WO2020029570A1 - 用于模拟碰撞的碰撞机和模拟碰撞的方法 - Google Patents

用于模拟碰撞的碰撞机和模拟碰撞的方法 Download PDF

Info

Publication number
WO2020029570A1
WO2020029570A1 PCT/CN2019/075234 CN2019075234W WO2020029570A1 WO 2020029570 A1 WO2020029570 A1 WO 2020029570A1 CN 2019075234 W CN2019075234 W CN 2019075234W WO 2020029570 A1 WO2020029570 A1 WO 2020029570A1
Authority
WO
WIPO (PCT)
Prior art keywords
collision
liquid crystal
crystal panel
magnetic field
machine according
Prior art date
Application number
PCT/CN2019/075234
Other languages
English (en)
French (fr)
Inventor
彭邦银
黄添钧
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US16/494,302 priority Critical patent/US11194182B2/en
Publication of WO2020029570A1 publication Critical patent/WO2020029570A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/38Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/503Arrangements improving the resistance to shock

Definitions

  • the present application relates to the field of display technology, and in particular, to a collision machine for simulating a collision and a method for simulating a collision.
  • the thin film transistor liquid crystal display has the advantages of being thin and light, environmental protection, short response time and good display effect, etc., and has been widely used in the field of electronic display.
  • the main component of a thin film transistor liquid crystal display is a liquid crystal cell composed of a thin film transistor substrate, a liquid crystal, and a color filter substrate.
  • a plurality of support columns are usually provided between the thin film transistor substrate and the color filter substrate to keep the thickness of the liquid crystal cell unchanged.
  • the supporting pillars can crush the conductive glass at the bottom of the liquid crystal cell.
  • the break of the conductive glass will cause the gas in the color resist layer to escape and generate bubbles in the display screen. Therefore, before the display leaves the factory, it is necessary to perform a simulated impact test on the display to measure the tolerance of the display to external impacts and optimize the display based on the detection results.
  • a collision machine for simulating a collision which includes at least two collision units, the collision unit including a shell, a support structure, and at least two collision bodies; wherein the support structure Located on two opposite surfaces inside the housing for fixing the liquid crystal panel; the collision body is located below the supporting structure, and an upper surface of the collision body is in contact with a display surface of the liquid crystal panel, and is used to face the liquid crystal panel; The liquid crystal panel applies repeated impacts, and generates bubbles on the liquid crystal panel through the repeated impacts; the collision body includes a closed box body, a collision block located inside the box body, and a driving device.
  • the housing is a cubic structure having a cavity
  • the cubic structure has an opening on one surface located in a vertical direction
  • a movable cover corresponding to the opening is provided at the opening.
  • the surface of the cubic structure in the horizontal direction is a detection surface, and its length and width are greater than the length and width of the liquid crystal panel, respectively.
  • two opposite surfaces of the cube structure perpendicular to the opening and the detection surface are supporting surfaces for setting the supporting structure; the supporting structures are symmetrically disposed at each The double-layered protrusion structure on the support surface, and the distance between the upper and lower layer protrusions in the double-layered protrusion structure is equal to the thickness of the liquid crystal panel.
  • the collision body includes a closed box body, a collision block located inside the box body, and a driving device.
  • the driving device is an ultrasonic generator.
  • the ultrasonic generator is located at the bottom of the box body and is capable of receiving a collision signal sent by the collider; after receiving the collision signal, the ultrasonic generator emits an ultrasonic wave, and The ultrasonic wave drives the collision body to move upward and hits the top of the box body.
  • the ultrasonic wave has a frequency of periodic repetition, which can drive the collision body to periodically reciprocate in a vertical direction, so that the collision body repeatedly and repeatedly hits the top of the box body.
  • the collision block is a magnetic collision block
  • the driving device is a magnetic field generator
  • the magnetic field generator is a toroidal coil distributed on the top, bottom, and side walls of the box body, and the magnetic collision body is located inside the toroidal coil; the magnetic field generator can accept After receiving the collision signal from the collider, after receiving the collision signal, the magnetic field generator generates an alternating current of a certain frequency inside the toroidal coil to form a magnetic field inside the coil; and the magnetic body is driven to move upward by the magnetic field. , Hit the top of the box.
  • the present application also provides a collision machine for simulating a collision, which includes at least two collision units, the collision unit including a shell, a support structure, and at least two collision bodies; wherein,
  • the supporting structure is located on two opposite surfaces inside the casing, and is used for fixing the liquid crystal panel;
  • the collision body is located below the support structure, and an upper surface of the collision body is in contact with a display surface of the liquid crystal panel, and is configured to apply repeated impacts to the liquid crystal panel and generate bubbles on the liquid crystal panel through the repeated impact .
  • the housing is a cubic structure having a cavity
  • the cubic structure has an opening on one surface located in a vertical direction
  • a movable cover corresponding to the opening is provided at the opening.
  • the surface of the cubic structure in the horizontal direction is a detection surface, and its length and width are greater than the length and width of the liquid crystal panel, respectively.
  • two opposite surfaces of the cube structure perpendicular to the opening and the detection surface are support surfaces for setting the support structure;
  • the supporting structure is a double-layered protrusion structure symmetrically disposed on each of the supporting surfaces, and the distance between the upper and lower protrusions in the double-layered protrusion structure is equal to the thickness of the liquid crystal panel.
  • the collision body includes a closed box body, a collision block located inside the box body, and a driving device.
  • the driving device is an ultrasonic generator.
  • the ultrasonic generator is located at the bottom of the box body and is capable of receiving a collision signal sent by the collider; after receiving the collision signal, the ultrasonic generator emits an ultrasonic wave, and The ultrasonic wave drives the collision body to move upward and hits the top of the box body.
  • the collision block is a magnetic collision block
  • the driving device is a magnetic field generator
  • the magnetic field generator is a toroidal coil distributed on the top, bottom, and side walls of the box body, and the magnetic collision body is located inside the toroidal coil; the magnetic field generator can accept After receiving the collision signal from the collider, after receiving the collision signal, the magnetic field generator generates an alternating current of a certain frequency inside the toroidal coil to form a magnetic field inside the coil; and the magnetic body is driven to move upward by the magnetic field. , Hit the top of the box.
  • the magnetic field generated by the magnetic field generator has a periodically changing magnetic field direction, and the change of the magnetic field direction drives the magnetic collision body to periodically reciprocate in a vertical direction so that the collision body repeats periodically. Hit the top of the box.
  • This application also provides a method for simulating a collision, which includes the following steps:
  • a collision machine comprising at least two collision units, the collision unit comprising a housing, a support structure and at least two collision bodies; wherein the support structure is located on two opposite surfaces inside the housing, Configured to fix the liquid crystal panel; the collision body is located below the liquid crystal panel, and an upper surface of the collision body is in contact with the liquid crystal panel;
  • the collision body is activated, so that the collision body applies repeated impacts to the liquid crystal panel, and bubbles are generated on the liquid crystal panel through the repeated impacts.
  • the present application can simulate external impact by the collision body, and generate liquid crystal bubbles on the liquid crystal display screen, thereby completing the impact test of the liquid crystal panel before leaving the factory, so that the R & D personnel can evaluate and optimize the quality of the liquid crystal panel according to the impact result.
  • this application is provided with at least two collision units, which can perform impact tests on two or more panels at the same time, further improving the test efficiency.
  • FIG. 1 is a schematic structural diagram of a collision machine according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a collision unit in the collision machine of FIG. 1;
  • FIG. 3 is a schematic structural diagram of a collision body in the collision unit in FIG. 2;
  • FIG. 4 is a schematic flowchart of a method for generating bubbles in a liquid crystal panel according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a collision machine 100 according to an embodiment of the present application.
  • the collision machine 100 includes at least two collision units.
  • the collision machine 100 includes a first collision unit 10, a second collision unit 20, a third collision unit 30, and a fourth collision unit 40.
  • the above six collision units have the same structure. In other embodiments, the number of collision units can be set as required.
  • FIG. 2 is a schematic structural diagram of a collision unit 10 in the collision machine of FIG. 1.
  • the collision unit 10 includes a housing 12, a support structure 14, and at least two collision bodies 16. Wherein, the supporting structure 14 is located on two opposite surfaces inside the casing 12 for fixing the liquid crystal panel.
  • the collision body 16 is located below the support structure, and an upper surface of the collision body 16 is in contact with a display surface of the liquid crystal panel, and is configured to apply repeated impacts to the liquid crystal panel and generate the repeated impacts on the liquid crystal panel. bubble.
  • the housing 12 is a cubic structure having a cavity, and the cubic structure has an opening on one surface located in a vertical direction, and an opening corresponding to the opening is provided at the opening.
  • Mobile cover the surface of the cube structure located in the horizontal direction is the detection surface, and its length and width are greater than the length and width of the liquid crystal panel, respectively.
  • the supporting structure 14 is a double-layered protrusion structure symmetrically disposed on each of the supporting surfaces, and the distance between the upper and lower protrusions in the double-layered protrusion structure is equal to the thickness of the liquid crystal panel.
  • the collision body 16 includes a closed box body 162, a collision block 164 and a driving device 166 located inside the box body.
  • the driving device 166 is an ultrasonic generator.
  • the ultrasonic generator is located at the bottom of the box body 162 and is capable of receiving a collision signal from the collision machine.
  • the ultrasonic generator sends out an ultrasonic wave, and the ultrasonic wave is used to drive the collision body to move upward and hit the top of the box body.
  • the ultrasonic wave has a frequency of periodically repeating, and can drive the collision body 164 to periodically reciprocate in a vertical direction, so that the collision body periodically and repeatedly hits the top of the box body.
  • the collision block 164 is a magnetic collision block
  • the driving device 166 is a magnetic field generator.
  • the magnetic field generator is an annular coil distributed on the top, bottom and side walls of the box body, and the magnetic collision body is located inside the annular coil.
  • the magnetic field generator can receive a collision signal from the collider. After receiving the collision signal, the magnetic field generator generates an alternating current of a certain frequency inside the toroidal coil, and forms a magnetic field inside the coil.
  • the magnetic body drives the collision body 164 to move upward, and hits the top of the box body.
  • the magnetic field generated by the magnetic field generator has a periodically changing magnetic field direction.
  • the change of the magnetic field direction drives the magnetic collision body to periodically reciprocate in a vertical direction, so that the collision body periodically and repeatedly hits the top of the box body.
  • the present application also provides a method for simulating a collision, which includes the following steps:
  • a collision machine comprising at least two collision units, the collision unit comprising a housing, a support structure and at least two collision bodies; wherein the support structure is located on two opposite surfaces inside the housing,
  • the liquid crystal panel is used for fixing the liquid crystal panel.
  • the collision body is located below the liquid crystal panel, and an upper surface of the collision body is in contact with the liquid crystal panel.
  • a liquid crystal panel is placed in the casing and fixed by the supporting structure.
  • the collision body is activated, so that the collision body applies repeated impacts to the liquid crystal panel, and bubbles are generated on the liquid crystal panel through the repeated impacts.
  • the collision machine 100 includes at least two collision units.
  • the collision machine 100 includes a first collision unit 10, a second collision unit 20, a third collision unit 30, and a third collision unit.
  • the number of collision units can be set as required.
  • FIG. 2 is a schematic structural diagram of a collision unit 10 in the collision machine of FIG. 1.
  • the collision unit 10 includes a housing 12, a support structure 14, and at least two collision bodies 16. Wherein, the supporting structure 14 is located on two opposite surfaces inside the casing 12 for fixing the liquid crystal panel.
  • the collision body 16 is located below the support structure, and an upper surface of the collision body 16 is in contact with a display surface of the liquid crystal panel, and is configured to apply repeated impacts to the liquid crystal panel and generate the repeated impacts on the liquid crystal panel. bubble.
  • step S2 the liquid crystal panel is placed in the casing and fixed by the supporting structure.
  • the housing 12 is a cubic structure having a cavity, and the cubic structure has an opening on one surface located in a vertical direction, and an opening corresponding to the opening is provided at the opening.
  • Mobile cover the surface of the cube structure located in the horizontal direction is the detection surface, and its length and width are greater than the length and width of the liquid crystal panel, respectively.
  • the supporting structure 14 is a double-layered protrusion structure symmetrically disposed on each of the supporting surfaces, and the distance between the upper and lower protrusions in the double-layered protrusion structure is equal to the thickness of the liquid crystal panel.
  • step S3 the collision body is activated so that the collision body applies repeated impacts to the liquid crystal panel, and bubbles are generated on the liquid crystal panel by the repeated impacts.
  • the collision body 16 includes a closed box body 162, a collision block 164 and a driving device 166 located inside the box body.
  • the driving device 166 is an ultrasonic generator.
  • the ultrasonic generator is located at the bottom of the box body 162 and is capable of receiving a collision signal from the collision machine.
  • the ultrasonic generator sends out an ultrasonic wave, and the ultrasonic wave is used to drive the collision body to move upward and hit the top of the box body.
  • the ultrasonic wave has a frequency of periodically repeating, and can drive the collision body 164 to periodically reciprocate in a vertical direction, so that the collision body periodically and repeatedly hits the top of the box body.
  • the collision block 164 is a magnetic collision block
  • the driving device 166 is a magnetic field generator.
  • the magnetic field generator is an annular coil distributed on the top, bottom and side walls of the box body, and the magnetic collision body is located inside the annular coil.
  • the magnetic field generator can receive a collision signal from the collider. After receiving the collision signal, the magnetic field generator generates an alternating current of a certain frequency inside the toroidal coil, and forms a magnetic field inside the coil.
  • the magnetic body drives the collision body 164 to move upward, and hits the top of the box body.
  • the magnetic field generated by the magnetic field generator has a periodically changing magnetic field direction.
  • the change of the magnetic field direction drives the magnetic collision body to periodically reciprocate in a vertical direction, so that the collision body periodically and repeatedly hits the top of the box body.
  • the present application can simulate external impacts by the collision body, and generate liquid crystal bubbles on the liquid crystal display screen, so that the impact test of the liquid crystal panel can be completed before leaving the factory, so that the R & D personnel can evaluate and optimize the quality of the liquid crystal panel according to the impact results.
  • this application is provided with at least two collision units, which can perform impact tests on two or more panels at the same time, further improving the test efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种用于模拟碰撞的碰撞机(100)和一种模拟碰撞的方法。碰撞机(100)包括至少两个碰撞单元(10,20,30,40,50,60),碰撞单元(10,20,30,40,50,60)包括壳体(12)、支撑结构(14)以及至少两个碰撞体(16);其中,支撑结构(14)位于壳体(12)内部两个相对的表面上;碰撞体(16)位于支撑结构(14)下方,用于向液晶面板施加重复撞击,并通过重复撞击在液晶面板上产生气泡;碰撞体(16)包括封闭的盒体(162)、位于盒体(162)内部的碰撞块(164)和驱动装置(166)。

Description

用于模拟碰撞的碰撞机和模拟碰撞的方法 技术领域
本申请涉及显示技术领域,具体涉及一种用于模拟碰撞的碰撞机和一种模拟碰撞的方法。
背景技术
薄膜晶体管液晶显示器具有轻薄、环保、响应时间短和显示效果好等优点,在电子显示领域中得到了广泛应用。薄膜晶体管液晶显示器的主要组成部分是由薄膜晶体管基板、液晶和彩膜基板构成的液晶盒。为了避免液晶盒在外界压力的影响下产生厚度不均的现象,通常在薄膜晶体管基板和彩膜基板之间设置多个支撑柱,使液晶盒的厚度保持不变。但是,当薄膜晶体管液晶显示器受到过大的外力挤压、磕碰时,所述支撑柱会压碎液晶盒底部的导电玻璃。导电玻璃破裂会导致色阻层内的气体逸出,在显示屏中产生气泡。因此,在显示屏出厂前,需要对显示屏进行模拟撞击实验,以测量显示屏对外界撞击的耐受程度,并根据检测结果对显示屏进行优化。
因此,目前亟需一种能够对显示屏进行模拟撞击的方法和装置。
技术问题
缺少对显示屏进行模拟撞击的有效手段。
技术解决方案
为实现上述目的,本申请提供的技术方案如下:
根据本申请的一个方面,提供了一种用于模拟碰撞的碰撞机,其包括至少两个碰撞单元,所述碰撞单元包括壳体、支撑结构以及至少两个碰撞体;其中,所述支撑结构位于所述壳体内部两个相对的表面上,用于固定所述液晶面板;所述碰撞体位于所述支撑结构下方,其上表面与所述液晶面板的显示面相贴合,用于向所述液晶面板施加重复撞击,并通过所述重复撞击在所述液晶面板上产生气泡;所述碰撞体包括封闭的盒体、位于所述盒体内部的碰撞块和驱动装置。
根据本申请的其中一个方面,所述壳体为具有空腔的立方体结构,所述立方体结构在位于垂直方向的一个表面上具有开口,所述开口处设置有与所述开口对应的可活动盖体;其中,所述立方体结构位于水平方向的表面为检测面,其长度和宽度分别大于所述液晶面板的长度和宽度。
根据本申请的其中一个方面,所述立方体结构垂直于所述开口和所述检测面的两个相对的表面为支撑面,用于设置所述支撑结构;所述支撑结构为对称设置在每一个所述支撑面上的双层凸起结构,所述双层凸起结构中上下层凸起之间的距离等于所述液晶面板的厚度。
根据本申请的其中一个方面,所述碰撞体包括封闭的盒体、位于所述盒体内部的碰撞块和驱动装置。
根据本申请的其中一个方面,所述驱动装置为超声波发生器。
根据本申请的其中一个方面,所述超声波发生器位于所述盒体底部,并且能够接受所述碰撞机发出的碰撞信号;当接收到所述碰撞信号后,所述超声波发生器发出超声波,通过超声波驱动所述碰撞体向上运动,撞击所述盒体顶部。
根据本申请的其中一个方面,所述超声波具有周期性重复的频率,能够驱动所述碰撞体沿垂直方向周期性往复运动,使所述碰撞体周期性重复撞击所述盒体顶部。
根据本申请的其中一个方面,所述碰撞块为磁性碰撞块,所述驱动装置为磁场发生器。
根据本申请的其中一个方面,所述磁场发生器为分布在所述盒体的顶部、底部和侧壁的环形线圈,所述磁性碰撞体位于所述环形线圈内部;所述磁场发生器能够接受所述碰撞机发出的碰撞信号;当接收到所述碰撞信号后,所述磁场发生器在环形线圈内部产生一定频率的交流电,在线圈内部形成磁场;通过所述磁场驱动所述碰撞体向上运动,撞击所述盒体顶部。
本申请还提供了一种用于模拟碰撞的碰撞机,其包括至少两个碰撞单元,所述碰撞单元包括壳体、支撑结构以及至少两个碰撞体;其中,
所述支撑结构位于壳体内部两个相对的表面上,用于固定所述液晶面板;
所述碰撞体位于所述支撑结构下方,其上表面与所述液晶面板的显示面相贴合,用于向所述液晶面板施加重复撞击,并通过所述重复撞击在所述液晶面板上产生气泡。
根据本申请的其中一个方面,所述壳体为具有空腔的立方体结构,所述立方体结构在位于垂直方向的一个表面上具有开口,所述开口处设置有与所述开口对应的可活动盖体;其中,所述立方体结构位于水平方向的表面为检测面,其长度和宽度分别大于所述液晶面板的长度和宽度。
根据本申请的其中一个方面,所述立方体结构垂直于所述开口和所述检测面的两个相对的表面为支撑面,用于设置所述支撑结构;其中,
所述支撑结构为对称设置在每一个所述支撑面上的双层凸起结构,所述双层凸起结构中上下层凸起之间的距离等于所述液晶面板的厚度。
根据本申请的其中一个方面,所述碰撞体包括封闭的盒体、位于所述盒体内部的碰撞块和驱动装置。
根据本申请的其中一个方面,所述驱动装置为超声波发生器。
根据本申请的其中一个方面,所述超声波发生器位于所述盒体底部,并且能够接受所述碰撞机发出的碰撞信号;当接收到所述碰撞信号后,所述超声波发生器发出超声波,通过超声波驱动所述碰撞体向上运动,撞击所述盒体顶部。
根据本申请的其中一个方面,所述碰撞块为磁性碰撞块,所述驱动装置为磁场发生器。
根据本申请的其中一个方面,所述磁场发生器为分布在所述盒体的顶部、底部和侧壁的环形线圈,所述磁性碰撞体位于所述环形线圈内部;所述磁场发生器能够接受所述碰撞机发出的碰撞信号;当接收到所述碰撞信号后,所述磁场发生器在环形线圈内部产生一定频率的交流电,在线圈内部形成磁场;通过所述磁场驱动所述碰撞体向上运动,撞击所述盒体顶部。
根据本申请的其中一个方面,所述磁场发生器产生的磁场具有周期性改变的磁场方向,磁场方向的变化驱动所述磁性碰撞体沿垂直方向周期性往复运动,使所述碰撞体周期性重复撞击所述盒体顶部。
本申请还提供了一种模拟碰撞的方法,其包括以下步骤:
S1、提供碰撞机,所述碰撞机包括至少两个碰撞单元,所述碰撞单元包括壳体、支撑结构以及至少两个碰撞体;其中所述支撑结构位于壳体内部两个相对的表面上,用于固定所述液晶面板;所述碰撞体位于所述液晶面板下方,其上表面与所述液晶面板相贴合;
S2、将液晶面板放入所述壳体中,并通过所述支撑结构固定;
S3、启动所述碰撞体,使所述碰撞体向所述液晶面板施加重复撞击,并通过所述重复撞击在所述液晶面板上产生气泡。
有益效果
有益效果:本申请能够通过碰撞体模拟外界撞击,在液晶显示屏上产生液晶气泡,从而在出厂前完成液晶面板的撞击测试,以便于研发人员根据撞击结果对液晶面板的质量进行评估和优化。此外,本申请设置了至少两个碰撞单元,能够同时对两个及两个以上的面板进行撞击测试,进一步提高了测试效率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一个实施例中的碰撞机的结构示意图;
图2为图1中的碰撞机中的碰撞单元的结构示意图;
图3为图2中的碰撞单元中的碰撞体的结构示意图;
图4为本申请一个实施例中的在液晶面板中产生气泡的方法的流程示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
下面将结合附图对本申请进行详细说明。
首先,参见图1,图1为本申请一个实施例中的碰撞机100的结构示意图。具体的,所述碰撞机100包括至少两个碰撞单元,在本实施例中,所述碰撞机100包括第一碰撞单元10、第二碰撞单元20、第三碰撞单元30、第四碰撞单元40、第五碰撞单元50和第六碰撞单元60。上述六个碰撞单元具有相同的结构。在其它实施例中,碰撞单元的数目可以根据需要设置。
参见图2,图2为图1的碰撞机中的碰撞单元10的结构示意图。所述碰撞单元10包括壳体12、支撑结构14以及至少两个碰撞体16。其中,所述支撑结构14位于壳体12内部两个相对的表面上,用于固定液晶面板。所述碰撞体16位于所述支撑结构下方,其上表面与所述液晶面板的显示面相贴合,用于向所述液晶面板施加重复撞击,并通过所述重复撞击在所述液晶面板上产生气泡。
具体的,在本实施例中,所述壳体12为具有空腔的立方体结构,所述立方体结构在位于垂直方向的一个表面上具有开口,所述开口处设置有与所述开口对应的可活动盖体。其中,所述立方体结构位于水平方向的表面为检测面,其长度和宽度分别大于所述液晶面板的长度和宽度。
优选的,所述立方体结构垂直于所述开口和所述检测面的两个相对的表面为支撑面,用于设置所述支撑结构14。所述支撑结构14为对称设置在每一个所述支撑面上的双层凸起结构,所述双层凸起结构中上下层凸起之间的距离等于所述液晶面板的厚度。
参见图3,所述碰撞体16包括封闭的盒体162、位于所述盒体内部的碰撞块164和驱动装置166。
在本申请的一个实施例中,所述驱动装置166为超声波发生器。具体的,所述超声波发生器位于所述盒体162底部,并且能够接受所述碰撞机发出的碰撞信号。当接收到所述碰撞信号后,所述超声波发生器发出超声波,通过超声波驱动所述碰撞体向上运动,撞击所述盒体顶部。具体的,所述超声波具有周期性重复的频率,能够驱动所述碰撞体164沿垂直方向周期性往复运动,使所述碰撞体周期性重复撞击所述盒体顶部。
在本申请的另一个实施例中,所述碰撞块164为磁性碰撞块,所述驱动装置166为磁场发生器。所述磁场发生器为分布在所述盒体的顶部、底部和侧壁的环形线圈,所述磁性碰撞体位于所述环形线圈内部。所述磁场发生器能够接受所述碰撞机发出的碰撞信号。当接收到所述碰撞信号后,所述磁场发生器在环形线圈内部产生一定频率的交流电,在线圈内部形成磁场。通过所述磁场驱动所述碰撞体164向上运动,撞击所述盒体顶部。
所述磁场发生器产生的磁场具有周期性改变的磁场方向,磁场方向的变化驱动所述磁性碰撞体沿垂直方向周期性往复运动,使所述碰撞体周期性重复撞击所述盒体顶部。
相应的,参见图4,本申请还提供了一种模拟碰撞的方法,其包括以下步骤:
S1、提供碰撞机,所述碰撞机包括至少两个碰撞单元,所述碰撞单元包括壳体、支撑结构以及至少两个碰撞体;其中所述支撑结构位于壳体内部两个相对的表面上,用于固定所述液晶面板;所述碰撞体位于所述液晶面板下方,其上表面与所述液晶面板相贴合。
S2、将液晶面板放入所述壳体中,并通过所述支撑结构固定。
S3、启动所述碰撞体,使所述碰撞体向所述液晶面板施加重复撞击,并通过所述重复撞击在所述液晶面板上产生气泡。
首先,在步骤S1中,所述碰撞机100包括至少两个碰撞单元,在本实施例中,所述碰撞机100包括第一碰撞单元10、第二碰撞单元20、第三碰撞单元30、第四碰撞单元40、第五碰撞单元50和第六碰撞单元60。在其他实施例中,碰撞单元的数目可以根据需要设置。
参见图2,图2为图1的碰撞机中的碰撞单元10的结构示意图。所述碰撞单元10包括壳体12、支撑结构14以及至少两个碰撞体16。其中,所述支撑结构14位于壳体12内部两个相对的表面上,用于固定液晶面板。所述碰撞体16位于所述支撑结构下方,其上表面与所述液晶面板的显示面相贴合,用于向所述液晶面板施加重复撞击,并通过所述重复撞击在所述液晶面板上产生气泡。
之后,在步骤S2中,将液晶面板放入所述壳体中,并通过所述支撑结构固定。
具体的,在本实施例中,所述壳体12为具有空腔的立方体结构,所述立方体结构在位于垂直方向的一个表面上具有开口,所述开口处设置有与所述开口对应的可活动盖体。其中,所述立方体结构位于水平方向的表面为检测面,其长度和宽度分别大于所述液晶面板的长度和宽度。
优选的,所述立方体结构垂直于所述开口和所述检测面的两个相对的表面为支撑面,用于设置所述支撑结构14。所述支撑结构14为对称设置在每一个所述支撑面上的双层凸起结构,所述双层凸起结构中上下层凸起之间的距离等于所述液晶面板的厚度。
最后,在步骤S3中,启动所述碰撞体,使所述碰撞体向所述液晶面板施加重复撞击,并通过所述重复撞击在所述液晶面板上产生气泡。
参见图3,所述碰撞体16包括封闭的盒体162、位于所述盒体内部的碰撞块164和驱动装置166。
在本申请的一个实施例中,所述驱动装置166为超声波发生器。具体的,所述超声波发生器位于所述盒体162底部,并且能够接受所述碰撞机发出的碰撞信号。当接收到所述碰撞信号后,所述超声波发生器发出超声波,通过超声波驱动所述碰撞体向上运动,撞击所述盒体顶部。具体的,所述超声波具有周期性重复的频率,能够驱动所述碰撞体164沿垂直方向周期性往复运动,使所述碰撞体周期性重复撞击所述盒体顶部。
在本申请的另一个实施例中,所述碰撞块164为磁性碰撞块,所述驱动装置166为磁场发生器。所述磁场发生器为分布在所述盒体的顶部、底部和侧壁的环形线圈,所述磁性碰撞体位于所述环形线圈内部。所述磁场发生器能够接受所述碰撞机发出的碰撞信号。当接收到所述碰撞信号后,所述磁场发生器在环形线圈内部产生一定频率的交流电,在线圈内部形成磁场。通过所述磁场驱动所述碰撞体164向上运动,撞击所述盒体顶部。
所述磁场发生器产生的磁场具有周期性改变的磁场方向,磁场方向的变化驱动所述磁性碰撞体沿垂直方向周期性往复运动,使所述碰撞体周期性重复撞击所述盒体顶部。
本申请能够通过碰撞体模拟外界撞击,在液晶显示屏上产生液晶气泡,从而能够在出厂前完成液晶面板的撞击测试,以便于研发人员根据撞击结果对液晶面板的质量进行评估和优化。此外,本申请设置了至少两个碰撞单元,能够同时对两个及两个以上的面板进行撞击测试,进一步提高了测试效率。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (19)

  1. 一种用于模拟碰撞的碰撞机,其包括至少两个碰撞单元,所述碰撞单元包括壳体、支撑结构以及至少两个碰撞体;其中,
    所述支撑结构位于所述壳体内部两个相对的表面上,用于固定所述液晶面板;
    所述碰撞体位于所述支撑结构下方,其上表面与所述液晶面板的显示面相贴合,用于向所述液晶面板施加重复撞击,并通过所述重复撞击在所述液晶面板上产生气泡;
    所述碰撞体包括封闭的盒体、位于所述盒体内部的碰撞块和驱动装置。
  2. 根据权利要求1所述的碰撞机,其中,所述壳体为具有空腔的立方体结构,所述立方体结构在位于垂直方向的一个表面上具有开口,所述开口处设置有与所述开口对应的可活动盖体;其中,所述立方体结构位于水平方向的表面为检测面,其长度和宽度分别大于所述液晶面板的长度和宽度。
  3. 根据权利要求2所述的碰撞机,其中,所述立方体结构垂直于所述开口和所述检测面的两个相对的表面为支撑面,用于设置所述支撑结构;
    所述支撑结构为对称设置在每一个所述支撑面上的双层凸起结构,所述双层凸起结构中上下层凸起之间的距离等于所述液晶面板的厚度。
  4. 根据权利要求3所述的碰撞机,其中,所述碰撞体包括封闭的盒体、位于所述盒体内部的碰撞块和驱动装置。
  5. 根据权利要求4所述的碰撞机,其中,所述驱动装置为超声波发生器。
  6. 根据权利要求5所述的碰撞机,其中,所述超声波发生器位于所述盒体底部,并且能够接受所述碰撞机发出的碰撞信号;当接收到所述碰撞信号后,所述超声波发生器发出超声波,通过超声波驱动所述碰撞体向上运动,撞击所述盒体顶部。
  7. 根据权利要求6所述的碰撞机,其中,所述超声波具有周期性重复的频率,能够驱动所述碰撞体沿垂直方向周期性往复运动,使所述碰撞体周期性重复撞击所述盒体顶部。
  8. 根据权利要求4所述的碰撞机,其中,所述碰撞块为磁性碰撞块,所述驱动装置为磁场发生器。
  9. 根据权利要求8所述的碰撞机,其中,所述磁场发生器为分布在所述盒体的顶部、底部和侧壁的环形线圈,所述磁性碰撞体位于所述环形线圈内部;所述磁场发生器能够接受所述碰撞机发出的碰撞信号;当接收到所述碰撞信号后,所述磁场发生器在环形线圈内部产生一定频率的交流电,在线圈内部形成磁场;通过所述磁场驱动所述碰撞体向上运动,撞击所述盒体顶部。
  10. 根据权利要求9所述的碰撞机,其中,所述磁场发生器产生的磁场具有周期性改变的磁场方向,磁场方向的变化驱动所述磁性碰撞体沿垂直方向周期性往复运动,使所述碰撞体周期性重复撞击所述盒体顶部。
  11. 一种用于模拟碰撞的碰撞机,其包括至少两个碰撞单元,所述碰撞单元包括壳体、支撑结构以及至少两个碰撞体;其中,
    所述支撑结构位于壳体内部两个相对的表面上,用于固定所述液晶面板;
    所述碰撞体位于所述支撑结构下方,其上表面与所述液晶面板的显示面相贴合,用于向所述液晶面板施加重复撞击,并通过所述重复撞击在所述液晶面板上产生气泡。
  12. 根据权利要求11所述的碰撞机,其中,所述壳体为具有空腔的立方体结构,所述立方体结构在位于垂直方向的一个表面上具有开口,所述开口处设置有与所述开口对应的可活动盖体;其中,所述立方体结构位于水平方向的表面为检测面,其长度和宽度分别大于所述液晶面板的长度和宽度。
  13. 根据权利要求12所述的碰撞机,其中,所述立方体结构垂直于所述开口和所述检测面的两个相对的表面为支撑面,用于设置所述支撑结构;其中,
    所述支撑结构为对称设置在每一个所述支撑面上的双层凸起结构,所述双层凸起结构中上下层凸起之间的距离等于所述液晶面板的厚度。
  14. 根据权利要求13所述的碰撞机,其中,所述碰撞体包括封闭的盒体、位于所述盒体内部的碰撞块和驱动装置。
  15. 根据权利要求14所述的碰撞机,其中,所述驱动装置为超声波发生器。
  16. 根据权利要求15所述的碰撞机,其中,所述超声波发生器位于所述盒体底部,并且能够接受所述碰撞机发出的碰撞信号;当接收到所述碰撞信号后,所述超声波发生器发出超声波,通过超声波驱动所述碰撞体向上运动,撞击所述盒体顶部。
  17. 根据权利要求14所述的碰撞机,其中,所述碰撞块为磁性碰撞块,所述驱动装置为磁场发生器。
  18. 根据权利要求17所述的碰撞机,其中,所述磁场发生器为分布在所述盒体的顶部、底部和侧壁的环形线圈,所述磁性碰撞体位于所述环形线圈内部;所述磁场发生器能够接受所述碰撞机发出的碰撞信号;当接收到所述碰撞信号后,所述磁场发生器在环形线圈内部产生一定频率的交流电,在线圈内部形成磁场;通过所述磁场驱动所述碰撞体向上运动,撞击所述盒体顶部。
  19. 一种模拟碰撞的方法,其包括以下步骤:
    S1、提供碰撞机,所述碰撞机包括至少两个碰撞单元,所述碰撞单元包括壳体、支撑结构以及至少两个碰撞体;其中所述支撑结构位于壳体内部两个相对的表面上,用于固定所述液晶面板;所述碰撞体位于所述液晶面板下方,其上表面与所述液晶面板相贴合;
    S2、将液晶面板放入所述壳体中,并通过所述支撑结构固定;
    S3、启动所述碰撞体,使所述碰撞体向所述液晶面板施加重复撞击,并通过所述重复撞击在所述液晶面板上产生气泡。
PCT/CN2019/075234 2018-08-10 2019-02-15 用于模拟碰撞的碰撞机和模拟碰撞的方法 WO2020029570A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/494,302 US11194182B2 (en) 2018-08-10 2019-02-15 Collision machine for simulating collisions and method of simulating collisions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810909920.3 2018-08-10
CN201810909920.3A CN108983458A (zh) 2018-08-10 2018-08-10 液晶气泡磁力碰撞机及液晶气泡的检测方法

Publications (1)

Publication Number Publication Date
WO2020029570A1 true WO2020029570A1 (zh) 2020-02-13

Family

ID=64552668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075234 WO2020029570A1 (zh) 2018-08-10 2019-02-15 用于模拟碰撞的碰撞机和模拟碰撞的方法

Country Status (3)

Country Link
US (1) US11194182B2 (zh)
CN (1) CN108983458A (zh)
WO (1) WO2020029570A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983458A (zh) * 2018-08-10 2018-12-11 深圳市华星光电技术有限公司 液晶气泡磁力碰撞机及液晶气泡的检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101067689A (zh) * 2007-06-25 2007-11-07 友达光电股份有限公司 用于检测面板的检测装置
CN202126819U (zh) * 2011-06-10 2012-01-25 北京京东方光电科技有限公司 一种液晶面板的检测装置
CN103345081A (zh) * 2013-07-11 2013-10-09 深圳市华星光电技术有限公司 检测液晶模组的装置以及检测液晶量方法
KR20130136806A (ko) * 2012-06-05 2013-12-13 엘지디스플레이 주식회사 디스플레이 모듈 검사장치 및 검사방법
CN106989972A (zh) * 2017-04-21 2017-07-28 深圳市华星光电技术有限公司 一种显示面板气泡检测系统和方法
CN107390397A (zh) * 2017-08-22 2017-11-24 深圳市华星光电技术有限公司 磁力碰撞机及液晶显示面板的碰撞实验方法
CN107656388A (zh) * 2017-10-23 2018-02-02 深圳市华星光电技术有限公司 气泡检测装置及气泡检测方法
CN108983458A (zh) * 2018-08-10 2018-12-11 深圳市华星光电技术有限公司 液晶气泡磁力碰撞机及液晶气泡的检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107219652B (zh) * 2017-07-21 2020-10-02 深圳市华星光电技术有限公司 一种液晶面板气泡检测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101067689A (zh) * 2007-06-25 2007-11-07 友达光电股份有限公司 用于检测面板的检测装置
CN202126819U (zh) * 2011-06-10 2012-01-25 北京京东方光电科技有限公司 一种液晶面板的检测装置
KR20130136806A (ko) * 2012-06-05 2013-12-13 엘지디스플레이 주식회사 디스플레이 모듈 검사장치 및 검사방법
CN103345081A (zh) * 2013-07-11 2013-10-09 深圳市华星光电技术有限公司 检测液晶模组的装置以及检测液晶量方法
CN106989972A (zh) * 2017-04-21 2017-07-28 深圳市华星光电技术有限公司 一种显示面板气泡检测系统和方法
CN107390397A (zh) * 2017-08-22 2017-11-24 深圳市华星光电技术有限公司 磁力碰撞机及液晶显示面板的碰撞实验方法
CN107656388A (zh) * 2017-10-23 2018-02-02 深圳市华星光电技术有限公司 气泡检测装置及气泡检测方法
CN108983458A (zh) * 2018-08-10 2018-12-11 深圳市华星光电技术有限公司 液晶气泡磁力碰撞机及液晶气泡的检测方法

Also Published As

Publication number Publication date
US20200233243A1 (en) 2020-07-23
CN108983458A (zh) 2018-12-11
US11194182B2 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
CN105717687B (zh) 一种显示装置及封装方法
CN100401140C (zh) 修复平板显示器件的方法及被修复的液晶显示器件
US9398358B2 (en) Speaker and display having same
WO2020029570A1 (zh) 用于模拟碰撞的碰撞机和模拟碰撞的方法
JP4537983B2 (ja) 液晶表示装置及びその製造方法
WO2021077490A1 (zh) 显示面板及其制备方法、显示装置
US9864219B2 (en) Device for detecting liquid crystal module and method for detecting quantity of liquid crystal
CN104166273A (zh) 显示基板、显示基板母板和显示装置
JP2007219345A (ja) 液晶表示装置、電子機器
Tarng et al. Applications of virtual reality in learning the photoelectric effect of liquid crystal display
KR100662500B1 (ko) 액정 표시 장치의 제조 방법
WO2020087899A1 (zh) 支撑治具及落球测试方法
Chabchoub et al. Phase-suppressed hydrodynamics of solitons on constant-background plane wave
JP2007233313A (ja) 液晶パネルの製造方法及び液晶パネルの修理方法
Worland Chladni patterns on drumheads: a “physics of music” experiment
KR101255277B1 (ko) 액정 표시 장치의 리페어 방법 및 이를 적용한 액정 표시장치
CN105390044A (zh) 一种压电式超声波倒车雷达系统实训示教装置
US20050145321A1 (en) Method for assembling a component of a liquid crystal display device
US8174192B2 (en) Plasma display panel
US20040173301A1 (en) Method for assembling a component of a liquid crystal display device
CN109192116A (zh) 一种液晶面板的质检方法
JP2013218208A (ja) 液晶表示装置およびその製造方法
KR102102799B1 (ko) 어레이 테스터용 댐핑유닛 및 이를 포함하는 어레이 테스터 장치
JP2002365673A (ja) 画像表示装置のシミュレーション方法及びその装置
JP2010276883A (ja) 情報表示用パネルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847471

Country of ref document: EP

Kind code of ref document: A1