WO2020029666A1 - 建筑轮廓成型机及建筑打印方法 - Google Patents

建筑轮廓成型机及建筑打印方法 Download PDF

Info

Publication number
WO2020029666A1
WO2020029666A1 PCT/CN2019/089653 CN2019089653W WO2020029666A1 WO 2020029666 A1 WO2020029666 A1 WO 2020029666A1 CN 2019089653 W CN2019089653 W CN 2019089653W WO 2020029666 A1 WO2020029666 A1 WO 2020029666A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
building
positioning
forming machine
platform
Prior art date
Application number
PCT/CN2019/089653
Other languages
English (en)
French (fr)
Inventor
蒋旭峰
Original Assignee
博湃建筑科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博湃建筑科技(上海)有限公司 filed Critical 博湃建筑科技(上海)有限公司
Publication of WO2020029666A1 publication Critical patent/WO2020029666A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for

Definitions

  • the invention relates to the field of construction, in particular to a building contour forming machine and a building printing method.
  • the building contour forming machine is a device for building contour forming.
  • the printing head is moved by moving the supporting platform.
  • the printing head outputs building materials such as concrete to a predetermined position, and forms the building outline through the accumulation of building materials.
  • the existing mobile support platforms are often heavy and bulky. They need to be transported to the construction site before being assembled on site, which not only affects the efficiency and cycle of the operation, but also increases the difficulty of construction due to the limitation of the construction site.
  • a drone is used as a mobile support platform to drive the print head to move the building for printing.
  • the accuracy of the drone is far from meeting the accuracy requirements of the building outline and it is difficult to be practically applied.
  • the purpose of the invention is to overcome the defects of the prior art and provide a building contour forming machine with a simple structure and high reliability.
  • a building contour forming machine includes a drone 1 and a print head 112 provided on the drone 1 for architectural printing, and further includes a print positioning system.
  • the drone 1 includes a satellite positioning system and a control system. Based on the satellite positioning system, the system guides the drone 1 to fly according to a predetermined print path, and drives the print head 112 to print.
  • the print positioning system includes a plurality of positioning identification units and a collection unit provided on the drone 1.
  • the control system The flight path of the drone 1 is corrected in real time based on the positions of the plurality of positioning identification units collected by the acquisition unit.
  • the collection unit is an infrared camera provided on the drone 1, and the positioning and identification unit is an infrared transmitter provided in a construction area.
  • it includes at least three positioning identification units arranged in the construction area.
  • the unmanned aerial vehicle 1 includes a frame 110, and a flight power system is disposed on the frame 110.
  • a moving platform 220 is provided below the frame 110, and the moving platform 220 is connected to the frame 110 through a plurality of sets of robots.
  • the print head 112 is disposed on the moving platform 220.
  • the printing nozzle 112 is connected to the silo 3 through a feeding pipe 2, and an intermediate hole 111 is provided in the middle of the frame 110 of the drone 1.
  • the feeding pipe 2 passes through the intermediate hole 111 and is connected to the printing nozzle. 112 connected vertically.
  • the moving platform 220 is provided with a stabilizer
  • the print head 112 is provided on the stabilizer
  • the frame 110 is provided with an inclination sensor that cooperates with the stabilizer.
  • each group of manipulators includes a driving rod 231 connected to the static platform 210 and a traction rod 232 connected to the moving platform 220.
  • the static platform 210 is provided with a rotating motor for driving the driving rod 231 to rotate.
  • One end of the driving rod 231 It is connected to the rotating electric machine, and the other end is connected to the tow bar 232.
  • the static platform 210 and the movable platform 220 are connected by an intermediate shaft 233, and the intermediate shaft 233 is located between the manipulators; the intermediate shaft 233 is a hollow cylindrical structure, and the print head 112 is disposed on the intermediate shaft 233 Below, the feeding pipe 2 passes through the intermediate shaft 233 and is then connected to the print head 112 below.
  • two traction rods 232 are provided, and the two traction rods 232 are opposite to each other.
  • Couplings 234 are provided at both ends of the two traction rods 232, respectively.
  • the moving platform 220 is connected, and a rotation shaft 235 is provided at one end of the driving rod 231 away from the rotation.
  • the couplings 234 at the other ends of the two traction rods 232 are respectively connected to both sides of the rotation shaft 235, and the rotation shaft 235 is coaxial with the driving rod 231. It is provided, and the rotation shaft 235 can rotate about the axis of the driving rod 231.
  • the coupling 234 includes a ball sleeve 2342 and a spherical shaft 2341 mounted on the inside of the ball sleeve 2342.
  • the outer side of the ball sleeve 2342 is connected to the traction rod 232 and can be rotated about the axis of the traction rod 232.
  • a spherical shaft 2341 is provided at one side of the opening with a coupling shaft 2343.
  • the coupling shaft 2343 is fixedly connected to the moving platform 220 or the rotating shaft 235.
  • the frame 110 includes two plywood plates 117 arranged in a stack, a plurality of fixing members 118 are provided at an edge position between the two plywood plates 117, and the flight power system includes a rotor 113 and a rotor 113 provided on the frame 110.
  • Rotor motor 114 The rotor 113 and the rotor motor 114 are respectively disposed at one end of a plurality of lifting arms 119, and the other ends of the plurality of lifting arms 119 are inclined downward and fixedly connected to the fixing members 118 respectively.
  • the rack 110 is frame-shaped, and includes a square outer frame and a cross-shaped inner frame.
  • the outer frame includes four outer brackets 1101 connected end to end in sequence, and a middle portion of each outer bracket 1101 is provided separately.
  • the inner frame includes a center platform 1103 and four inner brackets 1102 provided around the center platform 1103.
  • the control system is provided on the center platform 1103.
  • a center hole 111 is provided in the middle of the center platform 1103, and the center platform 1103 is provided.
  • two adjacent inner brackets 1102 are arranged vertically, and extensions are provided on the outside of the four weight blocks 1104, respectively.
  • the bracket 1105 is provided with a sensing device 115 at the end of the extension bracket 1105.
  • Each of the outer bracket 1101, the inner bracket 1102 and the extension bracket 1105 is provided with a rotor 113 and a rotor motor 114 that drives the rotor 113 to rotate.
  • the flight power system includes a rotor 113 and a rotor motor 114 provided on the frame 110, and a rotor 113 and a rotor motor 114 are provided in the middle of each of the inner bracket 1102 and the extension bracket 1105, and each outer bracket 1101 A rotor 113 and a rotor motor 114 are respectively provided on two sides of the counterweight 1104.
  • a battery is provided on the weight block 114.
  • the four top corners of the outer frame 1101 are respectively provided with a parachute 116.
  • the print head 112 includes a base 1120 fixed on the movable platform 220, a main head 1121 provided on the base 1120, and two auxiliary heads 1122 opposite to the main head 1121.
  • the main head 1121 and the auxiliary nozzle 1122 are respectively connected with the feeding pipe, and the main nozzle 1121 and the two auxiliary nozzles 1122 are respectively provided with a shut-off mechanism.
  • the drone 1 is provided with an intermediate silo 4 connected between the silo 3 and the print head 112.
  • One end of the intermediate silo 4 is connected to the silo 3 on the ground through a conveying pipe, and the other end is connected to the silo 3 through the conveying pipe.
  • the print head 112 is connected, and the intermediate silo 4 includes a rotatably spiral kneading blade 3a, a pumping motor 3b for driving the kneading blade 3a to rotate, an input port 3c and an extrusion port 3g, and an extrusion installed at the extrusion port 3g.
  • monitoring valve 3e monitoring valve 3e is located between the extrusion port 3g and the 3D printing nozzle 112; the input port 3c is used for the raw materials mixed on the ground, and the extrusion port 3g is connected to the printing nozzle 112; the pumping motor 3b drives the stirring blade 3a Rotate and agitate and squeeze the raw material from the intermediate bin 4 into the print head 112.
  • the building contour forming machine created by the present invention can drastically reduce the construction difficulty by driving the print head 112 with the drone 1 to print the building outline, and the flight path of the drone 1 can be modified by the print positioning system to ensure the building outline.
  • the accuracy In addition, moving the print head 112 by moving the platform 220 has higher accuracy than moving the print head 112 directly by the drone, and the stability of the moving platform 220 is also better.
  • the invention also provides a building printing method, which sets an origin and a three-dimensional coordinate system in a construction area, locates a satellite positioning point of the origin, places a plurality of positioning identification units in different positions in the construction area, and records the positioning identification units. Number and coordinates, imaging a predetermined print path in a three-dimensional coordinate system, calculating a predetermined distance and angle between each position on the print path and different positioning units; when building printing, the acquisition unit on the drone 1 collects multiple real-time Information of the positioning identification unit, obtaining the real-time distance and angle of the acquisition unit relative to each positioning identification unit at the current printing position, comparing the real-time distance and angle with a predetermined distance and angle, and real-time correction of the flight path of the drone 1 With high accuracy and short construction cycle.
  • FIG. 1 is a cooperation manner of a drone and a print head created by the present invention
  • FIG. 2 is an embodiment of a building contour forming machine according to the present invention
  • FIG. 3 is a partially enlarged view of FIG. 2 created by the present invention.
  • FIG. 4 is another embodiment of a building contour forming machine according to the present invention.
  • FIG. 5 is an embodiment of creating a print head according to the present invention.
  • FIG. 6 is an embodiment of creating an intermediate silo according to the present invention.
  • the specific embodiments of the building contour forming machine created by the present invention will be further described below with reference to the embodiments given in FIGS. 1 to 6.
  • the building contour forming machine created by the present invention is not limited to the description of the following embodiments.
  • the contour forming machine created by the present invention includes a drone 1, a print head 112 and a print positioning system provided on the drone 1 for architectural printing, and the drone 1 includes a satellite positioning system and A control system that guides the drone 1 to fly according to a predetermined printing path based on a satellite positioning system, and drives the print head 112 to print.
  • the printing positioning system includes a plurality of positioning identification units and a collection set on the drone 1. Unit, the control system corrects the flight path of the drone 1 in real time based on the positions of multiple positioning and identification units collected by the acquisition unit.
  • the drone 1 driving the print head 112 to print the outline of the building can greatly reduce the construction difficulty, and the flight path of the drone 1 can be corrected by the print positioning system to ensure the accuracy of the outline of the building.
  • the unmanned aerial vehicle 1 includes a flight power system, a printing positioning system, a satellite positioning system, and a control system, and further includes a sensing device 115 for sensing the flying attitude of the unmanned aerial vehicle 1 and feeding it back to the control system, and a print head.
  • 112 and the acquisition unit of the print positioning system are set on the drone 1.
  • the print head 112 is connected to the silo 3 through the feeding pipe 2.
  • the multiple positioning identification units of the print positioning system are respectively set at different positions in the construction area.
  • the printing path is preset according to the building to be printed.
  • the control system guides the drone 1 to fly according to the predetermined printing path based on the satellite positioning system.
  • the building outline is formed by printing and stacking layer by layer.
  • the satellite positioning system can realize the positioning of the drone 1 through the existing technology, and generally includes a signal receiver and a signal processing unit disposed on the drone 1.
  • the signal receiver receives the satellite signal and performs signal processing.
  • the unit solves the position information of the drone 1 and produces the satellite navigation path.
  • the satellite positioning system preferably uses carrier phase difference technology (RTK).
  • RTK carrier phase difference technology
  • the print positioning system includes at least three positioning identification units provided in the construction area, preferably more positioning identification units; including at least one acquisition unit provided on the drone 1, and of course More acquisition units can be used. Set the positioning and marking units at different positions and heights in the construction area to ensure that the drone 1 can collect the position information of at least three positioning and marking units when flying at any position in the construction area to accurately calculate the relative position of the drone 1 with respect to The position of each positioning identification unit.
  • the invention also provides a positioning and identification method for building printing.
  • An origin and a three-dimensional coordinate system are set in a construction area, a satellite positioning point of the origin is positioned, a plurality of positioning identification units are placed at different positions in the construction area, and the positioning identification unit is recorded.
  • the number and coordinates of the image are used to image a predetermined print path in a three-dimensional coordinate system.
  • the predetermined distances and angles between each position on the print path and different positioning units are calculated in advance.
  • UAV 1 with a print head 112 is based on
  • the satellite positioning system guides flight according to a predetermined printing path, drives the print head 112 to print, and the acquisition unit on the drone 1 collects information of multiple positioning identification units in real time, and acquires the acquisition unit at the current printing position relative to each positioning identification unit in real time.
  • the real-time distance and angle are compared with the predetermined distance and angle, and the flight path of the drone 1 is corrected in real time to improve the positioning accuracy.
  • the predetermined distances and angles of each position on the print path from different positioning units may not be calculated in advance, which will reduce the efficiency.
  • one positioning identification unit can also recognize, and three positioning identification units can be accurately identified, but sometimes there are some disturbances and errors.
  • 5-10 positioning and identification units are used, and three of them are selected as a group for identification, and the other three are selected as a group for verification, so as to improve the identification accuracy and exclude positioning error units with large errors.
  • the two sets of positioning identification units may overlap, and preferably do not overlap.
  • the distance and angle information of multiple positioning identification units can be superimposed to reduce the error to improve the accuracy.
  • the collection unit is an infrared receiver or an infrared camera provided on the drone 1, and the positioning and identification unit is an infrared transmitter provided in a construction area.
  • the image acquired by the infrared transmitter through the infrared camera can avoid the problem of being unable to locate due to the obstruction of the printed building outline.
  • the acquisition unit may also be an ultrasound receiver, and the positioning identification unit is an ultrasound transmitter.
  • the acquisition unit may also be a camera, and the positioning and identification unit is an identifier with an easily recognizable color. The camera takes a photo, performs grayscale processing and recognizes the identifier, and calculates the acquisition unit and each unit based on image processing. Locate the distance and angle of the unit.
  • the unmanned aerial vehicle 1 includes a frame 110 and a flight power system.
  • the flight power system includes a rotor 113 and a rotor motor 114 provided on the frame 110.
  • 110 fixedly connected static platform 210
  • a movable moving platform 220 is provided below the static platform 210
  • the print head 112 is disposed on the moving platform 220
  • the moving platform 220 is connected to the static platform 210 by a plurality of parallel robots
  • the manipulator can drive the platform 220 to move horizontally and vertically.
  • the drone 1 moves to a predetermined position and hover in the air, and then moves the print head 112 by moving the platform 220.
  • the print head 112 is moved by moving the platform 220.
  • the man-machine 1 directly drives the print head 112 to move more accurately, and the stability of the moving platform 220 is also better.
  • the static platform 210 may not be provided, and the frame 110 may replace the static platform 210 and be connected to the movable platform 220 through a robot, which all belong to the protection scope created by the present invention.
  • the middle of the frame 110 and the static platform 210 is provided with an intermediate hole 111 that cooperates with the conveying pipe 2.
  • the conveying pipe 2 passes through the intermediate hole 111 and is vertically connected with the printing nozzle 112 on the moving platform 220.
  • the feeding pipe 2 can adjust the feeding direction through the frame 110 and the moving platform 220 to ensure that the material falls vertically so that the print head 112 can adjust the direction of the printing material.
  • the moving platform 220 is provided with a stabilizer
  • the print head 112 is provided on the stabilizer
  • the rack 110 is provided with an inclination sensor that cooperates with the stabilizer.
  • the inclination sensor monitors the flying attitude of the drone in real time, and The control system calibrates the angle of the moving platform 220 to ensure that the print head 112 is in the direction of the printing material.
  • the frame 110 includes two laminated plates 117, and a plurality of fixing members 118 are provided at the edge position between the two plates 117.
  • the rotor 113 and the rotor motor 114 are respectively disposed in a plurality of lifts.
  • One end of the lifting arm 119 and the other ends of the plurality of lifting arms 119 are downwardly inclined and fixedly connected to the fixing members 118 respectively.
  • a three-degree-of-freedom manipulator shown in FIG. 2 includes three sets of parallel manipulators.
  • Each set of manipulators includes a driving rod 231 connected to the static platform 210 and a traction rod 232 connected to the moving platform 220.
  • a rotating motor is provided for driving the driving rod 231 to rotate.
  • One end of the driving rod 231 is connected to the rotating motor and the other end is connected to the traction rod 232.
  • the rotating motor drives the driving rod 231 to rotate and drive the platform 220 for horizontal and vertical movement.
  • the static platform 210 and the movable platform 220 are connected by an intermediate shaft 233, and the intermediate shaft 233 is located between the manipulators.
  • the intermediate shaft 233 can increase the strength of the movable platform 220.
  • one end of the intermediate shaft 233 is fixedly connected to the moving platform 220 and the other end is connected to the static platform 210 through a universal joint.
  • the intermediate shaft 233 is a hollow cylindrical structure, and the print head 112 is disposed below the intermediate shaft 233.
  • the feeding pipe 2 passes through the intermediate shaft 233 and is connected to the print head 112 below.
  • the intermediate shaft 233 with a hollow structure is provided, so that the intermediate shaft 233 can also play a role of fixing the feeding pipe 2.
  • the two traction rods 232 are opposite to each other. Couplings 234 are provided at both ends of the two traction rods 232, respectively.
  • the platform 220 is connected.
  • a rotation shaft 235 is provided on the end of the driving rod 231 away from the rotation.
  • the couplings 234 on the other end of the two traction rods 232 are connected to both sides of the rotation shaft 235.
  • the rotation shaft 235 and the driving rod 231 are coaxially disposed.
  • the rotation shaft 235 can drive the coupling 234 to rotate about the axis of the driving rod 231.
  • the Vientiane coupling 234 ensures that the traction rod 232 can rotate flexibly, and then the platform 220 is moved by the three groups of hands.
  • the coupling 234 includes a ball sleeve 2342 and a spherical shaft 2341 mounted on the inside of the ball sleeve 2342.
  • the outer side of the ball sleeve 2342 is connected to the traction rod 232 and can be rotated about the axis of the traction rod 232.
  • the ball sleeve 2342 is provided with Opening
  • spherical shaft 2341 is provided with a coupling shaft 2343 on one side of the opening.
  • the coupling shaft 2343 is fixedly connected to the moving platform 220.
  • the coupling 234 is connected to the driving rod 231, the shaft is connected.
  • 2343 is fixedly connected to the rotation shaft 235.
  • the frame 110 has a hollow frame structure, which includes a square outer frame and a cross-shaped inner frame.
  • the outer frame includes four outer ends connected in sequence.
  • Bracket 1101 each of the outer brackets 1101 is provided with a weight 1104 in the middle
  • the inner frame includes a central platform 1103 and four inner brackets 1102 arranged around the central platform 1103.
  • the control system is arranged on the central platform 1103, and the central platform 1103
  • the middle part is provided with a middle hole 111, and the feeding pipe 2 passes through the middle hole 111 and is connected to the print head 112 below.
  • the center platform 1103 is set at the center position inside the outer frame, and is connected to the four counterweights through four inner brackets 1102, respectively.
  • the inside of the block 1104 is connected.
  • Two adjacent inner brackets 1102 are arranged vertically.
  • An extension bracket 1105 is provided on the outside of the four weight blocks 1104.
  • a sensing device 115 is provided at the end of the extension bracket 1105.
  • Both the bracket 1102 and the extension bracket 1105 are provided with a rotor 113 and a rotor motor 114 that drives the rotor 113 to rotate.
  • the frame 110 of this embodiment adopts a hollow frame structure, which not only horizontally Product greater and more stable in flight, and may be provided a greater number of motor rotor 113 and the rotor 114, so that the reliability of the UAV 1 in the conveying pipe 2 transport flight higher.
  • each of the inner bracket 1102 and the extension bracket 1105 is provided with a rotor 113 and a rotor motor 114 in the middle position, and each outer bracket 1101 is respectively provided with a rotor 113 and a rotor motor 114 on both sides of the weight 1104.
  • the weight 1104 can also be replaced by a battery, or a battery can be provided on the weight 1104.
  • the battery can also be installed on the outer bracket 1101, the inner bracket 1102, and the extension bracket 1105 by hot plugging.
  • it can also be The power line interface provided on the central platform 1103 and transmitting power to the drone 1 through the power line all belong to the protection scope created by the present invention.
  • the sensing device 115 includes a gyroscope for sensing flight angle, an accelerometer for sensing flight acceleration, a geomagnetic sensor for sensing a large place, an air pressure sensor for roughly controlling the hovering height, and precise control for low altitude Ultrasonic sensors for altitude and obstacle avoidance, optical flow sensors for precise determination of the horizontal position of the hover, and inclination sensors for detecting inclination.
  • the four top corners of the outer frame 1101 are respectively provided with a parachute 116, which is convenient for landing on the ground after the drone print job is completed.
  • the printing nozzle 112 is formed into a tubular shape. One end of the printing nozzle 112 is connected to a feeding pipe, and the other end is used as a material outlet. A shut-off mechanism connected to the control system for controlling the flow of the material is provided inside the printing nozzle 112.
  • FIG. 5 is an embodiment of the print head 112, which includes a base 1120 fixed on the movable platform 220, a main head 1121 provided on the base 1120, and two auxiliary heads opposite to the main head 1121. 1122, the main nozzle 1121 and the auxiliary nozzle 1122 are respectively connected to the feeding pipe. Through the two auxiliary nozzles 1122 on both sides of the main nozzle 1122 to cooperate with printing, it can disperse the recoil force on the drone 1 when the material is ejected, so that Man-machine 1 can fly more smoothly and improve printing accuracy.
  • the main nozzle 1121 and the two auxiliary nozzles 1122 are respectively provided with a shut-off mechanism, and the two auxiliary nozzles 1122 can be controlled by their respective shut-off mechanisms, so that the control system can more easily control the balance of the drone 1.
  • the shut-off mechanism can be a common multi-port valve or a swingable baffle. The cross-section of the material flow can be adjusted by the swing angle to control the flow, which all belong to the protection scope created by the present invention.
  • the conveying pipe includes a main conveying pipe 1123 and an auxiliary conveying pipe 1124 sheathed in the main conveying pipe 1123.
  • the auxiliary conveying pipe 1124 is connected to the auxiliary spraying head 1122, and the main conveying pipe 1123 is connected to the main spraying head.
  • the main conveying pipe 1123 and the auxiliary conveying pipe 1124 can transport different kinds of materials and print at the same time.
  • the shut-off mechanism can also be set at the connection between the two auxiliary nozzles 1122 and the auxiliary conveying pipe, and simultaneously control and control the materials in the two auxiliary nozzles 1122.
  • the two auxiliary nozzles 1122 cannot be adjusted separately, the structure is simpler , Stability is also better.
  • the unmanned aerial vehicle 1 is also provided with an intermediate silo 4, which can be arranged on the rack 110 or on the movable platform 220.
  • One end of the intermediate silo 4 is connected to the ground through a feeding pipe.
  • the upper silo 3 is connected, and the other end is connected to the printing nozzle 112 through a feeding pipe.
  • the intermediate silo 4 is provided with a stirring mechanism.
  • the intermediate silo 4 can replace the silo 3 on the ground by adding water and Additives and other materials are processed into wet materials (such as concrete), which not only can make printed materials more uniform, but also the consistency of dry materials, water, and additives is smaller than that of wet materials, so it is more convenient to feed drone 1.
  • the intermediate silo 4 includes a rotatably spiral kneading blade 3a, a pumping motor 3b for driving the kneading blade 3a to rotate, an input port 3c and an extrusion port 3g, and an extrusion port installed at the extrusion port 3g.
  • the monitoring valve 3e is located between the extrusion port 3g and the 3D printing nozzle 112; the input port 3c is used for the raw materials mixed on the ground, and the extrusion port 3g is connected to the printing nozzle 112; the pumping motor 3b drives the stirring blade 3a turns and stirs and squeezes the raw material from the extrusion port 3g into the print head 112.
  • the print head 112 may also adopt other structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Spray Control Apparatus (AREA)

Abstract

一种建筑轮廓成型机及建筑打印方法,其中,建筑轮廓成型机,包括无人机(1)、设置在无人机(1)上用于建筑打印的打印喷头(112)和打印定位系统,无人机(1)包括卫星定位系统和控制系统,控制系统基于卫星定位系统引导无人机(1)按预定的打印路径飞行,带动打印喷头(112)进行打印,打印定位系统包括多个定位标识单元和设置在无人机(1)上的采集单元,控制系统基于采集单元采集的多个定位标识单元的位置对无人机(1)的飞行路径进行实时修正;建筑轮廓成型机的建筑打印方法,在施工区域内设定原点和三维坐标系,定位原点的卫星定位点,在施工区域内不同位置放置多个定位标识单元,并记录定位标识单元的编号和坐标,将预定的打印路径在三维坐标系中成像,计算打印路径上每个位置与不同定位单元预定的距离和角度;进行建筑打印时,无人机(1)上的采集单元实时采集多个定位标识单元的信息,获取当前打印位置上采集单元相对于各个定位标识单元实时的距离和角度,将实时的距离和角度与预定的距离和角度比较,对无人机(1)的飞行路径进行实时修正。该建筑轮廓成型机及建筑打印方法降低了施工难度,能够保证建筑轮廓的精度,缩短施工周期。

Description

建筑轮廓成型机及建筑打印方法 技术领域
本发明创造涉及建筑领域,特别是涉及一种建筑轮廓成型机及建筑打印方法。
背景技术
建筑轮廓成型机是用于建筑轮廓成型的设备,通过移动支撑平台带动打印喷头移动,打印喷头将混凝土等建筑材料输出至预定位置,通过建筑材料的累积以形成建筑轮廓。但是现有的移动支撑平台往往都比较笨重,体积也比较大,需要先运输到施工现场,再进行现场组装搭建,不仅影响作业效率和周期,而且会由于施工场地的限制而增加施工难度,虽然现有技术也有将无人机作为移动支撑平台带动打印喷头移动进行建筑打印,但是无人机的精度远远无法满足建筑轮廓的精度要求,难以实际应用。
发明内容
本发明创造的目的在于克服现有技术的缺陷,提供一种结构简单、可靠性高的建筑轮廓成型机。
为实现上述目的,本发明创造采用了如下技术方案:
一种建筑轮廓成型机,包括无人机1以及设置在无人机1上用于建筑打印的打印喷头112,还包括打印定位系统,所述无人机1包括卫星定位系统和控制系统,控制系统基于卫星定位系统引导无人机1按预定的打印路径飞行,带动打印喷头112进行打印,所述的打印定位系统包括多个定位标识单元和设置在无人机1上的采集单元,控制系统基于采集单元采集的多个定位标识单元的位置对无人机1的飞行路径进行实时修正。
可选的,所述的采集单元为设置在无人机1上的红外线相机,所述的定位标识单元为设置在施工区域的红外线发射器。
可选的,包括至少三个设置在施工区域的定位标识单元。
可选的,所述无人机1包括机架110,飞行动力系统设置在机架110上,在机架110的下方设有动平台220,动平台220通过多组机械手与机架110连接,所述的打印喷头112设置在动平台220上。
可选的,所述打印喷头112通过输料管2与料仓3连接,在无人机1的机架110的中部设有中间孔111,输料管2从中间孔111穿过后与打印喷头112竖直连接。
可选的,所述动平台220上设有稳定器,打印喷头112设置在稳定器上,在机架110上设有与稳定器配合的倾角传感器。
可选的,每组机械手包括与静平台210连接的驱动杆231以及与动平台220连接的牵引杆232,在静平台210上设有用于驱动驱动杆231转动的旋转电机,驱动杆231的一端与旋转电机连接,另一端与牵引杆232连接。
可选的,所述静平台210和动平台220通过中间轴233连接,中间轴233位于机械手之间;所述中间轴233为空心的筒状结构,所述的打印喷头112设置在中间轴233的下方,输料管2从中间轴233中穿过后再与下方的打印喷头112连接。
可选的,包括两个牵引杆232,两个牵引杆232相对设置,并且在两个牵引杆232的两端分别设有联轴器234,两个牵引杆232一端的联轴器234分别与动平台220连接,在驱动杆231远离旋转的一端设有旋转轴235,两个牵引杆232另一端的联轴器234分别与旋转轴235的两侧连接,旋转轴235与驱动杆231同轴设置,并且旋转轴235能够绕驱动杆231的轴线转动。
可选的,联轴器234包括球套2342以及装在球套2342内侧转动的球形轴2341,球套2342的外侧与牵引杆232连接并且可以绕牵引杆232的轴线转动,球套2342上设有开口,球形轴2341位于开口的一侧设有联接轴2343,联接轴2343与动平台220或旋转轴235固定连接。
可选的,所述机架110包括两个层叠设置的夹板117,在两个夹板117之间的边缘位置设有多个固定件118,飞行动力系统包括设置在机架110上的旋翼113和旋翼电机114,所述的旋翼113和旋翼电机114分别设置在多个举升臂119的一端,多个举升臂119的另一端向下倾斜并分别与固定件118固定连接。
可选的,所述机架110成框形,其包括成正方形的外框架以及成十字形的 内框架,外框架包括四个首尾依次相连的外支架1101,每个外支架1101的中部分别设有配重块1104,内框架包括中心平台1103以及设置在中心平台1103四周的四个内支架1102,控制系统设置在中心平台1103上,中心平台1103的中部设有中间孔111,中心平台1103设置在外框架内侧的中心位置,并通过四个内支架1102分别与四个配重块1104的内侧连接,相邻的两个内支架1102垂直设置,在四个配重块1104的外侧分别设有延长支架1105,在延长支架1105的末端设有感应装置115,在外支架1101、内支架1102和延长支架1105上均设有旋翼113和驱动旋翼113旋转的旋翼电机114。
可选的,飞行动力系统包括设置在机架110上的旋翼113和旋翼电机114,每个内支架1102和延长支架1105的中间位置分别设有一个旋翼113和旋翼电机114,每个外支架1101对应在配重块1104的两侧分别设有一个旋翼113和旋翼电机114。
可选的,所述配重块114上设有电池。
可选的,所述外框架1101的四个顶角上分别设有降落伞116。
可选的,所述打印喷头112包括固定在动平台220上的基座1120,以及设置在基座1120上的主喷头1121和相对设置在主喷头1121两侧的两个辅助喷头1122,主喷头1121和辅助喷头1122分别与输料管连接,主喷头1121和两个辅助喷头1122中分别设有截流机构。
无人机1上设有连接在料仓3与打印喷头112之间的中间料仓4,中间料仓4的一端通过输料管与地面上的料仓3连接,另一端通过输料管与打印喷头112连接,中间料仓4包括可旋转地螺旋型的搅挤叶片3a、驱动搅挤叶片3a旋转的泵送电机3b、输入口3c和挤出口3g、安装在挤出口3g处的挤出监控阀3e;监控阀3e位于挤出口3g与3D打印喷头112之间;输入口3c用于地面上混合后的原料通过,挤出口3g与打印喷头112连接;泵送电机3b带动搅挤叶片3a转动搅拌并将原料从中间料仓4挤到打印喷头112中。
本发明创造的建筑轮廓成型机,通过无人机1带动打印喷头112打印建筑轮廓,能够极大的降低施工难度,而且通过打印定位系统对无人机1的飞行路径进行修正,能够保证建筑轮廓的精度。此外,通过动平台220带动打印喷头112移动,比无人机直接带动打印喷头112移动的精度更高,而且动平台220的 稳定性也更好。
本发明创造还提供了一种建筑打印方法,在施工区域内设定原点和三维坐标系,定位原点的卫星定位点,在施工区域内不同位置放置多个定位标识单元,并记录定位标识单元的编号和坐标,将预定的打印路径在三维坐标系中成像,计算打印路径上每个位置与不同定位单元预定的距离和角度;进行建筑打印时,无人机1上的采集单元实时采集多个定位标识单元的信息,获取当前打印位置上采集单元相对于各个定位标识单元实时的距离和角度,将实时的距离和角度与预定的距离和角度比较,对无人机1的飞行路径进行实时修正,具有精度高、施工周期短的特点。
附图说明
图1是本发明创造无人机与打印喷头的配合方式;
图2是本发明创造建筑轮廓成型机的一种实施方式;
图3是本发明创造图2的局部放大图;
图4是本发明创造建筑轮廓成型机的另一种实施方式;
图5是本发明创造打印喷头的一种实施方式;
图6是本发明创造中间料仓的一种实施方式。
具体实施方式
以下结合附图1至6给出的实施例,进一步说明本发明创造的建筑轮廓成型机的具体实施方式。本发明创造的建筑轮廓成型机不限于以下实施例的描述。
如图1所示,本发明创造的轮廓成型机包括无人机1、设置在无人机1上用于建筑打印的打印喷头112和打印定位系统,所述无人机1包括卫星定位系统和控制系统,控制系统基于卫星定位系统引导无人机1按预定的打印路径飞行,带动打印喷头112进行打印,所述的打印定位系统包括多个定位标识单元和设置在无人机1上的采集单元,控制系统基于采集单元采集的多个定位标识单元的位置对无人机1的飞行路径进行实时修正。通过无人机1带动打印喷头112打印建筑轮廓,能够极大的降低施工难度,而且通过打印定位系统对无人机1的飞行路径进行修正,能够保证建筑轮廓的精度。
具体的,所述的无人机1包括飞行动力系统、打印定位系统、卫星定位系统和控制系统,还包括用于感知无人机1的飞行姿态并反馈至控制系统的感应装置115,打印喷头112和打印定位系统的采集单元设置在无人机1上,打印喷头112通过输料管2与料仓3连接,打印定位系统的多个定位标识单元分别设置在施工区域内不同的位置上。建筑打印前已根据要打印的建筑预设好打印路径,由控制系统基于卫星定位系统引导无人机1按预定的打印路径飞行,通过逐层打印堆积形成建筑轮廓,无人机1飞行的同时通过其上的采集单元采集多个定位标识单元的信息,获取无人机与多个定位标识单元相对位置的变化,计算无人机当前飞行路径与预设的飞行路径的误差并进行实时的修正。所述的卫星定位系统通过现有技术即可实现对无人机1的定位,其通常包括设置在无人机1上的信号接收器和信号处理单元,信号接收器接受卫星信号后通过信号处理单元解算出无人机1的位置信息并生产卫星导航路径,卫星定位系统优选采用载波相位差分技术(RTK),解算卫星信号和附近基准站的信号得出无人机1的定位信息,具有定位速度快,定位精度高的特点。
作为打印定位系统的一种优选实施方式,其包括至少三个设置在施工区域的定位标识单元,优选包括更多的定位标识单元;包括至少一个设置在无人机1上的采集单元,当然也可以采用更多的采集单元。将定位标识单元设置在施工区域的不同位置,不同高度,确保无人机1在施工区域任何位置飞行时均可采集获得至少三台定位标识单元的位置信息,以精确计算无人机1相对于各定位标识单元的位置。
本发明还提供一种建筑打印的定位识别方法,在施工区域内设定原点和三维坐标系,定位原点的卫星定位点,在施工区域内不同位置放置多个定位标识单元,并记录定位标识单元的编号和坐标,将预定的打印路径在三维坐标系中成像,预先计算打印路径上每个位置与不同定位单元预定的距离和角度;进行建筑打印时,无人机1带着打印喷头112基于卫星定位系统引导按预定的打印路径飞行,带动打印喷头112进行打印,无人机1上的采集单元实时采集多个定位标识单元的信息,获取当前打印位置上采集单元相对于各个定位标识单元实时的距离和角度,将实时的距离和角度与预定的距离和角度比较,对无人机1的飞行路径进行实时修正以提高定位精度。当然,打印路径上每个位置与不同 定位单元预定的距离和角度也可以不提前计算,这样效率会降低些。进一步,在计算当前打印位置相对于各个定位标识单元实时的距离和角度时,理论上1个定位标识单元也能进行识别,3个定位标识单元就可以精确识别,但有时存在一些干扰和误差。优选采用5-10个定位标识单元,选取其中三个为一组进行识别,并选另外三个为一组进行校验,以提高识别精度,排除掉误差较大的定位标识单元。这两组的定位标识单元可以重叠,优选为不重叠。此外,也可以采用将多个定位标识单元的距离和角度信息进行叠加运算以减少误差的方式提高精度。
优选的,所述的采集单元为设置在无人机1上的红外线接收器或红外线相机,所述的定位标识单元为设置在施工区域的红外线发射器。通过红外线相机对红外线发射器采集的图像可以避免由于打印的建筑轮廓的遮挡导致无法定位的问题。所述的采集单元还可以为超声接收器,所述的定位标识单元为超声发射器。此外,所述的采集单元还可以为相机,所述的定位标识单元为具有易于识别的颜色的标识物,通过相机拍照,进行灰度处理并识别标识物,基于图像处理来计算采集单元与各定位标识单元的距离和角度。
如图2所示,所述无人机1包括机架110和飞行动力系统,飞行动力系统包括设置在机架110上的旋翼113和旋翼电机114,在机架110的下方设有与机架110固定连接的静平台210,在静平台210的下方设有可移动的动平台220,所述的打印喷头112设置在动平台220上,动平台220通过多个并联的机械手与静平台210连接,机械手能够带动动平台220水平和竖直移动,无人机1移动至预定位置后悬停在空中,再通过动平台220带动打印喷头112移动,通过动平台220带动打印喷头112移动,比无人机1直接带动打印喷头112移动的精度更高,而且动平台220的稳定性也更好。当然,也可以不设置静平台210,机架110可以替代静平台210通过机械手与动平台220连接,都属于本发明创造的保护范围。
进一步的,所述机架110和静平台210的中部设有与输料管2配合的中间孔111,输料管2从中间孔111穿过后与动平台220上的打印喷头112竖直连接,输料管2能够通过机架110和动平台220调整输料方向,保证物料垂直落下以便于打印喷头112调整打印物料的方向。
更进一步,所述动平台220上设有稳定器,打印喷头112设置在稳定器上,在机架110上设有与稳定器配合的倾角传感器,倾角传感器实时监测无人机的飞行姿态,并通过控制系统校准动平台220的角度,保证打印喷头112在打印物料的方向。
再进一步,所述机架110包括两个层叠设置的夹板117,在两个夹板117之间的边缘位置设有多个固定件118,所述的旋翼113和旋翼电机114分别设置在多个举升臂119的一端,多个举升臂119的另一端向下倾斜并分别与固定件118固定连接。
如图2示出的一种三自由度的机械手,包括三组并联的机械手,每组机械手包括与静平台210连接的驱动杆231以及与动平台220连接的牵引杆232,在静平台210上设有用于驱动驱动杆231转动的旋转电机,驱动杆231的一端与旋转电机连接,另一端与牵引杆232连接,通过旋转电机驱动驱动杆231转动带动动平台220进行水平和竖直移动。
进一步的,所述静平台210和动平台220通过中间轴233连接,中间轴233位于机械手之间,中间轴233能够提高动平台220的强度。优选的,中间轴233的一端与动平台220固定连接,另一端通过万向联轴器与静平台210连接。
更进一步,所述中间轴233为空心的筒状结构,所述的打印喷头112设置在中间轴233的下方,输料管2从中间轴233中穿过后再与下方的打印喷头112连接,通过设置空心结构的中间轴233,使中间轴233还能够起到固定输料管2的作用。
再进一步,包括两个牵引杆232,两个牵引杆232相对设置,并且在两个牵引杆232的两端分别设有联轴器234,两个牵引杆232一端的联轴器234分别与动平台220连接,在驱动杆231远离旋转的一端设有旋转轴235,两个牵引杆232另一端的联轴器234分别与旋转轴235的两侧连接,旋转轴235与驱动杆231同轴设置,并且旋转轴235能够带动联轴器234绕驱动杆231的轴线转动,通过万象联轴器234保证牵引杆232能够灵活转动,然后通过三组机构手共同作用带动动平台220移动。具体的,联轴器234包括球套2342以及装在球套2342内侧转动的球形轴2341,球套2342的外侧与牵引杆232连接并且可以绕牵引杆232的轴线转动,球套2342上设有开口,球形轴2341位于开口的一侧设有联接 轴2343,当联轴器234与动平台220连接时联接轴2343与动平台220固定连接,当联轴器234与驱动杆231连接时联接轴2343与旋转轴235固定连接。
如图4示出机架110的一种实施方式,所述机架110成镂空的框架结构,其包括成正方形的外框架以及成十字形的内框架,外框架包括四个首尾依次相连的外支架1101,每个外支架1101的中部分别设有配重块1104,内框架包括中心平台1103以及设置在中心平台1103四周的四个内支架1102,控制系统设置在中心平台1103上,中心平台1103的中部设有中间孔111,输料管2从中间孔111穿过与下方的打印喷头112连接,中心平台1103设置在外框架内侧的中心位置,并通过四个内支架1102分别与四个配重块1104的内侧连接,相邻的两个内支架1102垂直设置,在四个配重块1104的外侧分别设有延长支架1105,在延长支架1105的末端设有感应装置115,在外支架1101、内支架1102和延长支架1105上均设有旋翼113和驱动旋翼113旋转的旋翼电机114,本实施方式的机架110通过采用镂空的框架结构,不仅横向面积更大,在飞行时更稳定,而且可以设置更多数量的旋翼113和旋翼电机114,使无人机1在运输输料管2飞行时的可靠性更高。优选的,每个内支架1102和延长支架1105的中间位置分别设有一个旋翼113和旋翼电机114,每个外支架1101对应在配重块1104的两侧分别设有一个旋翼113和旋翼电机114,在机架110上共设有16个旋翼113和旋翼电机114。所述配重块1104也可以用电池替代,或者在配重块1104上设置电池,电池也可以通过热插拔的方式设置在外支架1101、内支架1102和延长支架1105上,当然,也可以在中心平台1103上设置电力线的接口,通过电力线为无人机1输送电力,都属于本发明创造的保护范围。所述感应装置115包括用于感知飞行角度的陀螺仪、用于感知飞行加速度的加速计、用于感知大地方位的地磁感应计、用于粗略控制悬停高度的气压传感器、用于精确控制低空高度和避障的超声波传感器、用于精确确定悬停水平位置的光流传感器,以及用于检测倾角的倾角传感器。
进一步的,所述外框架1101的四个顶角上分别设有降落伞116,在无人机打印作业完成后便于降落到地面上。
打印喷头112成管状,打印喷头112的一端与输料管连接,另一端作为物料的输出口,在打印喷头112的内侧设有与控制系统连接用于控制物料流动的 截流机构。
图5作为打印喷头112的一种实施方式,其包括固定在动平台220上的基座1120,以及设置在基座1120上的主喷头1121和相对设置在主喷头1121两侧的两个辅助喷头1122,主喷头1121和辅助喷头1122分别与输料管连接,通过在主喷头1122两侧的两个辅助喷头1122配合打印,能够分散物料打出时对无人机1的反冲作用力,使无人机1可以更平稳的飞行,提高打印精度。
进一步的,所述的主喷头1121和两个辅助喷头1122中分别设有截流机构,两个辅助喷头1122可以分别由各自的截流机构控制,使控制系统能够更容易控制无人机1的平衡。截流机构可以是常见的多通阀门,也可以是可摆动的挡板,通过摆动角度调整物料流动的截面控制流量,都属于本发明创造的保护范围。
更进一步,所述的输料管包括主输料管1123和套在主输料管1123内的辅助输料管1124,辅助输料管1124与辅助喷头1122连接,主输料管1123与主喷头1121连接,主输料管1123和辅助输料管1124中可以运输不同种类的物料同时打印。此外,截流机构也可以设置在两个辅助喷头1122与辅助输料管的连接处,同时控制控制两个辅助喷头1122内的物料,虽然无法对两个辅助喷头1122分别进行调整,但是结构更加简单,稳定性也更好。
再进一步,所述无人机1上还设有中间料仓4,中间料仓4可以设置在机架110上也可以设置在动平台220上,中间料仓4的一端通过输料管与地面上的料仓3连接,另一端通过输料管与打印喷头112连接,中间料仓4中设有搅拌机构,中间料仓4可以代替地面上的料仓3对干物料(如生石灰)加水和添加剂等搅拌加工为湿物料(如混凝土),不仅能够使打印出的物料更均匀,而且干物料、水和添加剂等的粘稠度比湿物料的小,因此更便于给无人机1供料,对无人机1供料的反冲作用力也更小。具体的,所述的中间料仓4包括可旋转地螺旋型的搅挤叶片3a、驱动搅挤叶片3a旋转的泵送电机3b、输入口3c和挤出口3g、安装在挤出口3g处的挤出监控阀3e;监控阀3e位于挤出口3g与3D打印喷头112之间;输入口3c用于地面上混合后的原料通过,挤出口3g与打印喷头112连接;泵送电机3b带动搅挤叶片3a转动搅拌并将原料从挤出口3g挤到打印喷头112中。显然,打印喷头112也可以采用其它的结构。
以上内容是结合具体的优选实施方式对本发明创造所作的进一步详细说 明,不能认定本发明创造的具体实施只局限于这些说明。对于本发明创造所属技术领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明创造的保护范围。

Claims (18)

  1. 一种建筑轮廓成型机,包括无人机(1)以及设置在无人机(1)上用于建筑打印的打印喷头(112),其特征在于:还包括打印定位系统,所述无人机(1)包括卫星定位系统和控制系统,控制系统基于卫星定位系统引导无人机(1)按预定的打印路径飞行,带动打印喷头(112)进行打印,所述的打印定位系统包括多个定位标识单元和设置在无人机(1)上的采集单元,控制系统基于采集单元采集的多个定位标识单元的位置对无人机(1)的飞行路径进行实时修正。
  2. 根据权利要求1所述的建筑轮廓成型机,其特征在于:所述的采集单元为设置在无人机(1)上的红外线相机,所述的定位标识单元为设置在施工区域的红外线发射器。
  3. 根据权利要求1所述的建筑轮廓成型机,其特征在于:包括至少三个设置在施工区域的定位标识单元。
  4. 根据权利要求1所述的建筑轮廓成型机,其特征在于:所述无人机(1)包括机架(110),飞行动力系统设置在机架(110)上,在机架(110)的下方设有动平台(220),动平台(220)通过多组机械手与机架(110)连接,所述的打印喷头(112)设置在动平台(220)上。
  5. 根据权利要求1所述的建筑轮廓成型机,其特征在于:所述打印喷头(112)通过输料管(2)与料仓(3)连接,在无人机(1)的机架(110)的中部设有中间孔(111),输料管(2)从中间孔(111)穿过后与打印喷头(112)竖直连接。
  6. 根据权利要求4所述的建筑轮廓成型机,其特征在于:所述动平台(220)上设有稳定器,打印喷头(112)设置在稳定器上,在机架(110)上设有与稳定器配合的倾角传感器。
  7. 根据权利要求4所述的建筑轮廓成型机,其特征在于:每组机械手包括与静平台(210)连接的驱动杆(231)以及与动平台(220)连接的牵引杆(232),在静平台(210)上设有用于驱动驱动杆(231)转动的旋转电机,驱动杆(231)的一端与旋转电机连接,另一端与牵引杆(232)连接。
  8. 根据权利要求7所述的建筑轮廓成型机,其特征在于:所述静平台(210) 和动平台(220)通过中间轴(233)连接,中间轴(233)位于机械手之间;所述中间轴(233)为空心的筒状结构,所述的打印喷头(112)设置在中间轴(233)的下方,输料管(2)从中间轴(233)中穿过后再与下方的打印喷头(112)连接。
  9. 根据权利要求7所述的建筑轮廓成型机,其特征在于:包括两个牵引杆(232),两个牵引杆(232)相对设置,并且在两个牵引杆(232)的两端分别设有联轴器(234),两个牵引杆(232)一端的联轴器(234)分别与动平台(220)连接,在驱动杆(231)远离旋转的一端设有旋转轴(235),两个牵引杆(232)另一端的联轴器(234)分别与旋转轴(235)的两侧连接,旋转轴(235)与驱动杆(231)同轴设置,并且旋转轴(235)能够绕驱动杆(231)的轴线转动。
  10. 根据权利要求9所述的建筑轮廓成型机,其特征在于:联轴器(234)包括球套(2342)以及装在球套(2342)内侧转动的球形轴(2341),球套(2342)的外侧与牵引杆(232)连接并且可以绕牵引杆(232)的轴线转动,球套(2342)上设有开口,球形轴(2341)位于开口的一侧设有联接轴(2343),联接轴(2343)与动平台(220)或旋转轴(235)固定连接。
  11. 根据权利要求4所述的建筑轮廓成型机,其特征在于:所述机架(110)包括两个层叠设置的夹板(117),在两个夹板(117)之间的边缘位置设有多个固定件(118),飞行动力系统包括设置在机架(110)上的旋翼(113)和旋翼电机(114),所述的旋翼(113)和旋翼电机(114)分别设置在多个举升臂(119)的一端,多个举升臂(119)的另一端向下倾斜并分别与固定件(118)固定连接。
  12. 根据权利要求4所述的建筑轮廓成型机,其特征在于:所述机架(110)成框形,其包括成正方形的外框架以及成十字形的内框架,外框架包括四个首尾依次相连的外支架(1101),每个外支架(1101)的中部分别设有配重块(1104),内框架包括中心平台(1103)以及设置在中心平台(1103)四周的四个内支架(1102),控制系统设置在中心平台(1103)上,中心平台(1103)的中部设有中间孔(111),中心平台(1103)设置在外框架内侧的中心位置,并通过四个内支架(1102)分别与四个配重块(1104)的内侧连接,相邻的两个内支架(1102)垂直设置,在四个配重块(1104)的外侧分别设有延长支架(1105),在延长支 架(1105)的末端设有感应装置(115),在外支架(1101)、内支架(1102)和延长支架(1105)上均设有旋翼(113)和驱动旋翼(113)旋转的旋翼电机(114)。
  13. 根据权利要求12所述的建筑轮廓成型机,其特征在于:飞行动力系统包括设置在机架(110)上的旋翼(113)和旋翼电机(114),每个内支架(1102)和延长支架(1105)的中间位置分别设有一个旋翼(113)和旋翼电机(114),每个外支架(1101)对应在配重块(1104)的两侧分别设有一个旋翼(113)和旋翼电机(114)。
  14. 根据权利要求12所述的建筑轮廓成型机,其特征在于:所述配重块(114)上设有电池。
  15. 根据权利要求12所述的建筑轮廓成型机,其特征在于:所述外框架(1101)的四个顶角上分别设有降落伞(116)。
  16. 根据权利要求4所述的建筑轮廓成型机,其特征在于:所述打印喷头(112)包括固定在动平台(220)上的基座(1120),以及设置在基座(1120)上的主喷头(1121)和相对设置在主喷头(1121)两侧的两个辅助喷头(1122),主喷头(1121)和辅助喷头(1122)分别与输料管连接,主喷头(1121)和两个辅助喷头(1122)中分别设有截流机构。
  17. 根据权利要求5所述的建筑轮廓成型机,其特征在于:无人机(1)上设有连接在料仓(3)与打印喷头(112)之间的中间料仓(4),中间料仓(4)的一端通过输料管与地面上的料仓(3)连接,另一端通过输料管与打印喷头(112)连接,中间料仓(4)包括可旋转地螺旋型的搅挤叶片(3a)、驱动搅挤叶片(3a)旋转的泵送电机(3b)、输入口(3c)和挤出口(3g)、安装在挤出口(3g)处的挤出监控阀(3e);监控阀(3e)位于挤出口(3g)与(3D)打印喷头(112)之间;输入口(3c)用于地面上混合后的原料通过,挤出口(3g)与打印喷头(112)连接;泵送电机(3b)带动搅挤叶片(3a)转动搅拌并将原料从中间料仓(4)挤到打印喷头(112)中。
  18. 一种用于权利要求1-17任一所述的建筑轮廓成型机的建筑打印方法,其特征在于:在施工区域内设定原点和三维坐标系,定位原点的卫星定位点,在施工区域内不同位置放置多个定位标识单元,并记录定位标识单元的编号和坐标,将预定的打印路径在三维坐标系中成像,计算打印路径上每个位置与不 同定位单元预定的距离和角度;进行建筑打印时,无人机(1)上的采集单元实时采集多个定位标识单元的信息,获取当前打印位置上采集单元相对于各个定位标识单元实时的距离和角度,将实时的距离和角度与预定的距离和角度比较,对无人机(1)的飞行路径进行实时修正。
PCT/CN2019/089653 2018-08-10 2019-05-31 建筑轮廓成型机及建筑打印方法 WO2020029666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810905495.0 2018-08-10
CN201810905495.0A CN109113343B (zh) 2018-08-10 2018-08-10 建筑轮廓成型机及建筑打印方法

Publications (1)

Publication Number Publication Date
WO2020029666A1 true WO2020029666A1 (zh) 2020-02-13

Family

ID=64851739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089653 WO2020029666A1 (zh) 2018-08-10 2019-05-31 建筑轮廓成型机及建筑打印方法

Country Status (2)

Country Link
CN (1) CN109113343B (zh)
WO (1) WO2020029666A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112257143A (zh) * 2020-09-28 2021-01-22 北京科技大学 一种符合多振速要求的坐标点阵化隧道爆破药量计算方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109113343B (zh) * 2018-08-10 2021-02-26 博湃建筑科技(上海)有限公司 建筑轮廓成型机及建筑打印方法
CN114687559A (zh) * 2020-12-25 2022-07-01 博湃建筑科技(上海)有限公司 集物料仓储、搅拌和挤出一体的z轴和3d建筑打印机
CN113799984B (zh) * 2021-08-27 2022-02-22 南京航空航天大学 多机协同搭建任务执行终端、系统及一种附着板材
CN115008906B (zh) * 2022-06-30 2023-03-24 南京航空航天大学 一种飞行器多色喷墨打印装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104760280A (zh) * 2014-12-24 2015-07-08 上海大学 可飞行的3d打印机器人
CN106393715A (zh) * 2014-12-31 2017-02-15 候本株式会社 利用3d打印机的输出系统及其控制方法
DE202017102416U1 (de) * 2017-04-21 2017-05-23 braun project engineering gmbh System umfassend wenigstens eine gesteuert verfahrbare erste Vorrichtung und wenigstens eine an dieser angeordnete zweite Vorrichtung zum Aufbringen von Material
JP2017177978A (ja) * 2016-03-29 2017-10-05 大和ハウス工業株式会社 遠隔操縦式回転翼機
CN107246151A (zh) * 2017-08-08 2017-10-13 湖南三快而居住宅工业有限公司 一种建筑物的建造方法及建筑物的建造装置
CN206953277U (zh) * 2017-04-13 2018-02-02 欢颜创新科技(杭州)有限公司 建筑轮廓成型机
CN108196586A (zh) * 2018-03-14 2018-06-22 广州亿航智能技术有限公司 无人机控制方法、装置和储存介质
CN109057349A (zh) * 2018-07-23 2018-12-21 王迅 一种无人机式三维建筑打印机
CN109113343A (zh) * 2018-08-10 2019-01-01 博湃建筑科技(上海)有限公司 建筑轮廓成型机及建筑打印方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104760280A (zh) * 2014-12-24 2015-07-08 上海大学 可飞行的3d打印机器人
CN106393715A (zh) * 2014-12-31 2017-02-15 候本株式会社 利用3d打印机的输出系统及其控制方法
JP2017177978A (ja) * 2016-03-29 2017-10-05 大和ハウス工業株式会社 遠隔操縦式回転翼機
CN206953277U (zh) * 2017-04-13 2018-02-02 欢颜创新科技(杭州)有限公司 建筑轮廓成型机
DE202017102416U1 (de) * 2017-04-21 2017-05-23 braun project engineering gmbh System umfassend wenigstens eine gesteuert verfahrbare erste Vorrichtung und wenigstens eine an dieser angeordnete zweite Vorrichtung zum Aufbringen von Material
DE102017108509A1 (de) * 2017-04-21 2018-10-25 braun project engineering gmbh System umfassend wenigstens eine gesteuert verfahrbare erste Vorrichtung und wenigstens eine an dieser angeordnete zweite Vorrichtung zum Aufbringen von Material
CN107246151A (zh) * 2017-08-08 2017-10-13 湖南三快而居住宅工业有限公司 一种建筑物的建造方法及建筑物的建造装置
CN108196586A (zh) * 2018-03-14 2018-06-22 广州亿航智能技术有限公司 无人机控制方法、装置和储存介质
CN109057349A (zh) * 2018-07-23 2018-12-21 王迅 一种无人机式三维建筑打印机
CN109113343A (zh) * 2018-08-10 2019-01-01 博湃建筑科技(上海)有限公司 建筑轮廓成型机及建筑打印方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112257143A (zh) * 2020-09-28 2021-01-22 北京科技大学 一种符合多振速要求的坐标点阵化隧道爆破药量计算方法
CN112257143B (zh) * 2020-09-28 2024-02-02 北京科技大学 一种符合多振速要求的坐标点阵化隧道爆破药量计算方法

Also Published As

Publication number Publication date
CN109113343B (zh) 2021-02-26
CN109113343A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2020029666A1 (zh) 建筑轮廓成型机及建筑打印方法
EP3134316B1 (en) Hovering device for drawing on walls
US11662728B2 (en) Methods for maintaining difficult-to-access structures using unmanned aerial vehicles
JP7349282B2 (ja) 非水平面上でクローリングする自走式ロボット車両のための重力補償
JP6179502B2 (ja) マルチコプタを用いた3次元形状計測方法および装置
EP3267189B1 (en) Defect inspection device, defect inspection method, and program
US20200353511A1 (en) Aircraft Cleaning Robot
AU2019284269B2 (en) Loading structure with tether guide for unmanned aerial vehicle
CN108438227A (zh) 基于多旋翼无人机飞行平台的侧向喷涂构造
CN105292449B (zh) 一种水质采样无人机
CN105278541A (zh) 一种飞行器辅助降落控制方法及系统
US20100011864A1 (en) Continuous autonomous tester
CN209211901U (zh) 建筑轮廓成型机
JP2015223995A (ja) 撮影用無人飛行体
CN208665549U (zh) 一种可均匀喷洒农药的无人机
CN105487092B (zh) 机场廊桥对接飞机舱口导航系统
CN107430404A (zh) 基于路径的飞行操纵系统
CN104875882B (zh) 四轴飞行器
US11981428B2 (en) Unmanned aerial vehicle with suction device mountable to a wall surface
WO2020213290A1 (ja) 情報管理方法、識別情報付与装置および情報管理システム
US20200316961A1 (en) Printer
CN106527484A (zh) 一种基于机电一体化的无人机飞行航线管理系统
CN204871599U (zh) 四轴飞行器
CN111776243A (zh) 一种登机桥的控制方法及装置
CN110282137B (zh) 一种基于系绳连接的智能空中抓捕器及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846303

Country of ref document: EP

Kind code of ref document: A1