WO2020027400A1 - 연료전지용 분리판 및 이를 포함하는 연료전지 스택 - Google Patents

연료전지용 분리판 및 이를 포함하는 연료전지 스택 Download PDF

Info

Publication number
WO2020027400A1
WO2020027400A1 PCT/KR2019/001142 KR2019001142W WO2020027400A1 WO 2020027400 A1 WO2020027400 A1 WO 2020027400A1 KR 2019001142 W KR2019001142 W KR 2019001142W WO 2020027400 A1 WO2020027400 A1 WO 2020027400A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cathode
cathode channel
cooling
sectional area
Prior art date
Application number
PCT/KR2019/001142
Other languages
English (en)
French (fr)
Inventor
주현철
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Publication of WO2020027400A1 publication Critical patent/WO2020027400A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a separator plate for a fuel cell and a fuel cell stack including the same, and more particularly, to a separator plate for a fuel cell and a fuel cell stack including the same, provided in an air-cooled fuel cell to improve performance and stability of the fuel cell. It is about.
  • a drone In general, a drone is an unmanned aerial vehicle that can be controlled using radio waves, and is widely used in various fields because it is easy to carry and has excellent speed and economy. In other words, the drone is rapidly spreading to the public and industrial markets, such as agriculture, surveying, construction, disaster monitoring, as well as military use, and the availability is continuously increasing. Batteries are the most used energy sources for these drones.
  • a conventional drone equipped with a battery as an energy power source has a short flight time of about 20 minutes and a low energy density, which causes limitations in using the drone in various fields. Therefore, there is a need for a technology that applies an energy power source such as a fuel cell system having a higher energy density and a shorter charging time than a battery.
  • the fuel cell system is an apparatus for producing electric energy electrochemically using hydrogen gas and oxygen gas, and can convert hydrogen and air continuously supplied from the outside into electrical energy and thermal energy by an electrochemical reaction. That is, the fuel cell can generate electric power by using an oxidation reaction at the anode and a reduction reaction at the cathode, and include a membrane electrode assembly (MEA) and a membrane- composed of a polymer electrolyte membrane. A plurality of unit cells consisting of a separator plate of conductive material provided at both ends of the electrode polymer is stacked.
  • Korean Patent No. 10-1509949 discloses a conventional fuel cell technology.
  • Conventional fuel cells are classified into water-cooled fuel cells and air-cooled fuel cells according to a cooling method, and the air-cooled fuel cells are classified into an active type and a passive type.
  • the active air-cooled fuel cell has a problem in that the air supply system for cooling the fuel cell and the air supply system are separated to generate an electrochemical reaction, thereby complicating the structure of the fuel cell system and increasing the weight. .
  • the cooling and gas supply system is combined to simplify the structure and to make the ultra-light weight.
  • the passive air-cooled fuel cell is configured to use air at room temperature as fuel gas and cooling gas at the same time, so that excessive air must be supplied to cool the heat generated from the fuel cell stack to an appropriate temperature. Therefore, when the air for the temperature control is excessively introduced, there is a problem that the state of the unit cell is dried by dehydration of the electrolyte membrane while the incoming air is introduced in a non-humidified or low-humidity state, the moisture inside the unit cell There is a problem that it is difficult to ensure stable performance of the fuel cell by increasing the nonuniformity of the distribution, temperature distribution and current density distribution.
  • the present invention was created in order to solve the above problems, it is possible to appropriately control the internal moisture distribution, temperature distribution and current density distribution, fuel cell separation plate that can realize the performance and operational stability of the fuel cell And it is an object to provide a fuel cell stack comprising the same.
  • a plurality of protrusions formed to be spaced apart from each other is formed, is provided along the lower surface of the plurality of protrusions, the cathode channel inlet is formed on one side and the cathode channel outlet is formed on the other side fuel on one side Air enters and is discharged to the other side, and the cross-sectional area of the cathode channel inlet is provided along the upper surface between the plurality of cathode channels formed narrower than the cross-sectional area of the cathode channel outlet and the plurality of protrusions, and a cooling channel inlet is formed at one side.
  • a cooling channel outlet is formed at the other side, and cooling air is introduced from one side to be discharged to the other side.
  • the cross-sectional area of the cooling channel inlet includes a plurality of cooling channels formed wider than the cross-sectional area of the cooling channel outlet, and An anode separator receiving hydrogen from one side, and a separator plate for the fuel cell
  • a unit cell including a membrane-electrode assembly provided between the anode separator and including a fuel air flowing from the fuel separator and an electrolyte membrane receiving hydrogen flowing from the anode separator to produce electrical energy.
  • a plurality of unit cells stacked on one side, and a discharge port is formed on the other side, and a fuel cell stack including a manifold through which gas is discharged is provided.
  • the cathode channel is preferably formed in a diffuser shape such that the cross-sectional area is gradually widened from the cathode channel inlet toward the cathode channel outlet side, wherein the cooling channel has a cross-sectional area at the cooling channel inlet. It is preferable that it is formed in the shape of a nozzle formed so that it may become narrow gradually toward the side.
  • the cathode channel, the height of the cathode channel inlet may be formed lower than the height of the cathode channel outlet.
  • the separator for fuel cells and the fuel cell stack including the same may further include a porous medium formed along the cathode channel.
  • the manifold of the fuel cell stack may include a frame having a space formed therein and having the unit cells stacked on one side thereof, and a plurality of discharge pipes disposed on the other side of the frame to discharge gas through the discharge holes. It is preferable to include.
  • the plurality of discharge pipes may be provided radially spaced apart from each other in the longitudinal direction of the frame on the other side of the frame.
  • the plurality of discharge pipes may be provided at opposite ends of the frame, respectively.
  • hydrogen inlets and hydrogen outlets are formed at both ends of the unit cells of the frame in the longitudinal direction of the frame, respectively, and the plurality of discharge pipes may be provided at the hydrogen outlet side of the other side of the frame.
  • the cross-sectional area of the cathode channel inlet is formed to be smaller than the cross-sectional area of the cathode channel inlet, and the cross-sectional area of the cooling channel inlet is formed to be wider than that of the cooling channel outlet, Since the air inflows can be varied between the channel inlet and the cooling channel, it is possible to prevent excessive air flow and to minimize ohmic resistance, thereby realizing fuel cell performance and operating stability.
  • the cathode channel is formed in a diffuser shape, the speed of the fuel air is decelerated toward the outlet side to increase the outlet humidity, and the cooling channel is formed in the nozzle shape to increase the speed of the cooling air, thereby reducing the temperature increase.
  • the unit cell temperature can be properly controlled and the water discharge can be minimized to effectively manage the water, thereby preventing dehydration of the electrolyte membrane.
  • a plurality of discharge pipes are formed in the manifold, and the discharge pipes are disposed in an area where the stack temperature is high, such as the minority outlet side, to control the intake air flow rate, thereby improving the temperature uniformity inside the fuel cell stack.
  • FIG. 1 is a conceptual diagram schematically showing a state in which unit cells and unit cells are stacked in a fuel cell stack according to the present invention
  • FIG. 2 is a perspective view showing a fuel cell separator of the fuel cell stack shown in FIG. 1;
  • FIG. 3 and 4 are cross-sectional views of the separator for fuel cell shown in FIG. 2;
  • FIG. 5 is a perspective view showing a state in which a porous medium is further provided in the separator plate for fuel cells shown in FIG. 1;
  • FIG. 6 is a cross-sectional view of the separator for fuel cell shown in FIG. 5;
  • FIG. 7 is a perspective view showing another embodiment of the separator for fuel cell shown in FIG. 2;
  • FIG. 8 is a perspective view showing a state in which a porous medium is further provided in the separator for fuel cell shown in FIG. 7;
  • 9A and 9B are analytical graphs comparing water management performance of a fuel cell stack manufactured using the fuel cell separator plate of FIG. 2 and a conventional fuel cell stack;
  • 11A and 11B are analytical graphs comparing water management performance of a fuel cell stack manufactured using the fuel cell separator plate of FIG. 2 and a conventional fuel cell stack;
  • 12A to 12C are fuel cell stacks and fuel cell separators for the analysis graphs of FIGS. 11A and 11B;
  • FIG. 13 is a perspective view illustrating a manifold of the fuel cell stack of FIG. 1;
  • 14A and 14B are images of temperature distribution analysis of a fuel cell stack manufactured using the manifold shown in FIG. 13 and a conventional fuel cell stack,
  • 15 and 16 are perspective views showing another embodiment of the fuel cell stack of FIG. 1.
  • the fuel cell stack 1 according to the embodiment of the present invention is provided as a drone and an unmanned drone and is applied as an energy source for driving the drone and the drone, and is a passive type air-cooled fuel. It is preferable that it is the battery stack 1.
  • the fuel cell stack 1 includes a unit cell 2 and a manifold 3.
  • the unit cell 2 is used to produce electric energy electrochemically by using hydrogen and oxygen.
  • the fuel cell stack 1 includes the unit cells 1 stacked with each other. It is preferable.
  • the unit cell 2 may include a fuel cell separator 10, an anode separator 20, and a membrane-electrode assembly 30.
  • the separator 10 for fuel cell is used to separate and move the introduced air into fuel air G and cooling air C. Air is introduced from one side, and the introduced air is introduced. Is separated into fuel air (G) and cooling air (C) is moved from one side of the fuel cell separator 10 to the other side. In other words, the cooling air (C) moves along the upper surface of the fuel cell separation plate 10, and the fuel air (G) moves along the lower surface of the fuel cell separation plate (10).
  • the fuel cell separator 10 may include a plurality of protrusions 11 protruding from and spaced apart from each other, and include a plurality of cathode channels 100 and a plurality of cooling channels 200.
  • the plurality of cathode channels 100 are for delivering fuel air G, and are provided along the lower surfaces of the plurality of protrusions 11.
  • the cathode channel 100 has a cathode channel inlet 110 is formed on one side and the cathode channel outlet 120 is formed on the other side. That is, the fuel air G flows into the cathode channel inlet 110, which is one side of the cathode channel 100, and is discharged to the cathode channel outlet 120, which is the other side.
  • the cross-sectional area of the cathode channel inlet 110 is formed to be narrower than the cross-sectional area of the cathode channel inlet 120 to minimize the speed of fuel air (G) introduced into the cathode channel inlet 110 to the cathode channel 100.
  • G fuel air
  • the relative humidity of the outlet of the cathode channel outlet 120 may be increased by maximizing the water vapor concentration of the cathode channel outlet 120.
  • the cathode channel 100 is preferably formed in a diffuser shape in which the cross-sectional area is gradually widened from the cathode channel inlet 110 toward the cathode channel outlet 120.
  • the plurality of cooling channels 200 are for moving the cooling air C for cooling the amount of heat generated in the unit cell 2, and are provided along upper surfaces between the plurality of protrusions 11.
  • the cooling channel 200 has a cooling channel inlet 210 on one side and a cooling channel outlet 220 on the other side. That is, the cooling air (C), the cooling air (C) is introduced into the cooling channel inlet 210 which is one side of the cooling channel 200 is discharged to the cooling channel outlet 220 of the other side.
  • the cross-sectional area of the cooling channel inlet 210 may be wider than that of the cooling channel outlet 220. More specifically, the cooling channel 200 may have a cross-sectional area of the cooling channel inlet 210 at the cooling channel inlet 210.
  • the nozzle 220 is preferably formed in the shape of a nozzle (Nozzel) that is formed to gradually narrow toward the outlet 220 side. That is, the cooling air (C) introduced into the cooling channel inlet 210 has a speed as the cooling channel 200 becomes narrower in cross section from the cooling channel inlet 210 toward the cooling channel outlet 220. Maximized to efficiently reduce the temperature increase of the cooling channel outlet 220 at the cooling channel inlet 210 is easy thermal management.
  • the cathode channel inlet 110 is formed in a narrower cross-sectional area than the cooling channel inlet 210, the cathode channel inlet (10) through the deviation of the air inlet flow rate of the cathode channel inlet 110 and the cooling channel inlet (210)
  • the cathode channel inlet 110 is formed in a narrower cross-sectional area than the cooling channel inlet 210, the cathode channel inlet (10) through the deviation of the air inlet flow rate of the cathode channel inlet 110 and the cooling channel inlet (210)
  • the height of the cathode channel inlet 110 is lower than the height of the cathode channel inlet 120, so that the cross-sectional area of the cathode channel inlet 110 is greater than that of the cathode channel inlet 120. It may be applied to be formed narrower than the cross-sectional area of the).
  • the height of the cathode channel inlet 110 is formed lower than the height of the cooling channel inlet 210, so that the amount of air flowing into the cathode channel inlet 110 to minimize the dehydration phenomenon that the electrolyte membrane 31 is dried
  • the temperature of the unit cell 2 can be effectively controlled by increasing the amount of air introduced into the cooling channel inlet 120.
  • the fuel cell separator 10 may further include a porous medium 300.
  • the porous medium 300 is formed along the cathode channel 100 to control the amount of fuel air G flowing into the cathode channel 100.
  • the porous medium 300 may be made of metal foams or the like.
  • the porous medium 300 is formed along the cathode channel 100, thereby minimizing the amount of fuel air flowing into the cathode channel inlet 110 to minimize the amount of water discharged to the cathode channel outlet 120. Dehydration of the electrolyte membrane 31 may be prevented from drying, and electron transfer between the membrane-electrode assembly 30 and the cathode channel 100, which will be described later, may be facilitated, and contact resistance may be minimized. .
  • FIGS. 9A and 9B illustrate relative humidity between the fuel cell separator 10 and the fuel cell separator of the present invention in which the cathode channel 100 is formed in a diffuser shape and the cooling channel 200 is formed in a nozzle shape.
  • Analysis graph comparing water management performance through.
  • the experiments of FIGS. 9A and 9B include a conventional fuel cell separator and a first experimental example and a second embodiment. Comparing the relative humidity of the fuel cell separation plate of the laboratory example, the cathode channel (100) of the conventional fuel cell separation plate of the parallel flow path and the fuel cell separation plate 10 of the first and second experimental embodiments. ) And the cross section of the cooling air channel 200 in contact with the membrane-electrode assembly 30 is maintained to be constant.
  • 10A is a shape of a conventional fuel cell separator, wherein the cooling channel CC of the conventional fuel cell separator is parallel to the cooling channel inlet and the cooling channel outlet, and the cathode channel GC is the cathode channel inlet and The cathode channel outlets are configured to be parallel.
  • FIG. 10B is a shape of the fuel cell separator 10 of the first experimental embodiment of the present invention, wherein the cathode channel 100 (GC) is formed in a diffuser shape, and the cooling channel 200 (CC) is formed in a nozzle shape.
  • the cathode channel inlet is 1.5 (mm)
  • the cathode channel outlet is 3.5 (mm).
  • FIG. 10C illustrates a shape of a fuel cell separator 10 according to a second exemplary embodiment of the present invention, in which a cathode channel 100 (GC) is formed in a diffuser shape, and a cooling channel 200 (CC) is formed in a nozzle shape.
  • the cathode channel inlet is 1 (mm)
  • the cathode channel outlet is formed of 4 (mm).
  • the inclination angle of the cathode channel 100 and the cooling channel 200 of the first experimental embodiment is formed 2.29 degrees
  • the inclination angle of the cathode channel 100 and the cooling channel 200 of the second experimental embodiment Degrees are formed at 3.43 degrees.
  • 9A and 9B show the conventional fuel cell separator (Baseline), the first experimental example (Type 1) and the second experimental example (Type 2) under the same conditions of 35% relative humidity of the channel inlet. As a result of analyzing the relative humidity of the cathode channel 100 of FIG.
  • FIG. 10D the relative humidity in the center position (Line plot) of the cathode channel 100 shown in FIG. 10D is shown.
  • FIG. 9A shows that the operating current is 0.5 ( A / cm 2 )
  • FIG. 9B shows an operating current of 0.7 (A / cm 2 ).
  • the relative humidity is increased from the cathode channel inlet 110 to the cathode channel outlet.
  • the decrease in relative humidity of the first and second experimental examples (Type 1) and Type 2 is lower than that of the conventional fuel cell separator (Baseline). You can see that it is small. Accordingly, the shapes of the first and second experimental examples (Type 1) and (2) are advantageous for water management compared to those of the conventional fuel cell separator (Baseline). It can be seen that it reduces the performance degradation of the fuel cell stack by drying.
  • 11A and 11B show a relative relationship between the fuel cell separator 10 of the present invention in which the cathode channel 100 is formed in a diffuser shape, and the cooling channel 200 is formed in a nozzle shape, and a separator plate for a conventional fuel cell.
  • the contact area between the cathode channel 100 and the membrane-electrode assembly 30 is reduced through humidity, it is an analysis graph comparing water management performance.
  • the experiments of FIGS. 11A and 11B include a conventional parallel flow channel separator and a third experiment.
  • 11A is a shape of a conventional fuel cell separator, and the cooling channel of the conventional fuel cell separator is configured such that the cooling channel inlet and the cooling channel outlet are parallel to each other.
  • the cathode channel is configured such that the cathode channel inlet and the cathode channel outlet are parallel.
  • the inclination angle of the cathode channel 100 and the cooling channel 200 of the third experimental embodiment is formed to 0.09 degrees, the cross-sectional area of the cathode channel inlet 110 to 1/2 of the cross-sectional area of the conventional cathode channel inlet Formation Permit
  • the improvement of water management performance can be analyzed when reducing the contact area between the membrane-electrode assembly 30 and the cathode channel 100.
  • FIGS. 11A and 11B show the relative humidity of the conventional fuel cell separator A (Type A) and the cathode channel 100 of the third experimental example (Type B) under the same conditions of 35% relative humidity of the channel inlet.
  • the relative humidity in the center position (Line plot) of the cathode channel 100 shown in Figure 12c is shown by comparison, Figure 11a has an operating current of 0.5 (A / cm 2 ), Figure 11 b is applied with an operating current of 0.7 (A / cm 2 ).
  • the relative humidity in the shape of the conventional parallel flow-type separator for fuel cell type A shows a tendency to decrease from the cathode channel inlet to the cathode channel outlet due to temperature increase.
  • the decrease in relative humidity is very small and it can be seen that a section in which the relative air humidity gradually increases.
  • the anode bipolar plate 20 receives hydrogen from one side. That is, the anode separation plate 20 receives hydrogen from one side and transfers hydrogen to the membrane-electrode assembly 30. In other words, the supplied hydrogen may be transferred from the anode separator 20 to the membrane-electrode assembly 30 to generate a hydrogen oxidation reaction in which hydrogen ions and electrons are decomposed.
  • Membrane Electrode Assembly is provided between the fuel cell separator 10 and the anode separator 20, and fuel air flows from the fuel cell separator 10. (G) and using the hydrogen flowing from the anode separation plate 20 to produce electrical energy.
  • the membrane-electrode assembly 30 is configured to include an anode catalyst layer 35 (CL), so that hydrogen may be decomposed into hydrogen ions and electrons by hydrogen oxidation in the anode catalyst layer 35.
  • the electrons of the hydrogen separated from the anode catalyst layer 35 may produce electrical energy during the process of moving to the fuel cell separator 10.
  • the membrane-electrode assembly 30 includes an electrolyte membrane 31.
  • the anode catalyst layer 35 may be further included, the configuration of the electrode gasket 32, gas diffusion layer 33, micro-air layer 34, the catalyst layer 35, etc. As a well-known technique, detailed description thereof will be omitted.
  • the manifold 3 includes the unit cells 2 stacked on one side thereof, and a space is formed therein to store electric energy generated through the unit cells 2, or It can emit heat energy and gas generated while generating.
  • the manifold 3 includes a frame 50 and a discharge pipe 40.
  • the frame 50 is provided with a space formed therein and the unit cells 2 stacked on one side thereof. That is, a plurality of unit cells 2 are stacked on one side of the frame 50, and air is supplied to the unit cells 2 so that air may be transferred to the separator 10 for fuel cell.
  • hydrogen inlets 51 and hydrogen outlets 52 are formed at both ends along the longitudinal direction of the frame 50 so that hydrogen introduced from the hydrogen inlets 51 may be transferred to the anode separation plate 20. Can be.
  • FIG. 14A and 14B are analysis images of the temperature distribution of the fuel cell stack 1 according to the manifold shape of the conventional fuel cell stack and the shape of the manifold 3 of the present invention.
  • FIG. 14A is an analysis image of temperature distribution according to a manifold shape of a conventional fuel cell stack.
  • the cross section of a conventional fuel cell stack gradually increases along the length direction of the frame of FIG. 14A. It is formed to be, and one discharge pipe is formed on the other side of the frame. Therefore, the conventional fuel cell stack has more air intake toward the discharge pipe side (left to right side of FIG. 14A) of the manifold of FIG. 14A, so that the temperature on the left side is distributed relatively high, and the temperature distribution on the hydrogen outlet side is increased.
  • the fuel cell stack 1 of the present invention has a uniform air suction amount along the longitudinal direction of the frame 50, and the plurality of discharge pipes 40 are disposed on the hydrogen outlet 52 side, thereby providing a hydrogen outlet ( It is confirmed that the air intake amount on the 52) side is high and the temperature on the hydrogen outlet 52 side is prevented from becoming higher, thereby forming a more uniform temperature distribution.
  • the plurality of discharge pipes 40 may be provided at both ends of the other side of the frame 50, or may be applied to be disposed at the center of the other side surface.
  • the plurality of discharge pipes 40 are provided at both ends of the other side of the frame 50 or disposed at the center of the other side, so that the amount of air sucked into the frame 50 can be spatially controlled. It is possible to provide a uniform temperature distribution inside the frame 50. That is, the plurality of discharge pipes 40 are provided on the side of the hydrogen outlet 52, the air outlet, and the portion having the high output current density corresponding to the shape of the frame 50 to increase the intake air flow rate, and increase the hydrogen inlet 51.
  • the frame 50 may further include detailed technical configurations for using electrical energy, such as a circuit and a coupling unit interconnecting the unit cells 2, but since this corresponds to a known technology, a detailed description thereof will be omitted. Do it.
  • the cross-sectional area of the cathode channel inlet is formed to be smaller than the cross-sectional area of the cathode channel outlet, and the cross-sectional area of the cooling channel inlet is formed to be wider than the cross-sectional area of the cooling channel outlet. It can make a difference in the air inflow volume between the channel inlet and the cooling channel inlet, and control the speed of fuel air and cooling air at the cathode channel outlet and the cooling channel outlet to prevent excessive air flow and minimize the ohmic resistance. Security and operational stability can be achieved.
  • the cathode channel is formed in a diffuser shape, the speed of the fuel air is decelerated toward the outlet side to increase the outlet humidity, and the cooling channel is formed in the nozzle shape to increase the speed of the cooling air, thereby reducing the temperature increase.
  • the unit cell temperature can be properly controlled and the water discharge can be minimized to effectively manage the water, thereby preventing dehydration of the electrolyte membrane.
  • a plurality of discharge pipes are formed in the manifold, and the discharge pipes are disposed in an area where the stack temperature is high, such as the minority outlet side, to control the intake air flow rate, thereby improving the temperature uniformity inside the fuel cell stack.
  • protrusion 20 anode separation plate
  • cathode channel inlet 120 cathode channel outlet
  • cooling channel 210 cooling channel inlet
  • cooling channel outlet 300 porous medium

Abstract

본 발명의 연료전지용 분리판 및 이를 포함한 연료전지 스택은, 일측에서 공기가 유입되며, 유입된 공기가 연료공기와 냉각공기로 분리되어 일측에서 타측으로 이동하며, 서로 이격되어 돌출형성된 복수개의 돌출부가 형성된 연료전지용 분리판에 있어서, 상기 복수개의 돌출부의 하면을 따라 구비되고, 일측에 캐소드채널입구가 형성되고 타측에 캐소드채널출구가 형성되어 일측에서 연료공기가 유입되어 타측으로 배출되며, 상기 캐소드채널입구의 단면적은 상기 캐소드채널출구의 단면적보다 좁게 형성되는 복수개의 캐소드채널; 및 상기 복수개의 돌출부 사이의 상면을 따라 구비되며, 일측에 냉각채널입구가 형성되고 타측에 냉각채널출구가 형성되어 일측에서 냉각공기가 유입되어 타측으로 배출되며, 상기 냉각채널입구의 단면적은 상기 냉각채널출구의 단면적보다 넓게 형성되는 복수개의 냉각채널을 포함한다.

Description

연료전지용 분리판 및 이를 포함하는 연료전지 스택
본 발명은 연료전지용 분리판 및 이를 포함하는 연료전지 스택에 관한 것으로서, 더욱 상세하게는 공랭식 연료전지에 구비되어 연료전지의 성능확보와 작동안정성이 향상된 연료전지용 분리판 및 이를 포함하는 연료전지 스택에 관한 것이다.
일반적으로 드론(Dron)은 무선전파를 이용하여 조종할 수 있는 무인항공기로, 휴대가 간편하고 신속성 및 경제성이 탁월하여 다양한 분야로 활용되고 있다. 즉 상기한 드론은, 군사용 뿐만 아니라 농업, 측량, 건설, 재난 감시 등 공공 및 산업 시장으로 빠르게 확산되고 있으며 활용가능성이 지속적으로 높아지고 있다. 이러한 드론의 에너지 동력원으로는 배터리가 가장 많이 사용된다. 하지만 배터리를 에너지 동력원으로 장착한 종래의 드론의 경우에는, 체공시간이 20여분 내외로 매우 짧고, 에너지 밀도가 낮다는 단점이 있어 드론을 다양한 분야에서 활용하기에는 한계가 발생된다. 따라서 드론에 배터리보다 에너지 밀도가 우수하고, 충전시간이 짧은 연료전지 시스템과 같은 에너지 동력원을 적용하는 기술이 요구된다.
상기한 연료전지 시스템은 수소가스와 산소가스를 이용하여 전기 화학적으로 전기에너지를 생산하는 장치로, 외부에서 연속적으로 공급되는 수소 및 공기를 전기화학반응에 의하여 전기에너지와 열에너지로 변환시킬 수 있다. 즉, 상기한 연료전지는 산화전극에서의 산화반응 및 환원전극에서의 환원반응을 이용하여 전력을 생성할 수 있으며, 고분자 전해질 막으로 구성된 막-전극 접합체(membrane electrode assembly : MEA)와, 막-전극 전합체의 양단에 구비되는 전도성 물질의 분리판으로 구성된 단위 셀이 복수개 적층되어 구성된다. 종래의 연료전지에 관한 기술로는 대한민국 등록특허 10-1509949호가 개시되어 있다.
종래의 연료전지는 냉각방식에 따라 수냉식 연료전지와 공랭식 연료전지로 구분되며, 상기 공랭식 연료전지는 액티브형(acitve type)과 패시브형(Passive type)으로 구분된다. 상기한 액티브형 공랭식 연료전지는, 연료전지를 냉각시키기 위한 공기 공급 시스템과, 전기화학적 반응을 일으키기 위해 공기 공급시스템이 구분되어 있어 연료전지 시스템의 구조가 복잡해지고, 무게가 증가 하게 된다는 문제점이 있다. 이에 반하여 패시브형 공랭식 연료전지의 경우, 냉각 및 가스 공급 시스템이 함께 있어 구조가 단순해지며 초경량화 할 수 있다는 장점이 있다.
하지만 패시브형 공랭식 연료전지는 상온의 공기를 연료가스와 냉각가스로 동시에 사용을 하도록 구성되어, 연료전지 스택에서 발생되는 열을 적정 온도로 냉각하기 위해서는 과도한 공기를 공급해야 한다. 따라서 온도조절을 위한 공기가 과도하게 유입될 때, 유입되는 공기가 무 가습 또는 저 가습한 상태로 유입되면서 전해질 막의 탈수현상을 일으켜 단위셀의 상태가 건조해진다는 문제점이 있으며, 단위셀 내부의 수분분포, 온도분포 및 전류밀도 분포의 불균일성을 증가시켜 연료전지의 안정적인 성능확보가 어렵다는 문제점이 있다.
본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 창출된 것으로, 내부의 수분분포, 온도분포 및 전류밀도 분포를 적절히 제어할 수 있어, 연료전지의 성능확보와 작동안정성을 구현할 수 있는 연료전지용 분리판 및 이를 포함하는 연료전지 스택를 제공하는 것에 그 목적이 있다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 일측면에 따른 연료전지용 분리판은 일측에서 공기가 유입되며, 유입된 공기가 연료공기와 냉각공기로 분리되어 일측에서 타측으로 이동하며, 서로 이격되어 돌출형성된 복수개의 돌출부가 형성된 연료전지용 분리판에 있어서, 상기 복수개의 돌출부의 하면을 따라 구비되고, 일측에 캐소드채널입구가 형성되고 타측에 캐소드채널출구가 형성되어 일측에서 연료공기가 유입되어 타측으로 배출되며, 상기 캐소드채널입구의 단면적은 상기 캐소드채널출구의 단면적보다 좁게 형성되는 복수개의 캐소드채널; 및 상기 복수개의 돌출부 사이의 상면을 따라 구비되며, 일측에 냉각채널입구가 형성되고 타측에 냉각채널출구가 형성되어 일측에서 냉각공기가 유입되어 타측으로 배출되며, 상기 냉각채널입구의 단면적은 상기 냉각채널출구의 단면적보다 넓게 형성되는 복수개의 냉각채널을 포함한다.
또한 본 발명의 다른 측면에 의하면, 서로 이격되어 돌출형성된 복수개의 돌출부가 형성되어, 상기 복수개의 돌출부의 하면을 따라 구비되고 일측에 캐소드채널입구가 형성되고 타측에 캐소드채널출구가 형성되어 일측에서 연료공기가 유입되어 타측으로 배출되며 상기 캐소드채널입구의 단면적은 상기 캐소드채널출구의 단면적보다 좁게 형성되는 복수개의 캐소드채널과, 상기 복수개의 돌출부 사이의 상면을 따라 구비되며 일측에 냉각채널입구가 형성되고 타측에 냉각채널출구가 형성되어 일측에서 냉각공기가 유입되어 타측으로 배출되며, 상기 냉각채널입구의 단면적은 상기 냉각채널출구의 단면적보다 넓게 형성되는 복수개의 냉각채널을 포함하는 연료전지용 분리판과, 일측에서 수소를 공급받는 애노드분리판과, 상기 연료전지용 분리판과 상기 애노드 분리판의 사이에 구비되어, 상기 연료전지용 분리판으로부터 유입되는 연료공기 및 상기 애노드분리판으로부터 유입되는 수소를 전달받아 전기에너지를 생산하는 전해질막을 포함하는 막-전극접합체를 포함하는 단위셀; 및 일측에 상기 단위셀이 복수개 적층되어 구비되며, 타측에 배출구가 형성되어 가스가 배출되는 매니폴드를 포함하는 연료전지 스택이 제공된다.
여기서 상기 캐소드채널은, 단면적이 상기 캐소드채널입구에서 상기 캐소드채널출구 측으로 갈수록 점차적으로 넓어지도록 형성되는 디퓨져형상으로 형성되는 것이 바람직하며, 상기 냉각채널은, 단면적이 상기 냉각채널입구에서 상기 냉각채널출구 측으로 갈수록 점차적으로 좁아지도록 형성되는 노즐형상으로 형성되는 것이 바람직하다.
또한 상기 캐소드채널은, 상기 캐소드채널입구의 높이가 상기 캐소드채널출구의 높이보다 낮게 형성될 수 있다.
또한 상기 연료전지용 분리판 및 이를 포함하는 연료전지스택은, 상기 캐소드채널을 따라 형성되는 다공성 매체를 더 포함할 수 있다.
한편, 상기 연료전지스택의 상기 매니폴드는, 내부에 공간이 형성되고 일측에 상기 단위셀이 적층되어 구비되는 프레임과, 상기 프레임의 타측에 구비되어 상기 배출구를 통해 가스를 배출시키는 복수개의 배출관을 포함하는 것이 바람직하다.
여기서 상기 복수개의 배출관은, 상기 프레임의 타측에 상기 프레임의 길이방향을 따라 방사상으로 서로 이격되어 구비될 수 있다.
또한 상기 복수개의 배출관은, 상기 프레임의 타측 양단에 각각 구비될 수 있다.
또한 상기 프레임의 길이방향을 따라 상기 프레임의 상기 단위셀이 적층된 양단에 수소입구 및 수소출구가 각각 형성되며, 상기 복수개의 배출관은, 상기 프레임의 타측의 상기 수소출구 측에 구비될 수 있다.
본 발명에 따른 연료전지용 분리판 및 이를 포함하는 연료전지 스택은, 캐소드채널입구의 단면적이 캐소드채널출구의 단면적보다 좁게 형성되고, 냉각채널입구의 단면적이 냉각채널출구의 단면적보다 넓게 형성되어, 캐소드채널입구와 냉각채널입구의 공기유입량의 편차를 줄 수 있어, 과도한 공기유량을 방지하고, 옴저항을 최소화하여 연료전지의 성능확보와 작동안정성을 구현할 수 있다.
또한 캐소드채널이 디퓨져형상으로 형성되어 연료공기의 속도가 출구측으로 갈수록 감속되어 출구습도가 증가될 수 있으며, 냉각채널이 노즐형상으로형성되어 냉각공기의 속도가 증가되어 온도증가를 감소시킬 수 있어, 무가습 조건에서 단위셀 온도를 적절히 제어함과 동시에 물의 배출을 최소화하여 효과적인 물 관리를 할 수 있어 전해질 막의 탈수현상을 방지할 수 있다.
더불어 매니폴드에 복수개의 배출관이 형성되고, 배출관이 소수출구 측과 같이 스택온도가 높은 구역에 배치되어 흡입공기유량을 제어함으로써 연료전지스택 내부의 온도균일성을 향상시킬 수 있다.
도 1은 본 발명에 따른 연료전지 스택의 단위셀 및 단위셀이 적층되어 있는 모습을 개략적으로 도시한 개념도,
도 2는, 도 1에 도시한 연료전지 스택의 연료전지용 분리판을 도시한 사시도,
도 3 및 4는, 도 2에 도시한 연료전지용 분리판의 단면도,
도 5는, 도 1에 도시한 연료전지용 분리판에 다공성 매체가 더 구비된 모습을 도시한 사시도,
도 6은, 도 5에 도시한 연료전지용 분리판의 단면도,
도 7은, 도 2에 도시한 연료전지용 분리판의 다른 실시예를 도시한 사시도,
도 8은, 도 7에 도시한 연료전지용 분리판에 다공성 매체가 더 구비된 모습을 도시한 사시도,
도 9a 및 도 9b는, 도 2의 연료전지용 분리판을 이용하여 제작된 연료전지 스택과 종래의 연료전지 스택의 물 관리 성능을 비교한 해석 그래프,
도 10a 내지 도 10d는, 도 9a 및 도 9b의 해석 그래프에 대한 연료전지 스택 및 연료전지용 분리판 형상,
도 11a 및 도 11b는, 도 2의 연료전지용 분리판을 이용하여 제작된 연료전지 스택과 종래의 연료전지 스택의 물 관리 성능을 비교한 해석 그래프,
도 12a 내지 도 12c는, 도 11a 및 도 11b의 해석 그래프에 대한 연료전지 스택 및 연료전지용 분리판 형상,
도 13은, 도 1의 연료전지 스택의 매니폴드를 도시한 사시도,
도 14a 및 도 14b는, 도 13에 도시한 매니폴드를 이용하여 제작된 연료전지 스택과 종래의 연료전지 스택의 온도분포 해석이미지,
도 15 및 도 16은, 도 1의 연료전지 스택의 다른 실시예를 도시한 사시도이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들은 대체할 수 있는 균등한 변형 예들이 있을 수 있음을 이해하여야 한다.
도 1 내지 도 16을 참조하면, 본 발명의 실시예에 따른 연료전지 스택(1)은 드론 및 무인기에 구비되어 드론 및 무인기를 구동시키는 에너지원으로 적용되는 것으로, 패시브형(passive type) 공랭식 연료전지 스택(1)인 것이 바람직하다. 상기 연료전지 스택(1)은, 단위셀(2)과 매니폴드(3)를 포함한다.
상기 단위셀(2)은 수소와 산소를 이용하여 전기 화학적으로 전기에너지를 생산하기 위한 것으로, 도 1에 도시한 바와 같이 상기 연료전지 스택(1)은 상기 단위셀(1)이 적층되어 구비되는 것이 바람직하다. 상기 단위셀(2)은 연료전지용 분리판(10), 애노드분리판(20) 및 막-전극접합체(30)를 포함할 수 있다.
도 2 내지 도 6을 참조하면 상기 연료전지용 분리판(10)은 유입된 공기를 연료공기(G)와 냉각공기(C)로 분리시켜 이동시키기 위한 것으로, 일측에서 공기가 유입되며, 유입된 공기는 연료공기(G)와 냉각공기(C)로 분리되어 상기 연료전지용 분리판(10)의 일측에서 타측으로 이동된다. 부연하면 상기 냉각공기(C)는 상기 연료전지용 분리판(10)의 상면을 따라 이동하고, 상기 연료공기(G)는 상기 연료전지용 분리판(10)의 하면을 따라 이동한다. 상기 연료전지용 분리판(10)은 서로 이격되어 돌출형성된 복수개의 돌출부(11)가 형성되며, 복수개의 캐소드채널(100) 및 복수개의 냉각채널(200)을 포함할 수 있다.
상기 복수개의 캐소드(Cathod)채널(100)은 연료공기(G)를 전달하기 위한 것으로, 상기 복수개의 돌출부(11)의 하면을 따라 구비된다. 상기 복수개의 캐소드채널(100)은 일측에 캐소드채널입구(110)가 형성되고 타측에 캐소드채널출구(120)가 형성된다. 즉, 상기 연료공기(G)는, 상기 캐소드채널(100)의 일측인 상기 캐소드채널입구(110)로 유입되어 타측인 상기 캐소드채널출구(120)으로 배출된다. 이때 상기 캐소드채널입구(110)의 단면적은 상기 캐소드채널출구(120)의 단면적보다 좁게 형성되어 상기 캐소드채널입구(110)로 유입된 연료공기(G)의 속도를 최소화하여 상기 캐소드채널(100)을 따라 배출되는 물의 양을 최소화시킬 수 있다. 더불어 상기 캐소드채널출구(120)의 수증기 농도를 최대화하여 상기 캐소드채널출구(120)의 출구상대습도를 증가시킬 수 있다. 부연하면 상기 캐소드채널(100)은, 단면적이 상기 캐소드채널입구(110)에서 상기 캐소드채널출구(120) 측으로 갈수록 점차적으로 넓어지도록 형성되는 디퓨져(Diffuser)형상으로 형성되는 것이 바람직하다. 즉, 상기 캐소드채널입구(110)로 유입된 연료공기(G)는 상기 캐소드채널입구(110)에서 상기 캐소드채널출구(120) 측으로 갈수록 단면적이 넓어짐에 따라 속도가 감속되어 상기 캐소드채널출구(120) 측의 상대습도를 증가시킬 수 있어, 물 관리가 용이하여 후술(後述) 할 전해질막(31)이 건조해지는 탈수현상을 방지할 수 있다.
상기 복수개의 냉각채널(200)은 상기 단위셀(2)에서 발생하는 발열량을 냉각시키는 냉각공기(C)를 이동시키기 위한 것으로, 상기 복수개의 돌출부(11) 사이의 상면을 따라 구비된다. 상기 냉각채널(200)은 일측에 냉각채널입구(210)가 형성되고 타측에 냉각채널출구(220)가 형성된다. 즉, 상기 냉각공기(C)는, 상기 냉각채널(200)의 일측인 상기 냉각채널입구(210)로 냉각공기(C)가 유입되어 타측인 상기 냉각채널출구(220)로 배출된다. 이때 상기 냉각채널입구(210)의 단면적은 상기 냉각채널출구(220)의 단면적보다 넓게 형성될 수 있으며 더욱 구체적으로 상기 냉각채널(200)은, 단면적이 상기 냉각채널입구(210)에서 상기 냉각채널출구(220) 측으로 갈수록 점차적으로 좁아지도록 형성되는 노즐(Nozzel)형상으로 형성되는 것이 바람직하다. 즉, 상기 냉각채널입구(210)로 유입된 냉각공기(C)는, 상기 냉각채널(200)이 상기 냉각채널입구(210)에서 상기 냉각채널출구(220) 측으로 갈수록 단면적이 좁아짐에 따라 속도가 최대화되어 상기 냉각채널입구(210)에서 상기 냉각채널출구(220)의 온도증가를 효율적으로 감소시킬 수 있어 열 관리가 용이하다. 또한 상기 캐소드채널입구(110)가 상기 냉각채널입구(210) 보다 단면적이 좁게 형성되어, 상기 캐소드채널입구(110) 및 상기 냉각채널입구(210)의 공기 유입량의 편차를 통하여 상기 캐소드채널입구(110)로 유입되는 공기량을 최소화하여 상기 전해질막(31)이 건조해지는 탈수현상을 방지할 수 있으며, 상기 냉각채널입구(210)로 유입되는 공기량을 증가시켜 상기 단위셀(2)의 온도를 효과적으로 제어가능하다.
한편 도 7 및 도 8에 도시한 바와 같이 상기 캐소드채널입구(110)의 높이가 상기 캐소드채널출구(120)의 높이보다 낮게 형성되어 상기 캐소드채널입구(110)의 단면적이 상기 캐소드채널출구(120)의 단면적보다 좁게 형성되도록 적용시킬 수도 있다. 또한 상기 캐소드채널입구(110)의 높이가 상기 냉각채널입구(210)의 높이보다 낮게 형성되어, 상기 캐소드채널입구(110)로 유입되는 공기량을 최소화하여 상기 전해질막(31)이 건조해지는 탈수현상을 방지할 수 있으며, 상기 냉각채널입구(120)로 유입되는 공기량을 증가시켜 상기 단위셀(2)의 온도를 효과적으로 제어가능할 수 있다.
도 5 및 도 8에 도시한 바와 같이 상기 연료전지용 분리판(10)은 다공성 매체(300)를 더 포함할 수 있다. 상기 다공성 매체(300)는 상기 캐소드채널(100)을 따라 형성되어, 상기 캐소드채널(100)로 유입되는 연료공기(G)의 양을 제어가능하다. 상기 다공성 매체(300)는 발포금속(metal foams) 등으로 구성될 수 있다. 상기 다공성 매체(300)가 상기 캐소드채널(100)을 따라 형성됨으로써, 상기 캐소드채널입구(110)로 유입되는 연료공기량을 최소화하여 상기 캐소드채널출구(120)로 배출되는 물의 양을 최소화함에 따라 상기 전해질막(31)이 건조해지는 탈수현상을 방지할 수 있으며, 후술(後述)할 막-전극접합체(30)와 상기 캐소드채널(100)의 전자전달을 용이하게 하고, 접촉저항을 최소화시킬 수 있다.
한편 도 9a 및 9b는 상기 캐소드채널(100)이 디퓨져형상으로 형성되고, 상기 냉각채널(200)이 노즐형상으로 형성된 본 발명의 연료전지용 분리판(10)과 종래의 연료전지용 분리판의 상대습도를 통하여 물 관리 성능을 비교한 해석 그래프이다.
도 10a 내지 도 10d를 참조하여 상기 도 9a 및 9b의 그래프에 대한 실험공정의 파라미터(Parameter)를 살펴보면, 도 9a 및 9b의 실험은, 종래의 연료전지용 분리판과 제 1실험실시예 및 제 2실험실시예의 연료전지용 분리판의 상대습도를 비교한 것으로, 종래의 평행유로 형태의 연료전지용 분리판과 제 1실험실시예 및 제 2실험실시예의 연료전지용 분리판(10)의 상기 캐소드채널(100) 및 상기 냉각공기채널(200)이 상기 막-전극접합체(30)와 접하는 단면적은 일정하게 유지되도록 구성되었다. 도 10a는, 종래의 연료전지용 분리판의 형상으로, 종래의 연료전지용 분리판의 냉각채널(CC)은 냉각채널입구 및 냉각채널출구가 평행하도록 구성되며, 캐소드채널(GC)은 캐소드채널입구 및 캐소드채널출구가 평행하도록 구성된다. 또한 종래의 연료전지용 분리판의 냉각채널입구 및 냉각채널출구는 1.25×2=2.5(mm), 캐소드채널입구 및 캐소드채널출구는 2.5(mm)의 크기로 형성된다. 도 10b는, 본 발명의 제 1실험실시예의 연료전지용 분리판(10)의 형상으로, 캐소드채널(100;GC)이 디퓨져형상으로 형성되고, 냉각채널(200;CC)이 노즐형상으로 형성되며, 냉각채널입구는 1.75×2=3.5(mm), 냉각채널출구는 0.75×2=1.5(mm), 캐소드채널입구는 1.5(mm), 캐소드채널출구는 3.5(mm)의 크기로 형성된다. 도 10c는, 본 발명의 제 2실험실시예의 연료전지용 분리판(10)의 형상으로, 캐소드채널(100;GC)이 디퓨져형상으로 형성되고, 냉각채널(200;CC)이 노즐형상으로 형성되며, 냉각채널입구는 2×2=4(mm), 냉각채널출구는 0.5×2=1(mm), 캐소드채널입구는 1(mm), 캐소드채널출구는 4(mm)의 크기로 형성된다. 또한 상기 제 1실험실시예의 상기 캐소드채널(100) 및 상기 냉각채널(200)의 경사각도는 2.29도로 형성되며, 상기 제 2실험실시예의 상기 캐소드채널(100) 및 상기 냉각채널(200)의 경사각도는 3.43도로 형성된다. 도 9a 및 9b의 그래프는, 채널입구의 상대습도가 35%의 동일한 조건에서 종래의 연료전지용 분리판(Baseline)과, 제 1실험실시예(Type 1) 및 제 2실험실시예(Type 2)의 캐소드채널(100)의 상대습도를 해석한 결과로, 도 10d 에 도시된 캐소드채널(100)의 중심위치(Line plot)에서의 상대습도를 비교하여 나타내었으며, 도 9a는 작동전류가 0.5(A/cm2)이며, 도 9b는 작동전류가 0.7(A/cm2)로 적용되었다. 도 9a 및 도 9b의 그래프의 결과와 같이, 상기 연료전지 스택(1)의 발열에 의한 온도상승 영향성이 물 생성 영향성보다 크기 때문에 상대습도는 상기 캐소드채널입구(110)에서 상기 캐소드채널출구(120)방향으로 감소하는 경향을 보이지만 종래의 연료전지용 분리판(Baseline)의 형상에 비하여 상기 제 1실험실시예(Type 1)와 상기 제 2실험실시예(Type 2)의 상대습도의 감소폭이 적다는 것을 확인할 수 있다. 따라서, 종래의 연료전지용 분리판(Baseline)의 형상에 비하여 상기 제 1실험실시예(Type 1)와 상기 제 2실험실시예(Type 2)의 형상이 물관리에 유리하고 전해질막(31)의 건조에 의한 연료전지 스택의 성능 하락을 줄여준다는 것을 확인할 수 있다.
도 11a 및 도 11b는 상기 캐소드채널(100)이 디퓨져형상으로 형성되고, 상기 냉각채널(200)이 노즐형상으로 형성된 본 발명의 연료전지용 분리판(10)과, 종래의 연료전지용 분리판의 상대습도를 통하여 캐소드채널(100)과 막-전극접합체(30)의 접촉면적을 줄였을 경우, 물관리 성능을 비교한 해석 그래프이다.
도 12a 내지 도 12c를 참조하여 상기 도 11a 및 11b의 그래프에 대한 실험공정의 파라미터(Parameter)를 살펴보면, 도 11a 및 11b의 실험은, 종래의 평행유로 형태의 연료전지용 분리판과 제 3실험실시예의 연료전지용 분리판의 상대습도를 비교하기 위한 것으로, 도 11a는, 종래의 연료전지용 분리판의 형상으로, 종래의 연료전지용 분리판의 냉각채널은 냉각채널입구 및 냉각채널출구가 평행하도록 구성되며, 캐소드채널은 캐소드채널입구 및 캐소드채널출구가 평행하도록 구성된다. 또한 종래의 연료전지용 분리판의 냉각채널입구 및 냉각채널출구는 1.5×2=3(mm), 캐소드채널입구 및 캐소드채널출구는 1.5(mm)의 크기로 형성된다. 도 11b는, 본 발명의 제 3실험실시예의 연료전지용 분리판(10)의 형상으로, 캐소드채널(100)이 디퓨져형상으로 형성되고, 냉각채널(200)이 노즐형상으로 형성되며, 냉각채널입구는 1.875×2=3.75(mm), 냉각채널출구는 1.5×2=3(mm), 캐소드채널입구는 0.75(mm), 캐소드채널출구는 1.5(mm)의 크기로 형성된다. 또한 상기 제 3실험실시예의 상기 캐소드채널(100) 및 상기 냉각채널(200)의 경사각도는 0.09도로 형성되며, 캐소드채널입구(110)의 단면적을 종래의 캐소드채널입구의 단면적의 1/2로 형성허여 상기 막-전극접합체(30)와 상기 캐소드채널(100)의 접촉면적을 줄일 때 물 관리 성능향상을 분석할 수 있다.
도 11a 및 11b의 그래프는, 채널입구의 상대습도가 35%의 동일한 조건에서 종래의 연료전지용 분리판(Type A)과, 제 3실험실시예(Type B)의 캐소드채널(100)의 상대습도를 해석한 결과로, 도 12c 에 도시된 캐소드채널(100)의 중심위치(Line plot)에서의 상대습도를 비교하여 나타내었으며, 도 11a는 작동전류가 0.5(A/cm2)이며, 도 11 b는 작동전류가 0.7(A/cm2)로 적용되었다. 도 9a 및 도 9b의 그래프의 결과와 같이, 종래의 평행유로 형태의 연료전지용 분리판(Type A)의 형상에서 상대습도는 온도증가에 의해 캐소드채널입구에서 캐소드채널출구 방향으로 감소하는 경향을 보이지만 상기 제 3실험예(Type B)의 경우는 상대습도의 감소의 폭이 매우 적으며 공기상대습도가 완만하게 증가하는 구간도 나타남을 확인할 수 있다.
즉, 도 11a 및 11b의 그래프를 통해 본 발명의 연료전지용 분리판(10)의 상기 캐소드채널입구(110) 및 상기 캐소드채널출구(120)의 단면적을 적절하게 제어함으로써, 공랭식의 과도한 공기유량조건에서도 상대습도 하락을 최소화 할 수 있다는 것을 확인할 수 있다.
상기 애노드분리판(20; Anode Bipolar Plate)은 일측에서 수소를 공급받는다. 즉 상기 애노드분리판(20)은 일측에서 수소를 공급받아 수소를 상기 막-전극접합체(30)로 전달한다. 부연하면 공급된 수소는 수소이온과 전자로 분해되는 수소산화반응을 발생시키기 위해, 상기 애노드분리판(20)에서 상기 막-전극접합체(30)로 전달될 수 있다.
상기 막-전극접합체(30; Membrane Electrode Assembly, MEA)는 상기 연료전지용 분리판(10)과 상기 애노드 분리판(20)의 사이에 구비되어, 상기 연료전지용 분리판(10)으로부터 유입되는 연료공기(G) 및 상기 애노드분리판(20)으로부터 유입되는 수소를 이용하여 전기에너지를 생산한다. 더욱 구체적으로 상기 막-전극접합체(30)는 애노드 촉매층(35; Catalytic Layer, CL)을 포함하도록 구성되어, 상기 애노드 촉매층(35)에서 수소산화반응에 의하여 수소가 수소이온과 전자로 분해될 수 있으며, 상기 애노드 촉매층(35)에서 분리된 수소의 전자가 상기 연료전지용 분리판(10)으로 이동하는 과정 중에 전기에너지를 생산할 수 있다. 한편 상기 막-전극접합체(30)는 전해질막(31)을 포함한다. 상기 전해질막(31)은 상기 애노드분리판(20)에서 분리된 수소이온을 이동시키기 위한 것으로, 상기 애노드분리판(20)에서 분리된 수소의 수소이온이 상기 전해질막(31)을 통해 상기 연료전지용 분리판(10)으로 전달될 수 있다. 상기 전해질막(31)을 통해 상기 연료전지용 분리판(10)으로 전달된 수소이온은, 상기 연료전지용 분리판(10)의 연료공기(G)의 산소 및 전자와 결합되어 물이 생성될 수 있으며, 생성된 물은 연료공기(G)에 의하여 상기 캐소드채널출구(120)로 배출될 수 있다. 부연하면, 상기 막-전극접합체(30)는 상호간의 기밀성 및 체결력 등을 강화시키기 위한 전극가스켓(32; Electrode gasket), 가스확산층(33; Gas Diffusion Layer, GDL), 미세공기층(34; Micro Porous Layer, MPL), 애노드 촉매층(35; Catalytic Layer, CL) 등이 더 포함할 수 있으며, 상기 전극가스켓(32), 가스확산층(33), 미세공기층(34), 촉매층(35) 등에 대한 구성은 공지된 기술로서 자세한 설명은 생략하도록 한다.
도 13을 참조하면 상기 매니폴드(3)는 일측에 상기 단위셀(2)이 적층되어 구비되며, 내부에 공간이 형성되어 상기 단위셀(2)을 통해 생성된 전기에너지를 저장하거나, 전기에너지를 생성하면서 발생하는 열에너지 및 가스 등을 배출 시킬 수 있다. 상기 매니폴드(3)는 프레임(50)과 배출관(40)을 포함한다.
상기 프레임(50)은 내부에 공간이 형성되고 일측에 상기 단위셀(2)이 적층되어 구비된다. 즉 상기 프레임(50)의 일측에는 복수개의 상기 단위셀(2)이 적층되어 구비되며, 상기 단위셀(2)로 공기가 공급되어 상기 연료전지용 분리판(10)으로 공기가 전달될 수 있다. 또한 상기 프레임(50)의 길이방향을 따라 양단에는 수소입구(51) 및 수소출구(52)가 각각 형성되어, 상기 수소입구(51)에서 유입된 수소가 상기 애노드분리판(20)으로 전달될 수 있다.
상기 복수개의 배출관(40)은 상기 프레임(50)의 타측에 구비되어 상기 배출구(41)를 통해 열에너지와 같은 가스를 배출시킨다. 상기 복수개의 배출관(40)은, 상기 프레임(50)의 타측에 상기 프레임(50)의 길이방향을 따라 방사상으로 서로 이격되어 구비되는 것이 바람직하다. 상기 복수개의 배출관(40)는 동일간격으로 이격구비되는 것이 바람직하며, 상기 복수개의 배출관(40)이 동일간격으로 복수개가 이격 구비됨으로써, 상기 프레임(50)의 내부로 흡입되는 공기량을 공간적으로 제어할 수 있다. 또한 상기 복수개의 배출관(40)은, 상기 수소출구(52) 측에 구비되는 것이 바람직하다. 따라서, 상기 복수개의 배출관(40)이 상기 수소출구(52) 측에 구비됨으로써, 상기 수소출구(52) 측의 흡입공기의 유량을 높여 상기 프레임(50)의 내부의 온도가 수소출구(52) 측으로 불균일하게 높아질 수 있는 것을 방지할 수 있으며, 상기 수소입구(51) 측의 흡입공기 유량을 낮추어 상기 프레임(50)의 내부의 온도가 수소입구(51) 측으로 불균일하게 낮아질 수 있는 것을 방지할 수 있다. 따라서, 상기 프레임(50) 내부의 균일한 온도분포를 제공가능하다.
도 14a 및 14b는 종래의 연료전지 스택의 매니폴드 형상과, 본 발명의 매니폴드(3) 형상에 의한 연료전지 스택(1)의 온도분포 해석이미지이다. 도 14a는 종래의 연료전지 스택의 매니폴드 형상에 의한 온도분포 해석이미지로, 도 14a의 해석이미지와 같이, 종래의 연료전지 스택은 프레임의 단면적이 도 14a의 프레임의 길이방향을 따라 점차적으로 넓어지도록 형성되며, 프레임의 타측에 하나의 배출관이 형성된다. 따라서 종래의 연료전지 스택은 도 14a의 매니폴드의 배출관 측(도 14a의 왼쪽측에서 오른쪽측)으로 갈수록 공기흡입량이 많아져 왼쪽측의 온도가 상대적으로 높게 분포되며, 수소출구 측의 온도분포가 수소입구 측의 온도분포보다 높게 형성되는 것을 확인할 수 있다. 반면 도 14b는 본 발명의 매니폴드(3) 형상에 의한 연료전지 스택(1)의 온도분포 해석이미지로, 도 14b의 해석이미지와 같이, 본 발명의 연료전지 스택(1)은, 프레임(50)의 형상이 도 14b의 오른쪽과 왼쪽 측이 서로 대응하도록 형성되며, 복수개의 배출관(40)이 프레임(50)의 타측에 동일 간격으로 서로 이격되어 수소출구(52)측에 배치된다. 따라서 본 발명의 연료전지 스택(1)은 상기 프레임(50)의 길이방향을 따라 공기흡입량이 균일하게 제공되며, 상기 복수개의 배출관(40)이 수소출구(52) 측에 배치됨으로서, 수소출구(52)측의 공기흡입량이 높아 수소출구(52)측의 온도가 높아지는 것을 방지하여, 보다 균일한 온도분포가 형성된다는 것을 확인할 수 있다.
한편, 도 15 및 도 16에 도시한 바와 같이 상기 복수개의 배출관(40)은, 상기 프레임(50)의 타측 양단에 각각 구비되거나, 타측면의 중앙에 배치되도록 적용시킬 수도 있다. 상기 복수개의 배출관(40)이 상기 프레임(50)의 타측의 양단에 구비되거나, 타측면의 중앙에 배치됨으로써, 상기 프레임(50)의 내부로 흡입되는 공기량의 공간적으로 제어가 가능하며, 이를 통해 상기 프레임(50) 내부의 균일한 온도분포를 제공가능하다. 즉 상기 프레임(50)의 형상에 대응하여 상기 수소출구(52), 공기출구 및 출력전류밀도가 높은 부분 측에 상기 복수개의 배출관(40)을 구비함으로써 흡입공기유량을 높이고, 상기 수소입구(51), 공기입구 및 출력전류밀도가 낮은 부분 측의 흡입공기유량을 낮추어 상기 프레임(50) 내부의 온도분포 균일성을 향상시킬 수 있다. 한편, 상기 프레임(50)은, 상기 단위셀(2)을 상호연결시키는 회로 및 결합부 등 전기에너지를 사용하기 위한 세부 기술구성들이 더 포함될 수 있으나, 이는 공지의 기술에 해당하므로 상세한 설명은 생략하도록 한다.
본 발명에 따른 연료전지용 분리판 및 이를 포함하는 연료전지 스택은, 캐소드채널입구의 단면적이 캐소드채널출구의 단면적보다 좁게 형성되고, 냉각채널입구의 단면적이 냉각채널출구의 단면적보다 넓게 형성되어, 캐소드채널입구와 냉각채널입구의 공기유입량의 편차를 줄 수 있으며, 캐소드채널출구 및 냉각채널출구에서 연료공기 및 냉각공기의 속도를 제어하여 과도한 공기유량을 방지하고, 옴저항을 최소화하여 연료전지의 성능확보와 작동안정성을 구현할 수 있다.
또한 캐소드채널이 디퓨져형상으로 형성되어 연료공기의 속도가 출구측으로 갈수록 감속되어 출구습도가 증가될 수 있으며, 냉각채널이 노즐형상으로형성되어 냉각공기의 속도가 증가되어 온도증가를 감소시킬 수 있어, 무가습 조건에서 단위셀 온도를 적절히 제어함과 동시에 물의 배출을 최소화하여 효과적인 물 관리를 할 수 있어 전해질 막의 탈수현상을 억제할 수 있다.
더불어 매니폴드에 복수개의 배출관이 형성되고, 배출관이 소수출구 측과 같이 스택온도가 높은 구역에 배치되어 흡입공기유량을 제어함으로써 연료전지스택 내부의 온도균일성을 향상시킬 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
= 부호의 설명 =
1 : 연료전지 스택 2 : 단위셀
3 : 매니폴드 10 : 연료전지용 분리판
11 : 돌출부 20 : 애노드분리판
30 : 막-전극접합체 31 : 전해질막
40 : 배출관 41 : 배출구
50 : 프레임 51 : 수소입구
52 : 수소출구 100 : 캐소드채널
110 : 캐소드채널입구 120 : 캐소드채널출구
200 : 냉각채널 210 : 냉각채널입구
220 : 냉각채널출구 300 : 다공성 매체
C : 냉각공기 G : 연료공기

Claims (14)

  1. 일측에서 공기가 유입되며, 유입된 공기가 연료공기와 냉각공기로 분리되어 일측에서 타측으로 이동하며, 서로 이격되어 돌출형성된 복수개의 돌출부가 형성된 연료전지용 분리판에 있어서,
    상기 복수개의 돌출부의 하면을 따라 구비되고, 일측에 캐소드채널입구가 형성되고 타측에 캐소드채널출구가 형성되어 일측에서 연료공기가 유입되어 타측으로 배출되며, 상기 캐소드채널입구의 단면적은 상기 캐소드채널출구의 단면적보다 좁게 형성되는 복수개의 캐소드채널; 및
    상기 복수개의 돌출부 사이의 상면을 따라 구비되며, 일측에 냉각채널입구가 형성되고 타측에 냉각채널출구가 형성되어 일측에서 냉각공기가 유입되어 타측으로 배출되며, 상기 냉각채널입구의 단면적은 상기 냉각채널출구의 단면적보다 넓게 형성되는 복수개의 냉각채널을 포함하는 연료전지용 분리판.
  2. 청구항 1에 있어서,
    상기 캐소드채널은,
    단면적이 상기 캐소드채널입구에서 상기 캐소드채널출구 측으로 갈수록 점차적으로 넓어지도록 형성되는 디퓨져형상으로 형성되는 연료전지용 분리판.
  3. 청구항 1에 있어서,
    상기 냉각채널은,
    단면적이 상기 냉각채널입구에서 상기 냉각채널출구 측으로 갈수록 점차적으로 좁아지도록 형성되는 노즐형상으로 형성되는 연료전지용 분리판.
  4. 청구항 1에 있어서,
    상기 캐소드채널은,
    상기 캐소드채널입구의 높이가 상기 캐소드채널출구의 높이보다 낮게 형성되는 연료전지용 분리판.
  5. 청구항 1 내지 4항 중 어느 한 항에 있어서,
    상기 캐소드채널을 따라 형성되는 다공성 매체를 더 포함하는 연료전지용 분리판.
  6. 서로 이격되어 돌출형성된 복수개의 돌출부가 형성되어, 상기 복수개의 돌출부의 하면을 따라 구비되고 일측에 캐소드채널입구가 형성되고 타측에 캐소드채널출구가 형성되어 일측에서 연료공기가 유입되어 타측으로 배출되며 상기 캐소드채널입구의 단면적은 상기 캐소드채널출구의 단면적보다 좁게 형성되는 복수개의 캐소드채널과, 상기 복수개의 돌출부 사이의 상면을 따라 구비되며 일측에 냉각채널입구가 형성되고 타측에 냉각채널출구가 형성되어 일측에서 냉각공기가 유입되어 타측으로 배출되며, 상기 냉각채널입구의 단면적은 상기 냉각채널출구의 단면적보다 넓게 형성되는 복수개의 냉각채널을 포함하는 연료전지용 분리판과,
    일측에서 수소를 공급받는 애노드분리판과,
    상기 연료전지용 분리판과 상기 애노드 분리판의 사이에 구비되어, 상기 연료전지용 분리판으로부터 유입되는 연료공기 및 상기 애노드분리판으로부터 유입되는 수소를 전달받아 전기에너지를 생산하는 전해질막을 포함하는 막-전극접합체를 포함하는 단위셀; 및
    일측에 상기 단위셀이 복수개 적층되어 구비되며, 타측에 배출구가 형성되어 가스가 배출되는 매니폴드를 포함하는 연료전지 스택.
  7. 청구항 6에 있어서,
    상기 캐소드채널은,
    단면적이 상기 캐소드채널입구에서 상기 캐소드채널출구 측으로 갈수록 점차적으로 넓어지도록 형성되는 디퓨져형상으로 형성되는 연료전지 스택.
  8. 청구항 6에 있어서,
    상기 냉각채널은,
    단면적이 상기 냉각채널입구에서 상기 냉각채널출구 측으로 갈수록 점차적으로 좁아지도록 형성되는 노즐형상으로 형성되는 연료전지 스택.
  9. 청구항 6에 있어서,
    상기 캐소드채널은,
    상기 캐소드채널입구의 높이가 상기 캐소드채널출구의 높이보다 낮게 형성되는 연료전지 스택.
  10. 청구항 6 내지 9항 중 어느 한 항에 있어서,
    상기 캐소드채널을 따라 형성되는 다공성 매체를 더 포함하는 연료전지 스택.
  11. 청구항 6에 있어서,
    상기 매니폴드는,
    내부에 공간이 형성되고 일측에 상기 단위셀이 적층되어 구비되는 프레임과,
    상기 프레임의 타측에 구비되어 상기 배출구를 통해 가스를 배출시키는 복수개의 배출관을 포함하는 연료전지 스택.
  12. 청구항 11에 있어서,
    상기 복수개의 배출관은,
    상기 프레임의 타측에 상기 프레임의 길이방향을 따라 방사상으로 서로 이격되어 구비되는 연료전지 스택.
  13. 청구항 11에 있어서,
    상기 복수개의 배출관은,
    상기 프레임의 타측 양단에 각각 구비되는 연료전지 스택.
  14. 청구항 11에 있어서,
    상기 프레임의 길이방향을 따라 상기 프레임의 상기 단위셀이 적층된 양단에 수소입구 및 수소출구가 각각 형성되며,
    상기 복수개의 배출관은, 상기 프레임의 타측의 상기 수소출구 측에 구비되는 연료전지 스택.
PCT/KR2019/001142 2017-12-04 2019-01-28 연료전지용 분리판 및 이를 포함하는 연료전지 스택 WO2020027400A1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20170165340 2017-12-04
KR10-2018-0089455 2018-07-31
KR1020180089455A KR102131702B1 (ko) 2017-12-04 2018-07-31 연료전지용 분리판 및 이를 포함하는 연료전지 스택

Publications (1)

Publication Number Publication Date
WO2020027400A1 true WO2020027400A1 (ko) 2020-02-06

Family

ID=66846175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001142 WO2020027400A1 (ko) 2017-12-04 2019-01-28 연료전지용 분리판 및 이를 포함하는 연료전지 스택

Country Status (2)

Country Link
KR (1) KR102131702B1 (ko)
WO (1) WO2020027400A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466764B (zh) * 2019-08-28 2023-07-28 东南大学 一种燃料电池无人机的动力舱壳体结构
CN111952623A (zh) * 2020-07-16 2020-11-17 合肥工业大学 一种燃料电池双极板
KR102389809B1 (ko) * 2020-09-08 2022-04-25 테라릭스 주식회사 냉각성능이 향상된 공냉식 연료전지용 분리판 및 이를 포함하는 공냉식 연료전지
KR102493470B1 (ko) * 2020-11-20 2023-01-31 인하대학교 산학협력단 단위셀의 성능 측정 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325786A (ja) * 1993-05-18 1994-11-25 Sanyo Electric Co Ltd 燃料電池
JP2006114387A (ja) * 2004-10-15 2006-04-27 Toyota Motor Corp 燃料電池
KR20120074975A (ko) * 2010-12-28 2012-07-06 주식회사 포스코 분리판 및 그 제조 방법
JP2014006960A (ja) * 2010-10-18 2014-01-16 Sanyo Electric Co Ltd 燃料電池システム
JP2017199609A (ja) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 燃料電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5756923B2 (ja) * 2012-06-18 2015-07-29 パナソニックIpマネジメント株式会社 射出成形方法および射出成形金型装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325786A (ja) * 1993-05-18 1994-11-25 Sanyo Electric Co Ltd 燃料電池
JP2006114387A (ja) * 2004-10-15 2006-04-27 Toyota Motor Corp 燃料電池
JP2014006960A (ja) * 2010-10-18 2014-01-16 Sanyo Electric Co Ltd 燃料電池システム
KR20120074975A (ko) * 2010-12-28 2012-07-06 주식회사 포스코 분리판 및 그 제조 방법
JP2017199609A (ja) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 燃料電池

Also Published As

Publication number Publication date
KR102131702B1 (ko) 2020-07-09
KR20190065922A (ko) 2019-06-12

Similar Documents

Publication Publication Date Title
WO2020027400A1 (ko) 연료전지용 분리판 및 이를 포함하는 연료전지 스택
JP3596332B2 (ja) 積層型燃料電池の運転方法、積層型燃料電池及び積層型燃料電池システム
WO2017003116A1 (ko) 분리판, 이의 제조방법 및 이를 포함하는 연료전지 스택
US5776625A (en) Hydrogen-air fuel cell
KR100697480B1 (ko) 2극판 조립체
US6686084B2 (en) Gas block mechanism for water removal in fuel cells
US6808834B2 (en) Fuel cell stack with cooling fins and use of expanded graphite in fuel cells
EP1239530A2 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in the fuel cell assembly
US6413664B1 (en) Fuel cell separator plate with discrete fluid distribution features
US10998571B2 (en) High-voltage fuel-cell stack
JP2003507858A (ja) 燃料電池および燃料電池とともに使用するバイポーラ・プレート
ITMI990829A1 (it) Cella a combustibile raffreddata mediante iniezione diretta di acqua liquida
WO2015057017A1 (ko) 단열재를 포함하여 2이상의 분리된 유로를 가진 히트싱크
WO2017022978A1 (ko) 분리판, 및 이를 포함하는 연료전지 스택
JP3319609B2 (ja) 燃料電池
US6322918B1 (en) Water management system for fuel cells
WO2013077488A1 (ko) 고분자 전해질 연료전지용 분리판 및 이것을 이용한 고분자 전해질 연료전지
CN101286568B (zh) 质子交换膜燃料电池出口中恒定的通道横截面
WO2011090246A1 (ko) 보조유동유로를 가지는 연료전지용 분리판
WO2024037530A1 (zh) 燃料电池
CN210576235U (zh) 一种金属空气电池电堆的主动正压供氧系统
KR101724972B1 (ko) 연료전지 셀
WO2021070979A1 (ko) 수소연료전지 스택용 금속분리판의 제조방법
WO2017146359A1 (ko) 연료전지 분리판 및 이를 갖는 연료전지 스택
WO2018143610A1 (ko) 연료전지 스택

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844734

Country of ref document: EP

Kind code of ref document: A1