WO2020029378A1 - 骨折并联外固定支架空间位姿的自动识别方法 - Google Patents

骨折并联外固定支架空间位姿的自动识别方法 Download PDF

Info

Publication number
WO2020029378A1
WO2020029378A1 PCT/CN2018/106512 CN2018106512W WO2020029378A1 WO 2020029378 A1 WO2020029378 A1 WO 2020029378A1 CN 2018106512 W CN2018106512 W CN 2018106512W WO 2020029378 A1 WO2020029378 A1 WO 2020029378A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
sphere
marker
uvw
proximal
Prior art date
Application number
PCT/CN2018/106512
Other languages
English (en)
French (fr)
Inventor
孙涛
刘思达
闫巍
宋轶民
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US16/767,100 priority Critical patent/US11596444B2/en
Publication of WO2020029378A1 publication Critical patent/WO2020029378A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/62Ring frames, i.e. devices extending around the bones to be positioned
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/66Alignment, compression or distraction mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • A61B2034/104Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery

Definitions

  • the invention relates to the field of orthopedic external fixation, in particular to a method for automatically identifying the spatial position and posture of a parallel fracture external fixation bracket based on medical three-dimensional images.
  • a parallel external fixation bracket is generally composed of a pair of fixing rings fixedly connected to a fractured bone block and six branch chains connecting the fixing rings.
  • the use of a parallel external fixation bracket can not only stably fix a fractured fracture end, but also adjust the fractured fracture end by adjusting the spatial relative position and posture of the stent fixation ring to achieve a more accurate fracture reduction.
  • the parallel external fixation bracket can also be used for bone mass adjustment after limb osteotomy and correction of bone deformity. Because the fracture condition of the patient is individual and there is uncertainty in the clinical method of installing the parallel external fixation bracket, it is necessary to determine the spatial position and posture of the parallel external fixation bracket before using the external fixation bracket to reduce the fracture / correction of the bone deformity.
  • Posture adjusts the external fixation bracket.
  • the spatial position and attitude of the parallel external fixation bracket include the space posture of the external fixation bracket mechanism and the space posture of the fractured bone mass relative to the external fixation bracket. How to solve the space pose of the external fixation stent based on clinical information is a major difficulty in using parallel external fixation stent.
  • Patents US9204937 and EP2767252 propose a method for determining the spatial position of a parallel external fixation brace, which mainly includes: first, taking X-ray orthophotos and side views of a fracture site containing a complete external fixation brace; secondly, in X-ray images Manually measure the posture parameters between the fracture ends, the installation parameters between the bone mass and the external fixation bracket, read the length of each branch of the external fixation bracket, and measure the rotation angle of the limb relative to the axis of the external fixation bracket; further, use the above The spatial position and posture of the parallel external fixation bracket and the fractured bone mass were solved inversely with parameters to determine the shape of the external fixation bracket.
  • the method proposed by the above patent requires a large number of manual measurement operations, tedious operation, various subjective and objective errors, and the X-ray image used cannot reflect the axial angle between the bone block and the external fixation bracket, resulting in parallel
  • the external fixation stent is clinically inefficient and its adjustment accuracy is inconsistent with the performance of the stent mechanical structure.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide an automatic identification method for the spatial position and posture of a fracture parallel external fixation bracket that can truly and completely reflect the spatial structure and status of the parallel external fixation bracket and the fracture site.
  • a method for automatically identifying the spatial posture of a parallel external fixing bracket including the following steps:
  • the steps are as follows: the two fixing rings of the parallel external fixation bracket connecting the patient's fracture site are called the proximal fixing ring and the distal fixing ring respectively, and the proximal fixing ring and the distal fixing are fixed Three markers are installed on the ring, and the six markers have the same structure. Each marker includes a marker sphere and a connecting pin; the center of the three markers on the proximal retaining ring and the upper surface of the proximal retaining ring.
  • the distance is a known fixed value h M ; the distance between the center of the three markers on the distal fixed ring and the upper surface of the distal fixed ring is also h M ; the labeled spheres and the connecting pins are different from each other. Material processing, so that the marked sphere can be recognized by the general 3D medical imaging system, and the connecting pin will not be recognized;
  • the steps are: scanning the patient's fracture site and the parallel external fixation bracket installed with the marker, and performing a three-dimensional medical image scanning, and then performing threshold division and three-dimensional reconstruction to obtain a proximal fracture bone and a distal fracture.
  • the three-dimensional images of the bone mass and the first to sixth labeled spheres are stored in a computer system using a three-dimensional point cloud format; the three-dimensional point cloud format uses a point cloud composed of multiple data points to describe the three-dimensional Image surface shape;
  • the three-dimensional image of the proximal bone mass and the three-dimensional image of the distal bone mass are displayed on a computer system screen, and the three-dimensional image of the proximal bone mass and the three-dimensional image of the distal bone mass are operated by a computer operating system to perform translation and rotation, and simulate reduction
  • the movement of the fracture deformity makes the 3D image of the proximal bone mass and the 3D image of the distal bone mass reach the desired fracture reduction state; the computer system automatically calculates and stores the 3D image of the proximal bone mass at the point relative to the 3D image of the distal bone mass during the operation.
  • the amount of translational movement and rotational movement occurring in the cloud reference coordinate system O-xyz; the translational movement and rotational movement of the three-dimensional image of the proximal bone block relative to the three-dimensional image of the distal bone block are equal to the proximal end when the external fixation bracket is used to reduce the fracture deformity.
  • the method of the present invention does not require measurement, only needs to input some known structural data, and the operation is simple and reliable;
  • the information source used by the present invention is a three-dimensional medical imaging system, which can truly and completely reflect parallel external fixation Spatial structure and state of the stent and fracture site.
  • the method of the invention can effectively improve the clinical use efficiency and accuracy of the existing parallel external fixation stent.
  • FIG. 1 is a flow block diagram of a method for automatically identifying a space posture of a parallel external fixing bracket according to the present invention
  • FIG. 2 is a schematic diagram of the effect of installing a marker on a parallel external fixation bracket for fixing a fracture
  • FIG. 3 is a three-dimensional image obtained by performing a three-dimensional medical image scan on the fracture site and the external fixation bracket shown in FIG. 1;
  • FIG. 4 is a schematic diagram of a spatial position relationship between a first marker, a second marker, a third marker, and a proximal coordinate system of an external fixation bracket;
  • FIG. 5 is a schematic diagram of the spatial position relationship between the fourth marker, the fifth marker, and the sixth marker of the external fixation bracket and the distal coordinate system.
  • the method for automatically identifying the spatial posture of the parallel external fixing bracket of the present invention is shown in FIG. 1 and includes the following steps:
  • the two fixing rings of the parallel external fixation bracket connecting the fracture site of the patient are called the proximal fixing ring 210 and the distal fixing ring 211, respectively.
  • Three markers are respectively installed on the distal fixing ring 211, and are sequentially referred to as a first marker 201, a second marker 202, a first marker 203, a second marker 204, a first marker 205, and a second marker.
  • 206 (see Figure 2).
  • the first, second and third markers 201 to 203 are as far away from each other as possible on the proximal fixing ring 210; the fourth, fifth and sixth markers 204 to 206 are as far as possible from each other on the distal fixing ring 211.
  • the six markers have the same structure, and each marker includes a marker sphere and a connecting pin.
  • the first marker 201, the second marker 202 and a third marker 203 is mounted, the sphere center of the sphere with the proximal retaining ring marker 210 from the surface on a known value h M; fourth marker 204, 205 fifth and sixth marker marker 206 is mounted, the sphere center of the sphere and the distal retaining ring marker 211 from the surface likewise h M.
  • the marking sphere and the connecting pin are respectively processed by different materials, so that the marking sphere can be recognized by a general three-dimensional medical imaging system, and the connecting pin cannot be recognized; preferably, the marking sphere can be made of stainless steel or For metal materials such as aluminum alloy, the connecting pin can be made of plastic materials such as ABS or PE.
  • Each three-dimensional image data is stored in a computer system using a format of a three-dimensional point cloud; the format of the three-dimensional point cloud uses a point cloud composed of multiple data points to describe the surface shape of the three-dimensional image.
  • the three-dimensional image data is stored in an STL file format.
  • the spherical surface of each labeled sphere point cloud is fitted using the least square method: a unified point cloud reference coordinate system O-xyz of three-dimensional point clouds is established, and the spherical sphere center obtained by fitting any labeled sphere point cloud is in the point cloud
  • the coordinates in the reference coordinate system O-xyz are (x Mk y Mk z Mk ), where Mk represents any k-th labeled sphere, and the distance between any i-th point of the point cloud of any labeled sphere and the center of the fitted sphere is :
  • x i , y i and z i represent the coordinates of the i-th point of the point cloud of the arbitrary labeled sphere in the point cloud reference coordinate system O-xyz.
  • the sum of the squares of the distance D i and the residual of the true sphere radius is:
  • d Mk is the diameter of any known labeled sphere.
  • the partial sum of the squared residuals S is calculated for x Mk , y Mk and z Mk respectively.
  • the squared residuals are obtained.
  • S or more extreme points S or more extreme points.
  • the minimum value of the sum of the squares of the residuals obtained after comparing the multiple extreme points, and the corresponding values of x Mk , y Mk, and z Mk under the minimum of the squares of the residuals S are the arbitrary labeled spheres.
  • the spherical center coordinates are obtained by fitting.
  • the three-dimensional image of the proximal bone block 310 and the three-dimensional image of the distal bone block 311 are displayed on the screen of the computer system, and the three-dimensional image of the proximal bone block 310 and the three-dimensional image of the distal bone block 311 are operated by a computer operating system for translation and The rotation and simulated reduction of the deformity of the fracture deformed the proximal bone mass 3D image 310 and the distal bone mass 3D image 311 to achieve the desired fracture reduction state; the computer system automatically calculated and stored the proximal bone mass 3D image 310 during operation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Robotics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Processing Or Creating Images (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

并联外固定支架空间位姿自动识别方法,主要包括以下步骤:向临床安装于患者骨折部位的并联外固定支架两端的两个固定环(210,211)上,分别安装三个标记物(201,202,203,204,205,206);经过一般的三维医学影像系统扫描重建后,得到六个标记球体(301,302,303,304,305,306);使用球面拟合的方法识别六个标记球体(301,302,303,304,305,306)的球心坐标;结合标记物(201,202,203,204,205,206)在两个固定环(210,211)上的实际安装情况,分别建立固结于两个固定环(210,211)的坐标系、确定外固定支架的空间位置和姿态;此外,操作三维医学影像系统扫描得到的骨折骨块(310,311)三维影像、模拟复位骨折的运动,可以计算外固定支架复位骨折的调节量。该方法使用精确的三维医学影像作为信息来源且不需要手工测量,可以有效提高现有各类并联外固定支架的临床使用效率和精度。

Description

骨折并联外固定支架空间位姿的自动识别方法 技术领域
本发明涉及骨科外固定领域,特别是涉及一种基于医学三维影像,自动识别并联式骨折外固定支架空间位置和姿态的方法。
背景技术
并联式外固定支架一般由一对与骨折骨块固定相连的固定环和六根连接固定环的支链构成。使用并联外固定支架不仅可以稳定地固定骨折断端,且可以通过调节支架固定环的空间相对位置和姿态,调整骨折断端、实现更精确的骨折复位。此外,并联外固定支架还可用于肢体截骨矫形术后的骨块调整、实现骨畸形矫正。因为患者的骨折情况具有个体性,临床安装并联外固定支架的方式存在不确定性,所以使用外固定支架复位骨折/矫正骨畸形前需要确定并联外固定支架的空间位置和姿态,并依据实际位姿制定外固定支架的调整方案。并联外固定支架的空间位置和姿态包括外固定支架机构的空间位姿和骨折骨块相对外固定支架的空间位姿。如何通过临床的信息求解外固定支架的空间位姿,是使用并联外固定支架的一大难点。
专利US9204937和EP2767252提出了一类确定并联外固定支架空间位姿的方法,主要包括:首先,拍摄含有完整外固定支架的骨折部位的X射线正位片和侧位片;其次,在X射线影像上手工测量骨折断端间的位姿参数、骨块与外固定支架间的安装参数,读取外固定支架各个支链的长度,并测量肢体相对外固定支架轴线的旋转角度;进而,使用上述参数逆向求解并联外固定支架及骨折骨块的空间位置和空间姿态,确定外固定支架的形态。上述专利提出的方法需要进行大量的人工测量操作,操作繁琐,存在多种主、客观误差,且所使用的X射线影像不能反映骨块与外固定支架之间的轴向成角量,导致并联外固定支架临床使用的效率低、调整精度与支架机械结构的性能不符。
发明内容
本发明的目的在于克服已有技术的缺点,提供一种可以真实、完全地反映并联外固定支架及骨折部位的空间结构和状态的骨折并联外固定支架空间位姿的自动识别方法。
本发明采用的技术方案是:
并联外固定支架空间位姿自动识别方法,包括以下步骤:
(1)安装标记物,步骤为:将连接患者骨折部位的并联外固定支架的两个固定环分别称为近端固定环和远端固定环,在所述的近端固定环和远端固定环上分别安装三个标记物,六个标记物具有相同的结构,每个标记物包括标记球体和连接销轴;近端固定环上的三个标记物的球心与近端固定环上表面的距离为已知定值h M;远端固定环上的三个标记物的球心与远端固定环上表面的距离同样为h M;所述的标记球体与连接销轴分别采用不同的材料加工,使得标记球体可以被一般的三维医学影像系统识别,而连接销轴不会被识别;
(2)获取三维影像,步骤为:对患者骨折部位和安装好所述的标记物的并联外固定支架进行三维医学影像扫描,经过阈值划分和三维重建,得到骨折近端骨块、骨折远端骨块和第一至第六标记球体的三维影像,将各三维影像数据使用三维点云的格式存储于计算机系统中;所述的三维点云的格式采用多个数据点组成的点云描述三维影像的表面形状;
(3)拟合标记球体,步骤为:
(a)针对六个标记球体的三维点云数据,结合已知的标记球体直径,采用球面拟合的方式,将第一标记球体至第六标记球体的点云分别拟合为六个球面;
(b)操作人员借助骨折近端骨块三维影像和骨折远端骨块三维影像作为参考,指定三维影像中第一至第六标记球体与外固定支架上第一至第六标记物的对应关系,并存储于计算机系统中;
(4)指定标记物安装信息,步骤为:
(a)建立固结于所述的近端固定环的近端坐标系p-uvw和固结于远端固定环的远端坐标系P-UVW;
(b)根据近端固定环上的第一标记物、第二标记物和第三标记物与近端固定环的实际连接情况,由已知的近端固定环的结构数据,计算出第一标记球体的第一标记球心、第二标 记球体的第二标记球心和第三标球体的第三标记球心在近端坐标系p-uvw下的坐标值,分别为M 1(u 1 v 1 w 1),M 2(u 2 v 2 w 2)和M 3(u 3 v 3 w 3);由已知的远端固定环的结构数据,计算远端固定环上的第四标记球体的第四标记球心、第五标记球体的第五标记球心以及第六标记球体的第六标记球心在远端坐标系P-UVW下的坐标值M 4(U 4 V 4 W 4),M 5(U 5 V 5 W 5)和M 6(U 6 V 6 W 6);六个标记球体的球心的坐标值组成外固定支架的标记物安装信息;
(c)将所述的标记物安装信息输入计算机系统;
(5)识别坐标系空间信息,步骤为:
(a)依据第一标记球心、第二标记球心和第三标记球心共面,且所共平面与所述的近端固定环的上表面平行,按下式求解近端固定环上表面的法向量
Figure PCTCN2018106512-appb-000001
对应近端坐标系p-uvw的
Figure PCTCN2018106512-appb-000002
轴:
Figure PCTCN2018106512-appb-000003
式中,
Figure PCTCN2018106512-appb-000004
表示点云参考坐标系O-xyz下第一标记球心指向第二标记球心的向量,
Figure PCTCN2018106512-appb-000005
Figure PCTCN2018106512-appb-000006
表示点云参考坐标系O-xyz下第二标记球心指向第三标记球心的向量,
Figure PCTCN2018106512-appb-000007
(b)设所述的近端坐标系p-uvw的原点p在点云参考坐标系O-xyz下的坐标为p O-xyz=(x pO y pO z pO) 由步骤(4b)计算得到的第一标记球心、第二标记球心和第三标记球心在近端坐标系p-uvw下的坐标值M 1(u 1 v 1 w 1)、M 2(u 2 v 2 w 2)和M 3(u 3 v 3 w 3),由以下距离方程联立求解得到原点p在点云参考坐标系O-xyz下的坐标:
Figure PCTCN2018106512-appb-000008
(c)在点云参考坐标系O-xyz下,设近端坐标系p-uvw的
Figure PCTCN2018106512-appb-000009
单位矢量值为
Figure PCTCN2018106512-appb-000010
同样在点云参考坐标系O-xyz下,第一标记球心、第二标记球 心和第三标记球心的矢量
Figure PCTCN2018106512-appb-000011
分别与
Figure PCTCN2018106512-appb-000012
的矢量积等效于所述的第一标记球心、第二标记球心和第三标记球心在近端坐标系p-uvw下沿
Figure PCTCN2018106512-appb-000013
轴的分量u 1、u 2和u 3,表示为:
Figure PCTCN2018106512-appb-000014
其中
Figure PCTCN2018106512-appb-000015
Figure PCTCN2018106512-appb-000016
分别由
Figure PCTCN2018106512-appb-000017
Figure PCTCN2018106512-appb-000018
Figure PCTCN2018106512-appb-000019
计算,求解上式方程组得到近端坐标系p-uvw的
Figure PCTCN2018106512-appb-000020
坐标轴单位矢量;
(d)按照右手法则计算所述的近端坐标系p-uvw的
Figure PCTCN2018106512-appb-000021
坐标轴单位矢量:
Figure PCTCN2018106512-appb-000022
(e)重复所述的步骤(a)-(d),依据所述的第四标记球心、第五标记球心和第六标记球心在远端坐标系P-UVW下的坐标值M 4(U 4 V 4 W 4)、M 5(U 5 V 5 W 5)和M 6(U 6 V 6 W 6),确定远端坐标系P-UVW的原点P在点云参考坐标系O-xyz下的坐标P O-xyz=(x PO y PO z PO),和远端坐标系P-UVW的三个坐标轴在点云参考坐标系O-xyz下的单位矢量
Figure PCTCN2018106512-appb-000023
Figure PCTCN2018106512-appb-000024
(f)使用所述的近端坐标系p-uvw的原点坐标值p O-xyz、坐标轴单位矢量
Figure PCTCN2018106512-appb-000025
确定近端坐标系p-uvw在点云参考坐标系O-xyz下的位置和姿态;使用所述的远端坐标系P-UVW的原点坐标值P O-xyz、坐标轴单位矢量
Figure PCTCN2018106512-appb-000026
确定远端坐标系P-UVW在点云参考坐标系O-xyz下的位置和姿态;然后将近端坐标系p-uvw的位置和姿态、远端坐标系P-UVW的位置和姿态输入计算机系统分别进行存储;
(6)确定外固定支架空间位姿,步骤为:
(a)基于所述的近端坐标系p-uvw和远端坐标系P-UVW的位置,计算近端坐标系原点p相对远端坐标系原点P的位置,确定近端固定环与远端固定环的相对位置,按如下的矢量形式表示:
Figure PCTCN2018106512-appb-000027
(b)计算近端标系p-uvw相对远端坐标系P-UVW的姿态,确定近端固定环与远端固定环的相对姿态,按如下的矩阵形式表示:
Figure PCTCN2018106512-appb-000028
(c)根据所述的近端固定环与远端固定环的相对位置矢量
Figure PCTCN2018106512-appb-000029
和相对姿态矩阵
Figure PCTCN2018106512-appb-000030
确定外固定支架机构的空间位姿;
(7)确定外固定支架复位骨折的调节量,步骤为:
在计算机系统的屏幕上显示所述的近端骨块三维影像和远端骨块三维影像,通过计算机的操作系统操作近端骨块三维影像和远端骨块三维影像进行平移和旋转、模拟复位骨折畸形的运动,使近端骨块三维影像与远端骨块三维影像达到期望的骨折复位状态;计算机系统自动计算并存储操作过程中近端骨块三维影像相对远端骨块三维影像在点云参考坐标系O-xyz下发生的平移运动量和旋转运动量;所述的近端骨块三维影像相对远端骨块三维影像的平移运动量和旋转运动量,等于外固定支架复位骨折畸形时,近端固定环相对远端固定环的调节位移量和调节旋转量;
(8)通过外固定支架机构的空间位姿、近端固定环相对远端固定环的调节位移量和调节旋转量,最终确定了并联外固定支架及骨折部位的空间结构和状态,以指导外固定支架复位骨折的调整方案的计算,并完成了并联外固定支架空间位姿自动识别。
本发明的优点在于:本发明的方法不需要进行测量、仅需要输入一些已知结构数据,操作简单可靠;本发明所使用的信息来源为三维医学影像系统,可以真实、完全地反映并联外固定支架及骨折部位的空间结构和状态。使用本发明的方法可以有效提高现有并联外固定支架的临床使用效率和精度。
附图说明
图1是本发明的并联外固定支架空间位姿自动识别方法的流程框图;
图2是在一种固定骨折的并联外固定支架上,安装标记物的效果示意图;
图3是针对图1所示骨折部位及外固定支架进行三维医学影像扫描得到的一种三维影 像图;
图4是外固定支架的第一标记物、第二标记物和第三标记物和近端坐标系的空间位置关系示意图;
图5是外固定支架的第四标记物、第五标记物和第六标记物和远端坐标系的空间位置关系示意图。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细说明。
本发明的并联外固定支架空间位姿自动识别方法如图1所示,包括以下步骤:
(1)安装标记物,步骤为:将连接患者骨折部位的并联外固定支架的两个固定环分别称为近端固定环210和远端固定环211,在所述的近端固定环210和远端固定环211上分别安装三个标记物,按顺序称为第一标记物201、第二标记物202、第一标记物203、第二标记物204、第标记物205、第二标记物206(见图2)。优选地,第一、第二和第三标记物201~203在近端固定环210上尽量相互远离;第四、第五和第六标记物204~206在远端固定环211上尽量相互远离,可有效提升本方法识别的精度。六个标记物具有相同的结构,每个标记物包括标记球体和连接销轴。所述的第一标记物201、第二标记物202和第三标记物203安装后,标记球体的球心与近端固定环210上表面的距离为已知定值h M;第四标记物204、第五标记物205和第六标记物206安装后,标记球体的球心与远端固定环211上表面的距离同样为h M。所述的标记球体与连接销轴分别采用不同的材料加工,使得标记球体可以被一般的三维医学影像系统识别,而连接销轴不会被识别;优选地,所述的标记球体可以采用不锈钢或铝合金等金属材料,连接销轴可以采用ABS或PE等塑料材料。
(2)获取三维影像,步骤为:对患者骨折部位和安装好所述的标记物的并联外固定支架进行三维医学影像扫描,经过阈值划分和三维重建,得到骨折近端骨块310、骨折远端骨块311和第一至第六标记球体301~306的三维影像(见图3)。将各三维影像数据使用三维点云的格式存储于计算机系统中;所述的三维点云的格式采用多个数据点组成的点云描述三维影像的表面形状。优选地,采用STL文件格式存储所述的三维影像数据。
(3)拟合标记球体,步骤为:
(a)针对六个标记球体的三维点云数据,结合已知的标记球体直径,采用球面拟合的方式,将第一标记球体301至第六标记球体306的点云分别拟合为六个球面。
优选地,采用最小二乘法拟合每个标记球体点云的球面:建立三维点云统一的点云参考坐标系O-xyz,设任意标记球体点云通过拟合得到的球面球心在点云参考坐标系O-xyz下的坐标为(x Mk y Mk z Mk),其中,Mk表示任意第k个标记球体,则任意标记球体点云的任意第i点与拟合球体球心的距离为:
D i(x Mk,y Mk,z Mk)=(x i-x Mk) 2+(y i-y Mk) 2+(z i-z Mk) 2     (1)
式中x i,y i和z i表示所述的任意标记球体点云的第i点在点云参考坐标系O-xyz下的坐标。上述距离D i与真实球半径残差的平方和为:
Figure PCTCN2018106512-appb-000031
式中d Mk是已知的任意标记球体的直径。将所述的残差平方和S分别对x Mk,y Mk和z Mk求偏导,当残差平方和S关于x Mk,y Mk和z Mk的偏导均为0时,得到残差平方和S的多个或一个极值点。经过比较所述的多个极值点后得到的残差平方和S的最小值,在残差平方和S的最小值下对应的x Mk,y Mk和z Mk即为所述的任意标记球体经拟合得到球面的球心坐标。
(b)操作人员借助骨折近端骨块三维影像310和骨折远端骨块三维影像311作为参考,指定三维影像中第一至第六标记球体与外固定支架上第一至第六标记物201~206的对应关系,并存储于计算机系统中。
(4)指定标记物安装信息,步骤为:
(a)建立固结于所述的近端固定环210的近端坐标系p-uvw和固结于远端固定环211的远端坐标系P-UVW。
(b)根据所述的第一标记物201、第二标记物202和第三标记物203与近端固定环210的实际连接情况,由已知的近端固定环210的结构数据,计算出第一标记球体201的第一标记球心、第二标记球体202的第二标记球心和第三标球体203的第三标记球心在近端坐标系p-uvw下的坐标值,分别为M 1(u 1 v 1 w 1),M 2(u 2 v 2 w 2)和M 3(u 3 v 3 w 3)(见 图4);由已知的远端固定环211的结构数据,计算第四标记球体的第四标记球心、第五标记球体的第五标记球心以及第六标记球体的第六标记球心在远端坐标系P-UVW下的坐标值M 4(U 4 V 4 W 4),M 5(U 5 V 5 W 5)和M 6(U 6 V 6 W 6)(见图5)。六个标记球体301、302、303、304、305和306的球心的坐标值组成外固定支架的标记物安装信息。
(c)将所述的标记物安装信息输入计算机系统。
(5)识别坐标系空间信息,步骤为:
(a)依据第一标记球心、第二标记球心和第三标记球心共面,且所共平面与所述的近端固定环210的上表面平行,按下式求解近端固定环210上表面的法向量
Figure PCTCN2018106512-appb-000032
对应近端坐标系p-uvw的
Figure PCTCN2018106512-appb-000033
轴:
Figure PCTCN2018106512-appb-000034
式中,
Figure PCTCN2018106512-appb-000035
表示点云参考坐标系O-xyz下第一标记球心指向第二标记球心的向量,
Figure PCTCN2018106512-appb-000036
Figure PCTCN2018106512-appb-000037
表示点云参考坐标系O-xyz下第二标记球心指向第三标记球心的向量,
Figure PCTCN2018106512-appb-000038
(b)设所述的近端坐标系p-uvw的原点p在点云参考坐标系O-xyz下的坐标为p O-xyz=(x pO y pO z pO) 由已知的第一标记球心、第二标记球心和第三标记球心在近端坐标系p-uvw下的坐标值M 1(u 1 v 1 w 1)、M 2(u 2 v 2 w 2)和M 3(u 3 v 3 w 3),由以下距离方程联立求解得到原点p在点云参考坐标系O-xyz下的坐标:
Figure PCTCN2018106512-appb-000039
(c)在点云参考坐标系O-xyz下,设近端坐标系p-uvw的
Figure PCTCN2018106512-appb-000040
单位矢量值为
Figure PCTCN2018106512-appb-000041
同样在点云参考坐标系O-xyz下,第一标记球心、第二标记球心和第三标记球心的矢量
Figure PCTCN2018106512-appb-000042
分别与
Figure PCTCN2018106512-appb-000043
的矢量积等效于所述的第一标记球心、第二标记球心和第三标记球心在近端坐标系p-uvw下沿
Figure PCTCN2018106512-appb-000044
轴的分量u 1、u 2和u 3,表 示为:
Figure PCTCN2018106512-appb-000045
其中
Figure PCTCN2018106512-appb-000046
Figure PCTCN2018106512-appb-000047
分别由
Figure PCTCN2018106512-appb-000048
Figure PCTCN2018106512-appb-000049
Figure PCTCN2018106512-appb-000050
计算。求解方程组(5)得到近端坐标系p-uvw的
Figure PCTCN2018106512-appb-000051
坐标轴单位矢量。
(d)按照右手法则计算所述的近端坐标系p-uvw的
Figure PCTCN2018106512-appb-000052
坐标轴单位矢量:
Figure PCTCN2018106512-appb-000053
(e)重复所述的步骤(a)-(d),依据所述的第四标记球心、第五标记球心和第六标记球心在远端坐标系P-UVW下的坐标值M 4(U 4 V 4 W 4)、M 5(U 5 V 5 W 5)和M 6(U 6 V 6 W 6),确定远端坐标系P-UVW的原点P在点云参考坐标系O-xyz下的坐标P O-xyz=(x PO y PO z PO),和远端坐标系P-UVW的三个坐标轴在点云参考坐标系O-xyz下的单位矢量
Figure PCTCN2018106512-appb-000054
Figure PCTCN2018106512-appb-000055
(f)使用所述的近端坐标系p-uvw的原点坐标值p O-xyz、坐标轴单位矢量
Figure PCTCN2018106512-appb-000056
Figure PCTCN2018106512-appb-000057
确定近端坐标系p-uvw在点云参考坐标系O-xyz下的位置和姿态;使用所述的远端坐标系P-UVW的原点坐标值P O-xyz、坐标轴单位矢量
Figure PCTCN2018106512-appb-000058
Figure PCTCN2018106512-appb-000059
确定远端坐标系P-UVW在点云参考坐标系O-xyz下的位置和姿态;然后将近端坐标系p-uvw的位置和姿态、远端坐标系P-UVW的位置和姿态输入计算机系统分别进行存储。
(6)确定外固定支架空间位姿,步骤为:
(a)基于所述的近端坐标系p-uvw和远端坐标系P-UVW的位置,计算近端坐标系原点p相对远端坐标系原点P的位置,确定近端固定环210与远端固定环211的相对位置,可以按如下的矢量形式表示:
Figure PCTCN2018106512-appb-000060
(b)计算近端标系p-uvw相对远端坐标系P-UVW的姿态,确定近端固定环210与远端 固定环211的相对姿态,可以按如下的矩阵形式表示:
Figure PCTCN2018106512-appb-000061
(c)根据所述的近端固定环210与远端固定环211的相对位置矢量
Figure PCTCN2018106512-appb-000062
和相对姿态矩阵
Figure PCTCN2018106512-appb-000063
确定外固定支架机构的空间位姿。
(7)确定外固定支架复位骨折的调节量,步骤为:
在计算机系统的屏幕上显示所述的近端骨块三维影像310和远端骨块三维影像311,通过计算机的操作系统操作近端骨块三维影像310和远端骨块三维影像311进行平移和旋转、模拟复位骨折畸形的运动,使近端骨块三维影像310与远端骨块三维影像311达到期望的骨折复位状态;计算机系统自动计算并存储操作过程中近端骨块三维影像310相对远端骨块三维影像311在点云参考坐标系O-xyz下发生的平移运动量和旋转运动量;因为外固定支架的近端固定环210和远端固定环211分别与骨折两端的骨块固定相连,所以所述的近端骨块三维影像310相对远端骨块三维影像311的平移运动量和旋转运动量,等于外固定支架复位骨折畸形时,近端固定环210相对远端固定环211的调节位移量和调节旋转量。
(8)通过外固定支架机构的空间位姿、近端固定环210相对远端固定环211的调节位移量和调节旋转量,最终确定了并联外固定支架及骨折部位的空间结构和状态,以指导外固定支架复位骨折的调整方案的计算,并完成了并联外固定支架空间位姿自动识别。
以上对本发明的描述仅仅是示意性的,而不是限制性的,所以,本发明的实施方式并不局限于上述的具体实施方式。如果本领域的普通技术人员受其启示,在不脱离本发明宗旨和权利要求所保护范围的情况下,做出其他变化或变型,均属于本发明的保护范围。

Claims (5)

  1. 并联外固定支架空间位姿自动识别方法,其特征在于包括以下步骤:
    (1)安装标记物,步骤为:将连接患者骨折部位的并联外固定支架的两个固定环分别称为近端固定环(210)和远端固定环(211),在所述的近端固定环和远端固定环上分别安装三个标记物,六个标记物具有相同的结构,每个标记物包括标记球体和连接销轴;近端固定环上的三个标记物的球心与近端固定环上表面的距离为已知定值h M;远端固定环上的三个标记物的球心与远端固定环上表面的距离同样为h M;所述的标记球体与连接销轴分别采用不同的材料加工,使得标记球体可以被一般的三维医学影像系统识别,而连接销轴不会被识别;
    (2)获取三维影像,步骤为:对患者骨折部位和安装好所述的标记物的并联外固定支架进行三维医学影像扫描,经过阈值划分和三维重建,得到骨折近端骨块(310)、骨折远端骨块(311)和第一至第六标记球体的三维影像,将各三维影像数据使用三维点云的格式存储于计算机系统中;所述的三维点云的格式采用多个数据点组成的点云描述三维影像的表面形状;
    (3)拟合标记球体,步骤为:
    (a)针对六个标记球体的三维点云数据,结合已知的标记球体直径,采用球面拟合的方式,将第一标记球体至第六标记球体的点云分别拟合为六个球面;
    (b)操作人员借助骨折近端骨块三维影像和骨折远端骨块三维影像作为参考,指定三维影像中第一至第六标记球体与外固定支架上第一至第六标记物的对应关系,并存储于计算机系统中;
    (4)指定标记物安装信息,步骤为:
    (a)建立固结于所述的近端固定环的近端坐标系p-uvw和固结于远端固定环的远端坐标系P-UVW;
    (b)根据近端固定环(210)上的第一标记物(201)、第二标记物(202)和第三标记物 (203)与近端固定环的实际连接情况,由已知的近端固定环的结构数据,计算出第一标记球体的第一标记球心、第二标记球体的第二标记球心和第三标球体的第三标记球心在近端坐标系p-uvw下的坐标值,分别为M 1(u 1 v 1 w 1),M 2(u 2 v 2 w 2)和M 3(u 3 v 3 w 3);由已知的远端固定环(211)的结构数据,计算远端固定环上的第四标记球体的第四标记球心、第五标记球体的第五标记球心以及第六标记球体的第六标记球心在远端坐标系P-UVW下的坐标值M 4(U 4 V 4 W 4),M 5(U 5 V 5 W 5)和M 6(U 6 V 6 W 6);六个标记球体的球心的坐标值组成外固定支架的标记物安装信息;
    (c)将所述的标记物安装信息输入计算机系统;
    (5)识别坐标系空间信息,步骤为:
    (a)依据第一标记球心、第二标记球心和第三标记球心共面,且所共平面与所述的近端固定环的上表面平行,按下式求解近端固定环上表面的法向量
    Figure PCTCN2018106512-appb-100001
    对应近端坐标系p-uvw的
    Figure PCTCN2018106512-appb-100002
    轴:
    Figure PCTCN2018106512-appb-100003
    式中,
    Figure PCTCN2018106512-appb-100004
    表示点云参考坐标系O-xyz下第一标记球心指向第二标记球心的向量,
    Figure PCTCN2018106512-appb-100005
    表示点云参考坐标系O-xyz下第二标记球心指向第三标记球心的向量,
    Figure PCTCN2018106512-appb-100006
    (b)设所述的近端坐标系p-uvw的原点p在点云参考坐标系O-xyz下的坐标为p O-xyz=(x pO y pO z pO),由步骤(4b)计算得到的第一标记球心、第二标记球心和第三标记球心在近端坐标系p-uvw下的坐标值M 1(u 1 v 1 w 1)、M 2(u 2 v 2 w 2)和M 3(u 3 v 3 w 3),由以下距离方程联立求解得到原点p在点云参考坐标系O-xyz下的坐标:
    Figure PCTCN2018106512-appb-100007
    (c)在点云参考坐标系O-xyz下,设近端坐标系p-uvw的
    Figure PCTCN2018106512-appb-100008
    单位矢量值为
    Figure PCTCN2018106512-appb-100009
    同样在点云参考坐标系O-xyz下,第一标记球心、第二标记球心和第三标记球心的矢量
    Figure PCTCN2018106512-appb-100010
    分别与
    Figure PCTCN2018106512-appb-100011
    的矢量积等效于所述的第一标记球心、第二标记球心和第三标记球心在近端坐标系p-uvw下沿
    Figure PCTCN2018106512-appb-100012
    轴的分量u 1、u 2和u 3,表示为:
    Figure PCTCN2018106512-appb-100013
    其中
    Figure PCTCN2018106512-appb-100014
    分别由
    Figure PCTCN2018106512-appb-100015
    Figure PCTCN2018106512-appb-100016
    Figure PCTCN2018106512-appb-100017
    计算,求解上式方程组得到近端坐标系p-uvw的
    Figure PCTCN2018106512-appb-100018
    坐标轴单位矢量;
    (d)按照右手法则计算所述的近端坐标系p-uvw的
    Figure PCTCN2018106512-appb-100019
    坐标轴单位矢量:
    Figure PCTCN2018106512-appb-100020
    (e)重复所述的步骤(a)-(d),依据所述的第四标记球心、第五标记球心和第六标记球心在远端坐标系P-UVW下的坐标值M 4(U 4 V 4 W 4)、M 5(U 5 V 5 W 5)和M 6(U 6 V 6 W 6),确定远端坐标系P-UVW的原点P在点云参考坐标系O-xyz下的坐标P O-xyz=(x PO y PO z PO),和远端坐标系P-UVW的三个坐标轴在点云参考坐标系O-xyz下的单位矢量
    Figure PCTCN2018106512-appb-100021
    (f)使用所述的近端坐标系p-uvw的原点坐标值p O-xyz、坐标轴单位矢量
    Figure PCTCN2018106512-appb-100022
    确定近端坐标系p-uvw在点云参考坐标系O-xyz下的位置和姿态;使用所述的远端坐标系P-UVW的原点坐标值P O-xyz、坐标轴单位矢量
    Figure PCTCN2018106512-appb-100023
    确定远端坐标系P-UVW在点云参考坐标系O-xyz下的位置和姿态;然后将近端坐标系p-uvw的位置和姿态、远端 坐标系P-UVW的位置和姿态输入计算机系统分别进行存储;
    (6)确定外固定支架空间位姿,步骤为:
    (a)基于所述的近端坐标系p-uvw和远端坐标系P-UVW的位置,计算近端坐标系原点p相对远端坐标系原点P的位置,确定近端固定环与远端固定环的相对位置,按如下的矢量形式表示:
    Figure PCTCN2018106512-appb-100024
    (b)计算近端标系p-uvw相对远端坐标系P-UVW的姿态,确定近端固定环与远端固定环的相对姿态,按如下的矩阵形式表示:
    Figure PCTCN2018106512-appb-100025
    (c)根据所述的近端固定环与远端固定环的相对位置矢量
    Figure PCTCN2018106512-appb-100026
    和相对姿态矩阵
    Figure PCTCN2018106512-appb-100027
    确定外固定支架机构的空间位姿;
    (7)确定外固定支架复位骨折的调节量,步骤为:
    在计算机系统的屏幕上显示所述的近端骨块三维影像和远端骨块三维影像,通过计算机的操作系统操作近端骨块三维影像和远端骨块三维影像进行平移和旋转、模拟复位骨折畸形的运动,使近端骨块三维影像与远端骨块三维影像达到期望的骨折复位状态;计算机系统自动计算并存储操作过程中近端骨块三维影像相对远端骨块三维影像在点云参考坐标系O-xyz下发生的平移运动量和旋转运动量;所述的近端骨块三维影像相对远端骨块三维影像的平移运动量和旋转运动量,等于外固定支架复位骨折畸形时,近端固定环相对远端固定环的调节位移量和调节旋转量;
    (8)通过外固定支架机构的空间位姿、近端固定环相对远端固定环的调节位移量和调节旋转量,最终确定了并联外固定支架及骨折部位的空间结构和状态,以指导外固定支架复位骨折的调整方案的计算,并完成了并联外固定支架空间位姿自动识别。
  2. 根据权利要求1所述的并联外固定支架空间位姿自动识别方法,其特征在于:在近端固定环上连接的三个标记物以及在远端固定环上连接的三个标记物尽量相互远离。
  3. 根据权利要求1所述的并联外固定支架空间位姿自动识别方法,其特征在于:所述的标记球体采用不锈钢或铝合金,连接销轴采用ABS或PE。
  4. 根据权利要求1所述的并联外固定支架空间位姿自动识别方法,其特征在于:采用STL文件格式存储骨折近端骨块、骨折远端骨块和第一至第六标记球体的三维影像数据。
  5. 根据权利要求1-5之一所述的并联外固定支架空间位姿自动识别方法,其特征在于:采用最小二乘法拟合每个标记球体点云的球面:建立三维点云统一的点云参考坐标系O-xyz,设任意标记球体点云通过拟合得到的球面球心在点云参考坐标系O-xyz下的坐标为(x Mk y Mk z Mk),其中,Mk表示任意第k个标记球体,则任意标记球体点云的任意第i点与拟合球体球心的距离为:
    D i(x Mk,y Mk,z Mk)=(x i-x Mk) 2+(y i-y Mk) 2+(z i-z Mk) 2
    式中x i,y i和z i表示所述的任意标记球体点云的第i点在点云参考坐标系O-xyz下的坐标,上述距离D i与真实球半径残差的平方和为:
    Figure PCTCN2018106512-appb-100028
    式中d Mk是已知的任意标记球体的直径,将所述的残差平方和S分别对x Mk,y Mk和z Mk求偏导,当残差平方和S关于x Mk,y Mk和z Mk的偏导均为0时,得到残差平方和S的多个或一个极值点,经过比较所述的多个极值点后得到的残差平方和S的最小值,在残差平方和S的最小值下对应的x Mk,y Mk和z Mk即为所述的任意标记球体经拟合得到球面的球心坐标。
PCT/CN2018/106512 2018-08-10 2018-09-19 骨折并联外固定支架空间位姿的自动识别方法 WO2020029378A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/767,100 US11596444B2 (en) 2018-08-10 2018-09-19 Automatic recognition method for spatial position and pose of parallel external fixator for fracture reduction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810909100.4 2018-08-10
CN201810909100.4A CN109009376B (zh) 2018-08-10 2018-08-10 骨折并联外固定支架空间位姿的自动识别方法

Publications (1)

Publication Number Publication Date
WO2020029378A1 true WO2020029378A1 (zh) 2020-02-13

Family

ID=64632673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106512 WO2020029378A1 (zh) 2018-08-10 2018-09-19 骨折并联外固定支架空间位姿的自动识别方法

Country Status (3)

Country Link
US (1) US11596444B2 (zh)
CN (1) CN109009376B (zh)
WO (1) WO2020029378A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112245005A (zh) * 2020-11-13 2021-01-22 山东大学 一种用于坐标标定的外固定装置、系统及方法
CN112451089A (zh) * 2020-10-13 2021-03-09 北京工业大学 一种用于胫骨畸形矫正的位姿空间等间距轨迹规划方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111685880B (zh) 2020-05-18 2021-08-31 天津大学 可穿戴式骨折复位与康复一体化机器人
WO2023205046A1 (en) * 2022-04-22 2023-10-26 Smith & Nephew, Inc. Automated transosseous element planning for orthopedic devices
CN114948223B (zh) * 2022-05-24 2024-01-23 哈尔滨工业大学 一种机器人辅助骨折复位导航系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2590538Y (zh) * 2002-12-23 2003-12-10 韩富 电脑控制骨折整复外固定器
CN101002696A (zh) * 2005-08-03 2007-07-25 香港理工大学 骨定位装置、方法和系统
CN203425022U (zh) * 2013-09-06 2014-02-12 江苏广济医疗科技有限公司 踝关节多维调控矫形器
CN104398295A (zh) * 2013-12-05 2015-03-11 乔锋 一种骨科畸形矫正与骨折复位固定装置及其加工方法
CN106859750A (zh) * 2017-03-23 2017-06-20 河北工业大学 一种并联型骨外固定器及其应用方法
CN206534699U (zh) * 2016-08-31 2017-10-03 温州医科大学附属第二医院 一种辅助术中精确复位及把持骨盆外固定支架
WO2017213425A1 (ko) * 2016-06-08 2017-12-14 재단법인대구경북과학기술원 위치 표시 장치 및 이를 포함하는 골 고정 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971984A (en) * 1995-03-01 1999-10-26 Smith & Nephew, Inc. Method of using an orthopaedic fixation device
CN101847182B (zh) * 2010-05-05 2012-06-27 唐佩福 基于六自由度并联机构的长骨虚拟与现实复位配准方法
GB201008281D0 (en) * 2010-05-19 2010-06-30 Nikonovas Arkadijus Indirect analysis and manipulation of objects
CN102429726A (zh) * 2011-08-03 2012-05-02 哈尔滨工业大学 基于图像导航的并联机器人辅助人工颈椎间盘置换手术定位方法
GB201115586D0 (en) * 2011-09-09 2011-10-26 Univ Bristol A system for anatomical reduction of bone fractures
CA2905865C (en) * 2013-03-13 2021-03-02 DePuy Synthes Products, Inc. External bone fixation device
BR112015023127B1 (pt) * 2013-03-15 2022-02-08 Texas Scottish Rite Hospital For Children Método para determinar a posição de um objeto utilizando projeções de marcadores ou de esteios
CN104390612B (zh) * 2014-07-08 2017-03-08 西安电子科技大学 用于Stewart平台构型的六自由度并联机器人基准位姿标定方法
US10835318B2 (en) * 2016-08-25 2020-11-17 DePuy Synthes Products, Inc. Orthopedic fixation control and manipulation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2590538Y (zh) * 2002-12-23 2003-12-10 韩富 电脑控制骨折整复外固定器
CN101002696A (zh) * 2005-08-03 2007-07-25 香港理工大学 骨定位装置、方法和系统
CN203425022U (zh) * 2013-09-06 2014-02-12 江苏广济医疗科技有限公司 踝关节多维调控矫形器
CN104398295A (zh) * 2013-12-05 2015-03-11 乔锋 一种骨科畸形矫正与骨折复位固定装置及其加工方法
WO2017213425A1 (ko) * 2016-06-08 2017-12-14 재단법인대구경북과학기술원 위치 표시 장치 및 이를 포함하는 골 고정 장치
CN206534699U (zh) * 2016-08-31 2017-10-03 温州医科大学附属第二医院 一种辅助术中精确复位及把持骨盆外固定支架
CN106859750A (zh) * 2017-03-23 2017-06-20 河北工业大学 一种并联型骨外固定器及其应用方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112451089A (zh) * 2020-10-13 2021-03-09 北京工业大学 一种用于胫骨畸形矫正的位姿空间等间距轨迹规划方法
CN112245005A (zh) * 2020-11-13 2021-01-22 山东大学 一种用于坐标标定的外固定装置、系统及方法
CN112245005B (zh) * 2020-11-13 2022-04-29 山东大学 一种用于坐标标定的外固定装置、系统及方法

Also Published As

Publication number Publication date
CN109009376B (zh) 2019-12-17
CN109009376A (zh) 2018-12-18
US20210361322A1 (en) 2021-11-25
US11596444B2 (en) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2020029378A1 (zh) 骨折并联外固定支架空间位姿的自动识别方法
CN102883671B (zh) 使用影像分析的矫形外科固定术
US20190142359A1 (en) Surgical positioning system and positioning method
CN110946654A (zh) 一种基于多模影像融合的骨科手术导航系统
AU2004251653A1 (en) Virtual trial reduction system for hip arthroplasty and coordinate systems therefor
CN105832415B (zh) 用于股骨精准去旋转的导航装置及其制作方法和使用方法
WO2019180745A1 (en) Systems and methods for obtaining 3-d images from x-ray information for deformed elongate bones
CN111297463B (zh) 一种骨骼复位系统及骨骼复位实验系统
EP3110344A1 (en) System and methods for positioning bone cut guide
US20130321583A1 (en) Imaging system and method for use of same to determine metric scale of imaged bodily anatomy
JP2010131269A (ja) 情報処理装置および情報処理方法
CN108294825B (zh) 用于手术导航的配准系统及方法
CN114668534B (zh) 一种用于口腔种植牙手术的术中种植精度检测系统和方法
CN114983567A (zh) 一种股骨颈骨折微创手术导航系统
WO2022110573A1 (zh) 基于刚性上臂模型的功能性肩关节旋转中心定位方法
CN116509426A (zh) 一种肘关节旋转中心轴识别方法、系统、电子设备及介质
CN110458886A (zh) 一种手术导航自动化注册参考架
Casciaro et al. Angle estimation of human femora in a three-dimensional virtual environment
CN111860275B (zh) 手势识别数据采集系统、方法
CN103690188B (zh) 头部正面拍摄装置及三维头部模型的自然头位校正方法
JP2001087283A (ja) キャリブレーション方法及びそれを用いる手術キャリブレーション装置
WO2016162898A1 (ja) 基材の側面から半球状カップを挿入するため、或いは、基材にステムを挿入するための補助表示装置及び人工関節置換術用のガイド器具
CN209153724U (zh) Ct-超声检查设备
US20220401131A1 (en) Spinal Rod Preparation Systems and Methods
CN116959675A (zh) 一种基于划线的外固定三维重建及电子处方生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18929186

Country of ref document: EP

Kind code of ref document: A1