes 1042, especially the second electrodes in a liquid crystal grating period may be less than 1 micron.
  • the backlight module 101 further includes a monochromatic light source 1011.
  • the monochromatic light source 1011 is located on the light incident surface of the light guide plate 1012.
  • the light extraction grating 1013 is located on a light emitting surface of the light guide plate 1012.
  • the light extraction grating 1013 is used for taking out the light incident on the light guide plate 1012 from the monochromatic light source 1011 into the light guide plate 1012 at a collimating angle. Since the blazed grating has a spectroscopic function, in order to better control the diffraction angle, a monochromatic light source is selected in some embodiments.
  • the monochromatic light source may be a blue light source.
  • the light emitted from the monochromatic light source 1011 is coupled into the light guide plate 1012 from the light incident surface of the light guide plate 1012 at different incident angles.
  • the light coupled into the light guide plate 1012 is transmitted in the light guide plate 1012 using total reflection.
  • the light extraction grating 1013 located on the light exit surface of the light guide plate 1011 extracts the light from the monochromatic light source 1011 in the light guide plate 1012 at a collimating angle.
  • the monochromatic light source 1011 provided in the embodiment of the present application may be a light emitting diode (LED), a micro light emitting diode (Micro LED) chip formed by a transfer method, or an organic light emitting diode.
  • Micro LEDs have higher brightness, better luminous efficiency and lower power consumption than OLEDs. Since the blazed grating has a light splitting effect, the display panel of the present disclosure selects a monochromatic light source to better control the diffraction direction.
  • the structure of the monochromatic light source 1011 may include a light directing device, such as a lens, a parabolic reflector, a bevel reflector, and the like.
  • the light directing device converges the divergent light and couples it into the light guide plate 1012 at a smaller divergence angle, for example, couples the light into the light guide plate 1012 at a small range of incidence angles greater than the total reflection angle.
  • FIG. 8 schematically illustrates a top view of a display panel according to an embodiment of the present disclosure.
  • the shading strips are arranged laterally, and in some embodiments span multiple sub-pixels (see FIG. 8), or even across multiple pixels.
  • the light extraction grating 1013 is indicated by a white dotted frame in FIG. 8. Each sub-pixel has a separate light extraction grating.
  • the orthographic projection of the light-shielding area 1052 on the backlight module 101 covers the light-taking grating 1013. In other words, the orthographic projection of the light extraction grating 1013 on the base substrate 103 and the orthographic projection of the light-shielding region 1052 on the base substrate 103 overlap.
  • the light extraction grating 1013 may be located on the upper surface of the light guide plate 1012 (that is, the side of the light guide plate 1012 facing the liquid crystal layer 1043), or on the lower surface of the light guide plate 1012 (the side of the light guide plate 1012 facing away from the liquid crystal layer 1043). When the light extraction grating 1013 is located on the upper surface of the light guide plate 1012, the light extraction grating 1013 directly couples the light irradiated to the light guide plate 1012 from the light guide plate 1012.
  • the light extraction grating 1013 When the light extraction grating 1013 is located on the lower surface of the light guide plate 1012, the light extraction grating 1013 reflects the light irradiated to the light guide plate 1012, and passes through the upper surface to be coupled out of the light guide plate 1012.
  • the light extraction grating 1013 When the light extraction grating 1013 is located on the upper surface of the light guide plate 1012, the optical path length of light reaching the base substrate 103 is small. Therefore, in order to further improve light efficiency, the light extraction grating 1013 may be specifically disposed on the upper surface of the light guide plate 1012.
  • the display device When the light extraction grating 1013 is disposed on the upper surface of the light guide plate 1012, the display device further includes a flat layer 106 disposed on the light extraction grating 1013.
  • the flat layer 106 can flatten the side of the backlight module 101 facing the diffractive element 104.
  • the flat layer 106 may include a low refractive index material.
  • the thickness of the flat layer 106 may be greater than or equal to 1 m, so as to better planarize the light extraction grating 1013. When the thickness of the flat layer 106 is 1 m or more, it is easier to implement.
  • the display device in the embodiment of the present application further includes alignment layers 107 on both sides of the liquid crystal layer 1043. Only the alignment layer 107 located above the liquid crystal layer 1043 is shown in FIGS. 2 and 6.
  • the alignment layer 107 is configured to set a pretilt angle of liquid crystal molecules in the liquid crystal layer 1043. For brevity, the specific setting method of the orientation layer 107 will not be repeated here.
  • the light transmitting region 1051 includes a quantum dot material.
  • the light transmitting region 1051 may include a red quantum dot material region, a green quantum dot material region, and a blue quantum dot material region.
  • a crosstalk prevention region 1056 is provided between adjacent quantum dot material regions to prevent light emitted by a backlight module in one pixel unit from irradiating the adjacent quantum dot material regions to cause color shift.
  • the quantum dot material located around a light-shielding region 1052 is the same kind of quantum dot material. The colors of the quantum dot materials around the adjacent light-shielding regions 1052 are different.
  • the light generated by the monochromatic light source 1011 excites the quantum dots in the red quantum dot material region, the green quantum dot material region, and the blue quantum dot material region to realize a color display.
  • quantum dot materials have good scattering properties.
  • the collimated light emitted from the red quantum dot material area, the green quantum dot material area, and the blue quantum dot material area can be scattered to increase the viewing angle.
  • the display device provided in the embodiment of the present application can generate a horizontal or vertical electric field by applying a certain voltage signal to the first electrode 1045 and the second electrode 1046, so that the liquid crystal of the liquid crystal layer 1043 can be deflected to adjust the
  • the refractive index is equivalent to the effect of forming a blazed grating, thereby achieving the technical effect of greatly increasing the light output efficiency.
  • FIG. 9 schematically illustrates a light path diagram inside a display panel according to an embodiment of the present disclosure.
  • the liquid crystal blazed grating refers to a liquid crystal grating structure capable of realizing the optical effect of a conventional blazed grating.
  • the liquid crystal blazed grating diffracts the collimated light incident from the light extraction grating 1013 and changes the direction of light propagation.
  • the liquid crystal grating period of the liquid crystal layer corresponding to one pixel unit may include two opposite refractive index increasing directions.
  • the refractive index of the liquid crystal grating period in the left half of the pixel unit may decrease from left to right, and the refractive index of the liquid crystal grating period in the right half may increase from left to right, so that the collimated light Deflection in different directions. This can be adjusted by controlling the voltage of the first electrode and the second electrode.
  • a display device includes a display panel according to an embodiment of the present disclosure.
  • the liquid crystal layer of the display device provided in the embodiments of the present application can present optical properties such as a blazed grating when a pixel needs to be displayed, and adjust the propagation direction of the light emitted from the backlight module, so that when light is emitted from the light-transmitting area of the pixel unit, Able to realize grayscale display.
  • the diffractive element When no voltage is applied to the diffractive element, the collimated light emitted from the light emitting surface of the backlight module is irradiated to the light-shielding strips of the light-shielding area and absorbed.
  • first and second are used for naming purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present disclosure, unless otherwise stated, “multiple” and “several” mean two or more.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本公开提供了一种显示面板(100)和显示设备。显示面板包括衬底基板(103)和布置在所述衬底基板上的多个遮光条(1057),其中所述衬底基板包括由所述多个遮光条限定的多个遮光区(1052)和位于遮光区之间的透光区(1051);背光模组,包括导光板(1012)和取光光栅(1013),其中所述取光光栅配置成将所述导光板内的光耦出;和位于所述衬底基板和所述导光板之间的第一电极层(1041)、第二电极层(1042)和液晶层(1043),其中所述第一电极层包括彼此间隔的多个第一电极(1045),所述第二电极层包括彼此间隔的多个第二电极(1046)。所述第一电极层和所述第二电极层被配置成响应于控制信号控制所述液晶层,使得所述液晶层形成多个液晶光栅周期,其中每个液晶光栅周期内的液晶包括折射率不同的多个节段,并且所述多个节段的折射率沿垂直于所述第一电极的延伸方向的方向递增。

Description

显示面板及显示设备
相关专利申请
本申请主张于2018年8月8日提交的中国专利申请No.201810897823.7的优先权,其全部内容通过引用结合于此。
技术领域
本申请涉及显示技术领域,具体而言,本申请涉及一种显示面板及显示设备。
背景技术
常见的不需要偏光片的LCD(liquid crystal display,液晶显示)面板通过对液晶层施加电信号,使液晶层呈现液晶光栅的效果。但是,常见的LCD面板的衍射能力有限,使得只有很少部分的光能被衍射出面板。这样的LCD面板的出光效率较低,限制了LCD在某些特殊情景(如透明显示)下的应用。
发明内容
根据本公开的一方面,提供了一种显示面板。显示面板包括:衬底基板和布置在所述衬底基板上的多个遮光条,其中所述衬底基板包括由所述多个遮光条限定的多个遮光区和位于遮光区之间的透光区;背光模组,包括导光板和取光光栅,其中所述取光光栅配置成将所述导光板内的光耦出;和位于所述衬底基板和所述导光板之间的第一电极层、第二电极层和液晶层,其中所述第一电极层包括彼此间隔的多个第一电极,所述第二电极层包括彼此间隔的多个第二电极;其中所述第一电极层和所述第二电极层被配置成响应于控制信号控制所述液晶层,使得所述液晶层形成多个液晶光栅周期,其中每个液晶光栅周期内的液晶包括折射率不同的多个节段,并且所述多个节段的折射率沿垂直于所述第一电极的延伸方向的方向递增。
在一些实施例中,所述第一电极层和所述第二电极层位于所述液晶层的同侧且电绝缘,所述多个第一电极在所述背光模组上的正投影与所述多个第二电极在所述背光模组上的正投影无交叠并且每个第一 电极配置成控制两个所述节段的折射率。
在一些实施例中,所述多个液晶光栅周期中的一个液晶光栅周期对应于M个电极,所述M个电极包括多个第一电极和多个第二电极,并且所述多个第一电极和多个第二电极位于不同层且在所述背光模组上的正投影无重叠区,响应于所述控制信号,在所述M个电极中,第n-1个正投影所对应的电极与第n个正投影所对应的电极之间的电压差小于所述第n个正投影所对应的电极与第n+1个正投影所对应的电极之间的电压差,其中M是大于或等于3的正整数,n是大于或等于2的正整数,且M大于n。
在一些实施例中,所述第一电极层和所述第二电极层均形成在所述衬底基板的一侧,或所述第一电极层和所述第二电极层均形成在所述背光模的一侧。
在一些实施例中,所述第一电极层和所述第二电极层位于所述液晶层的异侧,所述多个第一电极中的每个第一电极在所述背光模组上的正投影与所述多个第二电极中的对应的第二电极在所述背光模组上的正投影交叠,并且每个第一电极配置成控制一个所述节段的折射率。
在一些实施例中,所述多个液晶光栅周期中的一个液晶光栅周期对应于J个第一电极,并且在所述J个第一电极中,响应于所述控制信号,第k个第一电极与其所对应的第二电极之间的电压差小于第k+1个第一电极与其对应的第二电极之间的电压差,其中J是大于或等于2的正整数,k是大于或等于1的正整数,且J大于k。
在一些实施例中,所述第一电极层形成在所述衬底基板的一侧且所述第二电极层形成在所述背光模组的一侧,或者所述第二电极层形成在所述衬底基板的一侧且所述第一电极层形成在所述背光模组的一侧。
在一些实施例中,所述第一电极和所述第二电极是相互平行的条状电极。
在一些实施例中,每个液晶光栅周期对应的所述第一电极等距地排列,并且每个液晶光栅周期所对应的所述第二电极等距地排列。
在一些实施例中,每个液晶光栅周期对应的所述多个第一电极中相邻的两个第一电极之间的距离小于1微米,并且每个液晶光栅周期所对应的所述多个第二电极中相邻的两个第二电极之间的距离小于1 微米。
在一些实施例中,所述遮光区在所述背光模组上的正投影覆盖所述取光光栅。
在一些实施例中,一个所述液晶光栅周期对应设置有1-6个所述第一电极。
在一些实施例中,所述液晶层包括向列相液晶。
在一些实施例中,所述液晶层的厚度的范围是0.1微米至10微米。
在一些实施例中,所述背光模组包括位于所述导光板的入光面的单色光源,其配置成发射待经由所述入光面耦入所述导光板的光。
在一些实施例中,所述显示面板还包括介于所述背光模组和所述衍射元件之间的平坦层。
根据本公开的一方面,提供了一种显示设备,包括如本公开任一实施例所述的显示面板。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1示意性地示出了本公开实施例的一种显示面板的截面图;
图2示意性地示出了图1的显示面板的一种具体结构;
图3示意性地示出了本公开实施例的显示面板中的液晶层的折射率分布;
图4示意性地示出了一种闪耀光栅结构的光路图;
图5示意性地示出了图2的显示面板的衍射元件的电场分布;
图6示意性地示出了图1的显示面板的另一种具体结构;
图7示意性地示出了图6的显示面板的衍射元件的电场分布;
图8示意性地示出了本公开实施例的显示面板的俯视图;以及
图9示意性地示出了本公开实施例的显示面板内的光路图。
具体实施方式
下面详细描述本申请,本申请的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。下面通过参考附图描述的实施例是示例性的,仅用于 解释本申请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,本申请中使用的术语的含义应该参考上下文中的意义来解释。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是开放性连接词,并不排除存在其它一个或多个未被直接记载的特征、步骤、操作、元件、组件和/或它们的组合。应该理解,术语“连接”表示被该术语限定的多个元件可以直接地或间接地(例如元件之间还存在其它元件)连接在一起,还可以包括无线地连接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
LCD面板一般使用下偏光片对背光模组发出的光进行起偏,然后使用液晶层对经过第一次偏振的光进行调制,之后使用彩色滤光片过滤调制后的光使得仅特定颜色的光可以穿过,最后使用上偏光片检偏,从而实现基本的显示功能。
上偏光片、下偏光片、彩色滤光片、甚至阵列基板都会对LCD的出光效率造成影响。所以,常见的LCD面板的出光效率较低。这限制了LCD在某些特殊情景(如透明显示)下的应用。
目前,一些LCD面板不再需要偏光片。在这样的LCD面板中,背光模组的出光部与像素的遮光区对齐。在不需要像素发光时,背光模组发出的光会直接照射到像素中的遮光区的遮光条。在需要像素发光时,液晶层可被形成为液晶光栅以对背光模组发出的光进行衍射,使得原本照射到遮光条的光被改变行进方向而照射到透光区,从而从显示面板出射。然而,由于工艺限制,尤其是用于液晶层的电极的设计,常规的液晶光栅的衍射能力有限,其衍射的最大角度为21.4度。例如,常规的液晶层的两电极层分别是一整层的公共电极和一层彼此分离的像素电极。由这样的电极所形成的电场所驱动的液晶光栅只能将很小部分的光从透光区衍射出来。大部分的光仍被遮光区的遮光条挡住。衍射后的光的主要效率集中在0级和±1级。目前的衍射效率仅为15%,使得出光效率较低。
本公开提供了一种显示面板。图1示意性地示出了根据本公开实施例的显示面板的截面图。如图1所示,显示面板100包括衬底基板103和布置在衬底基板上的多个遮光条1057。遮光条在衬底基板103上限定遮光区1051。透光区1052布置在遮光区之间。可以理解,显示面板100包括按阵列排列的多个像素单元105。每个像素单元包含遮光区的片段。若以遮光条延伸的方向为行方向,以与横方向垂直的方向为列方向,则遮光区的沿列方向的两侧布置有透光区。所以每个像素单元105包括居中的遮光区1052和位于遮光区1052的两侧的透光区。在其它实施例中,透光区1051可以包围遮光区1052的四周。显示面板100还包括背光模组101和位于背光模组101和衬底基板103之间的第一电极层、第二电极层和被二者控制的液晶层的组合体。为了描述方便,该组合体也可以简述为衍射元件104。衍射元件位于背光模组的光学下游。术语“光学下游”表示衍射元件104被配置成接收来自背光模组101的光。。
图2示意性地示出了图1的显示面板的一种具体结构。背光模组101包括导光板1012和取光光栅1013。取光光栅1013被配置成将导光板1012内的光耦出,并进一步地准直。遮光区1052包括遮光条1057。遮光条1057为条状,其在不对液晶层施加控制信号的情况下可以阻挡被耦出和准直的光。取光光栅1013按照垂直于遮光条1057的方向对耦出的光进行准直,使得在不对第一电极和第二电极施加控制信号时,经过耦出和准直的光将照射到遮光条1057上。此时,该像素单元105显示为黑色。
如图2所示,显示面板可包括位于衬底基板和导光板之间的第一电极层1041、第二电极层1042和液晶层1043。第一电极层1041包括彼此间隔的多个第一电极1045。第二电极层1042包括彼此间隔的多个第二电极1046。显示面板还包括控制器,其产生控制信号。第一电极层1041和第二电极层1042被配置成同时响应于控制信号来共同控制液晶层1043,使得所述液晶层1043形成多个液晶光栅周期。每个液晶光栅周期内的液晶包括折射率不同的多个液晶节段(简称为节段)。每个节段具有独立的折射率。每个节段的折射率取决于该节段所在的电场的参数,而该电场的参数由施加到形成该电场的第一电极和第二电极的控制信号确定。在本申请中,液晶光栅周期、液晶节段与电极 的“对应关系”表示该液晶节段的折射率能被该电极控制,并且这些液晶阶段形成该液晶光栅周期。本公开的第一电极层1041的第一电极1045和第二电极层1042的第二电极1046都采用间隔布置的方式,使得可以通过控制器来控制第一电极和第二电极的电压,以控制各个液晶节段的折射率,使得单个液晶光栅周期内的节段的折射率沿垂直于第一电极的延伸方向的方向递增。这样,液晶光栅的光学效果相当于闪耀光栅的光学效果,这使得来自背光模组101的光以更大的衍射角度(例如大于21.4°)被衍射元件衍射,从透光区1051射出。
图3示意性地示出了局部液晶层的若干液晶光栅周期中的折射率分布。图3中箭头方向表示与第一电极1045的延伸方向垂直的方向。如图3所示,在单个液晶光栅周期内,液晶节段的折射率沿垂直于第一电极的延伸方向的方向递增。由于液晶层各处的厚度基本一致,因此折射率的变化趋势等同于光程差的变化趋势。也就是说,在一个液晶光栅周期内,沿垂直于第一电极的延伸方向的方向,光程差是递增的。本公开的液晶光栅的这种光程差属性与闪耀光栅的光程差属性基本一致,因此可以实现与闪耀光栅基本一致的光学效果,从而将入射到液晶层的光以更大的衍射角偏折。一个液晶光栅周期内可以包含2-6个液晶节段,由于一个第一电极可以控制1-2个液晶节段,所以一个液晶光栅周期对应于1-6个第一电极。
图4示意性地示出了透射式闪耀光栅的衍射光路图。光程差Δ为单缝孔径中心与边缘在衍射方向上的光程差,其满足下式:
Δ=mλ=d×[sin(θ d)-sin(θ i)]
其中d为光栅周期,θ d为衍射角,θ i为入射角。当光以垂直于光栅面401的方向入射时,上式可变形为:
Figure PCTCN2019099701-appb-000001
其中
Figure PCTCN2019099701-appb-000002
为槽形角。根据该公式,可得闪耀波长λ。本申请的液晶光栅周期内的液晶节段的折射率递增,其可被理解为折射率不变的情况下节段厚度的增加,相当于闪耀光栅。因此,本公开的显示面板中的液晶层在第一电极层和第二电极层的控制下,能实现类似于闪耀光栅的光学效果。闪耀光栅的槽形角
Figure PCTCN2019099701-appb-000003
反映了折射率的变化趋势。槽形角
Figure PCTCN2019099701-appb-000004
越大,则液晶节段的折射率的变化率越大。可以通过设计液晶光栅的周期d和槽形角
Figure PCTCN2019099701-appb-000005
来大幅增加出光效率。
闪耀光栅的刻槽面和光栅面不平行,两者之间有一夹角(槽形角
Figure PCTCN2019099701-appb-000006
),使单个刻槽面401衍射的中央主极大和各个刻槽面干涉零级主极大分开,将光能量从干涉零级主极大转移并集中到某一级光谱上去,实现该级光谱的闪耀。闪耀光栅的刻槽面401宽度a约等于光栅面402的宽度d(即周期),波长λ的其他级次的光谱都几乎和单个刻槽面401衍射的极小位置重合,致使这些级次的光谱强度很小。一般,闪耀光谱占总光能量的90%以上。
由于液晶层1043由许多离散的液晶分子组成,导致调节光的相位时不能使相位产生连续的变化,所以只能对光造成台阶形的多个逐级的相位改变,以不断趋近于如闪耀光栅的相位连续分布。如图3所示,将液晶光栅的每个周期分成n个级,产生多级(台阶)相位轮廓光栅。相邻的台阶将会产生2Pi/n的相位差,实现类似于二元阶梯光栅对入射光的相位调制。Pi是圆周率,也可以用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。一个周期可包含两个、四个、六个甚至更多个台阶。
如果如图4那样每个液晶光栅周期内的液晶节段的折射率的增加方向都相同,则经过各个液晶光栅周期背光模组发出的光向同一方向偏折。可以理解,如果按照相反方向布置液晶节段的折射率的增加,则背光模组发出的光向光栅面法线另一侧偏折。对于遮光区布置在两个透光区之间的像素来说,为了使背光模组发出的光从遮光条两侧射出,可以使一部分液晶光栅周期中的液晶节段的折射率按照图4的方式布置,而另一部分液晶光栅周期中的液晶节段的折射率按照相反的增加方向布置。
在本申请实施例的显示面板100中,衍射元件104可以调节背光模组101出射的光的传播方向。可以通过控制光的衍射角度来控制出射光的量,从而实现灰阶显示。当衍射元件104不被施加电压时,经由背光模组101的取光光栅1013出射并准直的光照射遮光条1057而被吸收。这时像素没有光被出射,显示为暗态。当衍射元件104的第一电极层1401和第二电极层1402被施加一定的电压时,液晶层103各处的折射率被调整,以等效地形成闪耀光栅的形貌。液晶层103调整了准直光的相位,使得背光模组101出射的光的传播方向被调节。本公开的衍射元件可以以较大的衍射角来衍射光,使更多的光从透光 区1051射出而部被遮挡在遮光区1052内,以达到大幅增加出光效率的技术效果。
下面更详细地描述衍射元件的结构。如图2所示,衍射元件104包括第一电极层1041、第二电极层1042和液晶层1043。第一电极层1041包括周期性排列的第一电极1045。第二电极层包括周期性排列的第二电极1046。在一些实施例中,第一电极层1042和第二电极层1043都布置在衬底基板上。在另外一些实施例中,第一电极层1042和第二电极层1043都布置在导光板(即背光模组)上。所述第一电极层1041和所述第二电极层1042被配置成形成电场以使所述液晶层1043内的液晶分子偏转,从而调节所述液晶层1043各处的折射率以形成具有闪耀光栅效果的液晶光栅。在每个液晶光栅周期内,第一电极1045可以是等间距布置的,第二电极1046也可以是等间距布置的。相邻的两个液晶光栅周期中最接近的两个第一电极1045的距离不一定等于单个光学周期内的第一电极1045之间的距离。同样的,相邻的两个液晶光栅周期中最接近的两个第二电极1046的距离不一定等于单个液晶光栅周期内的第二电极1046之间的距离。
在一些实施例中,液晶层1043可以选用向列相液晶,也可以选用其他液晶。液晶层1043的厚度可以为0.1微米至10微米,用于在第一电极1041和第二电极1042的驱动下形成液晶光栅。
通过对入射光线的衍射或折射,入射光线的传播方向被改变,使得原本照射到遮光条1057的光从透光区1051射出。具有较大光能量的光从透光区1051射出,以达到大幅增加出光效率的技术效果。
在一些实施例中,如图2所示,第一电极层1041和第二电极层1042位于液晶层1043的同侧。第一电极层1041和第二电极1042之间电绝缘。第一电极1045在所述背光模组101上的正投影与所述第二电极1046在所述背光模组101上的正投影不重叠。若以衬底基板103为参考,则第一电极1045在衬底基板103上的正投影与第二电极1046在衬底基板103上的正投影无重叠区域。第一电极层1041和第二电极层1042之间可以通过绝缘层1044来电绝缘。在具体的实施例中,第一电极层1041和第二电极层1042可以位于液晶层1043的靠近背光模组101的一侧。对第一电极1045和第二电极1046施加电压信号以形成电场。在该实施例中,第一电极1045和第二电极1046交错设置,即第一电 极1045在背光模组101上的正投影与第二电极1046在背光模组101上的正投影无重叠区域。所形成的电场是水平电场。通过电场,可以改变液晶层1043各处的折射率,使得液晶层1043实现闪耀光栅的效果。
图5示意性地示出了图2的显示面板在显示操作中的电场分布。通过使控制器对各第一电极1045和各第二电极1046单独供电,可以控制液晶层中形成的电场,以使液晶层呈现多个液晶光栅周期,并且每个液晶光栅周期包括折射率不同的多个节段,并且这些区域的折射率按垂直于第一电极延伸方向的方向递增。具体的,由于电场的强度决定液晶节段的折射率,而电场强度取决于形成电场的电极的电压,因此,通过由控制器控制各个第一电极与第二电极的电压,可以调整各个液晶节段的折射率。例如,图5中的第一电极层和第二电极层布置在液晶层的同一层,并且第一电极与第二电极在背光模组上的正投影不重叠。为了便于描述,以一个液晶光栅周期对应于M个第一电极和第二电极为例,则所述M个第一电极和第二电极在背光模组上形成M个正投影。在一个液晶光栅周期内,如图5中的虚线所示,第二电极1046与其两侧的第一电极1045分别形成不同的电场,并且第一电极1045与其两侧的第二电极1046分别形成不同的电场,并且一个周期内的电场的强度是按垂直于第一电极的延伸方向的方向递增的。为此,可以设置各个第一电极和第二电极的电压,使得液晶光栅周期内的沿垂直于第一电极的延伸方向的方向的第一个第一电极与第一个第二电极之间的电压差小于第一个第二电极与第二个第一电极之间的电压差,第一个第二电极与第二个第一电极之间的电压差小于第二个第一电极与第二个第二电极之间的电压差,以此类推。换句话说,在M个第一电极和第二电极在背光模组上的M个正投影中,响应于所述控制信号,第n-1个正投影所对应的电极与第n个正投影所对应的电极之间的电压差小于所述第n个正投影所对应的电极与第n+1个正投影所对应的电极之间的电压差,其中M是大于或等于3的正整数,n是大于或等于2的正整数,且M大于n。通过控制器的上述控制,可以使得液晶层形成液晶闪耀光栅。
在上述实施例中,一个第一电极可以与相邻的两个第二电极分别形成不同且不对称的电场,使得这两个电场内的液晶节段的折射率可 以单独地控制。在这种电极布置中,每个第一电极1045对应于两个液晶节段。而对于常规的一整层块状公共电极与另一层彼此分离的条状电极的组合来说,每个条状电极的两侧的电场是对称的,因此这两个电场形成的液晶节段的折射率是相同的,并不能按照垂直于第一电极的延伸方向的方向递增,因此无法形成本公开所描述的液晶光栅。
图6示意性地示出了根据本公开另一实现例的显示面板的截面图。如图5所示,第一电极层1041和第二电极层1042位于液晶层1043的异侧。也就是说,液晶层1043位于第一电极层1041和第二电极层1042之间。在一些实施例中,第一电极层1041可以位于背光模组上而第二电极层1042可以位于衬底基板103上。在另外一些实施例中,第一电极层1041可以位于衬底基板上而第二电极层1042可以位于背光模组上。第一电极1045和第二电极1046对齐地设置,即第一电极1045在背光模组101上的正投影与第二电极1046在背光模组101上的正投影重叠。对第一电极1045和第二电极1046施加电压信号以形成电场。第一电极1045和第二电极1045对齐地设置,所形成的电场是垂直电场。电场改变液晶层1043各处的折射率,使得液晶层1043实现闪耀光栅的效果。
图7示意性地示出了图6的显示面板在显示操作中的电场分布。
如图7所示,电场呈垂直分布。在这种电极布置中,每个第一电极1045对应一个液晶节段。各液晶节段的折射率可单独控制,并且相邻液晶节段的折射率可以不同,使得液晶层可实现如闪耀光栅的折射率分布,从而实现闪耀光栅的大衍射角度。图7中箭头方向表示的电场方向,而虚线长度表现了电场强度。为了便于描述,将投影重合的第一电极1045和第二电极1046成为一对电极。为了形成图7所示的电场,可以通过控制器为一个液晶光栅周期内的每对电极供电。例如,控制器可以使得沿垂直于第一电极的延伸方向的方向的第一对电极的电压差小于第二对电极的电压差,并且第二对电极的电压差小于第三对电极的电压差。以此,电极对的电压差沿垂直于第一电极的延伸方向的方向实现递增。换句话说,如果一个液晶光栅周期包含J个第一电极,则在所述J个第一电极中,响应于所述控制信号,第k个第一电极与其所对应的第二电极之间的电压差小于第k+1个第一电极与其对应的第二电极之间的电压差,其中J是大于或等于2的正整数,k是大于 或等于1的正整数,且J大于k。通过上述布置,电极电压差递增,从而实现了液晶光栅周期内的折射率的递增。
可选地,第一电极1041和第二电极1042为相互平行的条状电极。
可选地,相邻的两个第一电极1041,尤其是一个液晶光栅周期内的第一电极之间的距离可以小于1微米。可选地,相邻的两个第二电极1042,尤其是一个液晶光栅周期内的第二电极之间的距离可以小于1微米。通过使相邻的两个第一电极1041或第二电极1042之间的距离尽可能的小,(例如小于1微米),可以更精细地控制液晶层1043,使液晶层1043更好地实现闪耀光栅效果。
在一些实施例中,背光模组101还包括单色光源1011。单色光源1011位于导光板1012的入光面。取光光栅1013位于导光板1012的出光面。取光光栅1013用于将单色光源1011入射到导光板1012中的光以准直角度取出导光板1012。由于闪耀光栅具有分光功能,所以为了更好的控制衍射角度,在一些实施例中选用单色光源。在一些实施例中,单色光源可以是蓝光源。
从单色光源1011出射的光线以不同的入射角度从导光板1012的入光面耦入导光板1012。耦入导光板1012的光在导光板1012中利用全反射来传播。位于导光板1011的出光面的取光光栅1013将导光板1012中的来自单色光源1011的光以准直角度取出。
本申请实施例提供的单色光源1011可以为发光二极管(Light Emitting Diode,LED),可以为通过转印的方式形成的微发光二极管(Micro Light Emitting Diode,Micro LED)芯片,也可以为有机发光二极管(Organic Light Emitting Diode,OLED)芯片。Micro LED比OLED亮度更高、发光效率更好、功耗更低。由于闪耀光栅具有分光作用,所以本公开的显示面板选用单色光源,以便更好地控制衍射方向。
可选地,单色光源1011的结构可以包括光定向装置,例如透镜、抛物面反射镜、斜面反射镜等。该光定向装置将发散的光线会聚,以较小的发散角度耦合进导光板1012中,例如以大于全反射角度的小范围的入射角,将光耦合进导光板1012中。
图8示意性地示出了根据本公开实施例的显示面板的俯视图。遮光条沿横向布置,并且在一些实施例中跨过多个子像素(如图8),甚至跨过多个像素。取光光栅1013在图8中以白色虚线框表示。每个子 像素具有单独的取光光栅。遮光区1052在背光模组101上的正投影覆盖取光光栅1013。换句话说,取光光栅1013在衬底基板103上的正投影与遮光区1052在衬底基板103上的正投影重叠。取光光栅1013可以位于导光板1012的上表面(即导光板1012面向液晶层1043的一侧),也可以位于导光板1012的下表面(即导光板1012背离液晶层1043的一侧)。当取光光栅1013位于导光板1012的上表面时,取光光栅1013将导光板1012中照射到其的光从导光板1012直接耦出。当取光光栅1013位于导光板1012的下表面时,取光光栅1013将导光板1012中照射到其的光反射,并穿过上表面而从导光板1012耦出。当取光光栅1013位于导光板1012的上表面时,光到达衬底基板103的光程较小,因此为了进一步提高光效率,可以具体将取光光栅1013布置于导光板1012的上表面。
当取光光栅1013设置于导光板1012的上表面时,该显示装置还包括设置在取光光栅1013上的平坦层106。该平坦层106可以使得背光模组101面向衍射元件104的一侧平坦化。平坦层106可以包括低折射率材料。平坦层106的厚度可以大于或等于1m,以便更好的对取光光栅1013进行平坦化。当平坦层106的厚度大于或等于1m时,其更容易被实现。
可选地,本申请实施例中的显示装置还包括位于液晶层1043两侧的取向层107。图2和图6中仅示出了位于液晶层1043上方的取向层107。取向层107配置成设置液晶层1043中液晶分子的预倾角。为了简洁性,取向层107的具体设置方式在这里不再赘述。
在一些实施例中,透光区1051包括量子点材料。例如,透光区1051可以包括红色量子点材料区、绿色量子点材料区和蓝色量子点材料区。相邻的量子点材料区之间设置有防串扰区1056,防止一个像素单元内的背光模组发出的光照射到相邻的量子点材料区以出现窜色。位于一个遮光区1052周围的量子点材料是同一种量子点材料。相邻的遮光区1052各自周围的量子点材料的颜色不同。
单色光源1011产生的光激发红色量子点材料区、绿色量子点材料区和蓝色量子点材料区中的量子点,实现彩色显示。同时,量子点材料具有良好的散射性能,可以将从红色量子点材料区、绿色量子点材料区和蓝色量子点材料区射出的准直光进行散射化处理,以增加视角。
本申请实施例提供的显示装置,通过对第一电极1045和第二电极1046施加一定的电压信号以产生水平电场或垂直电场,可以使得液晶层1043的液晶发生偏转,以调整液晶层各处的折射率,以等效地形成闪耀光栅的效果,从而达到大幅增加出光效率的技术效果。
图9示意性地示出了根据本公开实施例的显示面板内部的光路图。如图9所示,基于如图6所示的显示面板,通过控制第一电极1045和第二电极1046的电压,对液晶层1043各处施加不同的电场,使得液晶层1043各处的相位发生变化,形成液晶闪耀光栅。液晶闪耀光栅泛指能够实现常规闪耀光栅的光学效果的液晶光栅结构。液晶闪耀光栅对从取光光栅1013入射的准直光进行衍射,改变光的传播方向,将占总能量90%的闪耀光谱从红色量子点材料区、绿色量子点材料区和蓝色量子点材料区射出,达到大幅增加出光效率的技术效果。如图9所示,为了使光从遮光条两侧的透光区射出,一个像素单元所对应的液晶层的液晶光栅周期可包括两种相反的折射率递增方向。例如,像素单元左半部的液晶光栅周期的折射率可以沿从左到右的方向递减,而右半部的液晶光栅周期的折射率可以沿从左到右的方向递增,使得准直光向不同的方向偏折。这可以通过控制第一电极和第二电极的电压来调整。
需要说明的是,基于图2的显示面板对光线衍射的原理与上述原理相同,在此不再赘述。
根据本公开的另一方面,提供了一种显示设备。该显示设备包括根据本公开实施例的显示面板。本申请实施例提供的显示设备的液晶层在像素需要显示时能够呈现如闪耀光栅的光学属性,对背光模组出射的光线的传播方向进行调节,使得光线从像素单元的透光区出射时,能够实现灰阶显示。当衍射元件不被施加电压时,由背光模组出光面出射的准直光线照射到遮光区的遮光条而被吸收,没有光从像素出射,像素显示为暗态。当衍射元件被施加一定的电压信号时,液晶层各处的折射率发生变化以形成类似闪耀光栅相位结构,通过液晶光栅对入射准直光线的衍射,可以调节背光模组出射的光的传播方向,将衍射角集中在较大的角度,并从透光区出射,达到大幅增加出光效率的技术效果。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、 “前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
术语“第一”、“第二”仅用于命名目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”和“若干”的含义是两个或两个以上。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (17)

  1. 一种显示面板,包括:
    衬底基板和布置在所述衬底基板上的多个遮光条,其中所述衬底基板包括由所述多个遮光条限定的多个遮光区和位于遮光区之间的透光区;
    背光模组,包括导光板和取光光栅,其中所述取光光栅配置成将所述导光板内的光耦出;和
    位于所述衬底基板和所述导光板之间的第一电极层、第二电极层和液晶层,其中所述第一电极层包括彼此间隔的多个第一电极,所述第二电极层包括彼此间隔的多个第二电极;
    其中所述第一电极层和所述第二电极层被配置成响应于控制信号控制所述液晶层,使得所述液晶层形成多个液晶光栅周期,其中每个液晶光栅周期内的液晶包括折射率不同的多个节段,并且所述多个节段的折射率沿垂直于所述第一电极的延伸方向的方向递增。
  2. 根据权利要求1所述的显示面板,其中所述第一电极层和所述第二电极层位于所述液晶层的同侧且电绝缘,所述多个第一电极在所述背光模组上的正投影与所述多个第二电极在所述背光模组上的正投影无交叠并且每个第一电极配置成控制两个所述节段的折射率。
  3. 根据权利要求2所述的显示面板,其中,所述多个液晶光栅周期中的一个液晶光栅周期对应于M个电极,所述M个电极包括多个第一电极和多个第二电极,并且所述多个第一电极和多个第二电极位于不同层且在所述背光模组上的正投影无重叠区,响应于所述控制信号,在所述M个电极中,第n-1个正投影所对应的电极与第n个正投影所对应的电极之间的电压差小于所述第n个正投影所对应的电极与第n+1个正投影所对应的电极之间的电压差,其中M是大于或等于3的正整数,n是大于或等于2的正整数,且M大于n。
  4. 根据权利要求2所述的显示面板,其中所述第一电极层和所述第二电极层均形成在所述衬底基板的一侧,或所述第一电极层和所述第二电极层均形成在所述背光模组的一侧。
  5. 根据权利要求1所述的显示面板,其中所述第一电极层和所述第二电极层位于所述液晶层的异侧,所述多个第一电极中的每个第一 电极在所述背光模组上的正投影与所述多个第二电极中的对应的第二电极在所述背光模组上的正投影交叠,并且每个第一电极配置成控制一个所述节段的折射率。
  6. 根据权利要求2所述的显示面板,其中,所述多个液晶光栅周期中的一个液晶光栅周期对应于J个第一电极,并且在所述J个第一电极中,响应于所述控制信号,第k个第一电极与其所对应的第二电极之间的电压差小于第k+1个第一电极与其对应的第二电极之间的电压差,其中J是大于或等于2的正整数,k是大于或等于1的正整数,且J大于k。
  7. 根据权利要求6所述的显示面板,其中所述第一电极层形成在所述衬底基板的一侧且所述第二电极层形成在所述背光模组的一侧,或者所述第二电极层形成在所述衬底基板的一侧且所述第一电极层形成在所述背光模组的一侧。
  8. 根据权利要求2或5所述的显示面板,其中所述第一电极和所述第二电极是相互平行的条状电极。
  9. 根据权利要求8所述的显示面板,其中每个液晶光栅周期对应的所述第一电极等距地排列,并且每个液晶光栅周期所对应的所述第二电极等距地排列。
  10. 根据权利要求9所述的显示面板,其中每个液晶光栅周期对应的所述多个第一电极中相邻的两个第一电极之间的距离小于1微米,并且每个液晶光栅周期所对应的所述多个第二电极中相邻的两个第二电极之间的距离小于1微米。
  11. 根据权利要求1所述的显示面板,其中所述遮光区在所述背光模组上的正投影覆盖所述取光光栅。
  12. 根据权利要求1所述的显示面板,其中一个所述液晶光栅周期对应设置有1-6个所述第一电极。
  13. 根据权利要求1所述的显示面板,其中所述液晶层包括向列相液晶。
  14. 根据权利要求1所述的显示面板,其中所述液晶层的厚度的范围是0.1微米至10微米。
  15. 根据权利要求1所述的显示面板,其中所述背光模组包括位于所述导光板的入光面的单色光源,其配置成发射待经由所述入光面耦 入所述导光板的光。
  16. 根据权利要求1所述的显示面板,还包括介于所述背光模组和所述衍射元件之间的平坦层。
  17. 一种显示设备,包括如权利要求1-16中任一项所述的显示面板。
PCT/CN2019/099701 2018-08-08 2019-08-08 显示面板及显示设备 WO2020030021A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/645,515 US11106074B2 (en) 2018-08-08 2019-08-08 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810897823.7A CN109031757A (zh) 2018-08-08 2018-08-08 显示装置及电子设备
CN201810897823.7 2018-08-08

Publications (1)

Publication Number Publication Date
WO2020030021A1 true WO2020030021A1 (zh) 2020-02-13

Family

ID=64632228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099701 WO2020030021A1 (zh) 2018-08-08 2019-08-08 显示面板及显示设备

Country Status (3)

Country Link
US (1) US11106074B2 (zh)
CN (1) CN109031757A (zh)
WO (1) WO2020030021A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031757A (zh) * 2018-08-08 2018-12-18 京东方科技集团股份有限公司 显示装置及电子设备
JP2020106711A (ja) * 2018-12-28 2020-07-09 株式会社ジャパンディスプレイ 表示装置、及び、表示装置を組み込んだ電子機器
CN110244482B (zh) * 2019-05-21 2022-07-19 华为技术有限公司 一种显示组件、显示屏和电子设备
WO2020237430A1 (en) * 2019-05-24 2020-12-03 Boe Technology Group Co., Ltd. Display panel, fabricating method thereof, and display apparatus
CN110471210B (zh) * 2019-08-22 2022-06-10 京东方科技集团股份有限公司 彩膜基板、显示面板及显示装置
CN110854296B (zh) * 2019-11-22 2022-07-12 Oppo广东移动通信有限公司 显示模组和电子装置
CN111443510B (zh) * 2020-05-28 2022-06-17 厦门天马微电子有限公司 一种显示面板和显示装置
CN112712754B (zh) * 2020-12-31 2022-08-19 联想(北京)有限公司 显示装置以及电子设备
JP2023111748A (ja) * 2022-01-31 2023-08-10 豊田合成株式会社 ステアリングホイール

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203688918U (zh) * 2013-12-17 2014-07-02 京东方科技集团股份有限公司 立体显示装置
CN105589256A (zh) * 2016-03-11 2016-05-18 京东方科技集团股份有限公司 显示装置
US20160266465A1 (en) * 2015-03-12 2016-09-15 Omnitek Partners Llc Scanning Pattern Projection Methods and Devices
CN107367883A (zh) * 2017-09-15 2017-11-21 京东方科技集团股份有限公司 液晶光栅、显示面板及显示装置
CN107450211A (zh) * 2017-09-29 2017-12-08 京东方科技集团股份有限公司 灰阶控制结构及其方法、液晶显示面板、显示装置
CN107632448A (zh) * 2017-09-29 2018-01-26 京东方科技集团股份有限公司 一种显示面板
CN108051961A (zh) * 2018-01-02 2018-05-18 京东方科技集团股份有限公司 一种液晶显示面板及其显示方法和液晶显示装置
CN109031757A (zh) * 2018-08-08 2018-12-18 京东方科技集团股份有限公司 显示装置及电子设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798464B2 (en) * 2001-05-11 2004-09-28 International Business Machines Corporation Liquid crystal display
WO2008001636A1 (fr) 2006-06-26 2008-01-03 Asahi Glass Co., Ltd. composant optique pour faisceau laser
EP2446326A2 (de) * 2009-06-23 2012-05-02 SeeReal Technologies S.A. Lichtmodulationsvorrichtung für ein display zur darstellung zwei- und/oder dreidimensionaler bildinhalte mit variablen beugungselementen basierend auf linearen, parallelen elektroden
WO2014034483A1 (ja) * 2012-08-28 2014-03-06 シャープ株式会社 光偏向装置および光偏向素子の駆動方法
WO2014142851A1 (en) * 2013-03-13 2014-09-18 Hewlett-Packard Development Company, L.P. Backlight having collimating reflector
CN103576399B (zh) * 2013-09-26 2016-06-01 西安空间无线电技术研究所 一种液晶光学相控阵天线实现方法
JP6654281B2 (ja) * 2014-02-14 2020-02-26 天馬微電子有限公司 液晶レンチキュラレンズ素子及びその駆動方法、立体表示装置、端末機
CN106959520B (zh) * 2016-01-08 2019-10-29 京东方科技集团股份有限公司 背光模组、显示装置及其驱动方法
CN105589269B (zh) * 2016-03-18 2018-12-21 京东方科技集团股份有限公司 显示面板和显示装置
CN106154657B (zh) * 2016-09-12 2023-09-01 合肥鑫晟光电科技有限公司 一种3d显示装置及其制备方法
US10390008B2 (en) * 2017-01-10 2019-08-20 Sharp Kabushiki Kaisha Dual-pitch parallax barrier
CN106647093A (zh) * 2017-03-02 2017-05-10 京东方科技集团股份有限公司 一种液晶显示面板、显示装置及其显示方法
CN107238974B (zh) * 2017-07-24 2021-03-02 京东方科技集团股份有限公司 一种背光源及液晶显示模组
CA3084793C (en) * 2017-12-18 2022-08-30 Leia Inc. Mode-switchable backlight, display, and method
US10750145B1 (en) * 2018-05-24 2020-08-18 Facebook Technologies, Llc Variable-pitch liquid crystal diffraction grating

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203688918U (zh) * 2013-12-17 2014-07-02 京东方科技集团股份有限公司 立体显示装置
US20160266465A1 (en) * 2015-03-12 2016-09-15 Omnitek Partners Llc Scanning Pattern Projection Methods and Devices
CN105589256A (zh) * 2016-03-11 2016-05-18 京东方科技集团股份有限公司 显示装置
CN107367883A (zh) * 2017-09-15 2017-11-21 京东方科技集团股份有限公司 液晶光栅、显示面板及显示装置
CN107450211A (zh) * 2017-09-29 2017-12-08 京东方科技集团股份有限公司 灰阶控制结构及其方法、液晶显示面板、显示装置
CN107632448A (zh) * 2017-09-29 2018-01-26 京东方科技集团股份有限公司 一种显示面板
CN108051961A (zh) * 2018-01-02 2018-05-18 京东方科技集团股份有限公司 一种液晶显示面板及其显示方法和液晶显示装置
CN109031757A (zh) * 2018-08-08 2018-12-18 京东方科技集团股份有限公司 显示装置及电子设备

Also Published As

Publication number Publication date
US20200278576A1 (en) 2020-09-03
CN109031757A (zh) 2018-12-18
US11106074B2 (en) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2020030021A1 (zh) 显示面板及显示设备
US20200183202A1 (en) Liquid crystal display panel, liquid crystal display device and display method thereof
US10663641B2 (en) Display panel and display device
US11126022B2 (en) Display device and display method thereof
US10831053B2 (en) Display panel and display device
US10678086B2 (en) Display panel, display device, and driving method
US10976595B2 (en) Optical substrate and display device
CN109239965B (zh) 一种显示器件及其控制方法
US20210072593A1 (en) Collimation backlight source, display device and driving method thereof
CN108646338B (zh) 一种背光模组及显示装置
US10705282B2 (en) Backlight module comprising a plurality of light extraction gratings arranged in an array on a light emission surface of a light guide plate and liquid crystal display using the same
US10663639B2 (en) Display device
CN108333835B (zh) 侧入式背光模组、显示装置
CN106292049A (zh) 显示面板和显示装置
WO2021018219A1 (zh) 显示面板和显示装置
WO2019210785A1 (zh) 液晶显示装置以及显示方法
US20180231792A1 (en) Display Device
CN106200107B (zh) 一种显示基板、显示面板及显示装置
US10816846B2 (en) Display device, display panel, color filter substrate and color filter
CN108227285B (zh) 一种显示装置
US10545366B2 (en) Optical modulator including multiple modulation units, backlight module and display device
WO2019169577A1 (en) Liquid crystal display apparatus and fabricating method thereof, back light and fabricating method thereof
WO2021042267A1 (zh) 显示面板及显示装置
US10564472B2 (en) Backlight and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847718

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.10.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19847718

Country of ref document: EP

Kind code of ref document: A1