WO2020029953A1 - 一种功率确定方法和装置 - Google Patents

一种功率确定方法和装置 Download PDF

Info

Publication number
WO2020029953A1
WO2020029953A1 PCT/CN2019/099414 CN2019099414W WO2020029953A1 WO 2020029953 A1 WO2020029953 A1 WO 2020029953A1 CN 2019099414 W CN2019099414 W CN 2019099414W WO 2020029953 A1 WO2020029953 A1 WO 2020029953A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
lte
information
terminal device
time
Prior art date
Application number
PCT/CN2019/099414
Other languages
English (en)
French (fr)
Inventor
刘哲
张兴炜
张茜
冯淑兰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19846246.7A priority Critical patent/EP3836647A4/en
Publication of WO2020029953A1 publication Critical patent/WO2020029953A1/zh
Priority to US17/172,385 priority patent/US11638222B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present application relates to the field of communications, and in particular, to a method and a device for determining power.
  • a dual connectivity (DC) communication system is a communication system in which two network devices communicate with terminal devices at the same time. Compared with a communication system using carrier aggregation, one advantage of the DC communication system is that it allows different network devices to correspond. The system time of the cell is not synchronized.
  • the above two network devices are, for example, a primary base station and a secondary base station.
  • the primary base station may be a base station (eNB) in a long term evolution (LTE) system
  • the secondary base station may be a new radio (NR) system.
  • Base station (gNB) because the DC communication system allows the system time of the respective cells of the eNB and gNB to be out of sync, and the NR has different numerology, the terminal equipment that forms the DC communication system with the eNB and gNB may have transmission during the transmission process The problem of time overlap. If the terminal device transmits information to the eNB and gNB at the same time in a frequency band, it may occur that the maximum transmission power of the terminal device is exceeded, resulting in communication failure.
  • the present application provides a power determination method and device, which can avoid a situation in which the transmission power of the terminal device exceeds the maximum dual connection transmission power when transmitting signals to two access devices at the same time.
  • a power determination method including: a terminal device determines a first NR power according to a first additional power fallback (additional maximum output power reduction) (AMPR), and the first AMPR is based on first resource allocation information and NR scheduling The information is calculated, wherein the terminal device accesses the first access device through the LTE access technology and the second access device through the NR access technology; the terminal device determines the LTE power according to the second AMPR, and the second AMPR is based on The LTE scheduling information and the second resource allocation information are calculated, and the second resource allocation information is a preset value.
  • AMPR additional maximum output power reduction
  • the terminal device uses the above LTE power to send LTE information to the first access device, and the terminal device uses the second NR power to send information to the second access device or the terminal device does not send NR information, and the second NR power is less than the first NR power.
  • the terminal device calculates the LTE power through preset resource allocation information (that is, the first resource allocation information), and calculates the first NR power through the preset or real-time resource allocation information. In this way, it is not necessary to obtain the NR schedule when calculating the LTE power. Information so that communication failures can be avoided without violating a communication protocol (eg, protocol 38.213) because the transmission power exceeds the maximum transmission power of the terminal device.
  • a communication protocol eg, protocol 38.213
  • the method further includes: when the sum of the first NR power and the LTE power is less than or equal to the maximum dual connection transmit power of the terminal device, the terminal device uses the first NR power on all or part of overlapping time domain resources Send NR information to the second access device, and the terminal device sends LTE information to the first access device using LTE power.
  • the first resource allocation information is obtained according to the LTE scheduling information or the first resource allocation information is a preset value.
  • the terminal device may determine the resource allocation on the NR side according to the preset first resource allocation information, and The LTE power is calculated according to the resource allocation on the NR side and the AMPR, so that communication failure can be avoided because the transmission power exceeds the maximum transmission power of the terminal device.
  • the terminal device may obtain the first resource allocation information according to the LTE scheduling information, so that the terminal device can calculate more accurately. Out the first NR power.
  • the present application also provides a power determination method, which includes: the terminal device determines the LTE power according to the third AMPR, and the third AMPR is calculated according to the LTE scheduling information and the third resource allocation information, where the terminal device is connected via LTE.
  • the access technology accesses the first access device and the NR access technology accesses the second access device; the terminal device uses LTE power to send LTE information.
  • the terminal device may obtain third resource allocation information when calculating LTE power, and the third resource allocation information is used to indicate resource allocation on the NR side, and may be a preset value or a value obtained in real time, for example The value obtained from the NR scheduling information, so that the terminal device can calculate the LTE power according to the resource allocation of the NR, to avoid the communication failure due to the transmission power exceeding the maximum dual connection transmission power of the terminal device.
  • the third resource allocation information is obtained according to the NR scheduling information, and the method further includes: the terminal device acquires the NR scheduling information at a first time, the first time being earlier than or equal to a preset starting calculation time of the LTE power.
  • the terminal device can obtain the third resource allocation information according to the NR scheduling information and calculate the LTE power. If the NR scheduling information is not obtained at the time, the terminal device first calculates the LTE power according to the preset third resource allocation information. After that, if the terminal device obtains the NR scheduling information at the preset update time of the LTE power, the terminal The device obtains real-time NR scheduling information according to the NR scheduling information, and recalculates the LTE power, so that the accuracy of the LTE power calculation can be improved while ensuring the transmission of LTE information.
  • the third resource allocation information is obtained according to the NR scheduling information, and the method further includes: the terminal device acquires the NR scheduling information at a second moment, the second moment is later than a preset start calculation time of the LTE power and not later than At a preset start update time of the LTE power, the terminal device determines the LTE power before the update based on the LTE scheduling information and a preset value at the start calculation time of the LTE power.
  • the terminal device may calculate the AMPR value according to the preset value and the LTE scheduling information, and calculate the LTE power before the update based on the AMPR value. Thereafter, If the terminal device obtains the NR scheduling information at the preset update time of the LTE power, the terminal device obtains the real-time third resource allocation information according to the NR scheduling information, and recalculates the LTE power, thereby ensuring the LTE information. Improve the accuracy of LTE power calculation on the premise of transmission.
  • the method further includes: the terminal device generates a power headroom (PHR) report according to the LTE scheduling information, wherein the second time is earlier than or equal to a preset start update time of the PHR
  • PHR power headroom
  • the terminal device generates the PHR before the update based on the LTE power before the update before the second moment; the terminal device sends the updated PHR.
  • the terminal device can generate a PHR based on the LTE power before the update and report the PHR. If the terminal device obtains the NR scheduling information no later than the preset PHR start update time, the terminal The device can first calculate the updated LTE power according to the NR scheduling information, and then regenerate the PHR based on the updated LTE power, thereby improving the accuracy of the PHR.
  • the method further includes: the terminal device acquires the NR scheduling information at a third moment, The third time is later than the preset start calculation time of the LTE power, and the third time is later than the preset start update time of the LTE power.
  • the terminal device obtains the NR scheduling information after the initial update time of the LTE power, the terminal device has no time to update the LTE power, and can transmit a signal according to the LTE power calculated based on the preset third resource allocation information, thereby ensuring the LTE information. Normal transmission.
  • the present application provides a power determining device, which can implement functions corresponding to each step in the method according to the first aspect, and the functions may be implemented by hardware, or corresponding software may be executed by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions described above.
  • the apparatus includes a processor configured to support the apparatus to perform a corresponding function in the method according to the first aspect.
  • the device may also include a memory for coupling to the processor, which stores program instructions and data necessary for the device.
  • the device further includes a communication interface, which is used to support communication between the device and other network elements.
  • the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the terminal device executes the method described in the first aspect.
  • the present application provides a power determining device, which can implement functions corresponding to each step in the method according to the second aspect, and the functions may be implemented by hardware, and corresponding software may also be executed by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions described above.
  • the device includes a processor configured to support the device to perform a corresponding function in the method according to the second aspect.
  • the device may also include a memory for coupling to the processor, which stores program instructions and data necessary for the device.
  • the device further includes a communication interface, which is used to support communication between the device and other network elements.
  • the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the terminal device executes the method described in the second aspect.
  • FIG. 1 is a schematic diagram of a communication system applicable to the present application
  • FIG. 2 is a schematic diagram of a power determination method provided by the present application.
  • FIG. 3 is a schematic diagram of another power determination method provided by the present application.
  • FIG. 4 is a schematic diagram of still another power determination method provided by the present application.
  • FIG. 5 is a schematic diagram of still another power determination method provided by the present application.
  • FIG. 6 is a schematic diagram of still another power determination method provided by the present application.
  • FIG. 7 is a schematic diagram of a power determining device provided by the present application.
  • FIG. 8 is a schematic diagram of another power determining device provided by the present application.
  • FIG. 9 is a schematic diagram of still another power determining device provided by the present application.
  • FIG. 10 is a schematic diagram of still another power determining device provided by the present application.
  • FIG. 1 shows a schematic diagram of a communication system suitable for the present application.
  • the communication system may include at least two network devices, such as network devices 110 and 120 shown in FIG. 1.
  • the communication system may further include at least one terminal device, such as the terminal device shown in FIG. 130.
  • the terminal device 130 may establish a wireless link with the network device 110 and the network device 120 through DC technology or multi-connection technology.
  • the network device 110 may be a primary base station, and the network device 120 may be a secondary base station, for example.
  • the network device 110 is the network device when the terminal device 130 is initially connected, and is responsible for radio resource control (RRC) communication with the terminal device 130.
  • RRC radio resource control
  • the network device 120 may be added during RRC reconfiguration To provide additional wireless resources.
  • the network device 120 may also be a primary base station, and the network device 110 may also be a secondary base station, which is not limited in this application.
  • the figure is only for easy understanding, and shows the situation of wireless connection between two network devices and terminal devices, but this should not constitute any limitation to the scenario to which this application is applicable.
  • Terminal devices can also establish wireless links with more network devices.
  • Each communication device such as the network device 110, the terminal device 120, and the terminal device 130 in FIG. 1, may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can include multiple components related to signal transmission and reception (such as a processor, a modulator, and a multiplexer). , Demodulator, demultiplexer or antenna, etc.). Therefore, network equipment and terminal equipment can communicate through multi-antenna technology.
  • the network device 110 or the network device 120 may be any device having a wireless transceiver function.
  • the device includes but is not limited to: evolved node B (eNB), radio network controller (RNC), node B (NB), base station controller (BSC) , Base transceiver station (BTS), home base station (for example, home node B, or home node B, HNB), baseband unit (BBU), wireless fidelity (WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • eNB evolved node B
  • RNC radio network controller
  • NB node B
  • BSC base station controller
  • BBU Base transceiver station
  • home base station for example, home node B, or home node B, HNB
  • BBU baseband unit
  • WIFI wireless fidelity
  • AP wireless relay node
  • TP transmission point
  • TRP transmission and reception point
  • 5G such as, GNB or transmission point (T
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio frequency unit (radio unit, RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence layer protocol (PDCP) layer functions, and DU implements wireless chain Functions of a radio control (RLC) layer, a media access control (MAC) layer, and a physical (PHY) layer.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • DU implements wireless chain Functions of a radio control (RLC) layer, a media access control (MAC) layer, and a physical (PHY) layer.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • DU implements wireless chain Functions of a radio control (RLC) layer, a media access control (MAC) layer, and a physical (PHY) layer.
  • RLC radio
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in an access network (RAN), or the CU can be divided into network equipment in a core network (CN), which is not limited in this application.
  • RAN access network
  • CN core network
  • the terminal device 130 may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, Wireless communication equipment, user agent or user device.
  • the terminal device in the embodiments of the present application may be a mobile phone, a tablet, a computer with a wireless transmitting and receiving function, a virtual reality (VR) terminal device, or an augmented reality (AR) terminal.
  • Equipment wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • the embodiment of the present application does not limit the application scenario.
  • FIG. 2 illustrates a power determination method provided in this application, including:
  • the terminal device determines the first NR power according to the first AMPR, and the first AMPR is calculated according to the first resource allocation information and the NR scheduling information, where the terminal device accesses the first access device through the LTE access technology, and passes the NR The access technology accesses the second access device.
  • the terminal device can communicate with the first access device and the second access device simultaneously.
  • the first access device is, for example, an eNB
  • the second access device is, for example, a gNB. Therefore, the terminal device includes two functional modules. That is, the two functional modules of the LTE unit and the NR unit may be implemented by software or hardware, which is not limited in this application.
  • the first AMPR refers to a value determined based on the AMPR mechanism. Accordingly, The second AMPR refers to a value that is the same as or different from the first AMPR determined according to the AMPR mechanism.
  • the AMPR mechanism in intra-band EN-DC (E-UTRA, NR, dual connectivity, MCG, E-UTRA, and SCG using NR) is as follows:
  • the existing TS 38.101 protocol defines the intra-band EN-DC scenario as the proportion of resource allocation to the total number of RBs of LTE and NR and the fitting curve of the AMPR value to define the AMPR mechanism in the intra-band EN-DC.
  • LTE AMPR (for example, the following second AMPR): It is determined according to one or more of the SIB message, high-level signaling indication, and LTE scheduling information and NR resource allocation information.
  • the NR resource allocation information may be obtained according to the NR scheduling information.
  • the actual value may also be a preset value. If the NR resource allocation information is an actual value obtained according to the NR scheduling information, the NR resource allocation information may be the number of Resource Blocks (RB) actually used for NR transmission; if the NR resource
  • the allocation information is a preset value, and the NR resource allocation information may be a preset number of resource blocks for NR transmission, for example, 1 RB. ;
  • NR AMPR (for example, the first AMPR): It is determined according to one or more of the SIB message, the high-level signaling indication, and the scheduling information of NR and the resource allocation information of LTE.
  • the LTE resource allocation information may be the actual obtained from the LTE scheduling information The value may also be a preset value. If the LTE resource allocation information is an actual value obtained according to the LTE scheduling information, the LTE resource allocation information may be the number of resource blocks actually used for LTE transmission. If the LTE resource allocation information is a preset value, The LTE resource allocation information may be a preset number of resource blocks for LTE transmission, for example, 1 RB. ;
  • LTE power Calculate the LTE power based on the information indicated by the LTE physical layer signaling and / or higher layer signaling and consider the impact of LTE AMPR.
  • the specific determination method is, for example, calculated based on the information indicated by the LTE physical layer signaling and or higher layer signaling.
  • the first LTE power is compared with the maximum transmit power Pcmax_LTE-AMPR on the LTE side. If the first LTE power is less than or equal to Pcmax_LTE-AMPR, the first LTE power is determined to be LTE power. If the first LTE power is greater than Pcmax_LTE-AMPR, then Pcmax_LTE-AMPR is determined as LTE power;
  • the first NR power is calculated and calculated based on the information indicated by the NR physical layer signaling and / or higher layer signaling, and the specific determination method is, for example, according to the NR physical layer signaling and or higher layer signaling indication.
  • the third NR power is calculated by comparing the calculated information with the NR-side maximum transmit power Pcmax_NR-AMPR. If the third NR power is less than or equal to Pcmax_NR-AMPR, the third NR power is determined as the first NR power. If the third NR power is Greater than Pcmax_NR-AMPR, then Pcmax_NR-AMPR is determined as the first NR power;
  • Maximum dual connection transmit power A parameter that limits the total power of LTE and NR transmissions in a dual connection scenario of LTE and NR.
  • Second NR power If the LTE power and the first NR power exceed the maximum dual connection transmit power, the terminal device will transmit at the second NR power. At this time, the second NR power is less than the first NR power.
  • the Timing Advance can also be different.
  • the NR cell has different subcarrier intervals, for example, the NR cell's The subcarrier interval is 15 * 2 n kHz, so the slot length of the NR cell is different from the slot length of the LTE cell. This causes the uplink transmission of the LTE cell and the uplink transmission of the NR cell to fully or partially overlap in the time domain.
  • the first resource allocation information may be preset or real-time LTE scheduling information, which is used to indicate resource allocation on the LTE side.
  • the preset LTE scheduling information refers to a preset value in the terminal device, and the real-time LTE scheduling information. Refers to the information received by the terminal device from the eNB.
  • the first NR power is the power that the terminal device may use when sending NR information to the gNB.
  • the terminal device determines the LTE power according to the second AMPR.
  • the second AMPR is calculated according to the LTE scheduling information and the second resource allocation information.
  • the second resource allocation information is a preset value and is the same as or different from the first resource allocation information.
  • the second resource allocation information is used to indicate the resource allocation of the NR side. Because the communication protocol (38.213) defines that the LTE unit in the terminal device cannot obtain the information of the NR unit, the terminal device cannot calculate the LTE power according to the real-time NR scheduling. The information determines the resource allocated by the gNB for the NR unit. The terminal device needs to calculate the second AMPR according to the preset NR scheduling information (that is, the second resource allocation information), and calculate the LTE power based on the second AMPR.
  • the above LTE power refers to the power actually used when the terminal device sends LTE information to the eNB.
  • the terminal device sends the LTE information to the first access device using the above LTE power on all or part of overlapping time domain resources.
  • the terminal device uses the second NR power to send information to the second access device or the terminal device does not send NR information, and the second NR power is less than the first NR power.
  • the time domain resources scheduled by the eNB and gNB may partially or completely overlap.
  • the above-mentioned partial overlap of time domain resources is, for example, the subframes scheduled by the eNB and the gNB scheduled. Transmission time intervals (TTIs) overlap. All the above-mentioned time domain resources overlap.
  • TTIs Transmission time intervals
  • All the above-mentioned time domain resources overlap.
  • the start position and end position of the radio frame scheduled by the eNB and the radio frame scheduled by the gNB are the same.
  • the above examples are merely illustrative, and the time domain resources that are totally or partially overlapped in the present application are not limited thereto.
  • the terminal device On all or part of overlapping time domain resources, if the sum of the first NR power and LTE power is greater than the maximum transmit power of the terminal device, the terminal device normally uses LTE power to send LTE information, and uses a Two NR powers send NR information, or give up sending NR information, thereby avoiding communication failure due to the calculated transmission power being greater than the maximum transmission power.
  • the above LTE information may be one or more of service data, signaling, and reference signals sent to the eNB, and may also be other information transmitted through the LTE access technology.
  • the above NR information may be service data sent to the gNB, One or more of the signaling and reference signals may also be other information transmitted through the NR access technology.
  • the terminal device calculates the LTE power through preset resource allocation information (that is, the first resource allocation information), and calculates the first NR power through the preset or real-time resource allocation information. In this way, the LTE power is calculated It is not necessary to obtain NR scheduling information at this time, so that communication failure can be avoided because the transmission power exceeds the maximum transmission power of the terminal device without violating a communication protocol (for example, protocol 38.213).
  • a communication protocol for example, protocol 38.213
  • the method 200 further includes: when the sum of the first NR power and the LTE power is less than or equal to the maximum transmission power of the terminal device, the terminal device uses the first NR power to the The second access device sends NR information, and the terminal device uses LTE power to send LTE information to the first access device.
  • the terminal device can directly use the first NR power to send NR information.
  • the first resource allocation information is obtained according to the LTE scheduling information or the first resource allocation information is a preset value.
  • the terminal device may determine the resource allocation on the NR side according to the preset first resource allocation information, and The LTE power is calculated according to the resource allocation on the NR side and the AMPR, so that communication failure can be avoided because the transmission power exceeds the maximum transmission power of the terminal device.
  • the terminal device may obtain the first resource allocation information according to the LTE scheduling information, so that the terminal device can calculate more accurately. Out the first NR power.
  • the method 300 includes:
  • the terminal device determines the LTE power according to the third AMPR, and the third AMPR is calculated according to the LTE scheduling information and the third resource allocation information, where the terminal device accesses the first access device through the LTE access technology and accesses through the NR.
  • the technology is connected to the second access device.
  • the terminal device uses LTE power to send LTE information.
  • the third AMPR is a value obtained based on the AMPR mechanism.
  • the third AMPR may be the LTE AMPR described in the method 200.
  • the third resource allocation information may be a preset or real-time value for indicating the NR side.
  • the preset NR scheduling information refers to a preset value in the terminal device
  • the real-time value refers to a value obtained by the terminal device according to the NR scheduling information received from the gNB.
  • the meanings of the terminal device, the first access device, and the second access device are the same as the corresponding terms in the method 200, and details are not described herein again.
  • the terminal device may obtain the third resource allocation information when calculating the LTE power, and the third resource allocation information is used to indicate the resource allocation on the NR side, so that the LTE power may be calculated based on the resource allocation of the NR to avoid the transmission power Exceeding the maximum transmit power of this terminal device causes communication failure.
  • the third resource allocation information is obtained according to the NR scheduling information, and the method 300 further includes:
  • the terminal device acquires the NR scheduling information at a first time, and the first time is earlier than or equal to a preset initial calculation time of the LTE power.
  • the terminal equipment can determine the third resource allocation information according to the NR scheduling information and calculate the LTE power. If the NR scheduling information is not obtained at the time, the terminal device first calculates the LTE power according to the preset third resource allocation information. After that, if the terminal device obtains the NR scheduling information at the preset update time of the LTE power, the terminal The device obtains real-time third resource allocation information according to the NR scheduling information, and recalculates the LTE power, so that the accuracy of the LTE power calculation can be improved on the premise of ensuring the transmission of LTE information.
  • the third resource allocation information is obtained according to NR scheduling information, and the method 300 further includes:
  • the terminal device acquires the NR scheduling information at a second time, the second time is later than the preset start time of the LTE power and not later than the preset start time of the LTE power.
  • the initial calculation time determines the LTE power before the update based on the LTE scheduling information and a preset value.
  • the terminal device may calculate the AMPR value according to the preset value and the LTE scheduling information, and calculate the LTE power before the update based on the AMPR value. Thereafter, If the terminal device obtains the NR scheduling information at the preset update time of the LTE power, the terminal device obtains the real-time third resource allocation information according to the NR scheduling information, and recalculates the LTE power, thereby ensuring the LTE information. Improve the accuracy of LTE power calculation on the premise of transmission.
  • the method 300 further includes: the terminal device generates a power headroom (PHR) report according to the LTE scheduling information and the third resource allocation information, wherein the second moment is earlier than or equal to the preset PHR At the initial update time, the terminal device generates the PHR before the update based on the LTE power before the update before the second time; the terminal device sends the updated PHR.
  • PHR power headroom
  • the terminal device can generate the PHR before the update based on the LTE power. If the time when the terminal device obtains the NR scheduling information is no later than the preset PHR start update time, the terminal device can first The scheduling information calculates a real-time third AMPR, and obtains the updated LTE power according to the real-time third AMPR calculation, and then generates an updated PHR based on the updated LTE power, thereby improving the accuracy of the PHR.
  • initial update time of the PHR and the initial update time of the LTE power may be the same or different.
  • the first resource allocation information is a preset value.
  • the method 300 further includes:
  • the terminal device acquires the NR scheduling information at a third time, the third time is later than the preset start calculation time of the LTE power, and the third time is later than the preset start update time of the LTE power.
  • the terminal device obtains the NR scheduling information after the initial update time of the LTE power, the terminal device has no time to update the LTE power and can transmit a signal according to the LTE power calculated based on the preset second resource allocation information, thereby ensuring the LTE information. Normal transmission.
  • FIG. 4 illustrates still another power determination method provided by the present application.
  • the eNB and the gNB respectively schedule uplink transmission of the terminal device through a physical downlink control channel (PDCCH), and the time domain resources (subframes shown) scheduled by the eNB and the gNB are completely coincident.
  • the LTE unit sends LTE scheduling information to the NR unit in a subframe N (N is an integer greater than or equal to 0), so that the NR unit calculates the AMPR value, and calculates the NR transmission power according to the AMPR value.
  • N is an integer greater than or equal to 0
  • the NR unit of the terminal device sends NR scheduling information to the LTE unit in the subframe N + 1, so that the LTE unit calculates the AMPR value, and calculates the LTE transmission power according to the AMPR value. Since the LTE unit obtains the NR scheduling information before the initial calculation time of the LTE transmission power, the LTE unit can calculate the LTE transmission power based on the real-time NR scheduling information, and then generate a PHR based on the LTE transmission power and report the PHR.
  • FIG. 5 illustrates still another power determination method provided by the present application.
  • the eNB and the gNB schedule uplink transmission of the terminal device through the PDCCH, respectively.
  • the time domain resources (subframes shown) scheduled by the eNB and the gNB are completely coincident.
  • the LTE unit of the terminal device is in the subframe N (N is greater than or equal to An integer equal to 0) sends LTE scheduling information to the NR unit, so that the NR unit calculates the AMPR value, and calculates the NR transmission power according to the AMPR value.
  • the NR unit of the terminal device sends NR scheduling information to the LTE unit in the subframe N + 2, so that the LTE unit can calculate the AMPR value. Since the LTE unit does not obtain NR scheduling information before the initial calculation time of the LTE transmission power, the LTE unit may calculate the LTE transmission power according to preset NR scheduling information (also referred to as preset resource allocation information), and then The LTE unit obtains the NR scheduling information in the subframe N + 2. Because the subframe N + 2 is before the LTE transmission power of the LTE unit starts to be updated, the LTE unit also has time to recalculate the LTE power.
  • preset NR scheduling information also referred to as preset resource allocation information
  • the LTE unit can Calculate the AMPR value according to the real-time NR scheduling information (that is, the NR scheduling information obtained in the subframe N + 2), and calculate a more accurate LTE power based on the AMPR value, and then use the updated LTE power in the subframe N + 4 transmission.
  • the real-time NR scheduling information that is, the NR scheduling information obtained in the subframe N + 2
  • the PHR update start time refers to the latest time to obtain the NR scheduling information required to update the PHR. That is, if the time to obtain the NR scheduling information is earlier than the PHR update start time, the terminal device may be based on the NR.
  • the scheduling information updates the PHR. If the time to obtain the NR scheduling information is later than the PHR update start time, the terminal device may have time to update the LTE power, but it is too late to update the PHR.
  • the LTE unit calculates the LTE power according to the preset NR scheduling information, and generates a PHR based on the LTE power. Subsequently, the LTE unit obtains real-time NR scheduling information (for example, the first time) before the initial update time of the LTE power. If the first time is earlier than the time required to update the PHR to obtain the NR scheduling information (i.e., the PHR) Update time), the LTE unit updates and reports the PHR. If the first time is later than the PHR update time, the LTE unit no longer updates the PHR, but reports the previously generated PHR to ensure the normal scheduling of the eNB.
  • the first time is later than the PHR update time
  • the LTE unit no longer updates the PHR, but reports the previously generated PHR to ensure the normal scheduling of the eNB.
  • FIG. 6 illustrates still another power determination method provided by the present application.
  • the eNB and the gNB schedule uplink transmission of the terminal device through the PDCCH, respectively, and the time domain resources (subframes shown) scheduled by the eNB and the gNB overlap.
  • An integer equal to 0) sends LTE scheduling information to the NR unit, so that the NR unit calculates the AMPR value, and calculates the NR transmission power according to the AMPR value.
  • the NR unit of the terminal device sends NR scheduling information to the LTE unit in the subframe N + 4, so that the LTE unit can calculate the AMPR value. Since the LTE unit does not obtain NR scheduling information before the initial calculation time of the LTE transmission power, the LTE unit may calculate the LTE transmission power according to preset NR scheduling information (also referred to as preset resource allocation information), and then The LTE unit obtains the NR scheduling information in the subframe N + 4. Since the subframe N + 4 is after the initial update time of the LTE transmission power of the LTE unit, the LTE unit has no time to recalculate the LTE power. Therefore, the LTE unit can The previously calculated LTE power sends LTE information, and then generates and reports PHR according to the LTE power.
  • preset NR scheduling information also referred to as preset resource allocation information
  • the power determining device includes a hardware structure and / or a software module corresponding to each function.
  • the power determining device includes a hardware structure and / or a software module corresponding to each function.
  • the present application may divide the functional unit of the power determining device according to the foregoing method example.
  • each function may be divided into various functional units, or two or more functions may be integrated into one processing unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit. It should be noted that the division of the units in this application is schematic, and it is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 7 shows a possible structure diagram of a power determining device provided by the present application.
  • the apparatus 700 includes a processing unit 701 and a sending unit 702.
  • the processing unit 701 is configured to control the apparatus 700 to execute the steps of the power determination method shown in FIG. 2.
  • the processing unit 701 may also be used to perform other processes of the techniques described herein.
  • the apparatus 700 may further include a storage unit 703 for storing program code and data of the apparatus 700.
  • processing unit 701 is configured to execute:
  • the first NR power is determined according to the first AMPR, and the first AMPR is calculated according to the first resource allocation information and the NR scheduling information, where the device 700 accesses the first access device through the LTE access technology and accesses the first access device through the NR access technology. Access to the second access device;
  • the LTE power is determined according to the second AMPR, which is calculated according to the LTE scheduling information and the second resource allocation information, and the second resource allocation information is a preset value.
  • the processing unit 701 is further configured to control the sending unit 702 to execute: when the sum of the first NR power and the LTE power is greater than the maximum dual-connection transmission power of the device 700, on the time domain resources that are totally or partially overlapped, use the LTE power to the
  • the first access device sends LTE information, uses the second NR power to send information to the second access device, or does not send NR information, and the second NR power is less than the first NR power.
  • the processing unit 701 may be a processor or a controller, for example, it may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application-specific integrated circuit). , ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the sending unit 702 is, for example, a transceiver, and the storage unit 703 may be a memory.
  • the power determination device involved in this application may be the device shown in FIG. 8.
  • the apparatus 800 includes: a processor 801, a transceiver 802, and a memory 803 (optional). Among them, the processor 801, the transceiver 802, and the memory 803 can communicate with each other through an internal connection path, and transfer control and / or data signals.
  • the power determining device provided in this application calculates LTE power by using preset resource allocation information (that is, first resource allocation information), and calculates first NR power by using preset or real-time resource allocation information. It is not necessary to obtain NR scheduling information at the time of power, so that communication failure can be avoided because the transmission power exceeds the maximum transmission power of the device without violating a communication protocol (for example, protocol 38.213).
  • a communication protocol for example, protocol 38.213
  • FIG. 9 shows a possible structural diagram of a power determining device provided by the present application.
  • the apparatus 900 includes a processing unit 901 and a sending unit 902.
  • the processing unit 901 is configured to control the apparatus 900 to execute the steps of the power determination method shown in FIG. 3.
  • the processing unit 901 may also be used to perform other processes of the techniques described herein.
  • the device 900 may further include a storage unit 903 for storing program code and data of the device 900.
  • the processing unit 901 is configured to execute: determine the LTE power according to a third AMPR, which is calculated according to the LTE scheduling information and the third resource allocation information, where the device 900 accesses the first connection through the LTE access technology.
  • Access device access to the second access device through NR access technology;
  • the processing unit 901 is further configured to control the sending unit 902 to execute: sending LTE information by using the LTE power.
  • the processing unit 901 may be a processor or a controller, for example, it may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application-specific integrated circuit). , ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the sending unit 902 and the receiving unit 903 are, for example, transceivers, and the storage unit may be a memory.
  • the power determination device involved in this application may be the device shown in FIG. 10.
  • the device 1000 includes a processor 1001, a transceiver 1002, and a memory 1003 (optional).
  • the processor 1001, the transceiver 1002, and the memory 1003 can communicate with each other through an internal connection path, and transfer control and / or data signals.
  • the power determining device provided in this application can obtain third resource allocation information when calculating LTE power, and the third resource allocation information is used to indicate resource allocation on the NR side, so that the LTE power can be calculated according to the resource allocation of the NR, avoiding transmission due to transmission. Power exceeds the maximum transmit power of the device causing communication failure. .
  • the device embodiment corresponds to the method embodiment completely.
  • the communication unit executes the obtaining step in the method embodiment. All steps other than the obtaining step and the sending step may be performed by a processing unit or a processor.
  • a processing unit or a processor.
  • the function of the specific unit reference may be made to the corresponding method embodiment, which will not be described in detail.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of this application.
  • the steps of the method or algorithm described in combination with the disclosure of this application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), and erasable programmable read-only memory (erasable (programmable ROM, EPROM), electrically erasable programmable read-only memory (EPROM), registers, hard disks, mobile hard disks, read-only optical disks (CD-ROMs), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions may be transmitted from a website site, computer, server, or data center through wired (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) Another website site, computer, server, or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (DVD), or a semiconductor medium (for example, a solid state disk (SSD)) Wait.

Abstract

本申请提供了一种功率确定方法和装置,该方法包括:终端设备根据第一AMPR确定第一NR功率,第一AMPR根据第一资源分配信息和NR调度信息计算得到,其中,终端设备通过LTE接入技术接入到第一接入设备,通过NR接入技术接入到第二接入设备;终端设备根据第二AMPR确定LTE功率,第二AMPR根据LTE调度信息和第二资源分配信息计算得到;当第一NR功率与LTE功率之和大于终端设备的最大发射功率时,在全部或部分重叠的时域资源上,终端设备使用上述LTE功率向第一接入设备发送LTE信息,使用第二NR功率向第二接入设备发送信息或者不发送NR信息,第二NR功率小于第一NR功率。上述方案可以避免终端设备同时向两个接入设备发射信号时发射功率超出最大双连接发射功率的情况。

Description

一种功率确定方法和装置
本申请要求于2018年8月10日提交中国专利局、申请号为201810912181.3、申请名称为“一种功率确定方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种功率确定方法和装置。
背景技术
双连接(dual connectivity,DC)通信系统是一种同时存在两个网络设备与终端设备进行通信的通信系统,相对于使用载波聚合的通信系统,DC通信系统的一个优点是允许不同网络设备对应的小区的系统时间不同步。
上述两个网络设备例如是主基站和辅基站,其中,主基站可以是长期演进(long term evolution,LTE)系统中的基站(eNB),辅基站可以是新无线(new radio,NR)系统中的基站(gNB),由于DC通信系统允许eNB和gNB各自对应的小区的系统时间不同步,并且NR有不同的numerology,与eNB和gNB组成DC通信系统的终端设备在传输过程中就可能存在传输时间重叠的问题,若上述终端设备在一个频带(band)内同时向eNB和gNB传输信息,则可能出会出现超出该终端设备的最大发射功率的情况,从而导致通信失败。
发明内容
本申请提供了一种功率确定方法和装置,可以避免该终端设备同时向两个接入设备发射信号时发射功率超出最大双连接发射功率的情况。
第一方面,提供了一种功率确定方法,包括:终端设备根据第一额外功率回退(additional maximum output power reduction,AMPR)确定第一NR功率,第一AMPR根据第一资源分配信息和NR调度信息计算得到,其中,终端设备通过LTE接入技术接入到第一接入设备,通过NR接入技术接入到第二接入设备;终端设备根据第二AMPR确定LTE功率,第二AMPR根据LTE调度信息和第二资源分配信息计算得到,第二资源分配信息为一个预设值;当第一NR功率与LTE功率之和大于终端设备的最大发射功率时,在全部或部分重叠的时域资源上,终端设备使用上述LTE功率向第一接入设备发送LTE信息,终端设备使用第二NR功率向第二接入设备发送信息或者终端设备不发送NR信息,第二NR功率小于第一NR功率。
终端设备通过预设的资源分配信息(即,第一资源分配信息)计算LTE功率,并通过预设的或者实时的资源分配信息计算第一NR功率,这样,在计算LTE功率时无需获取NR调度信息,从而可以在不违反通信协议(例如,协议38.213)的前提下避免因发射功 率超出该终端设备的最大发射功率导致通信失败。
可选地,上述方法还包括:当第一NR功率与LTE功率之和小于或等于终端设备的最大双连接发射功率时,在全部或部分重叠的时域资源上,终端设备使用第一NR功率向第二接入设备发送NR信息,终端设备使用LTE功率向第一接入设备发送LTE信息。
可选地,第一资源分配信息根据LTE调度信息获得或者第一资源分配信息为一个预设值。
例如,当终端设备在获取第一资源分配信息(即,计算NR侧的资源分配)时获取LTE调度信息失败,则终端设备可以根据预设的第一资源分配信息确定NR侧的资源分配,并根据NR侧的资源分配和AMPR计算出LTE功率,从而可以避免因发射功率超出该终端设备的最大发射功率导致通信失败。又例如,当终端设备在获取第一资源分配信息(即,计算NR侧的资源分配)获取LTE调度信息成功,则终端设备可以根据LTE调度信息获取第一资源分配信息,从而可以更加准确地计算出第一NR功率。
第二方面,本申请还提供了一种功率确定方法,包括:终端设备根据第三AMPR确定LTE功率,第三AMPR根据LTE调度信息和第三资源分配信息计算得到,其中,终端设备通过LTE接入技术接入到第一接入设备,通过NR接入技术接入到第二接入设备;终端设备采用LTE功率发送LTE信息。
根据上述方案,终端设备可以在计算LTE功率时获取第三资源分配信息,该第三资源分配信息用于指示NR侧的资源分配,可以是预设的值,也可以是实时获取的值,例如从NR调度信息获得的值,从而终端设备可以根据NR的资源分配计算LTE功率,避免因发射功率超出该终端设备的最大双连接发射功率导致通信失败。
可选地,第三资源分配信息根据NR调度信息获得,所述方法还包括:终端设备在第一时刻获取NR调度信息,第一时刻早于或等于预设的LTE功率的起始计算时刻。
若终端设备在LTE功率的起始计算时刻之前获取到NR调度信息,则终端设备可以根据该NR调度信息获取第三资源分配信息,并计算出LTE功率,若终端设备在LTE功率的起始计算时刻未获取到NR调度信息,则终端设备先根据预设的第三资源分配信息计算出LTE功率,此后,若终端设备在预设的LTE功率的起始更新时刻获取到NR调度信息,则终端设备根据该NR调度信息获取实时的NR调度信息,并重新计算出LTE功率,从而可以在确保LTE信息发送的前提下提高LTE功率计算的精度。
可选地,第三资源分配信息根据NR调度信息获得,所述方法还包括:终端设备在第二时刻获取NR调度信息,第二时刻晚于预设的LTE功率的起始计算时刻且不晚于预设的LTE功率的起始更新时刻,其中,终端设备在LTE功率的起始计算时刻基于LTE调度信息和预设值确定更新前的LTE功率。
若终端设备在LTE功率的起始计算时刻之前未获取到NR调度信息,则终端设备可以根据预设值和LTE调度信息计算AMPR值,并根据该AMPR值计算出更新前的LTE功率,此后,若终端设备在预设的LTE功率的起始更新时刻获取到NR调度信息,则终端设备根据该NR调度信息获取实时的第三资源分配信息,并重新计算出LTE功率,从而可以在确保LTE信息发送的前提下提高LTE功率计算的精度。
可选地,所述方法还包括:终端设备根据LTE调度信息生成功率余量报告(power headroom,PHR),其中,所述第二时刻早于或等于预设的所述PHR的起始更新时刻, 终端设备在第二时刻之前基于更新前的LTE功率生成更新前的PHR;终端设备发送更新后的PHR。
更新前的LTE功率计算完成后,终端设备可以根据跟新前的LTE功率生成PHR,并上报该PHR,若终端设备获取NR调度信息的时刻不晚于预设的PHR起始更新时刻,则终端设备可以首先根据NR调度信息计算出更新后的LTE功率,再根据该更新后的LTE功率重新生成PHR,从而可以提高PHR的精度。
可选地,所述第三资源分配信息为预设值,终端设备采用基于该预设值确定的LTE功率发送LTE信息之前,所述方法还包括:终端设备在第三时刻获取NR调度信息,第三时刻晚于预设的LTE功率的起始计算时刻,并且,第三时刻晚于预设的LTE功率的起始更新时刻。
若终端设备在LTE功率的起始更新时刻之后获取到NR调度信息,则终端设备来不及更新LTE功率,可以按照基于预设的第三资源分配信息计算的LTE功率发射信号,从而可以保证LTE信息的正常传输。
第三方面,本申请提供了一种功率确定装置,该装置可以实现上述第一方面所涉及的方法中各个步骤所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行上述第一方面所涉及的方法中相应的功能。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。可选地,该装置还包括通信接口,该通信接口用于支持该装置与其它网元之间的通信。
第四方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备的通信单元、处理单元或收发器、处理器运行时,使得终端设备执行第一方面所述的方法。
第五方面,本申请提供了一种功率确定装置,该装置可以实现上述第二方面所涉及的方法中各个步骤所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行上述第二方面所涉及的方法中相应的功能。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。可选地,该装置还包括通信接口,该通信接口用于支持该装置与其它网元之间的通信。
第六方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备的通信单元、处理单元或收发器、处理器运行时,使得终端设备执行第二方面所述的方法。
附图说明
图1是适用于本申请的通信系统的示意图;
图2是本申请提供的一种功率确定方法的示意图;
图3是本申请提供的另一种功率确定方法的示意图;
图4是本申请提供的再一种功率确定方法的示意图;
图5是本申请提供的再一种功率确定方法的示意图;
图6是本申请提供的再一种功率确定方法的示意图;
图7是本申请提供的一种功率确定装置的示意图;
图8是本申请提供的另一种功率确定装置的示意图;
图9是本申请提供的再一种功率确定装置的示意图;
图10是本申请提供的再一种功率确定装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了一种适用于本申请的通信系统的示意图。如图1所示,该通信系统可以包括至少两个网络设备,例如图1中所示的网络设备110和120;该通信系统还可以包括至少一个终端设备,例如图1中所示的终端设备130。该终端设备130可以通过DC技术或者多连接技术与网络设备110和网络设备120建立无线链路。其中,网络设备110例如可以为主基站,网络设备120例如可以为辅基站。此情况下,网络设备110为终端设备130初始接入时的网络设备,负责与终端设备130之间的无线资源控制(radio resource control,RRC)通信,网络设备120可以是RRC重配置时添加的,用于提供额外的无线资源。
当然,网络设备120也可以为主基站,网络设备110也可以为辅基站,本申请对此不做限定。另外,图中仅为便于理解,示出了两个网络设备与终端设备之间无线连接的情形,但这不应对本申请所适用的场景构成任何限定。终端设备还可以与更多的网络设备建立无线链路。
各通信设备,如图1中的网络设备110、终端设备120和终端设备130,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
应理解,网络设备110或网络设备120可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B,或home node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR系统中的gNB或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如BBU或分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议 (packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,终端设备130也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
图2示出了本申请提供的一种功率确定方法,包括:
S210,终端设备根据第一AMPR确定第一NR功率,第一AMPR根据第一资源分配信息和NR调度信息计算得到,其中,终端设备通过LTE接入技术接入到第一接入设备,通过NR接入技术接入到第二接入设备。
方法200中,终端设备为同时能够与第一接入设备和第二接入设备通信,第一接入设备例如是eNB,第二接入设备例如是gNB,因此,终端设备包含两个功能模块,即,LTE单元和NR单元,该两个功能模块可以通过软件实现,也可以通过硬件实现,本申请对此不作限定。
在本申请中,“第一”、“第二”仅用于区分说明,而不应被理解为对本申请的技术方案的限定,第一AMPR指的是基于AMPR机制确定的值,相应地,第二AMPR指的是根据AMPR机制确定的与第一AMPR相同或相异的值。带内(intraband)EN-DC(E-UTRA NR dual connectivity with MCG using E-UTRA and SCG using NR)下的AMPR机制如下所述:
现有TS 38.101协议对intra-band EN-DC场景定义为资源分配占LTE和NR总的RB数的比重与AMPR值的拟合曲线为基础来定义intra-band EN-DC下的AMPR机制。
此外,方法200中的技术名词的含义如下:
LTE AMPR(例如,下述第二AMPR):根据SIB消息、高层信令指示中的一个或多个和LTE的调度信息和NR的资源分配信息确定,NR资源分配信息可以根据NR调度信息获取的实际值,也可以是预设值,若NR资源分配信息是根据NR调度信息获取的实际值,则NR资源分配信息可以是NR传输实际用的资源块(Resource Block,RB)数;若NR资源分配信息是预设值,则NR资源分配信息可以是NR传输预设的资源块数,例如1RB。;
NR AMPR(例如,第一AMPR):根据SIB消息、高层信令指示中的一个或多个和 NR的调度信息和LTE的资源分配信息确定,LTE资源分配信息可以是根据LTE调度信息获得的实际值,也可以是预设值,若LTE资源分配信息是根据LTE调度信息获得的实际值,则LTE资源分配信息可以是LTE传输实际用的资源块数;若LTE资源分配信息是预设值,则LTE资源分配信息可以是LTE传输预设的资源块数,例如1RB。;
LTE功率:根据LTE物理层信令和或高层信令指示的信息计算并考虑LTE AMPR的影响确定LTE功率,具体确定方法例如为:根据LTE物理层信令和或高层信令指示的信息计算得到第一LTE功率,与LTE侧最大发射功率Pcmax_LTE-AMPR作比较,如果第一LTE功率小于或等于Pcmax_LTE-AMPR,则第一LTE功率确定为LTE功率,如果第一LTE功率大于Pcmax_LTE-AMPR,则Pcmax_LTE-AMPR确定为LTE功率;
第一NR功率:根据NR物理层信令和或高层信令指示的信息计算并考虑NR AMPR的影响确定第一NR功率,具体确定方法例如为:根据NR物理层信令和或高层信令指示的信息计算得到第三NR功率,与NR侧最大发射功率Pcmax_NR-AMPR作比较,如果第三NR功率小于或等于Pcmax_NR-AMPR,则第三NR功率确定为第一NR功率,如果第三NR功率大于Pcmax_NR-AMPR,则Pcmax_NR-AMPR确定为第一NR功率;
最大双连接发射功率:在LTE和NR双连接场景中,限制LTE和NR传输的总功率的参数。
第二NR功率:若LTE功率和第一NR功率超过最大双连接发射功率,则终端设备会以第二NR功率进行传输,此时第二NR功率小于第一NR功率
全部或部分重叠的时域资源:由于LTE小区和NR小区可以是同步和异步,定时提前(Timing Advance,TA)也可以不同,此外,由于NR小区有不同的子载波间隔,例如,NR小区的子载波间隔为15*2 n kHz,因此NR小区时隙长度与LTE小区的时隙长度不同,这就导致LTE小区的上行传输和NR小区的上行传输会在时域上存在全部或部分重叠的情况
第一资源分配信息可以是预设的或者实时的LTE调度信息,用于指示LTE侧的资源分配情况,预设的LTE调度信息指的是终端设备中预先设定的值,实时的LTE调度信息指的是终端设备从eNB接收到的信息。
第一NR功率即终端设备向gNB发送NR信息时可能使用的功率。
S220,终端设备根据第二AMPR确定LTE功率,第二AMPR根据LTE调度信息和第二资源分配信息计算得到,第二资源分配信息为一个预设值且与第一资源分配信息相同或相异。
第二资源分配信息用于指示NR侧的资源分配情况,由于通信协议(38.213)定义终端设备中的LTE单元不能获取NR单元的信息,因此,终端设备在计算LTE功率时不能根据实时的NR调度信息确定gNB为NR单元分配的资源,终端设备需要根据预设的NR调度信息(即,第二资源分配信息)计算第二AMPR,并基于第二AMPR计算LTE功率。上述LTE功率指的是终端设备向eNB发送LTE信息时实际使用的功率。
S230,当第一NR功率与LTE功率之和大于终端设备的最大双连接发射功率时,在全部或部分重叠的时域资源上,终端设备使用上述LTE功率向第一接入设备发送LTE信息,终端设备使用第二NR功率向第二接入设备发送信息或者终端设备不发送NR信息,第二NR功率小于第一NR功率。
由于DC通信系统允许不同网络设备对应的小区的系统时间不同步,因此,eNB和gNB调度的时域资源可能部分或者全部重合,上述时域资源部分重合例如是eNB调度的子帧与gNB调度的传输时间间隔(transmission time interval,TTI)重合,上述时域资源全部重合例如是eNB调度的无线帧与gNB调度的无线帧的起始位置和终止位置相同。上述示例仅是举例说明,本申请所述的全部或部分重叠的时域资源不限于此。
在全部或部分重合的时域资源上,若第一NR功率与LTE功率之和大于终端设备的最大发射功率,则终端设备正常使用LTE功率发送LTE信息,并且,采用小于第一NR功率的第二NR功率发送NR信息,或者,放弃发送NR信息,从而避免了计算的发射功率大于最大发射功率导致通信失败。
上述LTE信息可以是向eNB发送的业务数据、信令和参考信号中的一种或多种,还可以是其它通过LTE接入技术传输的信息,上述NR信息可以是向gNB发送的业务数据、信令和参考信号中的一种或多种,还可以是其它通过NR接入技术传输的信息。
综上所述,终端设备通过预设的资源分配信息(即,第一资源分配信息)计算LTE功率,并通过预设的或者实时的资源分配信息计算第一NR功率,这样,在计算LTE功率时无需获取NR调度信息,从而可以在不违反通信协议(例如,协议38.213)的前提下避免因发射功率超出该终端设备的最大发射功率导致通信失败。
可选地,方法200还包括:当第一NR功率与LTE功率之和小于或等于终端设备的最大发射功率时,在全部或部分重叠的时域资源上,终端设备使用第一NR功率向第二接入设备发送NR信息,终端设备使用LTE功率向第一接入设备发送LTE信息。
在全部或部分重叠的时域资源上,若第一NR功率与LTE功率之和小于或等于终端设备的最大发射功率,则终端设备可以直接使用第一NR功率发送NR信息。
可选地,第一资源分配信息根据LTE调度信息获得或者第一资源分配信息为一个预设值。
例如,当终端设备在获取第一资源分配信息(即,计算NR侧的资源分配)时获取LTE调度信息失败,则终端设备可以根据预设的第一资源分配信息确定NR侧的资源分配,并根据NR侧的资源分配和AMPR计算出LTE功率,从而可以避免因发射功率超出该终端设备的最大发射功率导致通信失败。又例如,当终端设备在获取第一资源分配信息(即,计算NR侧的资源分配)获取LTE调度信息成功,则终端设备可以根据LTE调度信息获取第一资源分配信息,从而可以更加准确地计算出第一NR功率。
本申请还提供了另一种功率确定方法,如图3所示,方法300包括:
S310,终端设备根据第三AMPR确定LTE功率,第三AMPR根据LTE调度信息和第三资源分配信息计算得到,其中,终端设备通过LTE接入技术接入到第一接入设备,通过NR接入技术接入到第二接入设备。
S320,终端设备采用LTE功率发送LTE信息。
方法300中,第三AMPR为基于AMPR机制获得的值,第三AMPR可以是方法200中所述的LTE AMPR,第三资源分配信息可以是预设的或者实时的值,用于指示NR侧的资源分配情况,预设的NR调度信息指的是终端设备中预先设定的值,实时的值指的是终端设备根据从gNB接收到的NR调度信息获取的值。终端设备、第一接入设备以及第二接入设备的含义与方法200中相应的名词的含义相同,在此不再赘述。
在上述方案中,终端设备可以在计算LTE功率时获取第三资源分配信息,该第三资源分配信息用于指示NR侧的资源分配,从而可以根据NR的资源分配计算LTE功率,避免因发射功率超出该终端设备的最大发射功率导致通信失败。
可选地,第三资源分配信息根据NR调度信息获得,方法300还包括:
终端设备在第一时刻获取NR调度信息,第一时刻早于或等于预设的LTE功率的起始计算时刻。
若终端设备在LTE功率的起始计算时刻之前获取到NR调度信息,则终端设备可以根据该NR调度信息确定第三资源分配信息,并计算出LTE功率,若终端设备在LTE功率的起始计算时刻未获取到NR调度信息,则终端设备先根据预设的第三资源分配信息计算出LTE功率,此后,若终端设备在预设的LTE功率的起始更新时刻获取到NR调度信息,则终端设备根据该NR调度信息获取实时的第三资源分配信息,并重新计算出LTE功率,从而可以在确保LTE信息发送的前提下提高LTE功率计算的精度。
可选地,所述第三资源分配信息根据NR调度信息获得,方法300还包括:
终端设备在第二时刻获取NR调度信息,第二时刻晚于预设的LTE功率的起始计算时刻且不晚于预设的LTE功率的起始更新时刻,其中,终端设备在LTE功率的起始计算时刻基于LTE调度信息和预设值确定更新前的LTE功率。
若终端设备在LTE功率的起始计算时刻之前未获取到NR调度信息,则终端设备可以根据预设值和LTE调度信息计算AMPR值,并根据该AMPR值计算出更新前的LTE功率,此后,若终端设备在预设的LTE功率的起始更新时刻获取到NR调度信息,则终端设备根据该NR调度信息获取实时的第三资源分配信息,并重新计算出LTE功率,从而可以在确保LTE信息发送的前提下提高LTE功率计算的精度。
可选地,方法300还包括:终端设备根据LTE调度信息和第三资源分配信息生成功率余量报告(power headroom,PHR),其中,所述第二时刻早于或等于预设的所述PHR的起始更新时刻,终端设备在第二时刻之前基于更新前的LTE功率生成更新前的PHR;终端设备发送更新后的PHR。
更新前的LTE功率计算完成后,终端设备可以根据该LTE功率生成更新前的PHR,若终端设备获取NR调度信息的时刻不晚于预设的PHR起始更新时刻,则终端设备可以首先根据NR调度信息计算出实时的第三AMPR,并根据实时的第三AMPR计算得到更新后的LTE功率,再根据该更新后的LTE功率生成更新后的PHR,从而可以提高PHR的精度。
需要说明的是,PHR的起始更新时刻与LTE功率的起始更新时刻可以相同,也可以相异。
可选地,所述第一资源分配信息为预设值,在S320之前,方法300还包括:
终端设备在第三时刻获取NR调度信息,第三时刻晚于预设的LTE功率的起始计算时刻,并且,第三时刻晚于预设的LTE功率的起始更新时刻。
若终端设备在LTE功率的起始更新时刻之后获取到NR调度信息,则终端设备来不及更新LTE功率,可以按照基于预设的第二资源分配信息计算的LTE功率发射信号,从而可以保证LTE信息的正常传输。
图4示出了本申请提供的再一种功率确定方法。如图4所示,eNB和gNB分别通过 物理下行控制信道(physical downlink control channel,PDCCH)调度终端设备上行传输,eNB和gNB调度的时域资源(所示的子帧)完全重合,终端设备的LTE单元在子帧N(N为大于或等于0的整数)向NR单元发送LTE调度信息,以便于NR单元计算AMPR值,并根据该AMPR值计算NR发射功率。终端设备的NR单元在子帧N+1向LTE单元发送NR调度信息,以便于LTE单元计算AMPR值,并根据该AMPR值计算LTE发射功率。由于LTE单元在LTE发射功率的起始计算时刻之前获取到NR调度信息,因此,LTE单元可以根据实时的NR调度信息计算LTE发射功率,随后,根据该LTE发射功率生成PHR并上报该PHR。
图5示出了本申请提供的再一种功率确定方法。如图5所示,eNB和gNB分别通过PDCCH调度终端设备上行传输,eNB和gNB调度的时域资源(所示的子帧)完全重合,终端设备的LTE单元在子帧N(N为大于或等于0的整数)向NR单元发送LTE调度信息,以便于NR单元计算AMPR值,并根据该AMPR值计算NR发射功率。
终端设备的NR单元在子帧N+2向LTE单元发送NR调度信息,以便于LTE单元计算AMPR值。由于LTE单元在LTE发射功率的起始计算时刻之前未获取到NR调度信息,因此,LTE单元可以根据预设的NR调度信息(也可称为预设的资源分配信息)计算LTE发射功率,随后,LTE单元在子帧N+2获取到NR调度信息,由于子帧N+2在LTE单元的LTE发射功率起始更新时刻之前,因此,LTE单元还来得及重新计算LTE功率,因此,LTE单元可以根据实时的NR调度信息(即,在子帧N+2获得的NR调度信息)计算AMPR值,并根据该AMPR值计算更为准确的LTE功率,随后按照更新后的LTE功率在子帧N+4上传输。
由于PHR需要根据LTE功率生成,因此,PHR的计算时间晚于LTE功率的时间,并且,PHR的更新时间晚于LTE功率的更新时间,为了能够更新PHR,需要提早获取NR调度信息,在本申请中,PHR更新起始时刻指的是更新PHR所需要的获取NR调度信息的最晚时刻,也就是说,若获取NR调度信息的时刻早于PHR更新起始时刻,则终端设备可以基于该NR调度信息更新PHR,若获取NR调度信息的时刻晚于PHR更新起始时刻,则终端设备可能来得及更新LTE功率,但来不及更新PHR。
若LTE单元获取NR调度信息的时刻晚于LTE功率的起始计算时刻,则LTE单元根据预设的NR调度信息计算LTE功率,并基于该LTE功率生成PHR。随后,LTE单元在LTE功率的起始更新时刻前(例如,第一时刻)获取到实时的NR调度信息,若该第一时刻早于更新PHR所要求的获取NR调度信息的时刻(即,PHR更新时刻),则LTE单元更新并上报PHR,若该第一时刻晚于PHR更新时刻,则LTE单元不再更新PHR,而是上报前一次生成的PHR,以保证eNB的正常调度。
图6示出了本申请提供的再一种功率确定方法。如图6所示,eNB和gNB分别通过PDCCH调度终端设备上行传输,eNB和gNB调度的时域资源(所示的子帧)部分重合,终端设备的LTE单元在子帧N(N为大于或等于0的整数)向NR单元发送LTE调度信息,以便于NR单元计算AMPR值,并根据该AMPR值计算NR发射功率。
终端设备的NR单元在子帧N+4向LTE单元发送NR调度信息,以便于LTE单元计算AMPR值。由于LTE单元在LTE发射功率的起始计算时刻之前未获取到NR调度信息,因此,LTE单元可以根据预设的NR调度信息(也可称为预设的资源分配信息)计算LTE 发射功率,随后,LTE单元在子帧N+4获取到NR调度信息,由于子帧N+4在LTE单元的LTE发射功率起始更新时刻之后,因此,LTE单元来不及重新计算LTE功率,因此,LTE单元可以根据之前计算的LTE功率发送LTE信息,随后按照该LTE功率生成并上报PHR。
上文详细介绍了本申请提供的功率确定方法的示例。可以理解的是,功率确定装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对功率确定装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图7示出了本申请提供的功率确定装置的一种可能的结构示意图。装置700包括:处理单元701和发送单元702。处理单元701用于控制装置700执行图2所示的功率确定方法的步骤。处理单元701还可以用于执行本文所描述的技术的其它过程。装置700还可以包括存储单元703,用于存储装置700的程序代码和数据。
例如,处理单元701用于执行:
根据第一AMPR确定第一NR功率,第一AMPR根据第一资源分配信息和NR调度信息计算得到,其中,装置700通过LTE接入技术接入到第一接入设备,通过NR接入技术接入到第二接入设备;
根据第二AMPR确定LTE功率,所述第二AMPR根据LTE调度信息和第二资源分配信息计算得到,所述第二资源分配信息为一个预设值。
处理单元701还用于控制发送单元702执行:当第一NR功率与LTE功率之和大于装置700的最大双连接发射功率时,在全部或部分重叠的时域资源上,使用LTE功率向所述第一接入设备发送LTE信息,使用第二NR功率向第二接入设备发送信息或者不发送NR信息,第二NR功率小于第一NR功率。
处理单元701可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。发送单元702例如是收发器,存储单元703可以是存储器。
当处理单元701为处理器,发送单元702为收发器,存储单元703为存储器时,本申请所涉及的功率确定装置可以为图8所示的装置。
参阅图8所示,该装置800包括:处理器801、收发器802和存储器803(可选的)。其中,处理器801、收发器802和存储器803可以通过内部连接通路相互通信,传递控制和/或数据信号。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请提供的功率确定装置,通过预设的资源分配信息(即,第一资源分配信息)计算LTE功率,并通过预设的或者实时的资源分配信息计算第一NR功率,这样,在计算LTE功率时无需获取NR调度信息,从而可以在不违反通信协议(例如,协议38.213)的前提下避免因发射功率超出该装置的最大发射功率导致通信失败。
在采用集成的单元的情况下,图9示出了本申请提供的功率确定装置的一种可能的结构示意图。装置900包括:处理单元901和发送单元902。处理单元901用于控制装置900执行图3所示的功率确定方法的步骤。处理单元901还可以用于执行本文所描述的技术的其它过程。装置900还可以包括存储单元903,用于存储装置900的程序代码和数据。
例如,处理单元901用于执行:根据第三AMPR确定LTE功率,所述第三AMPR根据LTE调度信息和第三资源分配信息计算得到,其中,装置900通过LTE接入技术接入到第一接入设备,通过NR接入技术接入到第二接入设备;
处理单元901还用于控制发送单元902执行:采用所述LTE功率发送LTE信息。
处理单元901可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。发送单元902和接收单元903例如是收发器,存储单元可以是存储器。
当处理单元901为处理器,发送单元902和接收单元903为收发器,存储单元为存储器时,本申请所涉及的功率确定装置可以为图10所示的装置。
参阅图10所示,该装置1000包括:处理器1001、收发器1002和存储器1003(可选的)。其中,处理器1001、收发器1002和存储器1003可以通过内部连接通路相互通信,传递控制和/或数据信号。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请提供的功率确定装置,可以在计算LTE功率时获取第三资源分配信息,该第三资源分配信息用于指示NR侧的资源分配,从而可以根据NR的资源分配计算LTE功率,避免因发射功率超出该装置的最大发射功率导致通信失败。。
装置实施例和方法实施例完全对应,例如通信单元执行方法实施例中的获取步骤,除获取步骤和发送步骤以外的其它步骤均可以由处理单元或处理器执行。具体单元的功能可以参考相应的方法实施例,不再详述。
在本申请各个实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施过程构成任何限定。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (18)

  1. 一种功率确定方法,其特征在于,包括:
    终端设备根据第一额外功率回退AMPR确定第一新无线NR功率,所述第一AMPR根据第一资源分配信息和NR调度信息计算得到,其中,所述终端设备通过长期演进LTE接入技术接入到第一接入设备,通过NR接入技术接入到第二接入设备;
    所述终端设备根据第二AMPR确定LTE功率,所述第二AMPR根据LTE调度信息和第二资源分配信息计算得到,所述第二资源分配信息为一个预设值;
    当所述第一NR功率与所述LTE功率之和大于所述终端设备的最大双连接发射功率时,在全部或部分重叠的时域资源上,所述终端设备使用所述LTE功率向所述第一接入设备发送LTE信息,所述终端设备使用第二NR功率向所述第二接入设备发送信息或者所述终端设备不发送NR信息,所述第二NR功率小于所述第一NR功率。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    当所述第一NR功率与所述LTE功率之和小于或等于所述终端设备的最大双连接发射功率时,在所述全部或部分重叠的时域资源上,所述终端设备使用所述第一NR功率向所述第二接入设备发送NR信息,所述终端设备使用所述LTE功率向所述第一接入设备发送LTE信息。
  3. 根据权利要求1所述的方法,其特征在于,所述第一资源分配信息根据LTE调度信息获得或者所述第一资源分配信息为一个预设值。
  4. 一种功率确定方法,其特征在于,包括:
    终端设备根据第三额外功率回退AMPR确定长期演进LTE功率,所述第三AMPR根据LTE调度信息和第三资源分配信息计算得到,其中,所述终端设备通过LTE接入技术接入到第一接入设备,通过新无线NR接入技术接入到第二接入设备;
    所述终端设备采用所述LTE功率发送LTE信息。
  5. 根据权利要求4所述的方法,其特征在于,所述第三资源分配信息根据NR调度信息获得,所述方法还包括:
    所述终端设备在第一时刻获取所述NR调度信息,所述第一时刻早于或等于预设的所述LTE功率的起始计算时刻。
  6. 根据权利要求4所述的方法,其特征在于,所述第三资源分配信息根据NR调度信息获得,所述方法还包括:
    所述终端设备在第二时刻获取所述NR调度信息,所述第二时刻晚于预设的所述LTE功率的起始计算时刻且不晚于预设的所述LTE功率的起始更新时刻,其中,所述终端设备在所述LTE功率的起始计算时刻基于所述LTE调度信息和预设值确定更新前的LTE功率。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述LTE功率生成更新后的功率余量报告PHR,其中,所述第二时刻早于或等于预设的所述PHR的起始更新时刻,所述终端设备在所述第二时刻之前基于所述更新前的LTE功率生成更新前的PHR;
    所述终端设备发送所述更新后的PHR。
  8. 根据权利要求4所述的方法,其特征在于,所述第三资源分配信息为预设值,所述终端设备采用所述LTE功率发送LTE信息之前,所述方法还包括:
    所述终端设备在第三时刻获取NR调度信息,所述第三时刻晚于预设的所述LTE功率的起始计算时刻,并且,所述第三时刻晚于预设的所述LTE功率的起始更新时刻。
  9. 一种功率确定装置,其特征在于,包括处理单元和发送单元,
    所述处理单元用于:根据第一额外功率回退AMPR确定第一新无线NR功率,所述第一AMPR根据第一资源分配信息和NR调度信息计算得到,其中,所述装置通过长期演进LTE接入技术接入到第一接入设备,通过NR接入技术接入到第二接入设备;
    所述处理单元还用于:根据第二AMPR确定LTE功率,所述第二AMPR根据LTE调度信息和第二资源分配信息计算得到,所述第二资源分配信息为一个预设值;
    所述发送单元用于:当所述第一NR功率与所述LTE功率之和大于所述装置的最大双连接发射功率时,在全部或部分重叠的时域资源上,使用所述LTE功率向所述第一接入设备发送LTE信息,使用第二NR功率向所述第二接入设备发送信息或者不发送NR信息,所述第二NR功率小于所述第一NR功率。
  10. 根据权利要求9所述的装置,其特征在于,所述发送单元还用于:
    当所述第一NR功率与所述LTE功率之和小于或等于所述装置的最大双连接发射功率时,在所述全部或部分重叠的时域资源上,使用所述第一NR功率向所述第二接入设备发送NR信息,使用所述LTE功率向所述第一接入设备发送LTE信息。
  11. 根据权利要求9所述的装置,其特征在于,所述第一资源分配信息根据LTE调度信息获得或者所述第一资源分配信息为一个预设值。
  12. 一种功率确定装置,其特征在于,包括处理单元和发送单元,
    所述处理单元用于:根据第三额外功率回退AMPR确定长期演进LTE功率,所述第三AMPR根据LTE调度信息和第三资源分配信息计算得到,其中,所述装置通过LTE接入技术接入到第一接入设备,通过新无线NR接入技术接入到第二接入设备;
    所述发送单元用于:采用所述LTE功率发送LTE信息。
  13. 根据权利要求12所述的装置,其特征在于,所述第三资源分配信息根据NR调度信息获得,所述处理单元还用于:
    在第一时刻获取所述NR调度信息,所述第一时刻早于或等于预设的所述LTE功率的起始计算时刻。
  14. 根据权利要求12所述的装置,其特征在于,所述第三资源分配信息根据NR调度信息获得,所述处理单元还用于:
    在第二时刻获取所述NR调度信息,所述第二时刻晚于预设的所述LTE功率的起始计算时刻且不晚于预设的所述LTE功率的起始更新时刻,其中,所述处理单元在所述LTE功率的起始计算时刻基于所述LTE调度信息和预设值确定更新前的LTE功率。
  15. 根据权利要求14所述的装置,其特征在于,
    所述处理单元还用于:根据所述LTE功率生成更新后的功率余量报告PHR,其中,所述第二时刻早于或等于预设的所述PHR的起始更新时刻,所述处理单元在所述第二时刻之前基于所述更新前的LTE功率生成更新前的PHR;
    所述发送单元还用于:发送所述更新后的PHR。
  16. 根据权利要求12所述的装置,其特征在于,所述第三资源分配信息为预设值,所述发送单元采用所述LTE功率发送LTE信息之前,所述处理单元还用于:
    在第三时刻获取NR调度信息,所述第三时刻晚于预设的所述LTE功率的起始计算时刻,并且,所述第三时刻晚于预设的所述LTE功率的起始更新时刻。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当处理器调用所述计算机程序时,使得所述处理器执行权利要求1至3中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当处理器调用所述计算机程序时,使得所述处理器执行权利要求4至8中任一项所述的方法。
PCT/CN2019/099414 2018-08-10 2019-08-06 一种功率确定方法和装置 WO2020029953A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19846246.7A EP3836647A4 (en) 2018-08-10 2019-08-06 PERFORMANCE DETERMINATION METHOD AND DEVICE
US17/172,385 US11638222B2 (en) 2018-08-10 2021-02-10 Power determining method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810912181.3A CN110831140A (zh) 2018-08-10 2018-08-10 一种功率确定方法和装置
CN201810912181.3 2018-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/172,385 Continuation US11638222B2 (en) 2018-08-10 2021-02-10 Power determining method and apparatus

Publications (1)

Publication Number Publication Date
WO2020029953A1 true WO2020029953A1 (zh) 2020-02-13

Family

ID=69413376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099414 WO2020029953A1 (zh) 2018-08-10 2019-08-06 一种功率确定方法和装置

Country Status (4)

Country Link
US (1) US11638222B2 (zh)
EP (1) EP3836647A4 (zh)
CN (1) CN110831140A (zh)
WO (1) WO2020029953A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511024B (zh) * 2019-01-31 2023-10-13 华为技术有限公司 一种传输方法和装置
CN113453327A (zh) * 2020-03-28 2021-09-28 华为技术有限公司 一种发送功率控制方法、终端、芯片系统与系统
CN113543283B (zh) * 2020-04-17 2023-03-31 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质
US11632776B2 (en) * 2021-09-03 2023-04-18 Qualcomm Incorporated Techniques for handling overlapping transmissions after timing adjustment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959870A (zh) * 2012-10-23 2014-07-30 华为技术有限公司 额外功率回退方法、基站和用户设备
CN106031256A (zh) * 2014-02-11 2016-10-12 Lg电子株式会社 在无线中控制上行链路功率的方法和设备
EP3142428A1 (en) * 2014-05-08 2017-03-15 NTT DoCoMo, Inc. User equipment, radio base station, radio communication method, and radio communication system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10728859B2 (en) * 2010-10-12 2020-07-28 Samsung Electronics Co., Ltd. Method and apparatus for determining maximum transmission power per carrier in mobile communication system supporting carrier aggregation
US8520544B2 (en) * 2010-12-27 2013-08-27 Verizon Patent And Licensing Inc. Intelligent reduction of interference to public safety wireless networks
EP3214875B1 (en) * 2011-01-07 2020-10-07 InterDigital Patent Holdings, Inc. Methods, apparatus and systems for handling additional power backoff
US9258158B2 (en) * 2013-09-25 2016-02-09 Lg Electronics Inc. Method for determining uplink transmission power
US9532253B2 (en) * 2013-09-26 2016-12-27 Sharp Kabushiki Kaisha Systems and methods for multi-connectivity operation
US10448374B2 (en) 2014-03-21 2019-10-15 Samsung Electronics Co., Ltd. Power headroom report method of dual-connectivity UE in mobile communication system
EP3518590B1 (en) * 2014-04-03 2020-09-30 LG Electronics Inc. Method and terminal for transmitting power headroom report in dual connection between terminal and base station
WO2015173718A1 (en) * 2014-05-15 2015-11-19 Telefonaktiebolaget L M Ericsson (Publ) Assignment of component carriers in dual connectivity operation
US10142945B2 (en) * 2014-06-05 2018-11-27 Samsung Electronics Co., Ltd. Power control for transmission of uplink control information on two cells in carrier aggregation
US10098078B2 (en) * 2014-08-29 2018-10-09 Huawei Technologies Co., Ltd Method for determining maximum transmit power, terminal, and base station
EP3389318B1 (en) * 2015-12-31 2020-09-16 Huawei Technologies Co., Ltd. Power information transmission method, terminal device, and network device
KR102400708B1 (ko) * 2016-08-01 2022-05-23 삼성전자 주식회사 전력 헤드룸을 보고하는 방법 및 상응하는 사용자 장치
TWI754372B (zh) * 2016-10-21 2022-02-01 華碩電腦股份有限公司 無線通訊系統中波束運作之功率餘量回報之方法及設備
CN107466486B (zh) * 2017-07-07 2021-10-01 北京小米移动软件有限公司 干扰协调方法及装置、基站和用户设备
WO2019106603A1 (en) * 2017-12-01 2019-06-06 Telefonaktiebolaget Lm Ericsson (Publ) Configuring dual connectivity maximum transmit power
EP3834506B1 (en) 2018-08-10 2023-11-08 Lenovo (Singapore) Pte. Ltd. Method and apparatus for determining per carrier additional maximum power reduction for dual carrier operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959870A (zh) * 2012-10-23 2014-07-30 华为技术有限公司 额外功率回退方法、基站和用户设备
CN106031256A (zh) * 2014-02-11 2016-10-12 Lg电子株式会社 在无线中控制上行链路功率的方法和设备
EP3142428A1 (en) * 2014-05-08 2017-03-15 NTT DoCoMo, Inc. User equipment, radio base station, radio communication method, and radio communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3836647A4

Also Published As

Publication number Publication date
US11638222B2 (en) 2023-04-25
CN110831140A (zh) 2020-02-21
US20210168735A1 (en) 2021-06-03
EP3836647A1 (en) 2021-06-16
EP3836647A4 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US11122523B2 (en) Information transmission method and apparatus
US11330424B2 (en) Terminal, base station, and radio communication method
EP3605932B1 (en) Beam management methods, terminal device, network device and computer program
JP6961484B2 (ja) 端末、無線通信方法及びシステム
WO2020029953A1 (zh) 一种功率确定方法和装置
WO2019158011A1 (zh) 一种功率控制方法及装置
CN106717077A (zh) 用户终端、无线通信方法以及无线通信系统
US10623981B2 (en) Information transmission method, apparatus, and system
EP3439380A1 (en) Terminal device, base station device, communication method, and control method
CN108292980A (zh) 业务传输的方法和装置
JP2016174216A (ja) 無線基地局、ユーザ端末、無線通信システムおよび無線通信方法
US20210352743A1 (en) Communication method and apparatus
WO2019029333A1 (zh) 一种资源调度方法及装置
WO2021000680A1 (zh) 一种协作传输方法及通信装置
WO2016133185A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2020259662A1 (zh) 一种随机接入的方法及通信装置
US10833807B2 (en) Processing method under data duplication and related devices
US20220210777A1 (en) Methods and apparatuses for transmitting and receiving uplink signal
WO2022116839A1 (zh) 通信方法、装置、设备、存储介质及程序产品
WO2021031048A1 (zh) 一种通信方法及装置
JP6807866B2 (ja) 通信装置
WO2021088092A1 (zh) 信息传输方法及相关产品
WO2017166324A1 (zh) 一种发送通信消息的方法和装置
WO2022110178A1 (zh) 传输方法和终端设备
US20240015665A1 (en) Method and apparatus for transmitting uplink data and a system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019846246

Country of ref document: EP

Effective date: 20210310