WO2020029346A1 - 一种具有自发电能力的海底光学定位信标系统 - Google Patents

一种具有自发电能力的海底光学定位信标系统 Download PDF

Info

Publication number
WO2020029346A1
WO2020029346A1 PCT/CN2018/103122 CN2018103122W WO2020029346A1 WO 2020029346 A1 WO2020029346 A1 WO 2020029346A1 CN 2018103122 W CN2018103122 W CN 2018103122W WO 2020029346 A1 WO2020029346 A1 WO 2020029346A1
Authority
WO
WIPO (PCT)
Prior art keywords
underwater
beacon
generator
runner
led light
Prior art date
Application number
PCT/CN2018/103122
Other languages
English (en)
French (fr)
Inventor
朱明�
潘进豪
马艳华
樊鑫
覃振权
罗钟铉
王雷
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/470,934 priority Critical patent/US10870471B2/en
Publication of WO2020029346A1 publication Critical patent/WO2020029346A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/38Arrangement of visual or electronic watch equipment, e.g. of periscopes, of radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/70Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2213/00Navigational aids and use thereof, not otherwise provided for in this class
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]

Definitions

  • the invention belongs to the technical field of underwater positioning, relates to a submarine optical positioning beacon system, and particularly relates to a submarine optical positioning beacon system with self-power generation capability.
  • the mainstream underwater positioning methods mainly use sonar positioning and laser positioning. Sound waves are relatively stable when longitudinal waves propagate underwater. The propagation speed is relatively slow, and there will be a lag when positioning at medium and long distances, which cannot accurately reflect the position of the rover at that time. Laser positioning is expensive, and the rover needs to carry enough energy and receiver to provide sufficient power, which greatly affects roaming. Performance.
  • a few positioning systems use LED lights for positioning, but because there are many impurities on the sea floor, the penetration of LED lights is weak, and high-power LEDs are required to work properly. High-power LEDs consume power quickly, so current systems based on the use of LED light positioning beacons generally do not work properly for long periods of time.
  • the present invention provides a submarine optical positioning beacon system with self-power generation capability.
  • a submarine optical positioning beacon system with self-power generation capability composed of an array 1 of a plurality of underwater beacons A i ;
  • the underwater beacon A i is mainly composed of an LED light set 2, a runner 5, a generator 10, and a battery 11.
  • the LED light set 2 and the COMS sensor 3 are both fixed on a waterproof casing 4.
  • the COMS sensor 3 is used for Monitor the light emitted by the external target that needs to be positioned, and use it as a switch to control the on and off of the LED light group 2.
  • the waterproof casing 4 is internally packaged with a circuit board, and the LED lamp group 2 and the COMS sensor 3 pins are soldered to the internal circuit board of the waterproof casing 4; the waterproof casing 4 is fixedly connected to the top of the pillar 6, and the bearing 6 is fixed to the middle of the pillar 25; The bearing 25 is fixed with a generator 10 and a runner 5, and the rotor of the generator 10 is connected to the shaft of the runner 5 by welding.
  • the rotor 5 generates electric energy through the electromagnetic induction generator 10 when the runner 5 rotates;
  • One end of the horizontal bracket 24 is fixed on the opposite bearing position of the wheel 5, and the other end of the horizontal bracket 24 is fixed with the deflector 16.
  • the deflector 16, the horizontal bracket 24, the generator 10 and the runner 5 are located on the same horizontal line, and the deflector 16 Forced to drive the horizontal bracket 24, the generator 10 and the runner 5 Rotate to ensure that the runner 5 always faces the ocean current forward;
  • the pillar 6 is fixed on the base 9 and the microprocessor 14 and the battery 11 are provided inside the base 9; the microprocessor 14 generates PWM waves through the control module.
  • the light type of the LED light group 2 is adjusted to generate different colors of light; the generator 10 and the storage battery 11 are connected by a cable 7; the electrical energy generated by the generator 10 is stored in the storage battery 11 through the cable 7; There is an ISP interface 13 on the surface of the base 9 marked A i for downloading the program in the control module; the bottom bracket b21 and the bottom bracket c22 are fixed on the bottom of the base 9 so that the underwater beacon A i is fixed on the sea floor 18 smoothly.
  • the upper ends of the iron chains a8 and b15 are fixedly connected to the waterproof shell 4 and the lower ends are fixedly connected to the bottom bracket a12, the bottom bracket b21, the bottom bracket b22, and the bottom bracket d23, respectively, so that the underwater beacon A i is stably fixed as a whole.
  • the pillar 6 is a hollow pillar, and a cable is provided in the middle to power the LED lamp group 2 and the COMS sensor 3.
  • the LED lamp group 2 is a high-power LED lamp, which can transmit 1-2m in a turbid seawater environment and 5-10m in a clear seawater.
  • each underwater beacon A i in the submarine optical positioning beacon system with self-power generation capability of the present invention has an independent power generation component, which can use ocean current to generate electricity, which greatly improves the working time of the beacon.
  • the LED light set of the underwater beacon is not always in working state. The LED light set will work only when the COMS sensor detects that the required positioning target is near the beacon. The position information is feedback through the light, which can reduce system power consumption and increase the system. work time.
  • FIG. 1a is a front view of a single underwater beacon A i .
  • Figure 1b is a side view of the middle portion of a single underwater beacon A i .
  • FIG. 2 is a circuit control diagram of a submarine optical positioning beacon system with self-power generation capability according to the present invention.
  • FIG. 3a is a schematic diagram of the rover 17 moving in the beacon array 1 during the specific implementation of the present invention.
  • FIG. 3b is a schematic diagram of the rover 17 receiving position information from a certain underwater beacon Ai during the specific implementation process of the present invention.
  • an array of more than one underwater beacon A i 2LED light groups; 3COMS sensors; 4 waterproof shell; 5 runners; 6 pillars; 7 cables; 8 iron chains a; 9 base; 10 generators; 11 Battery; 12 bottom bracket a; 13 ISP interface; 14 microprocessor; 15 iron chain b; 16 deflectors; 17 underwater rover; 18 underwater; 19 underwater beacon LED light area; 20 rover LED light area; 21 bottom bracket b; 22 bottom bracket c; 23 bottom bracket d; 24 horizontal bracket; 25 bearings.
  • FIG. 2 A circuit connection of a submarine optical positioning beacon system with self-power generation capability is shown in FIG. 2.
  • the ISP interface 13, the COMS sensor 3, the LED lamp group 2 and the microprocessor 14 are directly connected, and the generator 10 and the battery 11 are directly connected.
  • the electric energy generated by the generator 10 is stored in the battery 11, and the electric energy of the battery 11 is distributed by the microprocessor 14 to the COMS sensor 3 and the LED lamp group 2.
  • the LED lamp group 2 can emit specific color light. Different underwater beacons A i The LED light group 2 generates a specific color light or a specific color light, and these lights carry position information corresponding to the underwater beacon A i .
  • three underwater beacons A i are fixed on the sea floor 18 to form an array 1 of multiple underwater beacons A i .
  • the underwater rover 17 with its own light-emitting device and optical sensor moves within the array range, and the light-emitting device is always turned on during the movement of the underwater rover 17.
  • the COMS sensor 3 of the underwater beacon A i does not detect the light of the underwater rover 17 (that is, the underwater rover 17 is not near the underwater beacon A i )
  • the LED light group 2 of the underwater beacon A i Does not glow.
  • the underwater beacons COMS sensor 3 detects the light 17 to an underwater robots transmission command Go to the microprocessor 14 to turn on the LED light group 2.
  • the optical sensor of the underwater rover 17 analyzes the light type of the LED light group 2 of the underwater beacon A i and converts it into digital information.
  • the underwater rover 17 can obtain its position by analyzing the digital signal.
  • the deflector 16 When the ocean current does not flow from the front of the runner 5, the deflector 16 will be driven by the current to drive the horizontal bracket 24, the generator 10 and the runner 5 to rotate together, until the deflector 16 faces forward again.
  • the runner 5 When the ocean current reaches the force balance and stops rotating, at this time, the runner 5 will also face the ocean current, and the runner 5 will rotate under the action of the ocean current.
  • the runner 5 is directly connected to the rotor of the generator 10. When the runner 5 rotates, the rotor of the generator 10 also rotates, and the rotor cuts the magnetic induction wire to generate electric energy and stores it in the battery 11 through the cable 7.

Abstract

一种具有自发电能力的海底光学定位信标系统,由多个水下信标组成的阵列(1)组成;在洋流的作用下,转轮(5)的转动带动电机转动;当水下漫游器(17)运动到某个水下信标的附近时,水下信标的COMS传感器(3)检测到水下漫游器(17)的灯光开启LED灯组(2)。水下漫游器(17)的COMS传感器(3)将LED灯组(2)的光种进行分析后转化为数字信息,水下漫游器(17)解析数字信号即得到其所在位置。每一个水下信标都有独立发电组件,利用海流发电,极大提高了信标的工作时长,并且水下信标的LED灯组(2)并非一直处于工作状态,当COMS传感器(3)检测到所需定位目标在信标附近时LED灯组(2)才会工作,通过光线反馈位置信息,这样可以降低系统功耗,增加系统工作时长。

Description

一种具有自发电能力的海底光学定位信标系统 技术领域
本发明属于水下定位技术领域,涉及海底光学定位信标系统,特别涉及一种具有自发电能力的海底光学定位信标系统。
背景技术
由于海水有大量的离子和其他杂质,无线电定位在这种环境下目前没有难以实现,目前主流的水下定位方法主要是采用声呐定位和激光定位,声波是纵波在水下传播比较稳定,但其传播速度相对较慢,在中长距定位时会出现滞后性,无法正确反映漫游器当时的位置,激光定位成本昂贵,且需要漫游器携带提供足够大功率的能源和接收器,极大影响漫游器的性能。少数定位系统采用LED灯光进行定位,但由于海底杂质较多,LED灯光的穿透能力弱,需要使用大功率LED才能正常工作。大功率LED对电量消耗很快,因而目前基于使用LED光定位信标的系统一般无法长时间正常工作。
技术问题
为解决技术背景中的问题,本发明提供一种具有自发电能力的海底光学定位信标系统。
技术解决方案
本发明的技术方案:
一种具有自发电能力的海底光学定位信标系统,由多个水下信标A i组成的阵列1组成;
所述水下信标A i主要由LED灯组2、转轮5、发电机10和蓄电池11组成;所述LED灯组2和COMS传感器3均固定于防水外壳4上,COMS传感器3用于监测外部需要定位的目标所发出的光线,并作为控制LED灯组2的开启和关闭的开关,水下信标A i开启后COMS传感器3便处于工作状态,直至水下信标A i关闭;所述防水外壳4内部封装有电路板,LED灯组2和COMS传感器3管脚与防水外壳4内部电路板焊接;所述防水外壳4固定相连于支柱6顶端,支柱6中部固定有轴承25;所述轴承25上固定有发电机10和转轮5,发电机10转芯与转轮5中轴焊接相连,转轮5转动时通过电磁感应发电机10产生电能;所述发电机10和转轮5的对侧轴承位置上固定水平支架24一端,水平支架24另一端固定导流板16,导流板16、水平支架24、发电机10和转轮5位于同一水平线上,导流板16受力带动水平支架24、发电机10和转轮5一起转动,从而保证转轮5始终正向面对洋流;所述支柱6固定在底座9上,底座9内部设有微处理器14和蓄电池11;所述微处理器14通过控制模块产生PWM波来对LED灯组2的灯光光种进行调节,产生不同色光;所述发电机10和蓄电池11间有电缆7连接,发电机10产生的电能通过电缆7存储到蓄电池11中;所述水下信标A i的底座9表面有一个ISP接口13,用来下载控制模块中的程序;所述底部支架b21和底部支架c22固定在底座9的底部,使水下信标A i平稳固定于海底18;所述铁链a8、铁链b15上端与防水外壳4固定相连,下端分别与底部支架a12、底部支架b21、底部支架b22和底部支架d23固定相连,使水下信标A i整体平稳固定于海底18;
所述支柱6为中空支柱,中间设有电缆对LED灯组2和COMS传感器3供电。
所述LED灯组2为大功率LED灯,在浑浊海水环境中能够传播1-2m,在清澈海水中能够传播5-10m。 
有益效果
本发明的有益效果:本发明的具有自发电能力的海底光学定位信标系统中的每一个水下信标A i都有独立发电组件,可以利用海流发电,极大提高了信标的工作时长,并且水下信标的LED灯组并非一直处于工作状态,当COMS传感器检测到所需定位目标在信标附近时LED灯组才会工作,通过光线反馈位置信息,这样可以降低系统功耗,增加系统工作时长。
附图说明
图1a为单个水下信标A i的主视图。
图1b为单个水下信标A i的中间部分侧视图。
图2为本发明的具有自发电能力的海底光学定位信标系统电路控制图。
图3a为本发明具体实施过程中漫游器17在信标阵列1中运动的示意图。
图3b为本发明具体实施过程中漫游器17从某个水下信标Ai接收位置信息的示意图。
图中:1多个水下信标A i组成的阵列;2LED灯组;3COMS传感器;4防水外壳;5转轮;6支柱;7电缆;8铁链a;9底座;10发电机;11蓄电池;12底部支架a;13ISP接口;14微处理器;15铁链b;16导流板;17水下漫游器;18海底;19水下信标LED灯光区;20漫游器LED灯光区;21底部支架b;22底部支架c;23底部支架d;24水平支架;25轴承。
本发明的实施方式
以下结合技术方案和说明书附图,进一步说明本发明的具体实施方式。
一种具有自发电能力的海底光学定位信标系统的电路连接如图2所示,ISP接口13、COMS传感器3、LED灯组2和微处理器14直接相连,发电机10和蓄电池11直接相连,发电机10产生的电能储存到蓄电池11,蓄电池11的电能再由微处理器14分配到COMS传感器3和LED灯组2。
一种具有自发电能力的海底光学定位信标系统工作步骤如下:
首先对需要定位目标漫游器的活动海域进行水质评估,依此来确定设置信标间的最佳距离。通过水下信标A i的ISP接口13下载程序,微处理器14执行程序命令来调节产生不同PWM波,在PWM波的作用下LED灯组2可以发出特定色光,不同水下信标A i的LED灯组2产生特定色光或特定多种色光,这些光携带了对应水下信标A i的位置信息。
如图3的a所示,程序下载完成后将三个水下信标A i固定于海底18,形成多个水下信标A i组成的阵列1。自带发光设备和光学传感器的水下漫游器17在阵列范围内运动,水下漫游器17运动过程始终开启发光设备。当水下信标A i的COMS传感器3没有检测到水下漫游器17的灯光时(即水下漫游器17不在水下信标A i附近),水下信标A i的LED灯组2不发光。
如图3的b所示,当水下漫游器17运动到某个水下信标A i的附近时,水下信标A i的COMS传感器3检测到水下漫游器17的灯光后发送命令到微处理器14开启LED灯组2。水下漫游器17的光学传感器将水下信标A i的LED灯组2的光种进行分析后转化为数字信息,水下漫游器17解析数字信号即可得到其所在位置。
当水下漫游器17远离某个水下信标A i后,该水下信标A i的COMS传感器3因检测不到水下漫游器17的LED灯光而关闭该水下信标A i的LED灯组2;
当海底洋流没有从转轮5的正面流动时,导流板16必将受到洋流的推力而带动水平支架24、发电机10和转轮5一起转动,直至导流板16再一次正向面对洋流,达到受力平衡而停止转动,此时转轮5也将正面洋流,在洋流的作用下转轮5工作转动。转轮5和发电机10的转芯直接相连,转轮5转动时发电机10的转芯也转动,转芯切割磁感线产生电能通过电缆7存储到蓄电池11中。

Claims (3)

  1. 一种具有自发电能力的海底光学定位信标系统,其特征在于,所述的具有自发电能力的海底光学定位信标系统由多个水下信标Ai组成的阵列(1)组成;
    所述水下信标A i主要由LED灯组(2)、转轮(5)、发电机(10)和蓄电池(11)组成;所述LED灯组(2)和COMS传感器(3)均固定于防水外壳(4)上,COMS传感器(3)用于监测外部需要定位的目标所发出的光线,并作为控制LED灯组(2)的开启和关闭的开关,水下信标A i开启后COMS传感器(3)便处于工作状态,直至水下信标A i关闭;所述防水外壳(4)内部封装有电路板,LED灯组(2)和COMS传感器(3)管脚与防水外壳(4)内部电路板焊接;所述防水外壳(4)固定相连于支柱(6)顶端,支柱(6)中部固定有轴承(25);所述轴承(25)上固定有发电机(10)和转轮(5),发电机(10)转芯与转轮(5)中轴焊接相连,转轮(5)转动时通过电磁感应发电机(10)产生电能;所述发电机(10)和转轮(5)的对侧轴承位置上固定水平支架(24)一端,水平支架(24)另一端固定导流板(16),导流板(16)、水平支架(24)、发电机(10)和转轮(5)位于同一水平线上,导流板(16)受力带动水平支架(24)、发电机(10)和转轮(5)一起转动,从而保证转轮(5)始终正向面对洋流;所述支柱(6)固定在底座(9)上,底座(9)内部设有微处理器(14)和蓄电池(11);所述微处理器(14)通过控制模块产生PWM波来对LED灯组(2)的灯光光种进行调节,产生不同色光;所述发电机(10)和蓄电池(11)间有电缆(7)连接,发电机(10)产生的电能通过电缆(7)存储到蓄电池(11)中;所述水下信标A i的底座(9)表面有一个ISP接口(13),用来下载控制模块中的程序;所述底部支架b(21)和底部支架c(22)固定在底座(9)的底部,使水下信标A i平稳固定于海底(18);所述铁链a(8)、铁链b(15)上端与防水外壳(4)固定相连,下端分别与底部支架a(12)、底部支架b(21)、底部支架b(22)和底部支架d(23)固定相连,使水下信标A i整体平稳固定于海底(18)。
  2. 根据权利要求1所述的具有自发电能力的海底光学定位信标系统,其特征在于,所述支柱(6)为中空支柱,中间设有电缆(7)对LED灯组(2)和COMS传感器(3)供电。
  3. 根据权利要求1或2所述的具有自发电能力的海底光学定位信标系统,其特征在于, 所述LED灯组(2)为大功率LED灯,在浑浊海水环境中能够传播1-2m,在清澈海水中能够传播5-10m。
PCT/CN2018/103122 2018-08-09 2018-08-30 一种具有自发电能力的海底光学定位信标系统 WO2020029346A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/470,934 US10870471B2 (en) 2018-08-09 2018-08-30 Submarine optical positioning beacon system with self-generating capability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810901484.5 2018-08-09
CN201810901484.5A CN108931757B (zh) 2018-08-09 2018-08-09 一种具有自发电能力的海底光学定位信标系统

Publications (1)

Publication Number Publication Date
WO2020029346A1 true WO2020029346A1 (zh) 2020-02-13

Family

ID=64445786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103122 WO2020029346A1 (zh) 2018-08-09 2018-08-30 一种具有自发电能力的海底光学定位信标系统

Country Status (3)

Country Link
US (1) US10870471B2 (zh)
CN (1) CN108931757B (zh)
WO (1) WO2020029346A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113701719B (zh) * 2021-07-20 2023-02-10 上海卓昕医疗科技有限公司 一种多种光学定位器兼容方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906564A (en) * 1972-12-15 1975-09-23 Us Navy Remotely controlled underwater instrument system
US6850152B1 (en) * 2003-06-09 2005-02-01 The United States Of America As Represented By The Secretary Of The Navy Non-flammable land and sea marker
CN201489110U (zh) * 2009-07-21 2010-05-26 厦门迈士通航空技术有限公司 一种海浪浮标式发电装置供电的航海信标
CN105282695A (zh) * 2014-07-02 2016-01-27 东营运通船务有限公司 海洋作业人员搜救定位指示信标
CN106287523A (zh) * 2016-08-30 2017-01-04 天津天元海科技开发有限公司 一种水力发电供能的多功能航标灯
CN206243387U (zh) * 2016-12-13 2017-06-13 浙江海洋大学 一种利用洋流能发电的浮标

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879263B2 (en) * 2000-11-15 2005-04-12 Federal Law Enforcement, Inc. LED warning light and communication system
CN102345551A (zh) * 2010-07-29 2012-02-08 高连书 一种利用海浪作能源的发电装置
US9261069B2 (en) * 2011-06-23 2016-02-16 Elazar Tagansky Sloping wall channel
CN105888943A (zh) * 2014-08-27 2016-08-24 无锡津天阳激光电子有限公司 一种双浮筒四电机吊篮式海浪发电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906564A (en) * 1972-12-15 1975-09-23 Us Navy Remotely controlled underwater instrument system
US6850152B1 (en) * 2003-06-09 2005-02-01 The United States Of America As Represented By The Secretary Of The Navy Non-flammable land and sea marker
CN201489110U (zh) * 2009-07-21 2010-05-26 厦门迈士通航空技术有限公司 一种海浪浮标式发电装置供电的航海信标
CN105282695A (zh) * 2014-07-02 2016-01-27 东营运通船务有限公司 海洋作业人员搜救定位指示信标
CN106287523A (zh) * 2016-08-30 2017-01-04 天津天元海科技开发有限公司 一种水力发电供能的多功能航标灯
CN206243387U (zh) * 2016-12-13 2017-06-13 浙江海洋大学 一种利用洋流能发电的浮标

Also Published As

Publication number Publication date
CN108931757B (zh) 2019-10-29
CN108931757A (zh) 2018-12-04
US20200189706A1 (en) 2020-06-18
US10870471B2 (en) 2020-12-22

Similar Documents

Publication Publication Date Title
CN205489768U (zh) 电力设备用感应式在线视频监控智能驱鸟装置
CN203492649U (zh) 一种智能驱鸟器电路
CN102975835A (zh) 海水活塞调节式滑翔式潜水器
WO2020029346A1 (zh) 一种具有自发电能力的海底光学定位信标系统
CN108545163A (zh) 一种仿水母运动的水下机器人
US20210276678A1 (en) Robotic fish
CN109444900A (zh) 一种基于声呐的海洋鱼群追踪装置及其使用方法
JP3209725U (ja) フローティング型撮影装置
CN113644976B (zh) 一种水下可见光通信系统
CN109572973A (zh) 一种水下推进器
CN104389729A (zh) 一种海底洋流发电及电能储存系统
CN109521432A (zh) 海缆防锚损在线监测装置
CN203407399U (zh) 高压输电线路激光驱鸟装置
CN214795192U (zh) 一种海洋测量用声呐检测装置
CN115871867A (zh) 一种适应水下复杂工作环境的检测和辅助作业机器人装置
KR102252789B1 (ko) 조류 퇴치장치
CN109211487A (zh) 一种水利水电漏水检测自动报警装置
CN113340459A (zh) 一种电力设备无源无线测温系统
CN209525455U (zh) 海缆防锚损在线监测装置
CN202664096U (zh) 一种激光驱鸟器
KR20100091389A (ko) 수중탐사용 글라이더
CN205832620U (zh) 一种水中玩具的驱动和转向装置
CN205952271U (zh) 一种竹筏及其电动船用机
CN216834156U (zh) 一种水资源勘测浮标
CN104443338B (zh) 一种新型电力推进装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929104

Country of ref document: EP

Kind code of ref document: A1