WO2020027565A1 - 복수의 열 블록을 구비한 핵산 증폭 장치 - Google Patents

복수의 열 블록을 구비한 핵산 증폭 장치 Download PDF

Info

Publication number
WO2020027565A1
WO2020027565A1 PCT/KR2019/009520 KR2019009520W WO2020027565A1 WO 2020027565 A1 WO2020027565 A1 WO 2020027565A1 KR 2019009520 W KR2019009520 W KR 2019009520W WO 2020027565 A1 WO2020027565 A1 WO 2020027565A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
pcr chip
pcr
block
row
Prior art date
Application number
PCT/KR2019/009520
Other languages
English (en)
French (fr)
Inventor
김성우
김은섭
정송균
변재영
Original Assignee
주식회사 미코바이오메드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미코바이오메드 filed Critical 주식회사 미코바이오메드
Priority to BR112021001771-2A priority Critical patent/BR112021001771A2/pt
Priority to EP19844453.1A priority patent/EP3831492A4/en
Priority to US17/264,697 priority patent/US20210308685A1/en
Publication of WO2020027565A1 publication Critical patent/WO2020027565A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • B01L7/525Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
    • B01L7/5255Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones by moving sample containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • B01L9/527Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks

Definitions

  • the present invention relates to a nucleic acid amplification apparatus having a plurality of row blocks, and to a nucleic acid amplification apparatus having improved thermal efficiency.
  • PCR Polymerase Chain Reaction
  • a PCR apparatus includes a container including a sample solution containing nucleic acid in one reaction chamber, and repeatedly heats and cools the container to perform a PCR reaction.
  • the PCR device has to have a complicated circuit for accurate temperature control, and the entire apparatus due to repeated heating and cooling of one reaction chamber is required.
  • the overall time of the PCR reaction is bound to be long.
  • the PCR device according to another embodiment is equipped with a plurality of reaction chambers having temperatures for PCR reactions, and performs a PCR reaction by flowing a sample solution containing nucleic acid through one channel passing through these reaction chambers. .
  • the PCR device according to another example uses a plurality of reaction chambers, a complicated circuit for accurate temperature control is not required, but a long flow path for passing the high and low temperature reaction chambers is necessary, so that the overall structure is reduced.
  • a separate control device is required for controlling the flow rate of the sample solution including the nucleic acid flowing in the channel passing through the reaction chamber.
  • the present invention has been made to solve the above problems, and an object thereof is to provide a nucleic acid amplification apparatus that improves the thermal efficiency of a thermal block.
  • a nucleic acid amplification apparatus includes a PCR chip driver for reciprocating a PCR chip between first and second positions; A plurality of first row blocks spaced apart to face each other about the first position; A plurality of second row blocks spaced apart from each other with respect to the second position; And a column block driving unit for moving each of the plurality of first row blocks and the plurality of second row blocks toward the PCR chip, wherein the PCR chip has both sides of the plurality of first rows at the first position.
  • the PCR reaction may be performed by contacting the block and sequentially contacting the two surfaces at the second position with the plurality of second row blocks.
  • said plurality of first row blocks are implemented to maintain a denaturation step temperature of said PCR reaction, or to maintain annealing and extension step temperatures, and said plurality of second row blocks are annealing and extending steps of said PCR reaction. It is implemented to maintain a temperature, or to maintain a denaturation step temperature, wherein the plurality of first row blocks and the plurality of second row blocks may be implemented to maintain the temperature of the step different from each other.
  • the plurality of first row blocks may be implemented to maintain a denaturation step temperature of the PCR reaction
  • the plurality of second row blocks may be implemented to maintain annealing and extension step temperatures of the PCR reaction.
  • the plurality of first row blocks may be implemented to maintain annealing and extension step temperatures of the PCR reaction
  • the plurality of second row blocks may be implemented to maintain denaturation step temperatures of the PCR reaction.
  • the modification step temperature may be 90 ° C. to 100 ° C.
  • the annealing and extension step temperature may be 45 ° C. to 75 ° C.
  • each of the row blocks may include a main row block having one surface contacting the PCR chip; One side may further include an auxiliary row block in contact with the other surface of the main row block and the other surface exposed to the outside.
  • the main heat block may be implemented to have a first temperature
  • the auxiliary heat block may be implemented to have a second temperature lower than the first temperature
  • the first temperature may be 90 ° C. to 100 ° C.
  • the second temperature may be 60 ° C. to 70 ° C.
  • the first temperature may be 45 ° C to 75 ° C
  • the second temperature may be 25 ° C to 45 ° C.
  • the second temperature may be 25 ° C. to 35 ° C. lower than the first temperature.
  • the second temperature may be between the first temperature and the ambient temperature.
  • the inlet portion is injected sample solution;
  • it may further comprise a PCR chip comprising an outlet for the sample solution is discharged.
  • the PCR chip may further include a PCR chip case accommodating the PCR chip, exposing the reaction chamber of the PCR chip to the outside, and reciprocating by the PCR chip driver.
  • the inlet and outlet of the PCR chip coupled to the PCR chip so as to seal may further include a sealing portion of a soft material, which is accommodated in the PCR chip case.
  • a nucleic acid amplification apparatus includes a plurality of thermal blocks arranged to be spaced apart from each other and to allow a PCR reaction to be performed while contacting with a PCR chip, each of the thermal blocks comprising: a main thermal block having one surface in thermal contact with the PCR chip; And an auxiliary heat block having one surface in thermal contact with the other surface of the main thermal block and the other surface exposed to the outside.
  • the main heat block may be implemented to have a first temperature
  • the auxiliary heat block may be implemented to have a second temperature lower than the first temperature
  • a nucleic acid amplification reaction can be efficiently performed by providing a PCR device including a plurality of heat blocks.
  • a PCR device including a plurality of heat blocks.
  • each thermal block may be composed of a main thermal block and an auxiliary thermal block in a double manner, and a temperature may be formed step by step. This improves the heat capacity and heat transfer efficiency of the main and secondary heat blocks and greatly improves the life of the heat blocks.
  • FIG. 1 illustrates a nucleic acid amplification apparatus having a plurality of column blocks according to an embodiment of the present invention.
  • Figure 2 illustrates the operation of the nucleic acid amplification apparatus according to an embodiment of the present invention.
  • Figure 3 shows a nucleic acid amplification apparatus according to an embodiment of the present invention.
  • FIGS. 4B and 4C show experimental data of the thermal block.
  • FIG. 5 illustrates a chip holder of a nucleic acid amplification apparatus according to an embodiment of the present invention.
  • 6 to 8 illustrate a PCR chip package according to an embodiment of the present invention.
  • FIG. 1 illustrates a nucleic acid amplification apparatus having a plurality of column blocks according to an embodiment of the present invention.
  • the nucleic acid amplification device 100 is a device for use in PCR (Polymerase Chain Reaction) for amplifying a nucleic acid having a specific base sequence.
  • device 100 may denature a double strand of DNA to a specific temperature, such as about 95 ° C., to denature the double strand of DNA into a single strand of DNA.
  • an oligonucleotide primer having a sequence complementary to a specific base sequence to be amplified in the sample solution, and cooled to a specific temperature, for example 55 °C with the separated single strand of DNA the single strand
  • An extension (or amplification) step of forming double stranded DNA based on the primers of the partial DNA-primer complex by polymerase. p) and repeating this process, for example, 20 to 40 times, can exponentially amplify DNA having a specific base sequence.
  • the apparatus 100 may include a thermal block 112, 114, 116, 118, a thermal block driver 122, 124, 126, 128, and a PCR chip 130;
  • the chip holder 140 and the PCR chip driver 150 may be included.
  • the column blocks 112, 114, 116, 118 may include a plurality of first column blocks 112, 114 and a plurality of second column blocks 116, 118.
  • the plurality of first row blocks 112 and 114 may be spaced apart from each other about the first position, and the plurality of second row blocks 116 and 118 may have a second position different from the first position.
  • the centers may be spaced apart from each other.
  • each of the plurality of first row blocks 112, 114 may move toward the first location or move outwardly from the first location, and likewise, each of the plurality of second row blocks 116, 118 may also be second It may move toward a position or outward from a second position.
  • the first position to the second position means a path through which the PCR chip 130 moves, and the PCR is performed by moving the first row blocks 112 and 114 and the second row blocks 116 and 118 as described above.
  • the chip 130 may be in thermal contact with the first row blocks 112 and 114 and the second row blocks 116 and 118 sequentially.
  • each column block 112, 114, 116, 118 may be implemented in a combination of a plurality of sub-column blocks, for example a main column block and a secondary column block in combination. Can be.
  • the first row blocks 112, 114 and the second row blocks 116, 118 are for maintaining a temperature for performing the denaturation step, annealing step and extension (or amplification) step for amplifying the nucleic acid.
  • the thermal blocks 112, 114 and the second thermal blocks 116, 118 may include or be operably connected with various modules to provide and maintain the required temperatures required for the respective steps.
  • the chip holder 140 (or PCR chip 130) on which the PCR chip 130 is mounted is in contact with one surface of each row block 112, 114, 116, 118, the first row block 112, 114. ) And the second row block 116, 118 may heat and maintain the contact surface with the PCR chip 130 as a whole, thereby uniformly heating and maintaining the sample solution in the PCR chip 130.
  • a device using a single heat block has a temperature change rate in the single heat block within a range of 3 ° C to 7 ° C per second, whereas in the present invention, the temperature at each heat block 112, 114, 116, 118 The rate of change is within the range of 20 °C to 40 °C per second can greatly shorten the PCR reaction time.
  • the first row blocks 112, 114 may be implemented to maintain appropriate temperatures for performing the denaturation step, or the annealing and extension (or amplification) steps.
  • the first row blocks 112, 114 may maintain 45 ° C. to 100 ° C.
  • the denaturation step is performed in the first row blocks 112 and 114, preferably 90 ° C. to 100 ° C. may be maintained.
  • the annealing and extension (or amplification) steps are performed in the first row blocks 112, 114, preferably, 45 ° C. to 75 ° C. may be maintained.
  • second row blocks 116, 118 may also be implemented to maintain appropriate temperatures for performing denaturation steps, or annealing and extension (or amplification) steps.
  • the second row blocks 116, 118 may maintain 45 ° C. to 100 ° C.
  • the denaturation step is performed in the second row blocks 116 and 118, it may be preferably maintained at 90 °C to 100 °C.
  • the annealing and extension (or amplification) steps in the second row block 116, 118 may preferably be maintained at 45 ° C to 75 ° C.
  • the temperature at which the denaturation step or the annealing and extension (or amplification) steps can be performed is not limited thereto.
  • the thermal blocks 112, 114 and the second thermal blocks 116, 118 are preferably implemented to maintain different temperatures to perform different steps from one another.
  • the first row blocks 112, 114 and the second row blocks 116, 118 may be spaced apart at a predetermined distance such that mutual heat exchange does not occur. Accordingly, since no heat exchange occurs between the first heat block 112 and 114 and the second heat block 116 and 118, in the nucleic acid amplification reaction that can be significantly affected by minute temperature changes, the denaturation step And accurate temperature control of the annealing and extension (or amplification) steps.
  • the row block drivers 122, 124, 126, and 128 are connected to the first row blocks 112, 114 and the second row blocks 116, 118, respectively, to connect each row block 112, 114, 116, 118. It can be moved simultaneously or separately. That is, the thermal block drivers 122, 124, 126, and 128 may move the thermal blocks 112, 114, 116, and 118 to the PCR chip so that the thermal blocks 112, 114, 116, and 118 contact the PCR chip 130. 130 may be moved toward or away from the PCR chip 130 for movement of the PCR chip 130.
  • the PCR reaction is performed by the first thermal block 112, 114 and the second thermal block 116, 118 being sequentially in thermal contact with the PCR chip 130 by the thermal block driver 122, 124, 126, 128.
  • the thermal block driver 122, 124, 126, 128 are implemented for each of the column blocks 112, 114, 116, 118, and the movement paths of the column blocks 112, 114, 116, 118 It may include a movable portion consisting of a rail to guide and a motor member for moving the thermal block on the rail, but is not limited thereto.
  • the PCR chip 130 contacts one side of the first row block 112, 114 or the second row block 116, 118 and is complementary to the nucleic acid, eg, double stranded DNA, the particular nucleotide sequence to be amplified.
  • a sample solution may include an oligonucleotide primer having a sequence, a DNA polymerase, deoxyribonucleotide triphosphates (dNTP), and a PCR reaction buffer.
  • the PCR chip 130 may include an inlet portion into which the sample solution is injected, a reaction chamber (or channel) in which the nucleic acid amplification reaction of the sample solution is performed, and an outlet portion for discharging the sample solution having completed the nucleic acid amplification reaction.
  • first row block 112, 114 or second row block 116, 118 when PCR chip 130 contacts first row block 112, 114 or second row block 116, 118. Is transferred to the PCR chip 130, and the sample solution contained in the reaction chamber (or channel) of the PCR chip 130 may be heated and maintained in temperature.
  • the PCR chip 130 may have a planar shape as a whole, but is not limited thereto.
  • the outer wall of the PCR chip 130 has a shape and structure for fixedly mounted in the inner space of the chip holder 140 so that the PCR chip 130 does not escape from the chip holder 140 when the nucleic acid amplification reaction is performed. Can be.
  • the chip holder 140 may provide a space in which the PCR chip 130 is stably mounted, and transmit a movement by the driving unit to the PCR chip 130.
  • the inner wall of the chip holder 140 may have a shape and structure for fixed mounting with the outer wall of the PCR chip 130 so that the PCR chip 130 does not leave the chip holder 140 when the nucleic acid amplification reaction is performed.
  • the PCR chip driver 150 may include all means for moving the chip holder 140 on which the PCR chip 130 is mounted between the first row blocks 112 and 114 and the second row blocks 116 and 118. Can be. Specifically, the PCR chip driver 150 moves the chip holder 140 to the first position to the second position, whereby the PCR chip 130 mounted on the chip holder 140 at each position is the first row block 112. , 114, and second row blocks 116, 118.
  • the PCR chip driver 150 may include a movable part including a rail extending in the horizontal direction and a motor member for moving the chip holder 140 through the rail, but is not limited thereto.
  • the PCR chip 130 is mounted on the chip holder 140.
  • the chip holder 140 may include the PCR chip package described with reference to FIGS. 6 to 7. It may be mounted.
  • the PCR chip 130 is described as being disposed in the chip holder 140, which includes both the PCR chip 130 alone or the PCR chip 130 is arranged in the form of a PCR chip package. It is.
  • Figure 2 illustrates the operation of the nucleic acid amplification apparatus according to an embodiment of the present invention.
  • the first row blocks 112 and 114 may be heated and maintained at a temperature for the denaturation step, eg, 90 ° C. to 100 ° C.
  • the second row blocks 116, 118 may be heated and maintained at a temperature for annealing and extension (or amplification) steps, eg, 45 ° C. to 75 ° C.
  • the chip holder 140 may be in a neutral position between the first row blocks 112 and 114 and the second row blocks 116 and 118. May be at any location between 112 and 114 and second column block 116 and 118.
  • the PCR chip driver 150 may move the chip holder 140 to the first position. Accordingly, when the PCR chip 130 is located at the first position, the first row blocks 112 and 114 spaced apart from each other with respect to the first position are arranged by the column block drivers 122 and 124. Movement toward 130 may be in thermal contact with the PCR chip 130. Thus, the first denaturation step of PCR can be performed.
  • the column block drivers 122 and 124 may move the first column blocks 112 and 114 away from the PCR chip 130.
  • the PCR chip driver 150 may move the PCR chip 130 to the second position.
  • the column block drivers 126 and 128 may move the second column blocks 116 and 118 spaced apart to face each other with respect to the second position toward the PCR chip 130. Can be. As a result, when the second row blocks 116 and 118 and the PCR chip 130 are in thermal contact, the first annealing and extension (or amplification) steps of the PCR may be performed.
  • the second row block 116, 118 and the PCR chip 130 are separated through the row block driver 126, 128 to terminate the first annealing and extension (or amplification) step of the first cycle.
  • PCR reaction can be completed. This PCR reaction can be performed multiple times.
  • the PCR chip 130 may be sequentially thermally contacted with the first row blocks 112 and 114 and the second row blocks 116 and 118 to perform a PCR reaction.
  • the first row blocks 112 and 114 are implemented in plural, and the second row blocks 116 and 118 are also implemented in plural, so that both sides of the PCR chip 130 are formed on both sides of the column blocks 112, 114, 116, 118).
  • both surfaces of the PCR chip 130 are in thermal contact with the heat blocks 112, 114, 116, and 118, thereby improving thermal efficiency and further improving PCR reaction rate and The efficiency can be improved.
  • Figure 3 shows a nucleic acid amplification apparatus according to an embodiment of the present invention.
  • the apparatus 300 may further include a light source 310, an optical filter 330, and a detector 350.
  • the light source 310 is positioned between the thermal blocks 112, 114, 116, and 118 and may emit light toward the PCR chip 130.
  • the light source 310 includes a mercury arc lamp, a xenon arc lamp, a tungsten arc lamp, a metal halide arc lamp, a metal halide fiber ), Light emitting diodes (LEDs), and photodiodes.
  • the wavelength of the light source 310 may be selected in the range of about 200 nanometers (nm) to 1300 nanometers (nm), and may be implemented in multiple wavelengths using the multiple light sources 310 or using a filter. have.
  • the optical filter 330 may be disposed adjacent to the light source 310 on the light path of the light source 310 to filter light of a specific wavelength band from the light emitted from the light source 310.
  • the optical filter 330 is composed of a plurality, each of which can filter light of different wavelength bands.
  • the detector 350 detects light emitted from the light source 310, and includes a charge-coupled device (CCD), a charge-injection device (CID), a complementary-metal-oxide-semiconductor detector (CMOS), and a PMT (Photo).
  • CCD charge-coupled device
  • CID charge-injection device
  • CMOS complementary-metal-oxide-semiconductor detector
  • PMT Photo
  • Multiplier Tube can be selected from the group consisting of.
  • the light source 310 may be disposed between the column blocks 112, 113, 116, and 118, and the detector 350 may be disposed opposite the light source 310.
  • a penetrating portion 144 of FIG. 5 may be formed in a region corresponding to the reaction chamber or the reaction channel of the PCR chip 130.
  • a separate fluorescent substance may be further added to the sample solution included in the PCR chip 130, which may induce a light signal that can be measured and analyzed by emitting light with a specific wavelength according to the generation of the PCR product. .
  • FIGS. 4B and 4C show experimental data of the thermal block.
  • the column block 400 of FIG. 4A is for implementing the column blocks 112, 114, 116, and 118 described in FIGS. 1 to 3. Specifically, the column block 400 includes the main column block 410, The auxiliary heat block 430 and the temperature controller 450 may be included.
  • the main heat block 410 and the auxiliary heat block 430 are for generating appropriate heat under the control of the temperature controller 450, and a heat wire (not shown) may be disposed therein.
  • the hot wires may be arranged to be symmetrical in the up and down and / or left and right directions with respect to the center point of each heat block face in order to keep the temperature inside the heat block as a whole.
  • the arrangement of the hot wires symmetrically in the vertical and / or horizontal directions may vary.
  • a thin film heater (not shown) may be disposed in each of the main thermal block 410 and the auxiliary thermal block 430.
  • the thin film heaters may be spaced apart at regular intervals in the vertical direction and / or the left and right directions with respect to the center point of each heat block surface in order to keep the internal temperature of the main heat block 410 and the auxiliary heat block 430 as a whole.
  • the arrangement of the thin film heater in the vertical and / or horizontal directions may vary.
  • Each of the main thermal block 410 and the auxiliary thermal block 430 may include or consist of a metallic material, for example, aluminum, for the purpose of even heat distribution and rapid heat transfer over the same area, but is not limited thereto. It doesn't happen.
  • the temperature control unit 450 is configured such that the first thermal blocks 112 and 114 and the second thermal blocks 116 and 118 maintain a temperature at which the PCR reaction is performed to perform a denaturation step, an annealing step, and an extension (or amplification) step.
  • each of the main heat block 410 and the auxiliary heat block 430 may be connected to each other, and may include a heat source (ie, a power source), a temperature sensor, and the like to allow them to maintain a proper temperature.
  • the main row block 410 and the auxiliary row block 430 may be disposed such that one surface thereof is in contact with each other.
  • the main row block 410 may have one surface (ie, the left side) in contact with the PCR chip 130, and the other surface (ie, the right side) of the opposite side may be in contact with the auxiliary row block 430.
  • the auxiliary row block 430 may have one side (left side) in contact with the main row block 410 and the other side (right side) on the opposite side may be exposed to the outside.
  • the entire main row block 410 and the auxiliary row block 430 are not in contact with the PCR chip 130, but only the main row block 410 is in contact with the PCR chip 130. May reduce the external exposure surface of the main row block 410.
  • the temperature controller 450 may adjust the temperatures of the main thermal block 410 and the auxiliary thermal block 430 differently.
  • the main heat block 410 may be implemented to have a first temperature
  • the auxiliary heat block 430 may be implemented to have a second temperature lower than the first temperature.
  • the second temperature is between the first temperature and the ambient temperature, and thus, in the order of the main heat block 410, the auxiliary heat block 430, and the atmosphere, the temperature may be gradually lowered to the second temperature, the first temperature and the atmospheric temperature. .
  • the second temperature is preferably an intermediate temperature between the first temperature and the atmospheric temperature, for example, may be 25 ° C to 35 ° C lower than the first temperature.
  • the first temperature may be 90 ° C to 100 ° C
  • the second temperature may be 60 ° C to 70 ° C.
  • the first temperature may be 45 ° C to 75 ° C and the second temperature may be 25 ° C to 45 ° C.
  • FIG. 4B shows the temperature difference (delta T) between the thermal blocks 410, 430 and the ambient atmosphere, and the heat capacity Qc according to the amount of current I applied to the thermal blocks 410, 430.
  • the heat capacity of the heat blocks 410 and 430 means heat capacity that can be transferred to other devices adjacent to the heat blocks 410 and 430.
  • the thermal block 400 is disposed in a double into the main thermal block 410 and the auxiliary thermal block 430, and the temperature is formed step by step, the main thermal block 410 and the auxiliary The thermal capacity of each of the thermal blocks 430 can be greatly increased.
  • the external exposed surface is reduced by the auxiliary heat block 430, not directly in contact with the atmosphere, and corresponds to a temperature difference between the main heat block 410 and the auxiliary heat block 430.
  • both sides may not be in contact with the atmosphere, but one surface may be in contact with the main heat block 410 to have a heat capacity corresponding to a reduced temperature difference. Because it can.
  • main heat block 410 and the auxiliary heat block 430 due to the increase in the heat capacity of the main heat block 410 and the auxiliary heat block 430, it is possible to reduce the time for the heat block 400 to reach the target temperature set for the PCR reaction. In addition, it is possible to minimize the temperature change of the main heat block 410 when transferring heat energy to the PCR chip 130 through the increased heat capacity.
  • FIG. 4C illustrates a change in resistance to thermal cycling of the thermal blocks 410 and 430, and the aging of the thermal blocks 410 and 430 through the change of the resistance R value according to the cycles. (Or lifespan) can be checked.
  • the thermal circulation is to repeatedly change the temperature of the thermal blocks 410 and 430 from low temperature to high temperature, and then again from low temperature. As shown, it can be seen that the resistance increases with the thermal circulation. That is, the aging of the column blocks 410 and 430 is rapidly progressed.
  • the heat block 400 by arranging the heat block 400 to the main heat block 410 and the auxiliary heat block 430 in double, and forming a temperature step by step, the width of the temperature change during the thermal circulation is reduced As a result, the aging of the column block 400 may be delayed. That is, the life of the thermal block 400 can be greatly increased.
  • the main thermal block 410 and the auxiliary thermal block 430 are shown in direct contact, but this is illustrative and, according to an embodiment, the main thermal block 410 and the auxiliary thermal block 430 are conductive. It may also be indirectly contacted by a substance.
  • FIG. 5 illustrates a chip holder of a nucleic acid amplification apparatus according to an embodiment of the present invention.
  • the chip holder 140 is to provide a space in which the PCR chip 130 is stably mounted, and to transfer the movement by the PCR chip driver 150 to the PCR chip 130.
  • the PCR chip 130 Is formed in a flat plate shape so that it can be inserted in the standing state, the receiving space 142 into which the PCR chip 130 can be inserted or discharged is recessed, and the PCR chip driver 150 at the lower side thereof. It can be connected with.
  • the PCR chip 130 may be inserted or discharged into the accommodation space 142 in a standing state, for example, in a sliding manner.
  • the guide groove 146 may be formed in the chip holder 140 in the insertion path direction of the PCR chip 130. Insertion or discharge of the PCR chip 130 may be guided by the guide groove 146.
  • a guide protrusion corresponding to the guide groove 146 may be formed in the PCR chip 130 according to an embodiment. It is not limited to this.
  • a guide protrusion (see 635 of FIG. 7) corresponding to the guide groove 146 is formed in the PCR package (particularly, the PCR chip case 600) to insert and discharge the PCR package including the PCR chip 130. You can move more smoothly in the process.
  • the penetrating part 144 may be formed in the chip holder 140.
  • the through part 144 corresponds to a reaction chamber or a reaction channel of the PCR chip 130 inserted into the chip holder 140.
  • the through block 144 may be in thermal contact with the PCR chip 130 through the through part 144. have.
  • the chip holder 140 moves between the first row blocks 112 and 114 and the second row blocks 116 and 118, the chip holder 140 is moved by the light source 310, the detector 350, or the like.
  • the PCR reaction result can be detected in real time.
  • the shape of the chip holder 140 illustrated in FIG. 5 is exemplary, and various configurations may be applied according to an embodiment to which the present invention is applied.
  • the chip holder 140 may further include a fixing member (not shown) for preventing detachment of the inserted PCR chip 130.
  • 6 to 8 illustrate a PCR chip package according to an embodiment of the present invention.
  • FIG. 6 shows an assembly view of a PCR chip package
  • FIG. 7 shows an exploded view of the PCR chip package
  • FIG. 8 shows a PCR chip package before and after assembly of the PCR chip.
  • the PCR chip package accommodates the PCR chip 130 therein and is inserted into the chip holder 140 to move the PCR chip 130 together with the chip holder 140 to make the PCR chip 130 contact with the thermal block more stably and steadily. have.
  • the PCR package may prevent leakage of the sample solution contained in the PCR chip 130 during the PCR process.
  • the PCR chip package may include a PCR chip 130, a PCR chip case 600, and a sealing part 700.
  • PCR chip 130 nucleic acid, for example double-stranded DNA, oligonucleotide primer having a sequence complementary to the specific nucleotide sequence to be amplified, DNA polymerase, deoxyribonucleotide triphosphates (dNTP), PCR Sample solutions may include a PCR reaction buffer.
  • nucleic acid for example double-stranded DNA
  • oligonucleotide primer having a sequence complementary to the specific nucleotide sequence to be amplified
  • DNA polymerase DNA polymerase
  • dNTP deoxyribonucleotide triphosphates
  • PCR Sample solutions may include a PCR reaction buffer.
  • the PCR chip 130 may include one or more PCR reaction chambers (or channels) containing an inlet for introducing a sample solution, an outlet for discharging the sample solution having completed the nucleic acid amplification reaction, and a sample solution containing the nucleic acid to be amplified. It may include.
  • the PCR chip 130 may be implemented with a light transmissive material, and preferably includes a light transmissive plastic material.
  • the PCR chip 130 uses a plastic material, and is easy to increase heat transfer efficiency through plastic thickness control, and the manufacturing process is simple, thereby reducing manufacturing cost.
  • the present invention is not limited thereto.
  • the PCR chip 130 is implemented as a chip type, as shown, while receiving a small amount of the sample solution in the reaction chamber compared to the tube type, while increasing the area in contact with the heat block heat transfer efficiency from the heat block Can be increased.
  • a protruding region 132 protruding from the periphery may be formed in an adjacent region including the inlet and the outlet of the PCR chip 130.
  • a receiving area 750 corresponding to the protruding area 132 is formed, so that the PCR chip 130 and the sealing part 700 are stably coupled, and the external force Even if applied, the alignment can be prevented from being disturbed.
  • At least one fixing protrusion 134 may be formed on the PCR chip 130.
  • at least one first fixing hole 770 may be formed at a corresponding position in the sealing part 700 to maintain coupling and alignment with the sealing part 700.
  • the fixing protrusion 134 and the first fixing hole 770 are formed in different shapes to be fitted at the time of coupling, thereby making the coupling between the PCR chip 130 and the sealing part 700 more robust.
  • the PCR chip case 600 may include an upper plate 610 and a lower plate 630, and may be opened and closed through hinge rotation between the upper plate 610 and the lower plate 630.
  • the PCR chip 130 and / or the seal 700 may be accommodated in or removed from the PCR chip case 600.
  • the closed state the PCR chip 130 and / or the seal 700 therein may be removed. Pressing can be arranged stably.
  • the coupling member 650 is slid, the upper plate 610 and the lower plate 630 may be selectively maintained in a closed state or an open state.
  • this function and operation of the coupling member 650 is illustrative, various configurations may be applied according to the embodiment to which the present invention is applied.
  • Receiving spaces 612 and 631 in which the PCR chip 130 is seated may be formed on the inner side of one of the upper plate 610 and the lower plate 630 to accommodate the PCR chip 130 in the PCR chip case 600. .
  • the accommodation spaces 612 and 631 may be formed to have a size corresponding to or larger than the PCR chip 130 coupled to the sealing part 700. That is, the accommodating spaces 612 and 631 may form a predetermined gap with the encapsulation part 700 and the PCR chip 130. Therefore, the accommodating spaces 612 and 631 may be formed in the PCR chip 130 coupled with the encapsulation part 700.
  • the PCR chip 130 coupled with the sealing part 700 may be easily removed from the PCR chip case 600 after the PCR reaction.
  • the side surfaces of the receiving spaces 612 and 631 do not fit or contact with the sealing part 700, so that the sealing part ( 700 may be prevented from moving in conjunction with the upper plate 610 and / or the lower plate 630, or removed from the PCR chip 130.
  • the sealing unit 700 maintains the state coupled to the PCR chip 130 before and after the PCR, and after the PCR is completed, the sample solution (particularly, fluorescent substance harmful to human body, etc.) is removed from the PCR chip 130.
  • High concentration of amplified sample solution) or the sample solution buried in the seal 700 may be exposed to the human body, which may be harmful to human health or be exposed to air or PCR equipment to distort other PCR results. Can be.
  • the guide protrusion 635 is formed in which one region of the lower plate 630 of the PCR chip case 600 protrudes outward and may correspond to the guide groove 146 of the chip holder 140. Through this, the PCR chip case 600 may be inserted into the chip holder 140 or guide the movement path when discharged, thereby making it easier.
  • the guide protrusion 635 is illustrated as being formed on the lower plate 630, the present invention is not limited thereto, and the guide protrusion 635 may be formed on the upper plate 610 or both the upper plate 610 and the lower plate 630.
  • a second fixing hole 637 may be formed in the PCR chip case 600.
  • the second fixing hole 637 corresponds to the fixing protrusion and the first fixing hole, and the fixing protrusion of the PCR chip passes through or is accommodated in the second fixing hole after passing through the first fixing hole. Even if it has a sufficient length for one fixing hole (ie, a corresponding or large length), the closure 700 can be made to pressurize the PCR chip sufficiently.
  • the sealing part 700 is removed from the PCR chip case 600, the suction force between the bottoms of the receiving spaces 612 and 631 and the sealing part 700 is removed or reduced by the air communication of the fixing hole 637. Therefore, when the PCR chip case 600 is opened, the sealing part 700 moves in conjunction with the upper plate 610 and / or the lower plate 630 by the bottom of the accommodation spaces 612 and 631, or the PCR chip 130. Can be removed from
  • the alignment protrusion 639 may be formed in the PCR chip case 600.
  • the PCR chip 130 may be pressurized and fixed through the soft sealing part 700. Through this, the deformation of the PCR chip 130 due to the stress generated when the PCR chip 130 comes into contact with the thermal blocks 112, 114, 116, and 118 may be prevented.
  • the PCR chip case 600 may have a shape in which the upper plate 610 and the lower plate 630 are concavely curved toward each other. Since the sealing part 700 and the PCR chip 130 are mounted in the PCR chip case 600, and the upper plate 610 and the lower plate 630 are closed to each other, the sealing part 700 and the PCR chip 130 are coupled to each other. At the same time, the upper plate 610 and the lower plate 630 may be transformed into a flat plate (see FIG. 8B). When the concave and curved upper and lower plates 610 and 630 are closed toward each other, an external force is applied to the upper and lower plates 610 and lower plates 630 by the inner sealing part 700 and the PCR chip 130. Because it becomes.
  • Open regions 614 and 633 may be formed corresponding to the chamber.
  • the PCR chip 130 may be in thermal contact with the thermal blocks 112, 114, 116, and 118 through the open regions 614 and 633 of the upper and lower plates 610 and 630.
  • a support 616 protruding in the direction toward the lower plate 630 may be formed on the upper plate 610 of the PCR chip case 600.
  • a recessed space in which the support part 616 is inserted may be formed at a position corresponding to the support part 616 of the lower plate 630.
  • the sealing unit 700 may seal the inlet and the outlet of the PCR chip 130.
  • the sealing part 700 may be made of a flexible material such as rubber, and may have elasticity and elasticity.
  • the sealing part 700 may include a flat cover part 710 and a plurality of protrusions 730 formed in the cover part 710, and each of the protrusions 730 may be formed of the PCR chip 130.
  • the PCR chip 130 may be sealed by being inserted into the inlet and the outlet.
  • the sealing unit 700 may have a shape corresponding to each other in order to more tightly contact the PCR chip 130.
  • an accommodating region 750 corresponding to the protruding region 132 surrounding the inlet and the outlet of the PCR chip 130 may be formed, and also in the fixing protrusion 134 of the PCR chip 130.
  • a corresponding first fixing hole 770 may be formed.
  • the sealing part 700 may be coupled to the PCR chip case 600 to maintain the alignment through the alignment hole 790.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hematology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명의 일 실시예에 따라, 핵산 증폭 장치가 제공된다. 상기 장치는, PCR 칩을 제 1 위치 내지 제 2 위치 사이에서 왕복 시키는 PCR 칩 구동부; 상기 제 1 위치를 중심으로 서로 마주보도록 이격 배치되는 복수의 제 1 열 블록; 상기 제 2 위치를 중심으로 서로 마주보도록 이격 배치되는 복수의 제 2 열 블록; 및 상기 복수의 제 1 열 블록 및 상기 복수의 제 2 열 블록 각각을 상기 PCR 칩을 향하여 이동시키는 열 블록 구동부를 포함하고, 상기 PCR 칩이 상기 제 1 위치에서 양 면이 상기 복수의 제 1 열 블록과 접촉하고, 상기 제 2 위치에서 상기 양 면이 상기 복수의 제 2 열 블록과 접촉함으로써, PCR 반응이 수행될 수 있다.

Description

복수의 열 블록을 구비한 핵산 증폭 장치
본 발명은 2018년 8월 1일에 한국 특허청에 제출된 한국 특허 출원 제10-2018-0090065호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 복수의 열 블록을 구비한 핵산 증폭 장치에 관한 것으로서, 열 효율을 개선한 핵산 증폭 장치에 관한 것이다.
중합효소 연쇄 반응, 즉 PCR(Polymerase Chain Reaction)은 핵산을 포함하는 샘플 용액을 반복적으로 가열 및 냉각하여 상기 핵산의 특정 염기 서열을 갖는 부위를 연쇄적으로 복제하여 그 특정 염기 서열 부위를 갖는 핵산을 기하급수적으로 증폭하는 기술로써, 생명과학, 유전공학 및 의료 분야 등에서 분석 및 진단 목적으로 널리 사용되고 있다.
최근 상기 PCR을 수행하기 위한 PCR 장치가 다양하게 개발되고 있다. 일 예에 의한 PCR 장치는 하나의 반응 챔버에 핵산을 포함하는 샘플 용액을 포함하는 용기를 장착하고, 상기 용기를 반복적으로 가열 및 냉각하여 PCR 반응을 수행한다. 그러나 상기 일 예에 의한 PCR 장치는 하나의 반응 챔버를 구비하기 때문에 전체 구조가 복잡하지는 않지만, 정확한 온도 제어를 위한 복잡한 회로를 구비해야 하고, 하나의 반응 챔버에 대한 반복적인 가열 및 냉각으로 인해 전체 PCR 반응의 전체 시간이 길어질 수밖에 없다. 또한, 다른 일 예에 의한 PCR 장치는 PCR 반응을 위한 온도를 갖는 복수 개의 반응 챔버를 장착하고, 이들 반응 챔버를 통과하는 하나의 채널을 통해 핵산을 포함하는 샘플 용액을 흐르게 하여 PCR 반응을 수행한다.
그러나 상기 다른 일 예에 의한 PCR 장치는 복수 개의 반응 챔버를 이용하기 때문에 정확한 온도 제어를 위한 복잡한 회로가 요구되지는 않지만, 고온 및 저온의 반응 챔버를 통과하기 위한 긴 유로가 반드시 필요하므로 전체 구조가 복잡할 수 밖에 없고, 상기 반응 챔버를 통과하는 채널에 흐르는 핵산을 포함하는 샘플 용액의 유속을 제어하기 위한 별도의 제어 장치가 요구된다.
따라서, 전체 구조가 단순하고, 전체 PCR 반응 시간을 최소화할 뿐만 아니라, 신뢰할 수 있는 PCR 반응 수율을 얻을 수 있는 PCR 장치의 필요성이 대두되고 있다.
본 발명은 상기 문제점을 해결하기 위한 것으로서, 열 블록의 열 효율을 개선한 핵산 증폭 장치를 제공하는 것을 그 목적으로 한다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따라, 핵산 증폭 장치가 제공된다. 상기 장치는, PCR 칩을 제 1 위치 내지 제 2 위치 사이에서 왕복시키는 PCR 칩 구동부; 상기 제 1 위치를 중심으로 서로 마주보도록 이격 배치되는 복수의 제 1 열 블록; 상기 제 2 위치를 중심으로 서로 마주보도록 이격 배치되는 복수의 제 2 열 블록; 및 상기 복수의 제 1 열 블록 및 상기 복수의 제 2 열 블록 각각을 상기 PCR 칩을 향하여 이동시키는 열 블록 구동부를 포함하고, 상기 PCR 칩이 상기 제 1 위치에서 양 면이 상기 복수의 제 1 열 블록과 접촉하고, 상기 제 2 위치에서 상기 양 면이 상기 복수의 제 2 열 블록과 순차적으로 접촉함으로써, PCR 반응이 수행될 수 있다.
바람직하게는, 상기 복수의 제 1 열 블록은 상기 PCR 반응의 변성 단계 온도를 유지하거나, 어닐링 및 연장 단계 온도를 유지하도록 구현되고, 상기 복수의 제 2 열 블록은 상기 PCR 반응의 어닐링 및 연장 단계 온도를 유지하거나, 변성 단계 온도를 유지하도록 구현되며, 상기 복수의 제 1 열 블록과 복수의 제 2 열 블록은 서로 상이한 단계의 온도를 유지하도록 구현될 수 있다.
바람직하게는, 상기 복수의 제 1 열 블록은 상기 PCR 반응의 변성 단계 온도를 유지하도록 구현되고, 상기 복수의 제 2 열 블록은 상기 PCR 반응의 어닐링 및 연장 단계 온도를 유지하도록 구현될 수 있다.
바람직하게는, 상기 복수의 제 1 열 블록은 상기 PCR 반응의 어닐링 및 연장 단계 온도를 유지하도록 구현되고, 상기 복수의 제 2 열 블록은 상기 PCR 반응의 변성 단계 온도를 유지하도록 구현될 수 있다.
또한, 바람직하게는, 상기 변성 단계 온도는 90℃ 내지 100℃이고, 상기 어닐링 및 연장 단계 온도는 45℃ 내지 75℃일 수 있다.
또한, 바람직하게는, 상기 열 블록 각각은 일면이 상기 PCR 칩과 접촉하는 메인 열 블록; 일면이 상기 메인 열 블록의 타면과 접촉하고 타면이 외부에 노출되는 보조 열 블록을 더 포함할 수 있다.
또한, 바람직하게는, 상기 메인 열 블록은 제 1 온도를 갖도록 구현되고, 상기 보조 열 블록은 상기 제 1 온도 보다 낮은 제 2 온도를 갖도록 구현될 수 있다.
또한, 바람직하게는, 상기 제 1 온도는 90℃ 내지 100℃이고, 상기 제 2 온도는 60℃ 내지 70℃일 수 있다.
또한, 바람직하게는, 상기 제 1 온도는 45℃ 내지 75℃이고, 상기 제 2 온도는 25℃ 내지 45℃일 수 있다.
또한, 바람직하게는, 상기 제 2 온도는 상기 제 1 온도 보다 25℃ 내지 35℃ 낮을 수 있다.
또한, 바람직하게는, 상기 제 2 온도는 상기 제 1 온도 내지 대기 온도 사이일 수 있다.
또한, 바람직하게는, 샘플 용액이 주입되는 유입부; 상기 샘플 용액의 PCR 반응이 수행되는 반응 챔버; 및 상기 샘플 용액이 배출되는 유출부를 포함하는 PCR 칩을 더 포함할 수 있다.
또한, 바람직하게는, 상기 PCR 칩을 수용하되 상기 PCR 칩의 반응 챔버를 외부에 노출하고, 상기 PCR 칩 구동부에 의해 왕복하는 PCR 칩 케이스를 더 포함할 수 있다.
또한, 바람직하게는, 상기 PCR 칩의 유입부 및 유출부를 밀폐하도록 상기 PCR 칩에 결합하고, 상기 PCR 칩 케이스에 수용되는, 연질 재질의 밀폐부를 더 포함할 수 있다.
본 발명의 일 실시예에 따라 핵산 증폭 장치가 제공된다. 상기 장치는, 서로 이격 배치되고, PCR 칩과 접촉하면서 PCR 반응이 수행되게 하는 복수의 열 블록을 포함하고, 상기 열 블록 각각은 일면이 상기 PCR 칩과 열 접촉하는 메인 열 블록; 및 일면이 상기 메인 열 블록의 타면과 열 접촉하고 타면이 외부에 노출되는 보조 열 블록을 포함할 수 있다.
바람직하게는, 상기 메인 열 블록은 제 1 온도를 갖도록 구현되고, 상기 보조 열 블록은 상기 제 1 온도 보다 낮은 제 2 온도를 갖도록 구현될 수 있다.
본 발명에 따르면, 복수의 열 블록을 포함하는 PCR 장치를 제공함으로써, 핵산 증폭 반응을 효율적으로 수행할 수 있다. 특히, PCR 칩의 양면을 열 블록이 접촉하도록 하여, PCR 반응속도 및 효율을 향상시킬 수 있다.
또한, 본 발명에 따르면, 각 열 블록은 메인 열 블록 및 보조 열 블록으로 이중으로 구성하고, 이들에 대해 단계적으로 온도를 형성할 수 있다. 이를 통해 메인 열 블록 및 보조 열 블록의 열 용량 및 열 전달 효율을 향상시키고, 열 블록의 수명을 크게 개선할 수 있다.
본 발명의 상세한 설명에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.
도 1은 본 발명의 일 실시예에 따른 복수의 열 블록을 구비한 핵산 증폭 장치를 도시한다.
도 2는 본 발명의 일 실시예에 따른 핵산 증폭 장치의 동작을 도시한다.
도 3은 본 발명의 일 실시예에 따른 핵산 증폭 장치를 도시한다.
도 4a는 본 발명의 일 실시예에 따른 열 블록을 도시하고, 도 4b 및 도 4c는 열 블록의 실험 데이터를 도시한다.
도 5는 본 발명의 일 실시예에 따른 핵산 증폭 장치의 칩 홀더를 도시한다.
도 6 내지 도 8은 본 발명의 일 실시예에 따른 PCR 칩 패키지를 도시한다.
이하, 본 발명에 따른 실시예들은 첨부된 도면들을 참조하여 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 실시예들을 설명할 것이나, 본 발명의 기술적 사상은 이에 한정되거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있다. 한편, 이하에서 기재되는 편의상 상하좌우의 방향은 도면을 기준으로 한 것이며, 해당 방향으로 본 발명의 권리범위가 반드시 한정되는 것은 아니다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.
도 1은 본 발명의 일 실시예에 따른 복수의 열 블록을 구비한 핵산 증폭 장치를 도시한다.
핵산 증폭 장치(100)는 특정 염기 서열을 갖는 핵산을 증폭하는 PCR(Polymerase Chain Reaction)에 사용하기 위한 장치이다. 예를 들어, 장치(100)는 이중 가닥의 DNA를 포함하는 샘플 용액을 특정 온도, 예를 들어 약 95℃로 가열하여 상기 이중 가닥의 DNA를 단일 가닥의 DNA로 분리하는 변성 단계(denaturing step), 상기 샘플 용액에 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드(oligonucleotide) 프라이머를 제공하고, 상기 분리된 단일 가닥의 DNA와 함께 특정 온도, 예를 들어 55℃로 냉각하여 상기 단일 가닥의 DNA의 특정 염기 서열에 상기 프라이머를 결합시켜 부분적인 DNA-프라이머 복합체를 형성하는 어닐링 단계(annealing step), 및 상기 어닐링 단계 이후 상기 샘플 용액을 적정 온도, 예를 들어 72℃로 유지하여 DNA 중합효소(polymerase)에 의해 상기 부분적인 DNA-프라이머 복합체의 프라이머를 기초로 이중 가닥의 DNA를 형성하는 연장 (혹은 증폭) 단계(extension step)를 수행하고, 이와 같은 과정을 예를 들어, 20회 내지 40회로 반복함으로써 특정 염기 서열을 갖는 DNA를 기하급수적으로 증폭시킬 수 있다.
구체적으로, 장치(100)는, 열 블록(112, 114, 116, 118), 열 블록 구동부(122, 124, 126, 128), PCR 칩(130); 칩 홀더(140) 및 PCR 칩 구동부(150)를 포함할 수 있다.
열 블록(112, 114, 116, 118)은, 복수의 제 1 열 블록(112, 114) 및 복수의 제 2 열 블록(116, 118)을 포함할 수 있다. 구체적으로, 복수의 제 1 열 블록(112, 114)은 제 1 위치를 중심으로 서로 이격 배치될 수 있으며, 복수의 제 2열 블록(116, 118)은 제 1 위치와는 상이한 제 2 위치를 중심으로 서로 이격 배치될 수 있다.
또한, 복수의 제 1 열 블록(112, 114) 각각은 제 1 위치를 향하여 이동하거나, 제 1 위치로부터 외측으로 이동할 수 있으며, 마찬가지로, 복수의 제 2 열 블록(116, 118) 각각 또한 제 2 위치를 향하여 이동하거나 제 2 위치로부터 외측으로 이동할 수 있다. 여기서 제 1 위치 내지 제 2 위치는 PCR 칩(130)이 이동하는 경로를 의미하는 것으로서, 상기와 같은 제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118)의 이동을 통해 PCR 칩(130)은 제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118)과 순차적으로 열 접촉할 수 있다.
또한, 하기 더 상세히 설명될 바와 같이, 각각의 열 블록(112, 114, 116, 118)은 복수의 하위 열 블록의 조합으로 구현될 수 있으며, 예를 들어, 메인 열 블록 및 보조 열 블록이 조합될 수 있다.
제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118)은 핵산을 증폭하기 위한 변성 단계, 어닐링 단계 및 연장 (혹은 증폭) 단계를 수행하기 위한 온도를 유지하기 위한 것으로서, 제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118)은 각 단계들에 요구되는 필요한 온도를 제공하고, 이를 유지하기 위한 다양한 모듈을 포함하거나 또는 그러한 모듈과 구동 가능하게 연결될 수 있다.
PCR 칩(130)이 장착된 칩 홀더(140)(또는 PCR 칩(130))가 각 열 블록(112, 114, 116, 118)의 일 면에 접촉되는 경우, 제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118)은 PCR 칩(130)과의 접촉면을 전체적으로 가열 및 온도 유지할 수 있어서, PCR 칩(130) 내의 샘플 용액을 균일하게 가열 및 온도 유지할 수 있다.
종래 단일 열 블록을 사용하는 장치는 단일 열 블록에서의 온도 변화율이 초당 3℃ 내지 7℃ 범위 내에서 이루어지는데 반해, 본 발명에서는, 각각의 열 블록(112, 114, 116, 118)에서의 온도 변화율이 초당 20℃ 내지 40℃ 범위 내에서 이루어져 PCR 반응 시간을 크게 단축시킬 수 있다.
제 1 열 블록(112, 114)은 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행하기 위한 적정 온도를 유지하도록 구현될 수 있다. 예를 들어, 제 1 열 블록(112, 114)은 45℃ 내지 100℃를 유지할 수 있다. 제 1 열 블록(112, 114)에서 변성 단계를 수행하는 경우, 바람직하게는 90℃ 내지 100℃를 유지할 수 있다. 이와 달리, 제 1 열 블록(112, 114)에서 어닐링 및 연장 (혹은 증폭) 단계를 수행하는 경우에는, 바람직하게는, 45℃ 내지 75℃를 유지할 수 있다.
마찬가지로, 제 2 열 블록(116, 118) 또한, 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행하기 위한 적정 온도를 유지하도록 구현될 수 있다. 예를 들어, 제 2 열 블록(116, 118)은 45℃ 내지 100℃를 유지할 수 있다. 제 2 열 블록(116, 118)에서 변성 단계를 수행하는 경우, 바람직하게는 90℃ 내지 100℃를 유지할 수 있다. 이와 달리, 제 2 열 블록(116, 118)에서 어닐링 및 연장 (혹은 증폭) 단계를 수행하는 경우에는 바람직하게는, 45℃ 내지 75℃를 유지할 수 있다.
제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118)에서, 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행할 수 있는 온도라면 이에 제한되는 것은 아니며, 다만, 제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118)은 서로 상이한 단계를 수행하도록, 상이한 온도를 유지하도록 구현되는 것이 바람직하다.
제 1 열 블록(112, 114)과 제 2 열 블록(116, 118)은 상호 열 교환이 일어나지 않도록 미리 결정된 거리로 이격 배치될 수 있다. 이에 따라, 제 1 열 블록(112, 114)과 제 2 열 블록(116, 118) 사이에서 열 교환이 일어나지 않기 때문에, 미세한 온도 변화에 의해서도 중대한 영향을 받을 수 있는 핵산 증폭 반응에 있어서, 변성 단계와 어닐링 및 연장 (혹은 증폭) 단계의 정확한 온도 제어가 가능하다.
열 블록 구동부(122, 124, 126, 128)는 제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118)에 각각 연결되어, 각 열 블록(112, 114, 116, 118)을 동시에 또는 개별적으로 이동시킬 수 있다. 즉, 열 블록 구동부(122, 124, 126, 128)는 열 블록(112, 114, 116, 118)이 PCR 칩(130)과 접촉하도록 열 블록(112, 114, 116, 118)을 PCR 칩(130)을 향하여 이동시키거나, PCR 칩(130)의 이동을 위해 PCR 칩(130)으로부터 멀어지도록 이동할 수 있다. 열 블록 구동부(122, 124, 126, 128)에 의해 제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118)이 순차적으로 PCR 칩(130)과 열 접촉함으로써, PCR 반응이 수행될 수 있다. 예를 들어, 열 블록 구동부(122, 124, 126, 128)는 각각의 열 블록(112, 114, 116, 118)에 대해 구현되며, 열 블록(112, 114, 116, 118)의 이동 경로를 가이드하는 레일 및 레일 상에서 열 블록을 이동시키는 모터 부재로 이루어진 가동부를 포함할 수 있으며, 이에 한정되는 것은 아니다.
PCR 칩(130)은 제 1 열 블록(112, 114) 또는 제 2 열 블록(116, 118)의 일 면에 접촉되고, 핵산, 예를 들어 이중 가닥 DNA, 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드 프라이머, DNA 중합효소, 삼인산화데옥시리보뉴클레오티드(deoxyribonucleotide triphosphates, dNTP), PCR 반응 완충액 (PCR reaction buffer)을 포함하는 샘플 용액을 포함할 수 있다. PCR 칩(130)은 샘플 용액이 주입되는 유입부, 샘플 용액의 핵산 증폭 반응이 수행되는 반응 챔버(또는 채널) 및 핵산 증폭 반응을 완료한 샘플 용액을 배출하기 위한 유출부를 포함할 수 있다. PCR 칩(130)이 제 1 열 블록(112, 114) 또는 제 2 열 블록(116, 118)에 접촉하는 경우 제 1 열 블록(112, 114) 또는 제 2 열 블록(116, 118)의 열은 PCR 칩(130)에 전달되고, PCR 칩(130)의 반응 챔버(또는 채널)에 포함된 샘플 용액은 가열 및 온도 유지될 수 있다. 또한, PCR 칩(130)은 전체적으로 평면 형상을 가질 수 있으나, 이에 제한되는 것은 아니다. 또한, PCR 칩(130)의 외벽은 핵산 증폭 반응이 수행되는 경우 PCR 칩(130)이 칩 홀더(140)로부터 이탈하지 않도록 칩 홀더(140)의 내부 공간에 고정 장착되기 위한 형상 및 구조를 가질 수 있다.
칩 홀더(140)는 PCR 칩(130)이 안정적으로 장착되는 공간을 제공하고, 구동부에 의한 움직임을 PCR 칩(130)으로 전달할 수 있다. 칩 홀더(140)의 내벽은 핵산 증폭 반응이 수행되는 경우 PCR 칩(130)이 칩 홀더(140)로부터 이탈하지 않도록 PCR 칩(130)의 외벽과 고정 장착되기 위한 형상 및 구조를 가질 수 있다.
PCR 칩 구동부(150)는 PCR 칩(130)이 장착된 칩 홀더(140)를 제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118) 사이로 이동 가능하게 하는 모든 수단을 포함할 수 있다. 구체적으로, PCR 칩 구동부(150)는 칩 홀더(140)를 제 1 위치 내지 제 2 위치로 이동시킴으로써, 각 위치에서 칩 홀더(140)에 장착된 PCR 칩(130)이 제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118)과 순차적으로 접촉하도록 할 수 있다. 예를 들어, PCR 칩 구동부(150)는 수평 방향으로 연장된 레일 및 레일을 통해 칩 홀더(140)를 이동시키는 모터 부재로 이루어진 가동부를 포함할 수 있으며, 이에 한정되는 것은 아니다.
도 1에서는 칩 홀더(140)에 PCR 칩(130)이 장착되는 것으로 설명되나, 이는 예시적인 것으로서, 실시예에 따라, 칩 홀더(140)에는, 도 6 내지 도 7에서 설명되는 PCR 칩 패키지가 장착될 수도 있다. 본 발명에서는, 편의상 칩 홀더(140)에 PCR 칩(130)이 배치되는 것으로 기재되지만, 이는 PCR 칩(130) 단독으로 배치되거나, PCR 칩(130)이 PCR 칩 패키지 형태로 배치되는 것을 모두 포함하는 것이다.
도 2는 본 발명의 일 실시예에 따른 핵산 증폭 장치의 동작을 도시한다.
도 2의 (a)를 참조하면, 제 1 열 블록(112, 114)은 변성 단계를 위한 온도, 예를 들어, 90℃ 내지 100℃로 가열 및 유지될 수 있다. 제 2 열 블록(116, 118)은 어닐링 및 연장 (혹은 증폭) 단계를 위한 온도, 예를 들어, 45℃ 내지 75℃로 가열 및 유지될 수 있다. 이때 칩 홀더(140)는 도시되는 바와 같이, 제 1 열 블록(112, 114)과 제 2 열 블록(116, 118) 사이의 중립 위치에 있을 수 있으나, 이는 예시적인 것으로서, 제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118) 사이의 임의의 위치에 있을 수 있다.
계속해서, 도 2의 (b)를 참조하면, PCR 칩 구동부(150)는 제 1 위치로 칩 홀더(140)를 이동할 수 있다. 이에 따라, PCR 칩(130)이 제 1 위치에 위치하면, 제 1 위치를 중심으로 서로 마주보도록 이격 배치된 제 1 열 블록(112, 114)이 열 블록 구동부(122, 124)에 의해 PCR 칩(130)을 향하여 이동하여 PCR 칩(130)과 열 접촉할 수 있다. 따라서, PCR의 제 1 변성 단계가 수행될 수 있다.
계속해서, 도 2의 (c)를 참조하면, 열 블록 구동부(122, 124)는 제 1 열 블록(112, 114)을 PCR 칩(130)으로부터 멀어지도록 이동시킬 수 있다. 이를 통해 제 1 열 블록(112, 114)과의 접촉이 해제되면, PCR의 제 1 변성 단계가 종료하고, PCR 칩 구동부(150)는 PCR 칩(130)을 제 2 위치로 이동시킬 수 있다.
도 2의 (d)를 참조하면, 열 블록 구동부(126, 128)는 제 2 위치를 중심으로 서로 마주보도록 이격 배치된 제 2 열 블록(116, 118)을 PCR 칩(130)을 향하여 이동시킬 수 있다. 이에 의해 제 2 열 블록(116, 118)과 PCR 칩(130)이 열 접촉하면, PCR의 제 1 어닐링 및 연장 (혹은 증폭) 단계를 수행할 수 있다.
마지막으로, 열 블록 구동부(126, 128)를 통해 제 2 열 블록(116, 118)과 PCR 칩(130)을 분리시켜, PCR의 제 1 어닐링 및 연장 (혹은 증폭) 단계를 종료함으로써 제 1 순환의 PCR 반응을 완료할 수 있다. 이러한 PCR 반응은 복수 회 수행될 수 있다.
이와 같이, 본 발명에서는, PCR 칩(130)이 제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118)과 순차적으로 열 접촉함으로써, PCR 반응을 수행할 수 있다. 이때, 제 1 열 블록(112, 114)은 복수 개로 구현되고, 마찬가지로 제 2 열 블록(116, 118) 또한 복수 개로 구현되어, PCR 칩(130)의 양 면이 모두 열 블록(112, 114, 116, 118)과 열 접촉하도록 할 수 있다.
즉, PCR 칩의 일면만이 열 접촉하던 기존과 달리 PCR 칩(130)의 양면이 모두 열 블록(112, 114, 116, 118)과 열 접촉함으로써, 열 효율을 개선하고, 나아가 PCR 반응속도 및 효율을 향상시킬 수 있다.
도 3은 본 발명의 일 실시예에 따른 핵산 증폭 장치를 도시한다.
도 3을 참조하면, 장치(300)는, 광원(310), 광 필터(330) 및 검출부(350)를 더 포함할 수 있다.
광원(310)은 열 블록(112, 114, 116, 118) 사이에 위치하며, PCR 칩(130)을 향하여 광을 방출할 수 있다. 광원(310)은 수은 아크 램프(Mercury Arc Lamp), 크세논 아크 램프(Xenon Arc Lamp), 텅스텐 아크 램프(Tungsten Arc Lamp), 금속 할라이드 아크 램프(Metal Halide Arc Lamp), 금속 할라이드 광섬유(Metal Halide fiber), LED(Light Emitting Diodes) 및 포토다이오드로 구성된 군으로부터 선택될 수 있다. 또한, 광원(310)의 파장은 약 200 나노미터(nm) 내지 1300 나노미터(nm) 범위 내에서 선택될 수 있고, 다중 광원(310)을 이용하거나, 필터를 이용하여 다중 파장으로 구현될 수 있다.
광 필터(330)는, 광원(310)의 광 경로상에서 광원(310)에 인접하여 배치되어, 광원(310)으로부터 방출되는 광에서 특정한 파장대의 광을 여과할 수 있다. 광 필터(330)는 복수 개로 구성되고, 각각은 서로 상이한 파장대의 광을 여과할 수 있다.
검출부(350)는, 광원(310)으로부터 방출된 광을 검출하기 위한 것으로서, CCD(Charge-coupled Device), CID(Chargeinjection Device), CMOS(Complementary-metal-oxide-semiconductor Detector), 및 PMT(Photo Multiplier Tube)로 구성된 군으로부터 선택될 수 있다.
광원(310)은 열 블록(112, 113, 116, 118) 사이에 배치되고, 검출부(350)가 광원(310)의 맞은 편에 배치될 수 있다. 또한, PCR 칩(130)이 배치되는 칩 홀더(140)에서는 PCR 칩(130)의 반응 챔버 또는 반응 채널에 대응하는 영역에 관통부(도 5의 144)가 형성될 수 있다. 이를 통해, PCR 칩(130)이 제 1 열 블록(112, 114)과 제 2 열 블록(116, 118) 사이를 왕복하면서 PCR 반응을 수행하는 중에도, PCR 반응을 실시간으로(real time) 측정 및 분석할 수 있다.
이 경우, PCR 칩(130)에 포함되는 샘플 용액에는 별도의 형광 물질이 더 첨가될 수 있고, 이는 PCR 산물의 생성에 따라 특정 파장의 광에 의해 발광함으로써 측정 및 분석 가능한 광 신호를 유발할 수 있다.
도 4a는 본 발명의 일 실시예에 따른 열 블록을 도시하고, 도 4b 및 도 4c는 열 블록의 실험 데이터를 도시한다.
도 4a의 열 블록(400)은 도 1 내지 도 3에서 설명되는 열 블록(112, 114, 116, 118)을 구현하기 위한 것으로서, 구체적으로, 열 블록(400)은 메인 열 블록(410), 보조 열 블록(430) 및 온도 제어부(450)를 포함할 수 있다.
메인 열 블록(410) 및 보조 열 블록(430)은 온도 제어부(450)의 제어에 따라 적절한 열을 발생시키기 위한 것으로서, 각각 그 내부에 열선(도시되지 않음)이 배치될 수 있다. 열선은 열 블록 내부 온도를 전체적으로 일정하게 유지하기 위해 각각의 열 블록 면의 중심점을 기준으로 상하 및/또는 좌우 방향으로 대칭되도록 배치될 수 있다. 상하 및/또는 좌우 방향으로 대칭된 열선의 배치는 다양할 수 있다.
또한, 메인 열 블록(410) 및 보조 열 블록(430) 각각은 그 내부에 박막 히터(thin film heater, 도시되지 않음)가 배치될 수도 있다. 박막 히터는 메인 열 블록(410) 및 보조 열 블록(430) 내부 온도를 전체적으로 일정하게 유지하기 위해 각각의 열 블록 면의 중심점을 기준으로 상하 및/또는 좌우 방향으로 일정한 간격으로 이격 배치될 수 있다. 상하 및/또는 좌우 방향으로 일정한 박막 히터의 배치는 다양할 수 있다.
메인 열 블록(410) 및 보조 열 블록(430) 각각은 동일한 면적에 대한 고른 열 분포 및 신속한 열 전달을 위해 금속 재질, 예를 들어 알루미늄 재질을 포함하거나 또는 알루미늄 재질로 구성될 수 있으나, 이에 한정되는 것은 아니다.
온도 제어부(450)는, PCR 반응은 변성 단계, 어닐링 단계 및 연장(혹은 증폭) 단계를 수행하기 위한 온도를 제 1 열 블록(112, 114) 및 제 2 열 블록(116, 118)이 유지하도록 하기 위한 것으로서, 메인 열 블록(410) 및 보조 열 블록(430)과 각각 연결되고, 이들로 하여금 적정 온도를 유지하게 하기 위한 열원(즉, 전력원), 온도 센서 등을 포함할 수 있다.
메인 열 블록(410) 및 보조 열 블록(430)은 일면이 서로 접하도록 배치될 수 있다. 구체적으로, 메인 열 블록(410)은 일면(즉, 좌측)이 PCR 칩(130)과 접촉하고, 반대측의 타면(즉, 우측)이 보조 열 블록(430)과 접할 수 있다. 마찬가지로 보조 열 블록(430)은 일면(좌측)이 메인 열 블록(410)과 접촉하고 반대측의 타면(우측)이 외부에 노출될 수 있다.
즉, 메인 열 블록(410) 및 보조 열 블록(430) 전체가 PCR 칩(130)과 접촉하는 것이 아니라, 메인 열 블록(410)만이 PCR 칩(130)과 접촉하며, 보조 열 블록(430)은 메인 열 블록(410)의 외부 노출면을 감소시키는 역할을 수행할 수 있다.
여기서, 온도 제어부(450)는 메인 열 블록(410)과 보조 열 블록(430)의 온도를 서로 상이하게 조정할 수 있다. 구체적으로, 메인 열 블록(410)은 제 1 온도를 갖도록 구현되고, 보조 열 블록(430)은 제 1 온도 보다 낮은 제 2 온도를 갖도록 구현될 수 있다. 제 2 온도는 제 1 온도 내지 대기 온도 사이이며, 따라서, 메인 열 블록(410), 보조 열 블록(430) 및 대기 순으로, 온도는 제 2 온도, 제 1 온도 및 대기 온도로 점차 낮아질 수 있다.
이때, 제 2 온도는 제 1 온도와 대기 온도의 중간 온도가 바람직하며 예를 들어, 제 1 온도보다 25℃ 내지 35℃ 낮을 수 있다. 예를 들어, 제 1 열 블록(112, 114)이 변성 단계를 수행하는 경우, 제 1 온도는 90℃ 내지 100℃이고, 제 2 온도는 60℃ 내지 70℃일 수 있다. 또한, 예를 들어, 제 1 열 블록(112, 114)이 어닐링 및 연장 단계를 수행하는 경우, 제 1 온도는 45℃ 내지 75℃이고, 제 2 온도는 25℃ 내지 45℃일 수 있다.
이와 관련하여 도 4b를 참조하면, 열 블록(410, 430)의 실험 데이터가 도시된다. 도 4b는 열 블록(410, 430)과 주변 대기와의 온도 차(delta T), 그리고 열 블록(410, 430)으로 인가되는 전류량(I)에 따른 열용량(Qc)을 나타내는 것으로서, 도시되는 바와 같이, 주변 대기 온도(Th=27℃)와의 차이가 0일 때, 열 용량이 가장 크고, 이와 달리 주변 대기 온도와의 차이가 커질수록, 열 용량이 가장 감소하는 것을 확인할 수 있다. 이때, 열 블록(410, 430)의 열 용량은 열 블록(410, 430)에 인접한 다른 소자로 전달 가능한 열 용량을 의미하는 바, 주변 대기와의 온도 차가 작을수록 더 큰 열 전달 효율을 보임을 알 수 있다.
따라서, 본 발명과 같이, 열 블록(400)을 메인 열 블록(410) 및 보조 열 블록(430)으로 이중으로 배치하고, 이들에 대해 단계적으로 온도를 형성하면, 메인 열 블록(410) 및 보조 열 블록(430) 각각의 열 용량이 매우 크게 늘어날 수 있다. 메인 열 블록(410)의 경우, 대기와 바로 접하는 것이 아니라, 보조 열 블록(430)에 의해 외부 노출면이 감소되고, 메인 열 블록(410)과 보조 열 블록(430) 간의 온도 차이에 해당하는 열 용량을 가질 수 있으며, 마찬가지로 보조열 블록(430)의 경우에도 양 면이 모두 대기와 접하는 것이 아니라, 일면은 메인 열 블록(410)과 접함으로써, 감소된 온도 차이에 해당하는 열 용량을 가질 수 있기 때문이다. 또한, 이와 같은 메인 열 블록(410) 및 보조 열 블록(430)의 열 용량의 증가로 인하여, 열 블록(400)이 PCR 반응을 위해 설정된 목표 온도로 도달하는 시간을 감축시킬 수 있다. 또한, 증가한 열 용량을 통하여 PCR 칩(130)으로의 열 에너지 전달 시 메인 열 블록(410)의 온도 변화를 최소화할 수 있다.
또한, 도 4c를 참조하면, 열 블록(410, 430)의 다른 실험 데이터가 도시된다. 도 4c는 열 블록(410, 430)의 열 순환(thermal cycling)에 다른 저항의 변화를 나타내는 것으로서, 순환 횟수(cycles)에 따른 저항(R) 값 변화를 통해 열 블록(410, 430)의 노후화(또는 수명)를 확인할 수 있다. 여기서 열 순환은 열 블록(410, 430)의 온도를 저온에서 고온으로, 다시 저온으로 반복으로 변화시키는 것으로서, 도시되는 바와 같이, 열 순환에 따라 저항이 증가하는 것을 알 수 있다. 즉, 열 블록(410, 430)의 노후화가 급속히 진행되게 된다.
그러나 본 발명에서는, 열 블록(400)을 메인 열 블록(410) 및 보조 열 블록(430)으로 이중으로 배치하고, 이들에 대해 단계적으로 온도를 형성하면, 열 순환 시, 온도 변화의 폭이 감소하게 되어, 열 블록(400)의 노후화를 지연시킬 수 있다. 즉, 열 블록(400)의 수명을 크게 증가시킬 수 있다.
도 4a에는 메인 열 블록(410)과 보조 열 블록(430)이 직접적으로 접촉하는 것으로 도시되나, 이는 예시적인 것으로서, 실시예에 따라, 메인 열 블록(410)과 보조 열 블록(430)은 전도성 물질에 의해 간접적으로 접촉할 수도 있다.
도 5는 본 발명의 일 실시예에 따른 핵산 증폭 장치의 칩 홀더를 도시한다.
칩 홀더(140)는, PCR 칩(130)이 안정적으로 장착되는 공간을 제공하고, PCR 칩 구동부(150)에 의한 움직임을 PCR 칩(130)으로 전달하기 위한 것으로서, 구체적으로, PCR 칩(130)이 기립된 상태로 삽입될 수 있도록 평판 형상으로 이루어지되, 일 측으로는 PCR 칩(130)이 삽입 또는 배출될 수 있는 수용 공간(142)이 함몰 형성되고, 하측으로는 PCR 칩 구동부(150)와 연결될 수 있다.
PCR 칩(130)은 기립된 상태로, 수용 공간(142)으로 예를 들어, 슬라이딩 방식으로 삽입 또는 배출될 수 있다. 이때, 칩 홀더(140)의 내측에는 PCR 칩 (130)의 삽입 경로 방향으로 가이드 홈(146)이 형성될 수 있다. PCR 칩(130)의 삽입 또는 배출은 가이드 홈(146)에 의해 가이드 될 수 있으며, 이를 위해 실시예에 따라 PCR 칩(130)에는 가이드 홈(146)에 대응하는 가이드 돌기가 형성될 수 있으나, 이에 한정되는 것은 아니다. 또한, PCR 패키지(특히, PCR 칩 케이스(600))에는 가이드 홈(146)에 대응하는 가이드 돌기(도 7의 635 참조)이 형성되어, PCR 칩(130)이 포함된 PCR 패키지의 삽입 및 배출 과정에서의 이동을 보다 원활히 할 수 있다.
칩 홀더(140)에는 관통부(144)가 형성될 수 있다. 관통부(144)는 칩 홀더(140)에 삽입된 PCR 칩(130)의 반응 챔버 또는 반응 채널에 대응하는 것으로서, 관통부(144)를 통해 열 블록이 PCR 칩(130)과 열 접촉할 수 있다. 또한, 도 3에서 설명한 바와 같이, 칩 홀더(140)가 제 1 열 블록(112, 114)과 제 2 열 블록(116, 118) 사이를 이동할 때, 광원(310), 검출부(350) 등에 의해 실시간으로 PCR 반응 결과를 검출하도록 할 수 있다.
도 5에서 도시되는 칩 홀더(140)의 형상은 예시적인 것으로서, 본 발명이 적용되는 실시예에 따라 다양한 구성이 적용될 수 있다. 예를 들어, 실시예에 따라 칩 홀더(140)는 삽입된 PCR 칩(130)의 이탈을 방지하기 위한 고정 부재(도시되지 않음)를 더 포함할 수 있다.
도 6 내지 도 8은 본 발명의 일 실시예에 따른 PCR 칩 패키지를 도시한다.
구체적으로, 도 6은 PCR 칩 패키지의 조립도를 도시하고, 도 7은 PCR 칩 패키지의 분해도를 도시하며, 도 8은 PCR 칩의 조립 전/후의 PCR 칩 패키지를 도시한다.
PCR 칩 패키지는 PCR 칩(130)을 내부에 수용하고, 칩 홀더(140)에 삽입되어, 칩 홀더(140)와 함께 이동하면서 PCR 칩(130)을 보다 안정적이고 견고하게 열 블록에 접촉시킬 수 있다. 또한, PCR 패키지는 PCR 과정에서 PCR 칩(130) 내에 포함된 샘플 용액의 누수를 방지할 수 있다. 이를 위해 PCR 칩 패키지는 PCR 칩(130), PCR 칩 케이스(600) 및 밀폐부(700)를 포함할 수 있다.
PCR 칩(130)은, 핵산, 예를 들어 이중 가닥 DNA, 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드 프라이머, DNA 중합효소, 삼인산화데옥시리보뉴클레오티드(deoxyribonucleotide triphosphates, dNTP), PCR 반응 완충액 (PCR reaction buffer)를 포함하는 샘플 용액을 포함할 수 있다.
PCR 칩(130)은 샘플 용액을 도입하기 위한 유입부, 핵산 증폭 반응을 완료한 샘플 용액을 배출하기 위한 유출부 및 증폭하고자 하는 핵산을 포함하는 샘플 용액이 수용된 하나 이상의 PCR 반응 챔버(또는 채널)를 포함할 수 있다. PCR 칩(130)은 광 투과성 재질로 구현될 수 있고, 바람직하게는 광 투과성 플라스틱 재질을 포함한다. 예를 들어, PCR 칩(130)은 플라스틱 재질을 사용하여, 플라스틱 두께 조절을 통해 열 전달 효율을 증대시키는 데에 용이하고, 제작 공정이 단순하여 제조 비용을 절감할 수 있다. 다만, 이에 한정되는 것은 아니다.
특히 PCR 칩(130)은, 도시되는 바와 같이 칩 타입으로 구현됨으로써, 튜브 타입에 비하여 적은 양의 샘플 용액을 반응 챔버에 수용하면서도, 열 블록에 접촉되는 면적을 증가시켜 열 블록으로부터의 열 전달 효율을 증가시킬 수 있다.
PCR 칩(130)의 유입부 및 유출부를 포함하는 인접 영역에는 주변에 비하여 돌출하는 돌출 영역(132)이 형성될 수 있다. PCR 칩(130)과 결합하는 밀폐부(700)에는 돌출 영역(132)에 대응하는 수용 영역(750)이 형성되어, PCR 칩(130)과 밀폐부(700)가 안정적으로 결합하고, 외력이 인가되더라도 그 정렬이 흐트러지지 않도록 할 수 있다.
또한, PCR 칩(130)에는 적어도 하나의 고정 돌기(134)가 형성될 수 있다. 돌출 영역(132)과 마찬가지로, 밀폐부(700)와의 결합 및 정렬 유지를 위한으로서, 이를 위해 밀폐부(700)에는 대응하는 위치에 적어도 하나의 제 1 고정홀(770)이 형성될 수 있다. 특히 고정 돌기(134)와 제 1 고정 홀(770)이 서로 상이한 형상으로 형성되어 결합 시 끼워맞춤 되도록 하여, PCR 칩(130)과 밀폐부(700)간의 결합을 보다 견고하게 할 수 있다.
PCR 칩 케이스(600)는, 상판(610) 및 하판(630)으로 구성되고, 상판(610) 및 하판(630) 간의 힌지 회동을 통해 열고 닫힐 수 있다. 열린 상태에서는 PCR 칩(130) 및/또는 밀폐부(700)가 PCR 칩 케이스(600) 내에 수용되거나 제거될 수 있으며, 닫힌 상태에서는, 내부의 PCR 칩(130) 및/또는 밀폐부(700)를 가압하여 안정적으로 배치할 수 있다. 또한, 결합 부재(650)가 슬라이딩 이동하면서 상판(610)과 하판(630)은 닫힌 상태 또는 열린 상태를 선택적으로 유지하도록 할 수 있다. 다만, 결합 부재(650)의 이러한 기능 및 동작은 예시적인 것으로서, 본 발명이 적용되는 실시예에 따라 다양한 구성이 적용될 수 있다.
PCR 칩 케이스(600) 내에 PCR 칩(130)이 수용되도록 상판(610) 및 하판(630) 중 하나의 내측면에는 PCR 칩(130)이 안착되는 수용 공간(612, 631)이 형성될 수 있다. 수용 공간(612, 631)은 밀폐부(700)와 결합된 PCR 칩(130)에 대응하거나 그보다 큰 크기로 형성될 수 있다. 즉, 수용 공간(612, 631)은 밀폐부(700) 및 PCR 칩(130)과 소정의 유격을 형성할 수 있으며, 따라서, 밀폐부(700)와 결합된 PCR 칩(130)에 수용 공간(612, 631)에 용이하게 배치될 수 있으며, 마찬가지로 PCR 반응 이후에 밀폐부(700)와 결합된 PCR 칩(130)를 PCR 칩 케이스(600)로부터 용이하게 제거되도록 할 수 있다. 특히, 수용 공간(612, 631)의 측면이 밀폐부(700)와 끼워맞춤되거나 접촉하지 않음으로써, PCR 칩 케이스(600)의 개방 시에 수용 공간(612, 631)의 측면에 의해 밀폐부(700)가 상판(610) 및/또는 하판(630)에 연동하여 이동하거나, PCR 칩(130)으로부터 제거되는 것을 방지할 수 있다.
이와 같이, PCR 전후에 걸쳐 밀폐부(700)가 PCR 칩(130)과 결합된 상태를 유지하도록 하여, PCR이 완료된 이후, PCR 칩(130)으로부터 샘플 용액(특히, 인체에 유해한 형광 물질 등이 포함된 고농도로 증폭된 샘플 용액)이 유출되거나, 밀폐부(700)에 묻어 있는 샘플 용액이 인체에 노출되어 건강을 해하거나, 공기 중 또는 PCR 장비에 노출되어 다른 PCR 결과를 왜곡하는 것을 방지할 수 있다.
가이드 돌기(635)는 PCR 칩 케이스(600)의 하판(630) 중 일 영역이 외측으로 돌출 형성되는 것으로서, 칩 홀더(140)의 가이드 홈(146)에 대응할 수 있다. 이를 통해 PCR 칩 케이스(600)가 칩 홀더(140)에 삽입되거나 배출 시 이동 경로를 가이드 하여, 이를 보다 용이하게 할 수 있다. 가이드 돌기(635)가 하판(630)에 형성되는 것으로 도시되었지만, 이에 한정되는 것은 아니며, 상판(610)에 형성되거나 상판(610) 및 하판(630) 모두에 형성될 수도 있다.
또한, PCR 칩 케이스(600)에는, 제 2 고정 홀(637)이 형성될 수 있다. 제 2 고정 홀(637)은 고정 돌기 및 제 1 고정 홀에 대응하는 것으로서, PCR 칩의 고정 돌기가 제 1 고정 홀을 관통한 후 제 2 고정 홀을 관통하거나 이에 수용되도록 하여, 고정 돌기의 제 1 고정 홀에 대해 충분한 길이를 가지는 경우에도(즉 대응하거나 큰 길이), 밀폐부(700)가 PCR 칩을 충분히 가압하도록 할 수 있다. 특히, PCR 칩 케이스(600)로부터 밀폐부(700)가 제거될 때, 수용 공간(612, 631)의 저면과 밀폐부(700) 간의 흡착력이 고정 홀(637)의 공기 연통에 의해 제거되거나 감소되므로, PCR 칩 케이스(600)의 개방 시에 수용 공간(612, 631)의 저면에 의해 밀폐부(700)가 상판(610) 및/또는 하판(630)에 연동하여 이동하거나, PCR 칩(130)으로부터 제거되는 것을 방지할 수 있다
한편, PCR 칩 케이스(600)에는 정렬 돌기(639)가 형성될 수 있다.
이는 밀폐부(700)의 정렬 홀(790)에 대응하는 것으로서, 정렬 돌기(639)가 정렬 홀(790)에 삽입됨으로써, 밀폐부(700)가 수용 공간(612, 631)에 유격을 가지고 배치되더라도, 밀폐부(700)의 정렬이 유지되도록 할 수 있다.
또한, PCR 칩 케이스(600)가 닫힐 때, 연질의 밀폐부(700)를 통해 PCR 칩(130)을 가압 고정시킬 수 있다. 이를 통해 PCR 칩(130)이 열 블록(112, 114, 116, 118)과 접촉 시에 발생하는 응력에 의한 PCR 칩(130)의 변형을 방지할 수 있다.
특히 도 8의 (a)를 참조하면, PCR 칩 케이스(600)는 상판(610) 및 하판(630)이 서로를 향하여 오목하게 굴곡된 형상일 수 있다. 이후 PCR 칩 케이스(600) 내에 밀폐부(700)와 PCR 칩(130)이 장착되고, 상판(610) 및 하판(630)이 서로 닫히면, 밀폐부(700)와 PCR 칩(130)이 서로 결합함과 동시에 상판(610) 및 하판(630)은 평판으로 변형될 수 있다(도 8의 (b) 참조). 서로를 향하여 오목하고 굴곡된 상판(610) 및 하판(630)이 닫힐 때 내측의 밀폐부(700) 및 PCR 칩(130)에 의해 상판(610) 및 하판(630)에 외측 방향으로 외력을 인가되기 때문이다. 이는 상판(610) 및 하판(630) 사이의 공간을 밀폐부(700)와 결합된 PCR 칩(130)에 대응하거나 이보다 작게 형성하여, PCR 칩 케이스(600)가 닫힐 때, 연질의 밀폐부(700)를 통해 PCR 칩(130)을 가압 고정하는 것과 동시에, 상판(610) 및 하판(630)의 외면을 평판으로 하여, 열 블록(112, 114, 116, 118)과의 접촉 효율을 개선하기 위함이다.
또한, PCR 칩(130)이 PCR 칩 케이스(600) 또는 칩 홀더(140)에 배치된 상태에서 PCR 반응의 관찰이 가능하도록, 상판(610) 및 하판(630)에는 PCR 칩(130)의 반응 챔버에 대응하는 개방 영역(614, 633)이 형성될 수 있다. 또한 PCR칩(130)은 상판(610) 및 하판(630)의 개방 영역(614, 633)을 통해 열 블록(112, 114, 116, 118)과 긴밀하게 열 접촉할 수 있다.
PCR 칩 케이스(600)의 상판(610)에는 하판(630)을 향하는 방향으로 돌출하는 지지부(616)가 형성될 수 있다. 또한, 하판(630) 중 지지부(616)에 대응하는 위치에 지지부(616)가 삽입되는 함몰 공간이 형성될 수 있다. PCR 칩 케이스(600)의 절첩 시, 지지부(616)를 통해 PCR 칩 케이스(600)에 강성을 부여하여, 형상 변형을 방지할 수 있다.
밀폐부(700)는, PCR 칩(130)의 유입부 및 유출부를 밀폐할 수 있다.
이를 위해 밀폐부(700)는 고무 등의 연성 재질로 이루어져, 신축성과 탄성을 가질 수 있다. 구체적으로, 밀폐부(700)는, 평판 형상의 덮개부(710)와 덮개부(710)에서 형성되는 복수의 돌출부(730)로 이루어질 수 있으며, 각 돌출부(730)는 PCR 칩(130)의 유입부 및 유출부에 삽입되어 PCR 칩(130)을 밀폐할 수 있다.
또한, 밀폐부(700)는 PCR 칩(130)과 보다 견고하게 밀착하기 위해 서로 대응하는 형상을 가질 수 있다. 예를 들어, PCR 칩(130)의 유입부 및 유출부를 둘러싸는 돌출 영역(132)에 대응하는 수용 영역(750)이 형성될 수 있으며, 또한, PCR 칩(130)의 고정 돌기(134)에 대응하는 제 1 고정 홀(770)이 형성될 수 있다. 또한, 밀폐부(700)는 정렬 홀(790)을 통해 PCR 칩 케이스(600)와 그 정렬이 유지되도록 결합할 수 있다.
이상에서와 같이 도면과 명세서에서 최적 실시예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (14)

  1. 핵산 증폭 장치로서,
    PCR 칩을 제 1 위치 내지 제 2 위치 사이에서 왕복시키는 PCR 칩 구동부;
    상기 제 1 위치를 중심으로 서로 마주보도록 이격 배치되는 복수의 제 1 열 블록;
    상기 제 2 위치를 중심으로 서로 마주보도록 이격 배치되는 복수의 제 2 열 블록; 및
    상기 복수의 제 1 열 블록 및 상기 복수의 제 2 열 블록 각각을 상기 PCR 칩을 향하여 이동시키는 열 블록 구동부를 포함하고,
    상기 PCR 칩이 상기 제 1 위치에서 양 면이 상기 복수의 제 1 열 블록과 접촉하고, 상기 제 2 위치에서 상기 양 면이 상기 복수의 제 2 열 블록과 접촉함으로써, PCR 반응이 수행되는, 핵산 증폭 장치.
  2. 제 1 항에 있어서,
    상기 복수의 제 1 열 블록은 상기 PCR 반응의 변성 단계 온도를 유지하거나, 어닐링 및 연장 단계 온도를 유지하도록 구현되고,
    상기 복수의 제 2 열 블록은 상기 PCR 반응의 어닐링 및 연장 단계 온도를 유지하거나, 변성 단계 온도를 유지하도록 구현되며,
    상기 복수의 제 1 열 블록과 복수의 제 2 열 블록은 서로 상이한 단계의 온도를 유지하도록 구현되는, 핵산 증폭 장치.
  3. 제 2 항에 있어서,
    상기 변성 단계 온도는 90℃ 내지 100℃이고, 상기 어닐링 및 연장 단계 온도는 45℃ 내지 75℃인, 핵산 증폭 장치.
  4. 제 1 항에 있어서,
    상기 열 블록 각각은 일면이 상기 PCR 칩과 접촉하는 메인 열 블록; 및
    일면이 상기 메인 열 블록의 타면과 접촉하고 타면이 외부에 노출되는 보조 열 블록을 더 포함하는, 핵산 증폭 장치.
  5. 제 4 항에 있어서,
    상기 메인 열 블록은 제 1 온도를 갖도록 구현되고,
    상기 보조 열 블록은 상기 제 1 온도 보다 낮은 제 2 온도를 갖도록 구현되는, 핵산 증폭 장치.
  6. 제 5 항에 있어서,
    상기 제 1 온도는 90℃ 내지 100℃이고, 상기 제 2 온도는 60℃ 내지 70℃인, 핵산 증폭 장치.
  7. 제 5 항에 있어서,
    상기 제 1 온도는 45℃ 내지 75℃이고, 상기 제 2 온도는 25℃ 내지 45℃인, 핵산 증폭 장치.
  8. 제 5 항에 있어서,
    상기 제 2 온도는 상기 제 1 온도 보다 25℃ 내지 35℃ 낮은, 핵산 증폭 장치.
  9. 제 1 항에 있어서,
    상기 제 2 온도는 상기 제 1 온도 내지 대기 온도 사이인, 핵산 증폭 장치.
  10. 제 1 항에 있어서,
    샘플 용액이 주입되는 유입부; 상기 샘플 용액의 PCR 반응이 수행되는 반응 챔버; 및
    상기 샘플 용액이 배출되는 유출부를 포함하는 PCR 칩을 더 포함하는, 핵산 증폭 장치.
  11. 제 10 항에 있어서,
    상기 PCR 칩을 수용하되 상기 PCR 칩의 반응 챔버를 외부에 노출하고, 상기 PCR 칩 구동부에 의해 왕복하는 PCR 칩 케이스를 더 포함하는, 핵산 증폭 장치.
  12. 제 11 항에 있어서,
    상기 PCR 칩의 유입부 및 유출부를 밀폐하도록 상기 PCR 칩에 결합하고, 상기 PCR 칩 케이스에 수용되는, 연질 재질의 밀폐부를 더 포함하는, 핵산 증폭 장치.
  13. 핵산 증폭 장치로서,
    서로 이격 배치되고, PCR 칩과 접촉하면서 PCR 반응이 수행되게 하는 복수의 열 블록을 포함하고,
    상기 열 블록 각각은, 일면이 상기 PCR 칩과 접촉하는 메인 열 블록; 및 일면이 상기 메인 열 블록의 타면과 접촉하고 타면이 외부에 노출되는 보조 열 블록을 포함하는, 핵산 증폭 장치.
  14. 제 13 항에 있어서,
    상기 메인 열 블록은 제 1 온도를 갖도록 구현되고,
    상기 보조 열 블록은 상기 제 1 온도 보다 낮은 제 2 온도를 갖도록 구현되는, 핵산 증폭 장치.
PCT/KR2019/009520 2018-08-01 2019-07-31 복수의 열 블록을 구비한 핵산 증폭 장치 WO2020027565A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112021001771-2A BR112021001771A2 (pt) 2018-08-01 2019-07-31 dispositivo de amplificação de ácido nucleico que tem uma pluralidade de blocos de aquecimento
EP19844453.1A EP3831492A4 (en) 2018-08-01 2019-07-31 NUCLEIC ACID AMPLIFIER APPARATUS HAVING A PLURALITY OF COLUMN BLOCKS
US17/264,697 US20210308685A1 (en) 2018-08-01 2019-07-31 Nucleic acid amplification device having a plurality of heating blocks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180090065A KR102219457B1 (ko) 2018-08-01 2018-08-01 복수의 열 블록을 구비한 핵산 증폭 장치
KR10-2018-0090065 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020027565A1 true WO2020027565A1 (ko) 2020-02-06

Family

ID=69232611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009520 WO2020027565A1 (ko) 2018-08-01 2019-07-31 복수의 열 블록을 구비한 핵산 증폭 장치

Country Status (5)

Country Link
US (1) US20210308685A1 (ko)
EP (1) EP3831492A4 (ko)
KR (1) KR102219457B1 (ko)
BR (1) BR112021001771A2 (ko)
WO (1) WO2020027565A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114814A1 (en) * 2020-11-26 2022-06-02 Seegene, Inc. Thermal module and method of operating same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102126520B1 (ko) * 2020-02-12 2020-06-24 주식회사 케이에이치메디칼 핵산 증폭 장치
KR102478830B1 (ko) * 2020-07-14 2022-12-20 주식회사 미루시스템즈 서로 다른 온도범위로 구획화된 복수의 챔버를 포함하는 pcr 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060046304A1 (en) * 2004-08-26 2006-03-02 Applera Corporation Thermal device, system, and method, for fluid processing device
KR101329693B1 (ko) * 2012-05-25 2013-11-14 (주)씨엔에스 마이크로 플로우 반응 장치
KR101368463B1 (ko) * 2010-04-23 2014-03-03 나노바이오시스 주식회사 2개의 열 블록을 포함하는 pcr 장치
KR20170043376A (ko) * 2015-10-13 2017-04-21 (주)로봇앤드디자인 Pcr 처리 장치
WO2018004301A1 (en) * 2016-06-30 2018-01-04 Seegene, Inc. Apparatus for amplificating nucleic acid and fluorescence-detecting device
KR20180090065A (ko) 2017-02-02 2018-08-10 주식회사 박의지 끈 조임 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1415113B1 (en) * 2001-07-16 2011-08-31 Idaho Technology, Inc. Thermal cycling system and method of use
US20040151621A1 (en) * 2003-01-24 2004-08-05 Fuji Photo Film Co., Ltd. Incubator
JPWO2006038643A1 (ja) * 2004-10-06 2008-08-07 ユニバーサル・バイオ・リサーチ株式会社 反応容器、および反応制御装置
CA2837127C (en) * 2011-05-24 2019-09-17 Ingeny PCR B.V. System for and method of changing temperatures of substances
KR101398956B1 (ko) 2012-05-23 2014-05-27 가천대학교 산학협력단 핵산 증폭 장치, 그 제조 방법 및 이를 이용하는 핵산 증폭방법
JP2014132228A (ja) * 2013-01-04 2014-07-17 Sony Corp 液体注入用治具セット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060046304A1 (en) * 2004-08-26 2006-03-02 Applera Corporation Thermal device, system, and method, for fluid processing device
KR101368463B1 (ko) * 2010-04-23 2014-03-03 나노바이오시스 주식회사 2개의 열 블록을 포함하는 pcr 장치
KR101329693B1 (ko) * 2012-05-25 2013-11-14 (주)씨엔에스 마이크로 플로우 반응 장치
KR20170043376A (ko) * 2015-10-13 2017-04-21 (주)로봇앤드디자인 Pcr 처리 장치
WO2018004301A1 (en) * 2016-06-30 2018-01-04 Seegene, Inc. Apparatus for amplificating nucleic acid and fluorescence-detecting device
KR20180090065A (ko) 2017-02-02 2018-08-10 주식회사 박의지 끈 조임 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3831492A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114814A1 (en) * 2020-11-26 2022-06-02 Seegene, Inc. Thermal module and method of operating same

Also Published As

Publication number Publication date
KR102219457B1 (ko) 2021-02-24
US20210308685A1 (en) 2021-10-07
KR20200014640A (ko) 2020-02-11
EP3831492A1 (en) 2021-06-09
BR112021001771A2 (pt) 2021-05-04
EP3831492A4 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
WO2020027564A1 (ko) 복수의 열 블록을 구비한 핵산 증폭 장치
WO2020027565A1 (ko) 복수의 열 블록을 구비한 핵산 증폭 장치
US20190224684A1 (en) Apparatus and method for segmented thermal cycler
WO2016105073A1 (ko) 반복 슬라이딩 구동 수단을 구비하는 pcr 장치 및 이를 이용하는 pcr 방법
WO2022139215A1 (ko) 용해 및 핵산 증폭이 가능한 통합칩, 이를 포함하는 용해 모듈, 이를 포함하는 현장진단을 위한 장치 및 이를 이용한 용해 및 핵산 증폭 방법
EP2898952B1 (en) Device for Carrying Out Chemical or Biological Reactions
US7670834B2 (en) Gas thermal cycler
WO2020209638A1 (ko) 중합효소 연쇄반응 시스템
WO2018110948A1 (ko) 배터리 팩
WO2016013770A1 (ko) 멀티플렉스 pcr 칩 및 이를 포함하는 멀티플렉스 pcr 장치
WO2011062408A2 (ko) 유리기판의 레이저 실링장치
WO2019117584A1 (ko) 중합효소 연쇄반응 시스템
WO2009157695A2 (en) Thermal cycling reaction block and continuous real-time monitoring apparatus using the same
WO2012036341A1 (ko) 비접촉 가열식 유전자 증폭시스템
WO2020149559A1 (ko) 유전자 증폭 모듈
WO2020004999A1 (en) Thermal block
WO2016143995A1 (ko) 멀티플렉스 pcr 칩 및 이를 포함하는 멀티플렉스 pcr 장치
WO2016186302A1 (ko) 급속 열처리 장치
WO2015102379A1 (ko) 농식품의 식중독균 검출용 랩온어칩 기반의 초고속 실시간 pcr 장치, 및 이를 이용한 식중독 검출방법
WO2022139061A1 (ko) 휴대용 rt-pcr 장치 및 이를 이용한 rt-pcr 측정 방법
WO2023075536A1 (ko) 플런저 및 용액 이동 모듈
WO2014104771A1 (ko) 식중독 검출용 프라이머 세트를 포함하는 마이크로 pcr 칩, 이를 포함하는 실시간 pcr 장치, 및 이를 이용한 식중독 검출 방법
WO2024048835A1 (ko) 분자 진단용 카트리지
WO2016017832A1 (ko) 핵산 증폭장치
WO2024048834A1 (ko) 분자 진단용 카트리지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021001771

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019844453

Country of ref document: EP

Effective date: 20210301

ENP Entry into the national phase

Ref document number: 112021001771

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210129