WO2020027220A1 - Method for removing silicone oil when administering protein preparation - Google Patents

Method for removing silicone oil when administering protein preparation Download PDF

Info

Publication number
WO2020027220A1
WO2020027220A1 PCT/JP2019/030068 JP2019030068W WO2020027220A1 WO 2020027220 A1 WO2020027220 A1 WO 2020027220A1 JP 2019030068 W JP2019030068 W JP 2019030068W WO 2020027220 A1 WO2020027220 A1 WO 2020027220A1
Authority
WO
WIPO (PCT)
Prior art keywords
syringe
filter
silicone oil
outer cylinder
medical liquid
Prior art date
Application number
PCT/JP2019/030068
Other languages
French (fr)
Japanese (ja)
Inventor
努 上田
阿部 吉彦
エフ. カーペンター,ジョン
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2020534718A priority Critical patent/JPWO2020027220A1/en
Publication of WO2020027220A1 publication Critical patent/WO2020027220A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/165Filtering accessories, e.g. blood filters, filters for infusion liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details

Definitions

  • the present invention relates to a method for removing silicone oil when administering a protein preparation.
  • powdered drugs such as freeze-dried products are sealed in vials, and if necessary, a drug solution is mixed and dissolved with a syringe to prepare a drug solution, and the drug in powder form can be administered and used.
  • a drug solution for example, a syringe filled with a solution in an outer cylinder is used, and an injection needle attached to a nozzle of an outer cylinder of the syringe is sealed with a vial containing a powdered drug.
  • the syringe is pierced, the plunger of the syringe is pushed in the direction of the nozzle at the tip of the outer cylinder, the dissolving solution is sent into the vial, and the drug in powder form is dissolved and mixed in the vial to produce a drug solution.
  • the medicinal solution prepared in the outer cylinder of the syringe is inhaled, and the medicinal solution can be administered.
  • a prefilled syringe in which an administrable drug solution is filled in an outer cylinder in advance is also known.
  • a gasket that seals between the inner wall of the outer cylinder and the plunger in a liquid-tight and slidable manner for accommodating a drug solution is generally attached to the tip of the plunger of the syringe on the outer cylinder nozzle side. . Then, silicone oil is applied as a lubricant to the outer surface of the gasket or the inner surface of the outer cylinder for the purpose of smoothly sliding the inner surface of the outer cylinder and the outer peripheral portion of the gasket during the preparation or administration of the drug solution.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-36881
  • Patent Document 1 discloses an adsorbent such as a fiber or a porous material having an adsorbing property to silicone oil in order to prevent silicone oil from being mixed into a liquid discharged at the time of administration of a chemical solution. There is disclosed a technique for attaching to a liquid flow path of a syringe. In addition, Patent Document 1 does not specifically describe a main drug component contained in a prepared and administered drug solution.
  • Non-Patent Document 1 Korean Yamane, Multiphase Flow, Vol. 29, No. 1 (2015) discloses a cotton-like substance formed by reducing the solubility of the main drug component due to the effect of silicone oil during preparation of paclitaxel injection. Further, it is disclosed that insoluble suspended matter can be expected to be removed by filtering at a medical site. Specifically, the risk of the above insoluble suspended matter becoming a clinical problem is extremely low by administration through a drip line equipped with an in-line filter using a 0.22 ⁇ m membrane filter in the drip line. Is disclosed.
  • drugs provided in the form of pre-filled syringes or freeze-dried preparations for use at the time of use include protein preparations also called bio preparations.
  • the present inventors have particularly studied protein preparations provided as lyophilized products. During preparation (re-dissolution) of the preparation using a lysis solution, the protein components of the preparation aggregate to form aggregates. I found that sometimes. It has also been found that the formation of such aggregates occurs remarkably when the solution can come into contact with the silicone oil in the syringe filling chamber (that is, the silicone oil causes aggregation of the protein preparation). Was. Since the aggregate of the protein preparation has immunogenicity, it is not preferable to administer the aggregate as it is in a living body. Also, silicone oil itself has immunogenicity. Therefore, it is required to prevent silicone oil from being administered into a living body.
  • the present invention provides a simple method for removing a silicone oil mixed into a syringe filling chamber for any reason and an aggregate of a protein preparation generated due to the silicone oil when administering a medical liquid containing the protein preparation. It is intended to provide means that can be used.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems.
  • the medical liquid containing the protein preparation and mixed with the silicone oil is passed through a filter having a predetermined pore size (equivalent diameter of the average pore diameter), whereby the protein preparation is added to the silicone oil. It has been found that it is also possible to effectively remove the aggregates. Then, based on this finding, the present invention has been completed.
  • one embodiment of the present invention is to administer a medical liquid containing a protein preparation using a syringe including a syringe outer cylinder and a gasket that can slide inside the syringe outer cylinder in a liquid-tight manner.
  • the method for removing silicone oil from the medical liquid is characterized in that the method includes removing the silicone oil from the medical liquid by passing the medical liquid through a filter having an average pore diameter equivalent to a circle of 0.6 ⁇ m or less. Note that a filter having a predetermined pore size used in the above method is also within the scope of the present invention.
  • the device includes a syringe outer cylinder and a gasket that can slide inside the syringe outer cylinder in a liquid-tight manner, and a silicone oil is provided on the inner peripheral surface of the syringe outer cylinder or the outer peripheral surface of the gasket. And a prefilled syringe filled with a medical liquid containing a protein preparation in a filling chamber formed inside the syringe outer cylinder and the gasket. Then, when the medical liquid is administered using the prefilled syringe, the device is used for removing silicone oil from the medical liquid, and the circle equivalent diameter of the average pore diameter is 0.6 ⁇ m or less. It is characterized in that it further has a filter.
  • Still another embodiment of the present invention also relates to a medical liquid administration device.
  • the device includes a vial holding a freeze-dried product of the protein preparation therein, and a syringe outer cylinder, and a gasket slidable inside the syringe outer cylinder in a liquid-tight manner.
  • a prefilled syringe filled with a solution for dissolving or dispersing the lyophilized product is provided in a filling chamber formed inside the outer cylinder and the gasket. Then, when administering the medical liquid in which the protein preparation is dissolved or dispersed in the dissolving solution using the prefilled syringe, used to remove silicone oil from the medical liquid, a circle equivalent diameter of an average pore diameter. Is further provided with a filter having a particle size of 0.6 ⁇ m or less.
  • Still another embodiment of the present invention relates to a filter used in the above-mentioned “method of removing silicone oil from medical liquid”.
  • the filter is characterized in that the circle equivalent diameter of the average pore diameter is 0.6 ⁇ m or less.
  • FIG. 1 is a cross-sectional view of a vial constituting a medical liquid administration device according to one embodiment of the present invention.
  • FIG. 2 is an external view of a prefilled syringe with a needle, which constitutes the medical liquid administration device according to one embodiment of the present invention.
  • FIG. 3 is a sectional view taken along the line AA shown in FIG.
  • FIG. 4 is an external view of a filter constituting the medical liquid administration device according to one embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a vial constituting a medical liquid administration device according to an embodiment of the present invention.
  • the vial 1 includes a vial body 11 having an opening, a rubber stopper 12 attached to the opening of the vial body 11 as a sealing member for sealing the opening, and a protein preparation held inside the vial body 11. And a freeze-dried product 3 of the above.
  • the vial 1 is capable of injecting a solution therein.
  • the vial 1 includes a solution injection space 15 therein.
  • the inside of the vial 1 is depressurized.
  • the lysing solution for example, water for injection is used.
  • the vial body 11 may be any as long as it has an opening and can store the freeze-dried product 3 of the protein preparation therein.
  • a vial made of hard or semi-hard synthetic resin, a glass vial, or the like is used.
  • the vial main body 11 includes a cylindrical main body 13 having a closed lower end, an opening 14 having a thick flange, and a neck having a smaller diameter than other portions formed between the opening 14 and the main body 13. , Is provided.
  • the neck portion from the opening 14 of the vial body 11 is a storage portion for storing the in-container entry portion of the rubber stopper 12 extending with the same inner diameter.
  • the rubber stopper is attached to the vial body 11 so that the rubber stopper does not fall into the vial body 11 from the neck when the rubber stopper is attached to the distal end side of the container inlet part.
  • the vial body 11 has a large diameter portion having substantially the same diameter as the outer diameter of the flange.
  • Examples of the hard or semi-hard synthetic resin capable of forming the vial body 11 include various commonly used hard plastic materials, for example, polyolefin such as polypropylene, polyethylene, poly (4-methylpentene-1), cyclic olefin polymer and cyclic olefin copolymer. And polyesters such as polyethylene terephthalate, polyethylene naphthalate, and amorphous polyalate, polystyrene, polyamide, polycarbonate, polyvinyl chloride, acrylic resin, acrylonitrile-butadiene-styrene copolymer, and amorphous polyetherimide.
  • polyolefin such as polypropylene, polyethylene, poly (4-methylpentene-1), cyclic olefin polymer and cyclic olefin copolymer.
  • polyesters such as polyethylene terephthalate, polyethylene naphthalate, and amorphous polyalate, polystyrene, polyamide,
  • polypropylene, poly (4-methylpentene-1), cyclic olefin polymer, cyclic olefin copolymer, polyethylene naphthalate, and amorphous polyetherimide are preferable in terms of transparency and heat sterilization resistance.
  • the vial 1 shown in FIG. 1 includes a covering member 16 to which a rubber stopper 12 is attached and covers the peripheral portion of the opening 14 of the vial main body 11 and the peripheral portion of the rubber stopper 12.
  • the covering member 16 is formed of aluminum, a heat-shrinkable film, or the like, and is in close contact with the rubber stopper 12 and the vial body 11 such that the large-diameter portion of the rubber stopper 12 is compressed and fixed to the flange. Is preferred.
  • the covering member 16 may cover the entire upper surface of the rubber stopper 12 as long as a puncture needle such as an injection needle can puncture the same.
  • the covering member 16 includes an annular portion and a thin disk-shaped upper surface portion, and the lower end portion of the annular portion covers the annular lower surface of the opening flange portion of the vial body 11. I have.
  • FIG. 2 is an external view of a prefilled syringe with a needle that constitutes the medical liquid administration device according to one embodiment of the present invention.
  • FIG. 3 is a sectional view taken along the line AA shown in FIG.
  • the prefilled syringe 10 includes a syringe-equipped outer cylinder 2, a sealing member (cap) 6 attached to a distal end (needle part) of the outer cylinder 2, and an outer cylinder 2.
  • a gasket 5 housed in the inner cylinder 2 and capable of sliding inside the outer cylinder 2 in a liquid-tight manner, a plunger 7 mounted on the gasket 5, and a filling chamber formed inside the outer cylinder 2 and the gasket 5 And the above-described dissolving solution 4.
  • a needle tube 8 is fixed to the outer cylinder 2 with a needle.
  • the outer diameter of the needle tube 8 is preferably 0.41 to 0.18 mm.
  • the needle tube 8 has a lumen penetrating from the distal end to the proximal end. Further, the needle tube 8 has a needle tip at a distal end, which is punctured into a living body. The needle tip is formed at an acute angle with a blade surface.
  • the distal end portion of the needle tube 8 including the needle tip protrudes from the distal end of the distal end portion 22 of the outer tube 2, and the base end of the needle tube 8 penetrates the needle insertion hole and reaches the inside of the outer tube 2. .
  • Needle tube 8 is preferably a metal needle tube.
  • the metal material for example, stainless steel is preferable.
  • the present invention is not limited to this, and aluminum, aluminum alloy, titanium, titanium alloy and other metals can be used.
  • the needle tube 8 not only a straight needle conforming to the ISO standard as described above, but also a tapered needle partially tapered can be used.
  • the outer cylinder 2 includes a main body 21 filled with a medicine, and a distal end 22 having a needle insertion hole.
  • the main body 21 is formed in a substantially cylindrical shape having an internal storage portion.
  • a flange 23 is formed on the rear end side of the main body 21 in the axial direction.
  • the distal end portion 22 includes a distal end bulging portion, and a tubular portion connecting the distal end bulging portion and the distal end of the main body portion 21. Further, the distal end portion 22 has a needle insertion hole penetrating therethrough.
  • the needle insertion hole has a base end of the needle tube 8 and is formed integrally with the outer cylinder by means such as insert molding.
  • the cap 6 is formed in a cylindrical shape, the base side in the axial direction is open, and the tip in the axial direction is closed.
  • the cap 6 is formed from, for example, an elastic member such as rubber or elastomer.
  • the cap 6 is attached to the distal end 22 of the outer cylinder 2 so as to cover the needle tip of the needle tube 8 and the distal end 22 of the outer cylinder 2. Then, as shown in FIG. 2, the needle tube 8 and the distal end portion 22 of the outer cylinder 2 are inserted into the lumen 62 of the cap 6.
  • the inner diameter of the inner cavity 62 of the cap 6 is formed to be substantially equal to the outer diameter of the tip bulge at the tip or slightly smaller than the tip bulge. Therefore, when the cap 6 is attached to the distal end portion 22 of the outer cylinder 2, the outer peripheral surface of the distal end bulging portion comes into close contact with the inner peripheral surface of the cap 6. Therefore, the space that covers the needle tube 8 protruding from the outer cylinder 2 is sealed by the distal end bulging portion and the inner peripheral surface of the cap 6. With this configuration, it is possible to prevent bacteria from adhering to the needle tip.
  • the distal end portion 81 of the needle tube 8 is mounted so as to seal the distal end opening of the lumen with the cap 6.
  • the annular rib 63 provided on the inner peripheral surface of the cap 6 tightens a narrow portion at the boundary between the tip bulging portion and the tapered fitting portion of the tip portion 22 of the outer cylinder 2 by its elastic force. In this manner, the inner peripheral surface of the cap 6 and the constricted portion of the distal end portion 22 of the outer cylinder 2 are engaged, and the cap 6 is prevented from detaching from the distal end portion 22 of the outer cylinder 2 during transport.
  • the plunger 7 includes a main body 71, a gasket mounting portion 72 formed at a distal end of the main body 71, and a pressing portion 73 provided at a base end. Further, the gasket 5 includes a plunger mounting portion that receives and engages with the gasket mounting portion 72 of the plunger 7.
  • the prefilled syringe according to the present embodiment is subjected to high-pressure steam sterilization while being filled with the solution.
  • the high-pressure steam sterilization is performed by exposing a prefilled syringe filled with a solution to high-pressure steam at 100 to 122 ° C. for about 15 to 30 minutes.
  • the outer cylinder 2 is preferably made of a synthetic resin.
  • the material for forming the outer cylinder 2 include transparent or translucent materials, and are preferably formed of a material having low oxygen permeability and low water vapor permeability.
  • the material for forming the outer cylinder 2 include polypropylene, polyethylene, polystyrene, polyamide, polycarbonate, polyvinyl chloride, poly- (4-methylpentene-1), acrylic resin, acrylonitrile-butadiene-styrene copolymer, and polyethylene terephthalate.
  • Various resins such as polyesters, cyclic olefin polymers, and cyclic olefin copolymers are exemplified. Among them, resins such as polypropylene, cyclic olefin polymers, and cyclic olefin copolymers are preferable because they are easily molded and have heat resistance.
  • the gasket 5 has a main body portion extending with substantially the same outer diameter and an annular rib provided on the main body portion (two in this embodiment, an appropriate number if liquid-tightness and slidability are satisfied). These ribs come into contact with the inner surface of the outer cylinder 2 in a liquid-tight manner.
  • the distal end surface of the gasket 5 has a shape corresponding to the shape of the distal end inner surface of the outer cylinder 2 so that when the gasket 5 comes into contact with the inner surface of the distal end of the outer cylinder 2, no gap is formed between them.
  • Examples of the material for forming the gasket 5 include rubber having elasticity (for example, butyl rubber, latex rubber, and silicone rubber), synthetic resin (for example, styrene-based elastomer such as SBS elastomer and SEBS elastomer, and ethylene- ⁇ -olefin copolymer). It is preferable to use an olefin-based elastomer such as an elastomer. In particular, those formed of butyl rubber are preferred.
  • the gasket 5 may have a low drug-adsorbing film in a portion that comes into contact with the solution 4.
  • the material for forming the low drug-adsorbing film known materials conventionally used for laminate gaskets can be used.
  • the low drug adsorption coating material include polyolefin-based resins, fluorine-based resins, polyester-based resins, and polyparaxylylene.
  • the polyolefin resin is preferably polypropylene, ultra-high molecular weight polyethylene, poly (4-methylpentene-1), a cyclic olefin polymer, a cyclic olefin copolymer, or the like.
  • fluoroethoxyethylene copolymer polytetrafluoroethylene, tetrafluoroethylene / perfluoroalkylvinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, and the like.
  • a required amount of silicone oil as a lubricant is disposed on the outer peripheral surface of the gasket 5 by a method such as coating, spraying or dipping.
  • the silicone oil may be arranged on the inner surface of the outer cylinder 2.
  • silicone oil may be disposed on both the outer peripheral surface of the gasket 5 and the inner surface of the outer cylinder 2.
  • “the silicone oil is disposed” means that the gasket inserted into the outer cylinder slides easily while maintaining a liquid-tight state with respect to the inner surface of the outer cylinder, as understood from the above description.
  • the gasket 5 is provided with a concave portion extending from the rear end to the inside.
  • the concave portion has a female screw shape, and a male screw formed on an outer surface of a protruding portion formed on the distal end portion 72 of the plunger 7. It can be screwed with the part.
  • the plunger 7 is fixed to the gasket 5 by screwing them together.
  • the plunger 7 is not attached, and may be attached at the time of use.
  • the plunger 7 is provided with a protrusion 72 protruding in a cylindrical shape at the disk portion at the tip, and a male screw to be screwed with the recess of the gasket 5 is formed on the outer surface of the protrusion. Further, the plunger 7 includes a main body portion having a cross-shaped cross section and extending in the axial direction, and a pressing disk portion (pressing portion) 73 provided at a rear end portion.
  • the lysing solution can be injected into the lysing solution injection space 15 inside the vial 1 by piercing the needle tube 8 into the rubber stopper 12 of the vial 1 and pressing the plunger in that state.
  • the drug solution can be prepared by removing the needle tube 8 from the rubber stopper 12 after injecting the solution, or by thoroughly mixing the solution and the lyophilized product 3 of the protein preparation without removing the needle tube 8 as it is. it can.
  • the plunger is pulled while the tip of the needle tube 8 is always below the level of the drug solution, thereby filling the syringe with the drug solution. can do. In this way, the syringe is ready to administer the drug solution.
  • FIG. 4 is an external view of a filter constituting the medical liquid administration device according to one embodiment of the present invention.
  • the filter 100 includes a filter main body 110 formed of a membrane filter, an upper flow path 120 capable of supplying a substance to be filtered to the filter main body 110, and a filtration target supplied from the upper flow path 120 and filtered by the filter main body 110. And a lower passage 130 from which the fluid is discharged.
  • the filter 100 according to the embodiment shown in FIG. 4 further includes a connection portion 140 for connecting to a catheter.
  • the membrane filter constituting the filter body has a large number of pores, it is possible to remove coarse particles contained in the material to be filtered.
  • the circle equivalent diameter of the average pore diameter of the pores is set to 0.6 ⁇ m or less.
  • the “equivalent circle diameter” is a parameter expressing the diameter of a non-circular shape, and means the diameter of a perfect circle having an area equal to the area of the shape.
  • a value of the circle equivalent diameter of the average pore diameter of the pores of the filter a value calculated by a method described in the section of Examples described later is adopted.
  • the value of the circle equivalent diameter of the average pore diameter of the pores is preferably 0.58 ⁇ m or less, more preferably 0.5 ⁇ m or less, and still more preferably 0.40 ⁇ m or less.
  • the lower limit of this value is not particularly limited, but is preferably 0.10 ⁇ m or more, more preferably 0.20 ⁇ m or more, and further preferably 0.3 ⁇ m or more.
  • the constituent material of the membrane filter is not particularly limited, but is generally made of resin. Especially, it is preferable to be comprised from resin, and it is preferable to be comprised from polyether sulfone (PES) or polyvinylidene fluoride (PVDF). Further, the constituent material of the membrane filter is preferably a hydrophilic material, and more preferably a hydrophilic resin. Above all, it is particularly preferable to be composed of hydrophilic PES or hydrophilic PVDF. In this specification, “a material is hydrophilic” means that a contact angle of water with respect to a sheet made of the material is 90 ° or less.
  • the value of the bubble point pressure of the membrane filter is not particularly limited, but is preferably 3 bar or more, more preferably 3.4 bar or more.
  • the lower limit of the bubble point pressure is not particularly limited, but is preferably 10 bar or less.
  • a medical liquid containing a protein preparation and mixed with silicone oil is passed through a filter having a circle equivalent diameter of the average pore diameter of the pores of 0.6 ⁇ m or less.
  • silicone oil it is possible to effectively remove aggregates of protein preparations.
  • the mechanism is not completely clear, but the following mechanism is presumed. That is, it is considered that the protein aggregate is removed by the sieving effect of the filter.
  • the silicone oil particles also show the same size distribution as the protein aggregate, it is conceivable that the silicone oil particles are captured in the same manner as the protein aggregate from the size.
  • silicone oil particles are easily deformed from the original sphere by the filtration pressure and pass through the pores of the filter.
  • the silicone oil does not wet the membrane of the hydrophilic filter due to its hydrophobic nature. Therefore, when a filter made of a hydrophilic material is used, an increase in the wetting angle of the silicone oil with respect to the pores of the filter is also considered to be a factor that traps the silicone oil.
  • the presence mode of the silicone oil and the protein aggregate may be either a case where both are present independently or a case where both are combined to form a complex. And both. According to the present invention, even in the latter case, it is considered that the above-described mechanism works for each substance, and even if both exist in the form of a complex, they are efficiently removed.
  • the medical fluid is prepared as described above, and then, when the prepared medical fluid is administered, the medical fluid passes through the filter 100.
  • the medicinal solution may be administered.
  • the needle tube 8 is removed from the syringe outer cylinder 2 after the chemical solution is prepared, and the filter 100 is used for the syringe so that the upper channel 120 of the filter 100 is located on the side of the syringe outer cylinder 2 instead. It is joined to the outlet of the outer cylinder 2.
  • the other end of the catheter having the winged needle installed at one end is connected to a connection portion 140 provided in the lower flow passage 130 of the filter 100.
  • the medicinal solution can be administered by pressing the plunger 7 of the syringe.
  • the medicinal solution can be administered after passing through a filter 100 having a predetermined pore size. Therefore, it is possible to effectively remove aggregates of the silicone oil and the protein preparation contained in the drug solution.
  • the protein preparation is not particularly limited as long as it is a preparation containing a main drug composed of a peptide or a protein.
  • immunoglobulin preparations such as various monoclonal antibodies (IgG, IgM, etc.), albumin preparations, blood coagulation factor preparations, interferons, various hormones (growth hormone, erythropoietin, etc.), various enzymes, glycoproteins, PEGylated proteins, etc.
  • blood coagulation factor preparations in particular include blood coagulation factor VIII preparation, blood coagulation factor IX preparation, fibrinogen preparation, antithrombin III preparation and the like.
  • the method for removing silicone oil using a predetermined filter according to the present invention is particularly useful for removing silicone oil and protein aggregates when administering a protein preparation.
  • congenital blood coagulation factor VIII disorder (hemophilia A) is a type of abnormal blood coagulation, and it is estimated that there are approximately 400,000 patients worldwide.
  • injection of a blood coagulation factor VIII preparation is common, but two to three injections a week are required, so that home treatment and self-injection are basic. . Therefore, by applying the present invention, penetration of silicone oil into the body during self-injection at home can be prevented, and various symptoms caused by the immunogenicity of silicone oil and protein aggregates can be prevented. Becomes possible.
  • a drug solution is prepared by re-dissolving a lyophilized protein preparation held in a vial 1 using a dissolving solution.
  • the silicone oil is disposed on the inner surface of the vial 1 or the inner surface of the rubber stopper 12 of the vial 1, not on the inner peripheral surface of the syringe outer cylinder 2 or the outer peripheral surface of the gasket 5. You may.
  • the present invention is applicable.
  • the filter 100 when administering the drug solution, is joined to the outlet of the syringe outer cylinder 2 and the catheter is further joined to the filter 100 as an example.
  • One end of the catheter may be first joined to the 12 outlets, and the filter 100 may be joined to the other end of the catheter.
  • the value of the equivalent circle diameter of the pores of the filter was determined by observing the filter surface using an electron emission scanning electron microscope (FE-SEM) and determining the area of the pores obtained from the binarization analysis of the image. , Calculated as the diameter of a circle having an area equal to the area.
  • FE-SEM electron emission scanning electron microscope
  • Example 1 The lyophilized product was redissolved using 2.5 mL of the attached lysis solution to prepare a drug solution. Next, the whole amount of the prepared drug solution was sucked into the syringe. Then, as a syringe filter, Millex (registered trademark) -GP (manufactured by Merck Millipore, SLGP033RS; manufactured by hydrophilic polyethersulfone (PES), nominal pore diameter 0.22 ⁇ m, total area 4.5 cm 2 , circle of average pore diameter An equivalent diameter of 0.580 ⁇ m and a bubble point pressure of 3.8 bar or more) was attached to the outlet of the syringe.
  • Millex registered trademark
  • SLGP033RS manufactured by hydrophilic polyethersulfone
  • the contact angle of water with respect to the hydrophilic PES sheet used in the present syringe filter is 90 ° or less.
  • a catheter for a Surface Shielded Winged Infusion set manufactured by Terumo, SV * S25BL was connected to the outlet of the syringe filter to form a device for medical liquid administration.
  • Example 2 The lyophilized product was redissolved using 2.5 mL of the attached lysis solution to prepare a drug solution. Next, the whole amount of the prepared drug solution was sucked into the syringe. Thereafter, a syringe filter, Millex (registered trademark) -GV (manufactured by Merck Millipore, SLGV033RS; manufactured by hydrophilic polyvinylidene fluoride (PVDF), nominal pore size 0.22 ⁇ m, total area 4.5 cm 2 , circle of average pore size (Equivalent diameter: 0.389 ⁇ m, bubble point pressure: 3.4 bar or more) was attached to the outlet of the syringe.
  • Millex registered trademark
  • SLGV033RS hydrophilic polyvinylidene fluoride
  • the contact angle of water with respect to the hydrophilic PVDF sheet used in the present syringe filter is 90 ° or less.
  • a catheter for a Surface Shielded Winged Infusion set manufactured by Terumo, SV * S25BL was connected to the outlet of the syringe filter to form a device for medical liquid administration.
  • Example 3 The lyophilized product was redissolved using 2.5 mL of the attached lysis solution to prepare a drug solution. Next, the whole amount of the prepared drug solution was sucked into the syringe. Then, as a syringe filter, Millex (registered trademark) -VV (manufactured by Merck Millipore, SLVV033RS; manufactured by hydrophilic polyvinylidene fluoride (PVDF), nominal pore size: 0.1 ⁇ m, total area: 4.5 cm 2 , circle of average pore size) (Equivalent diameter 0.354 ⁇ m, bubble point pressure 4.83 bar or more) was attached to the outlet of the syringe.
  • Millex registered trademark
  • SLVV033RS hydrophilic polyvinylidene fluoride
  • the contact angle of water with respect to the hydrophilic PVDF sheet used in the present syringe filter is 90 ° or less.
  • a catheter for a Surface Shielded Winged Infusion set manufactured by Terumo, SV * S25BL was connected to the outlet of the syringe filter to form a device for medical liquid administration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Anesthesiology (AREA)
  • Vascular Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

[Problem] To provide a means by which, when administering a medical fluid containing a protein preparation, silicone oil that has somehow entered into the filling chamber of a syringe and clumps of the protein preparation that have been thereby generated, can be removed via a simple method. [Solution] The present disclosure provides a method for removing silicone oil from a medical fluid, which contains a protein preparation, when using a syringe comprising a syringe barrel and a gasket, which is capable of liquid-tight sliding within the syringe barrel, to administer the medical fluid, the method including passing the medical fluid through a filter, having an average pore size circle equivalent diameter of 0.6 μm or less, to thereby remove the silicone oil from the medical fluid.

Description

タンパク質製剤を投与する際にシリコーンオイルを除去する方法How to remove silicone oil when administering protein preparations
 本発明は、タンパク質製剤を投与する際にシリコーンオイルを除去する方法に関する。 (4) The present invention relates to a method for removing silicone oil when administering a protein preparation.
 従来、凍結乾燥物などの粉末状等の薬剤はバイアルに密封され、必要に応じて注射器により薬剤溶解液を混合して溶解し薬液を作り、粉末状の薬剤を投与可能にして使用している。このような薬液を作る方法としては、例えば、外筒内に溶解液を充填した注射器を用い注射器の外筒のノズルに取付けた注射針を、粉末状の薬剤が収納されているバイアルの封止部材に刺通し、注射器のプランジャーを外筒先端のノズル方向に押し込み溶解液をバイアル内に送り込み、バイアル内にて粉末状の薬剤を溶解し混合し薬液を作り、再び注射器のプランジャーを注射器の基端方向に引く操作を行って注射器の外筒内に作成した薬液を吸入し、薬液の投与を行うことができるようにしている。また、これとは異なる形態の注射剤として、投与可能な薬液が予め外筒内に充填されてなるプレフィルドシリンジも知られている。 Conventionally, powdered drugs such as freeze-dried products are sealed in vials, and if necessary, a drug solution is mixed and dissolved with a syringe to prepare a drug solution, and the drug in powder form can be administered and used. . As a method for producing such a drug solution, for example, a syringe filled with a solution in an outer cylinder is used, and an injection needle attached to a nozzle of an outer cylinder of the syringe is sealed with a vial containing a powdered drug. The syringe is pierced, the plunger of the syringe is pushed in the direction of the nozzle at the tip of the outer cylinder, the dissolving solution is sent into the vial, and the drug in powder form is dissolved and mixed in the vial to produce a drug solution. By performing an operation of pulling in the proximal direction, the medicinal solution prepared in the outer cylinder of the syringe is inhaled, and the medicinal solution can be administered. Further, as an injection having a different form, a prefilled syringe in which an administrable drug solution is filled in an outer cylinder in advance is also known.
 ここで、注射器のプランジャーの外筒ノズル側の先端には、薬液を収容するために外筒内壁とプランジャー間を液密かつ摺動可能にシールするガスケットが取り付けられることが一般的である。そして、薬液の調製時や投与時における外筒の内面とガスケット外周部との摺動をスムーズに行わせることを目的として、ガスケットの外面または外筒の内面に、潤滑剤としてシリコーンオイルを塗布することが行われている(特許文献1(特開平2-36881号公報))。また、特許文献1には、薬液の投与時に排出される液体中にシリコーンオイルが混入しないようにすることを目的として、シリコーンオイルに対して吸着性を示す繊維や多孔質体などの吸着体を、注射器の液体流路に取り付ける技術が開示されている。なお、特許文献1には、調製および投与される薬液に含まれる主薬成分については具体的に記載されていない。 Here, a gasket that seals between the inner wall of the outer cylinder and the plunger in a liquid-tight and slidable manner for accommodating a drug solution is generally attached to the tip of the plunger of the syringe on the outer cylinder nozzle side. . Then, silicone oil is applied as a lubricant to the outer surface of the gasket or the inner surface of the outer cylinder for the purpose of smoothly sliding the inner surface of the outer cylinder and the outer peripheral portion of the gasket during the preparation or administration of the drug solution. (Patent Document 1 (Japanese Patent Laid-Open No. 2-36881)). Further, Patent Document 1 discloses an adsorbent such as a fiber or a porous material having an adsorbing property to silicone oil in order to prevent silicone oil from being mixed into a liquid discharged at the time of administration of a chemical solution. There is disclosed a technique for attaching to a liquid flow path of a syringe. In addition, Patent Document 1 does not specifically describe a main drug component contained in a prepared and administered drug solution.
 一方、非特許文献1(山根賢治,混相流,29巻,1号(2015))には、パクリタキセル注射剤の調製時に、シリコーンオイルの影響によって主薬成分の溶解度が低下することにより生成する綿状かつ不溶性の浮遊物について、医療現場において濾過することで除去が期待できることが開示されている。具体的には、点滴ライン中に0.22μmのメンブランフィルターを用いたインラインフィルターが装着された点滴ラインで投与することで、上記不溶性の浮遊物が臨床上の問題となるリスクは極めて低くなることが開示されている。 On the other hand, Non-Patent Document 1 (Kenji Yamane, Multiphase Flow, Vol. 29, No. 1 (2015)) discloses a cotton-like substance formed by reducing the solubility of the main drug component due to the effect of silicone oil during preparation of paclitaxel injection. Further, it is disclosed that insoluble suspended matter can be expected to be removed by filtering at a medical site. Specifically, the risk of the above insoluble suspended matter becoming a clinical problem is extremely low by administration through a drip line equipped with an in-line filter using a 0.22 μm membrane filter in the drip line. Is disclosed.
 ところで、プレフィルドシリンジや用時調製のための凍結乾燥製剤の形態で提供される薬剤には、バイオ製剤とも称されるタンパク質製剤がある。本発明者らは、特に凍結乾燥物として提供されるタンパク質製剤について検討を進めたところ、溶解液による用時調製(再溶解)の際に、製剤のタンパク質成分が凝集して凝集体を形成する場合があることを見出した。そして、このような凝集体の形成は、溶解液がシリンジの充填室においてシリコーンオイルと接触しうる場合に顕著に生じる(すなわち、シリコーンオイルがタンパク質製剤の凝集の原因となっている)ことも見出した。タンパク質製剤の凝集体は免疫原性を有していることから、当該凝集体をそのまま生体内に投与することは好ましくない。また、シリコーンオイルそのものも免疫原性を有している。したがって、シリコーンオイルが生体内に投与されることも防止することが求められている。 薬 剤 By the way, drugs provided in the form of pre-filled syringes or freeze-dried preparations for use at the time of use include protein preparations also called bio preparations. The present inventors have particularly studied protein preparations provided as lyophilized products. During preparation (re-dissolution) of the preparation using a lysis solution, the protein components of the preparation aggregate to form aggregates. I found that sometimes. It has also been found that the formation of such aggregates occurs remarkably when the solution can come into contact with the silicone oil in the syringe filling chamber (that is, the silicone oil causes aggregation of the protein preparation). Was. Since the aggregate of the protein preparation has immunogenicity, it is not preferable to administer the aggregate as it is in a living body. Also, silicone oil itself has immunogenicity. Therefore, it is required to prevent silicone oil from being administered into a living body.
 そこで本発明は、タンパク質製剤を含有する医療用液体を投与する際に、何らかの原因でシリンジの充填室に混入したシリコーンオイルおよびこれに起因して発生したタンパク質製剤の凝集物を簡便な手法により除去しうる手段を提供することを目的とする。 Therefore, the present invention provides a simple method for removing a silicone oil mixed into a syringe filling chamber for any reason and an aggregate of a protein preparation generated due to the silicone oil when administering a medical liquid containing the protein preparation. It is intended to provide means that can be used.
 本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、驚くべきことに、タンパク質製剤を含みシリコーンオイルが混入した医療用液体を、所定の孔径(平均孔径の円相当径)を有するフィルターを通過させることで、シリコーンオイルに加えて、タンパク質製剤の凝集体をも効果的に除去することが可能であることを見出した。そしてこの知見に基づき、本発明を完成させるに至った。 The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, surprisingly, the medical liquid containing the protein preparation and mixed with the silicone oil is passed through a filter having a predetermined pore size (equivalent diameter of the average pore diameter), whereby the protein preparation is added to the silicone oil. It has been found that it is also possible to effectively remove the aggregates. Then, based on this finding, the present invention has been completed.
 すなわち、本発明の一形態は、シリンジ用外筒と、前記シリンジ用外筒の内部を液密に摺動可能なガスケットと、を備えたシリンジを用いてタンパク質製剤を含有する医療用液体を投与する際に、前記医療用液体からシリコーンオイルを除去する方法に関する。そして、当該方法は、前記医療用液体を平均孔径の円相当径が0.6μm以下であるフィルターを通過させることにより前記医療用液体からシリコーンオイルを除去することを含む点に特徴がある。なお、上記方法において用いられる、所定の孔径を有するフィルターもまた、本発明の範囲内のものである。 That is, one embodiment of the present invention is to administer a medical liquid containing a protein preparation using a syringe including a syringe outer cylinder and a gasket that can slide inside the syringe outer cylinder in a liquid-tight manner. The method for removing silicone oil from the medical liquid. Further, the method is characterized in that the method includes removing the silicone oil from the medical liquid by passing the medical liquid through a filter having an average pore diameter equivalent to a circle of 0.6 μm or less. Note that a filter having a predetermined pore size used in the above method is also within the scope of the present invention.
 本発明の他の形態は、医療用液体投与用デバイスに関する。当該デバイスは、シリンジ用外筒と、前記シリンジ用外筒の内部を液密に摺動可能なガスケットと、を備え、前記シリンジ用外筒の内周面または前記ガスケットの外周面にシリコーンオイルが配置されてなり、前記シリンジ用外筒および前記ガスケットの内部に形成された充填室にタンパク質製剤を含有する医療用液体が充填されたプレフィルドシリンジを有している。そして、当該デバイスは、前記プレフィルドシリンジを用いて前記医療用液体を投与する際に、前記医療用液体からシリコーンオイルを除去するために用いられる、平均孔径の円相当径が0.6μm以下であるフィルターをさらに有する点に特徴がある。 Another embodiment of the present invention relates to a medical liquid administration device. The device includes a syringe outer cylinder and a gasket that can slide inside the syringe outer cylinder in a liquid-tight manner, and a silicone oil is provided on the inner peripheral surface of the syringe outer cylinder or the outer peripheral surface of the gasket. And a prefilled syringe filled with a medical liquid containing a protein preparation in a filling chamber formed inside the syringe outer cylinder and the gasket. Then, when the medical liquid is administered using the prefilled syringe, the device is used for removing silicone oil from the medical liquid, and the circle equivalent diameter of the average pore diameter is 0.6 μm or less. It is characterized in that it further has a filter.
 本発明のさらに他の形態もまた、医療用液体投与用デバイスに関する。当該デバイスは、内部にタンパク質製剤の凍結乾燥物を保持しているバイアル、および、シリンジ用外筒と、前記シリンジ用外筒の内部を液密に摺動可能なガスケットとを備え、前記シリンジ用外筒および前記ガスケットの内部に形成された充填室に前記凍結乾燥物を溶解または分散させるための溶解液が充填されたプレフィルドシリンジを有している。そして、前記プレフィルドシリンジを用いて前記タンパク質製剤が前記溶解液に溶解または分散した医療用液体を投与する際に、前記医療用液体からシリコーンオイルを除去するために用いられる、平均孔径の円相当径が0.6μm以下であるフィルターをさらに有する点に特徴がある。 Still another embodiment of the present invention also relates to a medical liquid administration device. The device includes a vial holding a freeze-dried product of the protein preparation therein, and a syringe outer cylinder, and a gasket slidable inside the syringe outer cylinder in a liquid-tight manner. A prefilled syringe filled with a solution for dissolving or dispersing the lyophilized product is provided in a filling chamber formed inside the outer cylinder and the gasket. Then, when administering the medical liquid in which the protein preparation is dissolved or dispersed in the dissolving solution using the prefilled syringe, used to remove silicone oil from the medical liquid, a circle equivalent diameter of an average pore diameter. Is further provided with a filter having a particle size of 0.6 μm or less.
 本発明のさらに他の形態は、上述した「医療用液体からシリコーンオイルを除去する方法」に用いられるフィルターに関する。当該フィルターは、平均孔径の円相当径が0.6μm以下である点に特徴がある。 さ ら に Still another embodiment of the present invention relates to a filter used in the above-mentioned “method of removing silicone oil from medical liquid”. The filter is characterized in that the circle equivalent diameter of the average pore diameter is 0.6 μm or less.
図1は、本発明の一実施形態に係る医療用液体投与用デバイスを構成するバイアルの断面図である。FIG. 1 is a cross-sectional view of a vial constituting a medical liquid administration device according to one embodiment of the present invention. 図2は、本発明の一実施形態に係る医療用液体投与用デバイスを構成する針付きプレフィルドシリンジの外観図である。FIG. 2 is an external view of a prefilled syringe with a needle, which constitutes the medical liquid administration device according to one embodiment of the present invention. 図3は、図2に示すA-A線に沿った断面図である。FIG. 3 is a sectional view taken along the line AA shown in FIG. 図4は、本発明の一実施形態に係る医療用液体投与用デバイスを構成するフィルターの外観図である。FIG. 4 is an external view of a filter constituting the medical liquid administration device according to one embodiment of the present invention.
 以下、図面を参照しながら、上述した本発明の実施形態を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみに制限されない。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the embodiments of the present invention described above will be described with reference to the drawings. However, the technical scope of the present invention should be determined based on the description of the claims, and is not limited to the following embodiments. Note that the dimensional ratios in the drawings are exaggerated for the sake of explanation, and may differ from the actual ratios.
 図1は、本発明の一実施形態に係る医療用液体投与用デバイスを構成するバイアルの断面図である。 FIG. 1 is a cross-sectional view of a vial constituting a medical liquid administration device according to an embodiment of the present invention.
 バイアル1は、開口部を有するバイアル本体11と、バイアル本体11の開口部に装着され、開口部を封止する封止部材としてのゴム栓12と、バイアル本体11の内部に保持されたタンパク質製剤の凍結乾燥物3とを備えている。 The vial 1 includes a vial body 11 having an opening, a rubber stopper 12 attached to the opening of the vial body 11 as a sealing member for sealing the opening, and a protein preparation held inside the vial body 11. And a freeze-dried product 3 of the above.
 そして、このバイアル1は、内部に溶解液を注入可能なものとなっている。具体的には、バイアル1は、内部に溶解液注入空間15を備えている。また、バイアル1は、内部が減圧されている。溶解液としては、例えば、注射用水が使用される。 {Circle around (2)} The vial 1 is capable of injecting a solution therein. Specifically, the vial 1 includes a solution injection space 15 therein. The inside of the vial 1 is depressurized. As the lysing solution, for example, water for injection is used.
 バイアル本体11としては、開口部を有し、内部にタンパク質製剤の凍結乾燥物3を収納可能なものであれば、どのようなものであってもよい。例えば、硬質または半硬質合成樹脂製バイアル、ガラス製バイアルなどが使用される。バイアル本体11は、下端が閉塞した円筒状の本体部13と、肉厚のフランジを有する開口部14と、開口部14と本体部13との間に形成された他の部位より小径の首部と、を備えている。そして、バイアル本体11の開口部14から首部は同一内径にて延びるゴム栓12の容器内進入部を収納する収納部となっている。なお、ゴム栓としては、バイアル本体11に前記容器内進入部を収納させてゴム栓を装着した場合に首部からゴム栓がバイアル本体11内に脱落しないよう、前記容器内進入部の先端側にバイアル本体11の前記フランジの外径と略同径の大径部を有している。 The vial body 11 may be any as long as it has an opening and can store the freeze-dried product 3 of the protein preparation therein. For example, a vial made of hard or semi-hard synthetic resin, a glass vial, or the like is used. The vial main body 11 includes a cylindrical main body 13 having a closed lower end, an opening 14 having a thick flange, and a neck having a smaller diameter than other portions formed between the opening 14 and the main body 13. , Is provided. The neck portion from the opening 14 of the vial body 11 is a storage portion for storing the in-container entry portion of the rubber stopper 12 extending with the same inner diameter. In addition, as the rubber stopper, the rubber stopper is attached to the vial body 11 so that the rubber stopper does not fall into the vial body 11 from the neck when the rubber stopper is attached to the distal end side of the container inlet part. The vial body 11 has a large diameter portion having substantially the same diameter as the outer diameter of the flange.
 バイアル本体11を形成しうる硬質または半硬質合成樹脂としては、汎用される各種硬質プラスチック材料、例えば、ポリプロピレン、ポリエチレン、ポリ(4-メチルペンテン-1)、環状オレフィンポリマー、環状オレフィンコポリマー等のポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、非晶性ポリアレート等のポリエステル、ポリスチレン、ポリアミド、ポリカーボネート、ポリ塩化ビニル、アクリル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、非晶性ポリエーテルイミドなどが好ましい。特に、ポリプロピレン、ポリ(4-メチルペンテン-1)、環状オレフィンポリマー、環状オレフィンコポリマー、ポリエチレンナフタレート、および非晶性ポリエーテルイミドが透明性、熱滅菌耐性の点で好ましい。 Examples of the hard or semi-hard synthetic resin capable of forming the vial body 11 include various commonly used hard plastic materials, for example, polyolefin such as polypropylene, polyethylene, poly (4-methylpentene-1), cyclic olefin polymer and cyclic olefin copolymer. And polyesters such as polyethylene terephthalate, polyethylene naphthalate, and amorphous polyalate, polystyrene, polyamide, polycarbonate, polyvinyl chloride, acrylic resin, acrylonitrile-butadiene-styrene copolymer, and amorphous polyetherimide. Particularly, polypropylene, poly (4-methylpentene-1), cyclic olefin polymer, cyclic olefin copolymer, polyethylene naphthalate, and amorphous polyetherimide are preferable in terms of transparency and heat sterilization resistance.
 また、図1に示すバイアル1は、ゴム栓12が装着されバイアル本体11の開口部14の周縁部およびゴム栓12の周縁部を被覆する被覆部材16を備えている。被覆部材16としては、アルミニウム、熱収縮性フィルムなどにより形成され、ゴム栓12の前記大径部を前記フランジに圧縮した状態で固定されるようにゴム栓12およびバイアル本体11に密着していることが好ましい。被覆部材16としては、注射針等の穿刺針が穿刺可能なものであれば、ゴム栓12の上面全体を覆うものであってもよい。なお、図1に示す実施形態において、被覆部材16は、環状部と、薄い円盤状の上面部とを備え、環状部の下端部は、バイアル本体11の開口フランジ部の環状下面を被覆している。 The vial 1 shown in FIG. 1 includes a covering member 16 to which a rubber stopper 12 is attached and covers the peripheral portion of the opening 14 of the vial main body 11 and the peripheral portion of the rubber stopper 12. The covering member 16 is formed of aluminum, a heat-shrinkable film, or the like, and is in close contact with the rubber stopper 12 and the vial body 11 such that the large-diameter portion of the rubber stopper 12 is compressed and fixed to the flange. Is preferred. The covering member 16 may cover the entire upper surface of the rubber stopper 12 as long as a puncture needle such as an injection needle can puncture the same. In the embodiment shown in FIG. 1, the covering member 16 includes an annular portion and a thin disk-shaped upper surface portion, and the lower end portion of the annular portion covers the annular lower surface of the opening flange portion of the vial body 11. I have.
 図2は、本発明の一実施形態に係る医療用液体投与用デバイスを構成する針付きプレフィルドシリンジの外観図である。また、図3は、図2に示すA-A線に沿った断面図である。 FIG. 2 is an external view of a prefilled syringe with a needle that constitutes the medical liquid administration device according to one embodiment of the present invention. FIG. 3 is a sectional view taken along the line AA shown in FIG.
 図2および図3に示すように、プレフィルドシリンジ10は、針付きシリンジ用外筒2と、外筒2の先端部(針部)に装着された封止部材(キャップ)6と、外筒2内に収納され、かつ外筒2の内部を液密に摺動可能なガスケット5と、ガスケット5に装着されたプランジャー7と、外筒2およびガスケット5の内部に形成された充填室に充填された上述の溶解液4と、を備える。 As shown in FIGS. 2 and 3, the prefilled syringe 10 includes a syringe-equipped outer cylinder 2, a sealing member (cap) 6 attached to a distal end (needle part) of the outer cylinder 2, and an outer cylinder 2. A gasket 5 housed in the inner cylinder 2 and capable of sliding inside the outer cylinder 2 in a liquid-tight manner, a plunger 7 mounted on the gasket 5, and a filling chamber formed inside the outer cylinder 2 and the gasket 5 And the above-described dissolving solution 4.
 針付き外筒2には、針管8が固定されている。針管8としては、外径:φ0.41~0.18mmのものが好適である。針管8は、先端から基端まで貫通する内腔を備える。また、針管8は、先端に、生体に穿刺される針先を備えている。針先は刃面を備えた鋭角に形成されている。針管8は、その針先を含む先端側部分が、外筒2の先端部22の先端から突出し、針管8の基端は、針挿入孔を貫通し、外筒2の内部に到達している。 針 A needle tube 8 is fixed to the outer cylinder 2 with a needle. The outer diameter of the needle tube 8 is preferably 0.41 to 0.18 mm. The needle tube 8 has a lumen penetrating from the distal end to the proximal end. Further, the needle tube 8 has a needle tip at a distal end, which is punctured into a living body. The needle tip is formed at an acute angle with a blade surface. The distal end portion of the needle tube 8 including the needle tip protrudes from the distal end of the distal end portion 22 of the outer tube 2, and the base end of the needle tube 8 penetrates the needle insertion hole and reaches the inside of the outer tube 2. .
 針管8は、金属製針管であることが好ましい。金属材料としては、例えば、ステンレス鋼が好ましい。しかし、これに限定されるものではなく、アルミニウム、アルミニウム合金、チタン、チタン合金その他の金属を用いることができる。また、針管8は、上述のようなISOの規格に合致するストレート針だけでなく、一部がテーパー状となっているテーパー針を用いることができる。 Needle tube 8 is preferably a metal needle tube. As the metal material, for example, stainless steel is preferable. However, the present invention is not limited to this, and aluminum, aluminum alloy, titanium, titanium alloy and other metals can be used. As the needle tube 8, not only a straight needle conforming to the ISO standard as described above, but also a tapered needle partially tapered can be used.
 外筒2は、薬剤が充填される本体部21と、針挿入孔を有する先端部22と、を備えている。本体部21は、内部収納部を有する略円筒形に形成されている。本体部21の軸方向の後端側にはフランジ23が形成されている。 The outer cylinder 2 includes a main body 21 filled with a medicine, and a distal end 22 having a needle insertion hole. The main body 21 is formed in a substantially cylindrical shape having an internal storage portion. A flange 23 is formed on the rear end side of the main body 21 in the axial direction.
 先端部22は、先端膨出部と、先端膨出部と本体部21の先端間を繋ぐ筒状部を備えている。また、先端部22は、内部を貫通する針挿入孔を有している。針挿入孔には、針管8の基端が備わっていて、インサート成形等の手段で外筒と一体に形成されている。 The distal end portion 22 includes a distal end bulging portion, and a tubular portion connecting the distal end bulging portion and the distal end of the main body portion 21. Further, the distal end portion 22 has a needle insertion hole penetrating therethrough. The needle insertion hole has a base end of the needle tube 8 and is formed integrally with the outer cylinder by means such as insert molding.
 そして、キャップ6は、円筒状に形成され、軸方向の基部側が開口し、軸方向の先端が閉じている。このキャップ6は、例えば、ゴムやエラストマー等の弾性部材から形成される。 キャップ6は、針管8の針先及び外筒2の先端部22を覆うように外筒2の先端部22に取り付けられる。そして、図2に示すように、針管8及び外筒2の先端部22は、キャップ6の内腔部62内に挿入される。 キ ャ ッ プ And the cap 6 is formed in a cylindrical shape, the base side in the axial direction is open, and the tip in the axial direction is closed. The cap 6 is formed from, for example, an elastic member such as rubber or elastomer. The cap 6 is attached to the distal end 22 of the outer cylinder 2 so as to cover the needle tip of the needle tube 8 and the distal end 22 of the outer cylinder 2. Then, as shown in FIG. 2, the needle tube 8 and the distal end portion 22 of the outer cylinder 2 are inserted into the lumen 62 of the cap 6.
 なお、キャップ6の内腔部62の内径は、先端部の先端膨出部の外径とほぼ等しく形成されているか、または先端膨出部よりも若干小さく形成されている。よって、キャップ6を外筒2の先端部22に取り付けると、先端膨出部の外周面がキャップ6の内周面に密着する。したがって、外筒2から突出する針管8を覆う空間は、先端膨出部とキャップ6の内周面によって密閉される。このように構成することにより、針先に菌が付着することを防止することができる。針管8の先端部81は、キャップ6により前記内腔の先端側開口を密封するように装着されている。 The inner diameter of the inner cavity 62 of the cap 6 is formed to be substantially equal to the outer diameter of the tip bulge at the tip or slightly smaller than the tip bulge. Therefore, when the cap 6 is attached to the distal end portion 22 of the outer cylinder 2, the outer peripheral surface of the distal end bulging portion comes into close contact with the inner peripheral surface of the cap 6. Therefore, the space that covers the needle tube 8 protruding from the outer cylinder 2 is sealed by the distal end bulging portion and the inner peripheral surface of the cap 6. With this configuration, it is possible to prevent bacteria from adhering to the needle tip. The distal end portion 81 of the needle tube 8 is mounted so as to seal the distal end opening of the lumen with the cap 6.
 キャップ6の内周面に設けられた環状リブ63は、その弾性力によって外筒2の先端部22における先端膨出部とテーパー嵌合部との境界におけるくびれ部を締め付ける。このように、キャップ6の内周面と外筒2の先端部22のくびれ部が係合し、搬送時にキャップ6が外筒2の先端部22からの離脱を防止する。プランジャー7は、本体部71と本体部71の先端に形成されたガスケット装着部72と、基端部に設けられた押圧部73とを備える。また、ガスケット5は、プランジャー7のガスケット装着部72を受入れ、かつ係合するプランジャー装着部を備えている。 環状 The annular rib 63 provided on the inner peripheral surface of the cap 6 tightens a narrow portion at the boundary between the tip bulging portion and the tapered fitting portion of the tip portion 22 of the outer cylinder 2 by its elastic force. In this manner, the inner peripheral surface of the cap 6 and the constricted portion of the distal end portion 22 of the outer cylinder 2 are engaged, and the cap 6 is prevented from detaching from the distal end portion 22 of the outer cylinder 2 during transport. The plunger 7 includes a main body 71, a gasket mounting portion 72 formed at a distal end of the main body 71, and a pressing portion 73 provided at a base end. Further, the gasket 5 includes a plunger mounting portion that receives and engages with the gasket mounting portion 72 of the plunger 7.
 溶解液4としては、注射用水が用いられている。ただし、それ以外の液体(例えば、生理食塩水)が溶解液として用いられてもよい。そして、本実施形態に係るプレフィルドシリンジは、溶解液が充填された状態で高圧蒸気滅菌されている。高圧蒸気滅菌は、溶解液が充填されたプレフィルドシリンジを、例えば、100~122℃の高圧蒸気に15~30分間程度曝すことにより行われる。 水 Water for injection is used as the solution 4. However, other liquids (for example, physiological saline) may be used as the dissolving liquid. The prefilled syringe according to the present embodiment is subjected to high-pressure steam sterilization while being filled with the solution. The high-pressure steam sterilization is performed by exposing a prefilled syringe filled with a solution to high-pressure steam at 100 to 122 ° C. for about 15 to 30 minutes.
 外筒2としては、合成樹脂製のものが好ましい。外筒2の形成材料としては、透明または半透明の材料が挙げられ、好ましくは、酸素透過性、水蒸気透過性の少ない材料により形成されている。外筒2の形成材料としては、例えば、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアミド、ポリカーボネート、ポリ塩化ビニル、ポリ-(4-メチルペンテン-1)、アクリル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、ポリエチレンテレフタレート等のポリエステル、環状オレフィンポリマー、環状オレフィンコポリマーのような各種樹脂が挙げられるが、その中でも成形が容易で耐熱性があることから、ポリプロピレン、環状オレフィンポリマー、環状オレフィンコポリマーのような樹脂が好ましい。 The outer cylinder 2 is preferably made of a synthetic resin. Examples of the material for forming the outer cylinder 2 include transparent or translucent materials, and are preferably formed of a material having low oxygen permeability and low water vapor permeability. Examples of the material for forming the outer cylinder 2 include polypropylene, polyethylene, polystyrene, polyamide, polycarbonate, polyvinyl chloride, poly- (4-methylpentene-1), acrylic resin, acrylonitrile-butadiene-styrene copolymer, and polyethylene terephthalate. Various resins such as polyesters, cyclic olefin polymers, and cyclic olefin copolymers are exemplified. Among them, resins such as polypropylene, cyclic olefin polymers, and cyclic olefin copolymers are preferable because they are easily molded and have heat resistance.
 ガスケット5は、図2に示すようにほぼ同一外径にて延びる本体部と、この本体部に設けられた環状リブ(この実施例では2つ、液密性と摺動性を満足できれば適宜数としてもよい)を備え、これらリブが、外筒2の内面に液密に接触する。また、ガスケット5の先端面は、外筒2の先端内面に当接した時に、両者間に隙間を形成しないように、外筒2の先端内面形状に対応した形状となっている。 As shown in FIG. 2, the gasket 5 has a main body portion extending with substantially the same outer diameter and an annular rib provided on the main body portion (two in this embodiment, an appropriate number if liquid-tightness and slidability are satisfied). These ribs come into contact with the inner surface of the outer cylinder 2 in a liquid-tight manner. The distal end surface of the gasket 5 has a shape corresponding to the shape of the distal end inner surface of the outer cylinder 2 so that when the gasket 5 comes into contact with the inner surface of the distal end of the outer cylinder 2, no gap is formed between them.
 そして、ガスケット5の形成材料としては、弾性を有するゴム(例えば、ブチルゴム、ラテックスゴム、シリコーンゴムなど)、合成樹脂(例えば、SBSエラストマー、SEBSエラストマー等のスチレン系エラストマー、エチレン-αオレフィン共重合体エラストマー等のオレフィン系エラストマーなど)等を使用することが好ましい。特に、ブチルゴムにて形成されたものが好適である。 Examples of the material for forming the gasket 5 include rubber having elasticity (for example, butyl rubber, latex rubber, and silicone rubber), synthetic resin (for example, styrene-based elastomer such as SBS elastomer and SEBS elastomer, and ethylene-α-olefin copolymer). It is preferable to use an olefin-based elastomer such as an elastomer. In particular, those formed of butyl rubber are preferred.
 また、ガスケット5としては、溶解液4と接触する部分に、低薬物吸着性被膜を有するものであってもよい。低薬物吸着性皮膜の形成材料としては、従来からラミネートガスケットに使用されている公知のものが使用できる。低薬物吸着被膜材料としては、例えば、ポリオレフィン系樹脂、フッ素系樹脂、ポリエステル系樹脂、ポリパラキシリレンなどが挙げられる。具体的に、ポリオレフィン系樹脂としては、ポリプロピレン、超高分子量ポリエチレン、ポリ(4-メチルペンテン-1)、環状オレフィンポリマー、環状オレフィンコポリマー等が好ましく、フッ素系樹脂としては、四フッ化エチレン-パーフルオロエトキシエチレン共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体等が好ましい。 (4) The gasket 5 may have a low drug-adsorbing film in a portion that comes into contact with the solution 4. As the material for forming the low drug-adsorbing film, known materials conventionally used for laminate gaskets can be used. Examples of the low drug adsorption coating material include polyolefin-based resins, fluorine-based resins, polyester-based resins, and polyparaxylylene. Specifically, the polyolefin resin is preferably polypropylene, ultra-high molecular weight polyethylene, poly (4-methylpentene-1), a cyclic olefin polymer, a cyclic olefin copolymer, or the like. Preferred are fluoroethoxyethylene copolymer, polytetrafluoroethylene, tetrafluoroethylene / perfluoroalkylvinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, and the like.
 また、本実施形態において、ガスケット5の外周面には、潤滑剤として必要量のシリコーンオイルが塗布、噴霧あるいは浸漬等の手法によって配置されている。ただし、当該シリコーンオイルは、外筒2の内面に配置されていてもよい。また、ガスケット5の外周面および外筒2の内面の両方にシリコーンオイルが配置されていてもよい。ここで、「シリコーンオイルが配置されている」とは、上記記載からも理解される通り、外筒内に挿入されたガスケットが外筒内面に対し液密な状態を維持しつつ容易に摺動することができるように、ガスケット外周面および/または外筒内面の薬液と接触する部分に塗布、噴霧あるいは浸漬等の手段によってシリコーンオイルが適用された状態をいう。 Further, in the present embodiment, a required amount of silicone oil as a lubricant is disposed on the outer peripheral surface of the gasket 5 by a method such as coating, spraying or dipping. However, the silicone oil may be arranged on the inner surface of the outer cylinder 2. Further, silicone oil may be disposed on both the outer peripheral surface of the gasket 5 and the inner surface of the outer cylinder 2. Here, "the silicone oil is disposed" means that the gasket inserted into the outer cylinder slides easily while maintaining a liquid-tight state with respect to the inner surface of the outer cylinder, as understood from the above description. To apply the silicone oil to the gasket outer peripheral surface and / or the inner surface of the outer cylinder in such a manner that the silicone oil is applied by means such as coating, spraying or dipping.
 そして、ガスケット5には、その後端部より内部に延びる凹部が設けられ、この凹部は、雌ねじ状となっており、プランジャー7の先端部72に形成された突出部の外面に形成された雄ねじ部と螺合可能となっている。両者が螺合することにより、プランジャー7は、ガスケット5に固定される。なお、プランジャー7は取り付けられておらず、使用時に取り付けるようにしてもよい。 The gasket 5 is provided with a concave portion extending from the rear end to the inside. The concave portion has a female screw shape, and a male screw formed on an outer surface of a protruding portion formed on the distal end portion 72 of the plunger 7. It can be screwed with the part. The plunger 7 is fixed to the gasket 5 by screwing them together. The plunger 7 is not attached, and may be attached at the time of use.
 プランジャー7は、先端の円盤部に筒状に突出する突出部72を備え、突出部の外面にはガスケット5の凹部と螺合する雄ねじが形成されている。また、プランジャー7は、断面十字状の軸方向に延びる本体部と、後端部に設けられた押圧用の円盤部(押圧部)73を備えている。 The plunger 7 is provided with a protrusion 72 protruding in a cylindrical shape at the disk portion at the tip, and a male screw to be screwed with the recess of the gasket 5 is formed on the outer surface of the protrusion. Further, the plunger 7 includes a main body portion having a cross-shaped cross section and extending in the axial direction, and a pressing disk portion (pressing portion) 73 provided at a rear end portion.
 図2および図3に示す実施形態に係るプレフィルドシリンジ10では、プランジャー7を操作することにより溶解液を排出することが可能である。このため、針管8をバイアル1のゴム栓12に穿刺し、その状態でプランジャーを押すことで、溶解液をバイアル1内部の溶解液注入空間15に注入することができる。溶解液を注入した後に針管8をゴム栓12から抜き、あるいは針管8を抜かずにそのままの状態で溶解液とタンパク質製剤の凍結乾燥物3とを良く混和させることで、薬液を調製することができる。そして、再度、針管8をバイアル1のゴム栓12に穿刺した状態で、針管8の先端が常に薬液の液面下にあるようにしながらプランジャーを引くことで、薬液をシリンジの充填室に充填することができる。このようにして、シリンジは薬液を投与可能な状態となる。 で は In the prefilled syringe 10 according to the embodiment shown in FIGS. 2 and 3, it is possible to discharge the solution by operating the plunger 7. Therefore, the lysing solution can be injected into the lysing solution injection space 15 inside the vial 1 by piercing the needle tube 8 into the rubber stopper 12 of the vial 1 and pressing the plunger in that state. The drug solution can be prepared by removing the needle tube 8 from the rubber stopper 12 after injecting the solution, or by thoroughly mixing the solution and the lyophilized product 3 of the protein preparation without removing the needle tube 8 as it is. it can. Then, with the needle tube 8 pierced into the rubber stopper 12 of the vial 1 again, the plunger is pulled while the tip of the needle tube 8 is always below the level of the drug solution, thereby filling the syringe with the drug solution. can do. In this way, the syringe is ready to administer the drug solution.
 図4は、本発明の一実施形態に係る医療用液体投与用デバイスを構成するフィルターの外観図である。 FIG. 4 is an external view of a filter constituting the medical liquid administration device according to one embodiment of the present invention.
 フィルター100は、メンブランフィルターからなるフィルター本体110と、フィルター本体110に対して被濾過物を供給可能な上部流路120と、上部流路120から供給されてフィルター本体110で濾過された被濾過物が排出される下部流路130と、を備えている。また、図4に示す実施形態に係るフィルター100は、カテーテルに接続するための接続部140をさらに備えている。 The filter 100 includes a filter main body 110 formed of a membrane filter, an upper flow path 120 capable of supplying a substance to be filtered to the filter main body 110, and a filtration target supplied from the upper flow path 120 and filtered by the filter main body 110. And a lower passage 130 from which the fluid is discharged. In addition, the filter 100 according to the embodiment shown in FIG. 4 further includes a connection portion 140 for connecting to a catheter.
 フィルター本体を構成するメンブランフィルターは、多数の細孔を有していることにより被濾過物に含まれる粗大粒子を除去することが可能である。ここでは、上記細孔の平均孔径の円相当径が0.6μm以下とされている。ここで、「円相当径」とは、円形ではない形状の直径を表現するパラメータであり、当該形状の面積と等しい面積を有する真円の直径を意味する。なお、フィルターが有する細孔の平均孔径の円相当径の値としては、後述する実施例の欄に記載の手法により算出した値を採用するものとする。上記細孔の平均孔径の円相当径の値は、好ましくは0.58μm以下であり、より好ましくは0.5μm以下であり、さらに好ましくは0.40μm以下である。この値の下限値について特に制限はないが、好ましくは0.10μm以上であり、より好ましくは0.20μm以上であり、さらに好ましくは0.3μm以上である。 Since the membrane filter constituting the filter body has a large number of pores, it is possible to remove coarse particles contained in the material to be filtered. Here, the circle equivalent diameter of the average pore diameter of the pores is set to 0.6 μm or less. Here, the “equivalent circle diameter” is a parameter expressing the diameter of a non-circular shape, and means the diameter of a perfect circle having an area equal to the area of the shape. In addition, as a value of the circle equivalent diameter of the average pore diameter of the pores of the filter, a value calculated by a method described in the section of Examples described later is adopted. The value of the circle equivalent diameter of the average pore diameter of the pores is preferably 0.58 μm or less, more preferably 0.5 μm or less, and still more preferably 0.40 μm or less. The lower limit of this value is not particularly limited, but is preferably 0.10 μm or more, more preferably 0.20 μm or more, and further preferably 0.3 μm or more.
 メンブランフィルターの構成材料は特に制限されないが、一般的には樹脂から構成される。なかでも、樹脂から構成されることが好ましく、ポリエーテルスルホン(PES)またはポリフッ化ビニリデン(PVDF)から構成されることが好ましい。また、メンブランフィルターの構成材料は親水性の材料であることが好ましく、親水性の樹脂であることがより好ましい。なかでも、親水性PESまたは親水性PVDFから構成されることが特に好ましい。なお、本明細書において、ある材料が「親水性である」とは、当該材料からなるシートに対する水の接触角が90°以下であることをいうものとする。 構成 The constituent material of the membrane filter is not particularly limited, but is generally made of resin. Especially, it is preferable to be comprised from resin, and it is preferable to be comprised from polyether sulfone (PES) or polyvinylidene fluoride (PVDF). Further, the constituent material of the membrane filter is preferably a hydrophilic material, and more preferably a hydrophilic resin. Above all, it is particularly preferable to be composed of hydrophilic PES or hydrophilic PVDF. In this specification, “a material is hydrophilic” means that a contact angle of water with respect to a sheet made of the material is 90 ° or less.
 なお、メンブランフィルターのバブルポイント圧の値について特に制限はないが、好ましくは3bar以上であり、より好ましくは3.4bar以上である。バブルポイント圧の下限値についても特に制限はないが、好ましくは10bar以下である。 The value of the bubble point pressure of the membrane filter is not particularly limited, but is preferably 3 bar or more, more preferably 3.4 bar or more. The lower limit of the bubble point pressure is not particularly limited, but is preferably 10 bar or less.
 上述したように、本発明者らの検討によれば、タンパク質製剤を含みシリコーンオイルが混入した医療用液体を、上記細孔の平均孔径の円相当径が0.6μm以下であるフィルターを通過させることで、シリコーンオイルに加えて、タンパク質製剤の凝集体をも効果的に除去することが可能であることを見出したのである。そのメカニズムは完全には明らかとはなっていないが、以下のメカニズムが推定されている。すなわち、タンパク質凝集体はフィルターによるふるい効果によって除去されるものと考えられる。一方、シリコーンオイル粒子もタンパク質凝集体と同様のサイズ分布を示していることから、サイズからはタンパク質凝集体と同様に捕捉されることが考えられる。ただし、シリコーンオイル粒子は濾過圧力により本来の球体から容易に変形してフィルターの孔を通過することも推測される。なお、シリコーンオイルは、その疎水性の性質のため親水性フィルターのメンブレンに対し湿潤しない。したがって、フィルターとして親水性の材質からなるものを用いた場合には、フィルターの孔に対するシリコーンオイルの濡れ角度が大きくなることもまた、シリコーンオイルが捕捉される要因となっていると考えられる。 As described above, according to the study of the present inventors, a medical liquid containing a protein preparation and mixed with silicone oil is passed through a filter having a circle equivalent diameter of the average pore diameter of the pores of 0.6 μm or less. As a result, they have found that, in addition to silicone oil, it is possible to effectively remove aggregates of protein preparations. The mechanism is not completely clear, but the following mechanism is presumed. That is, it is considered that the protein aggregate is removed by the sieving effect of the filter. On the other hand, since the silicone oil particles also show the same size distribution as the protein aggregate, it is conceivable that the silicone oil particles are captured in the same manner as the protein aggregate from the size. However, it is also assumed that the silicone oil particles are easily deformed from the original sphere by the filtration pressure and pass through the pores of the filter. The silicone oil does not wet the membrane of the hydrophilic filter due to its hydrophobic nature. Therefore, when a filter made of a hydrophilic material is used, an increase in the wetting angle of the silicone oil with respect to the pores of the filter is also considered to be a factor that traps the silicone oil.
 なお、タンパク質製剤を含みシリコーンオイルが混入した医療用液体におけるシリコーンオイルおよびタンパク質凝集体の存在様式としては、両者が独立して存在する場合と、両者が結合して複合体を形成している場合との双方が考えられる。本発明によれば、後者の場合であっても、それぞれの物質に対して上述のメカニズムが働き、両者が複合体の形態で存在していても効率的に除去されるものと考えられる。 In the medical liquid containing the protein preparation and the silicone oil mixed therein, the presence mode of the silicone oil and the protein aggregate may be either a case where both are present independently or a case where both are combined to form a complex. And both. According to the present invention, even in the latter case, it is considered that the above-described mechanism works for each substance, and even if both exist in the form of a complex, they are efficiently removed.
 図1~図4に示す実施形態に係る医療用液体投与用デバイスの使用時には、上述したようにして薬液を調製した後、調製された薬液を投与する際に、当該薬液がフィルター100を通過するようにして、当該薬液を投与すればいい。一例として、薬液を調製した後のシリンジ用外筒2から針管8を取り外し、これに代えてフィルター100の上部流路120がシリンジ用外筒2の側に位置するように、フィルター100をシリンジ用外筒2の排出口に接合する。一方、一端に翼状針が設置されたカテーテルの他端をフィルター100の下部流路130に設けられた接続部140と接合する。これにより、シリンジのプランジャー7を押すことで薬液を投与することができる。そしてこの際、薬液を所定の孔径を有するフィルター100を通過させた後に投与することが可能となる。このため、薬液に含まれるシリコーンオイルおよびタンパク質製剤の凝集物を効果的に除去することができる。 When the medical liquid administration device according to the embodiment shown in FIGS. 1 to 4 is used, the medical fluid is prepared as described above, and then, when the prepared medical fluid is administered, the medical fluid passes through the filter 100. Thus, the medicinal solution may be administered. As an example, the needle tube 8 is removed from the syringe outer cylinder 2 after the chemical solution is prepared, and the filter 100 is used for the syringe so that the upper channel 120 of the filter 100 is located on the side of the syringe outer cylinder 2 instead. It is joined to the outlet of the outer cylinder 2. On the other hand, the other end of the catheter having the winged needle installed at one end is connected to a connection portion 140 provided in the lower flow passage 130 of the filter 100. Thus, the medicinal solution can be administered by pressing the plunger 7 of the syringe. At this time, the medicinal solution can be administered after passing through a filter 100 having a predetermined pore size. Therefore, it is possible to effectively remove aggregates of the silicone oil and the protein preparation contained in the drug solution.
 (タンパク質製剤)
 タンパク質製剤は、ペプチドやタンパク質からなる主薬を含有する製剤であれば特に制限されない。一例として、各種モノクローナル抗体(IgG、IgM等)等の免疫グロブリン製剤、アルブミン製剤、血液凝固因子製剤、インターフェロン、各種ホルモン(成長ホルモン、エリスロポエチン等)、各種酵素、糖改変タンパク質、PEG化タンパク質などが挙げられる。ここで、特に血液凝固因子製剤としては、血液凝固第VIII因子製剤、血液凝固第IX因子製剤、フィブリノーゲン製剤、アンチトロンビンIII製剤などが挙げられる。上述したように、本発明者らの検討によれば、特にタンパク質製剤がシリコーンオイルと接触することによって、凝集体の顕著な生成が確認された。このため、本発明に係る所定のフィルターを用いたシリコーンオイルの除去方法は、タンパク質製剤を投与する際におけるシリコーンオイルおよびタンパク質凝集体の除去に特に有用である。なかでも、先天性血液凝固第VIII因子障害(血友病A)は血液凝固異常症の一種であり、世界中に約40万人の患者が存在していると見積もられている。血友病Aの治療法としては血液凝固第VIII因子製剤の注射が一般的であるが、週に2~3回の注射が必要とされるため、家庭治療・自己注射が基本とされている。したがって、本発明を適用することで、家庭での自己注射の際におけるシリコーンオイルの体内への侵入が防止され、シリコーンオイルやタンパク質凝集体の免疫原性に起因する各種症状の発現を防止することが可能となる。
(Protein preparation)
The protein preparation is not particularly limited as long as it is a preparation containing a main drug composed of a peptide or a protein. Examples include immunoglobulin preparations such as various monoclonal antibodies (IgG, IgM, etc.), albumin preparations, blood coagulation factor preparations, interferons, various hormones (growth hormone, erythropoietin, etc.), various enzymes, glycoproteins, PEGylated proteins, etc. No. Here, blood coagulation factor preparations in particular include blood coagulation factor VIII preparation, blood coagulation factor IX preparation, fibrinogen preparation, antithrombin III preparation and the like. As described above, according to the study of the present inventors, remarkable formation of aggregates was confirmed particularly when the protein preparation was brought into contact with silicone oil. Therefore, the method for removing silicone oil using a predetermined filter according to the present invention is particularly useful for removing silicone oil and protein aggregates when administering a protein preparation. Above all, congenital blood coagulation factor VIII disorder (hemophilia A) is a type of abnormal blood coagulation, and it is estimated that there are approximately 400,000 patients worldwide. As a treatment for hemophilia A, injection of a blood coagulation factor VIII preparation is common, but two to three injections a week are required, so that home treatment and self-injection are basic. . Therefore, by applying the present invention, penetration of silicone oil into the body during self-injection at home can be prevented, and various symptoms caused by the immunogenicity of silicone oil and protein aggregates can be prevented. Becomes possible.
 なお、図1~図4に示す実施形態においては、バイアル1中に保持された凍結乾燥物の形態のタンパク質製剤を、溶解液を用いて再溶解させて薬液を調製する形態を例に挙げて説明したが、この実施形態においては、シリンジ用外筒2の内周面またはガスケット5の外周面ではなく、バイアル1の内表面またはバイアル1のゴム栓12の内表面にシリコーンオイルが配置されていてもよい。 In the embodiment shown in FIGS. 1 to 4, an example is described in which a drug solution is prepared by re-dissolving a lyophilized protein preparation held in a vial 1 using a dissolving solution. As described above, in this embodiment, the silicone oil is disposed on the inner surface of the vial 1 or the inner surface of the rubber stopper 12 of the vial 1, not on the inner peripheral surface of the syringe outer cylinder 2 or the outer peripheral surface of the gasket 5. You may.
 また、凍結乾燥物の再溶解の形態ではなく、タンパク質製剤が投与可能な状態で適当な溶媒中に溶解されてなる薬液の状態で、シリンジの充填室に充填されてなるプレフィルドシリンジとして提供される場合にも、本発明は適用可能である。 In addition, instead of re-dissolving the lyophilized product, it is provided as a pre-filled syringe filled in a syringe filling chamber in the form of a drug solution in which a protein preparation is dissolved in an appropriate solvent in a state where it can be administered. In this case, the present invention is applicable.
 さらに、上記の実施形態では、薬液を投与する際、シリンジ外筒2の排出口にフィルター100を接合し、さらに当該フィルター100にカテーテルを接合する形態を例に挙げて説明したが、シリンジ外筒12の排出口にカテーテルの一端をまず接合し、カテーテルの他端にフィルター100を接合してもよい。 Furthermore, in the above-described embodiment, when administering the drug solution, the filter 100 is joined to the outlet of the syringe outer cylinder 2 and the catheter is further joined to the filter 100 as an example. One end of the catheter may be first joined to the 12 outlets, and the filter 100 may be joined to the other end of the catheter.
 以下、実施例により本発明をさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、以下の実験例では、モデル薬物として血液凝固第VIII因子製剤の凍結乾燥物(バイエル社製、コージネート(Kogenate)(登録商標)FS)を用い、これを図1~図4に示す医療用液体投与用デバイスを用いて再溶解して得られた薬液(医療用液体)からのシリコーンオイルおよびタンパク質の凝集物の除去性能を、下記の表1に示す種々の仕様を有するフィルターについてそれぞれ評価した。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the technical scope of the present invention is not limited only to the following examples. In the following experimental examples, a freeze-dried product of a blood coagulation factor VIII preparation (Kogenate (registered trademark) FS, manufactured by Bayer AG) was used as a model drug, which was used for medical treatment shown in FIGS. The performance of removing aggregates of silicone oil and protein from a drug solution (medical liquid) obtained by re-dissolving using a liquid administration device was evaluated for filters having various specifications shown in Table 1 below. .
 なお、フィルターが有する孔の円相当径の値については、フィルター表面を電子放射型走査電子顕微鏡(FE-SEM)を用いて観察し、画像の二値化解析処理から得られた孔の面積から、当該面積と等しい面積を有する円の直径として算出した。 The value of the equivalent circle diameter of the pores of the filter was determined by observing the filter surface using an electron emission scanning electron microscope (FE-SEM) and determining the area of the pores obtained from the binarization analysis of the image. , Calculated as the diameter of a circle having an area equal to the area.
 (実施例1)
 上記凍結乾燥物を、添付の溶解液2.5mLを用いて再溶解させて、薬液を調製した。次いで、調製された薬液の全量をシリンジに吸引した。その後、シリンジフィルターとしてマイレクス(Millex)(登録商標)-GP(メルクミリポア社製、SLGP033RS;親水性ポリエーテルスルホン(PES)製、公称孔径0.22μm、総面積4.5cm、平均孔径の円相当径0.580μm、バブルポイント圧3.8bar以上)をシリンジの排出口に取り付けた。なお、本シリンジフィルターに使用している親水性PESからなるシートに対する水の接触角は90°以下である。さらに、シリンジフィルターの排出口に、Surshield Surflo Winged Infusion set(テルモ社製、SVS25BL)のカテーテルを接続して、医療用液体投与用デバイスを構成した。
(Example 1)
The lyophilized product was redissolved using 2.5 mL of the attached lysis solution to prepare a drug solution. Next, the whole amount of the prepared drug solution was sucked into the syringe. Then, as a syringe filter, Millex (registered trademark) -GP (manufactured by Merck Millipore, SLGP033RS; manufactured by hydrophilic polyethersulfone (PES), nominal pore diameter 0.22 μm, total area 4.5 cm 2 , circle of average pore diameter An equivalent diameter of 0.580 μm and a bubble point pressure of 3.8 bar or more) was attached to the outlet of the syringe. The contact angle of water with respect to the hydrophilic PES sheet used in the present syringe filter is 90 ° or less. Further, a catheter for a Surface Shielded Winged Infusion set (manufactured by Terumo, SV * S25BL) was connected to the outlet of the syringe filter to form a device for medical liquid administration.
 このデバイスを構成するシリンジのプランジャーを押すことにより、薬液をフィルターおよびカテーテルを介して送液し、カテーテルの先端から得られた液を回収した。得られた回収液について、Archimedes分析装置(マルバーン社製)を用いて、シリコーンオイル粒子の濃度およびタンパク質凝集体粒子の濃度を測定した。なお、コントロールとして、シリンジフィルターを通過させる前のシリンジからの排出液についても同様の測定を行った。そして、コントロールにおける濃度を100%とした場合の濃度測定値への低下率を算出した。結果を下記の表2に示す。なお、この低下率は、フィルターおよびカテーテルを通過させた場合にコントロールの濃度が低下した差分の割合を示しており、当該低下率が大きいほど、シリコーンオイルおよびタンパク質凝集体の除去性能に優れることを意味している。 薬 By pushing the plunger of the syringe that constitutes this device, the drug solution was sent through the filter and the catheter, and the solution obtained from the tip of the catheter was collected. The concentration of the silicone oil particles and the concentration of the protein aggregate particles were measured using an Archimedes analyzer (manufactured by Malvern) for the obtained recovered liquid. In addition, as a control, the same measurement was performed on the discharged liquid from the syringe before passing through the syringe filter. Then, a decrease rate to a measured concentration value when the concentration in the control was set to 100% was calculated. The results are shown in Table 2 below. In addition, this reduction ratio indicates the ratio of the difference in which the concentration of the control was reduced when the control concentration was passed through the filter and the catheter.The larger the reduction ratio, the better the silicone oil and protein aggregate removal performance. Means.
 (実施例2)
 上記凍結乾燥物を、添付の溶解液2.5mLを用いて再溶解させて、薬液を調製した。次いで、調製された薬液の全量をシリンジに吸引した。その後、シリンジフィルターとしてマイレクス(Millex)(登録商標)-GV(メルクミリポア社製、SLGV033RS;親水性ポリフッ化ビニリデン(PVDF)製、公称孔径0.22μm、総面積4.5cm、平均孔径の円相当径0.389μm、バブルポイント圧3.4bar以上)をシリンジの排出口に取り付けた。なお、本シリンジフィルターに使用している親水性PVDFからなるシートに対する水の接触角は90°以下である。さらに、シリンジフィルターの排出口に、Surshield Surflo Winged Infusion set(テルモ社製、SVS25BL)のカテーテルを接続して、医療用液体投与用デバイスを構成した。
(Example 2)
The lyophilized product was redissolved using 2.5 mL of the attached lysis solution to prepare a drug solution. Next, the whole amount of the prepared drug solution was sucked into the syringe. Thereafter, a syringe filter, Millex (registered trademark) -GV (manufactured by Merck Millipore, SLGV033RS; manufactured by hydrophilic polyvinylidene fluoride (PVDF), nominal pore size 0.22 μm, total area 4.5 cm 2 , circle of average pore size (Equivalent diameter: 0.389 μm, bubble point pressure: 3.4 bar or more) was attached to the outlet of the syringe. The contact angle of water with respect to the hydrophilic PVDF sheet used in the present syringe filter is 90 ° or less. Further, a catheter for a Surface Shielded Winged Infusion set (manufactured by Terumo, SV * S25BL) was connected to the outlet of the syringe filter to form a device for medical liquid administration.
 このデバイスを構成するシリンジのプランジャーを押すことにより、薬液をフィルターおよびカテーテルを介して送液し、カテーテルの先端から得られた液を回収した。得られた回収液について、Archimedes分析装置(マルバーン社製)を用いて、シリコーンオイル粒子の濃度およびタンパク質凝集体粒子の濃度を測定した。そして、上記と同様にして低下率を算出した。結果を下記の表2に示す。 薬 By pushing the plunger of the syringe that constitutes this device, the drug solution was sent through the filter and the catheter, and the solution obtained from the tip of the catheter was collected. The concentration of the silicone oil particles and the concentration of the protein aggregate particles were measured using an Archimedes analyzer (manufactured by Malvern) for the obtained recovered liquid. Then, the decrease rate was calculated in the same manner as above. The results are shown in Table 2 below.
 (実施例3)
 上記凍結乾燥物を、添付の溶解液2.5mLを用いて再溶解させて、薬液を調製した。次いで、調製された薬液の全量をシリンジに吸引した。その後、シリンジフィルターとしてマイレクス(Millex)(登録商標)-VV(メルクミリポア社製、SLVV033RS;親水性ポリフッ化ビニリデン(PVDF)製、公称孔径0.1μm、総面積4.5cm、平均孔径の円相当径0.354μm、バブルポイント圧4.83bar以上)をシリンジの排出口に取り付けた。なお、本シリンジフィルターに使用している親水性PVDFからなるシートに対する水の接触角は90°以下である。さらに、シリンジフィルターの排出口に、Surshield Surflo Winged Infusion set(テルモ社製、SVS25BL)のカテーテルを接続して、医療用液体投与用デバイスを構成した。
(Example 3)
The lyophilized product was redissolved using 2.5 mL of the attached lysis solution to prepare a drug solution. Next, the whole amount of the prepared drug solution was sucked into the syringe. Then, as a syringe filter, Millex (registered trademark) -VV (manufactured by Merck Millipore, SLVV033RS; manufactured by hydrophilic polyvinylidene fluoride (PVDF), nominal pore size: 0.1 μm, total area: 4.5 cm 2 , circle of average pore size) (Equivalent diameter 0.354 μm, bubble point pressure 4.83 bar or more) was attached to the outlet of the syringe. The contact angle of water with respect to the hydrophilic PVDF sheet used in the present syringe filter is 90 ° or less. Further, a catheter for a Surface Shielded Winged Infusion set (manufactured by Terumo, SV * S25BL) was connected to the outlet of the syringe filter to form a device for medical liquid administration.
 このデバイスを構成するシリンジのプランジャーを押すことにより、薬液をフィルターおよびカテーテルを介して送液し、カテーテルの先端から得られた液を回収した。得られた回収液について、Archimedes分析装置(マルバーン社製)を用いて、シリコーンオイル粒子の濃度およびタンパク質凝集体粒子の濃度を測定した。そして、上記と同様にして低下率を算出した。結果を下記の表2に示す。 薬 By pushing the plunger of the syringe that constitutes this device, the drug solution was sent through the filter and the catheter, and the solution obtained from the tip of the catheter was collected. The concentration of the silicone oil particles and the concentration of the protein aggregate particles were measured using an Archimedes analyzer (manufactured by Malvern) for the obtained recovered liquid. Then, the decrease rate was calculated in the same manner as above. The results are shown in Table 2 below.
 (比較例1)
 上記凍結乾燥物を、添付の溶解液2.5mLを用いて再溶解させて、薬液を調製した。次いで、調製された薬液の全量をシリンジに吸引した。その後、シリンジフィルターを取り付けずに、シリンジフィルターの排出口に、Surshield Surflo Winged Infusion set(テルモ社製、SVS25BL)のカテーテルを接続して、医療用液体投与用デバイスを構成した。
(Comparative Example 1)
The lyophilized product was redissolved using 2.5 mL of the attached lysis solution to prepare a drug solution. Next, the whole amount of the prepared drug solution was sucked into the syringe. Thereafter, without attaching a syringe filter, a catheter of a Surface Shielded Wing Infusion set (manufactured by Terumo Corporation, SV * S25BL) was connected to the outlet of the syringe filter to configure a device for medical liquid administration.
 このデバイスを構成するシリンジのプランジャーを押すことにより、薬液をフィルターおよびカテーテルを介して送液し、カテーテルの先端から得られた液を回収した。得られた回収液について、Archimedes分析装置(マルバーン社製)を用いて、シリコーンオイル粒子の濃度およびタンパク質凝集体粒子の濃度を測定した。そして、上記と同様にして低下率を算出した。結果を下記の表2に示す。 薬 By pushing the plunger of the syringe that constitutes this device, the drug solution was sent through the filter and the catheter, and the solution obtained from the tip of the catheter was collected. The concentration of the silicone oil particles and the concentration of the protein aggregate particles were measured using an Archimedes analyzer (manufactured by Malvern) for the obtained recovered liquid. Then, the decrease rate was calculated in the same manner as above. The results are shown in Table 2 below.
 (比較例2)
 上記凍結乾燥物を、添付の溶解液2.5mLを用いて再溶解させて、薬液を調製した。次いで、調製された薬液の全量をシリンジに吸引した。その後、シリンジの排出口に、Surflo Winged Infusion set(テルモ社製、SV-S25FL35)のカテーテルを接続して、医療用液体投与用デバイスを構成した。なお、このカテーテルは、公称孔径20μm(円相当径45μm)のインラインフィルター(ナイロン-6,6製)を備えたものである。
(Comparative Example 2)
The lyophilized product was redissolved using 2.5 mL of the attached lysis solution to prepare a drug solution. Next, the whole amount of the prepared drug solution was sucked into the syringe. Thereafter, a catheter for a Surflo Winged Infusion set (manufactured by Terumo Corporation, SV-S25FL35) was connected to the outlet of the syringe to form a medical liquid administration device. This catheter was provided with an in-line filter (made of nylon-6, 6) having a nominal pore diameter of 20 μm (equivalent circle diameter: 45 μm).
 このデバイスを構成するシリンジのプランジャーを押すことにより、薬液をフィルターおよびカテーテルを介して送液し、カテーテルの先端から得られた液を回収した。得られた回収液について、Archimedes分析装置(マルバーン社製)を用いて、シリコーンオイル粒子の濃度およびタンパク質凝集体粒子の濃度を測定した。そして、上記と同様にして低下率を算出した。結果を下記の表2に示す。 薬 By pushing the plunger of the syringe that constitutes this device, the drug solution was sent through the filter and the catheter, and the solution obtained from the tip of the catheter was collected. The concentration of the silicone oil particles and the concentration of the protein aggregate particles were measured using an Archimedes analyzer (manufactured by Malvern) for the obtained recovered liquid. Then, the decrease rate was calculated in the same manner as above. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、平均孔径の円相当径が0.6μm以下であるフィルターを用いて薬液を濾過した実施例1~3においては、薬液に含まれるシリコーンオイルおよびタンパク質の凝集体が非常に効果的に除去されることがわかる。 From the results shown in Table 2, in Examples 1 to 3 in which the drug solution was filtered using a filter having an average pore diameter equivalent to a circle of 0.6 μm or less, the aggregates of silicone oil and protein contained in the drug solution were extremely low. It can be seen that it is effectively removed.
 本出願は、2018年7月31日に出願された米国仮出願第62/712568号に基づいており、その開示内容は、参照により全体として組み入れられている。 This application is based on US Provisional Application No. 62 / 712,568, filed July 31, 2018, the disclosure of which is incorporated by reference in its entirety.

Claims (24)

  1.  シリンジ用外筒と、前記シリンジ用外筒の内部を液密に摺動可能なガスケットと、を備えたシリンジを用いてタンパク質製剤を含有する医療用液体を投与する際に、前記医療用液体からシリコーンオイルを除去する方法であって、
     前記医療用液体を平均孔径の円相当径が0.6μm以下であるフィルターを通過させることにより前記医療用液体からシリコーンオイルを除去することを含む、方法。
    When administering a medical liquid containing a protein preparation using a syringe including a syringe outer cylinder and a gasket capable of sliding the inside of the syringe outer cylinder in a liquid-tight manner, A method for removing silicone oil,
    A method comprising removing silicone oil from the medical fluid by passing the medical fluid through a filter having an average pore diameter equivalent to a circle of 0.6 μm or less.
  2.  前記シリンジは、前記シリンジ用外筒および前記ガスケットの内部に形成された充填室に前記医療用液体が充填された状態で保管されるプレフィルドシリンジである、請求項1に記載の方法。 The method according to claim 1, wherein the syringe is a prefilled syringe stored in a state where the medical liquid is filled in a filling chamber formed inside the syringe outer cylinder and the gasket.
  3.  前記シリコーンオイルは、前記シリンジ用外筒の内周面または前記ガスケットの外周面に配置されたシリコーンオイルに由来する、請求項2に記載の方法。 The method according to claim 2, wherein the silicone oil is derived from silicone oil disposed on an inner peripheral surface of the syringe outer cylinder or an outer peripheral surface of the gasket.
  4.  前記医療用液体を投与する際に、前記タンパク質製剤の凍結乾燥物を溶解液に溶解または分散させることにより前記医療用液体を用時調製することをさらに含む、請求項1に記載の方法。 2. The method according to claim 1, wherein, when administering the medical liquid, the method further comprises preparing the medical liquid before use by dissolving or dispersing a lyophilized product of the protein preparation in a dissolving liquid.
  5.  前記シリコーンオイルは、前記シリンジ用外筒の内周面または前記ガスケットの外周面に配置されたシリコーンオイルに由来する、請求項4に記載の方法。 The method according to claim 4, wherein the silicone oil is derived from silicone oil disposed on an inner peripheral surface of the syringe outer cylinder or an outer peripheral surface of the gasket.
  6.  内部に前記凍結乾燥物を保持しているバイアルの内部に前記溶解液を導入して前記凍結乾燥物を溶解または分散させることにより前記医療用液体を用時調製することと、
     前記シリンジ用外筒および前記ガスケットの内部に形成された充填室に、調製された前記医療用液体を充填することと、
    をさらに含む、請求項4または5に記載の方法。
    Preparing the medical fluid at the time of use by introducing or dissolving or dispersing the lyophilized product into the vial holding the lyophilized product therein,
    Filling the prepared medical liquid into a filling chamber formed inside the syringe outer cylinder and the gasket,
    The method according to claim 4, further comprising:
  7.  前記シリコーンオイルは、前記バイアルの内表面または前記バイアルの栓の内表面に配置されたシリコーンオイルに由来する、請求項6に記載の方法。 7. The method of claim 6, wherein the silicone oil is derived from a silicone oil disposed on an inner surface of the vial or an inner surface of a stopper of the vial.
  8.  前記タンパク質製剤が血液凝固第VIII因子製剤である、請求項1~7のいずれか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the protein preparation is a blood coagulation factor VIII preparation.
  9.  前記フィルターは、前記シリンジの排出口に接合可能に構成されており、
     前記医療用液体から前記シリコーンオイルを除去する際に、前記シリンジの排出口に前記フィルターを接合することをさらに含む、請求項1~8のいずれか1項に記載の方法。
    The filter is configured to be connectable to an outlet of the syringe,
    The method according to any one of claims 1 to 8, further comprising joining the filter to an outlet of the syringe when removing the silicone oil from the medical liquid.
  10.  前記シリンジの排出口は、カテーテルの一端に接合可能に構成されており、
     前記フィルターは、前記カテーテルの他端に接合可能に構成されており、
     前記医療用液体から前記シリコーンオイルを除去する際に、前記シリンジの排出口に前記一端が接合されたカテーテルの前記他端に前記フィルターを接合することをさらに含む、請求項1~8のいずれか1項に記載の方法。
    The outlet of the syringe is configured to be connectable to one end of the catheter,
    The filter is configured to be connectable to the other end of the catheter,
    9. The method according to claim 1, further comprising, when removing the silicone oil from the medical liquid, joining the filter to the other end of the catheter having the one end joined to an outlet of the syringe. Item 2. The method according to item 1.
  11.  前記フィルターの構成材料は、ポリエーテルスルホンまたはポリフッ化ビニリデンの少なくとも一方である、請求項1~10のいずれか1項に記載の方法。 The method according to any one of claims 1 to 10, wherein the constituent material of the filter is at least one of polyethersulfone and polyvinylidene fluoride.
  12.  前記フィルターの構成材料は、親水性ポリエーテルスルホンまたは親水性ポリフッ化ビニリデンの少なくとも一方である、請求項1~10のいずれか1項に記載の方法。 The method according to any one of claims 1 to 10, wherein the constituent material of the filter is at least one of hydrophilic polyethersulfone and hydrophilic polyvinylidene fluoride.
  13.  シリンジ用外筒と、前記シリンジ用外筒の内部を液密に摺動可能なガスケットと、を備え、前記シリンジ用外筒の内周面または前記ガスケットの外周面にシリコーンオイル層が配置されてなり、前記シリンジ用外筒および前記ガスケットの内部に形成された充填室にタンパク質製剤を含有する医療用液体が充填されたプレフィルドシリンジと、
     前記プレフィルドシリンジを用いて前記医療用液体を投与する際に、前記医療用液体からシリコーンオイルを除去するために用いられる、平均孔径の円相当径が0.6μm以下であるフィルターと、
    を有する、医療用液体投与用デバイス。
    A syringe outer cylinder, and a gasket capable of sliding inside the syringe outer cylinder in a liquid-tight manner, wherein a silicone oil layer is disposed on an inner peripheral surface of the syringe outer cylinder or an outer peripheral surface of the gasket. A prefilled syringe filled with a medical liquid containing a protein preparation in a filling chamber formed inside the syringe outer cylinder and the gasket,
    When administering the medical liquid using the pre-filled syringe, used to remove silicone oil from the medical liquid, a filter having a circle equivalent diameter of an average pore diameter of 0.6 μm or less,
    A medical liquid administration device, comprising:
  14.  前記フィルターは、前記シリンジの排出口に接合可能に構成されている、請求項13に記載の医療用液体投与用デバイス。 The medical liquid administration device according to claim 13, wherein the filter is configured to be connectable to an outlet of the syringe.
  15.  一端が前記シリンジの排出口に接合可能に構成されたカテーテルをさらに有し、
     前記フィルターは、前記カテーテルの他端に接合可能に構成されている、請求項13に記載の医療用液体投与用デバイス。
    One end further comprises a catheter configured to be connectable to the outlet of the syringe,
    The medical liquid administration device according to claim 13, wherein the filter is configured to be connectable to the other end of the catheter.
  16.  内部にタンパク質製剤の凍結乾燥物を保持しているバイアルと、
     シリンジ用外筒と、前記シリンジ用外筒の内部を液密に摺動可能なガスケットと、を備え、前記シリンジ用外筒および前記ガスケットの内部に形成された充填室に前記凍結乾燥物を溶解または分散させるための溶解液が充填されたプレフィルドシリンジと、
     前記プレフィルドシリンジを用いて前記タンパク質製剤が前記溶解液に溶解または分散した医療用液体を投与する際に、前記医療用液体からシリコーンオイルを除去するために用いられる、平均孔径の円相当径が0.6μm以下であるフィルターと、
    を有する、医療用液体投与用デバイス。
    A vial holding a lyophilized protein preparation inside,
    A syringe outer cylinder, and a gasket that can slide inside the syringe outer cylinder in a liquid-tight manner, wherein the lyophilized product is dissolved in a filling chamber formed inside the syringe outer cylinder and the gasket. Or a prefilled syringe filled with a dissolving solution for dispersing,
    When administering the medical liquid in which the protein preparation is dissolved or dispersed in the dissolving liquid using the prefilled syringe, the circle equivalent diameter of the average pore diameter used for removing silicone oil from the medical liquid is 0. .6 μm or less;
    A medical liquid administration device, comprising:
  17.  前記フィルターは、前記プレフィルドシリンジの排出口に接合可能に構成されている、請求項16に記載の医療用液体投与用デバイス。 The medical liquid administration device according to claim 16, wherein the filter is configured to be connectable to an outlet of the prefilled syringe.
  18.  一端が前記プレフィルドシリンジの排出口に接合可能に構成されたカテーテルをさらに有し、
     前記フィルターは、前記カテーテルの他端に接合可能に構成されている、請求項16に記載の医療用液体投与用デバイス。
    One end further comprises a catheter configured to be connectable to the outlet of the prefilled syringe,
    The medical liquid administration device according to claim 16, wherein the filter is configured to be connectable to the other end of the catheter.
  19.  前記タンパク質製剤が血液凝固第VIII因子製剤である、請求項13~18のいずれか1項に記載の医療用液体投与用デバイス。 デ バ イ ス The medical liquid administration device according to any one of claims 13 to 18, wherein the protein preparation is a blood coagulation factor VIII preparation.
  20.  前記フィルターの構成材料は、ポリエーテルスルホンまたはポリフッ化ビニリデンの少なくとも一方である、請求項13~19のいずれか1項に記載の医療用液体投与用デバイス。 20. The medical liquid administration device according to any one of claims 13 to 19, wherein the constituent material of the filter is at least one of polyethersulfone and polyvinylidene fluoride.
  21.  前記フィルターの構成材料は、親水性ポリエーテルスルホンまたは親水性ポリフッ化ビニリデンの少なくとも一方である、請求項13~19のいずれか1項に記載の方法。 20. The method according to claim 13, wherein a constituent material of the filter is at least one of hydrophilic polyethersulfone and hydrophilic polyvinylidene fluoride.
  22.  平均孔径の円相当径が0.6μm以下であるフィルターであって、
     請求項1~12のいずれか1項に記載の方法に用いられる、フィルター。
    A filter having a circle equivalent diameter of an average pore diameter of 0.6 μm or less,
    A filter used in the method according to any one of claims 1 to 12.
  23.  構成材料がポリエーテルスルホンまたはポリフッ化ビニリデンの少なくとも一方である、請求項22に記載のフィルター。 23. The filter according to claim 22, wherein the constituent material is at least one of polyethersulfone and polyvinylidene fluoride.
  24.  構成材料が親水性ポリエーテルスルホンまたは親水性ポリフッ化ビニリデンの少なくとも一方である、請求項23に記載のフィルター。 24. The filter according to claim 23, wherein the constituent material is at least one of hydrophilic polyethersulfone and hydrophilic polyvinylidene fluoride.
PCT/JP2019/030068 2018-07-31 2019-07-31 Method for removing silicone oil when administering protein preparation WO2020027220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020534718A JPWO2020027220A1 (en) 2018-07-31 2019-07-31 How to remove silicone oil when administering protein preparations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862712568P 2018-07-31 2018-07-31
US62/712,568 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020027220A1 true WO2020027220A1 (en) 2020-02-06

Family

ID=69230888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030068 WO2020027220A1 (en) 2018-07-31 2019-07-31 Method for removing silicone oil when administering protein preparation

Country Status (2)

Country Link
JP (1) JPWO2020027220A1 (en)
WO (1) WO2020027220A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172745A (en) * 1987-01-12 1988-07-16 Terumo Corp Hydrophilic porous polyvinylidene fluoride membrane and its production
JP2000350770A (en) * 1999-05-07 2000-12-19 Carl Zeiss:Fa Medical glass container
JP2008006587A (en) * 2006-06-27 2008-01-17 Kr Business:Kk Inner surface coated glass container and its manufacturing method
JP2008266524A (en) * 2007-04-24 2008-11-06 Hisamitsu Pharmaceut Co Inc Method for sterilizing chemical fluid, pre-filled syringe and method for producing the same
JP2009263231A (en) * 2007-02-13 2009-11-12 Ajinomoto Co Inc Method for inactivating virus by using slightly acidic arginine as additive
JP2012205769A (en) * 2011-03-29 2012-10-25 Terumo Corp Apparatus for preparing drug
JP2017066073A (en) * 2015-09-29 2017-04-06 テルモ株式会社 Aqueous formulations for injection used in treatment of inflammatory autoimmune disease and storage methods thereof
WO2018051312A1 (en) * 2016-09-19 2018-03-22 Lupin Limited In-line filter for protein/peptide drug administration

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172745A (en) * 1987-01-12 1988-07-16 Terumo Corp Hydrophilic porous polyvinylidene fluoride membrane and its production
JP2000350770A (en) * 1999-05-07 2000-12-19 Carl Zeiss:Fa Medical glass container
JP2008006587A (en) * 2006-06-27 2008-01-17 Kr Business:Kk Inner surface coated glass container and its manufacturing method
JP2009263231A (en) * 2007-02-13 2009-11-12 Ajinomoto Co Inc Method for inactivating virus by using slightly acidic arginine as additive
JP2008266524A (en) * 2007-04-24 2008-11-06 Hisamitsu Pharmaceut Co Inc Method for sterilizing chemical fluid, pre-filled syringe and method for producing the same
JP2012205769A (en) * 2011-03-29 2012-10-25 Terumo Corp Apparatus for preparing drug
JP2017066073A (en) * 2015-09-29 2017-04-06 テルモ株式会社 Aqueous formulations for injection used in treatment of inflammatory autoimmune disease and storage methods thereof
WO2018051312A1 (en) * 2016-09-19 2018-03-22 Lupin Limited In-line filter for protein/peptide drug administration

Also Published As

Publication number Publication date
JPWO2020027220A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US6544233B1 (en) Pre-filled syringe
JP5449373B2 (en) System for restoration of powdered drugs
EP0278015B1 (en) Variable-volume vented container
US9216138B2 (en) Self-venting cannula assembly
CN102883763B (en) For providing the system and method for the aerofluxus dangerous drug venous transfusion external member of closing
JP7442568B2 (en) Syringe adapter with suction assembly
WO2004037329A1 (en) Method of producing syringe, cap, and prefilled syringe
MX2013001018A (en) Blunt needle safety drug delivery system.
JP6033088B2 (en) Safe drug delivery system
US4952210A (en) Parenteral fluid administration set
US4998926A (en) Parenteral fluid administration set
CN106714765B (en) Device for connecting puncture bottles, corresponding method, hose or cartridge set and treatment unit
WO2016153003A1 (en) Medical resin-made hollow needle, outer cylinder provided with puncture part, and pre-filled syringe
JP2014533542A (en) Removal of barrier elements
US6773427B2 (en) Infusion container
KR20220002472A (en) Liquid Delivery Device With Dual Lumen IV Spike
JP3811005B2 (en) Medical container
WO2020027220A1 (en) Method for removing silicone oil when administering protein preparation
RU2704016C2 (en) Injection preparation system and method
JP3949124B2 (en) Cap and prefilled chemical container
JP3688629B2 (en) Syringe
US10874789B2 (en) Medical fluid delivery system
JPH0759865A (en) Injection container
JP3274004B2 (en) Syringe
JP3313807B2 (en) Syringe, syringe container and syringe body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534718

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845537

Country of ref document: EP

Kind code of ref document: A1