WO2020029699A1 - 数据发送方法及装置、存储介质、发送端 - Google Patents

数据发送方法及装置、存储介质、发送端 Download PDF

Info

Publication number
WO2020029699A1
WO2020029699A1 PCT/CN2019/092982 CN2019092982W WO2020029699A1 WO 2020029699 A1 WO2020029699 A1 WO 2020029699A1 CN 2019092982 W CN2019092982 W CN 2019092982W WO 2020029699 A1 WO2020029699 A1 WO 2020029699A1
Authority
WO
WIPO (PCT)
Prior art keywords
logical channel
sending
pdcp
transmitting
bits
Prior art date
Application number
PCT/CN2019/092982
Other languages
English (en)
French (fr)
Inventor
王婷婷
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to EP19846311.9A priority Critical patent/EP3836616A4/en
Priority to US17/265,981 priority patent/US11601954B2/en
Publication of WO2020029699A1 publication Critical patent/WO2020029699A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a data sending method and device, a storage medium, and a sending end.
  • 3GPP introduces new wireless technology (New Radio Access Technology, NR) to meet the demand for larger data volumes and the need for smaller transmission delays.
  • This technology is also known as the fifth generation mobile Communication technology 5G.
  • PDCP Packet Data Convergence Protocol
  • BWP Bandwidth Part
  • the introduction of the PDCP replication function can improve the reliability of ultra-reliable low-latency communication (URLLC) service transmission.
  • the PDCP layer at the sending end copies one PDCP data packet into the same two copies and sends them to two different Radio Link Control (RLC) entities, and then passes through different The logical channel (Logical Channel, LCH) at the transmitting end is used for transmission.
  • RLC Radio Link Control
  • LCH The logical channel
  • LCH Logical Channel
  • the PDCP data packets When two PDCP data packets are successfully received, one of them is deleted at the receiving PDCP layer and only one data packet is retained. That is, the same data packet is copied into the same two copies and transmitted through two different paths, thereby improving the reliability of data transmission.
  • the PDCP data packet may include a PDCP protocol data unit (Protocol Data Unit) and a PDCP service data unit (SDU).
  • a radio bearer (RB) configured with a replication function can be configured with more than two wireless data links (legs).
  • RB For an RB, how many The sending logical channel used sends duplicate PDCP data packets, and which of the sending logical channels to be used for data transmission is unclear with one bit to indicate. Specifically, a bit contains only two states of 0/1, that is, it can only be used to indicate two logical channels, and cannot clearly indicate the usage of multi-connection replication.
  • the technical problem solved by the present invention is to provide a data sending method and device, a storage medium, and a sending end, which can improve the accuracy of instructions, thereby helping to improve the utilization efficiency of transmission resources.
  • an embodiment of the present invention provides a data sending method, including the following steps: determining an activation instruction that uses multiple bits to indicate a logical channel of a transmitting end to be used for each RB; for each RB , According to the number n of the sending end logical channels to be used by the RB, the sending end PDCP entity copies the PDCP data packet, and sends the copied PDCP data packet to the receiving end through the sending end logical channel to be used; The maximum value of the number n of the transmitting logical channels of each RB is greater than two.
  • each of the plurality of bits indicates whether a corresponding transmitting logical channel is a to-be-used transmitting logical channel; each of the plurality of bits indicates whether a corresponding transmitting logical channel is The logical channel of the sender to be used;
  • a one-to-one mapping relationship between each of the plurality of bits and each logical channel of the transmitting end is predefined.
  • the data sending method further includes: determining PDCP replication function configuration information, where the PDCP replication function configuration information includes a logical channel of each sending end PDCP entity and the sending end logical channel. A mapping relationship, and a one-to-one mapping relationship between each of the plurality of bits and the transmitting logical channel; wherein the RB corresponds to the transmitting PDCP entity one-to-one.
  • the PDCP replication function configuration information further includes a mapping relationship between each transmitting end logical channel and a subband.
  • each RB indicated by multiple bits in the activation instruction is arranged according to the sequence number of the RB, and each bit indicating the same RB is arranged according to the sequence number of the logical channel of the transmitting end;
  • the order of the sequence number of the RB and the sequence number of the logical channel of the transmitting end is ascending or descending, and the sequence of the number of the RB and the sequence number of the logical channel of the transmitting end is the same or different.
  • each RB indicated by the multiple bits in the activation instruction is arranged in the order of the sequence number of the RB, and each bit of the same RB is arranged in the sequence of the sequence number of the medium access layer at the transmitting end;
  • the sequence of the serial numbers of the RBs and the sequence of the serial access layers of the sender are ascending or descending, and the sequence of the serial numbers of the RBs and the serial number of the sender's medium access layer are the same or different.
  • a value indicating a bit of the same RB is used to indicate the number n of sending logical channels of the RB to be used, where the sending logical channels of each RB are arranged in a preset order; according to the preset In order, the first n logical channels of the transmitting end are selected as the logical channels of the transmitting end to be used.
  • the data sending method further includes: determining PDCP replication function configuration information, where the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and a logical channel on the transmitting end, and The preset order of the logical channels at the transmitting end of each RB.
  • the PDCP replication function configuration information further includes a mapping relationship between each transmitting end logical channel and a subband.
  • the number of bits used to indicate the logical channel of the transmitting end to be used for each RB is determined according to the following formula: Wherein, b i is used to indicate the number of bits of a field in the activation instruction used to indicate the logical channel of the transmitting end to be used for the i-th RB; n i is used to indicate the logical channel of the transmitting end of the i-th RB. number.
  • the number of bits used to indicate the logical channel of the transmitting end to be used for each RB is a preset number of bits.
  • the data sending method further includes: determining PDCP replication function configuration information
  • the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and a sending logical channel, a preset order of the sending logical channel of each RB, and the preset number of bits.
  • the data sending method further includes: determining PDCP replication function configuration information, where the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and a logical channel on the transmitting end, and The preset order of the sending logical channels of each RB, and the maximum number of sending logical channels of each RB are preset values.
  • the number of bits used to indicate the logical channel of the transmitting end to be used for each RB is determined according to the following formula: Wherein, b i is used to indicate the number of bits in a field of the sending instruction logical channel to be used in the i-th RB to be used; N is used to indicate the maximum number of sending logical channels of each RB.
  • the PDCP replication function configuration information further includes a mapping relationship between each transmitting end logical channel and a subband.
  • an embodiment of the present invention provides a data sending device, including: an activation determining module, adapted to determine an activation instruction, where the activation instruction uses multiple bits to indicate a logical channel of a transmitting end to be used for each RB;
  • the sending module is adapted to, for each RB, according to the number n of the sending logical channels to be used by the RB, the sending PDCP entity copies PDCP data packets, and copies the copied
  • the PDCP data packet is sent to the receiving end; the maximum value of the number of logical channels n of the transmitting end of each RB is greater than two.
  • each of the plurality of bits indicates whether a corresponding sending logical channel is a sending logical channel to be used; wherein each of the multiple bits and each sending logical channel Has a one-to-one mapping relationship.
  • a one-to-one mapping relationship between each of the plurality of bits and each logical channel of the transmitting end is predefined.
  • the data transmitting apparatus further includes: a first configuration information determining module, adapted to determine PDCP replication function configuration information before the activation activation determination instruction, and the PDCP replication function configuration information includes each sending end PDCP A mapping relationship between an entity and the transmitting logical channel, and a one-to-one mapping relationship between each bit of the plurality of bits and the transmitting logical channel; wherein the RB and the transmitting PDCP entity are one-to-one correspond.
  • a first configuration information determining module adapted to determine PDCP replication function configuration information before the activation activation determination instruction, and the PDCP replication function configuration information includes each sending end PDCP A mapping relationship between an entity and the transmitting logical channel, and a one-to-one mapping relationship between each bit of the plurality of bits and the transmitting logical channel; wherein the RB and the transmitting PDCP entity are one-to-one correspond.
  • the PDCP replication function configuration information further includes a mapping relationship between each transmitting end logical channel and a subband.
  • each RB indicated by multiple bits in the activation instruction is arranged according to the sequence number of the RB, and each bit indicating the same RB is arranged according to the sequence number of the logical channel of the transmitting end;
  • the order of the sequence number of the RB and the sequence number of the logical channel of the transmitting end is ascending or descending, and the sequence of the number of the RB and the sequence number of the logical channel of the transmitting end is the same or different.
  • each RB indicated by the multiple bits in the activation instruction is arranged in the order of the sequence number of the RB, and each bit of the same RB is arranged in the sequence of the sequence number of the medium access layer at the transmitting end;
  • the sequence of the serial numbers of the RBs and the sequence of the serial access layers of the sender are ascending or descending, and the sequence of the serial numbers of the RBs and the serial number of the sender's medium access layer are the same or different.
  • a value indicating a bit of the same RB is used to indicate the number n of sending logical channels of the RB to be used, where the sending logical channels of each RB are arranged in a preset order; according to the preset In order, the first n logical channels of the transmitting end are selected as the logical channels of the transmitting end to be used.
  • a second configuration information determination module is adapted to determine PDCP replication function configuration information before the activation activation determination instruction, where the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and a logical channel on the transmitting end, and The preset order of the logical channels at the transmitting end of each RB.
  • the PDCP replication function configuration information further includes a mapping relationship between each transmitting end logical channel and a subband.
  • the number of bits used to indicate the logical channel of the transmitting end to be used for each RB is determined according to the following formula: Wherein, b i is used to indicate the number of bits of a field in the activation instruction used to indicate the logical channel of the transmitting end to be used for the i-th RB; n i is used to indicate the logical channel of the transmitting end of the i-th RB number.
  • the number of bits used to indicate the logical channel of the transmitting end to be used for each RB is a preset number of bits.
  • the data transmitting apparatus further includes a third configuration information determining module, which is adapted to be activated after the determining. Before the instruction, the PDCP replication function configuration information is determined.
  • the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and a sending logical channel, a preset order of the sending logical channel of each RB, and the preset. The number of bits.
  • the data sending apparatus further includes: a fourth configuration information determining module, adapted to determine PDCP replication function configuration information before the activation instruction is determined, and the PDCP replication function configuration information includes each PDCP entity and The mapping relationship between the sending logical channels, the preset order of the sending logical channels of each RB, and the maximum number of sending logical channels of each RB are preset values.
  • the number of bits used to indicate the logical channel of the transmitting end to be used for each RB is determined according to the following formula: Wherein, b i is used to indicate the number of bits in a field of the sending instruction logical channel to be used in the i-th RB to be used; N is used to indicate the maximum number of sending logical channels of each RB.
  • the PDCP replication function configuration information further includes a mapping relationship between each transmitting end logical channel and a subband.
  • an embodiment of the present invention provides a storage medium having computer instructions stored thereon, where the computer instructions execute the steps of the foregoing data sending method when running.
  • an embodiment of the present invention provides a sending end, including a memory and a processor.
  • the memory stores computer instructions capable of running on the processor.
  • the processor runs the computer instructions, Perform the steps of the above data transmission method.
  • multiple bits are used to indicate the logical channel of the transmitting end to be used by each RB by setting an activation instruction. Compared with the prior art, only one bit is used to indicate the transmitting end of each RB to be used. The logical channel is difficult to clearly indicate the situation of multi-connection replication.
  • the maximum number n of the logical channels at the transmitting end of each RB is greater than 2, multiple bits are used for indication, and the indication is improved. Accuracy, which helps to improve the efficiency of transmission resource utilization.
  • the activation instruction uses each bit of the multiple bits to indicate whether the corresponding sender logical channel is a sender logical channel to be used, so that the sender can The value of determines whether the sender logical channel corresponding to the bit is a sender logical channel to be used, so as to determine the sender logical channel when data needs to be sent.
  • the activation instruction uses a bit value indicating the same RB to indicate the number n of the sending logical channels to be used, wherein the sending logical channels of each RB are arranged in a preset order; according to the preset In order, the first n logical channels of the transmitting end are selected as the logical channels of the transmitting end to be used.
  • the sender may use fewer bits to indicate the logical channel of the sender to be used, so that the sender may determine the to-be-used RB according to the bit value indicating the same RB and the preset order. What are the logical channels on the sending end, so that the logical channels on the sending end are determined when data needs to be sent.
  • the number of bits of the sending logical channel to be used for indicating each RB is a preset number of bits
  • the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and the sending logical channel, and each RB The preset order of the logical channels on the sender side of the, and the preset number of bits.
  • FIG. 1 is a schematic diagram of a working scenario of a data sending method in the prior art
  • FIG. 2 is a schematic diagram of a working scenario of another data sending method in the prior art
  • FIG. 3 is a flowchart of a data sending method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a working scenario of a data sending method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of multiple bits in an activation instruction of a data sending method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a working scenario of another data sending method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of multiple bits in an activation instruction of another data sending method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a bit indicating the same RB in an activation instruction of yet another data sending method according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a data sending device according to an embodiment of the present invention.
  • an activation / deactivation mechanism of two wireless data link duplication (Two-legs duplication) modes is supported. Specifically, for each RB configured with a copy function, a bit is used to indicate whether the copy function of the RB is activated or deactivated.
  • the copy function activation can be used to instruct PDCP to perform a copy operation, and both wireless data links are used for data transmission; the copy function deactivation can be used to instruct PDCP not to perform a copy operation, and only through the primary wireless data link (Primary leg) for data transmission.
  • a data radio bearer (RB) configured with replication function can be configured with more than two wireless data links (legs).
  • legss For one RB, It is unclear how many logical channels of the transmitting end to be used to send the duplicated PDCP data packets, and which logical channels of the transmitting end to be used for data transmission are indicated by one bit. Specifically, a bit contains only two states of 0/1, that is, it can only be used to indicate two wireless data links, and cannot clearly indicate the usage of multi-connection replication.
  • FIG. 1 is a schematic diagram of a working scenario of a data sending method in the prior art.
  • the data sending method may be used for a PDCP replication function architecture in a carrier aggregation (CA) scenario.
  • CA carrier aggregation
  • the sending end PDCP entity 110 sends the PDCP data packets to the first sending end RLC entity 121 and the second sending end RLC entity 122, respectively, and passes the first sending end RLC entity 121 corresponding to the first sending end RLC entity 121.
  • the sender logical channel and the second sender logical channel corresponding to the second sender RLC entity 122 are delivered to the sender's Medium Access Control (MAC) 130.
  • MAC Medium Access Control
  • the PDCP data packets will respectively pass through different subbands. For example, the PDCP data packets sent by the first sending end logical channel pass through the first The subband 141 and the second subband 142 are transmitted, and the PDCP data packet sent by the second transmitting end logical channel is transmitted through the third subband 143, the fourth subband 144, and the fifth subband 145.
  • the receiving medium access layer 150 receives PDCP data through different subbands, such as the first subband 141, the second subband 142, the third subband 143, the fourth subband 144, and the fifth subband 145, respectively.
  • the packet is then uploaded to the corresponding first receiving end RLC entity 161 and the second receiving end RLC entity 162, and through the first receiving end logical channel corresponding to the first receiving end RLC entity 161 and the second receiving end RLC entity 162.
  • the second receiving end logical channel is uploaded to the receiving end PDCP entity 170.
  • each wireless data link may be one of the paths from the transmitting end PDCP entity 110 to the receiving end PDCP entity 170, for example, it may be from the transmitting end PDCP entity, the transmitting end RLC entity, the transmitting end medium access layer, Subband, receiving medium access layer, receiving RLC entity to receiving PDCP entity.
  • the network side may use the RRC message to configure the PDCP replication function for multiple radio bearers (Radio Bearer, RB), and establish an additional replica RLC entity for the RB.
  • the RRC message also indicates the subband group ID (Cell ID) and logical channel ID (LCID) of the primary RLC entity.
  • the RRC message can also set the replication initial state for the RBs (for example, active or inactive).
  • Radio Resource Control Radio Resource Control
  • two RLC entities are also configured to be mapped to different carriers, respectively.
  • the activation / deactivation step is implemented by sending an activation / deactivation MAC control element (CE) on the network side.
  • the MAC CE includes a bitmap (bitmap), and the bitmap Each bit corresponds to an RB configured (duplicated with duplication), where the bit corresponding to a certain RB replication configuration is indicated by 1 to activate the RB, and the corresponding bit indicated by 0 is deactivated by the RB .
  • the RB may include a Data Radio Bearer (DRB) and a Signaling Radio Bearer (SRB).
  • DRB Data Radio Bearer
  • SRB Signaling Radio Bearer
  • the PDCP layer performs a replication operation on the data packet and sends the same two replicated PDCP protocol data units (Protocol Data Units, PDUs) to the RB.
  • PDUs Protocol Data Units
  • the transmitting PDCP layer will not perform a copy operation on the new data packet. And send new data to the primary RLC entity (that is, the primary LCH) without sending new data to the secondary RLC entity (that is, the secondary LCH); the sending PDCP entity will notify the secondary RLC entity to cancel the secondary LCH Data in.
  • FIG. 2 is a schematic diagram of a working scenario of another data sending method in the prior art.
  • the another data sending method may be used for a PDCP replication function architecture in a dual connectivity (DC) scenario.
  • DC dual connectivity
  • the sending medium access layer may include a first sending medium access layer 231, a second sending medium access layer 232, and the like;
  • the receiving medium access layer may include a first receiving medium access layer 251, a second receiving medium access layer 252, and the like.
  • each wireless data link may be one of the paths from the transmitting end PDCP entity 110 to the receiving end PDCP entity 170, for example, it may be from the transmitting end PDCP entity, the transmitting end RLC entity, the transmitting end medium access layer, Subband, receiving medium access layer, receiving RLC entity to receiving PDCP entity.
  • multiple sending-end media access layers have a corresponding relationship with the sending-end RLC entity
  • multiple receiving-end media access layers have a corresponding relationship with the receiving-end RLC entity.
  • the configuration steps may be the same as the CA scenario.
  • the activation / deactivation step is implemented by sending an activation / deactivation MAC control element (CE) on the network side.
  • the MAC CE includes a bitmap (bitmap), and the bitmap Each bit corresponds to an RB configured (duplicated with duplication), where the bit corresponding to a certain RB replication configuration is indicated by 1 to activate the RB, and the corresponding bit indicated by 0 is deactivated by the RB .
  • the PDCP layer performs a replication operation on the data packet and sends the same two replicated PDCP protocol data units (Protocol Data Units, PDUs) to the RB.
  • PDUs Protocol Data Units
  • the UE In the deactivation step, after a certain RB replication configuration is deactivated, the UE will fall back to the split operation and adopt the related configuration of the original branch operation.
  • an RB configured with a replication function can be configured with more than two wireless data links, that is, with more than two sending-end logical channels. It is unclear how many logical channels to be used to send the copied PDCP data packets and which logical channels are to be used for data transmission. Specifically, a bit contains only two states of 0/1, that is, it can only be used to indicate two logical channels, and cannot clearly indicate the usage of multi-connection replication.
  • multiple bits are used to indicate the logical channel of the transmitting end to be used by each RB by setting an activation instruction. Compared with the prior art, only one bit is used to indicate the transmitting end of each RB to be used. The logical channel is difficult to clearly indicate the situation of multi-connection replication.
  • the maximum number n of the logical channels at the transmitting end of each RB is greater than 2, multiple bits are used for indication, and the indication is improved. Accuracy, which helps to improve the efficiency of transmission resource utilization.
  • FIG. 3 is a flowchart of a data sending method according to an embodiment of the present invention.
  • the data sending method may include steps S31 to S32:
  • Step S31 Determine an activation instruction, where the activation instruction uses multiple bits to indicate the logical channel of the transmitting end to be used for each RB;
  • Step S32 For each RB, according to the number n of the sending logical channels to be used by the RB, the sending PDCP entity copies PDCP data packets, and copies the copied PDCP through the to-be-used sending logical channel.
  • the data packet is sent to the receiving end, where a maximum value of the number n of the transmitting end logical channels of each RB is greater than two.
  • step S31 the step of determining the activation instruction may perform different operations according to whether the sending end is a base station or a user terminal.
  • the determining the activation instruction may include: configuring and sending the activation instruction to a user terminal, so that the user terminal determines each RB according to multiple bits in the activation instruction.
  • the logical channel of the sender to be used.
  • the determining the activation instruction may include: receiving the activation instruction from a base station.
  • the activation instruction may be transmitted through MAC Control Element (Control Element, CE) signaling. It should be noted that, in the embodiment of the present invention, the specific manner of transmitting the activation instruction is not limited.
  • each of the plurality of bits indicates whether a corresponding transmitting-end logical channel is a transmitting-end logical channel to be used; wherein each of the plurality of bits and each transmitting-end logical channel have One by one mapping relationship.
  • a certain bit can be set to 1 to indicate that the corresponding sender logical channel is a sender logical channel to be used, and a certain bit is set to 0 to indicate that the corresponding sender logical channel is not a sender logical channel to be used.
  • a one-to-one mapping relationship between each bit of the multiple bits and each logical channel on the transmitting end is predefined.
  • multiple RBs corresponding to multiple bits and the logical channel on the transmitting end can be set in ascending order, which can be predefined by the protocol and cannot be modified.
  • the one-to-one mapping relationship between each bit of the multiple bits and each sending end logical channel may be sent by a network side (for example, a base station) to a user terminal.
  • a network side for example, a base station
  • the data sending method may further include a step of determining PDCP replication function configuration information.
  • the PDCP replication function configuration information may include a mapping relationship between each transmitting end PDCP entity and the transmitting logical channel, and each of the multiple bits and the transmitting logical channel One-to-one mapping relationship, wherein the RB corresponds to the sending end PDCP entity one-to-one.
  • the PDCP replication function configuration information may include a mapping relationship between each sending end PDCP entity and the sending logical channel, and each of the multiple bits and the sending logical channel One-to-one mapping relationship; it may also include a mapping relationship between each transmitting end logical channel and a subband.
  • the PDCP replication function configuration information may include a detailed one-to-one mapping relationship between each bit and the logical channel of the transmitting end, and may only indicate the arrangement order of multiple bits in the activation instruction. After the user terminal receives the activation instruction, it can determine a one-to-one mapping relationship between each bit and the logical channel of the transmitting end by itself.
  • FIG. 4 is a schematic diagram of a working scenario of a data sending method according to an embodiment of the present invention.
  • the data sending method shown in FIG. 4 can be used in CA replication.
  • the RB configured with the PDCP replication function has n wireless data links, that is, it has n transmitting end logical channels.
  • the sending end PDCP entity 410 may send the PDCP data packet to the first sending end RLC entity 421, the second sending end RLC entity 422, ..., the nth sending end RLC entity 423, and through the first sending end RLC
  • the first sender logical channel corresponding to the entity 421, the second sender logical channel corresponding to the second sender RLC entity 422, ... are sent to the sender through the nth sender logical channel corresponding to the nth sender RLC entity 423
  • Medium access layer 430 where n is a positive integer.
  • the PDCP data packet may be sent through different subbands, for example, it may include a first subband 441, a second subband 442,... Nth subband 443 for transmission.
  • the number of specific subbands included in the first subband 441, the second subband 442, and the nth subband 443 is not limited, that is, it can be regarded as a subband group.
  • FIG. 5 is a schematic diagram of multiple bits in an activation instruction of a data sending method according to an embodiment of the present invention.
  • each RB indicated by multiple bits in the activation instruction is arranged according to the sequence number of the RB, and each bit of the same RB is arranged according to the sequence number of the logical channel on the transmitting end; wherein, the sequence number of the RB
  • the order of the serial number of the logical channel of the transmitting end is ascending or descending, and the order of the serial number of the RB and the serial number of the logical channel of the transmitting end are the same or different.
  • the ranking when configuring multiple bits in the activation instruction, can be performed in two levels.
  • the first layer can arrange the RBs in ascending or descending order of the RB sequence number, and the second layer can use logical channels.
  • the LCH is sorted in ascending or descending order of serial numbers, and then the value of each of the plurality of bits is configured in the sorted order.
  • the multiple bits in the activation instruction shown in FIG. 5 are the cases where the sequence numbers of the RBs and the sequence number of the logical channel on the transmitting end are arranged in ascending order.
  • the order of the sequence numbers of the RBs and the sequence number of the logical channel of the transmitting end is the same or different, that is, the sequence numbers of the RBs can be arranged in ascending order, but In some cases, the sequence numbers of the RBs are arranged in descending order, but the sequence numbers of the logical channels at the transmitting end are arranged in ascending order.
  • FIG. 6 is a schematic diagram of a working scenario of another data sending method according to an embodiment of the present invention.
  • the data sending method shown in FIG. 6 can be used in DC replication.
  • An RB configured with a PDCP replication function has n wireless data links, that is, it has n radio channels.
  • the sending end PDCP entity 610 may send PDCP data packets to the first sending end RLC entity 621, the second sending end RLC entity 622, ..., the nth sending end RLC entity 623, and through the first sending end RLC
  • the first sender logical channel corresponding to the entity 621 is sent to the first sender medium access layer 631
  • the second sender logical channel corresponding to the second sender RLC entity 622 is sent to the second sender medium access layer 632.
  • the nth sending end logical channel corresponding to the n sending end RLC entity 623 is sent to the nth sending end medium access layer 633.
  • n is a positive integer.
  • the PDCP data packet may be sent through different subbands, for example, the PDCP data packet sent by the first sending end logical channel is sent through the first subband 641, and the PDCP data packet sent by the second sending end logical channel is sent through the second The subband 642 is sent, and the PDCP data packet sent by the nth sending end logical channel is sent through the nth subband 643.
  • the number of specific subbands included in the first subband 641, the second subband 642, and the nth subband 643 is not limited, that is, it can be regarded as a subband group.
  • FIG. 7 is a schematic diagram of multiple bits in an activation instruction of another data sending method according to an embodiment of the present invention.
  • each RB indicated by multiple bits in the activation instruction is arranged according to the sequence number of the RB, and each bit of the same RB is arranged according to the sequence number of the medium access layer on the transmitting end;
  • the sequence of the serial numbers and the sequence of the serial access layer medium access layer are ascending or descending, and the sequence of the serial numbers of the RB and the sequence of the serial media access layer are the same or different.
  • the ranking can be performed in two levels.
  • the first layer can arrange the RBs in ascending or descending order of the RB sequence number, and the second layer can use the sending end.
  • the LCH is arranged in ascending or descending order of the serial number of the medium access layer, and then the value of each of the plurality of bits is configured in the order of the arrangement.
  • the multiple bits in the activation instruction shown in FIG. 5 are the cases where the sequence numbers of the RBs and the sequence number of the medium access layer at the transmitting end are arranged in ascending order.
  • the order of the serial numbers of the RBs and the serial number of the sending-end medium access layer is the same or different, that is, the serial numbers of the RBs can be arranged in ascending order, but the In the case of sequence numbers, the sequence numbers of the RBs are arranged in descending order, but the sequence numbers of the medium access layer at the transmitting end are arranged in ascending order.
  • the activation instruction uses each bit of the multiple bits to indicate whether a corresponding transmitting-end logical channel is a transmitting-end logical channel to be used, so that the transmitting end can use the value of each bit It is determined whether the sending logical channel corresponding to the bit is a sending logical channel to be used, so as to determine the sending logical channel when data needs to be sent.
  • a value indicating a bit of the same RB is used to indicate the number n of sending logical channels of the RB to be used, where the sending logical channel of each RB is in accordance with The preset order is arranged; according to the preset order, the first n sending-end logical channels arranged as the sending-end logical channels to be used are selected.
  • the multiple bits in the activation instruction are only used to indicate the number n of the transmitting-end logical channels to be used in each of the multiple RBs, that is, the value of the bit indicating the same RB is used to indicate the RB.
  • the number of logical channels of the transmitting end to be used is n.
  • the UE uses only the n logical channels of the transmitting end that are arranged first.
  • the preset order may be used to indicate a priority of a sending logical channel in each RB, for example, a sending logical channel having a higher priority is set to a previous order to be more easily selected.
  • the data sending method may further include a step of determining PDCP replication function configuration information.
  • the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and a transmitting logical channel, and a preset order of the transmitting logical channel of each RB.
  • the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and a transmitting logical channel, and a preset order of the transmitting logical channel of each RB, and may further include each transmitting logical channel and Mapping of subbands.
  • FIG. 8 is a schematic diagram of a bit indicating the same RB in an activation instruction of yet another data transmission method according to an embodiment of the present invention.
  • the ranking can be performed in two levels.
  • the first layer can arrange the RBs in ascending or descending order of the RB sequence number, and the second layer can arrange each RB. You can configure the value of one or more bits to indicate n.
  • the number of bits used to indicate the logical channel of the transmitting end to be used for each RB can be determined according to the following formula:
  • b i is used to indicate the number of bits of a field in the activation instruction used to indicate the logical channel of the transmitting end to be used for the i-th RB; n i is used to indicate the logical channel of the transmitting end of the i-th RB. number.
  • the number of bits of the transmitting logical channel to be used in different RBs may be the same or different. If the number of the logical channels of the transmitting end to be used changes, the number of bits of the logical channels of the transmitting end to be used may also change accordingly.
  • the user terminal may determine the number of bits of the sender logical channel to be used for indicating each RB by calculation according to the foregoing formula, and then determine the logical channel of the sender to be used for each RB.
  • the activation instruction uses a bit value indicating the same RB to indicate the number n of the transmitting logical channels to be used, wherein the transmitting logical channels of each RB are arranged in a preset order; According to the preset order, the n logical channels on the sending end are selected as the logical channels on the sending end to be used.
  • the sender may use fewer bits to indicate the logical channel of the sender to be used, so that the sender may use the bit value indicating the same RB and the preset order to send the RB to be used. What are the logical channels at the end, so that the sending logical channel is determined when data needs to be sent.
  • the number of bits used to indicate the logical channel of the sending end to be used for each RB may be set to a preset number of bits.
  • the method may further include: determining PDCP replication function configuration information, where the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and a sending logical channel, and a preset order of the sending logical channel of each RB, and the The preset number of bits.
  • the PDCP replication function configuration information may further include a mapping relationship between each transmitting end logical channel and a subband.
  • a predetermined number of bits can be used to indicate each RB in the receiving instruction, and the transmitting end can separate multiple bits corresponding to each RB without calculation, which helps reduce the computational complexity.
  • the data sending method may further include: determining PDCP replication function configuration information, where the PDCP replication function configuration information includes each PDCP entity
  • the mapping relationship with the logical channels on the transmitting end, the preset order of the logical channels on the transmitting end of each RB, and the maximum number of logical channels on the transmitting end of each RB are preset values.
  • the PDCP replication function configuration information may further include a mapping relationship between each transmitting end logical channel and a subband.
  • b i is used to indicate the number of bits in a field of the sending instruction logical channel to be used in the i-th RB to be used; N is used to indicate the maximum number of sending logical channels of each RB.
  • the number of bits calculated above can completely indicate all the legs that have been configured with the replication function. I.e. for all configured replication of RB, the number of bits can be calculated as described above is fixed out of b i, even if the number of the leg changes, b i does not need to be changed.
  • a preset number of bits can be used to indicate each RB in the activation instruction.
  • the transmitting end does not need to calculate each RB separately, and can separate multiple bits corresponding to each RB according to b i , Which helps reduce computational complexity.
  • step S32 for each RB, according to the number n of the sending logical channels to be used by the RB, the sending PDCP entity copies the PDCP data packet and passes The transmitting logical channel sends the copied PDCP data packet to the receiving end, where the maximum number n of transmitting logical channels of each RB is greater than two.
  • the PDCP entity receives a data packet from an upper layer, and replicates it at this layer of the PDCP entity.
  • the number of logical channels on the sending end to be used may be N, and the PDCP entity may copy the PDCP data packets N-1 times to obtain a total number of PDCP data packets as N, and then pass the standby
  • the sender logical channel sends the original PDCP data packet and the copied N-1 PDCP data packets to the receiver.
  • multiple bits are used to indicate the logical channel of the transmitting end to be used by each RB by setting an activation instruction. Compared with the prior art, only one bit is used to indicate the transmitting end of each RB to be used The logical channel is difficult to clearly indicate the situation of multi-connection replication.
  • the maximum number n of the logical channels at the transmitting end of each RB is greater than 2, multiple bits are used for indication, and the indication is improved. Accuracy, which helps to improve the efficiency of transmission resource utilization.
  • FIG. 9 is a schematic structural diagram of a data sending apparatus according to an embodiment of the present invention.
  • the data sending apparatus may include:
  • An activation determining module 91 adapted to determine an activation instruction, where the activation instruction uses multiple bits to indicate a logical channel of a transmitting end to be used for each RB;
  • the sending module 92 is adapted to, for each RB, according to the number n of the sending logical channels to be used by the RB, the sending PDCP entity copies PDCP data packets, and copies the data through the to-be-used sending logical channel.
  • the subsequent PDCP data packet is sent to the receiving end; wherein the maximum value of the number of logical channels n of the transmitting end of each RB is greater than 2;
  • the first configuration information determining module 93 is adapted to determine PDCP replication function configuration information before the determining activation instruction, where the PDCP replication function configuration information includes a mapping relationship between each sending end PDCP entity and the sending end logical channel, And a one-to-one mapping relationship between each of the plurality of bits and the logical channel of the transmitting end; wherein the RB corresponds to the transmitting PDCP entity one-to-one;
  • the second configuration information determining module 94 is adapted to determine PDCP replication function configuration information before the determining activation instruction, where the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and a logical channel on the transmitting end, and each RB The preset order of the logical channels at the transmitting end;
  • the third configuration information determination module 95 is adapted to determine PDCP replication function configuration information before the activation instruction is determined, where the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and a logical channel on the transmitting end, and each RB The preset order of the logical channels at the transmitting end, and the preset number of bits;
  • a fourth configuration information determination module 96 is adapted to determine PDCP replication function configuration information before the activation activation instruction is determined.
  • the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and a transmitting logical channel, and each RB.
  • the preset order of the logical channels on the sending end of the RB and the maximum number of logical channels on the sending end of each RB are preset values.
  • each of the plurality of bits may indicate whether a corresponding transmitting-end logical channel is a transmitting-end logical channel to be used; wherein each of the plurality of bits and each transmitting-end logical channel Has a one-to-one mapping relationship.
  • each of the plurality of bits and each logical channel of the transmitting end may be predefined.
  • the PDCP replication function configuration information may further include a mapping relationship between each sending end logical channel and a subband.
  • each RB indicated by multiple bits in the activation instruction may be arranged in the order of the sequence number of the RB, and each bit indicating the same RB is arranged in the sequence of the sequence number of the logical channel of the transmitting end;
  • the order of the sequence number of the RB and the sequence number of the logical channel of the transmitting end is ascending or descending, and the sequence of the number of the RB and the sequence number of the logical channel of the transmitting end is the same or different.
  • each RB indicated by multiple bits in the activation instruction may be arranged in the order of the sequence number of the RB, and each bit of the same RB is arranged in the sequence of the sequence number of the medium access layer on the transmitting end;
  • the sequence of the serial numbers of the RBs and the sequence of the serial access layers of the sender are ascending or descending, and the sequence of the serial numbers of the RBs and the serial number of the sender medium access are the same or different.
  • the value of the bit indicating the same RB may be used to indicate the number n of the sending end logical channels of the RB to be used, where the sending logical channels of each RB are arranged in a preset order; according to the preset In order, the first n logical channels of the transmitting end are selected as the logical channels of the transmitting end to be used.
  • the PDCP replication function configuration information may further include a mapping relationship between each sending end logical channel and a subband.
  • the number of bits of the transmitting-end logical channel to be used for indicating each RB to be used may be determined according to the following formula: Wherein, b i is used to indicate the number of bits of a field in the activation instruction used to indicate the logical channel of the transmitting end to be used for the i-th RB; n i is used to indicate the logical channel of the transmitting end of the i-th RB number.
  • the number of bits used to indicate the logical channel of the transmitting end to be used for each RB may be a preset number of bits, and further includes: a third configuration information determining module, adapted to determine a PDCP copy before determining the activation instruction.
  • the PDCP replication function configuration information includes a mapping relationship between each PDCP entity and a sending logical channel, a preset order of the sending logical channel of each RB, and the preset number of bits.
  • the number of bits of the transmitting-end logical channel to be used for indicating each RB to be used may be determined according to the following formula: Wherein, b i is used to indicate the number of bits in a field of the sending instruction logical channel to be used in the i-th RB to be used; N is used to indicate the maximum number of sending logical channels of each RB.
  • the PDCP replication function configuration information may further include a mapping relationship between each sending end logical channel and a subband.
  • An embodiment of the present invention further provides a storage medium having computer instructions stored thereon.
  • the storage medium may be a computer-readable storage medium, for example, may include a non-volatile memory (non-volatile) or a non-transitory memory, and may also include an optical disk, a mechanical hard disk, a solid-state hard disk, and the like.
  • An embodiment of the present invention further provides a sending end, which includes a memory and a processor.
  • the memory stores computer instructions capable of running on the processor, and the processor executes the foregoing FIG. 3 when the processor runs the computer instructions.
  • the steps shown in the data transmission method are shown.
  • the sending end includes, but is not limited to, network equipment such as a base station and a server, and terminal equipment such as a mobile phone, a computer, and a tablet computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据发送方法及装置、存储介质、发送端,所述方法包括:确定激活指令,所述激活指令采用多个比特指示每个RB的待使用的发送端逻辑信道;对于每个RB,根据所述RB待使用的发送端逻辑信道的数目n,发送端PDCP实体对PDCP数据包进行复制,并通过所述待使用的发送端逻辑信道将复制后的PDCP数据包发送至接收端;其中,各个RB的发送端逻辑信道的数目n的最大值大于2。本发明方案可以提高指示的准确性,从而有助于提高传输资源利用效率。

Description

数据发送方法及装置、存储介质、发送端
本申请要求于2018年08月10日提交中国专利局、申请号为201810908301.2、发明名称为“数据发送方法及装置、存储介质、发送端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其是涉及一种数据发送方法及装置、存储介质、发送端。
背景技术
随着无线技术的不断发展,3GPP引入新的无线技术(New Radio access technology,NR),以应对更大数据量的需求以及应对更小传输时延的需求,该技术又称为第五代移动通信技术5G。
在5G中,引入了两种新技术,分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)复制(Duplication)功能和子带(Band Width Part,BWP),其中,所述子带又称为子带宽。
具体地,引入所述PDCP复制功能可以提高超可靠低延时通信(Ultra Reliable Low Latency Communication,URLLC)业务传输的可靠性。更具体地,是通过在发送端的PDCP层,将一个PDCP数据包复制成相同的两份并分别下发给两个不同的无线链路控制(Radio Link Control,RLC)实体,进而分别通过不同的发送端逻辑信道(Logical Channel,LCH)进行传输,当成功接收到两份PDCP数据包时,在接收端的PDCP层删除其中一份而只保留一份数据包。也即, 将同一份数据包复制成相同的两份并通过两条不同的路径进行传输,从而提高了数据传输的可靠性。其中,所述PDCP数据包可以包括PDCP协议数据单元(Protocol Data Unit,PDU)以及PDCP业务数据单元(Service Data Unit,SDU)。
然而对于多连接复制(Multi-connectivity duplication),配置了复制功能的无线承载(Radio Bearer,RB)可以配置多于两条无线数据链路(leg),则对于一个RB来说,采用多少个待使用的发送端逻辑信道发送复制的PDCP数据包,以及采用哪几个待使用的发送端逻辑信道进行数据传输,用一个比特进行指示是不清楚的。具体而言,一个比特仅包含有0/1两种状态,也即仅能用于指示两个逻辑信道,无法清楚地指示多连接复制的使用情况。
发明内容
本发明解决的技术问题是提供一种数据发送方法及装置、存储介质、发送端,可以提高指示的准确性,从而有助于提高传输资源利用效率。
为解决上述技术问题,本发明实施例提供一种数据发送方法,包括以下步骤:确定激活指令,所述激活指令采用多个比特指示每个RB的待使用的发送端逻辑信道;对于每个RB,根据所述RB待使用的发送端逻辑信道的数目n,发送端PDCP实体对PDCP数据包进行复制,并通过所述待使用的发送端逻辑信道将复制后的PDCP数据包发送至接收端;其中,各个RB的发送端逻辑信道的数目n的最大值大于2。
可选的,所述多个比特中的每个比特指示对应的发送端逻辑信道是否为待使用的发送端逻辑信道;所述多个比特中的每个比特指示对应的发送端逻辑信道是否为待使用的发送端逻辑信道;
可选的,所述多个比特中的每个比特与每个发送端逻辑信道的一一映射关系是预定义的。
可选的,在所述确定激活指令之前,所述的数据发送方法还包括:确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个发送端PDCP实体与所述发送端逻辑信道的映射关系,以及所述多个比特中的每个比特与所述发送端逻辑信道的一一映射关系;其中,所述RB与所述发送端PDCP实体一一对应。
可选的,所述PDCP复制功能配置信息还包括每个发送端逻辑信道与子带的映射关系。
可选的,在CA复制中,所述激活指令中的多个比特指示的各个RB按照RB的序号的顺序排列,指示同一RB的各个比特按照所述发送端逻辑信道的序号的顺序排列;其中,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序为升序或降序,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序相同或不同。
可选的,在DC复制中,所述激活指令中的多个比特指示的各个RB按照RB的序号的顺序排列,指示同一RB的各个比特按照发送端介质访问层的序号的顺序排列;其中,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序为升序或降序,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序相同或不同。
可选的,指示同一RB的比特的值用于指示所述RB的待使用的发送端逻辑信道的数目n,其中,每个RB的发送端逻辑信道按照预设次序排列;根据所述预设次序,将排列在前的n个发送端逻辑信道选择为所述待使用的发送端逻辑信道。
可选的,在所述确定激活指令之前,所述的数据发送方法还包括:确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序。
可选的,所述PDCP复制功能配置信息还包括每个发送端逻辑信道与子带的映射关系。
可选的,根据以下公式,确定用于指示每个RB的待使用的发送端逻辑信道的比特数:
Figure PCTCN2019092982-appb-000001
其中,b i用于表示所述激活指令中用于指示第i个RB的待使用的发送端逻辑信道的字段的比特数;n i用于表示第i个RB的所述发送端逻辑信道的数目。
可选的,用于指示每个RB的待使用的发送端逻辑信道的比特数为预设比特数,在所述确定激活指令之前,所述的数据发送方法还包括:确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及所述预设比特数。
可选的,在所述确定激活指令之前,所述的数据发送方法还包括:确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及各个RB的发送端逻辑信道的数量最大值为预设值。
可选的,根据以下公式,确定用于指示每个RB的待使用的发送端逻辑信道的比特数:
Figure PCTCN2019092982-appb-000002
其中,b i用于表示所述激活指令中用于指示第i个RB的待使用的发送端逻辑信道的字段的比特数;N用于表示各个RB的发送端逻辑信道的数量最大值。
可选的,所述PDCP复制功能配置信息还包括每个发送端逻辑信道与子带的映射关系。
为解决上述技术问题,本发明实施例提供一种数据发送装置,包括:激活确定模块,适于确定激活指令,所述激活指令采用多个比特指示每个RB的待使用的发送端逻辑信道;发送模块,适于对于每个RB,根据所述RB待使用的发送端逻辑信道的数目n,发送端PDCP实体对PDCP数据包进行复制,并通过所述待使用的发送端逻辑信道将复制后的PDCP数据包发送至接收端;其中,各个RB的发送端逻辑信道的数目n的最大值大于2。
可选的,所述多个比特中的每个比特指示对应的发送端逻辑信道是否为待使用的发送端逻辑信道;其中,所述多个比特中的每个比特与每个发送端逻辑信道具有一一映射关系。
可选的,所述多个比特中的每个比特与每个发送端逻辑信道的一一映射关系是预定义的。
可选的,所述的数据发送装置还包括:第一配置信息确定模块,适于在所述确定激活指令之前,确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个发送端PDCP实体与所述发送端逻辑信道的映射关系,以及所述多个比特中的每个比特与所述发送端逻辑信道的一一映射关系;其中,所述RB与所述发送端PDCP实体一一对应。
可选的,所述PDCP复制功能配置信息还包括每个发送端逻辑信道与子带的映射关系。
可选的,在CA复制中,所述激活指令中的多个比特指示的各个RB按照RB的序号的顺序排列,指示同一RB的各个比特按照所述发送端逻辑信道的序号的顺序排列;其中,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序为升序或降序,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序相同或不同。
可选的,在DC复制中,所述激活指令中的多个比特指示的各个RB按照RB的序号的顺序排列,指示同一RB的各个比特按照发送端介质访问层的序号的顺序排列;其中,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序为升序或降序,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序相同或不同。
可选的,指示同一RB的比特的值用于指示所述RB的待使用的发送端逻辑信道的数目n,其中,每个RB的发送端逻辑信道按照预设次序排列;根据所述预设次序,将排列在前的n个发送端逻辑信道选择为所述待使用的发送端逻辑信道。
可选的,第二配置信息确定模块,适于在所述确定激活指令之前,确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序。
可选的,所述PDCP复制功能配置信息还包括每个发送端逻辑信道与子带的映射关系。
可选的,根据以下公式,确定用于指示每个RB的待使用的发送端逻辑信道的比特数:
Figure PCTCN2019092982-appb-000003
其中,b i用于表示所述激活指令中用于指示第i个RB的待使用的发送端逻辑信道的字段的比特数;n i用于表示第i个RB的所述发送端逻辑信道的数目。
可选的,用于指示每个RB的待使用的发送端逻辑信道的比特数为预设比特数,所述的数据发送装置还包括:第三配置信息确定模块,适于在所述确定激活指令之前,确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及所述预设比特数。
可选的,所述的数据发送装置还包括:第四配置信息确定模块,适于在所述确定激活指令之前,确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及各个RB的发送端逻辑信道的数量最大值为预设值。
可选的,根据以下公式,确定用于指示每个RB的待使用的发送端逻辑信道的比特数:
Figure PCTCN2019092982-appb-000004
其中,b i用于表示所述激活指令中用于指示第i个RB的待使用的发送端逻辑信道的字段的比特数;N用于表示各个RB的发送端逻辑信道的数量最大值。
可选的,所述PDCP复制功能配置信息还包括每个发送端逻辑信道与子带的映射关系。
为解决上述技术问题,本发明实施例提供一种存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述数据发送方法的步骤。
为解决上述技术问题,本发明实施例提供一种发送端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述数据发送方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
在本发明实施例中,通过设置激活指令采用多个比特指示每个RB的待使用的发送端逻辑信道,相比于现有技术中,仅采用一个比特指示每个RB的待使用的发送端逻辑信道,难以清楚地指示多连接复制的情况,采用本发明实施例的方案,可以在各个RB的发送端逻辑信道的数目n的最大值大于2时,采用多个比特进行指示,提高指示的准确性,从而有助于提高传输资源利用效率。
进一步,在本发明实施例中,所述激活指令采用所述多个比特中的每个比特指示对应的发送端逻辑信道是否为待使用的发送端逻辑信道,从而使发送端可以根据每个比特的值确定该比特对应的发送端逻辑信道是否为待使用的发送端逻辑信道,从而在需要发送数据时确定发送端逻辑信道。
进一步,所述激活指令采用指示同一RB的比特值用于指示所述待使用的发送端逻辑信道的数目n,其中,每个RB的发送端逻辑信道按照预设次序排列;根据所述预设次序,将排列在前的n个发送端逻辑信道选择为所述待使用的发送端逻辑信道。在本发明实施例中,发送端可以采用较少的比特指示所述待使用的发送端逻辑信道,从而使发送端可以根据指示同一RB的比特值以及预设次序,确定该RB的待使用的发送端逻辑信道有哪些,从而在需要发送数据时确定发送端逻辑信道。
进一步,用于指示每个RB的待使用的发送端逻辑信道的比特数为预设比特数,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及所述预设比特数。采用本发明实施例的方案,接收指令中可以用预设数目的比特数表示每个RB,发送端无需计算即可分离对应于每个RB的多个比特,降低运算复杂度。
附图说明
图1是现有技术中一种数据发送方法的工作场景示意图;
图2是现有技术中另一种数据发送方法的工作场景示意图;
图3是本发明实施例中一种数据发送方法的流程图;
图4是本发明实施例中一种数据发送方法的工作场景示意图;
图5是本发明实施例中一种数据发送方法的激活指令中的多个比特的示意图;
图6是本发明实施例中另一种数据发送方法的工作场景示意图;
图7是本发明实施例中另一种数据发送方法的激活指令中的多个比特的示意图;
图8是本发明实施例中又一种数据发送方法的激活指令中的指示同一RB的比特的示意图;
图9是本发明实施例中一种数据发送装置的结构示意图。
具体实施方式
在现有技术中,支持两条无线数据链路复制(Two-legs duplication)模式的激活/去激活机制。具体而言,针对每一个配置了复制功能的RB,通过一个比特(bit)指示该RB的复制功能激活或去激活。其中复制功能激活可以用于指示PDCP进行复制操作,且两条无线数据链路都进行数据传输;复制功能去激活可以用于指示 PDCP不进行复制操作,且只通过主要的无线数据链路(Primary leg)进行数据传输。
然而,对于多连接复制(Multi-connectivity duplication),配置了复制功能的数据无线承载(Data Radio Bearer,RB)可以配置多于两条无线数据链路(leg),则对于一个RB来说,采用多少个待使用的发送端逻辑信道发送复制的PDCP数据包,以及采用哪几个待使用的发送端逻辑信道进行数据传输,用一个比特进行指示是不清楚的。具体而言,一个比特仅包含有0/1两种状态,也即仅能用于指示两条无线数据链路,无法清楚地指示多连接复制的使用情况。
参照图1,图1是现有技术中一种数据发送方法的工作场景示意图,所述数据发送方法可以用于载波聚合(Carrier Aggregation,CA)场景下的PDCP复制功能架构。
在所述数据发送方法中,发送端PDCP实体110将PDCP数据包分别下发至第一发送端RLC实体121以及第二发送端RLC实体122,并通过第一发送端RLC实体121对应的第一发送端逻辑信道、第二发送端RLC实体122对应的第二发送端逻辑信道下发至发送端介质访问层(Medium Access Control,MAC)130。
由于第一发送端逻辑信道以及第二发送端逻辑信道分别映射到不同的子带上,因此PDCP数据包将分别通过不同的子带,例如第一发送端逻辑信道发送的PDCP数据包通过第一子带141以及第二子带142进行发送,第二发送端逻辑信道发送的PDCP数据包通过第三子带143、第四子带144以及第五子带145进行发送。
进一步地,接收端介质访问层150通过不同的子带,例如第一子带141、第二子带142、第三子带143、第四子带144以及第五子带145分别接收到PDCP数据包,然后上传至对应的第一接收端RLC实体161以及第二接收端RLC实体162,并且通过第一接收端RLC实体161对应的第一接收端逻辑信道、第二接收端RLC实体162对应的第二接收端逻辑信道上传至接收端PDCP实体170。
在具体实施中,每条无线数据链路可以为从发送端PDCP实体110至接收端PDCP实体170的其中一条路径,例如可以是从发送端PDCP实体、发送端RLC实体、发送端介质访问层、子带、接收端介质访问层、接收端RLC实体至接收端PDCP实体。
在现有的CA场景下的PDCP复制功能架构中,可以包括配置、激活、去激活等多个步骤以实现复制功能。
具体而言,在配置步骤中,网络侧(例如基站)可以采用RRC消息为多个无线承载(Radio Bearer,RB)配置PDCP复制功能,为该RB建立一个额外的复制RLC实体。其中,RRC消息还会指示主RLC实体的子带组ID(Cell group ID)和逻辑信道ID(Logic Channel ID,LCID)。RRC消息也可以为RBs设置复制初始态(例如为激活或者不激活)。
在CA场景下,通常只需要一个MAC实体。通过无线资源控制(Radio Resource Control,RRC)消息,还会配置两个RLC实体分别映射到不同的载波上。
进一步地,配置完成后,需要进一步激活才能够使用复制功能。所述激活/去激活(Activation/Deactivation)的步骤是通过网络侧发送激活/去激活MAC控制元素(Control Element,CE)来实现的,所述MAC CE中包含一个比特表(bitmap),bitmap中的每一个bit分别对应了一个RB复制配置(RB configured with duplication),其中某个RB复制配置所对应的bit位指示为1代表激活该RB,所对应的bit位指示为0代表去激活该RB。
其中,所述RB可以包括数据无线承载(Data Radio Bearer,DRB)与信令无线承载(Signaling Radio Bearer,SRB)。
在激活步骤中,某个RB复制配置被激活之后,PDCP层会对数据包进行复制操作,并将相同的两份复制后的PDCP协议数据单元(Protocol Data Unit,PDU)分别发送给这个RB所对应的两个RLC 实体,这两个RLC实体将会分别对复制后的PDCP PDU进行发送。
在去激活步骤中,某个RB复制配置被去激活之后,其所对应的逻辑信道(LCH)与载波之间的对应限制就被取消;发送端PDCP层不会对新数据包进行复制操作,并且向主(Primary)RLC实体(即主LCH)发送新数据,而不向副(Secondary)RLC实体(即副LCH)发送新数据;发送端PDCP实体会通知副RLC实体取消(cancel)副LCH中的缓存数据。
参照图2,图2是现有技术中另一种数据发送方法的工作场景示意图,所述另一种数据发送方法可以用于双连接(Dual Connectivity,DC)场景下的PDCP复制功能架构。
如图2所示,具有多个发送端介质访问层与接收端介质访问层,例如所述发送端介质访问层可以包括第一发送端介质访问层231、第二发送端介质访问层232等;所述接收端介质访问层可以包括第一接收端介质访问层251、第二接收端介质访问层252等。
在具体实施中,每条无线数据链路可以为从发送端PDCP实体110至接收端PDCP实体170的其中一条路径,例如可以是从发送端PDCP实体、发送端RLC实体、发送端介质访问层、子带、接收端介质访问层、接收端RLC实体至接收端PDCP实体。其中,多个发送端介质访问层与发送端RLC实体具有对应关系,多个接收端介质访问层与接收端RLC实体具有对应关系。
在现有的DC场景下的PDCP复制功能架构中,也可以包括配置、激活、去激活等多个步骤以实现复制功能。
具体地,所述配置步骤可以与CA场景相同。
进一步地,配置完成后,需要进一步激活才能够使用复制功能。所述激活/去激活(Activation/Deactivation)的步骤是通过网络侧发送激活/去激活MAC控制元素(Control Element,CE)来实现的,所述MAC CE中包含一个比特表(bitmap),bitmap中的每一个bit分别 对应了一个RB复制配置(RB configured with duplication),其中某个RB复制配置所对应的bit位指示为1代表激活该RB,所对应的bit位指示为0代表去激活该RB。
在激活步骤中,某个RB复制配置被激活之后,PDCP层会对数据包进行复制操作,并将相同的两份复制后的PDCP协议数据单元(Protocol Data Unit,PDU)分别发送给这个RB所对应的两个RLC实体,这两个RLC实体将会分别对复制后的PDCP PDU进行发送。
在去激活步骤中,某个RB复制配置被去激活之后,UE将会回退到分支操作(Split Operation)并会采用原来分支操作的相关配置。
然而在现有技术中,在多连接复制的情况下,指示的准确性有待提高。
本发明的发明人经过研究发现,在现有技术中,对于多连接复制,配置了复制功能的RB可以配置多于两条无线数据链路,也即配置多于两个的发送端逻辑信道,则采用多少个待使用的发送端逻辑信道发送复制的PDCP数据包,以及采用哪几个待使用的发送端逻辑信道进行数据传输,用一个比特进行指示是不清楚的。具体而言,一个比特仅包含有0/1两种状态,也即仅能用于指示两个逻辑信道,无法清楚地指示多连接复制的使用情况。
在本发明实施例中,通过设置激活指令采用多个比特指示每个RB的待使用的发送端逻辑信道,相比于现有技术中,仅采用一个比特指示每个RB的待使用的发送端逻辑信道,难以清楚地指示多连接复制的情况,采用本发明实施例的方案,可以在各个RB的发送端逻辑信道的数目n的最大值大于2时,采用多个比特进行指示,提高指示的准确性,从而有助于提高传输资源利用效率。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
参照图3,图3是本发明实施例中一种数据发送方法的流程图。 所述数据发送方法可以包括步骤S31至步骤S32:
步骤S31:确定激活指令,所述激活指令采用多个比特指示每个RB的待使用的发送端逻辑信道;
步骤S32:对于每个RB,根据所述RB待使用的发送端逻辑信道的数目n,发送端PDCP实体对PDCP数据包进行复制,并通过所述待使用的发送端逻辑信道将复制后的PDCP数据包发送至接收端,其中,各个RB的发送端逻辑信道的数目n的最大值大于2。
在步骤S31中,所述确定激活指令的步骤可以根据发送端为基站或者用户终端而进行不同的操作。
具体地,当发送端为基站时,所述确定激活指令可以包括:配置并向用户终端发送所述激活指令,以使所述用户终端根据所述激活指令中的多个比特,确定每个RB的待使用的发送端逻辑信道。
当发送端为用户终端时,所述确定激活指令可以包括:从基站接收所述激活指令。
进一步地,所述激活指令可以是通过MAC控制元件(Control Element,CE)信令传输的。需要指出的是,在本发明实施例中,对于传输所述激活指令的具体方式不作限制。
进一步地,所述多个比特中的每个比特指示对应的发送端逻辑信道是否为待使用的发送端逻辑信道;其中,所述多个比特中的每个比特与每个发送端逻辑信道具有一一映射关系。
具体地,可以设置某个比特为1代表对应的发送端逻辑信道为待使用的发送端逻辑信道,设置某个比特为0代表对应的发送端逻辑信道不是待使用的发送端逻辑信道。
在本发明实施例的一种具体实施方式中,所述多个比特中的每个比特与每个发送端逻辑信道的一一映射关系是预定义的。
具体地,例如可以设置多个比特对应的RB以及发送端逻辑信道 均按照升序排列,可以通过协议预定义好,且不可修改。
在本发明实施例的另一种具体实施方式中,所述多个比特中的每个比特与每个发送端逻辑信道的一一映射关系可以是由网络侧(例如基站)发送至用户终端的,例如可以配置PDCP复制功能配置信息。
具体地,在所述确定激活指令之前,所述数据发送方法还可以包括确定PDCP复制功能配置信息的步骤。
在DC复制中,所述PDCP复制功能配置信息可以包括每个发送端PDCP实体与所述发送端逻辑信道的映射关系,以及所述多个比特中的每个比特与所述发送端逻辑信道的一一映射关系;其中,所述RB与所述发送端PDCP实体一一对应。
在CA复制中,所述PDCP复制功能配置信息可以包括每个发送端PDCP实体与所述发送端逻辑信道的映射关系,以及所述多个比特中的每个比特与所述发送端逻辑信道的一一映射关系;还可以包括每个发送端逻辑信道与子带的映射关系。
需要指出的是,所述PDCP复制功能配置信息可以包括详细的每个比特与所述发送端逻辑信道的一一映射关系,还可以仅指示所述激活指令中的多个比特的排列顺序,以使用户终端在接收到激活指令后,可以自行确定每个比特与所述发送端逻辑信道的一一映射关系。
参照图4,图4是本发明实施例中一种数据发送方法的工作场景示意图。
如图4所示的数据发送方法可以用于CA复制中,已配置PDCP复制功能的RB具有n条无线数据链路,也即具有n条发送端逻辑信道。
具体而言,发送端PDCP实体410可以将PDCP数据包分别发送至第一发送端RLC实体421、第二发送端RLC实体422、……第n发送端RLC实体423,并通过第一发送端RLC实体421对应的第一发送端逻辑信道、通过第二发送端RLC实体422对应的第二发送 端逻辑信道、……通过第n发送端RLC实体423对应的第n发送端逻辑信道发送至发送端介质访问层430。其中,n为正整数。
进一步地,PDCP数据包可以分别通过不同的子带发送,例如可以包括第一子带441、第二子带442、……第n子带443进行发送。
需要指出的是,在本发明实施例中,对所述第一子带441、第二子带442以及第n子带443中包含的具体子带的数目不作限制,也即可以视为子带组。
参照图5,图5是本发明实施例中一种数据发送方法的激活指令中的多个比特的示意图。
在CA复制中,所述激活指令中的多个比特指示的各个RB按照RB的序号的顺序排列,指示同一RB的各个比特按照发送端逻辑信道的序号的顺序排列;其中,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序为升序或降序,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序相同或不同。
在具体实施中,可以在配置所述激活指令中的多个比特时,分两个层次进行排序,第一层可以以RB的序号的升序或降序对RB进行排列,第二层可以以逻辑信道(LCH)的序号的升序或降序对LCH进行排列,然后按照排列的顺序配置所述多个比特中每个比特的值。如图5示出的激活指令中的多个比特即为以升序排列RB的序号以及发送端逻辑信道的序号的情况。
在具体实施中,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序相同或不同,也即可以设置为以升序排列RB的序号,然而以降序排列发送端逻辑信道的序号的情况,或者以降序排列RB的序号,然而以升序排列发送端逻辑信道的序号。
参照图6,图6是本发明实施例中另一种数据发送方法的工作场景示意图。
如图6所示的数据发送方法可以用于DC复制中,已配置PDCP 复制功能的RB具有n条无线数据链路,也即具有n条。
具体而言,发送端PDCP实体610可以将PDCP数据包分别发送至第一发送端RLC实体621、第二发送端RLC实体622、……第n发送端RLC实体623,并通过第一发送端RLC实体621对应的第一发送端逻辑信道发送至第一发送端介质访问层631,通过第二发送端RLC实体622对应的第二发送端逻辑信道发送至第二发送端介质访问层632,通过第n发送端RLC实体623对应的第n发送端逻辑信道发送至第n发送端介质访问层633。其中,n为正整数。
进一步地,PDCP数据包可以分别通过不同的子带发送,例如第一发送端逻辑信道发送的PDCP数据包通过第一子带641进行发送,第二发送端逻辑信道发送的PDCP数据包通过第二子带642进行发送,……第n发送端逻辑信道发送的PDCP数据包通过第n子带643进行发送。
需要指出的是,在本发明实施例中,对所述第一子带641、第二子带642以及第n子带643中包含的具体子带的数目不作限制,也即可以视为子带组。
参照图7,图7是本发明实施例中另一种数据发送方法的激活指令中的多个比特的示意图。
在DC复制中,所述激活指令中的多个比特指示的各个RB按照RB的序号的顺序排列,指示同一RB的各个比特按照发送端介质访问层的序号的顺序排列;其中,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序为升序或降序,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序相同或不同。
在具体实施中,可以在配置所述激活指令中的多个比特时,分两个层次进行排序,第一层可以以RB的序号的升序或降序对RB进行排列,第二层可以以发送端介质访问层的序号的升序或降序对LCH进行排列,然后按照排列的顺序配置所述多个比特中每个比特的值。 如图5示出的激活指令中的多个比特即为以升序排列RB的序号以及发送端介质访问层的序号的情况。
在具体实施中,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序相同或不同,也即可以设置为以升序排列RB的序号,然而以降序排列发送端介质访问层的序号的情况,或者以降序排列RB的序号,然而以升序排列发送端介质访问层的序号。
在本发明实施例中,所述激活指令采用所述多个比特中的每个比特指示对应的发送端逻辑信道是否为待使用的发送端逻辑信道,从而使发送端可以根据每个比特的值确定该比特对应的发送端逻辑信道是否为待使用的发送端逻辑信道,从而在需要发送数据时确定发送端逻辑信道。
在本发明实施例的又一种具体实施方式中,指示同一RB的比特的值用于指示所述RB的待使用的发送端逻辑信道的数目n,其中,每个RB的发送端逻辑信道按照预设次序排列;根据所述预设次序,将排列在前的n个发送端逻辑信道选择为所述待使用的发送端逻辑信道。
具体地,所述激活指令中的多个比特仅用于指示多个RB中每个RB的待使用的发送端逻辑信道的数目n,也即指示同一RB的比特的值用于指示所述RB的待使用的发送端逻辑信道的数目n,UE默认只使用排列在前的n个发送端逻辑信道。
在具体实施中,所述预设次序可以用于指示每个RB内的发送端逻辑信道的优先级,例如优先级更高的发送端逻辑信道设置为更前的次序,以更容易被选择到。
进一步地,在所述确定激活指令之前,所述数据发送方法还可以包括确定PDCP复制功能配置信息的步骤。
在DC复制中,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的 预设次序。
在CA复制中,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,还可以包括每个发送端逻辑信道与子带的映射关系。
参照图8,图8是本发明实施例中又一种数据发送方法的激活指令中的指示同一RB的比特的示意图。
如图8所示,指示同一RB(即RB1)的比特为“00”时,值为0,指示RB1的待使用的发送端逻辑信道的数目n为0,也即3条发送端逻辑信道均不使用;指示同一RB(即RB1)的比特为“01”时,值为1,指示RB1的待使用的发送端逻辑信道的数目n为1,也即使用前1条发送端逻辑信道;指示同一RB(即RB1)的比特为“10”时,值为2,指示RB1的待使用的发送端逻辑信道的数目n为2,也即使用前2条发送端逻辑信道;指示同一RB(即RB1)的比特为“11”时,值为3,指示RB1的待使用的发送端逻辑信道的数目n为3,也即使用前3条发送端逻辑信道。
在具体实施中,可以在配置所述激活指令中的多个比特时,分两个层次进行排序,第一层可以以RB的序号的升序或降序对RB进行排列,第二层对于每个RB,可以配置一个或多个比特的值指示n。
在具体实施中,可以根据以下公式,确定用于指示每个RB的待使用的发送端逻辑信道的比特数:
Figure PCTCN2019092982-appb-000005
其中,b i用于表示所述激活指令中用于指示第i个RB的待使用的发送端逻辑信道的字段的比特数;n i用于表示第i个RB的所述发送端逻辑信道的数目。
需要指出的是,在本发明实施例中,不同的RB的待使用的发送端逻辑信道的比特数可以相同或不同。如果所述待使用的发送端逻辑信道的数量发生变化,则所述待使用的发送端逻辑信道的比特数也可 能随之变化。在具体实施中,用户终端可以根据上述公式通过计算确定用于指示每个RB的待使用的发送端逻辑信道的比特数,进而确定每个RB的待使用的发送端逻辑信道。
在本发明实施例中,所述激活指令采用指示同一RB的比特值用于指示所述待使用的发送端逻辑信道的数目n,其中,每个RB的发送端逻辑信道按照预设次序排列;根据所述预设次序,将排列在前的n个发送端逻辑信道选择为所述待使用的发送端逻辑信道。在本发明实施例中,发送端可以采用较少的比特指示所述待使用的发送端逻辑信道,从而使发送端可以根据指示同一RB的比特值以及预设次序,该RB的待使用的发送端逻辑信道有哪些,从而在需要发送数据时确定发送端逻辑信道。
在本发明实施例的一种优选实施方式中,用于指示每个RB的待使用的发送端逻辑信道的比特数可以设置为预设比特数,在所述确定激活指令之前,所述数据发送方法还可以包括:确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及所述预设比特数。
进一步地,在CA复制中,所述PDCP复制功能配置信息还可以包括每个发送端逻辑信道与子带的映射关系。
采用本发明实施例的方案,接收指令中可以用预设数目的比特数表示每个RB,发送端无需计算即可分离对应于每个RB的多个比特,有助于降低运算复杂度。
在本发明实施例的另一种优选实施方式中,在所述确定激活指令之前,所述数据发送方法还可以包括:确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及各个RB的发送端逻辑信道的数量最大值为预设值。
进一步地,在CA复制中,所述PDCP复制功能配置信息还可以包括每个发送端逻辑信道与子带的映射关系。
进一步地,确定用于指示每个RB的待使用的发送端逻辑信道的比特数:
Figure PCTCN2019092982-appb-000006
其中,b i用于表示所述激活指令中用于指示第i个RB的待使用的发送端逻辑信道的字段的比特数;N用于表示各个RB的发送端逻辑信道的数量最大值。
具体地,对于所有的RB来说,由于配置的发送端逻辑信道的数量均不会大于N,因此上述计算出来的比特数能够完整地指示所有已配置复制功能的leg。也即对于所有已配置复制功能的RB,比特数均可固定为上述计算出来的b i,即使leg的数量发生变化,b i也不需要改变。
采用本发明实施例的方案,激活指令中可以用预设数目的比特数表示每个RB,发送端无需对每个RB单独进行计算,即可根据b i分离对应于每个RB的多个比特,有助于降低运算复杂度。
继续参照图3,在步骤S32的具体实施中,对于每个RB,根据所述RB待使用的发送端逻辑信道的数目n,发送端PDCP实体对PDCP数据包进行复制,并通过所述待使用的发送端逻辑信道将复制后的PDCP数据包发送至接收端,其中,各个RB的发送端逻辑信道的数目n的最大值大于2。
在一种具体实施方式中,PDCP实体从上层接收到1个数据包,在PDCP实体本层进行复制。具体地,可以根据所述待用的发送端逻辑信道的数目为N,PDCP实体对所述PDCP数据包复制N-1次,以得到PDCP数据包的总数为N,进而通过所述待用的发送端逻辑信道,将原PDCP数据包以及复制的N-1个PDCP数据包发送至接收端。
在本发明实施例中,通过设置激活指令采用多个比特指示每个 RB的待使用的发送端逻辑信道,相比于现有技术中,仅采用一个比特指示每个RB的待使用的发送端逻辑信道,难以清楚地指示多连接复制的情况,采用本发明实施例的方案,可以在各个RB的发送端逻辑信道的数目n的最大值大于2时,采用多个比特进行指示,提高指示的准确性,从而有助于提高传输资源利用效率。
参照图9,图9是本发明实施例中一种数据发送装置的结构示意图。所述数据发送装置可以包括:
激活确定模块91,适于确定激活指令,所述激活指令采用多个比特指示每个RB的待使用的发送端逻辑信道;
发送模块92,适于对于每个RB,根据所述RB待使用的发送端逻辑信道的数目n,发送端PDCP实体对PDCP数据包进行复制,并通过所述待使用的发送端逻辑信道将复制后的PDCP数据包发送至接收端;其中,各个RB的发送端逻辑信道的数目n的最大值大于2;
第一配置信息确定模块93,适于在所述确定激活指令之前,确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个发送端PDCP实体与所述发送端逻辑信道的映射关系,以及所述多个比特中的每个比特与所述发送端逻辑信道的一一映射关系;其中,所述RB与所述发送端PDCP实体一一对应;
第二配置信息确定模块94,适于在所述确定激活指令之前,确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序;
第三配置信息确定模块95,适于在所述确定激活指令之前,确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及所述预设比特数;
第四配置信息确定模块96,适于在所述确定激活指令之前,确 定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及各个RB的发送端逻辑信道的数量最大值为预设值。
进一步地,所述多个比特中的每个比特可以指示对应的发送端逻辑信道是否为待使用的发送端逻辑信道;其中,所述多个比特中的每个比特与每个发送端逻辑信道具有一一映射关系。
进一步地,所述多个比特中的每个比特与每个发送端逻辑信道的一一映射关系可以是预定义的。
进一步地,所述PDCP复制功能配置信息还可以包括每个发送端逻辑信道与子带的映射关系。
进一步地,在CA复制中,所述激活指令中的多个比特指示的各个RB可以按照RB的序号的顺序排列,指示同一RB的各个比特按照所述发送端逻辑信道的序号的顺序排列;其中,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序为升序或降序,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序相同或不同。
进一步地,在DC复制中,所述激活指令中的多个比特指示的各个RB可以按照RB的序号的顺序排列,指示同一RB的各个比特按照发送端介质访问层的序号的顺序排列;其中,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序为升序或降序,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序相同或不同。
进一步地,指示同一RB的比特的值可以用于指示所述RB的待使用的发送端逻辑信道的数目n,其中,每个RB的发送端逻辑信道按照预设次序排列;根据所述预设次序,将排列在前的n个发送端逻辑信道选择为所述待使用的发送端逻辑信道。
进一步地,所述PDCP复制功能配置信息还可以包括每个发送端逻辑信道与子带的映射关系。
进一步地,可以根据以下公式,确定用于指示每个RB的待使用的发送端逻辑信道的比特数:
Figure PCTCN2019092982-appb-000007
其中,b i用于表示所述激活指令中用于指示第i个RB的待使用的发送端逻辑信道的字段的比特数;n i用于表示第i个RB的所述发送端逻辑信道的数目。
进一步地,用于指示每个RB的待使用的发送端逻辑信道的比特数可以为预设比特数,还包括:第三配置信息确定模块,适于在所述确定激活指令之前,确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及所述预设比特数。
进一步地,可以根据以下公式,确定用于指示每个RB的待使用的发送端逻辑信道的比特数:
Figure PCTCN2019092982-appb-000008
其中,b i用于表示所述激活指令中用于指示第i个RB的待使用的发送端逻辑信道的字段的比特数;N用于表示各个RB的发送端逻辑信道的数量最大值。
进一步地,所述PDCP复制功能配置信息还可以包括每个发送端逻辑信道与子带的映射关系。
关于该数据发送装置的原理、具体实现和有益效果请参照前文及图1至图8示出的关于数据发送方法的相关描述,此处不再赘述。
本发明实施例还提供了一种存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述图3示出的关于数据发送方法的步骤。所述存储介质可以是计算机可读存储介质,例如可以包括非挥发性存储器(non-volatile)或者非瞬态(non-transitory)存储器,还可以包括光盘、机械硬盘、固态硬盘等。
本发明实施例还提供了一种发送端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述图3示出的关于数据发送方法的步骤。所述发送端包括但不限于基站、服务器等网络设备,以及手机、计算机、平板电脑等终端设备。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (32)

  1. 一种数据发送方法,其特征在于,包括以下步骤:
    确定激活指令,所述激活指令采用多个比特指示每个RB的待使用的发送端逻辑信道;
    对于每个RB,根据所述RB待使用的发送端逻辑信道的数目n,发送端PDCP实体对PDCP数据包进行复制,并通过所述待使用的发送端逻辑信道将复制后的PDCP数据包发送至接收端;
    其中,各个RB的发送端逻辑信道的数目n的最大值大于2。
  2. 根据权利要求1所述的数据发送方法,其特征在于,
    所述多个比特中的每个比特指示对应的发送端逻辑信道是否为待使用的发送端逻辑信道;
    其中,所述多个比特中的每个比特与每个发送端逻辑信道具有一一映射关系。
  3. 根据权利要求2所述的数据发送方法,其特征在于,所述多个比特中的每个比特与每个发送端逻辑信道的一一映射关系是预定义的。
  4. 根据权利要求2所述的数据发送方法,其特征在于,在所述确定激活指令之前,还包括:
    确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个发送端PDCP实体与所述发送端逻辑信道的映射关系,以及所述多个比特中的每个比特与所述发送端逻辑信道的一一映射关系;
    其中,所述RB与所述发送端PDCP实体一一对应。
  5. 根据权利要求4所述的数据发送方法,其特征在于,所述PDCP复制功能配置信息还包括每个发送端逻辑信道与子带的映射关 系。
  6. 根据权利要求2所述的数据发送方法,其特征在于,
    在CA复制中,所述激活指令中的多个比特指示的各个RB按照RB的序号的顺序排列,指示同一RB的各个比特按照所述发送端逻辑信道的序号的顺序排列;
    其中,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序为升序或降序,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序相同或不同。
  7. 根据权利要求2所述的数据发送方法,其特征在于,
    在DC复制中,所述激活指令中的多个比特指示的各个RB按照RB的序号的顺序排列,指示同一RB的各个比特按照发送端介质访问层的序号的顺序排列;
    其中,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序为升序或降序,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序相同或不同。
  8. 根据权利要求1所述的数据发送方法,其特征在于,
    指示同一RB的比特的值用于指示所述RB的待使用的发送端逻辑信道的数目n,其中,每个RB的发送端逻辑信道按照预设次序排列;
    根据所述预设次序,将排列在前的n个发送端逻辑信道选择为所述待使用的发送端逻辑信道。
  9. 根据权利要求8所述的数据发送方法,其特征在于,在所述确定激活指令之前,还包括:
    确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序。
  10. 根据权利要求9所述的数据发送方法,其特征在于,所述PDCP复制功能配置信息还包括每个发送端逻辑信道与子带的映射关系。
  11. 根据权利要求8所述的数据发送方法,其特征在于,根据以下公式,确定用于指示每个RB的待使用的发送端逻辑信道的比特数:
    Figure PCTCN2019092982-appb-100001
    其中,b i用于表示所述激活指令中用于指示第i个RB的待使用的发送端逻辑信道的字段的比特数;n i用于表示第i个RB的所述发送端逻辑信道的数目。
  12. 根据权利要求8所述的数据发送方法,其特征在于,用于指示每个RB的待使用的发送端逻辑信道的比特数为预设比特数,在所述确定激活指令之前,还包括:
    确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及所述预设比特数。
  13. 根据权利要求8所述的数据发送方法,其特征在于,在所述确定激活指令之前,还包括:
    确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及各个RB的发送端逻辑信道的数量最大值为预设值。
  14. 根据权利要求13所述的数据发送方法,其特征在于,根据以下公式,确定用于指示每个RB的待使用的发送端逻辑信道的比特数:
    Figure PCTCN2019092982-appb-100002
    其中,b i用于表示所述激活指令中用于指示第i个RB的待使用的发送端逻辑信道的字段的比特数;N用于表示各个RB的发送端逻 辑信道的数量最大值。
  15. 根据权利要求12或13所述的数据发送方法,其特征在于,所述PDCP复制功能配置信息还包括每个发送端逻辑信道与子带的映射关系。
  16. 一种数据发送装置,其特征在于,包括:
    激活确定模块,适于确定激活指令,所述激活指令采用多个比特指示每个RB的待使用的发送端逻辑信道;
    发送模块,适于对于每个RB,根据所述RB待使用的发送端逻辑信道的数目n,发送端PDCP实体对PDCP数据包进行复制,并通过所述待使用的发送端逻辑信道将复制后的PDCP数据包发送至接收端;
    其中,各个RB的发送端逻辑信道的数目n的最大值大于2。
  17. 根据权利要求16所述的数据发送装置,其特征在于,
    所述多个比特中的每个比特指示对应的发送端逻辑信道是否为待使用的发送端逻辑信道;
    其中,所述多个比特中的每个比特与每个发送端逻辑信道具有一一映射关系。
  18. 根据权利要求17所述的数据发送装置,其特征在于,所述多个比特中的每个比特与每个发送端逻辑信道的一一映射关系是预定义的。
  19. 根据权利要求17所述的数据发送装置,其特征在于,还包括:
    第一配置信息确定模块,适于在所述确定激活指令之前,确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个发送端PDCP实体与所述发送端逻辑信道的映射关系,以及所述多个比特中的每个比特与所述发送端逻辑信道的一一映射关系;
    其中,所述RB与所述发送端PDCP实体一一对应。
  20. 根据权利要求19所述的数据发送装置,其特征在于,所述PDCP复制功能配置信息还包括每个发送端逻辑信道与子带的映射关系。
  21. 根据权利要求17所述的数据发送装置,其特征在于,
    在CA复制中,所述激活指令中的多个比特指示的各个RB按照RB的序号的顺序排列,指示同一RB的各个比特按照所述发送端逻辑信道的序号的顺序排列;
    其中,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序为升序或降序,所述RB的序号的顺序以及所述发送端逻辑信道的序号的顺序相同或不同。
  22. 根据权利要求17所述的数据发送装置,其特征在于,
    在DC复制中,所述激活指令中的多个比特指示的各个RB按照RB的序号的顺序排列,指示同一RB的各个比特按照发送端介质访问层的序号的顺序排列;
    其中,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序为升序或降序,所述RB的序号的顺序以及所述发送端介质访问层的序号的顺序相同或不同。
  23. 根据权利要求16所述的数据发送装置,其特征在于,
    指示同一RB的比特的值用于指示所述RB的待使用的发送端逻辑信道的数目n,其中,每个RB的发送端逻辑信道按照预设次序排列;
    根据所述预设次序,将排列在前的n个发送端逻辑信道选择为所述待使用的发送端逻辑信道。
  24. 根据权利要求23所述的数据发送装置,其特征在于,还包括:
    第二配置信息确定模块,适于在所述确定激活指令之前,确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序。
  25. 根据权利要求24所述的数据发送装置,其特征在于,所述PDCP复制功能配置信息还包括每个发送端逻辑信道与子带的映射关系。
  26. 根据权利要求23所述的数据发送装置,其特征在于,根据以下公式,确定用于指示每个RB的待使用的发送端逻辑信道的比特数:
    Figure PCTCN2019092982-appb-100003
    其中,b i用于表示所述激活指令中用于指示第i个RB的待使用的发送端逻辑信道的字段的比特数;n i用于表示第i个RB的所述发送端逻辑信道的数目。
  27. 根据权利要求23所述的数据发送装置,其特征在于,用于指示每个RB的待使用的发送端逻辑信道的比特数为预设比特数,还包括:
    第三配置信息确定模块,适于在所述确定激活指令之前,确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及所述预设比特数。
  28. 根据权利要求23所述的数据发送装置,其特征在于,还包括:
    第四配置信息确定模块,适于在所述确定激活指令之前,确定PDCP复制功能配置信息,所述PDCP复制功能配置信息包括每个PDCP实体与发送端逻辑信道的映射关系,以及每个RB的发送端逻辑信道的预设次序,以及各个RB的发送端逻辑信道的数量最大值为预设值。
  29. 根据权利要求28所述的数据发送装置,其特征在于,根据以下公式,确定用于指示每个RB的待使用的发送端逻辑信道的比特数:
    Figure PCTCN2019092982-appb-100004
    其中,b i用于表示所述激活指令中用于指示第i个RB的待使用的发送端逻辑信道的字段的比特数;N用于表示各个RB的发送端逻辑信道的数量最大值。
  30. 根据权利要求28或29所述的数据发送装置,其特征在于,所述PDCP复制功能配置信息还包括每个发送端逻辑信道与子带的映射关系。
  31. 一种存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求1至15任一项所述数据发送方法的步骤。
  32. 一种发送端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求1至15任一项所述数据发送方法的步骤。
PCT/CN2019/092982 2018-08-10 2019-06-26 数据发送方法及装置、存储介质、发送端 WO2020029699A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19846311.9A EP3836616A4 (en) 2018-08-10 2019-06-26 METHOD AND APPARATUS FOR SENDING DATA, MEDIA AND TRANSMITTING END
US17/265,981 US11601954B2 (en) 2018-08-10 2019-06-26 Data sending method and apparatus, storage medium, and sending end

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810908301.2A CN110831251B (zh) 2018-08-10 2018-08-10 数据发送方法及装置、存储介质、发送端
CN201810908301.2 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020029699A1 true WO2020029699A1 (zh) 2020-02-13

Family

ID=69414463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092982 WO2020029699A1 (zh) 2018-08-10 2019-06-26 数据发送方法及装置、存储介质、发送端

Country Status (4)

Country Link
US (1) US11601954B2 (zh)
EP (1) EP3836616A4 (zh)
CN (1) CN110831251B (zh)
WO (1) WO2020029699A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436928A (zh) * 2020-11-23 2021-03-02 北京中航通用科技有限公司 一种数据传输的方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3900477A2 (en) * 2018-12-20 2021-10-27 Sony Group Corporation Telecommunications apparatus and methods
JP7298682B2 (ja) * 2019-04-19 2023-06-27 富士通株式会社 基地局、端末装置、および通信システム
JP7323697B2 (ja) * 2019-07-26 2023-08-08 オッポ広東移動通信有限公司 伝送リソースの選択方法、ネットワーク機器、ユーザ機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201733326U (zh) * 2008-11-25 2011-02-02 交互数字专利控股公司 一种无线发射/接收单元
CN102131275A (zh) * 2010-01-13 2011-07-20 中兴通讯股份有限公司 载波控制方法及装置
US20160057585A1 (en) * 2014-08-19 2016-02-25 Qualcomm Incorporated Multicasting traffic using multi-connectivity
CN105659690A (zh) * 2013-10-21 2016-06-08 Lg电子株式会社 在双连接中发送上行链路数据的方法及其设备
CN108270516A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 一种数据传输方法、装置及系统
CN108282823A (zh) * 2017-01-06 2018-07-13 株式会社Kt 用于控制冗余数据发送的方法和设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105493423B (zh) * 2013-04-24 2019-05-03 华为技术有限公司 数据传输方法和装置
CN107734546B (zh) 2016-08-12 2022-10-28 中兴通讯股份有限公司 用户面数据的映射方法、装置及系统
KR20180050015A (ko) * 2016-11-04 2018-05-14 삼성전자주식회사 무선통신시스템에서 고신뢰 저지연 통신을 위한 데이터 송수신 방법 및 장치
KR102056197B1 (ko) 2017-02-02 2019-12-16 엘지전자 주식회사 데이터 유닛을 전송하는 방법 및 장치
WO2018176231A1 (zh) * 2017-03-28 2018-10-04 北京小米移动软件有限公司 数据传输方法及装置、数据接收方法及装置、电子设备
CN107147479B (zh) * 2017-04-27 2020-04-10 电信科学技术研究院 一种进行重复传输控制的方法和设备
CA3065093A1 (en) * 2017-06-16 2018-12-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, terminal device, and network device
WO2019080008A1 (zh) 2017-10-25 2019-05-02 北京小米移动软件有限公司 增补上行载波配置方法及装置和调度资源分配方法及装置
KR20210029197A (ko) * 2018-08-01 2021-03-15 삼성전자주식회사 무선 통신 시스템에서 패킷 중복 전송을 제어하는 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201733326U (zh) * 2008-11-25 2011-02-02 交互数字专利控股公司 一种无线发射/接收单元
CN102131275A (zh) * 2010-01-13 2011-07-20 中兴通讯股份有限公司 载波控制方法及装置
CN105659690A (zh) * 2013-10-21 2016-06-08 Lg电子株式会社 在双连接中发送上行链路数据的方法及其设备
US20160057585A1 (en) * 2014-08-19 2016-02-25 Qualcomm Incorporated Multicasting traffic using multi-connectivity
CN108270516A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 一种数据传输方法、装置及系统
CN108282823A (zh) * 2017-01-06 2018-07-13 株式会社Kt 用于控制冗余数据发送的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3836616A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436928A (zh) * 2020-11-23 2021-03-02 北京中航通用科技有限公司 一种数据传输的方法及装置
CN112436928B (zh) * 2020-11-23 2023-11-03 北京中航通用科技有限公司 一种数据传输的方法及装置

Also Published As

Publication number Publication date
EP3836616A1 (en) 2021-06-16
EP3836616A4 (en) 2022-05-04
CN110831251A (zh) 2020-02-21
US11601954B2 (en) 2023-03-07
CN110831251B (zh) 2020-11-06
US20210314969A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2020029699A1 (zh) 数据发送方法及装置、存储介质、发送端
CN110574426B (zh) 分组复制操作模式之间的切换
CN113424580B (zh) 用于演进分组数据汇聚协议复制的方法及装置
JP7222419B2 (ja) 重複伝送の設定及び/又はアクティベーション方法、重複伝送の方法及び装置
CN110831248B (zh) 一种通知方法、装置及基站
US11711167B2 (en) Apparatus, method and computer program
RU2732488C1 (ru) Устройство связи, способ связи и компьютерная программа
US11076313B2 (en) Base station and master communication apparatus
TWI751346B (zh) 用於傳輸數據的方法、終端設備和網絡設備
CN112889258A (zh) 一种通信方法及装置
WO2020063441A1 (zh) 重复传输方法、终端和网络侧设备
WO2020029768A1 (zh) 用户终端上传数据的方法及装置、存储设备、用户终端
CN110149709B (zh) 数据发送方法及装置、数据接收方法及装置、存储介质、发送端、接收端
WO2019019122A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019014916A1 (zh) 处理数据的方法和设备
WO2020063737A1 (zh) 一种通信方法及设备
CN111183669B (zh) 通信设备及其方法
CN110831025B (zh) 用户终端上传数据的方法及装置、存储介质、用户终端
WO2019127289A1 (zh) 传输数据的方法和终端设备
CN110300428A (zh) 用于pdcp复制的bsr触发方法及装置、存储介质、用户设备
WO2021127943A1 (zh) 无线通信方法和终端设备
WO2021097689A1 (zh) 一种通信方法、装置及设备
WO2020200055A1 (zh) 一种数据传输方法及装置
WO2022120541A1 (zh) 数据传输的方法和装置
WO2021102968A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019846311

Country of ref document: EP

Effective date: 20210310