WO2020027110A1 - 無細胞系でdnaを編集する方法 - Google Patents

無細胞系でdnaを編集する方法 Download PDF

Info

Publication number
WO2020027110A1
WO2020027110A1 PCT/JP2019/029793 JP2019029793W WO2020027110A1 WO 2020027110 A1 WO2020027110 A1 WO 2020027110A1 JP 2019029793 W JP2019029793 W JP 2019029793W WO 2020027110 A1 WO2020027110 A1 WO 2020027110A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
enzyme
reaction solution
reaction
sequence
Prior art date
Application number
PCT/JP2019/029793
Other languages
English (en)
French (fr)
Inventor
正幸 末次
彩子 俵木
功希 加納
Original Assignee
オリシロジェノミクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201980047136.9A priority Critical patent/CN112424351B/zh
Priority to CA3106822A priority patent/CA3106822C/en
Priority to RU2021101688A priority patent/RU2766717C1/ru
Priority to JP2020534660A priority patent/JP7025552B2/ja
Priority to EP19844229.5A priority patent/EP3831941A4/en
Priority to BR112021001473-0A priority patent/BR112021001473A2/pt
Application filed by オリシロジェノミクス株式会社 filed Critical オリシロジェノミクス株式会社
Priority to SG11202100125WA priority patent/SG11202100125WA/en
Priority to KR1020217001327A priority patent/KR102520700B1/ko
Priority to US17/260,071 priority patent/US20210277385A1/en
Priority to AU2019315179A priority patent/AU2019315179B2/en
Publication of WO2020027110A1 publication Critical patent/WO2020027110A1/ja
Priority to IL280203A priority patent/IL280203A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/125Rolling circle

Definitions

  • the present invention relates to a method for editing DNA in a cell-free system.
  • Genome editing is a technique for modifying a target gene as intended using a target sequence-specific nuclease.
  • endonucleases such as CRISPR-Cas9, ZFN, and TALEN are known.
  • the genome editing technology has made it possible to edit a target DNA sequence in cells in many types of organisms, from bacteria to humans (Non-Patent Documents 1 to 3). Because target sequence-specific endonuclease is an enzyme that cuts DNA double strands, DNA double strand breaks must be followed by DNA repair processes in cells to obtain the desired edited genome. There is. When a new DNA sequence is inserted into the genome, the repair process by homologous recombination functions.
  • the desired DNA sequence can be inserted into the cleavage site by recombination using the homologous sequence.
  • NHEJ non-homologous end joining
  • Breakage of DNA duplexes by target sequence-specific endonucleases not only triggers these repair processes in cells, but also as a counterselection that selectively inactivates unedited and left behind DNA. It also has a function. That is, the edited DNA is no longer subject to cleavage by the target sequence-specific endonuclease, and is amplified through the replication process in cells, whereas the unedited DNA is exposed to double-strand breaks. To continue, amplification in the cell is suppressed.
  • Non-patent document 4 a system using a RecET recombinase of a prophage
  • Non-patent documents 5 and 6 are known.
  • the end of the double-stranded DNA fragment introduced into Escherichia coli becomes single-stranded, and this portion is paired with the single-stranded portion exposed during DNA replication on the genome, A recombination reaction is guided.
  • Non-Patent Document 7 Even if not a double-stranded DNA fragment, short single-stranded DNA, that is, oligo DNA, can be introduced into Escherichia coli, and the oligo DNA can be paired with the exposed single strand, and base substitution can be introduced into the genome.
  • a technique for editing DNA in a cell-free system a technique using the polymerase chain reaction (PCR) has been conventionally known.
  • PCR polymerase chain reaction
  • a primer DNA containing a mutation such as a base substitution, deletion, or addition to amplify a template DNA by a PCR method or amplify a ligation product of DNA fragments by a PCR method to use cells. It is possible to prepare a product obtained by artificially editing a DNA sequence without using a DNA sequence.
  • the target sequence cleavage system by CRISPR-Cas9 can be used in vitro.
  • CRISPR-Cas9 was used to clone a 100-kb region of the genome into an E. coli plasmid (Non-Patent Document 9).
  • genomic cleavage at a target site by CRISPR-Cas9 and ligation reaction between a cleaved fragment and a plasmid are performed in a test tube.
  • Patent Document 1 As techniques for linking DNA fragments in a cell-free system, an Infusion method (Patent Document 1), a Gibson Assembly method (Patent Documents 2 and 3), a Recombination Assembly method (Patent Document 4), and the like are known.
  • PCR As a technique for amplifying DNA in a cell-free system, PCR is widely used, but the length of DNA that can be amplified is limited due to the processivity of the enzyme used. In the PCR method, it is usually difficult to amplify long-chain DNA exceeding 50 kb.
  • DNA In the DNA editing method using cells as described above, advanced techniques are required for culturing, introducing enzymes necessary for the reaction into the cells, and much time and labor are required. In addition, when a DNA sequence generated by editing shows cytotoxicity, there is a problem that a desired product cannot be obtained. Also, the introduction of DNA into cells becomes more difficult as the DNA becomes longer.
  • the present invention provides a method for editing DNA in a cell-free system, which can be performed without using cells until the step of finally amplifying a DNA editing product selectively.
  • the present inventors have conducted intensive studies and found that a technique for amplifying DNA isothermally in a cell-free system or for amplifying DNA by repeating incubation at two temperatures of 65 ° C. or less in a cell-free system and a cell-free system It has been found that a DNA editing product can be amplified without using cells by combining the DNA editing (modification) technique available in the above. Furthermore, they have found that by incorporating a step of specifically cutting unedited DNA, the yield of a DNA edited product can be significantly improved. The present invention has been completed by further research based on these findings.
  • a method for editing DNA in a cell-free system comprising the following steps: (1) a step of introducing a deletion, substitution, or addition into a target site of DNA in a cell-free system; and (2) a step of introducing the DNA having the deletion, substitution, or addition introduced in step (1) into a cell-free system.
  • Amplifying in the system wherein the DNA is amplified under temperature conditions that incubate at a temperature in the range of 20 ° C.
  • a method for editing DNA in a cell-free system comprising the following steps: (1) a step of introducing a deletion, substitution, or addition into a target site of DNA in a cell-free system; and (2) a step of introducing the DNA having the deletion, substitution, or addition introduced in step (1) into a cell-free system.
  • Amplifying in the system wherein the DNA is amplified under temperature conditions in which the DNA is incubated isothermally or under a temperature cycle of repeated incubation at two temperatures of 65 ° C.
  • a method for editing DNA in a cell-free system comprising the following steps: (1) a step of introducing a deletion, substitution, or addition into a target site of DNA in a cell-free system; and (2) a step of introducing the DNA having the deletion, substitution, or addition introduced in step (1) into a cell-free system. Amplifying in the system, wherein the DNA is incubated at a constant temperature in the range of 20 ° C. to 80 ° C. or under a temperature cycle in which the incubation is repeated at two temperatures below 65 ° C.
  • step (2) is performed in the presence of an artificial DNA-cleaving enzyme that specifically cuts DNA into which no deletion, substitution, or addition has been introduced;
  • Step (2) comprises the following steps: (2-1) (a) a first group of enzymes that catalyze the replication of circular DNA, and (b) a second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane. And (c) a reaction mixture comprising a reaction solution containing a third group of enzymes that catalyze the separation reaction of the two sister circular DNAs, and the circular DNA into which the deletion, substitution, or addition has been introduced in step (1). Preparing; and (2-2) incubating the reaction mixture prepared in step (2-1) at a constant temperature in the range of 20 ° C. to 80 ° C., or at two temperatures of 65 ° C. or less.
  • Step (1) comprises the following steps: (1-1) a step of preparing at least one linear DNA by cleaving the DNA at a target site by causing the DNA to act on the DNA; (1-2) preparing a reaction solution containing the linear DNA prepared in step (1-1), one or more DNA fragments, and a protein having RecA family recombinase activity; and (1-3) The linear DNA and the one or more types of DNA fragments are linked to each other in regions where the nucleotide sequences are homologous or in regions where the nucleotide sequences are complementary, and the one or more types of DNA fragments are linked to the target site of the template DNA.
  • Step (1) comprises the following steps: A step of performing a DNA replication reaction in the presence of a single-stranded DNA for introduction of deletion, substitution, or addition, wherein the single-stranded DNA hybridizes to a target site of the DNA under the conditions of the replication reaction. Can; The method according to any one of [1] to [10], comprising: [13] In any one of [1] to [12], in the step (2), the DNA is amplified under a temperature condition of incubating under a temperature cycle in which incubation at 30 ° C. or higher and incubation at 27 ° C. or lower are repeated. The method according to any one of the above. [14] the method of any one of [1] to [13], wherein the size of the DNA into which the deletion, substitution, or addition has been introduced is 50 kb or more;
  • a method for amplifying a DNA editing product, particularly a long-chain DNA editing product, without using cells can be provided.
  • DNA can be amplified under relatively low temperature conditions, so that it was difficult to combine with a conventional DNA amplification technique, for example, a sequence using an artificial DNA-cleaving enzyme such as CRISPR-Cas9. Combined with specific DNA cleavage technology, etc., the DNA editing product can be efficiently amplified.
  • FIG. 3 is a schematic diagram showing amplification of a circular DNA after insertion by RCR (Replication Cycle Reaction).
  • FIG. 3 is a view showing the structure of pOri8 (a circular DNA of 9.5 kb).
  • FIG. 2 is a view showing that pOri8 was sequence-specifically cleaved by CRISPR-Cas9.
  • FIG. 3 is a view showing the structure of pMSR227 (a circular DNA of 205 kb).
  • FIG. 3 is a schematic diagram showing that by performing RCR in the presence of CRISPR-Cas9, amplification of an unmodified template DNA can be inhibited, and a target ligation product can be specifically amplified. Diagram showing that by adding RCR by adding CRISPR-Cas9 to the reaction system, which cuts the template DNA but does not cut the lacZ-inserted DNA, it is possible to amplify the lacZ-inserted circular DNA with high efficiency. It is.
  • FIG. 3 shows the structure of pMSR227 (205227kb) into which lacZ (3.3 kb) was inserted.
  • FIG. 3 is a diagram confirming the structure of pMSR227 into which lacZ has been inserted by restriction enzyme XhoI digestion.
  • FIG. 7 is a schematic diagram showing a step of linking and circularizing long DNA fragments of two fragments in Example 3 by RA via two adapter fragments.
  • FIG. 9 is a diagram showing amplification of long circular DNA by RA-RCR of Example 3.
  • FIG. 3 is a diagram confirming the size of a plasmid recovered from Escherichia coli transformed with the ligation product of 183 kb in Example 3.
  • FIG. 3 is a diagram confirming the structure of a 183 kb ligated product obtained in Example 3.
  • FIG. 9 is a view showing the structure of lacZ mutant pPKOZ (pPKOZins and pPKOZmis) used in Example 4.
  • FIG. 14 is a view showing an experimental system of Example 4. The partial sequences downstream of the initiation codon of lacZ wt, lacZ ins, and lacZ mis used in Example 4 (the respective base sequences are shown in SEQ ID NOs: 58 to 60), and oligonucleotides for introducing base substitution (30-mer)
  • FIG. 7 shows the sequence (SEQ ID NO: 17, SUE1355).
  • FIG. 4 is a graph showing the results of examining the effect of the concentration of an oligonucleotide for introducing a base substitution on the amplification efficiency (ie, the ratio of blue colonies) of a plasmid into which a base substitution has been introduced, for a long-chain DNA. The result of electrophoresis is shown.
  • FIG. 4 is a graph showing the results of examining the effect of the concentration of an oligonucleotide for introducing a base substitution on the amplification efficiency (ie, the ratio of blue colonies) of a plasmid into which a base substitution has been introduced, for a long-chain DNA. The results of blue-white determination of E. coli transformed colonies are shown.
  • This figure shows that, for long-chain DNA, by performing RCR by adding CRISPR-Cas9, which specifically cleaves the plasmid before the base substitution introduction, to the reaction system, a base substitution introduction rate close to 100% was obtained. is there. The result of electrophoresis is shown.
  • This figure shows that, for long-chain DNA, by performing RCR by adding CRISPR-Cas9, which specifically cleaves the plasmid before the base substitution introduction, to the reaction system, a base substitution introduction rate close to 100% was obtained. is there.
  • the results of blue-white determination of E. coli transformed colonies are shown.
  • FIG. 14 is a diagram showing a partial sequence (SEQ ID NO: 61) near the start codon of pPKOZins used in Example 9, and a sequence (SEQ ID NO: 56) of an oligonucleotide (60-mer) for modification (3-base substitution).
  • FIG. 14 shows a partial sequence (SEQ ID NO: 62) near the start codon of pPKOZ used in Example 9, and a sequence (SEQ ID NO: 57) of an oligonucleotide (60-mer) for modification (4-base insertion).
  • FIG. 3 is a view showing the results of examining the effect of oligonucleotide concentration. The result of electrophoresis is shown.
  • FIG. 3 is a graph showing the results of examining the effect of the concentration of a modification (3-base substitution) oligonucleotide on the amplification efficiency (ie, the ratio of blue colonies) of a 3-base-substituted plasmid. The results of blue-white determination of E. coli transformed colonies are shown.
  • FIG. 4 is a view showing the results of examining the effect of the concentration of a modification (4-base insertion) oligonucleotide on amplification efficiency (ie, the percentage of white colonies) of a 4-base inserted plasmid. The results of blue-white determination of E. coli transformed colonies are shown. It is a figure which shows the EcoRI cleavage site of pPKOZ (wt).
  • FIG. 3 is a view showing an EcoRI cleavage site of pPKOZ4ins.
  • FIG. 4 shows the results of confirming the plasmid into which four bases have been inserted by restriction enzyme treatment. The result of electrophoresis is shown.
  • 2 shows the structure of pK3OV_insAC.
  • FIG. 21 is a view showing an experimental system of Example 10.
  • FIG. 14 shows the sequence of vioAins of pP3OV_insAC (SEQ ID NO: 68) and the sequence of an oligonucleotide (60-mer) for introducing a base substitution (SEQ ID NO: 65, SUE4577) used in Example 10.
  • FIG. 14 is a diagram showing a sequence of vioC ins of pP3OV_insAC (SEQ ID NO: 69) used in Example 10 and a sequence of an oligonucleotide (60-mer) for introducing a base substitution (SEQ ID NO: 66, SUE4381).
  • FIG. 14 shows the sequence of vioAins of pP3OV_insAC (SEQ ID NO: 68) and the sequence of an oligonucleotide (60-mer) for introducing a base substitution (SEQ ID NO: 65, SUE4577) used in Example 10.
  • FIG. 14 is a
  • FIG. 4 is a graph showing the results of examining the effect of the reaction time with an oligonucleotide for introducing a base substitution on the ratio of a plasmid having two simultaneous base substitutions (ie, the ratio of purple colonies). The results of color determination of E. coli transformed colonies are shown.
  • the present invention relates to a method for editing DNA in a cell-free system, comprising the following steps: (1) a step of introducing a deletion, substitution, or addition into a target site of DNA in a cell-free system; and (2) removing the DNA into which the deletion, substitution, or addition has been introduced in step (1), Amplifying in the system, wherein the DNA is amplified under temperature conditions of incubating at a temperature ranging from 20 ° C. to 80 ° C .; And the method (herein, sometimes referred to as the method of the present invention).
  • editing DNA in a cell-free system refers to modifying a target site in DNA and amplifying the obtained DNA without using cells.
  • the DNA before modification may be referred to as a template DNA.
  • intracellular enzymes or the like necessary for modifying DNA present in cells.
  • the template DNA may be single-stranded or double-stranded.
  • a double strand is formed in step (1) or (2) of the method of the present invention. Therefore, a double-stranded DNA in which the target site in the template DNA has been modified can be obtained by the method of the present invention.
  • the template DNA may be a circular DNA or a linear DNA.
  • the size of the DNA into which the deletion, substitution, or addition has been introduced may vary depending on the technique used in the steps (1) and (2), but may be, for example, 1 kb (1000 base length) or more, 5 kb or more, or 8.8 kb or more.
  • kb or more 9.5 kb or more, 10 kb or more, 20 kb or more, 30 kb or more, 40 kb or more, 50 kb or more, 60 kb or more, 70 kb or more, 80 kb or more, 90 kb or more, 100 kb or more, 101 kb or more 183 kb or more, 200 kb or more, 205 kb or more, 300 kb or more, 500 kb or more, 1000 kb or more, or 2000 kb or more.
  • step (2) when the RCR method described later is used, amplification could not be performed by the conventional PCR method, for example, 50 kb or more, 60 kb or more, 70 kb or more, 80 kb or more, 90 kb or more, 100 kb or more.
  • a modified DNA having a size of at least 101 kb, at least 183 kb, at least 200 kb, at least 205 kb, at least 300 kb, at least 500 kb, at least 1000 kb, or at least 2,000 kb can be obtained.
  • the upper limit of the size of the DNA into which the deletion, substitution, or addition has been introduced is not particularly limited, but may be, for example, about 10,000 kb.
  • Step (1) in the method of the present invention is a step of modifying DNA in a cell-free system.
  • the “cell-free system” is a system that does not directly use cells such as Escherichia coli but instead uses enzymes and the like present in each cell such as Escherichia coli.
  • ⁇ modification '' of DNA means that one nucleotide on the DNA strand is replaced with another nucleotide, one or more nucleotides on the DNA strand are deleted, and between nucleotides on the DNA strand. This means that one or more nucleotides are inserted, or one or more nucleotides are added to the end of the DNA strand.
  • insertion and addition of nucleotides are collectively referred to as "addition”. Ligation of one DNA fragment with another DNA fragment is also included in the addition.
  • the number of nucleotides to be deleted, substituted or added may be any number as long as it is one or more. Without limitation, 1 nucleotide or more, 2 nucleotides or more, 3 nucleotides or more, 4 nucleotides or more, 5 nucleotides or more, 8 nucleotides or more, 10 nucleotides or more, 12 nucleotides or more, 15 nucleotides or more, 18 nucleotides or more, preferably 20 nucleotides or more .
  • the upper limit of the number of nucleotides to be deleted, substituted or added may vary depending on the size of the template DNA, for example, 5000 nucleotides or less, 4000 nucleotides or less, 3000 nucleotides or less, 2000 nucleotides or less, 1000 nucleotides or less, 500 nucleotides.
  • it may be 300 nucleotides or less, 200 nucleotides or less, 150 nucleotides or less, 120 nucleotides or less, 100 nucleotides or less, 80 nucleotides or less, 70 nucleotides or less, 50 nucleotides or less, 30 nucleotides or less.
  • one or more entire genes can be deleted, substituted or added to a template DNA. Nucleotides may be deleted, substituted, or added at two or more places in one DNA.
  • a site-specific mutagenesis technique known in the art can be used.
  • a technique of linking a plurality of DNAs such as the RA method (see Patent Document 4), can also be used.
  • the RA method for example, first, a reaction solution containing two or more types of DNA fragments and a protein having RecA family recombinase activity is prepared. Next, in the reaction solution, the two or more types of DNA fragments are linked to each other in regions where the base sequences are homologous or in regions where the base sequences are complementary to each other to obtain a linear or circular DNA.
  • Site-directed mutagenesis techniques include, for example, performing a DNA replication reaction in the presence of a single-stranded DNA such as an oligonucleotide containing a desired mutation (for example, substitution, deletion, or addition) to obtain the mutation. And a method for producing a double-stranded DNA into which is introduced.
  • the single-stranded DNA used in the present invention can be produced by a conventional method such as chemical synthesis. Alternatively, two or more single-stranded DNAs may be used to introduce mutations at two or more sites in one DNA at the same time.
  • a single-stranded DNA containing a mutation used for introducing a mutation is also referred to as a single-stranded DNA for introducing a mutation.
  • a single-stranded DNA designed to contain a desired mutation is contained in a single-stranded region exposed in a replication reaction of a template DNA. Anneals and is incorporated into the complementary strand.
  • a double-stranded DNA containing a mutation in both strands can be obtained.
  • the techniques for amplifying DNA in a cell-free system which have been described in the description of step (2), can be used.
  • the mutation introduction in step (1) and the DNA amplification in step (2) can also be coupled.
  • mutation induction and amplification of DNA can be performed in one reaction.
  • a site-specific mutation can be introduced by incorporating a single-stranded DNA containing a mutation into DNA in a DNA replication reaction in a cell-free system, particularly in the RCR method.
  • the primers define the amplification region, and when single-stranded DNA for mutagenesis is added to the reaction system, it can also function as a pseudo primer.
  • a DNA strand is also synthesized from the single-stranded DNA containing the mutation, and a nick is formed between the DNA strand and the DNA synthetic strand that has progressed from the original primer to the single-stranded DNA containing the mutation. Exists and the full-length target product is not obtained.
  • the DNA replication reaction is preferably performed using a DNA amplification technique without using primers such as the RCR method.
  • the length of the single-stranded DNA used for site-directed mutagenesis is not particularly limited as long as the single-stranded DNA can hybridize to the target site under the conditions of the DNA replication reaction. It may be set appropriately according to the method used for the DNA replication reaction, for example, 10 bases or more, 15 bases or more, 20 bases or more, 30 bases or more, 40 bases or more, 50 bases or more, or 60 bases or more, and 5000
  • the number of bases can be less than 4,000, less than 4,000, less than 3,000, less than 2,000, less than 1,000, less than 500, less than 100, less than 80, less than 75, less than 70, or less than 65.
  • the length of the single-stranded DNA for mutagenesis can be, for example, 40 bases to 75 bases, 50 bases to 70 bases, or 55 bases to 65 bases.
  • the sequence of the mutation-introducing single-stranded DNA does not completely match the sequence of the target site. At least a part of the region of the strand DNA may be hybridized to the target site. It is preferable that both ends of the single-stranded DNA for mutagenesis anneal to a target site of the template DNA.
  • the length of annealing to the template DNA may vary depending on the length of the single-stranded DNA, for example, 5 bases or more, 10 bases or more, 20 bases or more, 30 bases or more, 40 bases or more, 50 bases or more, 60 bases or more from the end. It can be more than one base, or more than 100 bases.
  • the concentration of the single-stranded DNA for mutagenesis in the reaction system is not particularly limited as long as the DNA replication reaction can proceed. It may be set appropriately according to the method used for the DNA replication reaction, for example, with respect to the total volume of the DNA replication reaction solution, 0.1 ⁇ M ( ⁇ mol / L) or more, 0.15 ⁇ M or more, 0.2 ⁇ M or more, 0.25 ⁇ M or more Or 0.3 ⁇ M or more, and 3 ⁇ M or less, 2.5 ⁇ M or less, 2.0 ⁇ M or less, 1.5 ⁇ M or less, 1.0 ⁇ M or less, or 0.6 ⁇ M or less.
  • the concentration of the single-stranded DNA for mutagenesis in the reaction system may be, for example, 0.1 ⁇ M to 1.5 ⁇ M, 0.15 ⁇ M to 0.1 ⁇ M based on the total volume of the DNA replication reaction solution. It can be 1.0 ⁇ M, 0.2 ⁇ M to 0.6 ⁇ M, or 0.3 ⁇ M to 0.6 ⁇ M.
  • a plurality of DNAs can be ligated using the Recombination Assembly method (hereinafter, RA method; see Patent Document 4).
  • RA method Recombination Assembly method
  • Patent Document 4 an embodiment in which a plurality of DNAs are linked by the RA method will be described.
  • RA method a region where the nucleotide sequences are homologous to each other (hereinafter, sometimes simply referred to as “homologous region”) or a region where the nucleotide sequences are complementary to each other (hereinafter sometimes simply referred to as “complementary region”).
  • homologous region a region where the nucleotide sequences are homologous to each other
  • complementary region a region where the nucleotide sequences are complementary to each other
  • the base sequences are homologous means “the base sequences are identical”, and “the base sequences are complementary” means “the base sequences are complementary to each other”. means.
  • a reaction solution containing two or more types of DNA fragments and a protein having RecA family recombinase activity (hereinafter sometimes referred to as “RecA family recombinase protein”) is used.
  • RecA family recombinase protein a protein having RecA family recombinase activity
  • the two or more DNA fragments are mutually homologous to each other in the region where the base sequences are homologous.
  • linear or circular DNA is obtained.
  • a linear or circular DNA in which two or more DNA fragments are linked may be referred to as a “ligated product”.
  • the DNA fragment to be ligated may be a linear double-stranded DNA fragment or a single-stranded DNA fragment. That is, the linear double-stranded DNA fragments may be connected to each other, the linear double-stranded DNA fragments may be connected to the single-stranded DNA fragments, or the single-stranded DNA fragments may be connected to each other. Good.
  • One or more types of linear double-stranded DNA fragments can be linked to one or more types of single-stranded DNA fragments. When connecting linear double-stranded DNA fragments to each other or a linear double-stranded DNA fragment and a single-stranded DNA fragment, they are connected to each other in a homologous region. When linking single-stranded DNA fragments, they are linked to each other in a complementary region.
  • the reaction solution further contains exonuclease.
  • 3 ′ ⁇ 5 ′ exonuclease acts to make the homologous region single-stranded.
  • the single-stranded homologous region is acted on by the RecA family recombinase protein and the homologous regions complementary to each other are linked to each other, whereby the first linear double-stranded DNA fragment and the second linear double-stranded DNA fragment are joined.
  • the linear double-stranded DNA fragments are ligated.
  • the cutting of the DNA strand by the 3 ′ ⁇ 5 ′ exonuclease may be performed on only one of the first linear double-stranded DNA fragment and the second linear double-stranded DNA fragment.
  • the homologous region of the first linear double-stranded DNA fragment in the single-stranded state is converted to the second linear double-stranded DNA in the double-stranded state in the presence of the RecA family recombinase protein. It acts on the homologous region of the fragment and ligates them.
  • the double-stranded DNA fragment is excised by exonuclease to remove a homologous region. Since the main chain is converted and the ligation reaction is performed in the presence of the RecA family recombinase protein, the ligation efficiency is extremely high. For this reason, in the RA method, a large number of linear double-stranded DNA fragments, which were conventionally difficult, can be ligated by a single reaction.
  • the RA method when single-stranded DNA fragments are linked to each other, digestion by exonuclease is suppressed by the RecA family recombinase protein rapidly forming a filament on each single-stranded DNA fragment. . Thereafter, the homologous regions complementary to each other are linked by the action of the RecA family recombinase protein, whereby the single-stranded DNA fragments are linked to each other.
  • the number of DNA fragments to be ligated by the RA method is 2 (2 fragments) or more, for example, 4 (4 fragments) or more, 5 (5 fragments) or more, 7 (7 fragments) or more, 10 (10 fragments) As described above, the number may be 20 (20 fragments) or more. Although there is no particular upper limit on the number of DNA fragments to be ligated by the RA method, for example, 100 or less (100 fragments) can be ligated. In the RA method, for example, a linear double-stranded DNA fragment of about 50 fragments can be ligated by optimizing reaction conditions and the like.
  • the DNA fragments to be ligated in the RA method can all be ligated to different types of DNA fragments, or can be ligated to include two or more DNA fragments of the same type.
  • the two or more types of DNA fragments to be ligated in the RA method each include a homologous region or a complementary region for ligating to at least one of the other DNA fragments.
  • the RA method when linear double-stranded DNA fragments are linked to each other or between a linear double-stranded DNA fragment and a single-stranded DNA fragment, first, one of the linear double-stranded DNA fragments is excised by exonuclease. The main chain is cut to make the homologous region single-stranded. For this reason, the homologous region is preferably present at the end of the linear double-stranded DNA fragment, but may be near the end.
  • the terminal base of the linear double-stranded DNA fragment among the ends of the homologous region is preferably within 300 bases from the end, more preferably within 100 bases, and within 30 bases. More preferably, it is even more preferably within 10 bases.
  • the digestion by exonuclease is suppressed by the filaments of the RecA family recombinase protein, so the complementary region is present in any of the single-stranded DNA fragments. You may.
  • the nucleotide sequence of the homologous region or the complementary region can be the same nucleotide sequence in all the DNA fragments to be ligated, but in order to ligate in a desired order, a different nucleotide sequence is required for each type of DNA fragment to be ligated. Is preferred. For example, in order to link double-stranded DNA fragment A, double-stranded DNA fragment B and double-stranded DNA fragment C in this order, the downstream end of double-stranded DNA fragment A and the upstream end of double-stranded DNA fragment B And a homologous region b is provided at the downstream end of the double-stranded DNA fragment B and at the upstream end of the double-stranded DNA fragment C.
  • the double-stranded DNA fragment A and the double-stranded DNA fragment B are connected at the homologous region a
  • the double-stranded DNA fragment B and the double-stranded DNA fragment C are connected at the homologous region b.
  • a linear DNA in which the fragment A, the double-stranded DNA fragment B, and the double-stranded DNA fragment C are connected in this order can be obtained.
  • the homologous region c at the downstream end of the double-stranded DNA fragment C and the upstream end of the double-stranded DNA fragment A, the double-stranded DNA fragment A and the double-stranded DNA fragment B Connected at the homologous region a, the double-stranded DNA fragment B and the double-stranded DNA fragment C are connected at the homologous region b, and the double-stranded DNA fragment C and the double-stranded DNA fragment A are connected at the homologous region c, A circular DNA in which the double-stranded DNA fragment A, the double-stranded DNA fragment B, and the double-stranded DNA fragment C are linked in this order can be obtained.
  • the homologous region and the complementary region need only have a base sequence that allows single strands to specifically hybridize with each other in the reaction solution of the ligation reaction. It can be determined as appropriate with reference to the primer design method.
  • the base length of the homologous region is required to be a certain length in order to suppress non-specific hybridization and accurately link the target linear double-stranded DNA fragments to each other, If the base pair length of the homologous region is too long, the ligation efficiency may decrease.
  • the base pair length of the homologous region or the complementary region is preferably 10 base pairs (bp) or more, more preferably 15 bp or more, further preferably 20 bp or more, and particularly preferably 60 bp or more.
  • the base pair length of the homologous region or the complementary region is preferably 500 bp or less, more preferably 300 bp or less, and still more preferably 200 bp or less.
  • the length of the DNA fragments linked to each other is not particularly limited.
  • the length is preferably 50 bp or more, more preferably 100 bp or more, 200 bp or more is more preferable.
  • it is preferably at least 50 b, more preferably at least 100 b, even more preferably at least 200 b.
  • a double-stranded DNA fragment of 325 kbp can also be ligated. The length of the DNA fragments to be ligated may be different for each type.
  • a linear double-stranded DNA fragment to be linked to each other if the entire region of the homologous region or a part thereof is a double-stranded structure in which two single-stranded DNAs are hybridized.
  • the linear double-stranded DNA fragment may be a complete linear double-stranded DNA fragment with no gap or nick, and linear DNA having one or more single-stranded structures. It may be a fragment.
  • the linear double-stranded DNA fragment to be ligated may have blunt ends or sticky ends.
  • a blunt-ended linear double-stranded DNA fragment can also be ligated to a sticky-ended linear double-stranded DNA fragment.
  • the molar ratio of each DNA fragment contained in the reaction solution is preferably made equal to the ratio of the number of molecules of each DNA fragment constituting the target conjugate.
  • the total amount of DNA fragments contained in the reaction solution is not particularly limited. Since a sufficient amount of the ligated product is easily obtained, the total concentration of the DNA fragment contained in the reaction solution at the start of the ligation reaction is preferably 0.01 nM (nmol / L) or more based on the total volume of the reaction solution. , 0.1 nM or more, more preferably 0.3 nM or more, particularly preferably 5.09 nM or more, and most preferably 6.7 nM or more.
  • the total concentration of the DNA fragments contained in the reaction solution at the start of the ligation reaction is preferably 100 nM or less, more preferably 96.027 nM or less, and 50 nM or less is more preferable, 25 nM or less is particularly preferable, and 20 nM or less is most preferable.
  • the size of the conjugate obtained by the ligation reaction is not particularly limited.
  • the size of the obtained conjugate is, for example, preferably 1 kb (1000 base length) or more, more preferably 5 kb or more, still more preferably 10 kb or more, particularly preferably 13 kb or more, and most preferably 20 kb or more.
  • a conjugate having a length of 183 kb or more, preferably 208 kb or more, more preferably 300 kb or more, further preferably 500 kb or more, and particularly preferably 2000 kb or more can be obtained.
  • the upper limit of the size of the conjugate obtained by the ligation reaction is not particularly limited, but can be, for example, about 10,000 kb.
  • the exonuclease used in the RA method is an enzyme that hydrolyzes sequentially from the 3 'end or 5' end of linear DNA.
  • the exonuclease used in the RA method is not particularly limited in its type and biological origin as long as it has an enzymatic activity of sequentially hydrolyzing from the 3 ′ end or 5 ′ end of linear DNA. .
  • a linear double-stranded DNA-specific enzyme such as exonuclease III family type AP (apurinic / apyrimidinic) endonuclease is exemplified.
  • exonuclease III family type AP endonuclease examples include exonuclease III (derived from Escherichia coli), ExoA (Bacillus subtilis homologue of exonuclease III), Mth212 (archaeal homologue of exonuclease III), and AP endonuclease II (exo Nuclease III human homolog).
  • DnaQ superfamily proteins examples include exonuclease I (derived from Escherichia coli), exonuclease T (RNase T), exonuclease X, DNA polymerase III, epsilon subunit, DNA polymerase I, and DNA polymerase II. , T7 DNA polymerase, T4 DNA polymerase, Klenow DNA polymerase 5, Phi29 DNA polymerase, ribonuclease III (RNase D), oligoribonuclease (ORN) and the like.
  • ⁇ exonuclease As the enzyme that sequentially hydrolyzes from the 5 'end (5' to 3 'exonuclease), ⁇ exonuclease, exonuclease VIII, T5 exonuclease, T7 exonuclease, RecJ exonuclease, and the like can be used.
  • 3 ′ ⁇ 5 'exonucleases are preferred.
  • linear double-stranded DNA-specific 3 ' ⁇ 5' exonuclease is more preferable, exonuclease III family type AP endonuclease is more preferable, and exonuclease III is particularly preferable.
  • the exonucleases contained in the reaction solution in the RA method may be both linear double-stranded DNA-specific 3 ' ⁇ 5' exonuclease and single-stranded DNA-specific 3 ' ⁇ 5' exonuclease preferable.
  • a single-stranded DNA-specific 3 ′ ⁇ 5 ′ exonuclease with a linear double-stranded DNA-specific 3 ′ ⁇ 5 ′ exonuclease, a linear double-stranded DNA-specific 3 ′ ⁇ 5 ′ exonuclease
  • the ligation efficiency can be further improved as compared with the case where nuclease is used alone.
  • the linear double-stranded DNA-specific 3 ′ ⁇ 5 ′ exonuclease targets the 3 ′ protruding end.
  • this 3 'protruding end is digested by single-stranded DNA-specific 3' ⁇ 5 'exonuclease, resulting in linear double-stranded DNA-specific 3' ⁇ 5 'exonuclease and ligation by RecA It is presumed that the reaction was promoted.
  • the ligation efficiency is improved by the combined use of single-stranded DNA-specific 3 ′ ⁇ 5 ′ exonuclease.
  • the 3 'prominent secondary formed in the conjugation formed by linear double-stranded DNA-specific 3' ⁇ 5 'exonuclease and RecA is digested by single-stranded DNA-specific 3' exonuclease As a result, it is assumed that the connection efficiency is further improved.
  • the concentration of the exonuclease in the reaction solution for performing the ligation reaction in the RA method is, for example, preferably 1 to 1000 ⁇ mU / ⁇ L, and more preferably 5 to 1000 ⁇ mU / ⁇ L is more preferable, 5 to 500 ⁇ mU / ⁇ L is further preferable, 10 to 150 ⁇ mU / ⁇ L is particularly preferable, and 80 to 150 ⁇ mU / ⁇ L is most preferable.
  • the exonuclease is a linear double-stranded DNA-specific 3 ′ ⁇ 5 ′ exonuclease
  • the linear double-stranded DNA-specific 3 ′ ⁇ 5 ′ in the reaction solution at the start of the ligation reaction is, for example, preferably 5 mU / ⁇ L to 500 mU / ⁇ L, more preferably 5 mU / ⁇ L to 250 mU / ⁇ L, and more preferably 5 mU / ⁇ L to 150 mU / ⁇ L is more preferred, 10 ⁇ mU / ⁇ L to 150 ⁇ mU / ⁇ L is particularly preferred, and 80 to 150 ⁇ mU / ⁇ L is most preferred.
  • the exonuclease is a linear single-stranded DNA-specific 3 ′ ⁇ 5 ′ exonuclease
  • the linear single-stranded DNA-specific 3 ′ ⁇ 5 ′ in the reaction solution at the start of the ligation reaction The concentration of exonuclease is preferably 1 ⁇ mU / ⁇ L to 1000 ⁇ mU / ⁇ L, more preferably 100 ⁇ mU / ⁇ L to 1000 ⁇ mU / ⁇ L, and more preferably 200 ⁇ mU / ⁇ L to 1000 ⁇ mU / ⁇ L, based on the total volume of the reaction solution. More preferred.
  • the concentration of each exonuclease in the reaction solution at the start of the ligation reaction can each be a preferred concentration of each of the exonucleases described above.
  • the RecA family recombinase protein is a single-stranded or double-stranded DNA that is polymerized to form a filament and hydrolyzes to a nucleoside triphosphate such as ATP (adenosine triphosphate). It means a protein that has a degrading activity and has a function of searching for a homologous region and performing homologous recombination (RecA family recombinase activity).
  • RecA family recombinase proteins include prokaryotic RecA homologs, bacteriophage RecA homologs, archaeal RecA homologs, eukaryotic RecA homologs, and the like.
  • RecA homologs Escherichia coli RecA; RecA derived from highly thermophilic bacteria such as Thermus sp. And RecA and the like.
  • the bacteriophage RecA homolog includes T4 phage UvsX and the like, the archaeal RecA homolog includes RadA and the like, and the eukaryotic RecA homolog includes Rad51 and its paralog, Dcm1 and the like.
  • the amino acid sequences of these RecA homologs can be obtained from databases such as NCBI (http://www.ncbi.nlm.nih.gov/).
  • the RecA family recombinase protein used in the RA method may be a wild-type protein, and a RecA family group in which a mutation that deletes, adds or substitutes 1 to 30 amino acids has been introduced into the wild-type protein. It may be a variant that retains the enzyme activity.
  • the variants include variants in which an amino acid substitution mutation that enhances the function of searching for a homologous region in a wild-type protein has been introduced, variants in which various tags have been added to the N-terminus or C-terminus of a wild-type protein, heat resistance (WO 2016/013592) and the like.
  • a tag widely used in expression or purification of a recombinant protein such as a His tag, an HA (hemagglutinin) tag, a Myc tag, and a Flag tag can be used.
  • the wild-type RecA family recombinase protein means a protein having the same amino acid sequence as that of the RecA family recombinase protein retained in an organism isolated from the natural world.
  • a variant retaining RecA family recombinase activity is preferable.
  • the variant include, for example, an F203W mutant in which the phenylalanine at amino acid position 203 of Escherichia coli RecA is substituted with tryptophan, and among various RecA homologs, tryptophan was substituted for phenylalanine corresponding to the phenylalanine at position 203 of Escherichia coli RecA. Mutants.
  • the amount of the RecA family recombinase protein in the reaction solution for performing the ligation reaction in the RA method is not particularly limited.
  • the concentration of the RecA family recombinase protein in the reaction solution for performing the ligation reaction in the RA method may be, for example, 0.01 ⁇ M to 100 ⁇ M ( ⁇ mol / L) based on the total volume of the reaction solution at the start of the ligation reaction. Is preferably 0.1 ⁇ M to 100 ⁇ M, more preferably 0.1 ⁇ M to 50 ⁇ M, even more preferably 0.5 ⁇ M to 10 ⁇ M, and particularly preferably 1.0 ⁇ M to 5.0 ⁇ M.
  • the reaction solution for performing the ligation reaction contains at least one of nucleoside triphosphate and deoxynucleotide triphosphate.
  • the nucleoside triphosphates contained in the reaction solution of the ligation reaction in the RA method include ATP, GTP (guanosine triphosphate), CTP (cytidine triphosphate), UTP (uridine triphosphate), and m5UTP (5-methyluridine).
  • the deoxynucleotide triphosphates contained in the reaction solution of the ligation reaction in the RA method include dATP (deoxyadenosine triphosphate), dGTP (deoxyguanosine triphosphate), dCTP (deoxycytidine triphosphate), and dTTP (deoxyTPD). It is preferable to use one or more selected from the group consisting of thymidine triphosphate), and it is particularly preferable to use dATP.
  • the total amount of nucleoside triphosphates and deoxynucleotide triphosphates contained in the reaction solution is not particularly limited as long as the amount is sufficient for the RecA family recombinase protein to exhibit the RecA family recombinase activity.
  • the concentration of nucleoside triphosphate or deoxynucleotide triphosphate in the reaction solution for performing the ligation reaction in the RA method is, for example, 1 ⁇ M ( ⁇ mol / L) with respect to the total volume of the reaction solution at the start of the ligation reaction. ) Or higher, more preferably 10 ⁇ M or higher, still more preferably 30 ⁇ M or higher, and particularly preferably 100 ⁇ M or higher.
  • the nucleoside triphosphate concentration or deoxynucleotide triphosphate concentration of the reaction solution at the start of the ligation reaction is preferably 1,000 ⁇ M or less, more preferably 500 ⁇ M or less, based on the total volume of the reaction solution. ⁇ M or less is more preferred.
  • the reaction solution for performing the ligation reaction in the RA method contains a magnesium ion source.
  • a magnesium ion source is a substance that provides magnesium ions in a reaction solution.
  • magnesium salts such as magnesium acetate [Mg (OAc) 2 ], magnesium chloride [MgCl 2 ], and magnesium sulfate [MgSO 4 ] are exemplified.
  • a preferred source of magnesium ions is magnesium acetate.
  • the magnesium ion source concentration of the reaction solution for performing the ligation reaction in the RA method may be a concentration at which the RecA family recombinase protein can exhibit the RecA family recombinase activity and the exonuclease can exhibit the exonuclease activity, particularly It is not limited.
  • the magnesium ion source concentration of the reaction solution at the start of the ligation reaction is, for example, preferably 0.5 mM (mmol / L) or more, more preferably 1 mM or more, based on the total volume of the reaction solution.
  • the magnesium ion source concentration of the reaction solution at the start of the ligation reaction for example, with respect to the total volume of the reaction solution, preferably 20 mM or less, more preferably 15 mM or less, still more preferably 12 ⁇ ⁇ ⁇ mM or less, Even more preferably, 10 ⁇ mM or less.
  • a reaction solution for performing a ligation reaction in the RA method is, for example, a buffer, a DNA fragment, a RecA family recombinase protein, an exonuclease, at least one of nucleoside triphosphate and deoxynucleotide triphosphate, and magnesium ion. It is prepared by adding a source.
  • the buffer is not particularly limited as long as it is a buffer suitable for use at pH 7 to 9, preferably pH 8. Examples include Tris-HCl, Tris-acetic acid (Tris-OAc), Hepes-KOH, phosphate buffer, MOPS-NaOH, Tricine-HCl and the like.
  • Preferred buffers are Tris-HCl or Tris-OAc.
  • the concentration of the buffer solution can be appropriately selected by those skilled in the art, and is not particularly limited.
  • the concentration of the buffer solution is from 10 mM (mmol / L) to the total volume of the reaction solution.
  • a concentration of 100 mM, preferably 10 mM to 50 mM, more preferably 20 mM can be selected.
  • the reaction solution for performing the ligation reaction in the RA method includes a DNA fragment, a RecA family recombinase protein, an exonuclease, at least one of nucleoside triphosphate and deoxynucleotide triphosphate, and a magnesium ion source. Further, it is preferable to include a regenerating enzyme for nucleoside triphosphate or deoxynucleotide triphosphate and a substrate thereof. By being able to regenerate nucleoside triphosphates or deoxynucleotide triphosphates in the reaction solution, a large number of DNA fragments can be ligated more efficiently.
  • Examples of the combination of a regenerating enzyme for regenerating nucleoside triphosphate or deoxynucleotide triphosphate and its substrate include a combination of creatine kinase and creatine phosphate, a combination of pyruvate kinase and phosphoenolpyruvate, and a combination of acetate kinase and acetyl phosphate. Acid combinations, combinations of polyphosphate kinase and polyphosphate, and combinations of nucleoside diphosphate kinase and nucleoside triphosphate.
  • the nucleoside triphosphate serving as a substrate (phosphate source) for nucleoside diphosphate kinase may be any of ATP, GTP, CTP, and UTP.
  • examples of the regenerating enzyme include myokinase.
  • the concentration of the nucleoside triphosphate regenerating enzyme and its substrate in the reaction solution for performing the ligation reaction in the RA method is not particularly limited as long as the concentration is sufficient to enable the regeneration of nucleoside triphosphate during the ligation reaction in the reaction solution. It is not something to be done.
  • the concentration of creatine kinase contained in the reaction solution for performing the ligation reaction in the present invention is preferably 1 ng / ⁇ L to 1000 ng / ⁇ L, based on the total volume of the reaction solution.
  • the concentration of creatine phosphate is preferably 0.4 mM to 20 mM (mmol / L), more preferably 0.4 mM to 10 mM, still more preferably 1 mM to 7 mM, relative to the total volume of the reaction solution.
  • the concentration can be set to 4 ⁇ M to 7 ⁇ M.
  • the base sequence of the homologous region or the complementary region is preferably different for each combination of the DNA fragments to be ligated.
  • a homologous region having a high content of G (guanine base) and C (cytosine base) tends to form a single-stranded secondary structure
  • a (adenine base) and T In a homologous region having a high content of (thymine base), the efficiency of hybridization is low, and therefore, the ligation efficiency may be low.
  • Ligation of DNA fragments can be promoted by suppressing the formation of the secondary structure of single-stranded DNA and promoting specific hybridization.
  • a substance that suppresses the formation of the secondary structure of single-stranded DNA and promotes specific hybridization include dimethyl sulfoxide (DMSO) and tetramethylammonium chloride (TMAC).
  • DMSO dimethyl sulfoxide
  • TMAC tetramethylammonium chloride
  • DMSO has the effect of suppressing the formation of secondary structures of base pairs rich in GC.
  • TMAC has the effect of promoting specific hybridization.
  • the concentration of the substance is determined by the effect of the substance on promoting ligation of DNA fragments.
  • the concentration of DMSO contained in the reaction solution for performing the ligation reaction in the RA method is 5% (v / v)% to 30% (v / v) with respect to the total volume of the reaction solution. / v)%, preferably 8% to 25% by volume, more preferably 8% to 20% by volume.
  • the concentration of TMAC contained in the reaction solution for performing the ligation reaction in the RA method is preferably 60 ⁇ M to 300 ⁇ M, more preferably 100 ⁇ M to 250 ⁇ M, based on the total volume of the reaction solution.
  • the concentration is 100 ⁇ m to 200 ⁇ m, more preferably 150 ⁇ m.
  • a substance having a polymer mixing effect can enhance the interaction between DNA molecules and promote ligation of DNA fragments.
  • substances include polyethylene glycol (PEG) 200 to 20,000, polyvinyl alcohol (PVA) 200 to 20,000, dextran 40 to 70, Ficoll 70, bovine serum albumin (BSA).
  • PEG polyethylene glycol
  • PVA polyvinyl alcohol
  • BSA bovine serum albumin
  • the concentration of the substance is not particularly limited as long as the substance can achieve the effect of promoting the ligation of DNA fragments by the substance. Not something.
  • the concentration of PEG8000 contained in the reaction solution for performing the ligation reaction in the RA method is 2% by mass (w / w) to 20% by mass (w) based on the total mass of the reaction solution.
  • / w)% is preferable, 2 to 10% by mass is more preferable, and 4 to 6% by mass is further preferable.
  • the reaction solution for performing the ligation reaction in the RA method may further contain an alkali metal ion source.
  • An alkali metal ion source is a substance that provides an alkali metal ion in a reaction solution.
  • a sodium ion (Na + ) or a potassium ion (K + ) is preferable.
  • the alkali metal ion source include potassium glutamate [KGlu], potassium aspartate, potassium chloride, potassium acetate [KOAc], sodium glutamate, sodium aspartate, sodium chloride, and sodium acetate.
  • the alkali metal ion source to be contained in the reaction solution for performing the ligation reaction in the RA method potassium glutamate or potassium acetate is preferable, and potassium glutamate is particularly preferable because the ligation efficiency of the multi-fragment is improved.
  • the concentration of the alkali metal ion source in the reaction solution at the start of the ligation reaction is not particularly limited.
  • the concentration of the alkali metal ion in the reaction solution is preferably 10 mM (mmol / L)
  • the concentration can be adjusted to a value given above, more preferably in the range of 30 mM to 300 mM, even more preferably in the range of 50 mM to 150 mM.
  • the reaction solution for performing the ligation reaction in the RA method may further contain a reducing agent.
  • the reducing agent include dithiothreitol (DTT), ⁇ -mercaptoethanol (2-mercaptoethanol), tris (2-carboxyethyl) phosphine (TCEP), and glutathione.
  • the preferred reducing agent is DTT.
  • the reducing agent is contained in the reaction solution in an amount of 1.0 mM (mmol / L) to 15.0 mM (mmol / L), preferably 2.0 mM to 10.0 mM, more preferably 4.0 mM to 10.0 mM, based on the total volume of the reaction solution. It may be.
  • the ligation reaction is performed by buffering two or more DNA fragments, a RecA family recombinase protein, a nucleoside triphosphate, a magnesium ion source, and, if necessary, an exonuclease and a nucleoside triphosphate.
  • the reaction temperature of the ligation reaction is preferably in a temperature range of 25 ° C. to 48 ° C., and more preferably in a temperature range of 27 ° C. to 45 ° C.
  • the reaction temperature of the ligation reaction is preferably in the temperature range of 30 ° C to 45 ° C, and more preferably in the temperature range of 37 ° C to 45 ° C.
  • the temperature is more preferably in the temperature range of 40 ° C. to 43 ° C., and particularly preferably 42 ° C.
  • the reaction temperature of the ligation reaction is preferably in the temperature range of 27 ° C to 43 ° C, and in the temperature range of 27 ° C to 37 ° C.
  • the temperature is more preferably in the range of 27 ° C. to 33 ° C.
  • under isothermal conditions means that the temperature is kept within a temperature range of ⁇ 3 ° C. or ⁇ 1 ° C. with respect to the temperature set during the reaction.
  • the reaction time of the ligation reaction is not particularly limited, and may be, for example, 15 minutes to 6 hours, preferably 15 minutes to 3 hours, more preferably 1 hour to 3 hours.
  • a gap is a state in which one or more consecutive nucleotides are missing in double-stranded DNA
  • a nick is a state in which a phosphodiester bond between adjacent nucleotides in double-stranded DNA is broken. Therefore, in the RA method, after the ligation reaction, it is preferable to repair gaps and nicks in the obtained conjugate by using the gap repair enzyme group and dNTP. By repairing gaps and nicks, the conjugate can be completely double-stranded DNA.
  • the gap repair enzyme group and dNTP are added, and incubated for a predetermined time under isothermal conditions at a temperature at which the gap repair enzyme group can exert the enzyme activity, whereby the conjugate is obtained. Gaps and nicks can be repaired.
  • the type of the enzyme constituting the gap repair enzyme group is not particularly limited as long as it can repair gaps and nicks in double-stranded DNA.
  • an enzyme having a DNA polymerase activity and an enzyme having a DNA ligase activity can be used in combination.
  • DNA ligase derived from Escherichia coli As the DNA ligase, its cofactor NAD (nicotinamide adenine dinucleotide) is contained in the reaction solution in an amount of 0.01 mM to 1.0 mM (mmol / L) based on the total volume of the reaction solution. Preferably, it is contained in the range of 0.25 mM.
  • the treatment with the gap repair enzyme group may be performed, for example, at 25 ° C. to 40 ° C., preferably 30 ° C., for 5 minutes to 120 minutes, preferably 10 minutes to 60 minutes, more preferably 30 minutes.
  • DNTP is a generic term for dATP, dGTP, dCTP, and dTTP.
  • concentration of dNTP contained in the reaction solution at the start of the repair reaction may be, for example, in the range of 0.01 ⁇ mM (mmol / L) to 1 ⁇ mM (mmol / L) with respect to the total volume of the reaction solution, Preferably it may be in the range of 0.05 mM to 1 mM, more preferably in the range of 0.25 mM to 1 mM.
  • Sequence-specific DNA-cleaving enzymes such as restriction enzymes and artificial DNA-cleaving enzymes can be used for preparing DNA fragments to be subjected to the RA method. Even when the template DNA becomes long and it is difficult to select an appropriate restriction enzyme, the DNA can be specifically cleaved at a desired target site by using an artificial DNA cleavage enzyme.
  • an artificial DNA-cleaving enzyme refers to an enzyme that is artificially produced and specifically recognizes a desired sequence to cleave DNA, and includes artificial nucleases and RNA-induced nucleases.
  • An artificial nuclease is an artificial enzyme in which a domain that specifically binds to DNA and a domain that cuts DNA are linked, and examples thereof include zinc finger nuclease (ZFN) and TALE nuclease (TALEN).
  • ZFN zinc finger nuclease
  • TALEN TALE nuclease
  • the RNA-inducible nuclease is a complex of a short RNA called a guide RNA (gRNA) that recognizes a target sequence and an enzyme that cleaves DNA, and CRISPR-Cas9 and the like are known.
  • any artificial DNA-cleaving enzyme may be used, but it is preferable to use an artificial nuclease or an RNA-induced nuclease, and it is more preferable to use CRISPR-Ca
  • step (1) comprises, for example, the following steps: (1-1) a step of preparing the at least one linear DNA by cleaving the DNA at a target site by allowing the artificial DNA-cleaving enzyme to act on the DNA; (1-2) preparing a reaction solution containing the linear DNA prepared in step (1-1), one or more DNA fragments, and a protein having RecA family recombinase activity; and (1-3) The linear DNA and the one or more types of DNA fragments are linked to each other in regions where the base sequences are homologous or in regions where the base sequences are complementary, and the one or more types are added to the target site of the template DNA. Forming a DNA into which the DNA fragment has been inserted; May be included.
  • the DNA (namely, template DNA) to be treated by the artificial DNA-cleaving enzyme in the step (1-1) may be linear or circular. By utilizing an artificial DNA-cleaving enzyme, it is possible to cleave a template DNA at a desired target site.
  • One or more types of DNA fragments in the step (1-2) include a homologous region or a complementary region to be ligated to the linear DNA prepared in the step (1-1) at a site cut by an artificial DNA-cleaving enzyme. By ligating the homologous regions or the complementary regions, the ligated DNA obtained in step (1-3) has a form in which another DNA sequence is inserted into the cleavage site with respect to the template DNA. Steps (1-2) and (1-3) may be performed in the same manner as in the above-mentioned ordinary RA method.
  • step (1) of the present invention may be a step of linking a plurality of DNAs by an infusion method.
  • the infusion method is a method of performing a ligation reaction using an Infusion enzyme having a function of recognizing and fusing a homologous sequence of the terminal 15 bases of each double-stranded DNA fragment. Specifically, first, a homologous region consisting of the same base sequence is added to the end of the double-stranded DNA fragment to be ligated using PCR. Two double-stranded DNA fragments each having a homologous region of 15 bases added to both ends are ligated by mixing and incubating with an Infusion enzyme.
  • the principle of the in fusion method is described in, for example, Nucleic Acids Research, 2007, Vol. 35, No. 1 143-151. It can also be performed using a reagent commercially available from Takara Bio Inc. or the like.
  • step (1) of the present invention may be a step of ligating a plurality of DNAs by the Gibson Assembly method.
  • the Gibson Assembly method involves digesting a distal region of a first DNA molecule and a proximal region of a second DNA molecule with an enzyme having exonuclease activity, so that each of the homologous regions (specifically hybridizes to each other). Region of sufficient sequence identity) into a single-stranded state, specifically annealing and linking them, and then repairing gaps and nicks to form a complete double-stranded DNA. This is a method for obtaining a linked body.
  • the Gibson Assembly method comprises the formation of single-stranded 3 'overhangs by exonuclease and annealing between fragments, repair of gaps between the annealed fragments by DNA polymerase, and splicing of nicks by DNA ligase. . It can also be performed using a reagent commercially available from New England Biolabs and the like.
  • Step (2) in the method of the present invention is a step of amplifying the DNA modified in step (1) in a cell-free system, and the DNA is incubated under a temperature condition of 20 ° C. to 80 ° C.
  • the DNA is preferably amplified under a temperature condition of incubating isothermally or under a temperature cycle in which incubation at two temperatures of 65 ° C. or less is repeated, and in a range of 20 ° C. to 80 ° C. More preferably, the amplification is carried out under the temperature condition of incubating at the included constant temperature or incubating under a temperature cycle in which the incubation at two temperatures of 65 ° C. or less is repeated.
  • DNA can be amplified using the Replication Cycle Reaction method (hereinafter, RCR method; see Patent Documents 5 to 7).
  • RCR method Replication Cycle Reaction method
  • RCR Radio-recombinase polymerase amplification
  • RPA Recombinase polymerase amplification
  • RCA Rolling circle amplification
  • Loop-mediated isothermal amplification (N otomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T., 2000. Nucleic Acids Res. 28 (12), E63) No. Either method can be performed by a common method. Which method is used can be appropriately selected depending on the shape (linear or circular) of the DNA to be amplified.
  • LAMP Loop-mediated isothermal amplification
  • the isothermal condition is such that the DNA amplification reaction or DNA replication reaction can proceed.
  • the temperature is not particularly limited as long as it is, for example, a constant temperature included in the optimal temperature of the DNA polymerase.
  • the isothermal conditions include, for example, a constant temperature of 20 ° C or higher, 25 ° C or higher, or 30 ° C or higher, and 80 ° C or lower, 65 ° C or lower, 60 ° C or lower, 50 ° C or lower, 45 ° C or lower, 40 ° C or lower, 35 ° C or lower. C. or lower, or a constant temperature of 33.degree.
  • the isothermal conditions include, for example, a constant temperature included in a range of 20 ° C. to 80 ° C., a constant temperature included in a range of 20 ° C. to 65 ° C., a constant temperature included in a range of 25 ° C. to 50 ° C., and 25 ° C. It may be a certain temperature included in the range of -40 ° C, a certain temperature included in the range of 30 ° C to 33 ° C, or about 30 ° C.
  • incubation time can be appropriately set according to the amount of the target circular DNA amplification product, and can be, for example, 1 hour to 24 hours, preferably 18 hours to 21 hours.
  • step (2) when the DNA into which the deletion, substitution, or addition has been introduced is amplified under a temperature condition of incubating under a temperature cycle in which incubation at two temperatures of 65 ° C. or less is repeated, the first temperature is The second temperature is a temperature at which replication of a circular DNA is possible, and the second temperature is a temperature at which the initiation of replication is suppressed and a DNA elongation reaction proceeds.
  • the first temperature can be 30 ° C or higher, such as 30 ° C to 80 ° C, 30 ° C to 50 ° C, 30 ° C to 40 ° C, or 37 ° C.
  • Incubation at the first temperature is not particularly limited, but may be 10 seconds to 10 minutes per cycle, preferably 1 minute.
  • the second temperature can be less than or equal to 27 ° C, for example, 10 ° C to 27 ° C, 16 ° C to 25 ° C, or 24 ° C.
  • Incubation at the second temperature is not particularly limited, but is preferably set according to the length of the circular DNA to be amplified, and may be, for example, 1 second to 10 seconds per 1000 bases per cycle.
  • the number of temperature cycles is not particularly limited, but may be 10 to 50 cycles, 20 to 45 cycles, 25 to 45 cycles, or 40 cycles.
  • the method of the present invention may include, after the step (1), a step of specifically cutting a DNA into which no deletion, substitution or addition has been introduced by an artificial DNA-cleaving enzyme.
  • an artificial DNA-cleaving enzyme When the DNA into which the deletion, substitution, or addition has not been introduced is cleaved, the DNA is not amplified by the above-described DNA amplification technique, so that the yield of the DNA into which the deletion, substitution, or addition has been introduced is significantly increased. Can be improved.
  • two or more artificial DNA-cleaving enzymes that cleave different sequences may be used.
  • two or more types of template DNAs are used in step (1)
  • two or more types of artificial DNA-cleaving enzymes that specifically cleave each template DNA can be used.
  • two or more types of artificial DNA cleavage that specifically cut the unmutated sequence at each mutation site Enzymes can be used.
  • “specifically cut DNA in which no deletion, substitution, or addition has been introduced” refers to cutting DNA in which no deletion, substitution, or addition has been introduced, but deletion, substitution, Or the addition does not cut the introduced DNA.
  • Such an artificial DNA cleavage enzyme can be prepared by a conventional method.
  • CRISPR-Cas9 is used as an artificial DNA-cleaving enzyme
  • deletion, substitution, or addition is introduced by designing a guide RNA so as to bind to a region containing the sequence before deletion, substitution, or addition. No DNA can be specifically cut.
  • the specific cleavage of the DNA into which the deletion, substitution, or addition by the artificial DNA-cleaving enzyme has not been introduced may be performed after the step (1) and before the step (2).
  • step (2) in the method of the present invention does not include incubation at a high temperature of 94 ° C. or higher, treatment with an artificial DNA-cleaving enzyme can be performed simultaneously with the DNA amplification reaction. Therefore, in a preferred embodiment, step (2) may be performed in the presence of an artificial DNA-cleaving enzyme that specifically cuts DNA into which no deletion, substitution, or addition has been introduced. In this case, the yield of DNA into which deletion, substitution, or addition has been introduced can be significantly improved without increasing the number of reaction steps.
  • step (2) of the method of the present invention can be performed by an RCR method.
  • the RCR method is a method for amplifying circular DNA that includes the following steps: (2-1) (a) a first group of enzymes that catalyze the replication of circular DNA, and (b) a second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane. And (c) a reaction mixture comprising a reaction solution containing a third group of enzymes that catalyze the separation reaction of the two sister circular DNAs, and the circular DNA into which the deletion, substitution, or addition has been introduced in step (1).
  • step (2-2) Incubating the reaction mixture prepared in step (2-1) isothermally, that is, at a constant temperature included in the range of 20 ° C. to 80 ° C., or at two temperatures of 65 ° C. or less. Incubating under repeated temperature cycles.
  • the circular DNA used as a template in the RCR method is preferably double-stranded.
  • a natural circular DNA such as a circular chromosome of a microorganism, a circular DNA obtained by ligating another DNA fragment to a fragment obtained by cutting the natural circular DNA by enzymatic treatment, etc.
  • a circular DNA obtained by subjecting a linear DNA to a circularization treatment, a circular DNA entirely synthesized artificially, and the like can be exemplified.
  • the circular DNA may or may not contain a replication initiation sequence to which the replication initiation protein can bind, but preferably contains a replication initiation sequence to which the replication initiation protein can bind, and can bind to an enzyme having DnaA activity More preferably, it contains a replication initiation sequence (oriC).
  • oriC replication initiation sequence
  • Combinations of a replication initiation sequence and a replication initiation protein capable of binding thereto are known in the art (see, for example, Cell, Volume 54, Issue 7, Pages 915-918 (1988)), and in the present invention, they are Either may be used.
  • examples of such combinations include enzymes having oriC and DnaA activity (eg, replication initiation sequence and DnaA protein present in bacteria such as Escherichia coli and Bacillus subtilis), replication initiation sequence of pSC101 and replication initiation sequence of pSC101 repA, P1 Sequence and P1 repA, F replication initiation sequence and E protein, R1 replication initiation sequence and R1 repA, R6K ori ⁇ and ⁇ protein, ⁇ replication initiation sequence and ⁇ O protein, ⁇ 82 replication initiation sequence and ⁇ 82O protein, ⁇ 80 replication The initiation sequence and the ⁇ 80O protein, the RK2 replication initiation sequence and the RK2 ⁇ trfA protein, the P4 replication initiation sequence and the ⁇ protein, and the like
  • Replication initiation proteins and replication initiation sequences can be obtained based on sequence information registered in public databases such as NCBI (http://www.ncbi.nlm.nih.gov/).
  • the replication initiation sequence can also be obtained by cloning a DNA fragment that can bind to the replication initiation protein and analyzing its base sequence.
  • the circular DNA used as a template in the present invention may be a circular DNA originally containing a replication initiation sequence, or may be a circular DNA originally containing no replication initiation sequence with a replication initiation sequence introduced.
  • the circular DNA used as a template does not contain a replication initiation sequence to which a replication initiation protein can bind, replication of the DNA via formation of a DNA recombination intermediate (D-loop) or transcription intermediate (R-loop) Is started.
  • D-loop DNA recombination intermediate
  • R-loop transcription intermediate
  • the circular DNA used as a template in the present invention may contain a gene sequence of a drug resistance marker such as kanamycin, ampicillin, tetracycline, etc., depending on the purpose.
  • a drug resistance marker such as kanamycin, ampicillin, tetracycline, etc.
  • the circular DNA used as a template in the present invention may be purified, but may also be in the form of a suspension of a cell extract containing the circular DNA. Further, one kind of circular DNA may be used as a template, but a mixture of plural kinds of circular DNAs such as a DNA library may be used as a template in one test tube.
  • the amount of template DNA used per reaction is not particularly limited, and one molecule of circular DNA can be used as a template per reaction.
  • the length of the circular DNA used as a template in the present invention is not limited. For example, 1 kb (1000 bases) or more, 5 kb (5000 bases) or more, 8 kb (8,000 bases) or more, 8.8 kb (8,800 bases) Length), 9.5 kb (9,500 base length) or more, 10 kb (10,000 base length) or more, 50 kb (50,000 base length) or more, 100 kb (100,000 base length) or more, 101 kb (101,000 base length) or more, 183 kb (183,000 bases) or more, 200 kb (200,000 bases) or more, 205 kb (205,000 bases) or more, 500 kb (500,000 bases) or more, 1000 kb (1,000,000 bases) or more, or 2000 kb (2,000,000 bases) Length) or more.
  • the upper limit of the length of the circular DNA is not particularly limited, but may be, for example, about 10,000 kb.
  • the first enzyme group means an enzyme group that catalyzes the replication of circular DNA.
  • the first enzyme group includes the following: a replication initiation protein (for example, an enzyme having DnaA activity), one or more nucleoid proteins, an enzyme or enzyme group having DNA gyrase activity, single-stranded DNA A single-strand binding protein (SSB), an enzyme having DNA helicase activity (eg, an enzyme having DnaB-type helicase activity), an enzyme having DNA helicase loader activity, an enzyme having DNA primase activity, and a DNA clamp activity.
  • a replication initiation protein for example, an enzyme having DnaA activity
  • one or more nucleoid proteins for example, an enzyme or enzyme group having DNA gyrase activity, single-stranded DNA A single-strand binding protein (SSB), an enzyme having DNA helicase activity (eg, an enzyme having DnaB-type helicase activity), an enzyme having DNA helicase loader activity, an enzyme having DNA primase activity, and a DNA clamp activity.
  • SSB single-strand binding protein
  • DNA helicase activity eg
  • One or more enzymes or enzymes selected from the group consisting of an enzyme having a DNA polymerase III * activity (a DNA polymerase III holoenzyme excluding the clamp from the clamp) or an enzyme group, or the enzyme or enzyme All combinations of groups can be illustrated.
  • the biological origin of the replication initiation protein is not particularly limited as long as it has an initiator activity with respect to the replication initiation sequence present in the circular DNA.
  • the enzyme having DnaA activity is not particularly limited in biological origin as long as it has an initiator activity similar to DnaA which is an initiator protein of Escherichia coli.For example, DnaA derived from Escherichia coli is preferably used. be able to.
  • the replication initiator protein may be contained as a monomer in the reaction solution in a range of 1 ⁇ M (nmol / L) to 10 ⁇ M ( ⁇ mol / L), preferably 1 ⁇ M, based on the total volume of the reaction solution.
  • nM to 5 n ⁇ M 1 nM to 3 ⁇ M, 1 nM to 1.5 ⁇ M, 1 nM to 1.0 ⁇ M, 1 nM to 500 nM, 50 nM to 200 nM, 50 nM to 150 nM More preferably, it may be contained at 100 nM, but is not limited thereto.
  • Nucleid protein refers to a protein contained in the nucleoid.
  • the one or more nucleoid proteins used in the present invention are not particularly limited in biological origin as long as they are enzymes having the same activity as the nucleoid protein of Escherichia coli.
  • One or more complexes (heterodimers or homodimers) selected from the group consisting of IhfA and IhfB and HU derived from Escherichia coli, that is, a complex of hupA and hupB can be suitably used.
  • coli-derived IHF may be contained as a hetero / homo dimer in the reaction solution in a range of 5 nM (nmol / L) to 400 nM, preferably 5 ⁇ nM to the total volume of the reaction solution. It may be contained in the range of 200 nM, 5 nM to 100 nM, 5 nM to 50 nM, 10 nM to 50 nM, 10 nM to 40 nM, 10 nM to 30 nM, and more preferably 20 nM. However, the present invention is not limited to this. E. coli-derived HU may be contained in the reaction solution in the range of 1 nM to 50 nM, preferably in the range of 5 nM to 50 nM, and in the range of 5 nM to 25 nM, Not limited.
  • any enzyme having the same activity as that of DNA gyrase of Escherichia coli is not particularly limited in its biological origin, but is composed of, for example, GyrA and GyrB derived from Escherichia coli.
  • the complex can be used preferably.
  • the complex comprising GyrA and GyrB derived from Escherichia coli may be contained as a heterotetramer in the reaction solution in the range of 20 nM (nmol / L) to 500 nM with respect to the total volume of the reaction solution, preferably May be contained in the range of 20 nM to 400 nM, 20 nM to 300 nM, 20 nM to 200 nM, 50 nM to 200 nM, 50 nM to 100 nM, more preferably 50 nM Good, but not limited to this.
  • the single-stranded DNA-binding protein is not particularly limited in its biological origin as long as it is an enzyme having the same activity as that of Escherichia coli single-stranded DNA-binding protein.
  • E. coli-derived SSB can be suitably used.
  • Escherichia coli-derived SSB may be contained as a homotetramer in the reaction solution in the range of 20 nM (nmol / L) to 1000 nM, preferably 20 nM to 500% with respect to the total volume of the reaction solution.
  • nM 20 nM to 300 nM, 20 nM to 200 nM, 50 nM to 500 nM, 50 nM to 400 nM, 50 nM to 300 nM, 50 nM to 200 nM, 50 nM to 150 nM, 100 nM to 500 nM, It may be contained in the range of 100 nM to 400 nM, more preferably 400 nM, but is not limited thereto.
  • the enzyme having DnaB-type helicase activity is not particularly limited in biological origin as long as it has an activity similar to that of DnaB of Escherichia coli.
  • DnaB derived from Escherichia coli can be suitably used.
  • Escherichia coli-derived DnaB may be contained as a homohexamer in the reaction solution in the range of 5 nM (nmol / L) to 200 nM, preferably 5 nM to 100 nM, based on the total volume of the reaction solution. , 5 nM to 50 nM, 5 nM to 30 nM, more preferably 20 nM, but is not limited thereto.
  • the enzyme having the DNA helicase loader activity is not particularly limited in biological origin, as long as it has the same activity as DnaC of Escherichia coli.
  • DnaC derived from Escherichia coli can be suitably used.
  • Escherichia coli-derived DnaC may be contained as a homohexamer in the reaction solution in the range of 5 nM (nmol / L) to 200 nM, preferably 5 nM to 100 nM, based on the total volume of the reaction solution. , 5 nM to 50 nM, 5 nM to 30 nM, more preferably 20 nM, but is not limited thereto.
  • the enzyme having DNA primase activity is not particularly limited in biological origin as long as it has the same activity as DnaG of Escherichia coli.
  • DnaG derived from Escherichia coli can be suitably used.
  • Escherichia coli-derived DnaG may be contained as a monomer in the reaction solution in the range of 20 nM (nmol / L) to 1000 nM, preferably 20 nM to 800 nM, based on the total volume of the reaction solution.
  • nM may be included, but is not limited to this.
  • the enzyme having DNA clamp activity is not particularly limited in biological origin, as long as it has the same activity as DnaN of Escherichia coli.
  • DnaN derived from Escherichia coli can be suitably used.
  • Escherichia coli-derived DnaN may be contained as a homodimer in the reaction solution in the range of 10 nM (nmol / L) to 1000 nM, preferably 10 nM to 800 nM, based on the total volume of the reaction solution. , 10 nM to 500 nM, 20 nM to 500 nM, 20 nM to 200 nM, 30 ⁇ nM to 200 nM, 30 nM to 100 nM, but is not limited thereto.
  • the enzyme or enzyme group having DNA polymerase III * activity is not particularly limited in biological origin, as long as the enzyme or enzyme group has the same activity as the DNA polymerase III * complex of Escherichia coli.
  • Enzymes containing DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and any of HolE preferably enzymes derived from Escherichia coli DnaX, HolA, HolB, and a complex of DnaE, more preferably
  • An enzyme group containing a complex of Escherichia coli-derived DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE can be suitably used.
  • the DNA polymerase III * complex derived from Escherichia coli may be contained as a heteromultimer in the reaction solution in the range of 2 nM (nmol / L) to 50 nM (nmol / L) based on the total volume of the reaction solution. And preferably in the range of 2 nM to 40 nM, 2 nM to 30 nM, 2 nM to 20 nM, 5 nM to 40 nM, 5 nM to 30 nM, 5 nM to 20 nM, and more. Preferably, it may be contained at 5 nM, but is not limited thereto.
  • the first enzyme group includes, for example, a recombinant enzyme (for example, RecA or a homolog thereof (for example, UvsX of T4 phage)), an enzyme that functions to introduce a recombinant enzyme into DNA (for example, RecO and RecR or a homolog thereof (for example, UvsY for UvsX), a D-loop)
  • a recombinant enzyme for example, RecA or a homolog thereof (for example, UvsX of T4 phage)
  • an enzyme that functions to introduce a recombinant enzyme into DNA for example, RecO and RecR or a homolog thereof (for example, UvsY for UvsX), a D-loop)
  • Primosome proteins that function for helicase transfer eg, PriA, PriB, PriC, and DnaT can be used.
  • the first group of enzymes includes, for example, RNA polymerase and a primosome protein group that functions to introduce a helicase into the R-loop (eg, PriA, PriB, PriC, and DnaT) can be used.
  • the second enzyme group means an enzyme group that catalyzes an Okazaki fragment ligation reaction to synthesize two sister circular DNAs forming catenane.
  • the two sister circular DNAs forming catenane are those in which two circular DNAs synthesized by a DNA replication reaction are connected.
  • the second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs forming catenane include, for example, an enzyme having DNA polymerase I activity, an enzyme having DNA ligase activity, and an RNaseH activity.
  • an enzyme having DNA polymerase I activity an enzyme having DNA ligase activity
  • an RNaseH activity an enzyme having RNaseH activity.
  • One or more enzymes selected from the group consisting of enzymes, or a combination of the enzymes can be exemplified.
  • DNA polymerase I activity there is no particular limitation on the biological origin of the enzyme having DNA polymerase I activity as long as it has the same activity as DNA polymerase I of Escherichia coli.
  • DNA polymerase I derived from Escherichia coli is preferably used.
  • the DNA polymerase I derived from Escherichia coli may be contained as a monomer in the reaction solution in a range of 10 nM (nmol / L) to 200 nM (nmol / L), preferably based on the total volume of the reaction solution.
  • nM to 200 nM May be contained in the range of 20 nM to 200 nM, 20 nM to 150 nM, 20 nM to 100 nM, 40 nM to 150 nM, 40 nM to 100 nM, 40 nM to 80 nM, and more preferably 50 nM nM may be included, but is not limited to this.
  • the enzyme having DNA ligase activity is not particularly limited in its biological origin, as long as it has the same activity as DNA ligase of Escherichia coli.
  • DNA ligase derived from Escherichia coli or DNA ligase of T4 phage is preferable. Can be used.
  • Escherichia coli-derived DNA ligase may be contained as a monomer in the reaction solution in the range of 10 nM (nmol / L) to 200 nM (nmol / L) based on the total volume of the reaction solution, preferably It may be contained in the range of 15 nM to 200 nM, 20 nM to 200 nM, 20 nM to 150 nM, 20 nM to 100 nM, 20 nM to 80 nM, and more preferably 50 nM.
  • the present invention is not limited to this.
  • the enzyme having RNaseH activity is not particularly limited in biological origin as long as it has an activity of decomposing the RNA chain of an RNA: DNA hybrid.
  • RNaseH derived from Escherichia coli can be suitably used.
  • Escherichia coli-derived RNaseH may be contained as a monomer in the reaction solution in a range of 0.2 nM (nmol / L) to 200 nM (nmol / L), preferably 0.2 ⁇ ⁇ nM (nmol / L), based on the total volume of the reaction solution.
  • nM to 200 nM 0.2 nM to 100 nM, 0.2 nM to 50 nM, 1 nM to 200 nM, 1 nM to 100 nM, 1 nM to 50 nM, and 10 nM to 50 nM may be included. More preferably, it may be contained at 10 nM, but is not limited thereto.
  • the third enzyme group means an enzyme group that catalyzes a separation reaction of two sister circular DNAs.
  • the enzyme groups described in Peng H & Marians KJ. PNAS. 1993, 90: 8571-8575 can be used.
  • a third enzyme group one or more enzymes selected from the group consisting of: an enzyme having topoisomerase IV activity, an enzyme having topoisomerase III activity, and an enzyme having RecQ-type helicase activity, or Combinations of the enzymes can be exemplified.
  • the enzyme having topoisomerase III activity is not particularly limited in its biological origin as long as it has the same activity as E. coli topoisomerase III.
  • E. coli-derived topoisomerase III can be suitably used.
  • Escherichia coli-derived topoisomerase III may be contained as a monomer in the reaction solution in the range of 20 nM (nmol / L) to 500 nM (nmol / L) based on the total volume of the reaction solution, preferably 20 nM to 400 nM, 20 nM to 300 nM, 20 nM to 200 nM, 20 nM to 100 nM, 30 nM to 80 nM, and more preferably 50 ⁇ ⁇ ⁇ ⁇ nM
  • the present invention is not limited to this.
  • the enzyme having RecQ-type helicase activity is not particularly limited in biological origin, as long as it has the same activity as RecQ of Escherichia coli.
  • RecQ derived from Escherichia coli can be suitably used.
  • Escherichia coli-derived RecQ may be contained as a monomer in the reaction solution in the range of 20 nM (nmol / L) to 500 nM (nmol / L), preferably 2020nM (nmol / L), based on the total volume of the reaction solution.
  • the enzyme having topoisomerase IV activity is not particularly limited in its biological origin, as long as it has the same activity as topoisomerase IV of Escherichia coli.
  • E. coli topoisomerase IV which is a complex of ParC and ParE is used. Can be suitably used.
  • Escherichia coli-derived topoisomerase IV may be contained as a heterotetramer in the reaction solution in a range of 0.1 nM (nmol / L) to 50 nM (nmol / L) based on the total volume of the reaction solution, preferably Ranges from 0.1 nM to 40 nM, 0.1 nM to 30 nM, 0.1 nM to 20 nM, 1 nM to 40 nM, 1 nM to 30 nM, 1 nM to 20 nM, 1 nM to 10 nM, 1 nM to 5 nM , And more preferably 5 nM, but is not limited to this.
  • first, second and third enzyme groups commercially available ones may be used, or ones extracted from microorganisms and the like and purified as necessary may be used. Extraction and purification of the enzyme from the microorganism can be appropriately performed using techniques available to those skilled in the art.
  • the concentration range corresponding to the enzyme activity unit with respect to the concentration range specified for the Escherichia coli-derived enzyme. Can be used.
  • the reaction solution containing the cell-free protein expression system of the above enzyme may be directly mixed with a circular DNA serving as a template to form a reaction mixture for replication or amplification of the circular DNA.
  • the cell-free protein expression system is a cell-free translation system using a total RNA (total RNA), an mRNA or an in vitro transcript including a RNA consisting of a sequence complementary to the base sequence of the gene encoding the enzyme as a template RNA.
  • a cell-free transcription / translation system using as a template DNA a gene encoding each enzyme or an expression vector containing a gene encoding each enzyme.
  • RCR methods I to V embodiments in which circular DNA is amplified by the RCR method will be described as RCR methods I to V.
  • RCR methods I to V "replication initiation sequence capable of binding to an enzyme having DnaA activity” and “oriC” are “replication initiation sequences”, and “enzyme having DnaA activity” are “replication capable of binding to a replication initiation sequence”. "Replication initiation protein”.
  • the RCR method of the present invention includes a step of forming a reaction mixture of a reaction solution containing the first to third enzyme groups and a circular DNA serving as a template (see Patent Document 5).
  • the composition of the reaction solution containing the first to third enzyme groups is not particularly limited as long as the DNA replication reaction can proceed, for example, a buffer such as Tris-HCl buffer, rNTP, dNTP A solution obtained by adding the first to third enzyme groups to a solution to which a magnesium ion source, an ATP source, and the like are added can be used.
  • the reaction solution may further include an additional component such as a component that suppresses generation of by-products. Specific examples of the reaction solution include those described in Examples described later.
  • RCR method I further includes a step of keeping the reaction mixture under isothermal conditions.
  • the isothermal condition is not particularly limited as long as the DNA replication reaction can proceed.
  • the isothermal condition can be a constant temperature in the range of 20 to 80 ° C., which is the optimal temperature of DNA polymerase. , 25 ° C. to 50 ° C., and about 30 ° C. to 33 ° C.
  • the heat retention time can be appropriately set according to the amount of the target circular DNA amplification product, and can be, for example, 1 hour to 24 hours, or 16 hours to 21 hours.
  • RCR method I may include, after the step of keeping the reaction mixture under isothermal conditions, a step of purifying the amplification product of the circular DNA, if desired. Purification of the circular DNA can be appropriately performed using techniques available to those skilled in the art.
  • the reaction mixture after the reaction can be used as it is or can be appropriately purified and used for subsequent purposes such as transformation.
  • the RCR method of the present invention comprises the following steps: (II-1) Circular DNA serving as a template, and the following: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Forming a reaction mixture with a reaction solution comprising:
  • the circular DNA contains a replication initiation sequence (origin of chromosome (oriC)) capable of binding to an enzyme having DnaA activity (see Patent Document 6).
  • the method of the present invention may further include a step of pre-incubating the reaction solution before the step (II-1). That is, the method of the present invention comprises the following steps: (II-1-1) Below: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs forming catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; And (II-1-2) forming a reaction mixture of the reaction solution and a circular DNA serving as a template, wherein the circular DNA can bind to an enzyme having DnaA activity Contains an origin of chromosome (oriC); May be included.
  • the preincubation is performed, for example, in the range of 0 ° C to 40 ° C, 10 ° C to 40 ° C, 15 ° C to 37 ° C, or 16 ° C to 30 ° C for 5 minutes to 60 minutes, 5 minutes to 45 minutes, 5 minutes to 30 minutes. It may be performed by keeping the temperature for 15 minutes to 60 minutes, 15 minutes to 45 minutes, 15 minutes to 30 minutes.
  • the pre-incubation may fluctuate slightly during the pre-incubation as long as the temperature of the reaction solution is kept within the above temperature range.
  • the replication cycle is repeated and circular DNA is amplified exponentially.
  • circular DNA is at least 10 times, 50 times, 100 times, 200 times, 500 times, 1000 times, 2000 times, 3000 times, 4000 times, 5000 times, or It can be amplified 10,000 times.
  • the circular DNA mixed with the reaction solution is as described in the item of “1. Cyclic DNA” above.
  • the amount of template DNA used per reaction for example, 10 ng / ⁇ L or less, 5 ⁇ ng / ⁇ L or less, 1 ⁇ ng / ⁇ L or less, 0.8 ⁇ ng / It may be present in the reaction solution at a concentration of ⁇ L or less, 0.5 ⁇ ng / ⁇ L or less, or 0.3 ⁇ ng / ⁇ L or less.
  • the lower limit of the amount of template DNA used per reaction is not particularly limited, for example, 7.5 fg / ⁇ L, 0.67 pg / ⁇ L, 1 pg / ⁇ L, 10 pg / ⁇ L, 14 pg / ⁇ L, 50 pg / ⁇ L Or 75 ⁇ g / ⁇ L.
  • one molecule of circular DNA per reaction can be used as a template for amplification.
  • the buffer contained in the reaction solution is not particularly limited as long as it is a buffer suitable for use at pH 7 to 9, preferably pH 8.
  • Tris-HCl, Tris-OAc, Hepes-KOH, phosphate buffer, MOPS-NaOH, Tricine-HCl and the like can be mentioned.
  • Preferred buffers are Tris-HCl or Tris-OAc.
  • the concentration of the buffer can be appropriately selected by those skilled in the art, and is not particularly limited. In the case of Tris-HCl or Tris-OAc, for example, 10 mM (mmol / L) to 100 mM with respect to the total volume of the reaction solution. (Mmol / L), 10 mM-50 mM, 20 mM concentration can be selected.
  • ATP means adenosine triphosphate.
  • concentration of ATP contained in the reaction solution at the start of the reaction may be, for example, in the range of 0.1 mM (mmol / L) to 3 mM (mmol / L), preferably 0.1 mM, based on the total volume of the reaction solution.
  • concentration may be in the range of 2 to mM, 0.1 to 1.5 mM, 0.5 to 1.5 mM, and more preferably 1 mM.
  • GTP, CTP and UTP mean guanosine triphosphate, cytidine triphosphate and uridine triphosphate, respectively.
  • concentrations of GTP, CTP and UTP contained in the reaction solution at the start of the reaction are each independently, for example, in the range of 0.1 mM (mmol / L) to 3.0 mM (mmol / L) based on the total volume of the reaction solution. And preferably in the range of 0.5-3.0 mM, 0.5-2.0 mM.
  • DNTP is a generic term for deoxyadenosine triphosphate (dATP), deoxyguanosine triphosphate (dGTP), deoxycytidine triphosphate (dCTP), and deoxythymidine triphosphate (dTTP).
  • concentration of dNTP contained in the reaction solution at the start of the reaction may be, for example, in the range of 0.01 mM (mmol / L) to 1 mM (mmol / L), preferably 0.05 mM, based on the total volume of the reaction solution. It may be in the range of 1 to 1 mM, 0.1 to 1 mM, and more preferably in the range of 0.25 to 1 mM.
  • the magnesium ion source is a substance that provides magnesium ions (Mg 2+ ) in the reaction solution.
  • Mg (OAc) 2 MgCl 2 , MgSO 4 and the like can be mentioned.
  • a preferred source of magnesium ions is Mg (OAc) 2 .
  • the concentration of the magnesium ion source contained in the reaction solution is, for example, 5 mM (mmol / L) to 50 mM (mmol / L) based on the total volume of the reaction solution. The concentration may be in a range, preferably 1 mM.
  • An alkali metal ion source is a substance that provides an alkali metal ion in a reaction solution.
  • the alkali metal ion include a sodium ion (Na + ) and a potassium ion (K + ).
  • alkali metal ion sources include potassium glutamate, potassium aspartate, potassium chloride, potassium acetate, sodium glutamate, sodium aspartate, sodium chloride, and sodium acetate.
  • a preferred source of alkali metal ions is potassium glutamate or potassium acetate.
  • the concentration of the alkali metal ion source contained in the reaction solution at the start of the reaction is 100 mM (mmol / L) or more, preferably 100 mM to 300 mM, based on the total volume of the reaction solution.
  • the concentration may be provided in the range of, more preferably, 50 mM, but is not limited thereto. In view of the earlier application, 150 mM may be excluded from the above concentration of the alkali metal ion source.
  • the reaction solution used in the RCR method II may further contain a nonspecific adsorption inhibitor for protein or a nonspecific adsorption inhibitor for nucleic acid.
  • the reaction solution may further contain a nonspecific adsorption inhibitor for protein and a nonspecific adsorption inhibitor for nucleic acid.
  • the reaction efficiency is improved by the presence of at least one non-specific adsorption inhibitor selected from the group consisting of a protein non-specific adsorption inhibitor and a nucleic acid non-specific adsorption inhibitor in the reaction solution.
  • One or more non-specific adsorption inhibitors selected from the group consisting of protein non-specific adsorption inhibitors and nucleic acid non-specific adsorption inhibitors are one or more non-specific adsorption inhibitors selected from the group consisting of proteins and proteins and cyclic DNA. It is considered that the reaction efficiency is improved by suppressing the specific adsorption and the adhesion of the protein and the circular DNA to the surface of the container.
  • a non-specific adsorption inhibitor of a protein is a protein unrelated to the amplification reaction in the method of the present invention.
  • proteins include, for example, bovine serum albumin (BSA), lysozyme, gelatin, heparin, casein, and the like.
  • BSA bovine serum albumin
  • the nonspecific adsorption inhibitor of the protein is in the range of 0.02 mg / mL to 2.0 mg / mL, preferably 0.1 mg / mL to 2.0 mg / mL, and 0.2 mg / mL to the total volume of the reaction solution. It may be contained in the range of 2.0 mg / mL, 0.5 mg / mL to 2.0 mg / mL, more preferably 0.5 mg / mL, but is not limited thereto.
  • a non-specific adsorption inhibitor of nucleic acid is a nucleic acid molecule or a nucleic acid-like factor unrelated to the amplification reaction in the method of the present invention.
  • nucleic acid molecules or nucleic acid analogs include, for example, tRNA (transfer RNA), rRNA (ribosomal RNA), mRNA (messenger RNA), glycogen, heparin, oligo DNA, poly (IC) (polyinosine-polycytidine), poly (dI-dC) (polydeoxyinosine-polydeoxycytidine), poly (A) (polyadenine), and poly (dA) (polydeoxyadenine).
  • the nonspecific adsorption inhibitor for nucleic acid is in the range of 1 ng / ⁇ L to 500 ng / ⁇ L, preferably 10 ng / ⁇ L to 500 ng / ⁇ L, 10 ng / ⁇ L to the total volume of the reaction solution. It may be contained in the range of 200 ⁇ ng / ⁇ L, 10 ⁇ ng / ⁇ L to 100 ⁇ ng / ⁇ L, more preferably 50 ⁇ ng / ⁇ L, but is not limited thereto. In consideration of the prior application, when tRNA is selected as a non-specific adsorption inhibitor of nucleic acid, 50 ng / ⁇ L may be excluded from the concentration of tRNA.
  • the reaction solution used in the method of the present invention may further contain a DNA stabilizing factor. It is considered that the presence of the DNA stabilizing factor in the reaction solution suppresses the DNA cleavage and can protect the template DNA and the amplification product.
  • the addition of a DNA stabilizing factor leads to an improvement in the yield of the target product.
  • the addition of a DNA stabilizing factor is advantageous because the template DNA and the amplification product are easily degraded.
  • the DNA stabilizing factor is not particularly limited.
  • DMSO dimethyl sulfoxide
  • BSA bovine serum albumin
  • EGTA glycol ether diamine tetraacetic acid
  • BDA disodium bathocuproine disulfonate
  • Penicillamine, tiron Tiiron, 1,2-dihydroxybenzene-3,5-sulfonate
  • DTPA diethylentriaminepentaacetic acid
  • EDTA
  • DTPA, Tiron, BDA, Dps protein and BSA are particularly preferable because they also have a function of increasing the efficiency of the circular DNA amplification reaction.
  • DTPA or Tiron may be contained in the reaction solution in the range of 0.01 mM (mmol / mL) to 0.3 mM (mmol / mL), preferably 0.05 mM to 0.25 mM, based on the total volume of the reaction solution, More preferably, it may contain 0.25 ⁇ M, but is not limited to this.
  • BDA may be contained in the reaction solution in the range of 0.01 ⁇ mM (mmol / mL) to 0.5 ⁇ mM (mmol / mL), preferably 0.05 ⁇ mM to 0.3 ⁇ mM, based on the total volume of the reaction solution. It is not limited to.
  • the Dps protein may be contained in the reaction solution in a range of 0.3 ⁇ M ( ⁇ mol / mL) to 3.0 ⁇ M ( ⁇ mol / mL), preferably 0.3 ⁇ M to 1.5 ⁇ M, based on the total volume of the reaction solution. It is not limited to.
  • BSA is contained in the reaction solution in a range of 0.02 mg / mL to 2.0 mg / mL, preferably 0.1 mg / mL to 2.0 mg / mL, 0.2 mg / mL to 2.0 mg / mL, 0.5 mg / mL to the total volume of the reaction solution. It may be contained in the range of mg / mL to 2.0 mg / mL, more preferably 0.5 mg / mL, but is not limited thereto.
  • the reaction solution used for RCR method II may further contain linear DNA-specific exonuclease or RecG-type helicase.
  • the reaction solution may further contain a linear DNA-specific exonuclease and a RecG-type helicase.
  • the presence of at least one selected from the group consisting of linear DNA-specific exonuclease and RecG-type helicase in the reaction solution reduces the amount of linear DNA generated by double-strand breaks during the amplification reaction However, there is an effect of improving the yield of the target supercoil product.
  • the reaction solution used for RCR method II may further contain RecG-type helicase or single-stranded DNA-specific exonuclease.
  • the reaction solution may further contain a RecG-type helicase and a single-stranded DNA-specific exonuclease.
  • the presence of at least one selected from the group consisting of RecG-type helicase and single-stranded DNA-specific exonuclease in the reaction solution reduces the amount of small molecule secondary amplification products generated during the amplification reaction. This has the effect of improving the yield of the desired supercoiled product.
  • the reaction solution used in the RCR method II may further contain a linear DNA-specific exonuclease or a single-stranded DNA-specific exonuclease.
  • the reaction solution may further contain a linear DNA-specific exonuclease and a single-stranded DNA-specific exonuclease.
  • the presence of at least one selected from the group consisting of linear DNA-specific exonucleases and single-stranded DNA-specific exonucleases in the reaction solution It has the effect of reducing the amount of DNA and improving the yield of the desired supercoiled product.
  • Linear DNA-specific exonuclease is an enzyme that hydrolyzes sequentially from the 5' end or 3 'end of linear DNA.
  • the linear DNA-specific exonuclease is not particularly limited in its type and biological origin as long as it has an activity of sequentially hydrolyzing the linear DNA from the 5 'end or 3' end.
  • RecBCD RecBCD
  • ⁇ exonuclease, exonuclease III, exonuclease VIII, T5 exonuclease, T7 exonuclease, Plasmid-SafeTM ATP-Dependent DNase (epicentre) and the like can be used.
  • a preferred linear DNA-specific exonuclease is RecBCD.
  • the linear DNA exonuclease is contained in the reaction solution in an amount of 0.001 U / ⁇ L to 1.0 U / ⁇ L, preferably 0.005 U / ⁇ L to 1.0 U / ⁇ L, 0.01 U / ⁇ L to 1.0 U / ⁇ L based on the total volume of the reaction solution. It may be contained in the range of ⁇ L, 0.05 U / ⁇ L to 1.0 U / ⁇ L, 0.08 U / ⁇ L to 1.0 U / ⁇ L, or 0.1 U / ⁇ L to 1.0 U / ⁇ L, but is not limited thereto.
  • Enzyme activity unit (U) for linear DNA exonuclease is a unit based on the amount of enzyme required to make 1 nmol of deoxyribonucleotide of linear DNA acid-soluble in 1 minute reaction at 37 ° C for 30 minutes. It is.
  • RecG-type helicase is an enzyme that is considered to be a helicase that eliminates the secondary DNA structure formed by the collision of replication forks at the end of the extension reaction.
  • the biological origin of the RecG-type helicase is not particularly limited as long as it has the same activity as RecG derived from Escherichia coli.
  • RecG derived from Escherichia coli can be suitably used.
  • RecG derived from Escherichia coli is used as a monomer in the reaction solution in a range of 100 nm (nmol / L) to 800 nm (nmol / L), preferably 100 nm to 500 nm, 100 nm, with respect to the total volume of the reaction solution.
  • the concentration may be in the range of 400 to nM, 100 to 300 nM, and more preferably 60 to nM, but is not limited thereto.
  • RecG-type helicase can be used in a concentration range corresponding to the concentration range specified for the above-mentioned RecG derived from Escherichia coli as an enzyme activity unit.
  • Single-stranded DNA-specific exonuclease is an enzyme that sequentially hydrolyzes nucleotides at the 5 'end or 3' end of single stranded DNA.
  • the single-stranded DNA-specific exonuclease is not particularly limited in its type and biological origin as long as it has an activity of sequentially hydrolyzing nucleotides at the 5′-end or 3′-end of single-stranded DNA. Absent.
  • exonuclease I exo I
  • RecJ RecJ
  • exonuclease T and the like can be used.
  • a preferred single-stranded DNA-specific exonuclease is exo I.
  • the single-stranded DNA-specific exonuclease is contained in the reaction solution in the range of 0.1 U / ⁇ L to 1.0 U / ⁇ L, preferably 0.15 U / ⁇ L to 1.0 U / ⁇ L, 0.2 U / ⁇ L, based on the total volume of the reaction solution. It may be included in the range of 1.0 to 1.0 U / ⁇ L, or 0.2 to 0.5 ⁇ U / ⁇ L, but is not limited thereto.
  • the enzyme activity unit (U) for exo I is a unit in which the amount of enzyme required to make 10 nmol of deoxyribonucleotide of single-stranded DNA acid-soluble in a reaction at 37 ° C. for 30 minutes is 1 U.
  • the enzyme activity unit (U) for RecJ is a unit where the amount of enzyme required to make 0.05 nmol of deoxyribonucleotide of single-stranded DNA acid-soluble in a reaction at 37 ° C. for 30 minutes is 1 U.
  • the reaction solution used in the RCR method II may further contain an ammonium salt.
  • ammonium salts include ammonium sulfate, ammonium chloride, and ammonium acetate. Particularly preferred ammonium salts are ammonium sulfate or ammonium acetate.
  • the ammonium salt is contained in the reaction solution in the range of 0.1 mM (mmol / L) to 100 mM (mmol / L), preferably 0.1 mM to 50 mM, 1 mM to 50 mM, 1 mM, relative to the total volume of the reaction solution. It may be contained in the range of 20 ⁇ m, more preferably 4 ⁇ m, but is not limited thereto.
  • NAD nicotinamide adenine dinucleotide
  • DNA ligase derived from Escherichia coli is used as an enzyme having DNA ligase activity as one of the second group of enzymes
  • NAD is contained in the reaction solution in the range of 0.01 mM (mmol / L) to 1.0 mM (mmol / L), preferably in the range of 0.1 mM to 1.0 mM, and in the range of 0.1 mM to 0.5 mM, based on the total volume of the reaction solution. May be contained, more preferably 0.25 mM, but not limited thereto.
  • the reaction solution used in the RCR method II may further contain a reducing agent.
  • a reducing agent examples include DTT, ⁇ -mercaptoethanol (2-mercaptoethanol), tris (2-carboxyethyl) phosphine (TCEP) and glutathione.
  • the preferred reducing agent is DTT.
  • the reducing agent is used in the reaction solution at a concentration of 1.0 mM (mmol / L) to 15.0 mM (mmol / L), preferably 2.0 mM to 10.0 mM, and 4.0 mM to 8.0 mM with respect to the total volume of the reaction solution. It may be contained at a concentration.
  • the reaction solution used in the RCR method II may also contain an enzyme and a substrate for regenerating ATP.
  • Examples of the combination of the enzyme and the substrate of the ATP regeneration system include creatine kinase and creatine phosphate, and pyruvate kinase and phosphoenolpyruvate.
  • ATP regeneration system enzymes include myokinase.
  • Preferred combinations of the enzyme and the substrate of the ATP regeneration system are creatine kinase and creatine phosphate.
  • the first, second, and third enzyme groups contained in the reaction solution are as described in the item “2. First, second, and third enzyme groups” above.
  • the first group of enzymes used in RCR method II comprises an enzyme having DnaA activity, one or more nucleoid proteins, an enzyme or group of enzymes having DNA gyrase activity, a single-stranded DNA binding protein (single-stranded DNA binding protein). -strand binding protein (SSB)), an enzyme having DnaB-type helicase activity, an enzyme having DNA helicase loader activity, an enzyme having DNA primase activity, an enzyme having DNA clamp activity, and an enzyme having DNA polymerase III * activity or A combination of enzymes may be included.
  • SSB single-stranded DNA binding protein
  • the one or more nucleoid proteins may be IHF or HU
  • the enzyme or enzymes having DNA gyrase activity may be a complex consisting of GyrA and GyrB, and have a DnaB type helicase activity
  • the enzyme may be DnaB helicase
  • the enzyme with DNA helicase loader activity may be DnaC helicase loader
  • the enzyme with DNA primase activity may be DnaG primase
  • the enzyme with DNA clamp activity may be DnaN clamp.
  • the enzyme or enzymes having DNA polymerase III * activity may be an enzyme or enzymes comprising any of DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE.
  • the second group of enzymes used for RCR method II may include a combination of an enzyme having DNA polymerase I activity and an enzyme having DNA ligase activity.
  • the second group of enzymes may include a combination of an enzyme having DNA polymerase I activity, an enzyme having DNA ligase activity, and an enzyme having RNaseH activity.
  • the third group of enzymes used for RCR method II may include one or more enzymes selected from the group consisting of enzymes having topoisomerase III activity and enzymes having topoisomerase IV activity.
  • the third group of enzymes may include a combination of an enzyme having topoisomerase III activity and an enzyme having RecQ-type helicase activity.
  • the third enzyme group may be a combination of an enzyme having topoisomerase III activity, an enzyme having RecQ helicase activity, and an enzyme having topoisomerase IV activity.
  • step (II-2) may be performed in a water-in-oil emulsion.
  • the water-in-oil emulsion can be prepared by adding a mineral oil and a surfactant to the reaction mixture formed in the step (II-1) and mixing. Those skilled in the art can appropriately select the types and amounts of the mineral oil and the surfactant.
  • RCR method II may further include, after step (II-2), a step of diluting at least five-fold with a reaction solution containing no first to third enzyme groups and then re-warming. While the initiation of new replication is suppressed by the dilution of the enzyme group, replication elongation, catenane formation, and separation reaction in progress proceed continuously due to the effect of the residual enzyme. In addition, by-products generated due to nicks or the like during the reaction can be repaired in this process by the effect of residual ligase or the like. Therefore, the transfer from the amplification intermediate or by-product to the final product is specifically induced, and an improvement in the yield of the target circular DNA having a supercoiled structure can be expected.
  • RCR method II further comprises, after step (II-2), a step of treating with one or more exonucleases selected from the group consisting of linear DNA-specific exonucleases and single-stranded DNA-specific exonucleases. You may go out. Treatment with at least one exonuclease selected from the group consisting of linear DNA-specific exonuclease and single-stranded DNA-specific exonuclease degrades linear DNA that is a by-product generated during the amplification reaction Can be removed. The type and amount of one or more exonucleases selected from the group consisting of linear DNA-specific exonucleases and single-stranded DNA-specific exonucleases may be as described above.
  • the treatment with one or more exonucleases selected from the group consisting of linear DNA-specific exonuclease and single-stranded DNA-specific exonuclease can be performed, for example, at 25 ° C. to 40 ° C. for 30 minutes to 3 hours. Good.
  • RCR method II may further include a step of treating with a gap repair enzyme after step (II-2).
  • the gap repair enzyme is used to form a gap in which one or more consecutive nucleotides are missing in double-stranded DNA, or a nick in which a phosphodiester bond between adjacent nucleotides in double-stranded DNA is broken.
  • a group of enzymes that repair and convert to complete double-stranded supercoiled DNA By treating with a gap repair enzyme, there is an effect of repairing a DNA containing a gap or a nick generated as a by-product during the amplification reaction and improving the yield of the target supercoiled product.
  • the type of the gap repair enzyme is not particularly limited as long as it is a group of enzymes capable of repairing a gap or nick in double-stranded DNA.
  • a combination of exonuclease III, DNA polymerase I, DNA ligase, an enzyme or enzymes having DNA gyrase activity can be used.
  • the enzyme having exonuclease III activity may be used at a concentration of 5 ⁇ mU / ⁇ L to 100 ⁇ mU / ⁇ L, but is not limited thereto.
  • the enzyme activity unit (U) for exonuclease III is a unit in which the amount of enzyme required to make 1 nmol of deoxyribonucleotide of double-stranded DNA acid-soluble in a reaction at 37 ° C. for 30 minutes is 1 U. is there.
  • the DNA polymerase I, the DNA ligase, the enzyme having the DNA gyrase activity or the enzyme group may be used at a concentration determined in the first or second enzyme group, respectively, but is not limited thereto.
  • the treatment with the gap repair enzyme may be performed, for example, at 25 ° C. to 40 ° C. for 5 minutes to 120 minutes, preferably 10 minutes to 60 minutes.
  • the RCR method II may include, after the step (II-2), a step of purifying the amplification product of the circular DNA, if desired. Purification of the circular DNA can be appropriately performed using techniques available to those skilled in the art.
  • the reaction mixture after the reaction can be used as it is, or the appropriately purified one can be used for subsequent purposes such as transformation.
  • the method of the invention comprises the following steps: (III-1) A circular DNA serving as a template and the following: The first group of enzymes that catalyze the replication of circular DNA, A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane, and a third group of enzymes that catalyze the separation reaction of the two sister circular DNAs, Forming a reaction mixture with a reaction solution comprising: and (III-2) reacting the reaction mixture formed in step (III-1);
  • the circular DNA contains a replication initiation sequence (origin of chromosome (oriC)) capable of binding to an enzyme having DnaA activity, and a pair of ter sequences inserted outward to oriC, respectively, and Further comprises one or more sequences selected from the group consisting of nucleotide sequences recognized by XerCD,
  • the reaction solution in the step (III) A replication initiation sequence capable of binding to an enzyme having DnaA activity, and a pair
  • RCR method III replicates or amplifies circular DNA.
  • replicating a circular DNA means that the same molecule as the template circular DNA is generated.
  • the replication of the circular DNA can be confirmed by the fact that the amount of the circular DNA in the reaction product after the reaction is increased with respect to the amount of the circular DNA serving as a template at the start of the reaction.
  • replication of a circular DNA refers to an increase in the amount of circular DNA in the reaction product of at least 2, 3, 5, 7, or 9 times the amount of circular DNA at the start of the reaction.
  • Amplifying a circular DNA means that the replication of the circular DNA proceeds and the amount of the circular DNA in the reaction product increases exponentially with respect to the amount of the circular DNA used as a template at the start of the reaction.
  • amplification of circular DNA is one aspect of circular DNA replication.
  • the amplification of the circular DNA is at least 10 times, 50 times, 100 times, 200 times, 200 times, 500 times, and 1000 times the amount of the circular DNA in the reaction product, relative to the amount of the circular DNA used as the template at the start of the reaction. , 2000 times, 3000 times, 4000 times, 5000 times, or 10,000 times.
  • the circular DNA mixed with the reaction solution is as described in the item of “1. Cyclic DNA” above.
  • the amount of template DNA used per reaction for example, 10 ng / ⁇ L or less, 5 ⁇ ng / ⁇ L or less, 1 ⁇ ng / ⁇ L or less, 0.8 ⁇ ng / ⁇ L or less, 0.5 ng / ⁇ L or less, 0.1 ng / ⁇ L or less, 75 pg / ⁇ L or less, 50 pg / ⁇ L or less, 14 pg / ⁇ L or less, 5 pg / ⁇ L or less, 1 pg / ⁇ L or less, 0.67 pg / ⁇ L or less , 0.5 pg / ⁇ L or less, 50 fg / ⁇ L or less, 7.5 fg / ⁇ L or less, 5 fg / ⁇ L or less, or 0.5 fg / ⁇ L or less in the
  • Circular DNA used as a template for RCR method III is a pair of ter sequences inserted outwardly to oriC, and one or more sequences selected from the group consisting of base sequences recognized by XerCD, Including.
  • the reaction solution in step (III-1) further contains a protein having an activity of binding to the ter sequence to inhibit replication, and the circular DNA contains a base sequence recognized by XerCD. If so, the reaction solution of step (III-1) further contains XerCD protein.
  • the protein having an activity of inhibiting replication by binding to the ter sequence and one or more proteins selected from the group consisting of XerCD may be commercially available ones, or may be extracted from a microorganism or the like, if necessary. A purified product may be used. Extraction and purification of the enzyme from the microorganism can be appropriately performed using techniques available to those skilled in the art.
  • the combination of a ter sequence on DNA and a protein having an activity of binding to the ter sequence to inhibit replication is a mechanism for terminating replication.
  • This mechanism has been found in several types of bacteria, for example, in Escherichia coli, the Tus-ter system (Hiasa, H., and Marians, K. J., J. Biol. Chem., 1994, 269: 26959) -26968; Neylon, C., et al., Microbiol. Mol. Biol. Rev., September 2005, p.501-526), and the RTP-ter system (Vivian, et al., J. Mol.) For Bacillus bacteria. Biol., 2007, 370: 481-491).
  • RCR method III by utilizing this mechanism, it is possible to suppress the production of a DNA multimer which is a by-product.
  • the biological origin of the ter sequence on the DNA and the combination of proteins having an activity of binding to the ter sequence to inhibit replication is not particularly limited.
  • RCR Method III uses a combination of a ter sequence and a Tus protein.
  • the ter sequence used in combination with the Tus protein is 5′-GN [A / G] [T / A] GTTGTAAC [T / G] A-3 ′ (SEQ ID NO: 23), more preferably 5′-G [T / G] A [T / A] GTTGTAAC [T / G] A-3 '(SEQ ID NO: 24), 5'-GTATGTTGTAACTA-3' (SEQ ID NO: 25), 5'-AGTATGTTGTAACTAAAG-3 '(SEQ ID NO: 26) , 5'-GGATGTTGTAACTA-3 '(SEQ ID NO: 27), 5'-GTATGTTGTAACGA-3' (SEQ ID NO: 28), 5'-GGATGTTGTAACTA-3 '(SEQ ID NO: 29), 5'-GGAAGTTGTAACGA-3' (SEQ ID NO: 29)
  • Tus protein may be contained in the reaction solution in a range of 1 nM (nmol / L) to 200 nM (nmol / L), preferably 2 nM to 200 nM, based on the total volume of the reaction solution. It may be included in the range of 2 ⁇ nM to 100 nM, 5 nM to 200 nM, 5 nM to 100 nM, 10 nM to 100 nM, 20 nM to 100 nM, 20 nM to 80 nM, but is not limited thereto. .
  • RCR Method III uses a combination of a ter sequence and an RTP protein.
  • the ter sequence used in combination with the RTP protein is 5′-AC [T / A] [A / G] ANNNNN [C / T] NATGTACNAAAT-3 ′ (SEQ ID NO: 32), preferably 5′-ACTAATT [A / G] A [A / T] C [T / C] ATGTACTAAAT-3 ′ (SEQ ID NO: 33), 5′-ACTAATT [A / G] A [A / T] C [T / C] ATGTACTAAATTTTCA-3 ′ ( This is a sequence having a length of 23 to 30 nucleotides, including 5'-GAACTAATTAAACTATGTACTAAATTTTCA-3 '(SEQ ID NO: 35) or 5'-ATACTAATTGATCCATGTACTAAATTTTCA-3' (SEQ ID NO: 36).
  • the sequence is at least 70%, at least 80%, at least 90% %, At least 95% sequence identity.
  • the origin of the RTP protein is not particularly limited, but is preferably an RTP protein derived from a bacterium belonging to the genus Bacillus, more preferably an RTP protein derived from Bacillus subtilis. Tus protein may be contained in the reaction solution in a range of 1 nM (nmol / L) to 200 nM (nmol / L), preferably 2 nM to 200 nM, based on the total volume of the reaction solution.
  • nM 1 nM
  • 5 nM to 200 nM 5 nM to 100 nM
  • 10 nM to 100 nM 20 nM to 100 nM
  • 20 nM to 80 nM but is not limited thereto.
  • “inserting outward to oriC” means that replication occurs in a direction outward from oriC due to the action of a combination of proteins having an activity of binding to the ter sequence and inhibiting replication. Meanwhile, it means to insert the ter sequence in the direction to stop without permitting the replication in the direction coming toward oriC. Therefore, the term "a pair inserted into the oriC outwardly" with respect to the ter sequence means that one of the sequences includes any one of the sequences shown in SEQ ID NOs: 1 to 14 on the 5 'side of the oriC. Inserted means that the other contains a sequence containing the complementary sequence of the sequence shown in SEQ ID NOs: 1 to 14 on the 3 'side of oriC.
  • the ter sequence may be present at any position as long as one pair is inserted outwardly with respect to oriC.
  • a pair of ter sequences may be present in a region opposite to oriC, or may be present in the vicinity of or adjacent to both sides of oriC.
  • oriC and one pair of ter sequences can be prepared as a functional cassette, so that introduction of oriC and one pair of ter sequences into DNA is simplified, and This has the advantage that the cost of preparing a circular DNA is reduced.
  • XerCD protein is a complex of XerC and XerD. Dif, cer, and psi sequences are known as sequences recognized by the XerCD protein (Colloms, et al., EMBO J., 1996, 15 (5): 1172-1181; Arciszewska, L. K., et. al., J. Mol. Biol., 2000, 299: 391-403).
  • XerCD is also known for its promoter, and its function in dif, for example, is promoted by the FtsK protein (Ip, S. C.Y., et al., EMBO J., 2003, 22: 6399-6407).
  • the FtsK protein may be included in the reaction solution in the RCR method III.
  • sequences recognized by XerCD are 5′-GGTGCG [C / T] [A / G] [T / C] AANNNNNNTTATG [T / G] TAAA [T / C] -3 ′ (SEQ ID NO: 37), 5′- GGTGCG [C / T] A [T / C] AANNNNNNTTATG [T / G] TAAAT-3 '(SEQ ID NO: 38), 5'-GGTGCGC [A / G] [T / C] AANNNNNNTTATGTTAAA [T / C] -3 '(SEQ ID NO: 39), 5'-GGTGCG [C / T] [A / G] CAANNNNNNTTATG [T / G] TAAA [T / C] -3' (SEQ ID NO: 40), 5'-GGTGCGCATAANNNNTTATGTTAAAT-3 '( SEQ ID NO: 41), 5'-GGTGCGTACAANNNNNNTTATGGTA
  • the 1st to 11th bases of SEQ ID NOS: 15 to 24 are XerC binding sites, and the 18th to 28th bases of SEQ ID NOs: 15 to 24 are XerD binding sites. Since the 12th to 17th bases (the 6 bases indicated by NNNNNN) in SEQ ID NOs: 15 to 21 are not binding regions of XerC or XerD, their sequences are not particularly limited. Preferably, the sequence of bases 12 to 17 of SEQ ID NOS: 15 to 21 (six bases represented by NNNNNN) is at least 70% of the sequence of bases 12 to 17 of SEQ ID NOs: 22 to 24, It may have at least 80%, at least 90%, at least 95% sequence identity.
  • the XerCD protein is preferably an XerCD protein derived from E. coli.
  • the XerCD protein may be contained in the reaction solution in the range of 1 nM (nmol / L) to 200 nM (nmol / L), preferably 5 nM to 200 ⁇ ⁇ ⁇ ⁇ nM, based on the total volume of the reaction solution. 5 nM to 150 nM, 10 nM to 200 nM, 10 nM to 150 nM, 20 nM to 200 nM, 20 nM to 150 nM, 20 nM to 100 nM, but not limited to .
  • the sequence recognized by ⁇ XerCD may be present at any position on the circular DNA.
  • a sequence recognized by XerCD may be present in a region opposite to oriC, or may be present in a region near or adjacent to oriC.
  • a sequence recognized by oriC and XerCD can be prepared as a functional cassette, so that introduction of a sequence recognized by oriC and XerCD into DNA is simplified, and a circular template is used. There is an advantage that the cost of preparing DNA is reduced.
  • the percent identity between two nucleotide sequences can be determined by visual inspection and mathematical calculation. Alternatively, the percent identity can be determined using a computer program.
  • sequence comparison computer programs include, for example, the BLASTN program (Altschul et) available from the U.S. National Medical Library website: http://www.ncbi.nlm.nih.gov/blast/bl2seq/bls.html. al. (1990) J. Mol. Biol. 215: 403-10: Version 2.2.7, WU-BLAST 2.0 algorithm, and the like.
  • WU-BLAST 2.0 Version 2.2.7
  • WU-BLAST 2.0 Version 2.2.7
  • the first, second, and third enzyme groups contained in the reaction solution are as described in the item “2. First, second, and third enzyme groups” above.
  • the first group of enzymes used in RCR method III comprises an enzyme having DnaA activity, one or more nucleoid proteins, an enzyme or group of enzymes having DNA gyrase activity, a single-stranded DNA binding protein (single-stranded DNA binding protein). -strand binding protein (SSB)), an enzyme having DnaB-type helicase activity, an enzyme having DNA helicase loader activity, an enzyme having DNA primase activity, an enzyme having DNA clamp activity, and an enzyme having DNA polymerase III * activity or It may include a combination of enzymes.
  • SSB single-stranded DNA binding protein
  • the one or more nucleoid proteins may be IHF or HU
  • the enzyme or enzymes having DNA gyrase activity may be a complex consisting of GyrA and GyrB, and have a DnaB type helicase activity
  • the enzyme may be DnaB helicase
  • the enzyme with DNA helicase loader activity may be DnaC helicase loader
  • the enzyme with DNA primase activity may be DnaG primase
  • the enzyme with DNA clamp activity may be DnaN clamp.
  • the enzyme or enzymes having DNA polymerase III * activity may be an enzyme or enzymes comprising any of DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE.
  • the second group of enzymes used for RCR method III may include a combination of an enzyme having DNA polymerase I activity and an enzyme having DNA ligase activity.
  • the second group of enzymes may include a combination of an enzyme having DNA polymerase I activity, an enzyme having DNA ligase activity, and an enzyme having RNaseH activity.
  • the third group of enzymes used for RCR method III may include one or more enzymes selected from the group consisting of enzymes having topoisomerase III activity and enzymes having topoisomerase IV activity.
  • the third group of enzymes may include a combination of an enzyme having topoisomerase III activity and an enzyme having RecQ-type helicase activity.
  • the third enzyme group may be a combination of an enzyme having topoisomerase III activity, an enzyme having RecQ helicase activity, and an enzyme having topoisomerase IV activity.
  • the reaction solution may include a buffer, ATP, GTP, CTP, UTP, dNTP, a magnesium ion source, and an alkali metal ion source.
  • the buffer contained in the reaction solution is not particularly limited as long as it is a buffer suitable for use at pH 7 to 9, preferably pH 8.
  • Tris-HCl, Hepes-KOH, phosphate buffer, MOPS-NaOH, Tricine-HCl and the like can be mentioned.
  • a preferred buffer is Tris-HCl.
  • the concentration of the buffer can be appropriately selected by those skilled in the art, and is not particularly limited. In the case of Tris-HCl, for example, 10 ⁇ mM (mmol / L) to 100 mM (mmol / L) based on the total volume of the reaction solution. ), 10mM-50mM, 20mM concentration can be selected.
  • ATP means adenosine triphosphate.
  • concentration of ATP contained in the reaction solution at the start of the reaction may be, for example, in the range of 0.1 mM (mmol / L) to 3 mM (mmol / L), preferably 0.1 mM, based on the total volume of the reaction solution.
  • concentration may be in the range of 2 to mM, 0.1 to 1.5 mM, 0.5 to 1.5 mM, and more preferably 1 mM.
  • GTP, CTP and UTP mean guanosine triphosphate, cytidine triphosphate and uridine triphosphate, respectively.
  • concentrations of GTP, CTP and UTP contained in the reaction solution at the start of the reaction are each independently, for example, in the range of 0.1 mM (mmol / L) to 3.0 mM (mmol / L) based on the total volume of the reaction solution. And preferably in the range of 0.5-3.0 mM, 0.5-2.0 mM.
  • DNTP is a generic term for deoxyadenosine triphosphate (dATP), deoxyguanosine triphosphate (dGTP), deoxycytidine triphosphate (dCTP), and deoxythymidine triphosphate (dTTP).
  • concentration of dNTP contained in the reaction solution may be, for example, in the range of 0.01 mM (mmol / L) to 1 mM (mmol / L), preferably 0.05 mM, based on the total volume of the reaction solution. It may be in the range of 1 to 1 mM, 0.1 to 1 mM, and more preferably in the range of 0.25 to 1 mM.
  • the magnesium ion source is a substance that provides magnesium ions (Mg 2+ ) in the reaction solution.
  • Mg (OAc) 2 MgCl 2 , MgSO 4 and the like can be mentioned.
  • a preferred source of magnesium ions is Mg (OAc) 2 .
  • the concentration of the magnesium ion source contained in the reaction solution is, for example, 5 mM (mmol / L) to 50 mM (mmol / L) based on the total volume of the reaction solution. The concentration may be in a range, preferably 1 mM.
  • An alkali metal ion source is a substance that provides an alkali metal ion in a reaction solution.
  • the alkali metal ion include a sodium ion (Na + ) and a potassium ion (K + ).
  • alkali metal ion sources include potassium glutamate, potassium aspartate, potassium chloride, potassium acetate, sodium glutamate, sodium aspartate, sodium chloride, and sodium acetate.
  • a preferred source of alkali metal ions is potassium glutamate or potassium acetate.
  • the concentration of the alkali metal ion source contained in the reaction solution at the start of the reaction is 100 mM (mmol / L) or more, preferably 100 mM to 300 mM, based on the total volume of the reaction solution.
  • the concentration may be provided in the range of, more preferably, 50 mM, but is not limited thereto. In view of the earlier application, 150 mM may be excluded from the above concentration of the alkali metal ion source.
  • the reaction solution may further contain a non-specific adsorption inhibitor for protein or a non-specific adsorption inhibitor for nucleic acid.
  • the reaction solution may further contain a nonspecific adsorption inhibitor for protein and a nonspecific adsorption inhibitor for nucleic acid.
  • the presence of one or more non-specific adsorption inhibitors selected from the group consisting of non-specific adsorption inhibitors for proteins and non-specific adsorption inhibitors for nucleic acids in the reaction solution results in the formation of proteins and proteins and cyclic DNA. It is possible to suppress non-specific adsorption of one or more types selected from the group and the adhesion of proteins and circular DNA to the surface of the container, and it is expected that the reaction efficiency is improved.
  • a non-specific adsorption inhibitor of a protein is a protein unrelated to the replication or amplification reaction in the method of the present embodiment.
  • proteins include, for example, bovine serum albumin (BSA), lysozyme, gelatin, heparin, casein, and the like.
  • BSA bovine serum albumin
  • the nonspecific adsorption inhibitor of the protein is in the range of 0.02 mg / mL to 2.0 mg / mL, preferably 0.1 mg / mL to 2.0 mg / mL, and 0.2 mg / mL to the total volume of the reaction solution. It may be contained in the range of 2.0 mg / mL, 0.5 mg / mL to 2.0 mg / mL, more preferably 0.5 mg / mL, but is not limited thereto.
  • a non-specific adsorption inhibitor of nucleic acid is a nucleic acid molecule or a nucleic acid-like factor unrelated to the replication or amplification reaction in RCR method III.
  • nucleic acid molecules or nucleic acid analogs include, for example, tRNA (transfer RNA), rRNA (ribosomal RNA), mRNA (messenger RNA), glycogen, heparin, oligo DNA, poly (IC) (polyinosine-polycytidine), poly (dI-dC) (polydeoxyinosine-polydeoxycytidine), poly (A) (polyadenine), and poly (dA) (polydeoxyadenine).
  • the nonspecific adsorption inhibitor for nucleic acid is in the range of 1 ng / ⁇ L to 500 ng / ⁇ L, preferably 10 ng / ⁇ L to 500 ng / ⁇ L, 10 ng / ⁇ L to the total volume of the reaction solution. It may be contained in the range of 200 ⁇ ng / ⁇ L, 10 ⁇ ng / ⁇ L to 100 ⁇ ng / ⁇ L, more preferably 50 ⁇ ng / ⁇ L, but is not limited thereto. In consideration of the prior application, when tRNA is selected as a non-specific adsorption inhibitor of nucleic acid, 50 ng / ⁇ L may be excluded from the concentration of tRNA.
  • the reaction solution may further contain linear DNA-specific exonuclease or RecG-type helicase.
  • the reaction solution may further contain a linear DNA-specific exonuclease and a RecG-type helicase.
  • Linear DNA-specific exonuclease is an enzyme that hydrolyzes sequentially from the 5' end or 3 'end of linear DNA.
  • the type of linear DNA-specific exonuclease is not particularly limited as long as it has an activity of sequentially hydrolyzing from the 5 'end or 3' end of the linear DNA, and its type and biological origin.
  • RecBCD RecBCD
  • ⁇ exonuclease, exonuclease III, exonuclease VIII, T5 exonuclease, T7 exonuclease, Plasmid-SafeTM ATP-Dependent DNase (epicentre) and the like can be used.
  • a preferred linear DNA-specific exonuclease is RecBCD.
  • the linear DNA exonuclease is contained in the reaction solution in a range of 0.01 U / ⁇ L to 1.0 U / ⁇ L, preferably 0.08 U / ⁇ L to 1.0 U / ⁇ L, or 0.1 U / ⁇ L to the total volume of the reaction solution. It may be contained in the range of 1.0 U / ⁇ L, but is not limited to this.
  • Enzyme activity unit (U) for linear DNA exonuclease is a unit based on the amount of enzyme required to make 1 nmol of deoxyribonucleotide of linear DNA acid-soluble in a reaction at 37 ° C. for 30 minutes. It is.
  • RecG-type helicase is an enzyme that is considered to be a helicase that eliminates the secondary DNA structure formed by the collision of replication forks at the end of the extension reaction.
  • the biological origin of the RecG-type helicase is not particularly limited as long as it has the same activity as RecG derived from Escherichia coli.
  • RecG derived from Escherichia coli can be suitably used.
  • RecG derived from Escherichia coli is used as a monomer in the reaction solution in a range of 100 nm (nmol / L) to 800 nm (nmol / L), preferably 100 nm to 500 nm, 100 nm, with respect to the total volume of the reaction solution.
  • the concentration may be in the range of 400 to nM, 100 to 300 nM, and more preferably 60 to nM, but is not limited thereto.
  • RecG-type helicase can be used in a concentration range corresponding to the concentration range specified for the above-mentioned RecG derived from Escherichia coli as an enzyme activity unit.
  • the reaction solution may further contain an ammonium salt.
  • ammonium salts include ammonium sulfate, ammonium chloride, and ammonium acetate.
  • a particularly preferred ammonium salt is ammonium sulfate.
  • the ammonium salt is contained in the reaction solution in a range of 0.1 mM (mmol / L) to 100 mM, preferably in a range of 0.1 mM to 50 mM, 1 mM to 50 mM, and 1 mM to 20 mM based on the total volume of the reaction solution. May be contained, and more preferably 4 mM may be contained, but the present invention is not limited to this.
  • NAD nicotinamide adenine dinucleotide
  • a cofactor thereof is contained in the reaction solution.
  • NAD may be contained in the reaction solution in a range of 0.01 ⁇ mM (mmol / L) to 1.0 ⁇ mM, preferably in a range of 0.1 ⁇ m to 1.0 ⁇ m, and in a range of 0.1 ⁇ m to 0.5 ⁇ mM based on the total volume of the reaction solution. , More preferably 0.25 mM, but is not limited thereto.
  • the reaction solution used in the RCR method III may further contain a reducing agent.
  • a reducing agent examples include DTT, ⁇ -mercaptoethanol, and glutathione.
  • the preferred reducing agent is DTT.
  • the reaction solution used in the RCR method III may also contain an enzyme and a substrate for regenerating ATP.
  • Examples of the combination of the enzyme and the substrate of the ATP regeneration system include creatine kinase and creatine phosphate, and pyruvate kinase and phosphoenolpyruvate.
  • ATP regeneration enzymes include myokinase.
  • Preferred combinations of the enzyme and the substrate of the ATP regeneration system are creatine kinase and creatine phosphate.
  • the step (III-2) is a step of reacting the reaction mixture formed in the step (III-1).
  • Step (III-2) may be, for example, a step of reacting the reaction mixture in a temperature range of 15 ° C to 80 ° C, 15 ° C to 50 ° C, 15 ° C to 40 ° C.
  • step (III-2) may be a step of keeping the temperature under isothermal conditions.
  • the isothermal condition is not particularly limited as long as the DNA replication reaction can proceed.
  • the isothermal condition may be a constant temperature in the range of 20 ° C. to 80 ° C., which is the optimal temperature of DNA polymerase.
  • the incubation time can be appropriately set according to the amount of the target circular DNA replication product or amplification product, and can be, for example, 1 to 24 hours, or 16 to 21 hours.
  • the step (III-2) includes a step of incubating the reaction mixture formed in the step (III-1) under a temperature cycle in which incubation at 30 ° C. or more and incubation at 27 ° C. or less are repeated. May be.
  • Incubation at 30 ° C. or higher is not particularly limited as long as it can initiate replication of circular DNA containing oriC.
  • Incubation at 30 ° C. or higher is not particularly limited, but may be for 10 seconds to 10 minutes per cycle, or 1 minute.
  • the incubation at 27 ° C. or lower is not particularly limited, but is preferably set according to the length of the circular DNA to be amplified. For example, it may be 1 second to 10 seconds per 1000 bases per cycle.
  • the number of temperature cycles is not particularly limited, but may be 10 to 50 cycles, 20 to 45 cycles, 25 to 45 cycles, or 40 cycles.
  • RCR method III may include, after the step of keeping the reaction mixture under isothermal conditions, a step of purifying a replication product or an amplification product of the circular DNA according to the purpose. Purification of the circular DNA can be appropriately performed using techniques available to those skilled in the art.
  • the reaction mixture after the reaction can be used as it is, or the appropriately purified one can be used for subsequent purposes such as transformation.
  • the method of the invention comprises the following steps: (IV-1) A circular DNA serving as a template, and: The first group of enzymes that catalyze the replication of circular DNA, A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs forming catenane, and a third group of enzymes that catalyze the separation reaction of the two sister circular DNAs, Forming a reaction mixture with a reaction solution comprising: (IV-2) reacting the reaction mixture formed in step (IV-1); Including
  • the circular DNA contains a replication initiation sequence (origin of chromosome (oriC)) capable of binding to an enzyme having DnaA activity, and a pair of ter sequences inserted outward to oriC, respectively, and Further comprises one or more sequences selected from the group consisting of base sequences recognized by the DNA multimer separating enzyme, When the circular DNA has a ter sequence, the reaction solution of the step (IV-1) further contains a protein having an activity of binding
  • the RCR method IV is a method in which ⁇ XerCD '' in RCR method III is expanded to ⁇ DNA multimer separating enzyme '' and ⁇ base sequence recognized by XerCD '' is expanded to ⁇ base sequence recognized by DNA multimer separating enzyme ''. It is. Therefore, the description of each component of the RCR method III described in the item of ⁇ RCR method III> also applies to the RCR method IV.
  • a DNA multimer separating enzyme is an enzyme that can induce the separation of a DNA multimer by causing gene recombination.
  • a site-specific recombinase capable of recognizing a specific nucleotide sequence and causing gene recombination at the site of the nucleotide sequence can be used as a DNA multimer separating enzyme.
  • the specific base sequence recognized by the DNA multimer separating enzyme is referred to as “base sequence recognized by the DNA multimer separating enzyme”. Recombination of the DNA multimer can be induced by recombination of the gene by the DNA multimer separating enzyme and the combination of the base sequences recognized by the DNA multimer separating enzyme.
  • the DNA multimer separating enzyme a commercially available enzyme may be used, or an enzyme extracted from a microorganism or the like and generated as necessary may be used. Extraction and purification of the enzyme from the microorganism can be appropriately performed using techniques available to those skilled in the art.
  • the combination of the DNA multimer separating enzyme and the base sequence recognized by the DNA multimer separating enzyme includes XerCD and dif sequences, Cre and loxP sequences (Siegel, R. W., et al .., FEBS Lett., 2001, 499 (1 -2): 147-153; Araki, K., et al., Nucleic Acids Res .: 1997, 25 (4): 868-872), recombinant enzyme FLP and FRT sequences from budding yeast (Saccharomyces verevisiae) ( Broach, J.
  • the XerCD and dif sequences are as described above in ⁇ RCR method III>.
  • Cre is a Cre protein, preferably from bacteriophage P1. Cre may be contained in the reaction solution in the range of 0.01 ⁇ mU / ⁇ L to 200 ⁇ mU / ⁇ L, preferably 0.1 ⁇ mU / ⁇ L to 150 ⁇ mU / ⁇ L, 0.1 ⁇ mU / ⁇ L ⁇ 100 mU / ⁇ L, 0.5 mU / ⁇ L ⁇ 100 mU / ⁇ L, 0.5 mU / ⁇ L ⁇ 80 mU / ⁇ L, 0.1 mU / ⁇ L ⁇ 50 mU / ⁇ L, 1 mU / ⁇ L ⁇ 50 mU / ⁇ L, 1 mU / It may be contained in the range of ⁇ L to 30 ⁇ mU / ⁇ L, but is not limited thereto.
  • the loxP sequence recognized by Cre is 5'-ATAACTTCGTATAGCATACATTATACGAAGTTAT-3 '(SEQ ID NO: 47) which is a loxP consensus, or 5'-ATAACTTCGTATAGtATACATTATACGAAGTTAT-3' which is a mutant loxP sequence (lower case part is a mutant base for the consensus).
  • Recombinant enzyme FLP derived from budding yeast may be contained in the reaction solution in a range of 1 nM (nmol / L) to 200 nM (nmol / L) based on the total volume of the reaction solution. Often, preferably 5 nM to 200 nM, 5 nM to 150 nM, 10 nM to 200 nM, 10 nM to 150 nM, 20 nM to 200 nM, 20 nM to 150 nM, 20 nM to 100 nM. However, the present invention is not limited to this.
  • the FRT sequence recognized by FLP may be a sequence containing 5'-GAAGTTCCTATTCTCTAGAAAGTATAGGAACTTC-3 '(SEQ ID NO: 53), or a sequence complementary thereto.
  • the recombinant enzyme DreO derived from bacteriophage D6 may be contained in the reaction solution in a range of 1 nM (nmol / L) to 200 nM (nmol / L), preferably with respect to the total volume of the reaction solution. May be included in the range of 5MnM to 200 nM, 5 nM to 150 nM, 10 nM to 200 nM, 10 nM to 150 nM, 20 nM to 200 nM, 20 nM to 150 nM, 20 nM to 100 nM Good but not limited to this.
  • the rox sequence recognized by DreO may be a sequence containing 5'-TAACTTTAAATAATGCCAATTATTTAAAGTTA-3 '(SEQ ID NO: 54) or its complementary sequence.
  • Recombinant enzyme R derived from Zygosacchromycesrouxii is contained in the reaction solution in the range of 1 nM (nmol / L) to 200 nM (nmol / L) based on the total volume of the reaction solution. And preferably 5 nM to 200 nM, 5 nM to 150 nM, 10 nM to 200 nM, 10 nM to 150 nM, 20 nM to 200 nM, 20 nM to 150 nM, and 20 nM to 100 nM.
  • the RS sequence recognized by the enzyme R may be a sequence disclosed by Araki, H., et al. (J. Mol. Biol., 1985, 182 (2): 191-203), or a sequence containing its complementary sequence. .
  • the serine recombinase family ( ⁇ , Tn3, Gin, and Hin) is contained in the reaction solution in the range of 1 nM (nmol / L) to 200 nM (nmol / L) based on the total volume of the reaction solution. 5 nM to 200 nM, 5 nM to 150 nM, 10 nM to 200 nM, 10 nM to 150 nM, 20 nM to 200 nM, 20 nM to 150 nM, 20 nM to 100 nM May be included, but is not limited to this.
  • ⁇ , Tn3 and their recognition sequences res may be sequences disclosed by Grindley GN. D. F .. et al.
  • Gin and its recognition sequence may be a sequence disclosed by Kahmann. R. et al. (Cell, 1985, 41: 771-780), or a sequence containing its complementary sequence.
  • Hin and its recognition sequence may be a sequence disclosed by Glasgow. A. C. et al. (J. Biol. Chem., 1989, 264: 10072-10082), or a sequence containing its complementary sequence.
  • the sequence recognized by the DNA multimer separating enzyme may be present at any position in the form of a circular DNA.
  • the sequence recognized by the DNA multimer separating enzyme may be present in a region near or adjacent to oriC, or may be present in a region opposite to oriC.
  • the method of the invention comprises the following steps: (V-1) An oriC transposon and a transposase are added to a buffer to form an oriC transposome, wherein the oriC transposon contains an origin of chromosome (oriC) capable of binding to an enzyme having DnaA activity.
  • V-1 An oriC transposon and a transposase are added to a buffer to form an oriC transposome, wherein the oriC transposon contains an origin of chromosome (oriC) capable of binding to an enzyme having DnaA activity.
  • oriC origin of chromosome
  • the transfer reaction is performed by reacting the oriC transposome with oriC-free circular DNA in a buffer solution; Thereby preparing a circular DNA containing oriC; (V-2) The circular DNA containing oriC obtained in the step (V-1), and the following: The first group of enzymes that catalyze the replication of circular DNA, A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane, and a third group of enzymes that catalyze the separation reaction of the two sister circular DNAs, Forming a reaction mixture with a reaction solution comprising: and (V-3) reacting the reaction mixture formed in step (V-2); (See Patent Document 7).
  • RCR method V prepares a circular DNA containing oriC by introducing oriC into a circular DNA containing no oriC using a transposon, and replicates or replicates the circular DNA containing the oriC. It amplifies.
  • the definitions for circular DNA replication and amplification are as described above for RCR Method III.
  • the circular DNA containing oriC to be mixed with the reaction solution is as described in the above section “1.
  • the amount of circular DNA containing oriC used per reaction is as described above for the amount of template DNA in RCR method III.
  • the description of the enzyme group contained in the reaction solution and other components that may be contained in the reaction solution is the same as that of RCR method III.
  • the step (V-3) is performed in the same manner as the step (V-2) in the RCR method III.
  • the method further includes a step of purifying a replication product or an amplification product of the circular DNA, and the use of the circular DNA replicated or amplified by using the RCR method V is the same as that of the RCR method III.
  • the OE sequences at both ends of the oriC transposon may be any sequences recognized by transposase and known to those skilled in the art as being usable as OE sequences.
  • the OE sequence comprises the sequence represented by SEQ ID NO: 55 (5'-CTGTCTCTTATACACATCT-3 ') or its complementary sequence, and is represented by SEQ ID NO: 55 at the 5' end of the linear DNA in step (1).
  • the OE sequence containing the sequence is inserted, and the OE sequence containing the complementary sequence of the sequence represented by SEQ ID NO: 55 is inserted at the 3 'end of the linear DNA.
  • the concentration of the oriC transposon used for the formation of the oriC transposome may be 20 nM (nmol / L) to 200MnM (nmol / L) with respect to the total volume of the reaction solution, Preferably it may be 40 nM to 160 nM.
  • the transposase is not particularly limited in its biological origin as long as it is an enzyme that recognizes the OE sequence to form a transposome and transfers the transposon DNA into a circular DNA.
  • transposase derived from Escherichia coli is preferably used. be able to.
  • Particularly preferred are highly active Tn5 mutant (E54K, L372P) proteins (Goryshin, I. Y., and Reznikoff, W. S., J. Biol. Chem., 1998, 273: 7367-7374).
  • E54K, L372P highly active Tn5 mutant proteins
  • the transposase a commercially available one may be used, or a transposase extracted from a microorganism or the like and purified as necessary may be used.
  • the concentration used for the oriC transposome formation in the above step (V-1) is 50 ⁇ nM (nmol / L) to the total volume of the reaction solution. It may be 200 nM (nmol / L), preferably 80 nM to 150 nM.
  • the buffer used in step (V-1) is not particularly limited as long as it is a buffer suitable for use at pH 6 to 9, preferably pH 7.5.
  • Tris-acetic acid Tris-OAc
  • Tris-HCl Tris-HCl
  • Hepes-KOH Tris-HCl
  • phosphate buffer MOPS-NaOH
  • Tricine-HCl Tricine-HCl
  • Preferred buffers are Tris-OAc or Tris-HCl.
  • the concentration of the buffer can be appropriately selected by those skilled in the art, and is not particularly limited. In the case of Tris-OAc or Tris-HCl, for example, 10 mM (mmol / L) to 100 mM with respect to the total volume of the reaction solution. The concentration can be selected from mM (mmol / L), 10 mM to 50 mM, and 20 mM.
  • the step of forming the oriC transposome in the step (V-1) is performed by keeping the temperature at about 30 ° C. for about 30 minutes.
  • the transfer reaction in the step (V-1) is performed at an optimal temperature of transposase, for example, 37 ° C.
  • the time for performing the transfer reaction can be appropriately selected by those skilled in the art, and may be, for example, about 15 minutes.
  • tRNA may be added.
  • the concentration at which tRNA is added is, for example, 10 ⁇ ng / ⁇ L to 200 ⁇ ng / ⁇ L, 30 ⁇ ng / ⁇ L to 100 ⁇ ng / ⁇ L, 50 ⁇ ng with respect to the total volume of the reaction solution. / ⁇ L concentration can be selected.
  • the circular DNA containing oriC in step (V-2) is a pair of ter sequences inserted outwardly from oriC, and a base recognized by a DNA multimer separating enzyme such as XerCD or Cre. It may further include one or more sequences selected from the group consisting of the sequences.
  • the reaction solution in the step (V-2) further contains a protein having an activity of binding to the ter sequence and inhibiting replication, and the circular DNA is composed of XerCD or Cre.
  • the reaction solution of the step (V-2) further contains a DNA multimer separating enzyme such as XerCD or Cre.
  • a DNA multimer separating enzyme such as XerCD or Cre.
  • the transposon is also used for one or more sequences selected from the group consisting of a pair of ter sequences and a base sequence recognized by a DNA multimer separating enzyme such as XerCD or Cre.
  • the reaction solution of the step (V-2) further binds to the ter sequence to inhibit replication. If the cyclic DNA contains a protein having activity and the circular DNA has a base sequence recognized by a DNA multimer separating enzyme such as XerCD or Cre, the reaction solution in the step (V-2) further contains the XerCD protein.
  • a DNA multimer separating enzyme such as XerCD or Cre
  • a ter sequence The definition and description of one or more selected from the group consisting of proteins having an activity of binding and inhibiting replication and DNA multimer separating enzymes such as XerCD and Cre are as described above for RCR method III or RCR method IV. .
  • RCR method V may further comprise the step of (V-4) removing the oriC transposon from the circular DNA replicated or amplified in the reaction product of step (V-3).
  • the treatment may include treatment with transposase and treatment of single-stranded DNA ends with a linear double-stranded DNA-dependent single-stranded DNA exonuclease such as ExoIII.
  • the buffer used for the transposase treatment the buffer used in step (V-1) may be used.
  • the buffer used for the treatment with the single-stranded DNA exonuclease may be any buffer as long as the single-stranded DNA exonuclease acts.
  • the step of removing the oriC transposon may further include a treatment with a restriction enzyme corresponding to a restriction enzyme site contained in the sequence of the oriC transposon.
  • This treatment aims to specifically cleave the oriC transposon. Therefore, in this case, a restriction enzyme corresponding to a restriction enzyme site that is included in the oriC transposon but is not included in a region other than the oriC transposon region in the replicated and amplified circular DNA is selected.
  • CRISPR-Cas9 may be used instead of a restriction enzyme.
  • a region-specific sequence contained in the oriC transposon is designated as the guide RNA.
  • step (2) of the present invention can be performed by rolling circle amplification (hereinafter also referred to as “RCA method” (Rolling Circle Amplification)).
  • the RCA method is a method for amplifying circular DNA using a DNA polymerase having strand displacement activity and first and second primers.
  • the RCA method may be performed by a standard method, for example, according to the following procedure.
  • a second primer is hybridized to the single-stranded DNA.
  • a plurality of second primers can hybridize to one single-stranded DNA.
  • DNA synthesized from the second primer hybridized upstream is DNA synthesized from the second primer hybridized downstream.
  • the synthesis of the complementary strand proceeds while peeling off.
  • the first primer hybridizes to the DNA synthesized from the single-stranded second primer, and a new replication reaction occurs.
  • the sequence of the original circular DNA is exponentially amplified, and a DNA multimer in which the sequence of the original circular DNA is repeatedly linked is obtained.
  • the original monomeric circular DNA replication product can also be obtained by circularizing the DNA multimer using a site-specific recombination system such as Cre-loxP.
  • the “first primer” is a primer that binds to the target circular DNA
  • the “second primer” is a primer that binds to a sequence complementary to the circular DNA to which the first primer binds.
  • a random primer may be used as the first and second primers.
  • the length of the primer may usually be about 6 to 9 bases.
  • Known enzymes can be used as the DNA polymerase having the ⁇ ⁇ strand displacement activity, and examples thereof include Phi29 bacteriophage DNA polymerase, BstB DNA polymerase, Csa DNA polymerase, and 96-7 DNA polymerase. A commercially available enzyme may be used. The reaction conditions may be appropriately set according to the DNA polymerase used.
  • the present invention provides, in a cell-free system, components necessary for introducing a deletion, substitution, or addition into a target site of DNA, and deletion, substitution, or Provided is a kit comprising components necessary for amplifying DNA into which addition has been introduced in a cell-free system.
  • the components required to introduce a deletion, substitution, or addition at a target site in DNA can vary depending on the technique used to carry out the methods of the invention, but include, for example, desired mutations (eg, substitutions, Single-stranded DNA (for example, chemically synthesized oligonucleotides), DNA polymerase and the like.
  • desired mutations eg, substitutions, Single-stranded DNA (for example, chemically synthesized oligonucleotides), DNA polymerase and the like.
  • the components contained in the kit of the present invention include, for example, RecA family recombinase protein, exonuclease, nucleoside triphosphate or deoxynucleotide triphosphate regenerating enzyme and its substrate, Nucleoside triphosphates, deoxynucleotide triphosphates, magnesium ion sources, alkali metal ion sources, dimethyl sulfoxide, tetramethyl ammonium chloride, polyethylene glycol, dithiothreitol, and buffers.
  • RecA family recombinase protein exonuclease
  • nucleoside triphosphate or deoxynucleotide triphosphate regenerating enzyme and its substrate Nucleoside triphosphates, deoxynucleotide triphosphates, magnesium ion sources, alkali metal ion sources, dimethyl sulfoxide, tetramethyl ammonium chloride, polyethylene glycol, dithiothreitol,
  • the components included in the kit of the present invention include, for example, a replication initiation protein, one or more nucleoid proteins, an enzyme or enzyme group having DNA gyrase activity, Single-strand binding protein (SSB), an enzyme having DNA helicase activity (eg, an enzyme having DnaB type helicase activity), an enzyme having DNA helicase loader activity, an enzyme having DNA primase activity, DNA clamp One or more enzymes or enzymes selected from the group consisting of enzymes having activity and enzymes or enzymes having DNA polymerase III * activity.
  • the kit of the present invention may include additional components such as a reaction buffer or a concentrate thereof, depending on the technique used to carry out the method of the present invention. Additional components include, for example, components necessary to carry out the above RCR methods IV.
  • the kit of the present invention may further include an artificial DNA-cleaving enzyme for specifically cutting DNA into which no deletion, substitution, or addition has been introduced.
  • the kit of the present invention may also include a document describing a protocol for performing the method of the present invention using the kit.
  • the protocol may be described on the surface of the container containing the kit.
  • gRNA_Km guide RNA prepared according to IDT Alt-R® CRISPR-Cas9 System; recognition sequence: UGGUUAAUUGGUUGUAACAC (SEQ ID NO: 1)), 20 nM Cas9 (Alt-R (Registered trademark) Sp HiFi Cas9NNuclease 3NLS, IDT), 0.8 U / ⁇ L (RNase inhibitor murine (M0314, New England Biolabs), and R8 buffer (added so that the total mixture becomes 10 ⁇ L) (composition is shown in Table 2) ) Were mixed and incubated at 30 ° C. for 30 minutes.
  • the supercoiled DNA of pOri8 was cut and linearized depending on gRNA_Km having a recognition sequence downstream of the kanamycin resistance gene.
  • SacI treatment the 9.5 kb and 5.8 kb fragments were generated by cleavage of the 9.5 kb fragment as expected.
  • the supercoiled DNA of pMSR227 was cleaved and linearized in a Cas9 and gRNA_Km-dependent manner.
  • the 7.6 kb fragment was lost as expected.
  • the 6.8 kb fragment generated by cleavage of the 7.6 kb fragment with XhoI overlapped with another XhoI fragment, it was confirmed that the band became thicker.
  • CRISPR-RCR Is it possible to inhibit the amplification of the unmodified template DNA and specifically amplify the target ligation product by performing RCR in the presence of CRISPR-Cas9 in the DNA amplification reaction after RA reaction? It was confirmed (FIG. 4).
  • the template DNA (pOri8 or pMSR227) was cleaved with Cas9 by the following reaction to linearize it.
  • the concentration of each component in the reaction solution is a concentration based on the total volume of the reaction solution.
  • the Cas9 fragment and the lacZ fragment were ligated by the following RA reaction.
  • the reaction solution (the following composition; added so that the total amount of the mixture was 5 ⁇ L) was mixed, incubated at 42 ° C. for 1 hour, then at 65 ° C. for 2 minutes, and then left on ice.
  • the concentration of each component in the reaction solution is a concentration based on the total volume of the reaction solution.
  • lacZ fragment PCR is performed using pPKOZ (Su'etsugu et al, Nucleic Acids Res. 2017 Nov 16; 45 (20): 11525-11534) as a template and primers SUE1510 and SUE1511 to prepare a lacZ pre-fragment. did.
  • pPKOZ Sud'etsugu et al, Nucleic Acids Res. 2017 Nov 16; 45 (20): 11525-11534
  • primers SUE1510 and SUE1511 to prepare a lacZ pre-fragment.
  • primers SUE1638 and SUE1639 a lacZ fragment having an end homologous to 60 base pairs of the CRISPR-Cas9 cleavage end downstream of the kanamycin resistance gene (a sequence common to pOri8 and pMSR227) was prepared.
  • Composition of RA reaction solution 1 ⁇ M wild-type RecA (purified and prepared from E. coli expression strain of RecA by steps including polyethyleneimine precipitation, ammonium sulfate precipitation, and affinity column chromatography), 80 ⁇ mU / ⁇ L exonuclease III (2170A, TAKARA Bio), 1 U / ⁇ L exonuclease I (M0293, New England Biolabs), 20 mM Tris-HCl (pH 8.0), 4 mM DTT, 1 mM magnesium acetate, 50 mM Potassium glutamate, 100 ⁇ M ATP, 150 ⁇ M tetramethylammonium chloride (TMAC), 5% by mass PEG8000, 10% by volume DMSO, 20 ⁇ g / ⁇ L creatine kinase (10127566001, Sigma-Aldrich), 4 ⁇ M Creatine phosphate.
  • the concentration of each component in the RA reaction solution is a concentration based on
  • the RCR amplification reaction was performed on the RA reaction product as follows.
  • RCR reaction solution ver.2 the following composition, the concentration of each component in RCR reaction solution ver.2 is the concentration with respect to the total volume of RCR reaction solution ver.2; the total amount of the mixture is 4.5 ⁇ L.
  • 100 nM @gRNA_Km, and 1 nM @ Cas9 were mixed and pre-incubated at 30 ° C for 30 minutes.
  • the concentrations of gRNA_Km and Cas9 in the reaction solution are concentrations based on the total volume of the reaction solution.
  • the RCR reaction solution ver.2 was added without adding 100 nM gRNA_Km and 1 nM Cas9.
  • 0.5 ⁇ L of the RA reaction product was added, incubation was performed 40 times at 37 ° C. for 1 minute and incubation at 24 ° C. for 30 minutes, diluted 5-fold with R8 buffer, and further incubated at 30 ° C. for 30 minutes.
  • 1 ⁇ L of the RCR product was subjected to 0.5% agarose gel electrophoresis and detected by SYBR Green I staining.
  • SSB Escherichia coli-derived SSB
  • IHF is a complex of Escherichia coli-derived IhfA and IhfB
  • DnaG Escherichia coli-derived DnaG
  • Clamp is (Escherichia coli-derived DnaN)
  • PolIII * is Escherichia coli-derived DnaX, HolA, HolB, HolC, HolD, DnaE. , DnaQ
  • DNA polymerase III * complex that is a complex of HolE
  • Dna B is E. coli-derived DnaB
  • DnaC is E. coli-derived DnaC
  • DnaA is E.
  • coli-derived DnaA RNaseH is E. coli-derived RNaseH
  • Ligase is E. coli-derived DNA ligase.
  • PolI is E. coli-derived DNA polymerase I
  • GyrA is E. coli-derived GyrA
  • GyrB is E. coli-derived GyrB
  • Topo IV is a complex of E. coli-derived ParC and ParE
  • Topo III is E. coli-derived topoisomerase III
  • RecQ is E. coli-derived RecQ
  • RecG E. coli-derived RecG
  • RecJ represent (E. coli-derived RecJ)
  • ExoI represents (E. coli-derived ExoI)
  • ExoIII represents (E. coli-derived ExoIII).
  • SSB was purified and prepared from Escherichia coli expression strain of SSB by a process including ammonium sulfate precipitation and ion exchange column chromatography.
  • IHF was prepared and purified from Escherichia coli co-expressing strains of IhfA and IhfB by a process including ammonium sulfate precipitation and affinity column chromatography.
  • DnaG was purified from an Escherichia coli expression strain of DnaG and purified by steps including ammonium sulfate precipitation, anion exchange column chromatography, and gel filtration column chromatography.
  • Clamp was prepared and purified from a DnaN (Clamp) E.
  • coli expression strain by a process including ammonium sulfate precipitation and anion exchange column chromatography.
  • PolIII * was prepared and purified from Escherichia coli co-expressed strains of DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ and HolE in steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
  • DnaB and DnaC were purified and prepared from Escherichia coli co-expressed strains of DnaB and DnaC by steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
  • DnaA was purified and prepared from Escherichia coli expression strain of DnaA by steps including ammonium sulfate precipitation, dialysis precipitation, and gel filtration column chromatography.
  • GyrA and GyrB were purified and prepared from a mixture of a GyrA Escherichia coli expression strain and a GyrB Escherichia coli expression strain by steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
  • Topo IV was prepared and purified from a mixture of a ParC Escherichia coli expression strain and a ParE Escherichia coli expression strain by a process including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
  • Topo III was prepared and purified from the E. coli expression strain of Topo III by a process including ammonium sulfate precipitation and affinity column chromatography.
  • RecQ was purified and prepared from RecQ-expressing Escherichia coli expression strain by steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography. RecG was purified from an E.
  • RecJ used a commercially available enzyme (M0264, New England Biolabs).
  • ExoI used a commercially available enzyme (see the composition of the RA reaction solution).
  • ExoIII used a commercially available enzyme (see the composition of the RA reaction solution).
  • RNaseH Ligase and PolI, commercially available enzymes derived from Escherichia coli were used (Takara Bio Inc.).
  • the ratio of the lacZ insertion product in the RCR product was examined by transforming the RCR product into Escherichia coli and determining the whiteness of the colonies.
  • 1 ⁇ L of the RCR product was diluted 10-fold with TE buffer, and 1 ⁇ L of the product was used to transform Escherichia coli DH5 ⁇ strain by a chemical method.
  • 1 ⁇ L of the RCR product was diluted 10-fold with TE buffer, and 2 ⁇ L of the diluted product was used to transform Escherichia coli HST08 by electroporation.
  • the transformed Escherichia coli was plated on an LB plate containing 50 ⁇ g / mL kanamycin, 0.1 mM (mmol / L) IPTG, and 40 ⁇ g / mL X-gal based on the total volume of the LB plate, and incubated at 37 ° C. Cultured overnight. The ratio of the number of blue colonies to the total number of colonies was counted.
  • a plasmid was extracted from a blue colony obtained from a sample in which lacZ (3.3 kb) was inserted and modified into pMSR227 (205 kb), and the structure was confirmed by restriction with XhoI (FIG. 6A). As expected, the 7.6 kb fragment observed before modification disappeared, and the band around 11 kb was darkened, confirming that it was a lacZ insertion product (FIG. 6B).
  • ⁇ First, pOri80 (85 kb) and pOri93Cm (94 kb) were respectively cut at specific sites by CRISPR-Cas9 and linearized by the following method. 10 ng / ⁇ L pOri80 (85 kb) or pOri93Cm (94 kb), 100 nM gRNA_Km (for pOri80) or gRNA_007 (for pOri93Cm; guide RNA prepared according to IDT Alt-R® CRISPR-Cas9 System; Recognition sequence: CCUUUAGUUACAACAUACUC (SEQ ID NO: 2)), 20 nM Cas9, 0.8 U / L LRNase inhibitor murine, and R8 buffer (added so that the total amount of the mixture becomes 5 L), and incubated at 30 C for 30 minutes.
  • the concentration of each component in the reaction solution is a concentration based on the total volume of the reaction solution.
  • pOri93Cm was prepared by the following method.
  • a genomic fragment of 93 kb was ligated to a ligation fragment (Cm-oriC fragment, 1.3 kb; SEQ ID NO: 11) and ligated with RA to form a circle.
  • the sequence of 60 base pairs at both ends of the Cm-oriC fragment is a sequence homologous to both ends of the genomic fragment of 93 kb.
  • the obtained two long-chain DNA fragments were ligated by performing an RA reaction as follows using a lacZ adapter (3.4 kb) and an Am adapter (1.1 kb).
  • lacZ adapter 3.4kb, 27 pg
  • Am adapter 1.1kb, 86 ng
  • 50 ng / ⁇ L tRNA RA reaction
  • the liquids (see Example 2; added so that the total amount of the mixture was 5 ⁇ L) were mixed, incubated at 42 ° C for 3 hours, and then at 65 ° C for 2 minutes, and then left on ice.
  • the concentration of each component in the reaction solution is a concentration based on the total volume of the reaction solution.
  • each adapter is a homologous sequence to both ends of two long chain DNA fragments, and the four fragments are linked and circularized by RA to form a DNA of 183 kb in total length.
  • the lacZ adapter was prepared by performing PCR using pPKOZ as a template and primers SUE175 and SUE1823.
  • Am adapter was prepared by performing PCR using pUC4K plasmid (GE Healthcare) as a template and primers SUE1753 and SUE1822.
  • the RCR amplification reaction was performed as follows.
  • RCR reaction solution # ver.2 (added so that the total amount of the mixture becomes 4.5 ⁇ L), 100 nM @gRNA_Km, 100 nM @ gRNA_007, and 2 * nM @ Cas9 were mixed and pre-incubated at 30 ° C for 30 minutes. Note that the concentrations of gRNA_Km, gRNA_007, and Cas9 in the reaction solution are concentrations with respect to the total volume of the reaction solution.
  • RCR reaction solution # ver.2 was added without adding 100 nM gRNA_Km, 100 nM gRNA_007, and 2 nM Cas9.
  • the RA reaction product ⁇ 0.5 ⁇ ⁇ L was added, and the cycle of incubation at 37 ° C. for 1 minute and incubation at 24 ° C. for 30 minutes was performed 40 times, diluted 5-fold with R8 buffer, and further incubated at 30 ° C. for 30 minutes.
  • 1 ⁇ L of the RCR product was subjected to 0.5% agarose gel electrophoresis and detected by SYBR Green I staining.
  • the ratio of the target ligated product in the RCR product was examined by transforming the RCR product into Escherichia coli and determining the whiteness of the colonies.
  • 1 ⁇ L of the RCR product was diluted 10-fold with TE buffer, and 2 ⁇ L thereof was used to transform Escherichia coli HST08 by electroporation.
  • Transformed E. coli was seeded on an LB plate containing 12.5 ⁇ g / mL chloramphenicol, 0.1 ⁇ M IPTG, 40 ⁇ g / mL X-gal, based on the total volume of the LB plate, and cultured at 37 ° C. overnight. did.
  • the ratio of the number of blue colonies to the total number of colonies was counted (Blue colony).
  • FIG. 8 shows the results.
  • RCR was performed in the absence of gRNA and Cas9
  • 94 kb and 85 kb supercoiled DNA before modification was mainly amplified.
  • DNA amplification of 94 kb and 85 kb was suppressed, and DNA amplification of a size close to that of the RCR-amplified 205 kb supercoiled DNA (pMSR227) was observed.
  • “Input” indicates a sample before RCR amplification.
  • Escherichia coli was transformed with the amplified product, and among the chloramphenicol-resistant colonies, colonies having the lacZ gene were detected by blue-white judgment. As a result, all 21 colonies were the target blue colonies (in the figure, "Blue colony on Cm plate ").
  • one of the obtained plasmids (named pOri183) was digested with the restriction enzyme SacI, and the structure was confirmed by performing pulse field gel electrophoresis (FIG. 10). The result almost coincided with the cleavage pattern expected from the nucleotide sequence (the size shown on the right of the band).
  • a size marker not only the Ladder marker but also the supercoiled (SC) product of pMSR227 having a known structure and its XhoI digestion product were electrophoresed simultaneously.
  • Example 4 Construction of base substitution introduction method conjugated to RCR First, it was examined whether the base substitution introduction method using oligo DNA could be applied to RCR.
  • the experimental system is shown in FIGS. 11B and 12.
  • the lacZ mutant pPKOZ (pPKOZins and pPKOZmis; FIG. 11A) was prepared by the QuikChange PCR method using pPKOZ (8.8 kb) as a template.
  • pPKOZins is a plasmid having a single base insertion in the coding region of lacZ (FIG. 12). Since wild-type lacZ is not expressed due to the frameshift mutation, the colonies of E. coli transformed with pPKOZins do not show blue in blue-white judgment (FIG. 11B).
  • pPKOZmis is a plasmid having a single base substitution in the coding region of lacZ (FIG. 12). Since wild-type lacZ is not expressed due to the nonsense mutation, colonies of E. coli transformed with pPKOZmis do not show blue in blue-white judgment (FIG. 11B).
  • SSUE1354 to SUE1357 were used as oligo DNAs for returning these mutant lacZ to the wild type.
  • RCR reaction solution ver.1 (the following composition, the concentration of each component in RCR reaction solution ver.1 is the concentration based on the total volume of RCR reaction solution ver.1; the total amount of the mixture is 5 ⁇ L. ), 1 or 3 ⁇ M of oligo DNA for modification (20-60 ⁇ mer), and 75 ⁇ pg / ⁇ L pPKOZins were mixed and incubated at 30 ° C for 18 hours.
  • the concentration of each component in the reaction solution is a concentration based on the total volume of the reaction solution. 1 ⁇ L of the RCR product was subjected to 0.5% agarose gel electrophoresis and detected by SYBR Green I staining.
  • the components of the ⁇ RCR ⁇ reaction solution ver.1 are the same as those of the RCR reaction solution ver.2.
  • the RCR product was transformed into Escherichia coli, and the whiteness of the colonies was determined, whereby the proportion of the RCR product in which the lacZ mutation was changed to the wild type was examined.
  • Escherichia coli DH5 ⁇ strain was transformed by a chemical method using 0.25 ⁇ L of the RCR product.
  • the transformed Escherichia coli was seeded on an LB plate containing 25 ⁇ g / mL kanamycin, 0.1 ⁇ M IPTG, and 40 ⁇ g / mL X-gal, and cultured at 37 ° C. overnight. The number of blue colonies relative to the total number of colonies was counted.
  • FIGS. 13A and 13B The results are shown in FIGS. 13A and 13B. Sufficient amplification was observed except when 3 ⁇ M of a 40-mer or 60-mer modification oligo DNA was added (FIG. 13A). In the figure, for "Input”, 3.8 ng of the template DNA was passed. When the transformed colony of Escherichia coli was judged to be blue-white, it was confirmed that the lacZ mutation was changed to the wild type with the highest efficiency of 5.5% in the sample to which 1 ⁇ M of the 60-mer modification oligo was added (FIG. 13B). ).
  • Example 5 Examination of concentration with oligo DNA 60mer (ins / mis) In order to improve the modification efficiency, the concentration of oligo DNA used was examined.
  • An RCR reaction was performed by the following method using pPKOZins or pPKOZmis as a template in the presence of a 60-mer oligo DNA for modification at a different concentration.
  • RCR reaction mixture ver.1 (added so that the total amount of the mixture becomes 5 ⁇ L), 0 to 3 ⁇ M 60 mer modification oligo DNA (SUE1357), 75 pg / ⁇ L pPKOZins or 14 pg / ⁇ L pPKOZmis, and mix at 30 °C For 19 hours.
  • 1 ⁇ L of the RCR product was subjected to 0.5% agarose gel electrophoresis and detected by SYBR Green I staining.
  • the RCR product was transformed into Escherichia coli, and the whiteness of the colonies was determined, whereby the proportion of the RCR product in which the lacZ mutation was changed to the wild type was examined.
  • Escherichia coli DH5 ⁇ strain was transformed by a chemical method using 0.25 ⁇ L of the RCR product.
  • the transformed Escherichia coli was seeded on an LB plate containing 25 ⁇ g / mL kanamycin, 0.1 ⁇ M IPTG, and 40 ⁇ g / mL X-gal based on the total volume of the LB plate, and cultured at 37 ° C. overnight. The number of blue colonies relative to the total number of colonies was counted.
  • FIGS. 14A and 14B The results are shown in FIGS. 14A and 14B.
  • FIG. 14A for “Input”, 3.8 ⁇ ng of pPKOZins and 0.72 ⁇ ng of pPKOZmis flowed.
  • the lacZ mutation was changed to the wild type with the highest efficiency of 20% or more in the sample to which the 0.3 ⁇ M modification oligo DNA was added. It was confirmed (FIG. 14B).
  • Example 6 Efficiency of ROGE using CRISPR-Cas9
  • the efficiency of lacZ mutation being changed to wild type was increased. I examined whether it could be done.
  • RCR reaction was performed using pPKOZins as a template in the presence of 0.3 ⁇ M of a 60-mer modification oligo DNA.
  • RCR reaction mixture ver.1 added so that the total amount of the mixture becomes 5 ⁇ L
  • 0.3 ⁇ M 60-mer oligo DNA for modification SUE1357
  • 0-20 nM Cas9 100 nM gRNA_Zins (IDT Alt-R (registered trademark) ) Guide RNA prepared according to CRISPR-Cas9 System; recognition sequence: ACCAUGAUUACGGAUUCACU (SEQ ID NO: 20), 7.5 fg / ⁇ L pPKOZins were mixed and incubated at 30 ° C.
  • gRNA_Zins is a guide RNA that specifically recognizes the lacZins sequence before modification.
  • the RCR product was transformed into Escherichia coli, and the whiteness of the colonies was determined, whereby the proportion of the RCR product in which the lacZ mutation was changed to the wild type was examined.
  • Escherichia coli DH5 ⁇ strain was transformed by a chemical method using 0.25 ⁇ L of the RCR product.
  • the transformed Escherichia coli was seeded on an LB plate containing 25 ⁇ g / mL kanamycin, 0.1 ⁇ M IPTG, and 40 ⁇ g / mL X-gal based on the total volume of the LB plate, and cultured at 37 ° C. overnight. The number of blue colonies relative to the total number of colonies was counted.
  • FIGS. 15A and 15B The results are shown in FIGS. 15A and 15B.
  • the addition of both Cas9 and gRNA_Zins markedly suppressed supercoiled DNA amplification by RCR (FIG. 15A).
  • the amplified supercoiled DNA product was detected even when CRISPR-Cas9 was added (FIG. 15A).
  • it was confirmed that almost all amplification products were changed to lacZ wild-type in the presence of the oligo DNA for modification by addition of Cas9 and gRNA_Zins FIGS. 15A and 15B.
  • Example 7 Long chain DNA ROGE In an experimental system similar to that of Example 5, it was examined whether the base substitution introduction method using oligo DNA could be applied to RCR of long-chain DNA.
  • RCR reaction was performed using a 101 kb oriC-containing circular DNA (pOri93Zins) having a lacZins mutation (pOri93Zins) as a template.
  • RCR reaction solution ver.1 added so that the total amount of the mixture becomes 5 ⁇ L
  • 0 ⁇ 3 ⁇ M 60 mer oligo DNA for modification SUE1357
  • 3 ng / ⁇ L lambda DNA 0.67 pM pOri93Zins
  • the concentration of each component in the reaction solution is a concentration based on the total volume of the reaction solution.
  • a 2.5 ⁇ L portion of the RCR product was subjected to 0.5% agarose gel electrophoresis and detected by SYBR Green I staining.
  • pOri93Zins was prepared by the following method.
  • a genomic fragment of 93 kb was obtained by combining a ligating fragment (KOZins fragment) containing oriC, a kanamycin resistance gene and a lacZins mutant gene with RA And cyclized.
  • the KOZins fragment (8.6 kb) was prepared by PCR using pKOZins as a template and primers SUE1745 and SUE1746.
  • the sequences at both ends of the KOZins fragment are sequences homologous to both ends of the 93 kb genomic fragment.
  • the RCR product was transformed into Escherichia coli, and the whiteness of the colonies was determined, whereby the proportion of the RCR product in which the lacZ mutation was changed to the wild type was examined.
  • Escherichia coli HST08 strain was transformed by electroporation using 0.2 ⁇ L of the RCR product.
  • the transformed Escherichia coli was seeded on an LB plate containing 25 ⁇ g / mL kanamycin, 0.1 ⁇ M IPTG, and 40 ⁇ g / mL X-gal based on the total volume of the LB plate, and cultured at 37 ° C. overnight. The number of blue colonies relative to the total number of colonies was counted.
  • FIGS. 16B and 16C The results are shown in FIGS. 16B and 16C.
  • concentration of the modification oligo DNA was 1 ⁇ M or more, inhibition of the amplification reaction was observed (FIG. 16B).
  • FIG. 16B for “Input”, 0.02 ng of the template DNA was passed.
  • the results of the blue-white determination of the transformed colonies showed that the lacZins mutation was changed to the lacZ wild type in 5.4% of the amplification product in the presence of 0.3 ⁇ M of the oligo DNA for modification (FIG. 16C).
  • Example 8 Efficiency of long-chain DNA ROGE using CRISPR-Cas9
  • Example 6 it was examined whether the increase in the modification efficiency by CRISPR-Cas9 can be applied to RCR of long-chain DNA.
  • RCR reaction solution ver.1 added so that the total amount of the mixture becomes 5 ⁇ L
  • 0.3 ⁇ M 60-mer oligo DNA for modification SUE1357
  • 3 ng / ⁇ L lambda DNA 10 nM Cas9
  • 100 nM gRNA_Zins IDT Alt- A guide RNA prepared according to R® CRISPR-Cas9 System; recognition sequence: ACCAUGAUUACGGAUUCACU (SEQ ID NO: 20)
  • 1 pM pOri93Zins were mixed, and the concentration of each component in the reaction solution was Then, after incubating for 40 cycles with a temperature cycle of 37 ° C for 1 minute ⁇ 24 ° C for 30 minutes, dilute 5-fold with R8 buffer and further incubate for 30 minutes at 30
  • the RCR product was transformed into Escherichia coli, and the whiteness of the colonies was determined, whereby the proportion of the RCR product in which the lacZ mutation was changed to the wild type was examined.
  • Escherichia coli HST08 strain was transformed by electroporation using 0.2 ⁇ L of the RCR product.
  • the transformed Escherichia coli was seeded on an LB plate containing 25 ⁇ g / mL kanamycin and 0.1 ⁇ M IPTG and 40 ⁇ g / mL X-gal based on the total volume of the LB plate, and cultured at 37 ° C. overnight. The number of blue colonies relative to the total number of colonies was counted.
  • FIGS. 17A and 17B The results are shown in FIGS. 17A and 17B.
  • the addition of both Cas9 and gRNA_Zins markedly suppressed supercoiled DNA amplification by RCR (FIG. 17A).
  • the amplified supercoiled DNA product was detected even when CRISPR-Cas9 was added (FIG. 17A).
  • Example 9 Substitution and insertion of plural bases In an experimental system similar to that of Example 5, it was examined whether plural bases could be substituted or inserted using oligo DNA for modification.
  • pPKOZins has a frameshift mutation due to insertion of a single base into the coding region of lacZ, and E. coli colonies appear white.
  • a sequence that returns this one-base insertion to the wild-type sequence is included. It is expected that the plasmid which has become a wild type (blue Escherichia coli colony) by the modification has three base substitutions introduced at the same time (FIG. 18A).
  • RCR reaction was performed using pPKOZins or pPKOZ as a template in the presence of different concentrations of the oligo DNA for modification as follows.
  • RCR reaction solution ver. 1 (added so that the total amount of the mixture becomes 5 ⁇ L), 0 ⁇ M to 0.6 ⁇ M 60 mer modification oligo DNA (SUE4386 or SUE4387), 50 pg / ⁇ L pPKOZins or pPKOZ were mixed.
  • the concentration of each component in the reaction solution is a concentration based on the total volume of the reaction solution.
  • the reaction solution was incubated at 33 ° C. for 18 hours, diluted 5-fold with R8 buffer, and further incubated at 30 ° C. for 30 minutes.
  • a 2.5 ⁇ L portion of the RCR product was subjected to 0.5% agarose gel electrophoresis and detected by SYBR Green I staining.
  • the RCR product was transformed into Escherichia coli, and the blue-white determination of the colonies was carried out, whereby the percentage of blue colonies when pPKOZins was used and the percentage of white colonies when pPKOZ was used were examined.
  • Escherichia coli DH5 ⁇ strain was transformed by a chemical method using 0.25 ⁇ L of the RCR product.
  • the transformed Escherichia coli was seeded on an LB plate containing 25 ⁇ g / mL kanamycin, 0.1 ⁇ M IPTG, and 40 ⁇ g / mL X-gal based on the total volume of the LB plate, and cultured at 37 ° C. overnight. The number of blue or white colonies relative to the total number of colonies was counted.
  • FIG. 18H The results are shown in FIG. 18H. As expected, two fragments resulting from cleavage at two sites were detected in all seven modified plasmids that had been subjected to the restriction enzyme treatment, confirming that the desired four-base insertion sequence had been modified. In the unmodified plasmid (wt), only one cleavage was detected (FIG. 18H).
  • Violacein is a secondary metabolite produced based on tryptophan using five gene products (vioA, vioB, vioC, vioD, and vioE).
  • vioA a secondary metabolite produced based on tryptophan using five gene products (vioA, vioB, vioC, vioD, and vioE).
  • vioA a secondary metabolite produced based on tryptophan using five gene products (vioA, vioB, vioC, vioD, and vioE).
  • vioA a secondary metabolite produced based on tryptophan using five gene products (vioA, vioB, vioC, vioD, and vioE).
  • vioA a secondary metabolite produced based on tryptophan using five gene products (vioA, vioB, vioC, vioD, and vioE).
  • vioA a secondary metabolite produced based on tryptophan using five gene products
  • vioA deficiency or vioA / vioC double deficiency a product exhibiting color is not synthesized, and the colony remains white (FIG. 19B). Utilizing such a change in colony color, the vioA, vioC double-deletion mutant plasmid can be returned to the vioA, vioC wild-type plasmid by simultaneous base substitution in two separate regions of vioA and vioC. The detection was attempted using the appearance of purple colonies as an index.
  • the plasmid pK3OV_insAC to be used has an insertion of one base in each of the coding regions of vioA and vioC (FIG. 19A).
  • This pK3OV_insAC was prepared by using pK3OV as a template and performing one consecutive base insertion coupled with the RCR reaction twice in succession. The first time, one base was inserted into vioC using SUE4384 (SEQ ID NO: 64) as oligo DNA, and plasmid pK3OV_insC was prepared from the resulting black-brown colony. Then, the second time, SUE4579 (SEQ ID NO: 63) was prepared using pK3OV_insC as a template.
  • E. coli colonies transformed with pK3OV_insAC are white and colorless because vioA and vioC are not expressed due to the frameshift mutation.
  • pK3OV is a DNA region encoding the vioABECD gene of pETM6-vioABECD (Jones et al., Sci. Rep. (2015) 5,11301), which has an oriC represented by SEQ ID NO: 67, a kanamycin resistance gene, and a 3.5 kb containing LacI. It was prepared by ligating and circularizing the DNA fragment with the RA reaction.
  • SSUE4577 (SEQ ID NO: 65) and SUE4381 (SEQ ID NO: 66) were used as oligo DNAs for returning the mutant vioA and vioC to the wild type (FIGS. 19C and 19D).
  • an RCR reaction was performed as follows.
  • RCR reaction solution ver.1 added so that the total amount of the mixture becomes 5 ⁇ L
  • 0.15 ⁇ M 60 ⁇ mer modification oligo DNA SUE4577 and SUE4381
  • 50 ⁇ g / ⁇ L pK3OV_insAC was mixed at 33 ° C. for 6 hours, Incubated for 12 or 18 hours.
  • the concentration of each component in the reaction solution is a concentration based on the total volume of the reaction solution.
  • E. coli BL21 Star (DE3) strain (Thermo Fisher Scientific) was transformed by a chemical method directly using 1 ⁇ L of the RCR product.
  • the transformed Escherichia coli was inoculated on an LB plate containing 25 ⁇ g / mL kanamycin and 10 ⁇ M IPTG with respect to the total volume of the LB plate, and cultured at 30 ° C. overnight. The number of purple colonies relative to the total number of colonies was counted.
  • a method for amplifying a DNA editing product, particularly a long-chain DNA editing product, without using cells can be provided.
  • SEQ ID NO: 1 gRNA_Km SEQ ID NO: 2: gRNA_007 SEQ ID NO: 3: SUE1510 SEQ ID NO: 4: SUE1511 SEQ ID NO: 5: SUE1638 SEQ ID NO: 6: SUE1639 SEQ ID NO: 7: SUE1753 SEQ ID NO: 8: SUE1756 SEQ ID NO: 9: SUE1822 SEQ ID NO: 10: SUE1823 SEQ ID NO: 11: Cm-oriC fragment SEQ ID NO: 12: SUE818 SEQ ID NO: 13: SUE819 SEQ ID NO: 14: SUE1415 SEQ ID NO: 15: SUE1416 SEQ ID NO: 16: SUE1354 SEQ ID NO: 17: SUE1355 SEQ ID NO: 18: SUE1356 SEQ ID NO: 19: SUE1357 SEQ ID NO: 20: gRNA_Zins SEQ ID NO: 21: SUE1745 SEQ ID NO: 22: SUE1746 SEQ ID NO

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

無細胞系でDNAを編集する方法は、(1)無細胞系において、DNAの標的部位に欠失、置換、又は付加を導入する工程;及び(2)工程(1)において欠失、置換、又は付加が導入されたDNAを、無細胞系において増幅させる工程、ここで当該DNAは、20℃~80℃の範囲の温度でインキュベートする温度条件下で増幅される;を含む。

Description

無細胞系でDNAを編集する方法
 本発明は、無細胞系でDNAを編集する方法に関する。
 本願は、2018年7月30日に、日本に出願された特願2018-142274号に基づき優先権を主張し、その内容をここに援用する。
 ゲノム編集は、標的配列特異的ヌクレアーゼを用いて、意図した通りに標的遺伝子を改変する技術である。利用できるヌクレアーゼとしては、CRISPR-Cas9、ZFN、TALEN等のエンドヌクレアーゼが知られている。ゲノム編集技術により、細菌からヒトに至るまで、多くの生物種において、細胞内で狙ったDNA配列を編集することが可能となっている(非特許文献1~3)。標的配列特異的エンドヌクレアーゼはDNA二重鎖を切断する酵素であることから、目的の編集されたゲノムを得るためには、DNA二重鎖切断に続いて細胞内でのDNA修復プロセスを経る必要がある。ゲノムに新たなDNA配列を挿入する場合には相同組換えによる修復プロセスが機能する。切断部位に相同的な配列を含むDNA断片をDNA二重鎖切断時に細胞内に存在させておくことで、相同配列を利用した組換えにより所望のDNA配列を切断部位に挿入することができる。また、数塩基の短い配列を欠失させる場合には、非相同末端結合(NHEJ)による修復プロセスが機能する。この場合は、切断部位がNHEJで修復される際に、塩基の欠失や変異が引き起こされることとなる。
 標的配列特異的エンドヌクレアーゼによるDNA二重鎖の切断は、細胞内におけるこれらの修復プロセスの引き金となるだけでなく、編集されずに取り残されたDNAを選択的に不活性化するカウンターセレクションとしての機能も担っている。すなわち、編集後のDNAはもはや標的配列特異的エンドヌクレアーゼによる切断を受けることがないため、細胞内で複製プロセスを経て増幅するのに対し、編集前のDNAは二重鎖切断の攻撃にさらされ続けるため、細胞内での増幅が抑えられる。
 大腸菌においては、標的配列特異的エンドヌクレアーゼを使わずに、細胞内でDNA配列を改変することも可能である。その例としては、プロファージのRecET組換え酵素を用いた系(非特許文献4)や、λファージのRed組換え酵素を用いた系(非特許文献5及び6)が知られている。これらの系においては、大腸菌内に導入された二重鎖DNA断片の末端が一本鎖化し、この部分と、ゲノム上のDNA複製中に露出する一本鎖部分とが対合することによって、組換え反応が導かれる。二重鎖DNA断片でなくとも、短い一本鎖DNAつまりオリゴDNAを大腸菌内に導入することでも、そのオリゴDNAが露出一本鎖と対合し、塩基置換をゲノム上に導入することが可能である(非特許文献7)。
 大腸菌内でのこのようなオリゴDNAによる塩基置換効率は低いが、最近では、CRISPR-Cas9の標的配列切断システムをカウンターセレクションとして用いることにより、その効率を上昇させる方法も報告されている(非特許文献8)。
 一方、無細胞系でDNAを編集する技術としては、ポリメラーゼ連鎖反応(PCR)を利用した技術が従来から知られている。例えば、塩基置換、欠失、又は付加などの変異を含むプライマーDNAを用いてPCR法により鋳型DNAを増幅させたり、DNA断片同士の連結産物をPCR法により増幅させたりして、細胞を使用せずにDNA配列を人為的に編集した産物を調製することが可能である。
 CRISPR-Cas9による標的配列切断システムを、in vitroで利用することも可能である。例えば、CRISPR-Cas9を利用してゲノムの100 kb領域を大腸菌プラスミドにクローニングしたことが報告されている(非特許文献9)。この報告では、CRISPR-Cas9による標的箇所でのゲノム切断及び切断断片とプラスミドとの連結反応を試験管内で行っている。
 また無細胞系でDNA断片同士を連結する技術としては、In fusion法(特許文献1)、Gibson Assembly法(特許文献2及び3)、Recombination Assembly法(特許文献4)などが知られている。
 無細胞系でDNAを増幅させる技術としては、PCR法が広く用いられているが、使用される酵素のプロセシビティーに起因して、増幅できるDNAの長さに制限がある。PCR法では、通常、50 kbを超える長鎖DNAを増幅させることは困難である。
 そのような長鎖DNAを無細胞系で増幅させる方法として、複製開始配列oriCを有する環状DNAを増幅させるためのin vitro再構成系が報告されている(特許文献5~7)。この方法は、Replication Cycle Reaction(RCR)法と呼ばれ、PCR法により増幅させることが困難な50 kb以上の長鎖DNAを増幅させることも可能である。
 上述のような細胞を用いたDNA編集法では、培養、反応に必要な酵素の細胞内への導入などに高度な技術を要する上に、多大な時間及び労力を要する。また、編集により生じるDNA配列が細胞毒性を示す場合には、目的の産物が得られないという問題も生じる。またDNAを細胞に導入すること自体も、DNAが長鎖となるほど困難となってくる。
米国特許第7,575,860号明細書 米国特許第7,776,532号明細書 米国特許第8,968,999号明細書 国際公開第2019/009361号 国際公開第2016/080424号 国際公開第2017/199991号 国際公開第2018/159669号
Carroll,D. (2014) Genome Engineering with Targetable Nucleases. Annual Review of Biochemistry, 83, 409-439. Mougiakos,I., Bosma,E.F., de Vos,W.M., van Kranenburg,R. and van der Oost,J. (2016) Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit. Trends in Biotechnology, 34, 575-587. Mougiakos,I., Bosma,E.F., Ganguly,J., van der Oost,J. and van Kranenburg,R. (2018) Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects. Current Opinion in Biotechnology, 50, 146-157. Zhang,Y., Buchholz,F., Muyrers,J.P. and Stewart,A.F. (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nature genetics, 20, 123-128. Datsenko,K.A. and Wanner,B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97, 6640-6645. Yu,D., Ellis,H.M., Lee,E.C., Jenkins,N.A., Copeland,N.G. and Court,D.L. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 97, 5978-5983. Ellis,H.M., Yu,D., DiTizio,T. and Court,D.L. (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides.Proceedings of the National Academy of Sciences of the United States of America, 98, 6742-6746. Ronda,C., Pedersen,L.E., Sommer,M.O.A. and Nielsen,A.T. (2016) CRMAGE: CRISPR Optimized MAGE Recombineering. Scientific Reports, 6, 1-11. Wang,H., Li,Z., Jia,R., Yin,J., Li,A., Xia,L., Yin,Y., Muller,R., Fu,J., Stewart,A.F., and Zhang, Y. (2017) ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes. Nucleic Acids Research, 10.1093/nar/gkx1296.
 本発明は、最終的にDNA編集産物を選択的に増幅させる工程まで細胞を使用することなく実施することができる、無細胞系でDNAを編集する方法を提供する。
 本発明者らは、鋭意研究した結果、無細胞系において等温でDNAを増幅させるか又は無細胞系において65℃以下の2つの温度でのインキュベーションを繰り返してDNAを増幅させる技術と、無細胞系において利用可能なDNA編集(改変)技術とを組み合わせることにより、細胞を用いることなくDNA編集産物を増幅させることができることを見出した。さらに、未編集のDNAを特異的に切断する工程を組込むことにより、DNA編集産物の収率を大幅に改善し得ることを見出した。これらの知見に基づき、さらに研究を重ねることにより、本発明を完成させた。
 すなわち、本発明は、以下の態様を含む。
〔1〕無細胞系でDNAを編集する方法であって、以下の工程:
 (1)無細胞系において、DNAの標的部位に欠失、置換、又は付加を導入する工程;及び
 (2)工程(1)において欠失、置換、又は付加が導入されたDNAを、無細胞系において増幅させる工程、ここで当該DNAは、20℃~80℃の範囲の温度でインキュベートする温度条件下で増幅される;
を含む、前記方法。
〔2〕無細胞系でDNAを編集する方法であって、以下の工程:
 (1)無細胞系において、DNAの標的部位に欠失、置換、又は付加を導入する工程;及び
 (2)工程(1)において欠失、置換、又は付加が導入されたDNAを、無細胞系において増幅させる工程、ここで当該DNAは、等温でインキュベートするか、又は65℃以下の2つの温度でのインキュベーションを繰り返す温度サイクル下でインキュベートする温度条件下で増幅される;
を含む、〔1〕に記載の前記方法。
〔3〕無細胞系でDNAを編集する方法であって、以下の工程:
 (1)無細胞系において、DNAの標的部位に欠失、置換、又は付加を導入する工程;及び
 (2)工程(1)において欠失、置換、又は付加が導入されたDNAを、無細胞系において増幅させる工程、ここで当該DNAは、20℃~80℃の範囲に含まれる一定の温度でインキュベートするか、又は65℃以下の2つの温度でのインキュベーションを繰り返す温度サイクル下でインキュベートする温度条件下で増幅される;
を含む、〔1〕又は〔2〕に記載の前記方法。
〔4〕工程(2)を、欠失、置換、又は付加が導入されていないDNAを特異的に切断する人工DNA切断酵素の存在下で行う、〔1〕~〔3〕のいずれか1つに記載の方法。
〔5〕人工DNA切断酵素が、人工ヌクレアーゼ又はRNA誘導型ヌクレアーゼである、〔4〕に記載の方法。
〔6〕人工DNA切断酵素が、CRISPR-Cas9である、〔4〕に記載の方法。
〔7〕DNAが、環状DNAである、〔1〕~〔6〕のいずれか1つに記載の方法。
〔8〕工程(2)が、以下の工程:
 (2-1)(a)環状DNAの複製を触媒する第一の酵素群、(b)岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群、及び(c)2つの姉妹環状DNAの分離反応を触媒する第三の酵素群を含む反応溶液と、工程(1)において欠失、置換、又は付加が導入された環状DNAとの反応混合物を調製する工程;並びに
 (2-2)工程(2-1)において調製した反応混合物を、20℃~80℃の範囲に含まれる一定の温度でインキュベートするか、又は65℃以下の2つの温度でのインキュベーションを繰り返す温度サイクル下でインキュベートする工程;
を含む、〔7〕に記載の方法。
〔9〕環状DNAが、DnaA活性を有する酵素と結合可能な複製開始配列を含む、〔8〕に記載の方法。
〔10〕工程(2)において、環状DNAが、ローリングサークル増幅によって増幅される、〔7〕に記載の方法。
〔11〕工程(1)が、以下の工程:
 (1-1)人工DNA切断酵素をDNAに作用させることにより、当該DNAを標的部位で切断し、少なくとも一つの直鎖DNAを調製する工程;
 (1-2)工程(1-1)で調製された直鎖DNA、1種類以上のDNA断片、及びRecAファミリー組換え酵素活性をもつ蛋白質を含む反応溶液を調製する工程;並びに
 (1-3)当該直鎖DNAと当該1種類以上のDNA断片とを、塩基配列が相同である領域同士又は塩基配列が相補的である領域同士において互いに連結させ、鋳型DNAの標的部位に当該1種類以上のDNA断片が挿入されたDNAを形成させる工程;
を含む、〔1〕~〔10〕のいずれか1つに記載の方法。
〔12〕工程(1)が、以下の工程:
 欠失、置換、又は付加の導入用一本鎖DNAの存在下で、DNAの複製反応を行う工程、ここで当該一本鎖DNAは、複製反応の条件下で当該DNAの標的部位にハイブリダイズし得る;
を含む、〔1〕~〔10〕のいずれか1つに記載の方法。
〔13〕工程(2)において、DNAが、30℃以上でのインキュベーション及び27℃以下でのインキュベーションを繰り返す温度サイクル下でインキュベートする温度条件下で増幅される、〔1〕~〔12〕のいずれか1つに記載の方法。
〔14〕欠失、置換、又は付加が導入されたDNAのサイズが、50 kb以上である、〔1〕~〔13〕のいずれか1つに記載の方法。
 上記態様の方法によれば、細胞を用いることなくDNA編集産物、特に長鎖DNA編集産物を増幅させる方法などを提供することができる。また上記態様の方法では、比較的低い温度条件下でDNAを増幅させることができるため、従来のDNA増幅技術と組み合わせることが困難であった技術、例えばCRISPR-Cas9などの人工DNA切断酵素による配列特異的なDNA切断技術などと組み合わせて、効率よくDNA編集産物を増幅させることができる。
Cas9による配列特異的な切断による長鎖oriC DNAの直鎖化、相同末端配列を利用したDNA分子の連結法(Recombination Assembly、RA)による直鎖化された環状DNAへの直鎖DNAの挿入、及び挿入後の環状DNAのRCR(Replication Cycle Reaction)による増幅を示す模式図である。 pOri8(9.5 kbの環状DNA)の構造を示す図である。 CRISPR-Cas9によりpOri8が配列特異的に切断されたことを示す図である。 pMSR227(205 kbの環状DNA)の構造を示す図である。 CRISPR-Cas9によりpMSR227が配列特異的に切断されたことを示す図である。 CRISPR-Cas9の存在下でRCRを行うことにより、改変されていない鋳型DNAの増幅を阻害し、目的とする連結産物を特異的に増幅させることができることを示す模式図である。 鋳型DNAを切断するがlacZが挿入されたDNAを切断しないCRISPR-Cas9を反応系に添加してRCRを行うことにより、高い効率でlacZが挿入された環状DNAを増幅させることができることを示す図である。 lacZ(3.3kb)が挿入されたpMSR227(205 kb)の構造を示す図である。 制限酵素XhoI切断により、lacZが挿入されたpMSR227の構造を確認した図である。 実施例3の2断片の長鎖DNA同士を2つのアダプター断片を介したRAにより連結環状化する工程を示す模式図である。 実施例3のRA-RCRによる長鎖環状DNAの増幅を示す図である。 実施例3の183 kbの連結産物で形質転換した大腸菌から回収したプラスミドのサイズを確認した図である。 実施例3で得られた183 kbの連結産物の構造を確認した図である。 実施例4において使用したlacZ変異pPKOZ(pPKOZins及びpPKOZmis)の構造を示す図である。 実施例4の実験系を示す図である。 実施例4において使用したlacZ wt、lacZ ins、及びlacZ misの開始コドンの下流の部分配列(それぞれの塩基配列を配列番号58~60に示す。)、並びに塩基置換導入用のオリゴヌクレオチド(30 mer)の配列(配列番号17、SUE1355)を示す図である。 塩基置換が導入されたプラスミドの増幅効率(すなわち青コロニーの割合)に対する、塩基置換導入用のオリゴヌクレオチドの長さ及び濃度の影響を検討した結果を示す図である。電気泳動の結果を示す。 塩基置換が導入されたプラスミドの増幅効率(すなわち青コロニーの割合)に対する、塩基置換導入用のオリゴヌクレオチドの長さ及び濃度の影響を検討した結果を示す図である。大腸菌形質転換コロニーの青白判定の結果を示す。 塩基置換が導入されたプラスミドの増幅効率(すなわち青コロニーの割合)に対する、塩基置換導入用のオリゴヌクレオチドの濃度の影響を検討した結果を示す図である。電気泳動の結果を示す。 塩基置換が導入されたプラスミドの増幅効率(すなわち青コロニーの割合)に対する、塩基置換導入用のオリゴヌクレオチドの濃度の影響を検討した結果を示す図である。大腸菌形質転換コロニーの青白判定の結果を示す。 塩基置換導入前のプラスミドを特異的に切断するCRISPR-Cas9を反応系に添加してRCRを行うことにより、100 %に近い塩基置換導入率が得られたことを示す図である。電気泳動の結果を示す図である。 塩基置換導入前のプラスミドを特異的に切断するCRISPR-Cas9を反応系に添加してRCRを行うことにより、100 %に近い塩基置換導入率が得られたことを示す図である。大腸菌形質転換コロニーの青白判定の結果を示す。 p0ri93Zinsの構造を示す図である。 長鎖DNAについて、塩基置換が導入されたプラスミドの増幅効率(すなわち青コロニーの割合)に対する、塩基置換導入用のオリゴヌクレオチドの濃度の影響を検討した結果を示す図である。電気泳動の結果を示す。 長鎖DNAについて、塩基置換が導入されたプラスミドの増幅効率(すなわち青コロニーの割合)に対する、塩基置換導入用のオリゴヌクレオチドの濃度の影響を検討した結果を示す図である。大腸菌形質転換コロニーの青白判定の結果を示す。 長鎖DNAについて、塩基置換導入前のプラスミドを特異的に切断するCRISPR-Cas9を反応系に添加してRCRを行うことにより、100 %に近い塩基置換導入率が得られたことを示す図である。電気泳動の結果を示す。 長鎖DNAについて、塩基置換導入前のプラスミドを特異的に切断するCRISPR-Cas9を反応系に添加してRCRを行うことにより、100 %に近い塩基置換導入率が得られたことを示す図である。大腸菌形質転換コロニーの青白判定の結果を示す。 実施例9において使用したpPKOZinsの開始コドン近傍の部分配列(配列番号61)、及び改変(3塩基置換)用のオリゴヌクレオチド(60 mer)の配列(配列番号56)を示す図である。 実施例9において使用したpPKOZの開始コドン近傍の部分配列(配列番号62)、及び改変(4塩基挿入)用のオリゴヌクレオチド(60 mer)の配列(配列番号57)を示す図である。 3塩基置換された又は4塩基挿入されたプラスミドの増幅効率(3塩基置換の場合は青コロニー、4塩基挿入の場合は白コロニーの割合)に対する、改変(3塩基置換又は4塩基挿入)用のオリゴヌクレオチドの濃度の影響を検討した結果を示す図である。電気泳動の結果を示す。 3塩基置換されたプラスミドの増幅効率(すなわち青コロニーの割合)に対する、改変(3塩基置換)用のオリゴヌクレオチドの濃度の影響を検討した結果を示す図である。大腸菌形質転換コロニーの青白判定の結果を示す。 4塩基挿入されたプラスミドの増幅効率(すなわち白コロニーの割合)に対する、改変(4塩基挿入)用のオリゴヌクレオチドの濃度の影響を検討した結果を示す図である。大腸菌形質転換コロニーの青白判定の結果を示す。 pPKOZ(wt)のEcoRI切断部位を示す図である。 pPKOZ4insのEcoRI切断部位を示す図である。 4塩基挿入されたプラスミドを制限酵素処理により確認した結果を示す図である。電気泳動の結果を示す。 pK3OV_insACの構造を示す。 実施例10の実験系を示す図である。 実施例10において使用したpP3OV_insACのvioA insの配列(配列番号68)、及び塩基置換導入用のオリゴヌクレオチド(60 mer)の配列(配列番号65、SUE4577)を示す図である。 実施例10において使用したpP3OV_insACのvioC insの配列(配列番号69)、及び塩基置換導入用のオリゴヌクレオチド(60 mer)の配列(配列番号66、SUE4381)を示す図である。 2箇所同時塩基置換されたプラスミドの割合(すなわち紫コロニーの割合)に対する、塩基置換導入用のオリゴヌクレオチドとの反応時間の影響を検討した結果を示す図である。大腸菌形質転換コロニーの色判定の結果を示す。
 I.無細胞系でDNAを編集する方法
 本発明は、無細胞系でDNAを編集する方法であって、以下の工程:
 (1)無細胞系において、DNAの標的部位に欠失、置換、又は付加を導入する工程;及び
 (2)工程(1)において欠失、置換、又は付加が導入されたDNAを、無細胞系において増幅させる工程、ここで当該DNAは、20℃~80℃の範囲の温度でインキュベートする温度条件下で増幅される;
を含む、前記方法(本明細書中、本発明の方法という場合がある。)を提供する。
 本発明において、「無細胞系でDNAを編集する」とは、細胞を使用することなく、DNA中の標的部位を改変し、得られたDNAを増幅させることをいう。なお、本明細書中、改変される前のDNAを、鋳型DNAという場合がある。従来の細胞を使用する系では、細胞外で改変されたDNAを細胞内に導入するか、又は細胞内に存在するDNAを改変するために必要な酵素等を細胞内に導入する必要があり、細胞の培養等に高度な技術を要する上に、多大な時間及び労力を要するという問題があった。本発明においては、DNAを改変し増幅させる過程において細胞を全く使用しないため、改変されたDNAを効率よく作製することができる。
 本発明において、鋳型DNAは、一本鎖又は二本鎖のいずれであってもよい。鋳型DNAが一本鎖である場合、本発明の方法の工程(1)又は(2)において、二本鎖が形成される。したがって、本発明の方法により、鋳型DNA中の標的部位が改変された二本鎖DNAを得ることができる。また鋳型DNAは、環状DNA又は直鎖状DNAであり得る。
 欠失、置換、又は付加が導入されたDNAのサイズは、工程(1)及び(2)において使用される技術によって異なりうるが、例えば、1 kb(1000塩基長)以上、5 kb以上、8.8 kb以上、9.5 kb以上、10 kb以上、20 kb以上、30 kb以上、 40 kb以上、50 kb以上、60 kb以上、70 kb以上、80 kb以上、90 kb以上、100 kb以上、101 kb以上、183 kb以上、200 kb以上、205 kb以上、300 kb以上、500 kb以上、1000 kb以上、又は2000 kb以上であり得る。工程(2)において、後述するRCR法を用いた場合、従来のPCR法では増幅し得なかった、例えば50 kb以上、60 kb以上、70 kb以上、80 kb以上、90 kb以上、100 kb以上、101 kb以上、183 kb以上、200 kb以上、205 kb以上、300 kb以上、500 kb以上、1000 kb以上、又は2000 kb以上のサイズの改変されたDNAを得ることができる。一方で、欠失、置換、又は付加が導入されたDNAのサイズの上限は特に限定されないが、例えば、10000 kb程度とすることができる。
 I-1.工程(1)
 本発明の方法における工程(1)は、無細胞系においてDNAを改変する工程である。「無細胞系」とは、大腸菌等の細胞を直接使用せず、その代わりに大腸菌等の各細胞内に存在する酵素などを利用する系である。本発明において、DNAの「改変」とは、DNA鎖上のあるヌクレオチドが別のヌクレオチドに置換されること、DNA鎖上の1つ以上のヌクレオチドが欠失すること、DNA鎖上のヌクレオチド間に1つ以上のヌクレオチドが挿入されること、又はDNA鎖の末端に1つ以上のヌクレオチドが付加されることを意味する。本明細書中、ヌクレオチドの挿入及び付加をまとめて「付加」という。また、1つのDNA断片に別のDNA断片を連結することも、付加に含まれる。
 欠失、置換又は付加されるヌクレオチドの数は、1個以上であれば任意の数であり得る。非限定的に、1ヌクレオチド以上、2ヌクレオチド以上、3ヌクレオチド以上、4ヌクレオチド以上、5ヌクレオチド以上、8ヌクレオチド以上、10ヌクレオチド以上、12ヌクレオチド以上、15ヌクレオチド以上、18ヌクレオチド以上、20ヌクレオチド以上が好ましい。また、欠失、置換又は付加されるヌクレオチドの数の上限は、鋳型DNAのサイズによって異なり得るが、例えば、5000ヌクレオチド以下、4000ヌクレオチド以下、3000ヌクレオチド以下、2000ヌクレオチド以下、1000ヌクレオチド以下、500ヌクレオチド以下、300ヌクレオチド以下、200ヌクレオチド以下、150ヌクレオチド以下、120ヌクレオチド以下、100ヌクレオチド以下、80ヌクレオチド以下、70ヌクレオチド以下、50ヌクレオチド以下、30ヌクレオチド以下であってもよい。本発明の方法によれば、例えば、鋳型DNAに対して1つ以上の遺伝子全体を欠失、置換又は付加することもできる。1つのDNA中の2箇所以上でヌクレオチドが同時に欠失、置換、又は付加されてもよい。
 無細胞系においてDNAを改変するためには、特に制限はなく、当該技術分野において公知の部位特異的変異導入技術を利用することができる。また、RA法(特許文献4参照)などの複数のDNAを連結する技術を利用することもできる。RA法として具体的には、例えば、まず2種類以上のDNA断片と、RecAファミリー組換え酵素活性をもつ蛋白質とを含む反応溶液を調製する。次いで、前記反応溶液中で、前記2種類以上のDNA断片を塩基配列が相同である領域同士又は塩基配列が相補である領域同士において互いに連結させて直鎖状又は環状のDNAを得る。
 部位特異的変異導入技術としては、例えば、所望の変異(例えば、置換、欠失、又は付加)を含むオリゴヌクレオチドなどの一本鎖DNAの存在下でDNAの複製反応を行うことにより、当該変異の導入された二本鎖DNAを作製する方法などが挙げられる。本発明において使用される一本鎖DNAは、例えば化学合成などの定法により製造することができる。また2つ以上の一本鎖DNAを用いて、1つのDNA中の2箇所以上に同時に変異を導入してもよい。なお、本明細書中、変異導入のために使用される変異を含む一本鎖DNAを、変異導入用一本鎖DNAともいう。
 例えば、変異導入用一本鎖DNAの存在下でDNAの複製反応を行う方法では、鋳型DNAの複製反応において露出した一本鎖領域に、所望の変異を含むように設計した一本鎖DNAがアニーリングし、相補鎖中に取り込まれる。得られた二本鎖DNAを鋳型としてさらにDNA複製反応を行うことにより、両方の鎖に変異を含む二本鎖DNAが得られる。
 DNA複製反応は、工程(2)の説明において挙げた、無細胞系においてDNAを増幅させるための技術を用いることができる。好ましい実施形態において、DNA複製反応を、後述の工程(2)における増幅反応と同じ反応とすることにより、工程(1)の変異導入と工程(2)のDNAの増幅とを共役させることもできる。無細胞系での変異導入とDNA増幅とを共役させることにより、DNAへの変異導入と増幅とを一反応で行うことができる。これまで、無細胞系でのDNA複製反応、特にRCR法において、変異を含む一本鎖DNAをDNAに取り込ませて部位特異的に変異を導入し得ることは知られていなかった。
 従来のプライマーを用いるDNA増幅方法では、プライマーが増幅領域を規定しており、反応系に変異導入用一本鎖DNAを追加すると、それも疑似プライマーとして働き得る。その結果、変異を含む一本鎖DNAからもDNA鎖が合成され、このDNA鎖と本来のプライマーから変異を含む一本鎖DNAの手前まで進んできたDNA合成鎖との間には、ニックが存在し、全長の目的産物は得られない。ニックを繋げるためには、変異を含む一本鎖DNAの5’末端をリン酸化しておき、リガーゼを作用させる必要があり、工程が増えることとなる。したがって、本発明の方法において変異導入用一本鎖DNAを用いる場合、DNA複製反応は、RCR法などのプライマーを用いないDNA増幅技術を用いて行うことが好ましい。
 部位特異的変異導入に使用する一本鎖DNAの長さは、DNA複製反応の条件下で当該一本鎖DNAが標的部位にハイブリダイズし得る限り、特に限定されない。DNA複製反応に使用する方法に応じて適宜設定すればよいが、例えば、10塩基以上、15塩基以上、20塩基以上、30塩基以上、40塩基以上、50塩基以上、又は60塩基以上、かつ5000塩基以下、4000塩基以下、3000塩基以下、2000塩基以下、1000塩基以下、500塩基以下、100塩基以下、80塩基以下、75塩基以下、70塩基以下、又は65塩基以下とすることができる。変異導入用一本鎖DNAの長さは、例えば、40塩基~75塩基、50塩基~70塩基、又は55塩基~65塩基とすることができる。なお、変異導入用一本鎖DNAが標的部位にハイブリダイズするという場合、変異導入用一本鎖DNAの配列と標的部位の配列とは完全には一致していないことから、変異導入用一本鎖DNAの少なくとも一部の領域が標的部位にハイブリダイズすればよい。変異導入用一本鎖DNAは、両末端が鋳型DNAの標的部位にアニーリングすることが好ましい。鋳型DNAにアニーリングする長さは、一本鎖DNAの長さによって異なり得るが、例えば、末端から5塩基以上、10塩基以上、20塩基以上、30塩基以上、40塩基以上、50塩基以上、60塩基以上、又は100塩基以上であり得る。
 変異導入用一本鎖DNAの反応系内での濃度は、DNA複製反応が進行し得る限り、特に限定されない。DNA複製反応に使用する方法に応じて適宜設定すればよいが、例えば、DNA複製反応溶液の総容積に対して、0.1 μM(μmol/L)以上、0.15 μM以上、0.2 μM以上、0.25 μM以上、又は0.3 μM以上、かつ3 μM以下、2.5 μM以下、2.0 μM以下、1.5 μM以下、1.0 μM以下、又は0.6 μM以下とすることができる。DNA複製反応としてRCR法を用いる場合には、変異導入用一本鎖DNAの反応系内での濃度は、例えば、DNA複製反応溶液の総容積に対して、0.1 μM~1.5 μM、0.15 μM~1.0 μM、0.2 μM~0.6 μM、又は0.3 μM~0.6 μMとすることができる。
 複数のDNAを連結する技術についても、当該技術分野においては種々の技術が知られている。本発明の一態様において、Recombination Assembly法(以下、RA法。特許文献4参照。)を利用して複数のDNAを連結することができる。
 以下、RA法により複数のDNAを連結する実施形態について説明する。
 <RA法>
 RA法は、互いに塩基配列が相同である領域(以下、単に「相同領域」ということがある。)又は互いに塩基配列が相補である領域(以下、単に「相補領域」ということがある。)を有するDNA断片同士を、相同領域同士又は相補領域同士において互いに連結させることによって、直鎖状又は環状のDNAを産生する方法である。RA法は、RecAファミリー組換え酵素蛋白質の存在下で連結反応を行うため、非常に連結効率に優れている。
 なお、本明細書において、「塩基配列が相同である」とは「塩基配列が同一である」を意味し、「塩基配列が相補である」とは「塩基配列が互いに相補的である」を意味する。
 具体的には、RA法は、2種類以上のDNA断片と、RecAファミリー組換え酵素活性をもつ蛋白質(以下、「RecAファミリー組換え酵素蛋白質」ということがある。)と、を含む反応溶液を調製し、前記反応溶液中で、前記2種類以上のDNA断片を、塩基配列が相同である領域同士又は相補において互いに連結させる。当該方法により、直鎖状又は環状のDNAが得られる。なお、以降において、2個以上のDNA断片が連結された直鎖状又は環状のDNAを、「連結体」ということがある。
 RA法においては、連結させるDNA断片は、直鎖状二本鎖DNA断片であってもよく、一本鎖DNA断片であってもよい。すなわち、直鎖状二本鎖DNA断片同士を連結してもよく、直鎖状二本鎖DNA断片と一本鎖DNA断片を連結してもよく、一本鎖DNA断片同士を連結してもよい。1種類以上の直鎖状二本鎖DNA断片と1種類以上の一本鎖DNA断片を連結することもできる。直鎖状二本鎖DNA断片同士又は直鎖状二本鎖DNA断片と一本鎖DNA断片を連結させる場合、両者は相同領域において互いに連結される。一本鎖DNA断片同士を連結させる場合、両者は相補領域において互いに連結される。
 RA法において連結させるDNA断片の少なくとも1種類が直鎖状二本鎖DNA断片である場合には、前記反応溶液は、さらに、エキソヌクレアーゼを含む。
 RA法により直鎖状二本鎖DNA断片同士を連結する場合、まず、相同領域を備える第1の直鎖状二本鎖DNA断片と第2の直鎖状二本鎖DNA断片に対して、3’→5’エキソヌクレアーゼが作用し、相同領域を一本鎖にする。この一本鎖となった相同領域に、RecAファミリー組換え酵素蛋白質が作用し、互いに相補的な相同領域同士が結合することによって、第1の直鎖状二本鎖DNA断片と第2の直鎖状二本鎖DNA断片は連結する。3’→5’エキソヌクレアーゼによるDNA鎖の削り込みは、第1の直鎖状二本鎖DNA断片と第2の直鎖状二本鎖DNA断片のいずれか一方のみに行われてもよい。例えば、一本鎖状態となった第1の直鎖状二本鎖DNA断片の相同領域が、RecAファミリー組換え酵素蛋白質の存在下、二本鎖状態の第2の直鎖状二本鎖DNA断片の相同領域に作用し、両者が連結する。
 RA法において、直鎖状二本鎖DNA断片同士又は直鎖状二本鎖DNA断片と一本鎖DNA断片を連結させる場合、まず、二本鎖DNA断片をエキソヌクレアーゼにより削って相同領域を一本鎖化し、さらに、RecAファミリー組換え酵素蛋白質の存在下で連結反応を行うため、非常に連結効率に優れている。このため、RA法では、従来は困難であった多数の直鎖状二本鎖DNA断片を、一度の反応で連結することができる。
 RA法において、一本鎖DNA断片同士を連結させる場合には、それぞれの一本鎖DNA断片上でRecAファミリー組換え酵素蛋白質が速やかにフィラメントを形成することによって、エキソヌクレアーゼによる消化が抑制される。その後、このRecAファミリー組換え酵素蛋白質の作用によって互いに相補的な相同領域同士が結合することによって、一本鎖DNA断片同士は連結する。
 RA法で連結させるDNA断片の数は、2個(2断片)以上、例えば4個(4断片)以上、5個(5断片)以上、7個(7断片)以上、10個(10断片)以上、20個(20断片)以上であり得る。RA法で連結させるDNA断片の数の上限は特にないが、例えば、100個(100断片)以下の数を連結させることができる。RA法では、反応条件等を最適化することにより、例えば、50断片程度の直鎖状二本鎖DNA断片を連結させることもできる。なお、RA法において連結させるDNA断片は、全て別種のDNA断片同士を連結させることができ、同種のDNA断片を2断片以上含むように連結させることもできる。
 RA法において連結させる2種類以上のDNA断片は、それぞれ、他のDNA断片のうちの少なくとも1種類と連結するための相同領域又は相補領域を含む。RA法において、直鎖状二本鎖DNA断片同士又は直鎖状二本鎖DNA断片と一本鎖DNA断片を連結させる場合、まず、エキソヌクレアーゼによって直鎖状二本鎖DNA断片のうちの一本鎖を削って相同領域を一本鎖状態とする。このため、相同領域は、直鎖状二本鎖DNA断片の末端に存在していることが好ましいが、末端の近傍であってもよい。例えば、相同領域の端部のうち直鎖状二本鎖DNA断片の末端側の塩基が、当該末端から300塩基以内にあることが好ましく、100塩基以内にあることがより好ましく、30塩基以内にあることがさらに好ましく、10塩基以内にあることがよりさらに好ましい。一方で、一本鎖DNA断片同士を連結させる場合には、RecAファミリー組換え酵素蛋白質のフィラメントによってエキソヌクレアーゼによる消化が抑制されているため、相補領域は一本鎖DNA断片のいずれに存在していてもよい。
 相同領域又は相補領域の塩基配列は、連結させる全てのDNA断片において同一の塩基配列とすることもできるが、所望の順番に連結させるために、連結させるDNA断片の種類ごとにそれぞれ異なる塩基配列とすることが好ましい。例えば、二本鎖DNA断片Aと二本鎖DNA断片Bと二本鎖DNA断片Cをこの順に連結させるためには、二本鎖DNA断片Aの下流末端と二本鎖DNA断片Bの上流末端に相同領域aを設け、二本鎖DNA断片Bの下流末端と二本鎖DNA断片Cの上流末端に相同領域bを設けておく。これにより、二本鎖DNA断片Aと二本鎖DNA断片Bが相同領域aで連結し、二本鎖DNA断片Bと二本鎖DNA断片Cが相同領域bで連結して、二本鎖DNA断片Aと二本鎖DNA断片Bと二本鎖DNA断片Cがこの順番に連結した直鎖状のDNAを得ることができる。この場合に、さらに、二本鎖DNA断片Cの下流末端と二本鎖DNA断片Aの上流末端に相同領域cを設けておくことにより、二本鎖DNA断片Aと二本鎖DNA断片Bが相同領域aで連結し、二本鎖DNA断片Bと二本鎖DNA断片Cが相同領域bで連結し、二本鎖DNA断片Cと二本鎖DNA断片Aが相同領域cで連結して、二本鎖DNA断片Aと二本鎖DNA断片Bと二本鎖DNA断片Cがこの順番に連結した環状のDNAを得ることができる。
 相同領域及び相補領域は、連結反応の反応溶液中で、一本鎖同士が特異的にハイブリダイズ可能な程度の塩基配列であればよく、塩基対長、GC率などは、一般的にプローブやプライマーの設計方法を参考に適宜決定することができる。一般的に、非特異的なハイブリダイズを抑制して目的の直鎖状二本鎖DNA断片同士を正確に連結するためには、相同領域の塩基長はある程度の長さが必要であるが、相同領域の塩基対長が長すぎると、連結効率が低下するおそれがある。RA法においては、相同領域又は相補領域の塩基対長としては、10塩基対(bp)以上が好ましく、15 bp以上がより好ましく、20 bp以上がさらに好ましく、60bp以上が特に好ましい。また、当該相同領域又は相補領域の塩基対長としては、500 bp以下が好ましく、300 bp以下がより好ましく、200 bp以下がさらに好ましい。
 RA法において、互いに連結させるDNA断片の長さは、特に限定されるものではなく、例えば、直鎖状二本鎖DNA断片の場合には、50 bp以上が好ましく、100 bp以上がより好ましく、200 bp以上がさらに好ましい。一本鎖DNA断片の場合には、50 b以上が好ましく、100 b以上がより好ましく、200 b以上がさらに好ましい。RA法では、325 kbpの二本鎖DNA断片も連結させることができる。また、連結させるDNA断片の長さは、種類ごとに異なっていてもよい。
 RA法において、互いに連結させる直鎖状二本鎖DNA断片は、相同領域の全領域又はその一部の領域が、二本の一本鎖DNAがハイブリダイズしている二本鎖構造であればよい。すなわち、当該直鎖状二本鎖DNA断片は、ギャップやニックのない完全な直鎖状二本鎖DNA断片であってもよく、1又は複数の箇所が一本鎖構造である直鎖状DNA断片であってもよい。例えば、連結させる直鎖状二本鎖DNA断片は、平滑末端であってもよく、粘着末端であってもよい。RA法により、平滑末端の直鎖状二本鎖DNA断片と、粘着末端の直鎖状二本鎖DNA断片を連結させることもできる。
 反応溶液内に含ませる各DNA断片のモル比は、目的の連結体を構成する各DNA断片の分子数の比に揃えることが好ましい。連結反応開始時における反応系内のDNA断片の分子数を揃えておくことにより、連結反応をより効率よく行うことができる。例えば、全て別種のDNA断片同士を連結させる場合には、反応溶液に含ませる各DNA断片は、モル濃度が互いに等しいことが好ましい。
 反応溶液内に含ませるDNA断片の総量は特に限定されるものではない。充分量の連結体が得られやすいことから、連結反応の開始時点における反応溶液内に含ませるDNA断片の総濃度は、反応溶液の総容積に対して、0.01 nM(nmol/L)以上が好ましく、0.1 nM以上がより好ましく、0.3 nM以上がさらに好ましく、5.09 nM以上が特に好ましく、6.7 nM以上が最も好ましい。より連結効率が高く、多断片の連結に適していることから、連結反応の開始時点における反応溶液内に含ませるDNA断片の総濃度は、100 nM以下が好ましく、96.027 nM以下がより好ましく、50 nM以下がさらに好ましく、25 nM以下が特に好ましく、20 nM以下が最も好ましい。
 RA法において、連結反応により得られる連結体の大きさとしては、特に限定されるものではない。得られる連結体の大きさとしては、例えば、1 kb(1000塩基長)以上が好ましく、5 kb以上がより好ましく、10 kb以上がさらに好ましく、13 kb以上が特に好ましく、20 kb以上が最も好ましい。RA法により、183 kb以上、好ましくは208 kb以上、より好ましくは300 kb以上、さらに好ましくは500 kb以上、特に好ましくは2000 kb以上の長さの連結体を得ることもできる。一方で、連結反応により得られる連結体の大きさの上限は特に限定されないが、例えば、10000 kb程度とすることができる。
 RA法において用いられるエキソヌクレアーゼは、直鎖状DNAの3’末端又は5’末端から逐次的に加水分解する酵素である。RA法において用いられるエキソヌクレアーゼとしては、直鎖状DNAの3’末端又は5’末端から逐次的に加水分解する酵素活性を有するものであれば、その種類や生物学的由来に特に制限はない。例えば、3’末端から逐次的に加水分解する酵素(3’→5’エキソヌクレアーゼ)としては、エキソヌクレアーゼIIIファミリー型のAP(apurinic/apyrimidinic)エンドヌクレアーゼ等の直鎖状二本鎖DNA特異的3’→5’エキソヌクレアーゼと、DnaQスーパーファミリータンパク質等の一本鎖DNA特異的3’→5’エキソヌクレアーゼが挙げられる。エキソヌクレアーゼIIIファミリー型のAPエンドヌクレアーゼとしては、例えば、エキソヌクレアーゼIII(大腸菌由来)、ExoA(エキソヌクレアーゼIIIの枯草菌ホモログ)、Mth212(エキソヌクレアーゼIIIの古細菌ホモログ)、APエンドヌクレアーゼ I(エキソヌクレアーゼIIIのヒトホモログ)が挙げられる。DnaQスーパーファミリータンパク質としては、例えば、エキソヌクレアーゼI (大腸菌由来)、エキソヌクレアーゼT(RNase T)、エキソヌクレアーゼX、DNAポリメラーゼIII イプシロンサブユニット(DNA polymerase III epsilon subunit)、DNAポリメラーゼI、DNAポリメラーゼII、T7DNAポリメラーゼ、T4DNAポリメラーゼ、クレノウDNAポリメラーゼ5、Phi29DNAポリメラーゼ、リボヌクレアーゼIII(RNase D)、オリゴリボヌクレアーゼ(ORN)等が挙げられる。5’末端から逐次的に加水分解する酵素(5’→3’エキソヌクレアーゼ)としては、λエキソヌクレアーゼ、エキソヌクレアーゼVIII、T5エキソヌクレアーゼ、T7エキソヌクレアーゼ、及びRecJエキソヌクレアーゼなどを用いることができる。
 RA法において用いられるエキソヌクレアーゼとしては、直鎖状二本鎖DNA断片の削り込みのプロセシビティーとRecAファミリー組換え酵素蛋白質存在下での連結効率のバランスが良好である点から、3’→5’エキソヌクレアーゼが好ましい。なかでも、直鎖状二本鎖DNA特異的3’→5’エキソヌクレアーゼがより好ましく、エキソヌクレアーゼIIIファミリー型のAPエンドヌクレアーゼがさらに好ましく、エキソヌクレアーゼIIIが特に好ましい。
 RA法において反応溶液内に含ませるエキソヌクレアーゼとしては、直鎖状二本鎖DNA特異的3’→5’エキソヌクレアーゼと一本鎖DNA特異的3’→5’エキソヌクレアーゼの両方であることが好ましい。直鎖状二本鎖DNA特異的3’→5’エキソヌクレアーゼに一本鎖DNA特異的3’→5’エキソヌクレアーゼを組み合わせることにより、直鎖状二本鎖DNA特異的3’→5’エキソヌクレアーゼを単独で用いた場合よりもさらに連結効率を改善させることができる。両3’→5’エキソヌクレアーゼを併用することにより連結効率が改善される理由は明らかではないが、直鎖状二本鎖DNA特異的3’→5’エキソヌクレアーゼは3’突出末端を標的とし難い場合が多く、この3’突出末端が一本鎖DNA特異的3’→5’エキソヌクレアーゼにより消化される結果、直鎖状二本鎖DNA特異的3’→5’エキソヌクレアーゼとRecAによる連結反応が促進されるためと推察される。また、連結させる直鎖状DNA断片が、平滑末端や5’突出末端の場合でも、一本鎖DNA特異的3’→5’エキソヌクレアーゼの併用により連結効率が改善されるが、これは、直鎖状二本鎖DNA特異的3’→5’エキソヌクレアーゼとRecAにより形成された連結体中に副次的に形成される3’突端が一本鎖DNA特異的3’エキソヌクレアーゼにより消化される結果、連結効率がより改善されると推察される。
 RA法において連結反応を行う反応溶液中におけるエキソヌクレアーゼの濃度としては、連結反応の開始時点において、例えば、反応溶液の総容積に対して、1~1000 mU/μLが好ましく、5~1000 mU/μLがより好ましく、5~500 mU/μLがさらに好ましく、10~150 mU/μLが特に好ましく、80~150 mU/μLが最も好ましい。特に、エキソヌクレアーゼが直鎖状二本鎖DNA特異的3’→5’エキソヌクレアーゼの場合には、連結反応の開始時点における反応溶液中の直鎖状二本鎖DNA特異的3’→5’エキソヌクレアーゼの濃度は、例えば、反応溶液の総容積に対して、5 mU/μL~500 mU/μLが好ましく、5 mU/μL~250 mU/μLがより好ましく、5 mU/μL~150 mU/μLがさらに好ましく、10 mU/μL~150 mU/μLが特に好ましく、80~150 mU/μLが最も好ましい。また、エキソヌクレアーゼが直鎖状一本鎖DNA特異的3’→5’エキソヌクレアーゼの場合には、連結反応の開始時点における反応溶液中の直鎖状一本鎖DNA特異的3’→5’エキソヌクレアーゼの濃度は、反応溶液の総容積に対して、1 mU/μL~1000 mU/μLが好ましく、100 mU/μL~1000 mU/μLがより好ましく、200 mU/μL~1000 mU/μLがさらに好ましい。直鎖状二本鎖DNA特異的3’→5’エキソヌクレアーゼと一本鎖DNA特異的3’→5’エキソヌクレアーゼを併用する場合、連結反応の開始時点における反応溶液中の各エキソヌクレアーゼの濃度は、それぞれ、前記の各エキソヌクレアーゼの好ましい濃度とすることができる。
 本明細書において、RecAファミリー組換え酵素蛋白質とは、一本鎖状態又は二本鎖状態のDNA上で重合してフィラメントを形成し、ATP(アデノシン三リン酸)等のヌクレオシド三リン酸に対する加水分解活性を有し、相同領域をサーチして相同組換えを行う機能(RecAファミリー組換え酵素活性)をもつ蛋白質を意味する。RecAファミリー組換え酵素蛋白質としては、原核生物RecAホモログ、バクテリオファージRecAホモログ、古細菌RecAホモログ、真核生物RecAホモログ等が挙げられる。原核生物RecAホモログとしては、大腸菌RecA;Thermus thermophiles、Thermus aquaticus等のThermus属菌、Thermococcus属菌、Pyrococcus属菌、Thermotoga属菌等の高度好熱菌に由来するRecA;Deinococcus radiodurans等の放射線耐性菌に由来するRecA等が挙げられる。バクテリオファージRecAホモログとしてはT4ファージUvsX等が挙げられ、古細菌RecAホモログとしてはRadA等が挙げられ、真核生物RecAホモログとしてはRad51及びそのパラログ、Dcm1等が挙げられる。なお、これらのRecAホモログのアミノ酸配列は、NCBI(http://www.ncbi.nlm.nih.gov/)等のデータベースから入手できる。
 RA法において用いられるRecAファミリー組換え酵素蛋白質としては、野生型蛋白質であってもよく、野生型蛋白質に、1~30個のアミノ酸を欠失、付加又は置換する変異を導入した、RecAファミリー組換え酵素活性を保持する改変体であってもよい。当該改変体としては、野生型蛋白質中の相同領域をサーチする機能を亢進させるアミノ酸置換変異を導入した改変体、野生型蛋白質のN末端又はC末端に各種タグが付加された改変体、耐熱性を向上させた改変体(国際公開第2016/013592号)等が挙げられる。当該タグとしては、例えば、Hisタグ、HA(hemagglutinin)タグ、Mycタグ、及びFlagタグ等の組換え蛋白質の発現又は精製において汎用されているタグを用いることができる。なお、野生型のRecAファミリー組換え酵素蛋白質とは、自然界より分離された生物に保持されているRecAファミリー組換え酵素蛋白質のアミノ酸配列と同一のアミノ酸配列からなる蛋白質を意味する。
 RA法において用いられるRecAファミリー組換え酵素蛋白質としては、RecAファミリー組換え酵素活性を保持する改変体が好ましい。当該改変体としては、例えば、大腸菌RecAの203番目のアミノ酸残基フェニルアラニンをトリプトファンに置換したF203W変異体や、各種RecAホモログのうち、大腸菌RecAの203番目のフェニルアラニンに相当するフェニルアラニンをトリプトファンに置換した変異体が挙げられる。
 RA法において連結反応を行う反応溶液中におけるRecAファミリー組換え酵素蛋白質の量は、特に限定されるものではない。RA法において連結反応を行う反応溶液中におけるRecAファミリー組換え酵素蛋白質の濃度としては、連結反応の開始時点において、例えば、反応溶液の総容積に対して、0.01 μM~100 μM(μmol/L)が好ましく、0.1 μM~100 μMがより好ましく、0.1 μM~50 μMがさらに好ましく、0.5 μM~10 μMがよりさらに好ましく、1.0 μM~5.0 μMが特に好ましい。
 RecAファミリー組換え酵素蛋白質がRecAファミリー組換え酵素活性を発揮するためには、ヌクレオシド三リン酸又はデオキシヌクレオチド三リン酸が必要である。このため、本発明において連結反応を行う反応溶液は、ヌクレオシド三リン酸及びデオキシヌクレオチド三リン酸の少なくとも一方を含む。RA法において連結反応の反応溶液に含有させるヌクレオシド三リン酸としては、ATP、GTP(グアノシン三リン酸)、CTP(シチジン三リン酸)、UTP(ウリジン三リン酸)、m5UTP(5-メチルウリジン三リン酸)からなる群より選択される1種以上を用いることが好ましく、ATPを用いることが特に好ましい。RA法において連結反応の反応溶液に含有させるデオキシヌクレオチド三リン酸としては、dATP(デオキシアデノシン三リン酸)、dGTP(デオキシグアノシン三リン酸)、dCTP(デオキシシチジン三リン酸)、及びdTTP(デオキシチミジン三リン酸)からなる群より選択される1種以上を用いることが好ましく、dATPを用いることが特に好ましい。反応溶液に含まれるヌクレオシド三リン酸及びデオキシヌクレオチド三リン酸の総量は、RecAファミリー組換え酵素蛋白質がRecAファミリー組換え酵素活性を発揮するために充分な量であれば特に限定されるものではない。RA法において連結反応を行う反応溶液中におけるヌクレオシド三リン酸濃度又はデオキシヌクレオチド三リン酸濃度としては、連結反応の開始時点において、例えば、反応溶液の総容積に対して、1 μM(μmol/L)以上が好ましく、10 μM以上がより好ましく、30 μM以上がさらに好ましく、100 μM以上が特に好ましい。一方で、反応溶液のヌクレオシド三リン酸濃度が高すぎる場合には、多断片の連結効率はかえって低下すおそれがある。このため、連結反応の開始時点における反応溶液のヌクレオシド三リン酸濃度又はデオキシヌクレオチド三リン酸濃度としては、反応溶液の総容積に対して、1000 μM以下が好ましく、500 μM以下がより好ましく、300 μM以下がさらに好ましい。
 RecAファミリー組換え酵素蛋白質がRecAファミリー組換え酵素活性を発揮するため、及びエキソヌクレアーゼがエキソヌクレアーゼ活性を発揮するためには、マグネシウムイオン(Mg2+)が必要である。このため、RA法において連結反応を行う反応溶液は、マグネシウムイオン源を含む。マグネシウムイオン源は、反応溶液中にマグネシウムイオンを与える物質である。例えば、酢酸マグネシウム[Mg(OAc)2]、塩化マグネシウム[MgCl2]、硫酸マグネシウム[MgSO4]等のマグネシウム塩が挙げられる。好ましいマグネシウムイオン源は、酢酸マグネシウムである。
 RA法において連結反応を行う反応溶液のマグネシウムイオン源濃度は、RecAファミリー組換え酵素蛋白質がRecAファミリー組換え酵素活性を発揮でき、かつエキソヌクレアーゼがエキソヌクレアーゼ活性を発揮できる濃度であればよく、特に限定されるものではない。連結反応の開始時点における反応溶液のマグネシウムイオン源濃度としては、例えば、反応溶液の総容積に対して、0.5 mM(mmol/L)以上が好ましく、1 mM以上がより好ましい。一方で、反応溶液のマグネシウムイオン源濃度が高すぎる場合には、エキソヌクレアーゼ活性が強くなりすぎ、多断片の連結効率はかえって低下すおそれがある。このため、連結反応の開始時点における反応溶液のマグネシウムイオン源濃度としては、例えば、反応溶液の総容積に対して、20 mM以下が好ましく、15 mM以下がより好ましく、12 mM以下がさらに好ましく、10 mM以下がよりさらに好ましい。
 RA法において連結反応を行う反応溶液は、例えば、緩衝液に、DNA断片と、RecAファミリー組換え酵素蛋白質と、エキソヌクレアーゼと、ヌクレオシド三リン酸及びデオキシヌクレオチド三リン酸の少なくとも一方と、マグネシウムイオン源とを添加することにより調製される。当該緩衝液としては、pH7~9、好ましくはpH8、において用いるのに適した緩衝液であれば特に制限はない。例えば、Tris-HCl、Tris-酢酸(Tris-OAc)、Hepes-KOH、リン酸緩衝液、MOPS-NaOH、Tricine-HCl等が挙げられる。好ましい緩衝液はTris-HCl又はTris-OAcである。緩衝液の濃度は、当業者が適宜選択することができ、特に限定されないが、Tris-HCl又はTris-OAcの場合、例えば、反応溶液の総容積に対して、10 mM(mmol/L)~100 mM、好ましくは10 mM~50 mM、より好ましくは20 mMの濃度を選択できる。
 RA法において連結反応を行う反応溶液には、DNA断片と、RecAファミリー組換え酵素蛋白質と、エキソヌクレアーゼと、ヌクレオシド三リン酸及びデオキシヌクレオチド三リン酸の少なくとも一方と、マグネシウムイオン源との他に、さらに、ヌクレオシド三リン酸又はデオキシヌクレオチド三リン酸の再生酵素とその基質を含むことが好ましい。反応溶液中でヌクレオシド三リン酸又はデオキシヌクレオチド三リン酸を再生できることにより、多数のDNA断片をより効率よく連結させることができる。ヌクレオシド三リン酸又はデオキシヌクレオチド三リン酸を再生するための再生酵素とその基質との組み合わせとしては、クレアチンキナーゼとクレアチンホスフェートの組み合わせ、ピルビン酸キナーゼとホスホエノールピルビン酸の組み合わせ、アセテートキナーゼとアセチルリン酸の組み合わせ、ポリリン酸キナーゼとポリリン酸の組み合わせ、ヌクレオシドジフォスフェートキナーゼとヌクレオシド三リン酸の組み合わせ、が挙げられる。ヌクレオシドジフォスフェートキナーゼの基質(リン酸供給源)となるヌクレオシド三リン酸は、ATP、GTP、CTP、UTPのいずれであってもよい。その他にも、再生酵素としては、ミオキナーゼが挙げられる。
 RA法において連結反応を行う反応溶液中のヌクレオシド三リン酸再生酵素及びその基質の濃度は、当該反応溶液中で連結反応時にヌクレオシド三リン酸の再生が可能になる充分な濃度であれば特に限定されるものではない。例えば、クレアチンキナーゼとクレアチンホスフェートを用いる場合、本発明において連結反応を行う反応溶液に含有させるクレアチンキナーゼの濃度を、反応溶液の総容積に対して、好ましくは1 ng/μL~1000 ng/μL、より好ましくは5 ng/μL~1000 ng/μL、さらに好ましくは5 ng/μL~500 ng/μL、特に好ましくは5 ng/μL~250 ng/μL、最も好ましくは20 ng/μL~250 ng/μLとし、クレアチンホスフェートの濃度を、反応溶液の総容積に対して、好ましくは0.4 mM~20 mM(mmol/L)、より好ましくは0.4 mM~10 mM、さらに好ましくは1 mM~7 mM、特に好ましくは4 mM~7 mMとすることができる。
 多断片を目的の順番で連結させる場合、相同領域又は相補領域の塩基配列は、連結するDNA断片の組み合わせごとに異なることが好ましい。しかし、同一の温度条件下では、G(グアニン塩基)とC(シトシン塩基)の含有率が高い相同領域は、一本鎖で二次構造を形成しやすく、一方でA(アデニン塩基)とT(チミン塩基)の含有率が高い相同領域ではハイブリダイゼーションの効率が低くなり、このため、連結効率も低くなってしまうおそれがある。一本鎖DNAの二次構造形成を抑えて特異的ハイブリダイズを促すことにより、DNA断片の連結を促進することができる。
 そこで、RA法において連結反応を行う反応溶液には、一本鎖DNAの二次構造形成を抑えて特異的ハイブリダイズを促す物質を添加することが好ましい。当該物質としては、ジメチルスルホキシド(DMSO)、塩化テトラメチルアンモニウム(TMAC)が挙げられる。DMSOは、GCに富んだ塩基対の二次構造形成を抑える作用がある。TMACは、特異的ハイブリダイズを促す作用がある。RA法において、連結反応を行う反応溶液に一本鎖DNAの二次構造形成を抑えて特異的ハイブリダイズを促す物質を含有させる場合、当該物質の濃度は、当該物質によるDNA断片の連結促進効果が得られる濃度であれば特に限定されるものではない。例えば、当該物質としてDMSOを用いる場合、RA法において連結反応を行う反応溶液に含有させるDMSOの濃度としては、反応溶液の総容積に対して、5容量(v/v)%~30容量(v/v)%が好ましく、8容量%~25容量%がより好ましく、8容量~20容量%がさらに好ましい。当該物質としてTMACを用いる場合、RA法において連結反応を行う反応溶液に含有させるTMACの濃度としては、反応溶液の総容積に対して、60 mM~300 mMが好ましく、100 mM~250 mMがより好ましく、100 mM~200 mMがさらに好ましく、150 mMが特に好ましい。
 RA法において連結反応を行う反応溶液には、さらに、高分子混み合い効果を有する物質を添加することが好ましい。高分子混み合い効果はDNA分子同士の相互作用を増強し、DNA断片の連結を促進することができる。当該物質としては、ポリエチレングリコール(PEG)200~20000、ポリビニルアルコール(PVA)200~20000、デキストラン40~70、フィコール70、ウシ血清アルブミン(BSA)が挙げられる。RA法において、連結反応を行う反応溶液に高分子混み合い効果を有する物質を含有させる場合、当該物質の濃度は、当該物質によるDNA断片の連結促進効果が得られる濃度であれば特に限定されるものではない。例えば、当該物質としてPEG8000を用いる場合、RA法において連結反応を行う反応溶液に含有させるPEG8000の濃度としては、反応溶液の総質量に対して、2質量(w/w)%~20質量(w/w)%が好ましく、2質量%~10質量%がより好ましく、4質量%~6質量%がさらに好ましい。
 RA法において連結反応を行う反応溶液には、さらに、アルカリ金属イオン源を含有させてもよい。アルカリ金属イオン源は、反応溶液中にアルカリ金属イオンを与える物質である。RA法において連結反応を行う反応溶液に含有させるアルカリ金属イオンとしては、ナトリウムイオン(Na+)又はカリウムイオン(K+)が好ましい。アルカリ金属イオン源としては、例えば、グルタミン酸カリウム[KGlu]、アスパラギン酸カリウム、塩化カリウム、酢酸カリウム[KOAc]、グルタミン酸ナトリウム、アスパラギン酸ナトリウム、塩化ナトリウム、及び酢酸ナトリウムが挙げられる。RA法において連結反応を行う反応溶液に含有させるアルカリ金属イオン源としては、グルタミン酸カリウム又は酢酸カリウムが好ましく、特に多断片の連結効率が改善されることからグルタミン酸カリウムが好ましい。連結反応の開始時点における反応溶液のアルカリ金属イオン源濃度としては、特に限定されるものではなく、例えば、反応溶液中にアルカリ金属イオンを反応溶液の総容積に対して、好ましくは10 mM(mmol/L)以上、より好ましくは30 mM~300 mMの範囲内、さらに好ましくは50 mM~150 mMの範囲内で与える濃度に調整することができる。
 RA法において連結反応を行う反応溶液には、さらに、還元剤を含有させてもよい。還元剤としては、例えば、ジチオスレイトール(DTT)、β-メルカプトエタノール(2-メルカプトエタノール)、トリス(2-カルボキシエチル)ホスフィン(TCEP)、及びグルタチオンが挙げられる。好ましい還元剤はDTTである。還元剤は、反応溶液中に反応溶液の総容積に対して、1.0 mM(mmol/L)~15.0 mM(mmol/L)、好ましくは2.0 mM~10.0 mM、より好ましくは4.0 mM~10.0 mM含まれていてもよい。
 RA法において、連結反応は、緩衝液に、2種類以上のDNA断片と、RecAファミリー組換え酵素蛋白質と、ヌクレオシド三リン酸と、マグネシウムイオン源と、必要に応じて、エキソヌクレアーゼと、ヌクレオシド三リン酸再生酵素及びその基質のセット、一本鎖DNAの二次構造形成を抑えて特異的ハイブリダイズを促す物質、高分子混み合い効果を有する物質、アルカリ金属イオン源、及び還元剤からなる群より選択される1種以上と、を含有させて調製した反応溶液を、当該反応溶液中のRecAファミリー組換え酵素蛋白質及びエキソヌクレアーゼがそれぞれの酵素活性を発揮し得る温度の等温条件下で、所定時間インキュベートすることにより行う。連結反応の反応温度としては、25℃~48℃の温度範囲内であることが好ましく、27℃~45℃の温度範囲内であることがより好ましい。特に、相同領域又は相補領域の長さが50塩基以上の場合には、連結反応の反応温度は、30℃~45℃の温度範囲内であることが好ましく、37℃~45℃の温度範囲内であることがより好ましく、40℃~43℃の温度範囲内であることがさらに好ましく、42℃が特に好ましい。一方で、相同領域又は相補領域の長さが50塩基以下の場合には、連結反応の反応温度は、27℃~43℃の温度範囲内であることが好ましく、27℃~37℃の温度範囲内であることがより好ましく、27℃~33℃の温度範囲内であることがさらに好ましい。なお、RA法に関して「等温条件下」とは、反応中に設定した温度に対して±3℃又は±1℃の温度範囲内に保つことを意味する。連結反応の反応時間は、特に限定されるものではなく、例えば、15分間~6時間、好ましくは15分間~3時間、より好ましくは1時間~3時間とすることができる。
 連結反応により得られた連結体(直鎖状又は環状のDNA)には、ギャップやニックが存在する。ギャップは、二本鎖DNAにおいて1個又は複数個の連続したヌクレオチドが欠けた状態であり、ニックは、二本鎖DNAにおいて隣り合ったヌクレオチド間のリン酸ジエステル結合が切断された状態である。そこで、RA法においては、連結反応後、得られた連結体中のギャップ及びニックをギャップリペア酵素群とdNTPにより修復することが好ましい。ギャップ及びニックを修復することにより、連結体を、完全な二本鎖DNAとすることができる。
 具体的には、連結反応後の反応溶液に、ギャップリペア酵素群とdNTPを添加し、ギャップリペア酵素群が酵素活性を発揮し得る温度の等温条件下で、所定時間インキュベートすることにより、連結体のギャップ及びニックを修復することができる。ギャップリペア酵素群を構成する酵素は、二本鎖DNAのギャップ及びニックを修復できる酵素群であれば、その種類や生物学的由来に特に制限はない。ギャップリペア酵素群としては、例えば、DNAポリメラーゼ活性を有する酵素とDNAリガーゼ活性を有する酵素を組合せて使用できる。DNAリガーゼとして大腸菌由来のDNAリガーゼを用いる場合、その補因子であるNAD(ニコチンアミドアデニンジヌクレオチド)が反応溶液中に反応溶液の総容積に対して、0.01 mM~1.0 mM(mmol/L)、好ましくは0.25 mMの範囲で含まれる。ギャップリペア酵素群による処理は、例えば、25℃~40℃、好ましくは30℃で、5分間~120分間、好ましくは10分間~60分間、より好ましくは30分間、行ってもよい。
 dNTPは、dATP、dGTP、dCTP、及びdTTPの総称である。修復反応の反応開始時に反応溶液中に含まれるdNTPの濃度は、例えば、反応溶液の総容積に対して、0.01 mM(mmol/L)~1 mM(mmol/L)の範囲であってよく、好ましくは0.05 mM~1 mMの範囲であってよく、より好ましくは0.25 mM~1 mMの範囲であってよい。
 RA法に供するDNA断片の調製には、制限酵素、人工DNA切断酵素などの配列特異的なDNA切断酵素を使用することができる。鋳型DNAが長くなり、適切な制限酵素を選択することが困難な場合でも、人工DNA切断酵素を利用すれば、DNAを所望の標的部位において特異的に切断することができる。
 本明細書中、人工DNA切断酵素とは、所望の配列を特異的に認識してDNAを切断する、人工的に作製された酵素であり、人工ヌクレアーゼ及びRNA誘導型ヌクレアーゼが含まれる。人工ヌクレアーゼは、DNAと特異的に結合するドメインとDNAを切断するドメインとを連結した人工酵素であり、例えばジンクフィンガーヌクレアーゼ(ZFN)、TALEヌクレアーゼ(TALEN)などが知られている。またRNA誘導型ヌクレアーゼは、標的配列を認識するガイドRNA(gRNA)と呼ばれる短いRNA及びDNAを切断する酵素の複合体であり、CRISPR-Cas9などが知られている。本発明においては、いずれの人工DNA切断酵素を利用してもよいが、人工ヌクレアーゼ又はRNA誘導型ヌクレアーゼを利用することが好ましく、CRISPR-Cas9を利用することがより好ましい。
 RA法において人工DNA切断酵素を使用する一実施形態では、工程(1)は、例えば、以下の工程:
 (1-1)人工DNA切断酵素をDNAに作用させることにより、当該DNAを標的部位で切断し、少なくとも一つの直鎖DNAを調製する工程;
 (1-2)工程(1-1)で調製された直鎖DNA、1種類以上のDNA断片、及びRecAファミリー組換え酵素活性をもつ蛋白質を含む反応溶液を調製する工程;及び
 (1-3)当該直鎖DNAと当該1種類以上のDNA断片とを、塩基配列が相同である領域同士又は塩基配列が相補的である領域同士において互いに連結させ、鋳型DNAの標的部位に当該1種類以上のDNA断片が挿入されたDNAを形成させる工程;
を含み得る。
 工程(1-1)における人工DNA切断酵素によって処理されるDNA(すなわち鋳型DNA)は、直鎖状であっても環状であってもよい。人工DNA切断酵素を利用することにより、所望の標的部位で鋳型DNAを切断することが可能である。工程(1-2)の1種類以上のDNA断片は、工程(1-1)で調製された直鎖DNAと人工DNA切断酵素による切断部位で連結させるための相同領域又は相補領域を含む。相同領域又は相補領域同士が連結されることにより、工程(1-3)で得られる連結後のDNAは、鋳型DNAに対して切断部位に他のDNA配列が挿入された形となる。工程(1-2)及び(1-3)については、上記の通常のRA法と同様に行えばよい。
 別の実施形態において、本発明の工程(1)は、In fusion法により複数のDNAを連結する工程であり得る。
 In fusion法は、各二本鎖DNA断片の末端15塩基の相同配列を認識して融合させる機能を備えるIn fusion酵素を用いて連結反応を行う方法である。具体的には、まず、PCRを利用して、連結させる目的の二本鎖DNA断片の末端に同一の塩基配列からなる相同領域を付加する。両末端に15塩基の相同領域を付加した2個の二本鎖DNA断片同士をIn fusion酵素と混合してインキュベートすることにより連結させる。In fusion法の原理は、例えばNucleic Acids Research, 2007, Vol.35, No. 1 143-151に説明されている。タカラバイオ株式会社などから市販されている試薬を用いて行うこともできる。
 また別の実施形態において、本発明の工程(1)は、Gibson Assembly法により複数のDNAを連結する工程であり得る。
 Gibson Assembly法は、第1のDNA分子の遠位領域と第2のDNA分子の近位領域をエキソヌクレアーゼ活性を有する酵素で消化して、それぞれの相同領域(相互に特異的にハイブリダイズするのに十分な長さの配列同一性の領域)を一本鎖状態とした後、両者を特異的にアニーリングさせて連結させた後、ギャップやニックを修復することにより、完全な二本鎖DNAの連結体を得る方法である。すなわち、Gibson Assembly法は、エキソヌクレアーゼによる一本鎖3’オーバーハングの形成と断片間のアニーリング、DNAポリメラーゼによるアニーリングした断片の間のギャップの修復、及びDNAリガーゼによるニックのつなぎ合わせから構成される。New England Biolabs社などから市販されている試薬を用いて行うこともできる。
 I-2.工程(2)
 本発明の方法における工程(2)は、工程(1)において改変されたDNAを無細胞系において増幅させる工程であり、当該DNAは、20℃~80℃の範囲の温度でインキュベートする温度条件下で増幅される。中でも、当該DNAは、等温でインキュベートするか、又は65℃以下の2つの温度でのインキュベーションを繰り返す温度サイクル下でインキュベートする温度条件下で増幅されることが好ましく、20℃~80℃の範囲に含まれる一定の温度でインキュベートするか、又は65℃以下の2つの温度でのインキュベーションを繰り返す温度サイクル下でインキュベートする温度条件下で増幅されることがより好ましい。
 無細胞系においてDNAを増幅させるためには、当該技術分野において公知の技術を利用することができる。当該技術分野においては、等温でDNAを増幅させる種々の技術が知られている(例えば、J. Li and J. Macdonald, Biosensors and Bioelectronics, Vol. 64, p. 196-211 (2015)参照)。一態様において、Replication Cycle Reaction法(以下、RCR法。特許文献5~7参照)を利用して、DNAを増幅させることができる。工程(2)をRCR法により行う場合には、鋳型DNAは環状DNAである。
 RCR以外に本発明において用い得る技術としては、例えば、Helicase-dependent amplification(HDA)(Vincent, M., Xu, Y., Kong, H., 2004. EMBO Rep. 5 (8), 795-800)、Recombinase polymerase amplification(RPA)(Piepenburg, O., Williams,C.H., Stemple, D.L., Armes, N.A., 2006. PLoS. Biol. 4 (7), e204)、Rolling circle amplification(RCA)(Fire, A., Xu, S.Q., 1995. Proc. Natl. Acad. Sci. 92 (10), 4641-4645)、Ramification amplification(RAM)(Zhang, D.Y., Brandwein,M., Hsuih, T., Li, H.B., 2001. Mol. Diagn. 6 (2), 141-150)、Multiple displacement amplifcation(MDA)(Dean, F.B., Nelson, J.R., Giesler, T.L., Lasken, R.S.,2001. Genome Res. 11 (6), 1095-1099、及びSpits, C., Le Caignec, C., De Rycke,M., Van Haute, L., Van Steirteghem, A., Liebaers, I., Sermon, K., 2006. Nat. Protoc. 1 (4), 1965-1970)、Loop-mediated isothermal amplification(LAMP)(Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T., 2000. Nucleic Acids Res. 28 (12), E63)などが挙げられる。いずれの方法も、定法により行うことができる。いずれの方法を用いるかは、増幅させるDNAの形状(直鎖状又は環状)などに応じて適宜選択することができる。
 工程(2)において、欠失、置換、又は付加が導入されたDNAを等温でインキュベートする温度条件下で増幅させる場合、等温条件としては、DNA増幅反応又はDNA複製反応が進行することのできるものであれば特に制限はないが、例えば、DNAポリメラーゼの至適温度に含まれる一定の温度である。等温条件としては、例えば、20℃以上、25℃以上、又は30℃以上の一定の温度、及び80℃以下、65℃以下、60℃以下、50℃以下、45℃以下、40℃以下、35℃以下、又は33℃以下の一定の温度が挙げられる。また等温条件は、例えば20℃~80℃の範囲に含まれる一定の温度、20℃~65℃の範囲に含まれる一定の温度、25℃~50℃の範囲に含まれる一定の温度、25℃~40℃の範囲に含まれる一定の温度、30℃~33℃の範囲に含まれる一定の温度、又は30℃程度であり得る。本明細書において「等温でインキュベートする」、「等温条件下で保温する」、「等温で反応させる」などの用語は、反応中に設定した温度に対して±7℃、±5℃、±3℃、又は±1℃の温度範囲内に保つことを意味する。保温時間は、目的とする環状DNAの増幅産物の量に応じて適宜設定することができるが、例えば1時間~24時間、好ましくは18時間~21時間とすることができる。
 工程(2)において、欠失、置換、又は付加が導入されたDNAを65℃以下の2つの温度でのインキュベーションを繰り返す温度サイクル下でインキュベートする温度条件下で増幅させる場合、第一の温度は、環状DNAの複製開始が可能な温度であり、第二の温度は、複製開始が抑制され、DNAの伸張反応が進行する温度である。第一の温度は、30℃以上、例えば30℃~80℃、30℃~50℃、30℃~40℃、又は37℃であり得る。第一の温度でのインキュベーションは、特に限定されないが、1サイクルあたり10秒~10分間であってもよく、1分間が好ましい。第二の温度は、27℃以下、例えば10℃~27℃、16℃~25℃、又は24℃であり得る。第二の温度でのインキュベーションは、特に限定されないが、増幅する環状DNAの長さに合わせて設定することが好ましく、例えば1サイクルにつき、1000塩基あたり1秒間~10秒間であってもよい。温度サイクルのサイクル数は特に限定されないが、10サイクル~50サイクル、20サイクル~45サイクル、25サイクル~45サイクル、40サイクルであってもよい。
 本発明の方法においては、工程(1)の後に、人工DNA切断酵素により、欠失、置換、又は付加が導入されていないDNAを特異的に切断する工程を含めてもよい。欠失、置換、又は付加が導入されていないDNAが切断されると、上記のDNA増幅技術では当該DNAは増幅されないため、欠失、置換、又は付加が導入されたDNAの収率を大幅に改善することができる。一実施形態において、異なる配列を切断する2種類以上の人工DNA切断酵素を使用してもよい。例えば、工程(1)において2種類以上の鋳型DNAを用いた場合、各鋳型DNAを特異的に切断する2種類以上の人工DNA切断酵素を使用することができる。あるいは、工程(1)において1種類の鋳型DNAを用い、2箇所以上の変異を導入した場合、各変異導入部位について変異が導入されていない配列を特異的に切断する2種類以上の人工DNA切断酵素を使用することができる。
 ここで、「欠失、置換、又は付加が導入されていないDNAを特異的に切断する」とは、欠失、置換、又は付加が導入されていないDNAを切断するが、欠失、置換、又は付加が導入されたDNAを切断しないことを意味する。そのような人工DNA切断酵素は、定法により調製することができる。例えば人工DNA切断酵素としてCRISPR-Cas9を用いる場合、欠失、置換、又は付加前の配列を含む領域に結合するようにガイドRNAを設計することで、欠失、置換、又は付加が導入されていないDNAを特異的に切断することができる。
 このような人工DNA切断酵素による欠失、置換、又は付加が導入されていないDNAの特異的切断は、工程(1)の後、かつ工程(2)の前に行ってもよい。
 また人工DNA切断酵素は、通常、熱処理によって失活しやすく、PCR反応のような94℃以上の高温でのインキュベーションを必要とするDNA増幅反応系では機能しない場合がある。本発明の方法における工程(2)は、94℃以上の高温でのインキュベーションを含まないため、DNA増幅反応と同時に人工DNA切断酵素による処理を行うことができる。したがって、好ましい実施形態において、工程(2)を、欠失、置換、又は付加が導入されていないDNAを特異的に切断する人工DNA切断酵素の存在下で行ってもよい。この場合、反応工程を増やすことなく、欠失、置換、又は付加が導入されたDNAの収率を大幅に改善することができる。
 以下、本発明の一態様として、RCR法によりDNAを増幅させる実施形態について説明する。
 <RCR法>
 一実施形態において、本発明の方法の工程(2)はRCR法により行うことができる。RCR法は、以下の工程を含む環状DNAの増幅方法である:
 (2-1)(a)環状DNAの複製を触媒する第一の酵素群、(b)岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群、及び(c)2つの姉妹環状DNAの分離反応を触媒する第三の酵素群を含む反応溶液と、工程(1)において欠失、置換、又は付加が導入された環状DNAとの反応混合物を調製する工程;
 (2-2)工程(2-1)において調製した反応混合物を、等温、すなわち、20℃~80℃の範囲に含まれる一定の温度でインキュベートするか、又は65℃以下の2つの温度でのインキュベーションを繰り返す温度サイクル下でインキュベートする工程。
 1.環状DNA
 RCR法において鋳型として用いる環状DNAは、二本鎖であることが好ましい。鋳型として用いる環状DNAとしては、微生物の環状染色体等の天然の環状DNA、天然の環状DNAを酵素処理等によって切断したもの等に別のDNA断片を連結し、それを環状化した環状DNA、天然において直鎖状で存在するDNAを環状化処理した環状DNA、すべて人工的に合成した環状DNA等を例示することができる。環状DNAは、複製開始タンパク質が結合可能な複製開始配列を含んでも、含まなくてもよいが、複製開始タンパク質が結合可能な複製開始配列を含むことが好ましく、DnaA活性を有する酵素と結合可能な複製開始配列(oriC)を含むことがより好ましい。
 複製開始配列とそれに結合可能な複製開始タンパク質の組み合わせは、当該技術分野において公知であり(例えば、Cell, Volume 54, Issue 7, Pages 915-918 (1988)参照)、本発明においては、それらのいずれを用いてもよい。そのような組み合わせの例としては、oriCとDnaA活性を有する酵素(例えば、大腸菌、枯草菌などの細菌に存在する複製開始配列とDnaAタンパク質)、pSC101の複製開始配列とpSC101 repA、P1の複製開始配列とP1 repA、Fの複製開始配列とEタンパク質、R1の複製開始配列とR1 repA、R6K oriγとπタンパク質、λの複製開始配列とλOタンパク質、φ82の複製開始配列とφ82Oタンパク質、φ80の複製開始配列とφ80Oタンパク質、RK2の複製開始配列とRK2 trfAタンパク質、P4の複製開始配列とαタンパク質、などが挙げられる。
 複製開始タンパク質及び複製開始配列は、NCBI(http://www.ncbi.nlm.nih.gov/)等の公的なデータベースに登録されている配列情報に基づいて入手することができる。また複製開始配列は、複製開始タンパク質と結合可能なDNA断片をクローニングし、その塩基配列を解析することによって得ることもできる。
 本発明において鋳型として用いる環状DNAは、もともと複製開始配列を含む環状DNAであってもよいし、もともとは複製開始配列を含まない環状DNAに複製開始配列を導入したものであってもよい。
 鋳型として用いる環状DNAが複製開始タンパク質が結合可能な複製開始配列を含まない場合、DNA組換え中間体(D-loop)の形成又は転写中間体(R-loop)の形成を介してDNAの複製が開始される。
 本発明において鋳型として用いる環状DNAは、目的に応じて、カナマイシン、アンピシリン、テトラサイクリン等の薬剤耐性マーカー遺伝子配列を含むものであってよい。
 本発明において鋳型として用いる環状DNAは、精製されたものであってもよいが、環状DNAを含む菌体抽出物等の懸濁液の形態であってもよい。また、1種類の環状DNAを鋳型として用いてもよいが、例えばDNAライブラリーのような複数種類の環状DNAの混合物を1つの試験管内で鋳型として用いてもよい。
 1反応あたりに用いる鋳型DNAの量に特に制限はなく、1反応あたり1分子の環状DNAを鋳型として用いることもできる。
 本発明において鋳型として用いる環状DNAの長さに制限はないが、例えば1 kb(1000塩基長)以上、5 kb(5000塩基長)以上、8 kb(8,000塩基長)以上、8.8 kb(8,800塩基長)以上、9.5 kb(9,500塩基長)以上、10 kb(10,000塩基長)以上、50 kb(50,000塩基長)以上、100 kb(100,000塩基長)以上、101 kb(101,000塩基長)以上、183 kb(183,000塩基長)以上、200 kb(200,000塩基長)以上、205 kb(205,000塩基長)以上、500 kb(500,000塩基長)以上、1000 kb(1,000,000塩基長)以上、又は2000 kb(2,000,000塩基長)以上の長さとすることができる。一方で、環状DNAの長さの上限は特に限定されないが、例えば、10000 kb程度とすることができる。
 本発明では、上記の環状DNAを鋳型として用いて、それを少なくとも10倍、50倍、100倍、200倍、500倍、1000倍、2000倍、3000倍、4000倍、5000倍、又は10000倍に増幅させることができる。
 2.第一、第二及び第三の酵素群
 2-1.第一の酵素群
 本明細書において第一の酵素群とは、環状DNAの複製を触媒する酵素群を意味する。
 2-1-1.環状DNAが複製開始配列を含む場合
 環状DNAの複製を触媒する第一の酵素群としては、例えばKaguni JM & Kornberg A. Cell. 1984, 38:183-90に記載された酵素群を用いることができる。具体的には、第一の酵素群として、以下:複製開始タンパク質(例えばDnaA活性を有する酵素)、1種以上の核様体タンパク質、DNAジャイレース活性を有する酵素又は酵素群、一本鎖DNA結合タンパク質(single-strand binding protein(SSB))、DNAヘリカーゼ活性を有する酵素(例えばDnaB型ヘリカーゼ活性を有する酵素)、DNAヘリカーゼローダー活性を有する酵素、DNAプライマーゼ活性を有する酵素、DNAクランプ活性を有する酵素、及びDNAポリメラーゼIII*活性(DNAポリメラーゼIIIホロ酵素からクランプを除いたもの)を有する酵素又は酵素群、からなる群より選択される酵素又は酵素群の1つ以上、あるいは当該酵素又は酵素群のすべての組み合わせ、を例示することができる。
 複製開始タンパク質は、環状DNAに存在する複製開始配列に対してイニシエーター活性を有するタンパク質であれば、その生物学的由来に特に制限はない。またDnaA活性を有する酵素は、大腸菌のイニシエータータンパク質であるDnaAと同様のイニシエーター活性を有する酵素であれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のDnaAを好適に用いることができる。複製開始タンパク質は単量体として、反応溶液中、反応溶液の総容積に対して、1 nM(nmol/L)~10 μM(μmol/L)の範囲で含まれていてもよく、好ましくは1 nM~5 μM、1 nM~3 μM、1 nM~1.5 μM、1 nM~1.0 μM、1 nM~500 nM、50 nM~200 nM、50 nM~150 nMの範囲で含まれていてもよく、より好ましくは100 nM含まれていてもよいが、これに限定されない。
 核様体タンパク質は、核様体に含まれるタンパク質をいう。本発明に用いる1種以上の核様体タンパク質は、大腸菌の核様体タンパク質と同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のIHF、すなわちIhfA及びIhfBからなる群より選ばれる1種以上の複合体(ヘテロ二量体又はホモ二量体)や、大腸菌由来のHU、すなわちhupA及びhupBの複合体を好適に用いることができる。大腸菌由来のIHFはヘテロ/ホモ2量体として反応溶液中、反応溶液の総容積に対して、5 nM(nmol/L)~400 nMの範囲で含まれていてもよく、好ましくは5 nM~200 nM、5 nM~100 nM、5 nM~50 nM、10 nM~50 nM、10 nM~40 nM、10 nM~30 nM、の範囲で含まれていてもよく、より好ましくは20 nM含まれていてもよいが、これに限定されない。大腸菌由来のHUは反応溶液中、1 nM~50 nMの範囲で含まれていてもよく、好ましくは5 nM~50 nM、5 nM~25 nMの範囲で含まれていてもよいが、これに限定されない。
 DNAジャイレース活性を有する酵素又は酵素群としては、大腸菌のDNAジャイレースと同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のGyrA及びGyrBからなる複合体を好適に用いることができる。大腸菌由来のGyrA及びGyrBからなる複合体はヘテロ4量体として反応溶液中、反応溶液の総容積に対して、20 nM(nmol/L)~500 nMの範囲で含まれていてもよく、好ましくは20 nM~400 nM、20 nM~300 nM、20 nM~200 nM、50 nM~200 nM、50 nM~100 nMの範囲で含まれていてもよく、より好ましくは50 nM含まれていてもよいが、これに限定されない。
 一本鎖DNA結合タンパク質(single-strand binding protein(SSB))としては、大腸菌の一本鎖DNA結合タンパク質と同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のSSBを好適に用いることができる。大腸菌由来のSSBはホモ4量体として、反応溶液中、反応溶液の総容積に対して、20 nM(nmol/L)~1000 nMの範囲で含まれていてもよく、好ましくは20 nM~500 nM、20 nM~300 nM、20 nM~200 nM、50 nM~500 nM、50 nM~400 nM、50 nM~300 nM、50 nM~200 nM、50 nM~150 nM、100 nM~500 nM、100 nM~400 nM、の範囲で含まれていてもよく、より好ましくは400 nM含まれていてもよいが、これに限定されない。
 DnaB型ヘリカーゼ活性を有する酵素としては、大腸菌のDnaBと同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のDnaBを好適に用いることができる。大腸菌由来のDnaBはホモ6量体として反応溶液中、反応溶液の総容積に対して、5 nM(nmol/L)~200 nMの範囲で含まれていてもよく、好ましくは5 nM~100 nM、5 nM~50 nM、5 nM~30 nMの範囲で含まれていてもよく、より好ましくは20 nM含まれていてもよいが、これに限定されない。
 DNAヘリカーゼローダー活性を有する酵素としては、大腸菌のDnaCと同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のDnaCを好適に用いることができる。大腸菌由来のDnaCはホモ6量体として反応溶液中、反応溶液の総容積に対して、5 nM(nmol/L)~200 nMの範囲で含まれていてもよく、好ましくは5 nM~100 nM、5 nM~50 nM、5 nM~30 nMの範囲で含まれていてもよく、より好ましくは20 nM含まれていてもよいが、これに限定されない。
 DNAプライマーゼ活性を有する酵素としては、大腸菌のDnaGと同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のDnaGを好適に用いることができる。大腸菌由来のDnaGは単量体として、反応溶液中、反応溶液の総容積に対して、20 nM(nmol/L)~1000 nMの範囲で含まれていてもよく、好ましくは20 nM~800 nM、50 nM~800 nM、100 nM~800 nM、200 nM~800 nM、250 nM~800 nM、250 nM~500 nM、300 nM~500 nMの範囲で含まれていてもよく、より好ましくは400 nM含まれていてもよいが、これに限定されない。
 DNAクランプ活性を有する酵素としては、大腸菌のDnaNと同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のDnaNを好適に用いることができる。大腸菌由来のDnaNはホモ2量体として反応溶液中、反応溶液の総容積に対して、10 nM(nmol/L)~1000 nMの範囲で含まれていてもよく、好ましくは10 nM~800 nM、10 nM~500 nM、20 nM~500 nM、20 nM~200 nM、30 nM~200 nM、30 nM~100 nMの範囲で含まれていてもよいが、これに限定されない。
 DNAポリメラーゼIII*活性を有する酵素又は酵素群としては、大腸菌のDNAポリメラーゼIII*複合体と同様の活性を有する酵素又は酵素群であれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のDnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、及びHolEのいずれかを含む酵素群、好ましくは大腸菌由来のDnaX、HolA、HolB、及びDnaEの複合体を含む酵素群、さらに好ましくは大腸菌由来のDnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、及びHolEの複合体を含む酵素群を好適に用いることができる。大腸菌由来のDNAポリメラーゼIII*複合体はヘテロ多量体として反応溶液中、反応溶液の総容積に対して、2 nM(nmol/L)~50 nM(nmol/L)の範囲で含まれていてもよく、好ましくは2 nM~40 nM、2 nM~30 nM、2 nM~20 nM、5 nM~40 nM、5 nM~30 nM、5 nM~20 nMの範囲で含まれていてもよく、より好ましくは5 nM含まれていてもよいが、これに限定されない。
 2-1-2.環状DNAが複製開始配列を含まない場合
 環状DNAが複製開始配列を含まず、複製開始にD-loopを利用する場合、第一の酵素群としては、例えば組換え酵素(例えばRecA又はそのホモログ(例えばT4ファージのUvsX))、組換え酵素のDNAへの導入に機能する酵素(例えばRecO及びRecR又はそれらのホモログ(例えばUvsXに対してはUvsY)、D-loopへのヘリカーゼ導入に機能するプライモソームタンパク質群(例えば、PriA、PriB、PriC、及びDnaT)を用いることができる。
 環状DNAが複製開始配列を含まず、複製開始にR-loopを利用する場合、第一の酵素群としては、例えばRNAポリメラーゼ、R-loopへのヘリカーゼ導入に機能するプライモソームタンパク質群(例えばPriA、PriB、PriC、及びDnaT)を用いることができる。
 2-2.第二の酵素群
 本明細書において第二の酵素群とは、岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する酵素群を意味する。
 本発明において、カテナンを形成する2つの姉妹環状DNAとは、DNA複製反応によって合成された2つの環状DNAがつながった状態にあるものをいう。
 岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群としては、例えばDNAポリメラーゼI活性を有する酵素、DNAリガーゼ活性を有する酵素、及びRNaseH活性を有する酵素、からなる群より選択される1つ以上の酵素又は当該酵素の組み合わせを例示することができる。
 DNAポリメラーゼI活性を有する酵素としては、大腸菌のDNAポリメラーゼIと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のDNAポリメラーゼIを好適に用いることができる。大腸菌由来のDNAポリメラーゼIは単量体として反応溶液中、反応溶液の総容積に対して、10 nM(nmol/L)~200 nM(nmol/L)の範囲で含まれていてもよく、好ましくは20 nM~200 nM、20 nM~150 nM、20 nM~100 nM、40 nM~150 nM、40 nM~100 nM、40 nM~80 nMの範囲で含まれていてもよく、より好ましくは50 nM含まれていてもよいが、これに限定されない。
 DNAリガーゼ活性を有する酵素としては、大腸菌のDNAリガーゼと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のDNAリガーゼ又はT4ファージのDNAリガーゼを好適に用いることができる。大腸菌由来のDNAリガーゼは単量体として反応溶液中、反応溶液の総容積に対して、10 nM(nmol/L)~200 nM(nmol/L)の範囲で含まれていてもよく、好ましくは15 nM~200 nM、20 nM~200 nM、20 nM~150 nM、20 nM~100 nM、20 nM~80 nMの範囲で含まれていてもよく、より好ましくは50 nM含まれていてもよいが、これに限定されない。
 RNaseH活性を有する酵素としては、RNA:DNAハイブリッドのRNA鎖を分解する活性を有するものであれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のRNaseHを好適に用いることができる。大腸菌由来のRNaseHは単量体として反応溶液中、反応溶液の総容積に対して、0.2 nM(nmol/L)~200 nM(nmol/L)の範囲で含まれていてもよく、好ましくは0.2 nM~200 nM、0.2 nM~100 nM、0.2 nM~50 nM、1 nM~200 nM、1 nM~100 nM、1 nM~50 nM、10 nM~50 nMの範囲で含まれていてもよく、より好ましくは10 nM含まれていてもよいが、これに限定されない。
 2-3.第三の酵素群
 本明細書において第三の酵素群とは、2つの姉妹環状DNAの分離反応を触媒する酵素群を意味する。
 2つの姉妹環状DNAの分離反応を触媒する第三の酵素群としては、例えばPeng H & Marians KJ. PNAS. 1993, 90: 8571-8575に記載された酵素群を用いることができる。具体的には、第三の酵素群として、以下:トポイソメラーゼIV活性を有する酵素、トポイソメラーゼIII活性を有する酵素、及びRecQ型ヘリカーゼ活性を有する酵素、から成る群より選択される1つ以上の酵素又は当該酵素の組み合わせを例示することができる。
 トポイソメラーゼIII活性を有する酵素としては、大腸菌のトポイソメラーゼIIIと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のトポイソメラーゼIIIを好適に用いることができる。大腸菌由来のトポイソメラーゼIIIは単量体として反応溶液中、反応溶液の総容積に対して、20 nM(nmol/L)~500 nM(nmol/L)の範囲で含まれていてもよく、好ましくは20 nM~400 nM、20 nM~300 nM、20 nM~200 nM、20 nM~100 nM、30 nM~80 nMの範囲で含まれていてもよく、より好ましくは50 nM含まれていてもよいが、これに限定されない。
 RecQ型ヘリカーゼ活性を有する酵素としては、大腸菌のRecQと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のRecQを好適に用いることができる。大腸菌由来のRecQは単量体として反応溶液中、反応溶液の総容積に対して、20 nM(nmol/L)~500 nM(nmol/L)の範囲で含まれていてもよく、好ましくは20 nM~400 nM、20 nM~300 nM、20 nM~200 nM、20 nM~100 nM、30 nM~80 nMの範囲で含まれていてもよく、より好ましくは50 nM含まれていてもよいが、これに限定されない。
 トポイソメラーゼIV活性を有する酵素としては、大腸菌のトポイソメラーゼIVと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、例えばParCとParEの複合体である大腸菌由来のトポイソメラーゼIVを好適に用いることができる。大腸菌由来のトポイソメラーゼIVはヘテロ4量体として反応溶液中、反応溶液の総容積に対して、0.1 nM(nmol/L)~50 nM(nmol/L)の範囲で含まれていてもよく、好ましくは0.1 nM~40 nM、0.1 nM~30 nM、0.1 nM~20 nM、1 nM~40 nM、1 nM~30 nM、1 nM~20 nM、1 nM~10 nM、1 nM~5 nMの範囲で含まれていてもよく、より好ましくは5 nM含まれていてもよいが、これに限定されない。
 上記の第一、第二及び第三の酵素群は、市販されているものを用いてもよいし、微生物等から抽出し、必要に応じて精製したものを用いてもよい。微生物からの酵素の抽出及び精製は、当業者に利用可能な手法を用いて適宜実施することができる。
 上記第一、第二及び第三の酵素群として、上記に示す大腸菌由来の酵素以外を用いる場合は、上記大腸菌由来の酵素について特定された濃度範囲に対して、酵素活性単位として相当する濃度範囲で用いることができる。
 上記酵素の無細胞タンパク質発現系を含む反応溶液を、そのまま鋳型となる環状DNAと混合して、環状DNAの複製又は増幅のための反応混合液を形成してもよい。無細胞タンパク質発現系は、上記酵素をコードする遺伝子の塩基配列に相補的な配列からなるRNAを含む総RNA(total RNA)、mRNA、又はin vitro転写産物などを鋳型RNAとする無細胞翻訳系であってもよいし、各酵素をコードする遺伝子又は各酵素をコードする遺伝子を含む発現ベクターなどを鋳型DNAとする無細胞転写翻訳系であってもよい。
 以下に、RCR法I~Vとして、RCR法により環状DNAを増幅させる実施形態を説明する。なお、RCR法I~Vにおいて、「DnaA活性を有する酵素と結合可能な複製開始配列」及び「oriC」は「複製開始配列」に、「DnaA活性を有する酵素」は「複製開始配列に結合可能な複製開始タンパク質」に、それぞれ読み替えることができる。
 <RCR法I>
 一実施形態において、本発明におけるRCR法は、上記第一から第三の酵素群を含む反応溶液と、鋳型となる環状DNAとの反応混合物を形成する工程を含む(特許文献5参照)。
 第一から第三の酵素群を含む反応溶液の組成は、DNA複製反応が進行することのできるものであれば特に制限はないが、例えば、トリス塩酸緩衝液等の緩衝液に、rNTP、dNTP、マグネシウムイオン源、ATP源等を添加した溶液に、第一から第三の酵素群を添加したもの等を用いることができる。また、上記反応溶液は、副次的産物の生成を抑制する成分等の追加の成分をさらに含むものであってよい。具体的な反応溶液としては、後述する実施例に記載されたものが例示できる。
 RCR法Iは、上記反応混合物を等温条件下で保温する工程をさらに含む。等温条件としては、DNA複製反応が進行することのできるものであれば特に制限はないが、例えばDNAポリメラーゼの至適温度である20~80℃の範囲に含まれる一定の温度とすることができ、25℃~50℃の範囲に含まれる一定の温度とすることができ、30℃~33℃程度とすることができる。保温時間は、目的とする環状DNAの増幅産物の量に応じて適宜設定することができるが、例えば1時間~24時間とすることができ、16時間~21時間とすることができる。
 RCR法Iは、上記反応混合物を等温条件下で保温する工程の後に、目的に応じて、環状DNAの増幅産物を精製する工程を含んでもよい。環状DNAの精製は、当業者に利用可能な手法を用いて適宜実施することができる。
 RCR法Iを用いて増幅した環状DNAは、反応後の反応混合物をそのまま、あるいは適宜精製したものを、形質転換等のその後の目的に用いることができる。
 <RCR法II>
 一実施形態において、本発明におけるRCR法は、以下の工程:
(II-1)鋳型となる環状DNAと、以下:
 環状DNAの複製を触媒する第一の酵素群;
 岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
 2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
 緩衝液;
 ATP;
 GTP、CTP及びUTP;
 dNTP;
 マグネシウムイオン源;及び
 アルカリ金属イオン源;
を含む反応溶液との反応混合物を形成する工程、を含み、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む(特許文献6参照)。
 本実施形態において、本発明の方法は、上記工程(II-1)の前に、反応溶液をプレインキュベーションする工程をさらに含んでいてもよい。すなわち、本発明の方法は、以下の工程:
(II-1-1)以下:
 環状DNAの複製を触媒する第一の酵素群;
 岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
 2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
 緩衝液;
 ATP;
 GTP、CTP及びUTP;
 dNTP;
 マグネシウムイオン源;及び
 アルカリ金属イオン源;
を含む反応溶液をプレインキュベーションする工程;及び
(II-1-2)当該反応溶液と鋳型となる環状DNAとの反応混合物を形成する工程、ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;
を含み得る。
 プレインキュベーションは、例えば、0℃~40℃、10℃~40℃、15℃~37℃、又は16℃~30℃の範囲で、5分間~60分間、5分間~45分間、5分間~30分間、15分間~60分間、15分間~45分間、15分間~30分間の間、保温することにより行ってもよい。プレインキュベーションは、反応溶液の温度が上記の温度範囲内に保たれればプレインキュベーション中に若干変動してもよい。
 理論により制限されるものではないが、RCR法IIでは、複製サイクルが繰り返され、環状DNAが指数的に増幅する。本発明の方法では、上述した環状DNAを鋳型として用いて、それを少なくとも10倍、50倍、100倍、200倍、500倍、1000倍、2000倍、3000倍、4000倍、5000倍、又は10000倍に増幅することができる。
 反応溶液と混合する環状DNAについては、上記「1.環状DNA」の項目に記載した通りである。1反応あたりに用いる鋳型DNAの量に特に制限はなく、例えば、反応開始時に反応溶液の総容積に対して、10 ng/μL以下、5 ng/μL以下、1 ng/μL以下、0.8 ng/μL以下、0.5 ng/μL以下、0.3 ng/μL以下の濃度で反応溶液中に存在させてもよい。一方、1反応あたりに用いる鋳型DNAの量の下限は特に限定されないが、例えば、7.5 fg/μL、0.67 pg/μL、1 pg/μL、10 pg/μL、14 pg/μL、50 pg/μL、又は75 pg/μLとすることができる。さらには、反応開始時に、1反応あたり1分子の環状DNAを鋳型として存在させて増幅に用いることもできる。
 反応溶液に含まれる緩衝液は、pH7~9、好ましくはpH8、において用いるのに適した緩衝液であれば特に制限はない。例えば、Tris-HCl、Tris-OAc、Hepes-KOH、リン酸緩衝液、MOPS-NaOH、Tricine-HClなどが挙げられる。好ましい緩衝液はTris-HCl又はTris-OAcである。緩衝液の濃度は、当業者が適宜選択することができ、特に限定されないが、Tris-HCl又はTris-OAcの場合、例えば反応溶液の総容積に対して、10 mM(mmol/L)~100mM(mmol/L)、10mM~50mM、20mMの濃度を選択できる。
 ATPは、アデノシン三リン酸を意味する。反応開始時に反応溶液中に含まれるATPの濃度は、例えば反応溶液の総容積に対して、0.1 mM(mmol/L)~3 mM(mmol/L)の範囲であってよく、好ましくは0.1 mM~2 mM、0.1 mM~1.5 mM、0.5 mM~1.5 mMの範囲であってよく、より好ましくは1 mMであってもよい。
 GTP、CTP及びUTPは、それぞれグアノシン三リン酸、シチジン三リン酸、及びウリジン三リン酸を意味する。反応開始時に反応溶液中に含まれるGTP、CTP及びUTPの濃度は、それぞれ独立して、例えば反応溶液の総容積に対して、0.1 mM(mmol/L)~3.0 mM(mmol/L)の範囲であってよく、好ましくは0.5 mM~3.0 mM、0.5 mM~2.0 mMの範囲であってよい。
 dNTPは、デオキシアデノシン三リン酸(dATP)、デオキシグアノシン三リン酸(dGTP)、デオキシシチジン三リン酸(dCTP)、及びデオキシチミジン三リン酸(dTTP)の総称である。反応開始時に反応溶液中に含まれるdNTPの濃度は、例えば反応溶液の総容積に対して、0.01 mM(mmol/L)~1 mM(mmol/L)の範囲であってよく、好ましくは0.05 mM~1 mM、0.1 mM~1 mMの範囲であってよく、より好ましくは0.25 mM~1 mMの範囲であってよい。
 マグネシウムイオン源は、反応溶液中にマグネシウムイオン(Mg2+)を与える物質である。例えば、Mg(OAc)2、MgCl2、MgSO4、などが挙げられる。好ましいマグネシウムイオン源はMg(OAc)2である。反応開始時に反応溶液中に含まれるマグネシウムイオン源の濃度は、例えば、反応溶液中にマグネシウムイオンを反応溶液の総容積に対して、5 mM(mmol/L)~50 mM(mmol/L)の範囲で与える濃度であってよく、1 mMが好ましい。
 アルカリ金属イオン源は、反応溶液中にアルカリ金属イオンを与える物質である。アルカリ金属イオンとしては、例えばナトリウムイオン(Na+)、カリウムイオン(K+)が挙げられる。アルカリ金属イオン源の例として、グルタミン酸カリウム、アスパラギン酸カリウム、塩化カリウム、酢酸カリウム、グルタミン酸ナトリウム、アスパラギン酸ナトリウム、塩化ナトリウム、及び酢酸ナトリウム、が挙げられる。好ましいアルカリ金属イオン源はグルタミン酸カリウム又は酢酸カリウムである。反応開始時に反応溶液中に含まれるアルカリ金属イオン源の濃度は、反応溶液中にアルカリ金属イオンを反応溶液の総容積に対して、100 mM(mmol/L)以上、好ましくは100 mM~300 mMの範囲で与える濃度であってよく、より好ましくは50 mMで与える濃度であってよいが、これに限定されない。先行する出願との兼ね合いにおいては、上記のアルカリ金属イオン源の濃度から150 mMが除かれてもよい。
 RCR法IIに用いる反応溶液はさらに、タンパク質の非特異吸着抑制剤又は核酸の非特異吸着抑制剤を含んでいてもよい。好ましくは、反応溶液はさらに、タンパク質の非特異吸着抑制剤及び核酸の非特異吸着抑制剤を含んでいてもよい。タンパク質の非特異吸着抑制剤及び核酸の非特異吸着抑制剤からなる群より選ばれる1種以上の非特異吸着抑制剤が反応溶液中に存在することで、反応効率が向上する。タンパク質の非特異吸着抑制剤及び核酸の非特異吸着抑制剤からなる群より選ばれる1種以上の非特異吸着抑制剤が、タンパク質同士及びタンパク質と環状DNAからなる群より選ばれる1種以上の非特異吸着や、タンパク質及び環状DNAの容器表面への付着を抑制することで反応効率が向上すると考えられる。
 タンパク質の非特異吸着抑制剤とは、本発明の方法における増幅反応とは無関係なタンパク質である。そのようなタンパク質としては、例えば、ウシ血清アルブミン(BSA)、リゾチーム、ゼラチン、ヘパリン、及びカゼインなどが挙げられる。タンパク質の非特異吸着抑制剤は反応溶液中、反応溶液の総容積に対して、0.02 mg/mL~2.0 mg/mLの範囲、好ましくは0.1 mg/mL~2.0 mg/mL、0.2 mg/mL~2.0 mg/mL、0.5 mg/mL~2.0 mg/mLの範囲で含まれていてもよく、より好ましくは0.5 mg/mLで含まれていてもよいが、これに限定されない。
 核酸の非特異吸着抑制剤とは、本発明の方法における増幅反応とは無関係な核酸分子又は核酸類似因子である。そのような核酸分子又は核酸類似因子としては、例えば、tRNA(トランスファーRNA)、rRNA(リボソーマルRNA)、mRNA(メッセンジャーRNA)、グリコーゲン、ヘパリン、オリゴDNA、poly(I-C)(ポリイノシン-ポリシチジン)、poly(dI-dC)(ポリデオキシイノシン-ポリデオキシシチジン)、poly(A)(ポリアデニン)、及びpoly(dA)(ポリデオキシアデニン)などが挙げられる。核酸の非特異吸着抑制剤は反応溶液中、反応溶液の総容積に対して、1 ng/μL~500 ng/μLの範囲、好ましくは10 ng/μL~500 ng/μL、10 ng/μL~200 ng/μL、10 ng/μL~100 ng/μLの範囲で含まれていてもよく、より好ましくは50 ng/μLで含まれていてもよいが、これに限定されない。先行する出願との兼ね合いにおいては、核酸の非特異吸着抑制剤としてtRNAを選択する場合、tRNAの濃度から50 ng/μLが除かれてもよい。
 本発明の方法に用いる反応溶液はさらに、DNAの安定化因子を含んでいてもよい。DNAの安定化因子が反応溶液中に存在することで、DNAの切断が抑制され、鋳型DNA及び増幅産物を保護することができると考えられる。DNAの安定化因子の添加により、目的産物の収率向上につながる。特に、鋳型DNAが長鎖環状DNAである場合は、鋳型DNA及び増幅産物が分解されやすいため、DNAの安定化因子の添加は有益である。DNAの安定化因子は、特に限定されないが、例えば、グルコース、スクロース、ジメチルスルホキシド(DMSO)、ウシ血清アルブミン(BSA)、グリコールエーテルジアミン四酢酸(EGTA)、バソクプロインジスルホン酸二ナトリウム(BDA)、ペニシラミン、タイロン(Tiron, 1,2-ジヒドロキシベンゼン-3,5-スルホネート)、ジエチレレントリアミン五酢酸(DTPA)、エチレンジアミン四酢酸(EDTA)、及びDpsタンパク質(大腸菌由来)、メタロチオネインタンパク質(ヒト由来)からなる群より選択されるものであってもよい。この中で、DTPA、Tiron、BDA、Dpsタンパク質及びBSAは、環状DNA増幅反応を効率化作用をも有するので、特に好ましい。DTPA又はTironは反応溶液中、反応溶液の総容積に対して、0.01 mM(mmol/mL)~0.3 mM(mmol/mL)、好ましくは0.05mM~0.25 mMの範囲で含まれていてもよく、より好ましは0.25 mM含まれていてもよいが、これに限定されない。BDAは、反応溶液中、反応溶液の総容積に対して、0.01 mM(mmol/mL)~0.5 mM(mmol/mL)、好ましくは0.05 mM~0.3 mMの範囲で含まれていてもよいがこれに限定されない。Dpsタンパク質は反応溶液中、反応溶液の総容積に対して、0.3 μM(μmol/mL)~3.0 μM(μmol/mL)、好ましくは0.3 μM~1.5 μMの範囲で含まれていてもよいがこれに限定されない。BSAは反応溶液中、反応溶液の総容積に対して、0.02 mg/mL~2.0 mg/mLの範囲、好ましくは0.1 mg/mL~2.0 mg/mL、0.2 mg/mL~2.0 mg/mL、0.5 mg/mL~2.0 mg/mLの範囲で含まれていてもよく、より好ましくは0.5 mg/mLで含まれていてもよいが、これに限定されない。
 RCR法IIに用いる反応溶液はさらに、直鎖状DNA特異的エキソヌクレアーゼ又はRecG型ヘリカーゼを含んでいてもよい。好ましくは、反応溶液はさらに、直鎖状DNA特異的エキソヌクレアーゼ及びRecG型ヘリカーゼを含んでいてもよい。直鎖状DNA特異的エキソヌクレアーゼ及びRecG型ヘリカーゼからなる群より選ばれる1種以上が反応溶液中に存在することで、増幅反応中に二重鎖切断などによって生じる直鎖状DNAの量を低減し、目的のスーパーコイル産物の収率を向上させる効果がある。
 RCR法IIに用いる反応溶液はさらに、RecG型ヘリカーゼ又は一本鎖DNA特異的エキソヌクレアーゼを含んでいてもよい。好ましくは、反応溶液はさらに、RecG型ヘリカーゼ及び一本鎖DNA特異的エキソヌクレアーゼを含んでいてもよい。RecG型ヘリカーゼ及び一本鎖DNA特異的エキソヌクレアーゼからなる群より選ばれる1種以上が反応溶液中に存在することで、増幅反応中に生じる低分子の副次的な増幅産物の量を低減し、目的のスーパーコイル産物の収率を向上させる効果がある。
 RCR法IIに用いる反応溶液はさらに、直鎖状DNA特異的エキソヌクレアーゼ又は一本鎖DNA特異的エキソヌクレアーゼを含んでいてもよい。好ましくは、反応溶液はさらに直鎖状DNA特異的エキソヌクレアーゼ及び一本鎖DNA特異的エキソヌクレアーゼを含んでいてもよい。直鎖状DNA特異的エキソヌクレアーゼ及び一本鎖DNA特異的エキソヌクレアーゼからなる群より選ばれる1種以上が反応溶液中に存在することで、増幅反応中に二重鎖切断などによって生じる直鎖状DNAの量を低減し、目的のスーパーコイル産物の収率を向上させる効果がある。
 直鎖状DNA特異的エキソヌクレアーゼは、直鎖状DNAの5’末端若しくは3’末端から逐次的に加水分解する酵素である。直鎖状DNA特異的エキソヌクレアーゼは、直鎖状DNAの5’末端若しくは3’末端から逐次的に加水分解する活性を有するものであれば、その種類や生物学的由来に特に制限はない。例えば、RecBCD、λエキソヌクレアーゼ、エキソヌクレアーゼIII、エキソヌクレアーゼVIII、T5エキソヌクレアーゼ、T7エキソヌクレアーゼ、及びPlasmid-SafeTM ATP-Dependent DNase (epicentre)などを用いることができる。好ましい直鎖状DNA特異的エキソヌクレアーゼはRecBCDである。直鎖状DNAエキソヌクレアーゼは反応溶液中、反応溶液の総容積に対して、0.001 U/μL~1.0 U/μL、好ましくは0.005 U/μL~1.0 U/μL、0.01 U/μL~1.0 U/μL、0.05 U/μL~1.0 U/μL、0.08 U/μL~1.0 U/μL、又は0.1 U/μL~1.0 U/μLの範囲で含まれていてもよいが、これに限定されない。直鎖状DNAエキソヌクレアーゼについての酵素活性単位(U)は、37℃、30分の反応において、直鎖状DNAの1nmolのデオキシリボヌクレオチドを酸可溶性とするのに必要な酵素量を1Uとした単位である。
 RecG型ヘリカーゼは、伸張反応の終結時に複製フォーク同士が衝突してできる副次的なDNA構造を解消するヘリカーゼと考えられている酵素である。RecG型ヘリカーゼは、大腸菌由来のRecGと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のRecGを好適に用いることができる。大腸菌由来のRecGは単量体として反応溶液中、反応溶液の総容積に対して、100 nM(nmol/L)~800 nM(nmol/L)の範囲、好ましくは100 nM~500 nM、100 nM~400 nM、100 nM~300 nMの範囲で含まれていてもよく、より好ましくは60 nM含まれていてもよいが、これに限定されない。RecG型ヘリカーゼは、上記大腸菌由来のRecGについて特定された濃度範囲に酵素活性単位として相当する濃度範囲で用いることができる。
 一本鎖DNA特異的エキソヌクレアーゼは、一本鎖DNAの5’末端若しくは3’末端のヌクレオチドを逐次的に加水分解する酵素である。一本鎖DNA特異的エキソヌクレアーゼは、一本鎖DNAの5’末端又は3’末端のヌクレオチドを逐次的に加水分解する活性を有するものであれば、その種類や生物学的由来に特に制限はない。例えばエキソヌクレアーゼI(exo I)、RecJ、エキソヌクレアーゼT、などを用いることができる。好ましい一本鎖DNA特異的エキソヌクレアーゼはexo Iである。一本鎖DNA特異的エキソヌクレアーゼは反応溶液中、反応溶液の総容積に対して、0.1 U/μL~1.0 U/μLの範囲、好ましくは0.15 U/μL~1.0 U/μL、0.2 U/μL~1.0 U/μL、又は0.2 U/μL~0.5 U/μLの範囲で含まれていてもよいが、これに限定されない。exo Iについての酵素活性単位(U)は、37℃、30分の反応において、一本鎖DNAの10nmolのデオキシリボヌクレオチドを酸可溶性とするのに必要な酵素量を1Uとした単位である。RecJについての酵素活性単位(U)は、37℃、30分の反応において、一本鎖DNAの0.05nmolのデオキシリボヌクレオチドを酸可溶性とするのに必要な酵素量を1Uとした単位である。
 RCR法IIに用いる反応溶液はさらに、アンモニウム塩を含んでいてもよい。アンモニウム塩の例としては、硫酸アンモニウム、塩化アンモニウム、及び酢酸アンモニウムが挙げられる。特に好ましいアンモニウム塩は硫酸アンモニウム又は酢酸アンモニウムである。アンモニウム塩は反応溶液中、反応溶液の総容積に対して、0.1 mM(mmol/L)~100 mM(mmol/L)の範囲、好ましくは0.1 mM~50 mM、1 mM~50 mM、1 mM~20 mMの範囲で含まれていてもよく、より好ましくは4 mM含まれていてもよいが、これに限定されない。
 第二の酵素群の一つとして、DNAリガーゼ活性を有する酵素として大腸菌由来のDNAリガーゼを用いる場合、その補因子であるNAD(ニコチンアミドアデニンジヌクレオチド)が反応溶液中に含まれる。NADは反応溶液中、反応溶液の総容積に対して、0.01 mM(mmol/L)~1.0 mM(mmol/L)の範囲、好ましくは0.1 mM~1.0 mM、0.1 mM~0.5 mMの範囲で含まれていてもよく、より好ましくは0.25 mM含まれていてもよいが、これに限定されない。
 RCR法IIに用いる反応溶液はさらに、還元剤を含んでいてもよい。好ましい還元剤の例としては、DTT、β-メルカプトエタノール(2-メルカプトエタノール)、トリス(2-カルボキシエチル)ホスフィン(TCEP)及びグルタチオンが挙げられる。好ましい還元剤はDTTである。還元剤は、反応溶液中に反応溶液の総容積に対して、1.0 mM(mmol/L)~15.0 mM(mmol/L)の濃度で、好ましくは2.0 mM~10.0 mM、4.0 mM~8.0 mMの濃度で含まれていてもよい。
 RCR法IIに用いる反応溶液はまた、ATPを再生するための酵素及び基質を含んでいてもよい。ATP再生系の酵素と基質の組み合わせとしては、クレアチンキナーゼとクレアチンホスフェート、及びピルビン酸キナーゼとホスホエノールピルビン酸が挙げられる。ATP再生系の酵素としてはミオキナーゼが挙げられる。好ましいATP再生系の酵素と基質の組み合わせはクレアチンキナーゼ及びクレアチンホスフェート、である。
 反応溶液中に含まれる第一、第二、及び第三の酵素群については、上記「2.第一、第二及び第三の酵素群」の項目に記載した通りである。
 ある態様において、RCR法IIに用いる第一の酵素群は、DnaA活性を有する酵素、1種以上の核様体タンパク質、DNAジャイレース活性を有する酵素又は酵素群、一本鎖DNA結合タンパク質(single-strand binding protein(SSB))、DnaB型ヘリカーゼ活性を有する酵素、DNAヘリカーゼローダー活性を有する酵素、DNAプライマーゼ活性を有する酵素、DNAクランプ活性を有する酵素、及びDNAポリメラーゼIII*活性を有する酵素又は酵素群、の組み合わせ含んでいてよい。ここにおいて、1種以上の核様体タンパク質はIHF又はHUであってよく、DNAジャイレース活性を有する酵素又は酵素群は、GyrA及びGyrBからなる複合体であってよく、DnaB型ヘリカーゼ活性を有する酵素はDnaBヘリカーゼであってよく、DNAヘリカーゼローダー活性を有する酵素はDnaCヘリカーゼローダーであってよく、DNAプライマーゼ活性を有する酵素はDnaGプライマーゼであってよく、DNAクランプ活性を有する酵素はDnaNクランプであってよく、そして、DNAポリメラーゼIII*活性を有する酵素又は酵素群は、DnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、及びHolEのいずれかを含む酵素又は酵素群であってよい。
 別の態様において、RCR法IIに用いる第二の酵素群は、DNAポリメラーゼI活性を有する酵素及びDNAリガーゼ活性を有する酵素の組み合わせを含んでいてよい。あるいは、第二の酵素群は、DNAポリメラーゼI活性を有する酵素、DNAリガーゼ活性を有する酵素、及びRNaseH活性を有する酵素の組み合わせを含んでいてよい。
 また別の態様において、RCR法IIに用いる第三の酵素群は、トポイソメラーゼIII活性を有する酵素及びトポイソメラーゼIV活性を有する酵素からなる群より選ばれる1種以上の酵素を含んでいてよい。あるいは、第三の酵素群は、トポイソメラーゼIII活性を有する酵素及びRecQ型ヘリカーゼ活性を有する酵素の組み合わせを含んでいてよい。あるいはまた、第三の酵素群は、トポイソメラーゼIII活性を有する酵素、RecQ型ヘリカーゼ活性を有する酵素、及びトポイソメラーゼIV活性を有する酵素の組み合わせであってもよい。
 ある態様において、工程(II-2)は、油中水滴型エマルジョン内で行ってもよい。油中水滴型エマルジョンは、工程(II-1)で形成した反応混合物にミネラルオイル及び界面活性剤を添加して混合することにより調製することができる。ミネラルオイル及び界面活性剤の種類及び量は、当業者が適宜選択することができる。
 RCR法IIは、工程(II-2)の後に、第一から第三の酵素群を含まない反応溶液で五倍以上に希釈した後、再保温する工程をさらに含んでいてもよい。酵素群の希釈により新たな複製開始が抑えられる一方で、進行途中の複製伸長、カテナン形成、分離反応は残留酵素の効果で継続して進行する。また、反応中にニックなどが入って生じた副生成物も、この過程で残留ライゲースなどの効果によって修復可能である。よって、増幅中間体や副生成物からの最終産物への移行が特異的に導かれ、目的のスーパーコイル構造の環状DNAの収率向上が期待できる。
 RCR法IIは、工程(II-2)の後に、直鎖状DNA特異的エキソヌクレアーゼ及び一本鎖DNA特異的エキソヌクレアーゼからなる群より選ばれる1種以上のエキソヌクレアーゼで処理する工程をさらに含んでいてもよい。直鎖状DNA特異的エキソヌクレアーゼ及び一本鎖DNA特異的エキソヌクレアーゼからなる群より選ばれる1種以上のエキソヌクレアーゼで処理することで、増幅反応中に生じた副産物である直鎖状DNAを分解して除去することができる。直鎖状DNA特異的エキソヌクレアーゼ及び一本鎖DNA特異的エキソヌクレアーゼからなる群より選ばれる1種以上のエキソヌクレアーゼの種類及び用いる量は、上述のとおりであってもよい。直鎖状DNA特異的エキソヌクレアーゼ及び一本鎖DNA特異的エキソヌクレアーゼからなる群より選ばれる1種以上のエキソヌクレアーゼによる処理は、例えば、25℃~40℃で、30分間~3時間行ってもよい。
 RCR法IIは、工程(II-2)の後に、ギャップリペア酵素で処理する工程をさらに含んでいてもよい。ギャップリペア酵素は、二本鎖DNAにおいて1個又は複数の連続したヌクレオチドが欠けた状態であるギャップ、又は二本鎖DNAにおいて隣り合ったヌクレオチド間のリン酸ジエステル結合が切断された状態のニックを修復し、完全な二本鎖スーパーコイルDNAとする酵素群である。ギャップリペア酵素で処理することで、増幅反応中に副産物として生じていたギャップ又はニックの入ったDNAを修復し、目的のスーパーコイル産物の収率を向上させる効果がある。
 ギャップリペア酵素は、二本鎖DNAのギャップ又はニックを修復できる酵素群であれば、その種類や生物学的由来に特に制限はない。例えば、エキソヌクレアーゼIII、DNAポリメラーゼI、DNAリガーゼ、DNAジャイレース活性を有する酵素又は酵素群、の組合せを使用できる。エキソヌクレアーゼIII活性を有する酵素は5 mU/μL~100 mU/μLの濃度で用いてもよいが、これに限定されない。エキソヌクレアーゼIIIについての酵素活性単位(U)は、37℃、30分の反応において、二本鎖DNAの1 nmolのデオキシリボヌクレオチドを酸可溶性とするのに必要な酵素量を1 Uとした単位である。DNAポリメラーゼI、DNAリガーゼ、DNAジャイレース活性を有する酵素又は酵素群は、それぞれ前述の第一又は第二の酵素群において定めた濃度で用いて良いが、これに限定されない。ギャップリペア酵素による処理は、例えば、25℃~40℃で、5分間~120分間、好ましくは10分間~60分間、行ってもよい。
 RCR法IIは、工程(II-2)の後に、目的に応じて、環状DNAの増幅産物を精製する工程を含んでもよい。環状DNAの精製は、当業者に利用可能な手法を用いて適宜実施することができる。
 RCR法IIを用いて増幅した環状DNAは、反応後の反応混合物をそのまま、あるいは適宜精製したものを、形質転換等のその後の目的に用いることができる。
 <RCR法III>
 一実施形態において、本発明の方法は、以下の工程:
(III-1)鋳型となる環状DNAと、以下:
 環状DNAの複製を触媒する第一の酵素群、
 岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群、及び
 2つの姉妹環状DNAの分離反応を触媒する第三の酵素群、
を含む反応溶液との反応混合物を形成する工程;及び
(III-2)工程(III-1)において形成した反応混合物を反応させる工程;
を含み、
ここで当該環状DNAは、DnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含み、そして、oriCに対してそれぞれ外向きに挿入された1対のter配列、及び、XerCDが認識する塩基配列からなる群より選ばれる1種以上の配列、をさらに含み、
ここで当該環状DNAがter配列を有する場合、前記工程(III-1)の反応溶液はさらにter配列に結合して複製を阻害する活性を有するタンパク質を含み、そして当該環状DNAがXerCDが認識する塩基配列を有する場合、前記工程(III-1)の反応溶液はさらにXerCDタンパク質を含む(特許文献7参照)。
 RCR法IIIは、環状DNAを複製又は増幅する。本明細書において、環状DNAを複製するとは、鋳型となる環状DNAと同一の分子を生じることを意味する。環状DNAの複製は、反応後の反応物中の環状DNA量が、反応開始時の鋳型となる環状DNA量に対して増加していることで確認できる。好ましくは、環状DNAの複製は、反応開始時の環状DNA量に対して、反応物中の環状DNA量が少なくとも2倍、3倍、5倍、7倍、9倍に増大することをいう。環状DNAを増幅するとは、環状DNAの複製が進み、反応物中の環状DNAの量が反応開始時の鋳型となる環状DNA量に対して指数的に増大することを意味する。したがって、環状DNAの増幅は、環状DNAの複製の一態様である。本明細書において環状DNAの増幅は、反応開始時の鋳型となる環状DNA量に対して、反応物中の環状DNA量が少なくとも10倍、50倍、100倍、200倍、500倍、1000倍、2000倍、3000倍、4000倍、5000倍、又は10000倍に増大することをいう。
 反応溶液と混合する環状DNAについては、上記「1.環状DNA」の項目に記載した通りである。1反応あたりに用いる鋳型DNAの量に特に制限はなく、例えば、反応開始時に反応溶液の総容積に対して、10 ng/μL以下、5 ng/μL以下、1 ng/μL以下、0.8 ng/μL以下、0.5 ng/μL以下、0.1 ng/μL以下、75 pg/μL以下、50 pg/μL以下、14 pg/μL以下、5 pg/μL以下、1 pg/μL以下、0.67 pg/μL以下、0.5pg/μL以下、50 fg/μL以下、7.5 fg/μL以下、5 fg/μL以下、0.5 fg/μL以下の濃度で反応溶液中に存在させてもよい。さらには、反応開始時に、1反応あたり1分子の環状DNAを鋳型として存在させて複製又は増幅に用いることもできる。
 RCR法IIIに用いる鋳型となる環状DNAは、oriCに対してそれぞれ外向きに挿入された1対のter配列、及び、XerCDが認識する塩基配列からなる群より選ばれる1種以上の配列、を含む。当該環状DNAがter配列を有する場合、工程(III-1)の反応溶液はさらにter配列に結合して複製を阻害する活性を有するタンパク質を含み、そして当該環状DNAがXerCDが認識する塩基配列を有する場合、工程(III-1)の反応溶液はさらにXerCDタンパク質を含む。
 ter配列に結合して複製を阻害する活性を有するタンパク質及びXerCDからなる群より選ばれる1種以上のタンパク質は市販されているものを用いてもよいし、微生物等から抽出し、必要に応じて精製したものを用いてもよい。微生物からの酵素の抽出及び精製は、当業者に利用可能な手法を用いて適宜実施することができる。
 DNA上のter配列及びter配列に結合して複製を阻害する活性を有するタンパク質の組合せは、複製終結を行う機構である。この機構は、複数種の細菌において見出されており、例えば、大腸菌においてはTus-terシステム(Hiasa, H., and Marians, K. J., J. Biol. Chem., 1994, 269: 26959-26968;Neylon, C., et al., Microbiol. Mol. Biol. Rev., September 2005, p.501-526)、バチルス属細菌ではRTP-terシステム(Vivian, et al., J. Mol. Biol., 2007, 370: 481-491)として知られている。RCR法IIIにおいては、この機構を利用することにより、副産物であるDNAマルチマーの生成を抑制することが可能である。DNA上のter配列及びter配列に結合して複製を阻害する活性を有するタンパク質の組合せについて、その生物学的由来に特に制限はない。
 好ましい態様においてRCR法IIIは、ter配列及びTusタンパク質の組合せを用いる。Tusタンパク質との組合せで用いるter配列は、5’-GN[A/G][T/A]GTTGTAAC[T/G]A-3’(配列番号23)、より好ましくは5’-G[T/G]A[T/A]GTTGTAAC[T/G]A-3’(配列番号24)、5’-GTATGTTGTAACTA-3’(配列番号25)、5’-AGTATGTTGTAACTAAAG-3’(配列番号26)、5’-GGATGTTGTAACTA-3’(配列番号27)、5’-GTATGTTGTAACGA-3’(配列番号28)、5’-GGATGTTGTAACTA-3’(配列番号29)、5’-GGAAGTTGTAACGA-3’(配列番号30)、又は5’-GTAAGTTGTAACGA-3’(配列番号31)、を含む配列であってよい。Tusタンパク質の由来は特に限定されないが、好ましくは大腸菌由来のTusタンパク質である。Tusタンパク質は、反応溶液中、反応溶液の総容積に対して、1 nM(nmol/L)~200 nM(nmol/L)の範囲で含まれていてもよく、好ましくは2 nM~200 nM、2 nM~100 nM、5 nM~200 nM、5 nM~100 nM、10 nM~100 nM、20 nM~100 nM、20 nM~80 nMの範囲で含まれていてもよいが、これに限定されない。
 別の好ましい態様においてRCR法IIIは、ter配列及びRTPタンパク質の組合せを用いる。RTPタンパク質との組合せで用いるter配列は、5’-AC[T/A][A/G]ANNNNN[C/T]NATGTACNAAAT-3’(配列番号32)、好ましくは5’-ACTAATT[A/G]A[A/T]C[T/C]ATGTACTAAAT-3’(配列番号33)、5’-ACTAATT[A/G]A[A/T]C[T/C]ATGTACTAAATTTTCA-3’(配列番号34)、5’-GAACTAATTAAACTATGTACTAAATTTTCA-3’(配列番号35)、又は5’-ATACTAATTGATCCATGTACTAAATTTTCA-3’(配列番号36)を含む、23~30塩基の長さの配列である。ter配列として配列番号10~12の配列を含み、23~30塩基の長さを有する配列を選択する場合、当該配列は、配列番号13又は14に対して少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%の配列同一性を有するものであってもよい。RTPタンパク質の由来は特に限定されないが、好ましくはバチルス属細菌由来のRTPタンパク質、より好ましくは枯草菌(Bacillus subtilis)由来のRTPタンパク質である。Tusタンパク質は、反応溶液中、反応溶液の総容積に対して、1 nM(nmol/L)~200 nM(nmol/L)の範囲で含まれていてもよく、好ましくは2 nM~200 nM、2 nM~100 nM、5 nM~200 nM、5 nM~100 nM、10 nM~100 nM、20 nM~100 nM、20 nM~80 nMの範囲で含まれていてもよいが、これに限定されない。
 ter配列について「oriCに対して外向きに挿入する」とは、ter配列に結合して複製を阻害する活性を有するタンパク質の組合せの作用により、oriCより外側に向かう方向の複製に対しては複製を許容する一方、oriCに向かって入ってくる方向の複製に対しては複製を許容せず停止する方向でter配列を挿入することを意味する。したがって、ter配列について「oriCに対してそれぞれ外向きに挿入された1対の」とは、一方がoriCの5’側に配列番号1~14に示される配列のいずれか1つを含む配列が挿入され、他方がoriCの3’側に配列番号1~14に示される配列の相補配列を含む配列が挿入された状態を意味する。
 ter配列は、oriCに対してそれぞれ外向きに1対挿入されている限り、いずれの位置に存在していてもよい。例えば、1対のter配列は、oriCに対して対極となる領域に存在していてもよく、oriCの両側の近傍又は隣接した領域に存在していてもよい。oriCの両側の近傍又は隣接した領域に存在する場合は、oriCと1対のter配列を機能性カセットとして調製できるため、oriC及び1対のter配列のDNAへの導入が簡便になり、鋳型となる環状DNAの調製コストが低減されるという利点がある。
 DNA上のXerCDが認識する配列及びXerCDタンパク質の組合せは、DNAマルチマーの分離を行う機構において機能する(Ip, S. C. Y., et al., EMBO J., 2003, 22: 6399-6407)。XerCDタンパク質は、XerCとXerDの複合体である。XerCDタンパク質が認識する配列としてはdif配列、cer配列、psi配列が知られている(Colloms, et al., EMBO J., 1996, 15(5):1172-1181;Arciszewska, L. K., et al., J. Mol. Biol., 2000, 299:391-403)。本実施形態の方法においては、この機構を利用することにより、副産物であるDNAマルチマーの生成を抑制することが可能である。DNA上のXerCDが認識する配列及びXerCDタンパク質の組合せについて、その生物学的由来に特に制限はない。また、XerCDにはその促進因子が知られており、例えばdifにおける機能はFtsKタンパク質によって促進される(Ip, S. C.Y., et al., EMBO J., 2003, 22:6399-6407)。一態様において、RCR法IIIにおける反応溶液中にFtsKタンパク質を含めてもよい。
 XerCDが認識する配列は、5’-GGTGCG[C/T][A/G][T/C]AANNNNNNTTATG[T/G]TAAA[T/C]-3’(配列番号37)、5’-GGTGCG[C/T]A[T/C]AANNNNNNTTATG[T/G]TAAAT-3’(配列番号38)、5’-GGTGCGC[A/G][T/C]AANNNNNNTTATGTTAAA[T/C]-3’(配列番号39)、5’-GGTGCG[C/T][A/G]CAANNNNNNTTATG[T/G]TAAA[T/C]-3’(配列番号40)、5’-GGTGCGCATAANNNNNNTTATGTTAAAT-3’(配列番号41)、5’-GGTGCGTACAANNNNNNTTATGGTAAAT-3’(配列番号42)、5’-GGTGCGCGCAANNNNNNTTATGTTAAAC-3’(配列番号43)、5’-GGTGCGCATAATGTATATTATGTTAAAT-3’(配列番号44/dif配列)、5’-GGTGCGTACAAGGGATGTTATGGTAAAT-3’(配列番号45/cer配列)、若しくは5’-GGTGCGCGCAAGATCCATTATGTTAAAC-3’(配列番号46/psi配列)、又はそれらいずれかの相補配列を含む配列であってよい。配列番号15~24の1~11番目の塩基部分はXerC結合部位であり、配列番号15~24の18~28番目の塩基部分はXerD結合部位である。配列番号15~21の12~17番目の塩基部分(NNNNNNで示される6塩基部分)は、XerC又はXerDの結合領域ではないため、配列は特に限定されない。好ましくは、配列番号15~21の12~17番目の塩基(NNNNNNで示される6塩基部分)の配列は、配列番号22~24の12~17番目の塩基の配列に対して、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%の配列同一性を有するものであってもよい。
 XerCDタンパク質は、好ましくは大腸菌由来のXerCDタンパク質である。XerCDタンパク質は、反応溶液中、反応溶液の総容積に対して、1 nM(nmol/L)~200 nM(nmol/L)の範囲で含まれていてもよく、好ましくは5 nM~200 nM、5 nM~150 nM、10 nM~200 nM、10 nM~150 nM、20 nM~200 nM、20 nM~150 nM、20 nM~100 nMの範囲で含まれていてもよいが、これに限定されない。
 XerCDが認識する配列は、環状DNA上のいずれの位置に存在していてもよい。例えば、XerCDが認識する配列は、oriCに対して対極となる領域に存在していてもよく、oriCの近傍又は隣接した領域に存在していてもよい。oriCの近傍又は隣接した領域に存在する場合は、oriCとXerCDが認識する配列を機能性カセットとして調製できるため、oriC及びXerCDが認識する配列のDNAへの導入が簡便になり、鋳型となる環状DNAの調製コストが低減されるという利点がある。
 本明細書において、2つの塩基配列の同一性%は、視覚的検査及び数学的計算によって決定することができる。また、コンピュータープログラムを用いて同一性%を決定することもできる。そのような配列比較コンピュータープログラムとしては、例えば、米国国立医学ライブラリーのウェブサイト:http://www.ncbi.nlm.nih.gov/blast/bl2seq/bls.htmlから利用できるBLASTNプログラム(Altschul et al. (1990) J. Mol. Biol. 215: 403-10):バージョン2.2.7、又はWU-BLAST2.0アルゴリズム等があげられる。WU-BLAST2.0についての標準的なデフォルトパラメーターの設定は、以下のインターネットサイト:http://blast.wustl.eduに記載されているものを用いることができる。
 反応溶液中に含まれる第一、第二、及び第三の酵素群については、上記「2.第一、第二及び第三の酵素群」の項目に記載した通りである。
 ある態様において、RCR法IIIに用いる第一の酵素群は、DnaA活性を有する酵素、1種以上の核様体タンパク質、DNAジャイレース活性を有する酵素又は酵素群、一本鎖DNA結合タンパク質(single-strand binding protein(SSB))、DnaB型ヘリカーゼ活性を有する酵素、DNAヘリカーゼローダー活性を有する酵素、DNAプライマーゼ活性を有する酵素、DNAクランプ活性を有する酵素、及びDNAポリメラーゼIII*活性を有する酵素又は酵素群、の組み合わせを含んでいてよい。ここにおいて、1種以上の核様体タンパク質はIHF又はHUであってよく、DNAジャイレース活性を有する酵素又は酵素群は、GyrA及びGyrBからなる複合体であってよく、DnaB型ヘリカーゼ活性を有する酵素はDnaBヘリカーゼであってよく、DNAヘリカーゼローダー活性を有する酵素はDnaCヘリカーゼローダーであってよく、DNAプライマーゼ活性を有する酵素はDnaGプライマーゼであってよく、DNAクランプ活性を有する酵素はDnaNクランプであってよく、そして、DNAポリメラーゼIII*活性を有する酵素又は酵素群は、DnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、及びHolEのいずれかを含む酵素又は酵素群であってよい。
 別の態様において、RCR法IIIに用いる第二の酵素群は、DNAポリメラーゼI活性を有する酵素及びDNAリガーゼ活性を有する酵素の組み合わせを含んでいてよい。あるいは、第二の酵素群は、DNAポリメラーゼI活性を有する酵素、DNAリガーゼ活性を有する酵素、及びRNaseH活性を有する酵素の組み合わせを含んでいてよい。
 また別の態様において、RCR法IIIに用いる第三の酵素群は、トポイソメラーゼIII活性を有する酵素及びトポイソメラーゼIV活性を有する酵素からなる群より選ばれる1種以上の酵素を含んでいてよい。あるいは、第三の酵素群は、トポイソメラーゼIII活性を有する酵素及びRecQ型ヘリカーゼ活性を有する酵素の組み合わせを含んでいてよい。あるいはまた、第三の酵素群は、トポイソメラーゼIII活性を有する酵素、RecQ型ヘリカーゼ活性を有する酵素、及びトポイソメラーゼIV活性を有する酵素の組み合わせであってもよい。
 反応溶液は、緩衝液、ATP、GTP、CTP、UTP、dNTP、マグネシウムイオン源、及びアルカリ金属イオン源を含むものであってよい。
 反応溶液に含まれる緩衝液は、pH7~9、好ましくはpH8、において用いるのに適した緩衝液であれば特に制限はない。例えば、Tris-HCl、Hepes-KOH、リン酸緩衝液、MOPS-NaOH、Tricine-HClなどが挙げられる。好ましい緩衝液はTris-HClである。緩衝液の濃度は、当業者が適宜選択することができ、特に限定されないが、Tris-HClの場合、例えば反応溶液の総容積に対して、10 mM(mmol/L)~100mM(mmol/L)、10mM~50mM、20mMの濃度を選択できる。
 ATPは、アデノシン三リン酸を意味する。反応開始時に反応溶液中に含まれるATPの濃度は、例えば反応溶液の総容積に対して、0.1 mM(mmol/L)~3 mM(mmol/L)の範囲であってよく、好ましくは0.1 mM~2 mM、0.1 mM~1.5 mM、0.5 mM~1.5 mMの範囲であってよく、より好ましくは1 mMであってもよい。
 GTP、CTP及びUTPは、それぞれグアノシン三リン酸、シチジン三リン酸、及びウリジン三リン酸を意味する。反応開始時に反応溶液中に含まれるGTP、CTP及びUTPの濃度は、それぞれ独立して、例えば反応溶液の総容積に対して、0.1 mM(mmol/L)~3.0 mM(mmol/L)の範囲であってよく、好ましくは0.5 mM~3.0 mM、0.5 mM~2.0 mMの範囲であってよい。
 dNTPは、デオキシアデノシン三リン酸(dATP)、デオキシグアノシン三リン酸(dGTP)、デオキシシチジン三リン酸(dCTP)、及びデオキシチミジン三リン酸(dTTP)の総称である。反応開始時に反応溶液中に含まれるdNTPの濃度は、例えば反応溶液の総容積に対して、0.01 mM(mmol/L)~1 mM(mmol/L)の範囲であってよく、好ましくは0.05 mM~1 mM、0.1 mM~1 mMの範囲であってよく、より好ましくは0.25 mM~1 mMの範囲であってよい。
 マグネシウムイオン源は、反応溶液中にマグネシウムイオン(Mg2+)を与える物質である。例えば、Mg(OAc)2、MgCl2、MgSO4、などが挙げられる。好ましいマグネシウムイオン源はMg(OAc)2である。反応開始時に反応溶液中に含まれるマグネシウムイオン源の濃度は、例えば、反応溶液中にマグネシウムイオンを反応溶液の総容積に対して、5 mM(mmol/L)~50 mM(mmol/L)の範囲で与える濃度であってよく、1 mMが好ましい。
 アルカリ金属イオン源は、反応溶液中にアルカリ金属イオンを与える物質である。アルカリ金属イオンとしては、例えばナトリウムイオン(Na+)、カリウムイオン(K+)が挙げられる。アルカリ金属イオン源の例として、グルタミン酸カリウム、アスパラギン酸カリウム、塩化カリウム、酢酸カリウム、グルタミン酸ナトリウム、アスパラギン酸ナトリウム、塩化ナトリウム、及び酢酸ナトリウム、が挙げられる。好ましいアルカリ金属イオン源はグルタミン酸カリウム又は酢酸カリウムである。反応開始時に反応溶液中に含まれるアルカリ金属イオン源の濃度は、反応溶液中にアルカリ金属イオンを反応溶液の総容積に対して、100 mM(mmol/L)以上、好ましくは100 mM~300 mMの範囲で与える濃度であってよく、より好ましくは50 mMで与える濃度であってよいが、これに限定されない。先行する出願との兼ね合いにおいては、上記のアルカリ金属イオン源の濃度から150 mMが除かれてもよい。
 反応溶液はさらに、タンパク質の非特異吸着抑制剤又は核酸の非特異吸着抑制剤を含んでいてもよい。好ましくは、反応溶液はさらに、タンパク質の非特異吸着抑制剤及び核酸の非特異吸着抑制剤を含んでいてもよい。タンパク質の非特異吸着抑制剤及び核酸の非特異吸着抑制剤からなる群より選ばれる1種以上の非特異吸着抑制剤が反応溶液中に存在することで、タンパク質同士及びタンパク質と環状DNAからなる群より選ばれる1種以上の非特異吸着や、タンパク質及び環状DNAの容器表面への付着を抑制することができ、反応効率の向上が期待できる。
 タンパク質の非特異吸着抑制剤とは、本実施形態の方法における複製又は増幅反応とは無関係なタンパク質である。そのようなタンパク質としては、例えば、ウシ血清アルブミン(BSA)、リゾチーム、ゼラチン、ヘパリン、及びカゼインなどが挙げられる。タンパク質の非特異吸着抑制剤は反応溶液中、反応溶液の総容積に対して、0.02 mg/mL~2.0 mg/mLの範囲、好ましくは0.1 mg/mL~2.0 mg/mL、0.2 mg/mL~2.0 mg/mL、0.5 mg/mL~2.0 mg/mLの範囲で含まれていてもよく、より好ましくは0.5 mg/mLで含まれていてもよいが、これに限定されない。
 核酸の非特異吸着抑制剤とは、RCR法IIIにおける複製又は増幅反応とは無関係な核酸分子又は核酸類似因子である。そのような核酸分子又は核酸類似因子としては、例えば、tRNA(トランスファーRNA)、rRNA(リボソーマルRNA)、mRNA(メッセンジャーRNA)、グリコーゲン、ヘパリン、オリゴDNA、poly(I-C)(ポリイノシン-ポリシチジン)、poly(dI-dC)(ポリデオキシイノシン-ポリデオキシシチジン)、poly(A)(ポリアデニン)、及びpoly(dA)(ポリデオキシアデニン)などが挙げられる。
 核酸の非特異吸着抑制剤は反応溶液中、反応溶液の総容積に対して、1 ng/μL~500 ng/μLの範囲、好ましくは10 ng/μL~500 ng/μL、10 ng/μL~200 ng/μL、10 ng/μL~100 ng/μLの範囲で含まれていてもよく、より好ましくは50 ng/μLで含まれていてもよいが、これに限定されない。先行する出願との兼ね合いにおいては、核酸の非特異吸着抑制剤としてtRNAを選択する場合、tRNAの濃度から50 ng/μLが除かれてもよい。
 反応溶液はさらに、直鎖状DNA特異的エキソヌクレアーゼ又はRecG型ヘリカーゼを含んでいてもよい。好ましくは、反応溶液はさらに、直鎖状DNA特異的エキソヌクレアーゼ及びRecG型ヘリカーゼを含んでいてもよい。直鎖状DNA特異的エキソヌクレアーゼ及びRecG型ヘリカーゼからなる群より選ばれる1種以上が反応溶液中に存在することで、複製又は増幅反応中に二重鎖切断などによって生じる直鎖状DNAの量を低減し、目的のスーパーコイル産物の収率向上が期待できる。
 直鎖状DNA特異的エキソヌクレアーゼは、直鎖状DNAの5’末端若しくは3’末端から逐次的に加水分解する酵素である。直鎖状DNA特異的エキソヌクレアーゼは、直鎖状DNAの5’末端若しくは3’末端から逐次的に加水分解する活性を有する物であれば、その種類や生物学的由来に特に制限はない。例えば、RecBCD、λエキソヌクレアーゼ、エキソヌクレアーゼIII、エキソヌクレアーゼVIII、T5エキソヌクレアーゼ、T7エキソヌクレアーゼ、及びPlasmid-SafeTM ATP-Dependent DNase (epicentre)などを用いることができる。好ましい直鎖状DNA特異的エキソヌクレアーゼはRecBCDである。直鎖状DNAエキソヌクレアーゼは反応溶液中、反応溶液の総容積に対して、0.01 U/μL~1.0 U/μLの範囲、好ましくは0.08 U/μL~1.0 U/μL、又は0.1 U/μL~1.0 U/μLの範囲で含まれていてもよいが、これに限定されない。直鎖状DNAエキソヌクレアーゼについての酵素活性単位(U)は、37℃、30分の反応において、直鎖状DNAの1nmolのデオキシリボヌクレオチドを酸可溶性とするのに必要な酵素量を1Uとした単位である。
 RecG型ヘリカーゼは、伸張反応の終結時に複製フォーク同士が衝突してできる副次的なDNA構造を解消するヘリカーゼと考えられている酵素である。RecG型ヘリカーゼは、大腸菌由来のRecGと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のRecGを好適に用いることができる。大腸菌由来のRecGは単量体として反応溶液中、反応溶液の総容積に対して、100 nM(nmol/L)~800 nM(nmol/L)の範囲、好ましくは100 nM~500 nM、100 nM~400 nM、100 nM~300 nMの範囲で含まれていてもよく、より好ましくは60 nM含まれていてもよいが、これに限定されない。RecG型ヘリカーゼは、上記大腸菌由来のRecGについて特定された濃度範囲に酵素活性単位として相当する濃度範囲で用いることができる。
 反応溶液はさらに、アンモニウム塩を含んでいてもよい。アンモニウム塩の例としては、硫酸アンモニウム、塩化アンモニウム、及び酢酸アンモニウムが挙げられる。特に好ましいアンモニウム塩は硫酸アンモニウムである。アンモニウム塩は反応溶液中、反応溶液の総容積に対して、0.1 mM(mmol/L)~100 mMの範囲、好ましくは0.1 mM~50 mM、1 mM~50 mM、1 mM~20 mMの範囲で含まれていてもよく、より好ましくは4 mM含まれていてもよいが、これに限定されない。
 第二の酵素群の一つとして、DNAリガーゼ活性を有する酵素として大腸菌由来のDNAリガーゼを用いる場合、その補因子であるNAD(ニコチンアミドアデニンジヌクレオチド)が反応溶液中に含まれる。NADは反応溶液中、反応溶液の総容積に対して、0.01 mM(mmol/L)~1.0 mMの範囲、好ましくは0.1 mM~1.0 mM、0.1 mM~0.5 mMの範囲で含まれていてもよく、より好ましくは0.25 mM含まれていてもよいが、これに限定されない。
 RCR法IIIに用いる反応溶液はさらに、還元剤を含んでいてもよい。好ましい還元剤の例としては、DTT、β-メルカプトエタノール、グルタチオンが挙げられる。好ましい還元剤はDTTである。
 RCR法IIIに用いる反応溶液はまた、ATPを再生するための酵素及び基質を含んでいてもよい。ATP再生系の酵素と基質の組み合わせとしては、クレアチンキナーゼとクレアチンホスフェート、及びピルビン酸キナーゼとホスホエノールピルビン酸が挙げられる。ATP再生系の酵素としてはミオキナーゼが挙げられる。好ましいATP再生系の酵素と基質の組み合わせはクレアチンキナーゼ及びクレアチンホスフェート、である。
 上記工程(III-2)は、工程(III-1)において形成した反応混合物を反応させる工程である。工程(III-2)は、例えば、15℃~80℃、15℃~50℃、15℃~40℃、の温度範囲で反応混合物を反応させる工程であってよい。好ましくは、工程(III-2)は、等温条件下で保温する工程であってもよい。等温条件としては、DNA複製反応が進行することのできるものであれば特に制限はないが、例えばDNAポリメラーゼの至適温度である20℃~80℃の範囲に含まれる一定の温度とすることができ、25℃~50℃の範囲に含まれる一定の温度とすることができ、25℃~40℃の範囲に含まれる一定の温度とすることができ、30℃~33℃程度とすることができる。本明細書において「等温条件下で保温する」、「等温で反応させる」の用語は、反応中に上記の温度範囲に保つことを意味する。保温時間は、目的とする環状DNAの複製産物又は増幅産物の量に応じて適宜設定することができるが、例えば1~24時間とすることができ、16~21時間とすることができる。
 あるいは、上記工程(III-2)として、工程(III-1)において形成した反応混合物を、30℃以上でのインキュベーション及び27℃以下でのインキュベーションを繰り返す温度サイクル下で、インキュベートする工程を含んでいてもよい。30℃以上でのインキュベーションは、oriCを含む環状DNAの複製開始が可能な温度範囲であれば特に限定はなく、例えば、30℃~80℃、30℃~50℃、30℃~40℃、37℃であってよい。30℃以上でのインキュベーションは、特に限定されないが、1サイクルあたり10秒~10分間であってもよく、1分間であってもよい。27℃以下でのインキュベーションは、複製開始が抑制され、DNAの伸張反応が進行する温度であれば特に限定はなく、例えば、10℃~27℃、16℃~25℃、24℃、であってよい。27℃以下でのインキュベーションは、特に限定されないが、増幅する環状DNAの長さに合わせて設定することが好ましく、例えば1サイクルにつき、1000塩基あたり1秒間~10秒間であってもよい。温度サイクルのサイクル数は特に限定されないが、10サイクル~50サイクル、20サイクル~45サイクル、25サイクル~45サイクル、40サイクルであってもよい。
 RCR法IIIは、上記反応混合物を等温条件下で保温する工程の後に、目的に応じて、環状DNAの複製産物又は増幅産物を精製する工程を含んでもよい。環状DNAの精製は、当業者に利用可能な手法を用いて適宜実施することができる。
 RCR法IIIを用いて複製又は増幅した環状DNAは、反応後の反応混合物をそのまま、あるいは適宜精製したものを、形質転換等のその後の目的に用いることができる。
 <RCR法IV>
 XerCDとdifの組合せと同様に、Creとその認識配列loxPの組合せを用いてもDNAマルチマーの分離を導くことができることが知られている(Ip, S. C. Y., et al., EMBO J., 2003, 22:6399-6407)。本発明者らは、RCR法IIIにおけるXerCDとdifの組合せの代わりに、DNAマルチマー分離酵素及びその認識配列の組合せを用いても、副生成物であるDNAマルチマーの生成を抑制できることを見出した。
 一実施形態において、本発明の方法は、以下の工程:
(IV-1)鋳型となる環状DNAと、以下:
 環状DNAの複製を触媒する第一の酵素群、
 岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群、及び
 2つの姉妹環状DNAの分離反応を触媒する第三の酵素群、
を含む反応溶液との反応混合物を形成する工程;及び
(IV-2)工程(IV-1)において形成した反応混合物を反応させる工程;
を含み、
ここで当該環状DNAは、DnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含み、そして、oriCに対してそれぞれ外向きに挿入された1対のter配列、及び、DNAマルチマー分離酵素が認識する塩基配列からなる群より選ばれる1種以上の配列、をさらに含み、
ここで当該環状DNAがter配列を有する場合、前記工程(IV-1)の反応溶液はさらにter配列に結合して複製を阻害する活性を有するタンパク質を含み、そして当該環状DNAがDNAマルチマー分離酵素が認識する塩基配列を有する場合、前記工程(IV-1)の反応溶液はさらにDNAマルチマー分離酵素を含む(特許文献7参照)。
 すなわち、RCR法IVは、RCR法IIIにおける「XerCD」を「DNAマルチマー分離酵素」に、「XerCDが認識する塩基配列」を「DNAマルチマー分離酵素が認識する塩基配列」にそれぞれ拡張した範囲の方法である。したがって、RCR法IIIの各構成について<RCR法III>の項目において記載した説明は、RCR法IVに対しても適用される。
 DNAマルチマー分離酵素は、遺伝子の組換えを生じさせることにより、DNAマルチマーの分離を導くことができる酵素である。特定の塩基配列を認識して、当該塩基配列の部位で遺伝子の組換えを生じさせることができる部位特異的組換え酵素は、DNAマルチマー分離酵素として利用できる。DNAマルチマー分離酵素により認識される特定の塩基配列を、「DNAマルチマー分離酵素が認識する塩基配列」と記載する。DNAマルチマー分離酵素及びDNAマルチマー分離酵素が認識する塩基配列の組合せによる遺伝子の組み換えにより、DNAマルチマーの分離を導くことができる。RCR法IVにおいては、この機構を利用することにより、副産物であるDNAマルチマーの生成を抑制することが可能である。DNAマルチマー分離酵素は、市販されているものを用いてもよいし、微生物等から抽出し、必要に応じて生成したものを用いてもよい。微生物からの酵素の抽出及び精製は、当業者に利用可能な手法を用いて適宜実施することができる。
 DNAマルチマー分離酵素と当該DNAマルチマー分離酵素が認識する塩基配列の組合せは、XerCDとdif配列、CreとloxP配列(Siegel, R. W., et al.., FEBS Lett., 2001, 499(1-2): 147-153; Araki, K., et al., Nucleic Acids Res.: 1997, 25(4): 868-872)、出芽酵母(Saccharomyces verevisiae)由来の組換え酵素FLPとFRT配列(Broach, J. R., et al., Cell, 1982, 29(1):227-234)、バクテリオファージD6由来の組換え酵素DreOとrox配列(Anastassiadis, K., et al., Dis. Model. Mech., 2009, 2: 508-515)、チゴサッカロマイセス・ロキシー(zygosacchromyces rouxii)由来の組換え酵素RとRS配列(Araki, H., et al., J. Mol. Biol., 1985, 182(2): 191-203)、セリン組換え酵素ファミリー(例えば、Gin、γδ、Tn3、及びHin)とそれらの認識配列(Smith, M. C., et al.,Mol. Microbiol., 2002, 44: 299)、が挙げられるがこれらに限定されない。
 XerCDとdif配列については、<RCR法III>の項目において上述したとおりである。
 Cre及びloxP配列の組合せについて、その生物学的由来に特に制限はない。Creは、好ましくはバクテリオファージP1由来のCreタンパク質である。Creは、反応溶液中、反応溶液の総容積に対して、0.01 mU/μL~200 mU/μLの範囲で含まれていてもよく、好ましくは0.1 mU/μL~150 mU/μL、0.1 mU/μL~100 mU/μL、0.5 mU/μL~100 mU/μL、0.5 mU/μL~80 mU/μL、0.1 mU/μL~50 mU/μL、1 mU/μL~50 mU/μL、1 mU/μL~30 mU/μLの範囲で含まれていてもよいがこれに限定されない。
 Creが認識するloxP配列は、loxPコンセンサスである5’-ATAACTTCGTATAGCATACATTATACGAAGTTAT-3’(配列番号47)、若しくは変異loxP配列(小文字部分はコンセンサスに対する変異塩基)である5’-ATAACTTCGTATAGtATACATTATACGAAGTTAT-3’(配列番号48/lox511)、5’-ATAACTTCGTATAGgATACtTTATACGAAGTTAT-3’(配列番号49/lox2272)、5’-ATAACTTCGTATAtacctttcTATACGAAGTTAT-3’(配列番号50/loxFAS)、5’-ATAACTTCGTATAGCATACATTATACGAAcggta-3’(配列番号51/lox RE)、5’-taccgTTCGTATAGCATACATTATACGAAGTTAT-3’(配列番号52/lox LE)、又はそれらいずれかの相補配列を含む配列であってよい。
 出芽酵母(Saccharomyces verevisiae)由来の組換え酵素FLPは、反応溶液中、反応溶液の総容積に対して、1 nM(nmol/L)~200 nM(nmol/L)の範囲で含まれていてもよく、好ましくは5 nM~200 nM、5 nM~150 nM、10 nM~200 nM、10 nM~150 nM、20 nM~200 nM、20 nM~150 nM、20 nM~100 nMの範囲で含まれていてもよいがこれに限定されない。FLPが認識するFRT配列は、5’-GAAGTTCCTATTCTCTAGAAAGTATAGGAACTTC-3’(配列番号53)、又はその相補配列を含む配列であってもよい。
 バクテリオファージD6由来の組換え酵素DreOは、反応溶液中、反応溶液の総容積に対して、1 nM(nmol/L)~200 nM(nmol/L)の範囲で含まれていてもよく、好ましくは5 nM~200 nM、5 nM~150 nM、10 nM~200 nM、10 nM~150 nM、20 nM~200 nM、20 nM~150 nM、20 nM~100 nMの範囲で含まれていてもよいがこれに限定されない。DreOが認識するrox配列は、5’-TAACTTTAAATAATGCCAATTATTTAAAGTTA-3’(配列番号54)、又はその相補配列を含む配列であってもよい。
 チゴサッカロマイセス・ロキシー(Zygosacchromycesrouxii)由来の組換え酵素Rは、反応溶液中、反応溶液の総容積に対して、1 nM(nmol/L)~200 nM(nmol/L)の範囲で含まれていてもよく、好ましくは5 nM~200 nM、5 nM~150 nM、10 nM~200 nM、10 nM~150 nM、20 nM~200 nM、20 nM~150 nM、20 nM~100 nMの範囲で含まれていてもよいがこれに限定されない。酵素Rが認識するRS配列は、Araki, H.ら(J. Mol. Biol., 1985, 182(2): 191-203)が開示する配列、又はその相補配列を含む配列であってもよい。
 セリン組換え酵素ファミリー(γδ、Tn3、Gin、及びHin)は、反応溶液中、反応溶液の総容積に対して、1 nM(nmol/L)~200 nM(nmol/L)の範囲で含まれていてもよく、好ましくは5 nM~200 nM、5 nM~150 nM、10 nM~200 nM、10 nM~150 nM、20 nM~200 nM、20 nM~150 nM、20 nM~100 nMの範囲で含まれていてもよいがこれに限定されない。γδ、Tn3とそれらの認識配列resは、Grindley N. D. F..ら(Cell, 1982, 30: 19-27)が開示する配列、又はその相補配列を含む配列であってもよい。Ginとその認識配列は、Kahmann. R.ら(Cell, 1985, 41: 771-780)が開示する配列、又はその相補配列を含む配列であってもよい。Hinとその認識配列は、Glasgow. A. C.ら(J. Biol. Chem., 1989, 264: 10072-10082)が開示する配列、又はその相補配列を含む配列であってもよい。
 DNAマルチマー分離酵素が認識する配列は、環状DNA状のいずれの位置に存在していてもよい。例えば、DNAマルチマー分離酵素が認識する配列は、oriCの近傍又は隣接した領域に存在していてもよく、oriCに対して対極となる領域に存在していてもよい。
 <RCR法V>
 一実施形態において、本発明の方法は、以下の工程:
(V-1)oriCトランスポゾンとトランスポゼースを緩衝液中に添加してoriCトランスポゾームを形成する、ここでoriCトランスポゾンはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む線状DNAであってその両末端にOutside end (OE) 配列を含む線状DNAである;
 oriCトランスポゾームとoriCを含まない環状DNAを緩衝液中で反応させて転移反応を行う;
ことにより、oriCを含む環状DNAを調製する工程;
(V-2)工程(V-1)で得られたoriCを含む環状DNAと、以下:
 環状DNAの複製を触媒する第一の酵素群、
 岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群、及び
 2つの姉妹環状DNAの分離反応を触媒する第三の酵素群、
を含む反応溶液との反応混合物を形成する工程;並びに
(V-3)工程(V-2)において形成した反応混合物を反応させる工程;
を含む(特許文献7参照)。
 理論により制限されるものではないが、RCR法Vはトランスポゾンを利用してoriCを含まない環状DNAにoriCを導入することによりoriCを含む環状DNAを調製し、当該oriCを含む環状DNAを複製又は増幅するものである。環状DNAの複製及び増幅についての定義は、RCR法IIIについて上述したとおりである。
 反応溶液と混合するoriCを含む環状DNAについては、上記「1.環状DNA」の項目に記載した通りである。1反応あたりに用いるoriCを含む環状DNAの量は、RCR法IIIにおける鋳型DNAの量について上述したとおりである。
 また、反応溶液中に含まれる酵素群、反応溶液中に含まれてもよい他の成分についての説明は、RCR法IIIと同様である。さらに、上記工程(V-3)は、RCR法IIIにおける工程(V-2)と同様に行う。環状DNAの複製産物又は増幅産物を精製する工程をさらに含むこと、及びRCR法Vを用いて複製又は増幅した環状DNAの利用についても、RCR法IIIと同様である。
 oriCトランスポゾンの両端のOE配列は、トランスポゼースが認識し、OE配列として利用可能であることが当業者に知られた配列であればいかなる配列であってもよい。好ましい態様において、OE配列は、配列番号55(5’-CTGTCTCTTATACACATCT-3’)で示される配列又はその相補配列を含み、工程(1)の線状DNAの5’末端に配列番号55で示される配列を含むOE配列が挿入されており、当該線状DNAの3’末端に配列番号55で示される配列の相補配列を含むOE配列が挿入されている。
 上記工程(V-1)においてoriCトランスポゾーム形成に用いるoriCトランスポゾンの濃度は、反応溶液の総容積に対して、20 nM(nmol/L)~200 nM(nmol/L)であってもよく、好ましくは40 nM~160 nMであってもよい。
 トランスポゼースは、OE配列を認識してトランスポゾームを形成し、環状DNA中にトランスポゾンDNAを転移させる酵素であれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のトランスポゼースを好適に用いることができる。特に好ましいのは高活性Tn5変異(E54K、L372P)タンパク質である(Goryshin, I. Y., and Reznikoff, W. S., J. Biol. Chem., 1998, 273: 7367-7374)。トランスポゼースは、市販されているものを用いてもよいし、微生物等から抽出し、必要に応じて精製したものを用いてもよい。微生物からの酵素の抽出及び精製は、当業者に利用可能な手法を用いて適宜実施することができる。トランスポゼースとして高活性Tn5変異(E54K、L372P)タンパク質を用いる場合、上記工程(V-1)においてoriCトランスポゾーム形成に用いる濃度は、反応溶液の総容積に対して、50 nM(nmol/L)~200 nM(nmol/L)であってもよく、好ましくは80 nM~150 nMであってもよい。
 工程(V-1)で用いる緩衝液は、pH6~9、好ましくはpH7.5、において用いるのに適した緩衝液であれば特に制限はない。例えば、Tris-酢酸(Tris-OAc)、Tris-HCl、Hepes-KOH、リン酸緩衝液、MOPS-NaOH、Tricine-HClなどが挙げられる。好ましい緩衝液はTris-OAc又はTris-HClである。緩衝液の濃度は、当業者が適宜選択することができ、特に限定されないが、Tris-OAc又はTris-HClの場合、例えば反応溶液の総容積に対して、10 mM(mmol/L)~100 mM(mmol/L)、10 mM~50 mM、20 mMの濃度を選択できる。
 工程(V-1)においてoriCトランスポゾームを形成する工程は、30℃程度の温度で30分程度保温することにより行う。
 工程(V-1)の転移反応は、トランスポゼースの至適温度、例えば37℃で行う。転移反応を行う時間は、当業者が適宜選択することができ、例えば15分程度であってもよい。また、工程(V-1)の転移反応において、tRNAを添加してもよい。工程(V-1)の転移反応においてtRNAを添加する濃度は、例えば、反応溶液の総容積に対して、10 ng/μL~200 ng/μL、30 ng/μL~100 ng/μL、50 ng/μLの濃度を選択できる。
 一態様において、工程(V-2)のoriCを含む環状DNAは、oriCに対してそれぞれ外向きに挿入された1対のter配列、及び、XerCDやCre等のDNAマルチマー分離酵素が認識する塩基配列からなる群より選ばれる1種以上の配列をさらに含んでいてもよい。この場合、当該環状DNAがter配列を有する場合、前記工程(V-2)の反応溶液はさらにter配列に結合して複製を阻害する活性を有するタンパク質を含み、そして当該環状DNAがXerCDやCre等のDNAマルチマー分離酵素が認識する塩基配列を有する場合、前記工程(V-2)の反応溶液はさらにXerCDやCre等のDNAマルチマー分離酵素を含む。
 あるいは別の態様において、oriCに対してそれぞれ外向きに挿入された1対のter配列、及び、XerCDやCre等のDNAマルチマー分離酵素が認識する塩基配列からなる群より選ばれる1種以上の配列を、oriCトランスポゾンの一部に含めるよう調製し、1対のter配列及びXerCDやCre等のDNAマルチマー分離酵素が認識する塩基配列からなる群より選ばれる1種以上の配列についてもトランスポゾンを利用して環状DNAに導入してもよい。すなわち、この態様は、工程(V-1)の線状DNAがoriCに対してそれぞれ外向きに挿入された1対のter配列、及び、XerCDやCre等のDNAマルチマー分離酵素が認識する塩基配列からなる群より選ばれる1種以上の配列、をさらに含み、そして当該線状DNAがter配列を有する場合、前記工程(V-2)の反応溶液はさらにter配列に結合して複製を阻害する活性を有するタンパク質を含み、そして当該環状DNAがXerCDやCre等のDNAマルチマー分離酵素が認識する塩基配列を有する場合、前記工程(V-2)の反応溶液はさらにXerCDタンパク質を含むものである。
 ここで、oriCに対してそれぞれ外向きに挿入された1対のter配列及びXerCDやCre等のDNAマルチマー分離酵素が認識する塩基配列からなる群より選ばれる1種以上の配列、並びにter配列に結合して複製を阻害する活性を有するタンパク質及びXerCDやCre等のDNAマルチマー分離酵素からなる群より選ばれる1種以上についての定義及び説明は、RCR法III又はRCR法IVについて上述したとおりである。
 一態様において、RCR法Vはさらに、(V-4)工程(V-3)の反応物において複製又は増幅された環状DNAからoriCトランスポゾンを除去する工程、を含んでいてもよい。
 oriCトランスポゾンを除去する工程は、反応溶液の総容積に対して、0.1 nM(nmol/L)~30 nM(nmol/L)、好ましくは1 nM~20 nM、より好ましくは3 nM~10 nMのトランスポゼースによる処理、及びExoIIIのような直鎖状二重鎖DNA依存性一本鎖DNAエキソヌクレアーゼによるDNA末端の一本鎖化の処理を含んでいてもよい。トランスポゼースによる処理に用いる緩衝液は、工程(V-1)で用いる緩衝液を用いてもよい。一本鎖DNAエキソヌクレアーゼによる処理に用いられる緩衝液は、一本鎖DNAエキソヌクレアーゼが作用する条件であればいかなる組成の緩衝液を用いてもよい。
 また、oriCトランスポゾンを除去する工程は、さらに、oriCトランスポゾンの配列に含まれる制限酵素部位に対応する制限酵素による処理を含んでいてもよい。この処理は、oriCトランスポゾンを特異的に切断することを目的とする。よって、この場合、oriCトランスポゾンには含まれるが、複製・増幅された環状DNA中oriCトランスポゾン領域以外の領域には含まれない制限酵素部位に対応する制限酵素を選択する。oriCトランスポゾンに含まれる領域特異的な二重鎖切断には、制限酵素の代わりにCRISPR-Cas9を用いてもよい。この場合、ガイドRNAにはoriCトランスポゾンに含まれる領域特異的な配列を指定する。
 別の実施形態において、本発明の工程(2)は、ローリングサークル増幅(以下、「RCA法」(Rolling Circle Amplification)ともいう)により行うことができる。
 RCA法は、鎖置換活性を有するDNAポリメラーゼ並びに第一及び第二のプライマーを使用して環状DNAを増幅させる方法である。RCA法は、定法により行えばよく、例えば以下の手順に従って行うことができる。まず、第一のプライマーを環状DNAにハイブリダイズさせ、そこを開始点として鎖置換活性を有するDNAポリメラーゼによる伸長反応を行う。鎖置換活性を有するDNAポリメラーゼは、環状DNAのポリメラーゼ反応開始点に達しても、既に合成された鎖をはがしながら合成を進める。その結果、増幅産物として、元の環状DNAの一周分のDNA配列が反復して連結された一本鎖DNAが得られる。この一本鎖DNAに、第二のプライマーをハイブリダイズさせる。1つの一本鎖DNAには、複数の第二のプライマーがハイブリダイズし得る。複数の第二のプライマーから鎖置換活性を有するDNAポリメラーゼによる伸長反応を行うと、上流にハイブリダイズした第二のプライマーから合成されたDNAが下流にハイブリダイズした第二のプライマーから合成されたDNAをはがしながら相補鎖の合成が進む。一本鎖となった第二のプライマーから合成されたDNAには、第一のプライマーがハイブリダイズし、新たな複製反応が起こる。こうして、元の環状DNAの配列が指数関数的に増幅され、元の環状DNAの配列が反復して連結されたDNA多量体が得られる。これを適当なDNA切断酵素により切断し、DNAリガーゼにより環状化させることにより、単量体の元の環状DNAの複製産物が得られる。単量体の元の環状DNA複製産物は、DNA多量体をCre-loxPなどの部位特異的組換えシステムを利用して環状化させることによっても得られる。
 「第一のプライマー」は、対象とする環状DNAに結合するプライマーであり、「第二のプライマー」は、第一のプライマーが結合する環状DNAとは相補的な配列に結合するプライマーである。第一及び第二のプライマーとして、ランダムプライマーを用いてもよい。プライマーの長さは、通常、6塩基~9塩基程度であればよい。
 鎖置換活性を有するDNAポリメラーゼとしては、公知の酵素を使用することができ、例えばPhi29バクテリオファージDNAポリメラーゼ、Bst DNAポリメラーゼ、Csa DNAポリメラーゼ、96-7 DNAポリメラーゼなどが挙げられる。市販の酵素を用いてもよい。反応条件は、使用するDNAポリメラーゼに応じて適宜設定すればよい。
II.無細胞系でDNAを編集するためのキット
 本発明は、無細胞系において、DNAの標的部位に欠失、置換、又は付加を導入するために必要な成分、及び欠失、置換、又は付加が導入されたDNAを無細胞系において増幅させるために必要な成分を含む、キットを提供する。
 DNAの標的部位に欠失、置換、又は付加を導入するために必要な成分は、本発明の方法を実施するために使用される技術によって異なり得るが、例えば、所望の変異(例えば、置換、欠失、又は付加)を含む一本鎖DNA(例えば化学合成されたオリゴヌクレオチド)、DNAポリメラーゼなどが挙げられる。またRA法を使用する場合には、本発明のキットに含まれる成分としては、例えば、RecAファミリー組換え酵素蛋白質、エキソヌクレアーゼ、ヌクレオシド三リン酸又はデオキシヌクレオチド三リン酸の再生酵素及びその基質、ヌクレオシド三リン酸、デオキシヌクレオチド三リン酸、マグネシウムイオン源、アルカリ金属イオン源、ジメチルスルホキシド、塩化テトラメチルアンモニウム、ポリエチレングリコール、ジチオスレイトール、並びに緩衝液が挙げられる。
 欠失、置換、又は付加が導入されたDNAを無細胞系において増幅させるために必要な成分は、本発明の方法を実施するために使用される技術によって異なり得る。例えば、RCR法を使用する場合には、本発明のキットに含まれる成分としては、例えば、複製開始タンパク質、1種以上の核様体タンパク質、DNAジャイレース活性を有する酵素又は酵素群、一本鎖DNA結合タンパク質(single-strand binding protein(SSB))、DNAヘリカーゼ活性を有する酵素(例えばDnaB型ヘリカーゼ活性を有する酵素)、DNAヘリカーゼローダー活性を有する酵素、DNAプライマーゼ活性を有する酵素、DNAクランプ活性を有する酵素、及びDNAポリメラーゼIII*活性を有する酵素又は酵素群、からなる群より選択される酵素又は酵素群の1つ以上が挙げられる。
 本発明のキットは、本発明の方法を実施するために使用される技術に応じて、反応バッファー又はその濃縮物などの追加の構成品を含んでもよい。追加の構成品としては、例えば、上記RCR法I~Vを実施する上で必要な成分が挙げられる。
 本発明のキットは、欠失、置換、又は付加が導入されていないDNAを特異的に切断するための人工DNA切断酵素をさらに含んでもよい。
 本発明のキットはまた、当該キットを用いて本発明の方法を実施するためプロトコールが記載された書面を含んでもよい。当該プロトコールは、キットを収容した容器の表面に記載されていてもよい。
 以下、実施例に基づき本発明を具体的に説明する。なお、本発明は、下記実施例に記載の範囲に限定されるものではない。
[実施例1]CRISPR-Cas9の配列特異性の確認
 9.5 kbのプラスミド(pOri8)又は205 kbのプラスミド(pMSR227)を用いて、CRISPR-Cas9による切断の配列特異性を確認した。pOri8(図2A)及びpMSR227(図3A)は、Su’etsugu et al, Nucleic Acids Res. 2017 Nov 16;45(20):11525-11534に記載されているプラスミドである。
 10 ng/μLのpOri8又はpMSR227、100 nM gRNA_Km(IDT社Alt-R(登録商標) CRISPR-Cas9 Systemに従って調製したガイドRNA;認識配列:UGGUUAAUUGGUUGUAACAC(配列番号1)) 、20 nM Cas9(Alt-R(登録商標) S.p. HiFi Cas9 Nuclease 3NLS、IDT社)、0.8 U/μL RNase inhibitor murine(M0314、New England Biolabs社)、及びR8バッファー(混合物の合計が10μLとなるように添加)(組成は表2)を混合し、30℃で30分間インキュベートした。制限酵素SacI(pOri8の場合)又はXhoI(pMSR227の場合)を10 U加え、37℃で1時間インキュベートした。なお、反応液中の各成分の濃度は、反応溶液の総容積に対する濃度である。0.5%アガロースゲル電気泳動を行い、SYBR green I染色によりDNA断片を検出した。
 図2Bに示すとおり、カナマイシン耐性遺伝子下流に認識配列を持つgRNA_Km依存的にpOri8のスーパーコイルDNAが切断され、直鎖化された。SacI処理の結果、予想通り、9.5 kbの断片の切断により5.6 kb及び3.8 kbの断片が生じた。
 また図3Bに示すとおり、Cas9及びgRNA_Km依存的にpMSR227のスーパーコイルDNAが切断され、直鎖化された。XhoI処理の結果、7.6 kb断片が予想通り消失していた。XhoIによる7.6 kb断片の切断で生じる6.8 kb断片は、別のXhoI断片と重なっていたものの、バンドが太くなっていることが確認された。
[実施例2]CRISPR-RCR
 RA反応後のDNAの増幅反応において、CRISPR-Cas9の存在下でRCRを行うことにより、改変されていない鋳型DNAの増幅を阻害し、目的とする連結産物を特異的に増幅させることができるか確認した(図4)。
 まず鋳型DNA(pOri8又はpMSR227)を、以下の反応によりCas9で切断し、直鎖化した。10 ng/μL pOri8 (9.5 kb)又はpMSR227 (205 kb)、100 nM gRNA_Km、20 nM Cas9、0.8 U/μL RNase inhibitor murine、及びR8バッファー(混合物の合計が5μLとなるように添加)を混合し、30℃で30分間インキュベートした。なお、反応液中の各成分の濃度は、反応液の総容積に対する濃度である。
 次に、以下のRA反応により、Cas9切断断片とlacZ断片(下記方法により調製)とを連結させた。Cas9切断断片5 ngを含む上記Cas9切断反応液(0.5 μL)、lacZ断片(pOri8の場合は1.7 ng、pMSR227の場合は0.09 ng)、50 ng/μL tRNA(R8759、Sigma-Aldrich社)、RA反応液(下記組成;混合物の合計が5 μLとなるように添加)を混合し、42℃で1時間、次いで65℃で2分間インキュベートしたのち、氷上に静置した。なお、反応液中の各成分の濃度は、反応液の総容積に対する濃度である。
 lacZ断片の調製:pPKOZ(Su’etsugu et al, Nucleic Acids Res. 2017 Nov 16;45(20):11525-11534)を鋳型として、プライマーSUE1510及びSUE1511を用いてPCRを行い、lacZプレ断片を調製した。lacZプレ断片を鋳型として、プライマーSUE1638及びSUE1639を用いてPCRを行い、カナマイシン耐性遺伝子下流のCRISPR-Cas9切断末端の60塩基対(pOri8及びpMSR227で共通の配列)と相同的な末端を持つlacZ断片を調製した。
Figure JPOXMLDOC01-appb-T000001
 RA反応液の組成:1 μMの野生型RecA(RecAの大腸菌発現株から、ポリエチレンイミン沈殿、硫安沈殿、アフィニティーカラムクロマトグラフィーを含む工程で精製し、調製した。)、80 mU/μLのエキソヌクレアーゼIII (2170A、TAKARA Bio社)、1 U/μLのエキソヌクレアーゼI (M0293、New England Biolabs社)、20 mMのTris-HCl (pH 8.0)、4 mMのDTT、1 mMの酢酸マグネシウム、50 mMのグルタミン酸カリウム、100 μMのATP、150 mMの塩化テトラメチルアンモニウム(TMAC)、5質量%のPEG8000、10容量%のDMSO、20 ng/μLのクレアチンキナーゼ(10127566001、Sigma-Aldrich社)、4 mMのクレアチンリン酸。なお、RA反応液中の各成分の濃度は、RA反応液の総容積に対する濃度である。
 RA反応産物について、以下のようにRCR増幅反応を行った。RCR反応液 ver.2(下記組成、なお、RCR反応液 ver.2中の各成分の濃度は、RCR反応液 ver.2の総容積に対する濃度である。;混合物の合計が4.5 μLとなるように添加)、100 nM gRNA_Km、及び1 nM Cas9を混合し、30℃で30分間プレインキューベートした。なお、反応液中のgRNA_Km及びCas9の濃度は、反応液の総容積に対する濃度である。CRISPR-Cas9の非存在下で反応を行う場合には、100 nM gRNA_Km及び1 nM Cas9を添加せず、その分RCR反応液 ver.2を加えた。次いで、RA反応産物0.5 μLを加え、37℃で1分間インキュベート及び24℃で30分間インキュベー トのサイクルを40回行い、R8バッファーで5倍希釈して30℃で30分間さらにインキュベートした。RCR産物1 μL分を0.5%アガロースゲル電気泳動に供し、SYBR Green I染色により検出した。
Figure JPOXMLDOC01-appb-T000002
 表中、SSBは大腸菌由来SSB、IHFは大腸菌由来IhfA及びIhfBの複合体、DnaGは大腸菌由来DnaG、Clampは(大腸菌由来DnaN)、PolIII*は大腸菌由来DnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、及びHolEのからなる複合体であるDNAポリメラーゼIII*複合体、Dna Bは大腸菌由来DnaB、DnaCは大腸菌由来DnaC、DnaAは大腸菌由来DnaA、RNaseHは大腸菌由来RNaseH、Ligaseは大腸菌由来DNAリガーゼ、PolIは大腸菌由来DNAポリメラーゼI、GyrAは大腸菌由来GyrA、GyrBは大腸菌由来GyrB、Topo IVは大腸菌由来ParC及びParEの複合体、Topo IIIは大腸菌由来トポイソメラーゼIII、RecQは大腸菌由来RecQ、RecGは(大腸菌由来RecG)、RecJは(大腸菌由来RecJ)、ExoIは(大腸菌由来ExoI)、ExoIIIは(大腸菌由来ExoIII)を表す。
 SSBは、SSBの大腸菌発現株から、硫安沈殿及びイオン交換カラムクロマトグラフィーを含む工程で精製し、調製した。
 IHFは、IhfA及びIhfBの大腸菌共発現株から、硫安沈殿及びアフィニティーカラムクロマトグラフィーを含む工程で精製し、調製した。
 DnaGは、DnaGの大腸菌発現株から、硫安沈殿、陰イオン交換カラムクロマトグラフィー、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 Clampは、DnaN(Clamp)の大腸菌発現株から、硫安沈殿、陰イオン交換カラムクロマトグラフィーを含む工程で精製し、調製した。
 PolIII*は、DnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ及びHolEの大腸菌共発現株から、硫安沈殿、アフィニティーカラムクロマトグラフィー、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 DnaB, DnaCは、DnaB及びDnaCの大腸菌共発現株から、硫安沈殿、アフィニティーカラムクロマトグラフィー、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 DnaAは、DnaAの大腸菌発現株から、硫安沈殿、透析沈殿、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 GyrA, GyrBは、GyrAの大腸菌発現株とGyrBの大腸菌発現株の混合物から、硫安沈殿、アフィニティーカラムクロマトグラフィー、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 Topo IVは、ParCの大腸菌発現株とParEの大腸菌発現株の混合物から、硫安沈殿、アフィニティーカラムクロマトグラフィー、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 Topo IIIは、Topo IIIの大腸菌発現株から、硫安沈殿及びアフィニティーカラムクロマトグラフィーを含む工程で精製し、調製した。
 RecQは、RecQの大腸菌発現株から、硫安沈殿、アフィニティーカラムクロマトグラフィー、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 RecGはRecGの大腸菌発現株から、硫安沈殿、アフィニティーカラムクロマトグラフィーを含む工程で精製し、調製した。
 RecJは、市販の酵素を用いた(M0264、New England Biolabs社)。
 ExoIは、市販の酵素を用いた(前記RA反応液の組成参照)。
 ExoIIIは、市販の酵素を用いた(前記RA反応液の組成参照)。
 RNaseH、Ligase、PolIは市販の大腸菌由来の酵素を用いた(タカラバイオ株式会社)。
 また、RCR産物を大腸菌に形質転換し、コロニーの青白判定を行うことにより、RCR産物中のlacZ挿入産物の割合を調べた。pOri8については、RCR産物1 μLをTEバッファーで10倍希釈し、そのうち1 μLを用いて、ケミカル法により大腸菌DH5α株を形質転換した。pMSR227については、RCR産物1 μLをTEバッファーで10倍希釈し、そのうち2 μLを用いて、エレクトロポレーション法により大腸菌HST08株を形質転換した。形質転換後の大腸菌を、LBプレートの総容積に対して、50 μg/mL カナマイシン、0.1 mM(mmol/L) IPTG、40 μg/mL X-galを含むLBプレート上に播き、37℃で一晩培養した。全コロニー数に対する青コロニーの数の割合を計数した。
 結果を図5に示す。pOri8の場合、目的のlacZ挿入産物である13kb スーパーコイルDNAがRA依存的にRCR増幅された。改変前の9.5kb スーパーコイルDNAの増幅は、gRNAとCas9の存在下で抑えられた。形質転換コロニーの青白判定の結果でも、gRNA+Cas9の非存在下で は6%未満であった青コロニーの割合(図中、「Blue colony」)が、gRNA+Cas9の存在下では95%にまで上昇した。なお、図中、「Input」は、RCR増幅を行なっていないサンプルを示す。
 またpMSR227の場合、gRNA+Cas9の存在下でのRCRにより、目的のlacZ挿入産物であると考えられる208 kb スーパーコイルDNAが増幅された。また形質転換コロニーの青白判定の結果、gRNA+Cas9の非存在下では0%であった青コロニーの割合が、13コロニー中12コロニーにまで上昇し、目的のlacZ挿入産物が高い効率で得られたことが確認された。
 さらに、pMSR227(205kb)へのlacZ(3.3kb)を挿入改変を行なったサンプルから得られた青コロニーから、プラスミドを抽出し、制限酵素XhoI切断による構造確認を行なった(図6A)。予想通り、改変前に見られた7.6kbの断片が消失し、11kb付近のバンドが濃くなっており、lacZ挿入産物であることが確認された(図6B)。
[実施例3]長鎖DNAの無細胞合成
 RCR増幅法及びRA連結法を用いて、2つの長鎖環状DNAを連結し、より長い環状DNAの増幅を行った(図7)。
 まず、pOri80 (85 kb)とpOri93Cm (94 kb)を、以下の方法により、それぞれCRISPR-Cas9によって特定部位で切断し、直鎖化した。10 ng/μL pOri80 (85 kb)又はpOri93Cm (94 kb)、100 nM gRNA_Km (pOri80の場合) 又はgRNA_007 (pOri93Cmの場合;IDT社Alt-R(登録商標) CRISPR-Cas9 Systemに従って調製したガイドRNA;認識配列:CCUUUAGUUACAACAUACUC(配列番号2))、20 nM Cas9、0.8 U/μL RNase inhibitor murine、及びR8バッファー(混合物の合計が5μLとなるように添加)を混合し、30℃で30分間インキュベートした。なお、反応液中の各成分の濃度は、反応液の総容積に対する濃度である。
 ここで、pOri93Cmは、以下の方法により調製した。大腸菌株(DGF-298WΔ100::revΔ234::SC)のゲノムDNAのXbaI消化物のうち、93 kbのゲノム断片を、oriC及びクロラムフェニコール耐性遺伝子を含む連結用断片(Cm-oriC断片、1.3 kb;配列番号11)とRAにより連結させて環状とした。Cm-oriC断片の両末端の60塩基対の配列は、それぞれ93 kbのゲノム断片の両末端と相同配列である。環状DNAをRCR増幅後、大腸菌形質転換し、得られた大腸菌コロニーから精製したスーパーコイルプラスミドをpOri93Cmとした。
 得られた2つの長鎖DNA断片を、lacZアダプター(3.4 kb) 及びAmアダプター(1.1 kb)を用いて、以下のようにRA反応行い、連結した。pOri80 Cas9切断断片 5 ng (0.5 μL)、pOri93Cm Cas9切断断片 5 ng (0.5 μL)、lacZアダプター (3.4kb, 27 pg)、Amアダプター (1.1kb, 86 ng)、50 ng/μL tRNA、RA反応液(実施例2参照;混合物の合計が5 μLとなるように添加)を混合し、42℃で3時間、次いで65℃で2分間インキュベートしたのち、氷上に静置した。なお、反応液中の各成分の濃度は、反応液の総容積に対する濃度である。
 ここで、各アダプターの両末端の60塩基対の配列は、2つの長鎖DNA断片の両末端と相同配列であり、RAにより4つの断片が連結環状化され、全長183 kbのDNAが形成される(図7)。
 lacZアダプターは、pPKOZを鋳型にプライマーSUE175及びSUE1823を用いてPCRを行い調製した。
 Amアダプターは、pUC4Kプラスミド(GE Healthcare)を鋳型にプライマーSUE1753とSUE1822を用いてPCRを行い調製した。
 連結環状化ののち、以下のようにRCR増幅反応を行った。RCR反応液 ver.2(混合物の合計が4.5μLとなるように添加)、100 nM gRNA_Km、100 nM gRNA_007、及び2 nM Cas9を混合し、30℃で30分間プレインキューベートした。なお、反応液中のgRNA_Km、gRNA_007、及びCas9の濃度は、反応液の総容積に対する濃度である。CRISPR-Cas9の非存在下で反応を行う場合には、100 nM gRNA_Km、100 nM gRNA_007、及び2 nM Cas9を添加せず、その分RCR反応液 ver.2を加えた。次いで、RA反応産物 0.5 μLを加え、37℃で1分間インキュベート及び24℃で30分間インキュベートのサイクルを40回行い、R8バッファーで5倍希釈して30℃で30分間さらにインキュベートした。RCR産物1 μL分を0.5%アガロースゲル電気泳動に供し、SYBR Green I染色により検出した。
 また、RCR産物を大腸菌に形質転換し、コロニーの青白判定を行うことにより、RCR産物中の目的連結産物の割合を調べた。RCR産物1 μLをTEバッファーで10倍希釈し、そのうち2 μLを用いて、エレクトロポレーション法により大腸菌HST08株を形質転換した。形質転換後の大腸菌を、LBプレートの総容積に対して、12.5 μg/mLクロラムフェニコール、0.1 mM IPTG、40 μg/mL X-galを含むLBプレート上に播き、37℃で一晩培養した。全コロニー数に対する青コロニーの数の割合を計数した(Blue colony)。
 結果を図8に示す。gRNA及びCas9の非存在下でRCRを行った場合、改変前の94 kb及び85 kbのスーパーコイルDNAが主に増幅した。それに対し、gRNA及びCas9の存在下でRCRを行った場合、94 kb及び85 kbのDNA増幅は抑制され、コントロールとしてRCR増幅した205 kbスーパーコイルDNA(pMSR227)に近いサイズのDNA増幅が見られた。なお、図中、「Input」は、RCR増幅前のサンプルを示す。
 この増幅産物を用いて大腸菌を形質転換し、クロラムフェニコール耐性コロニーのうちlacZ遺伝子を有するコロニーを青白判定により検出した結果、21コロニー全てが目的の青コロニーであった(図中、「Blue colony on Cm plate」)。
 得られた青コロニーを8個選び、そこからプラスミドを抽出し、アガロースゲル電気泳動によりサイズを確認したところ、その全てが予想された205kbスーパーコイルDNAに近いサイズであった(図9)。
 さらに、得られたプラスミドの1つ(pOri183と命名した)を、制限酵素SacIで切断し、パルスフィールドゲル電気泳動を行うことにより、その構造を確認した(図10)。塩基配列から予想された切断パターン(バンドの右に示したサイズ)とほぼ一致する結果が得られた。なお、サイズマーカーとして、Ladder markerだけでなく、構造が既知のpMSR227のスーパーコイル(SC)産物及びそのXhoI切断産物も、同時に泳動を行なった。
[実施例4]RCRと共役した塩基置換導入法の構築
 まず、オリゴDNAを用いた塩基置換導入法をRCRに適用し得るかを調べた。
 実験系を図11B及び12に示す。lacZ変異pPKOZ(pPKOZins及びpPKOZmis;図11A)は、pPKOZ(8.8 kb)を鋳型として、QuikChange PCR法により調製した。
 pPKOZinsの調製には、SUE818及びSUE819をプライマーとして用いた。pPKOZinsは、lacZのコード領域に一塩基の挿入を有するプラスミドである(図12)。フレームシフト変異により野生型lacZが発現しないため、pPKOZinsで形質転換された大腸菌のコロニーは、青白判定において青色を呈しない(図11B)。
 pPKOZmisの調製には、SUE1415及びSUE1416をプライマーとして用いた。pPKOZmisは、lacZのコード領域に一塩基の置換を有するプラスミドである(図12)。ナンセンス変異により野生型lacZが発現しないため、pPKOZmisで形質転換された大腸菌のコロニーは、青白判定において青色を呈しない(図11B)。
 これらの変異型lacZを野生型に戻すためのオリゴDNAとして、SUE1354~SUE1357を用いた。
Figure JPOXMLDOC01-appb-T000003
 lacZフレームシフト変異を持つpPKOZinsを鋳型として、以下のように、20~60merの改変用オリゴDNAの存在下でRCR反応を行なった。RCR反応液 ver.1(下記組成、なお、RCR反応液 ver.1中の各成分の濃度は、RCR反応液 ver.1の総容積に対する濃度である。;混合物の合計が5 μLとなるように添加)、1又は3 μM改変用オリゴDNA(20~60 mer)、及び75 pg/μL pPKOZinsを混合し、30℃で18時間インキュベートした。なお、反応液中の各成分の濃度は、反応液の総容積に対する濃度である。RCR産物1 μL分を0.5%アガロースゲル電気泳動に供し、SYBR Green I染色により検出した。
Figure JPOXMLDOC01-appb-T000004
 RCR 反応液 ver.1の各成分は、RCR 反応液 ver.2のものと同じである。
 また、RCR産物を大腸菌に形質転換し、コロニーの青白判定を行うことにより、RCR産物中のlacZ変異が野生型に改変されたものの割合を調べた。RCR産物0.25μLを用いて、ケミカル法により大腸菌DH5α株を形質転換した。形質転換後の大腸菌を、25 μg/mLカナマイシン、0.1 mM IPTG、40 μg/mL X-galを含むLBプレート上に播き、37℃で一晩培養した。全コロニー数に対する青コロニーの数を計数した。
 結果を図13A及び図13Bに示す。40mer又は60merの改変用オリゴDNAを3 μM加えた場合を除き、十分な増幅が見られた(図13A)。図中、「Input」は、鋳型DNAを3.8 ng流した。
 また大腸菌形質転換コロニーの青白判定を行なったところ、60merの改変用オリゴを1 μM加えたサンプルにおいて最も高い5.5%の効率で、lacZ変異が野生型に改変されたことが確認された(図13B)。
[実施例5]オリゴDNA 60merで濃度検討(ins/mis)
 改変効率を改善するため、オリゴDNAの使用濃度の検討を行った。
 以下の方法により、pPKOZins又はpPKOZmisを鋳型として、異なる濃度の60merの改変用オリゴDNAの存在下で、RCR反応を行なった。RCR反応液 ver.1(混合物の合計が5μLとなるように添加)、0~3 μM 60 mer 改変用オリゴDNA(SUE1357)、75 pg/μL pPKOZins又は14 pg/μL pPKOZmisを混合し、30℃で19時間インキュベートした。RCR産物1μL分を0.5%アガロースゲル電気泳動に供し、SYBR Green I染色により検出した。
 また、RCR産物を大腸菌に形質転換し、コロニーの青白判定を行うことにより、RCR産物中のlacZ変異が野生型に改変されたものの割合を調べた。RCR産物0.25μLを用いて、ケミカル法により大腸菌DH5α株を形質転換した。形質転換後の大腸菌を、LBプレートの総容積に対して、25 μg/mLカナマイシン、0.1 mM IPTG、40 μg/mL X-galを含むLBプレート上に播き、37℃で一晩培養した。全コロニー数に対する青コロニーの数を計数した。
 結果を図14A及び図14Bに示す。図14A中、「Input」は、pPKOZinsを3.8 ng、pPKOZmisを0.72 ng流した。大腸菌形質転換コロニーの青白判定の結果、pPKOZins又はpPKOZmisのどちらについても、0.3 μMの改変用オリゴDNAを加えたサンプルにおいて最も高い20%以上の効率で、lacZ変異が野生型に改変されたことが確認された(図14B)。
[実施例6]CRISPR-Cas9を用いたROGEの効率化
 実施例5と同様の実験系において、CRISPR-Cas9の存在下でRCRを行うことにより、lacZ変異が野生型に改変される効率を高められるか検討した。
 以下のように、pPKOZinsを鋳型として、0.3 μMの60 merの改変用オリゴDNAの存在下で、RCR反応を行なった。RCR反応液 ver.1(混合物の合計が5 μLとなるように添加)、0.3 μM 60 mer 改変用オリゴDNA(SUE1357)、0~20 nM Cas9、100 nM gRNA_Zins(IDT社Alt-R(登録商標) CRISPR-Cas9 Systemに従って調製したガイドRNA;認識配列:ACCAUGAUUACGGAUUCACU(配列番号20)、7.5 fg/μL pPKOZinsを混合し、30℃で21時間インキュベートした。なお、反応液中の各成分の濃度は、反応液の総容積に対する濃度である。R8バッファーで5倍希釈して30℃で30分間さらにインキュベートした。RCR産物2.5 μL分を0.5%アガロースゲル電気泳動に供し、SYBR Green I染色により検出した。
 ここで、gRNA_Zinsは、改変前のlacZins配列を特異的に認識するガイドRNAである。
 また、RCR産物を大腸菌に形質転換し、コロニーの青白判定を行うことにより、RCR産物中のlacZ変異が野生型に改変されたものの割合を調べた。RCR産物0.25μLを用いて、ケミカル法により大腸菌DH5α株を形質転換した。形質転換後の大腸菌を、LBプレートの総容積に対して、25 μg/mLカナマイシン、0.1 mM IPTG、40 μg/mL X-galを含むLBプレート上に播き、37℃で一晩培養した。全コロニー数に対する青コロニーの数を計数した。
 結果を図15A及び図15Bに示す。改変用オリゴDNAの非存在下では、Cas9及びgRNA_Zinsの両方の添加によって、RCRによるスーパーコイルDNAの増幅が顕著に抑制された(図15A)。それに対し、改変用オリゴDNAの存在下では、CRISPR-Cas9を添加しても、増幅されるスーパーコイルDNA産物が検出された(図15A)。また形質転換コロニーの青白判定の結果、Cas9及びgRNA_Zinsの添加によって、改変用オリゴDNAの存在下では、ほぼ全ての増幅産物がlacZ野生型に改変されたことが確認された(図15B)。
[実施例7]長鎖DNA ROGE
 実施例5と同様の実験系において、オリゴDNAを用いた塩基置換導入法を長鎖DNAのRCRに適用し得るか検討した。
 以下のように、lacZins変異を持つ101 kbのoriC含有環状DNA(pOri93Zins)(図16A)を鋳型として、RCR反応を行った。RCR反応液 ver.1(混合物の合計が5μLとなるように添加)、0~3 μM 60 mer 改変用オリゴDNA(SUE1357)、3 ng/μL lambda DNA、0.67 pM pOri93Zinsを混合し、33℃で18時間インキュベートしたのち、R8バッファーで5倍希釈して30℃で30分間さらにインキュベートした。なお、反応液中の各成分の濃度は、反応液の総容積に対する濃度である。RCR産物2.5 μL分を0.5%アガロースゲル電気泳動に供し、SYBR Green I染色により検出した。
 ここで、pOri93Zinsは、以下の方法により調製した。大腸菌株(DGF-298WΔ100::revΔ234::SC)のゲノムDNAのXbaI消化物のうち、93 kbのゲノム断片を、oriC、カナマイシン耐性遺伝子及びlacZins変異遺伝子を含む連結用断片(KOZins断片)とRAにより連結させて環状化した。KOZins断片(8.6 kb)は、pKOZinsを鋳型としてプライマーSUE1745とSUE1746を用いたPCRによって調製した。KOZins断片の両末端の配列は、それぞれ93 kbのゲノム断片の両末端と相同配列である。RA後の環状DNAをRCRにより増幅させた後、大腸菌に形質転換し、得られた大腸菌コロニーから精製したスーパーコイルプラスミドをpOri93Zinsとした。
Figure JPOXMLDOC01-appb-T000005
 また、RCR産物を大腸菌に形質転換し、コロニーの青白判定を行うことにより、RCR産物中のlacZ変異が野生型に改変されたものの割合を調べた。RCR産物0.2 μL分を用いて、エレクトロポレーション法により大腸菌HST08株を形質転換した。形質転換後の大腸菌を、LBプレートの総容積に対して、25 μg/mLカナマイシン、0.1 mM IPTG、40 μg/mL X-galを含むLBプレート上に播き、37℃で一晩培養した。全コロニー数に対する青コロニーの数を計数した。
 結果を図16B及び図16Cに示す。改変用オリゴDNAの濃度が1 μM以上の場合、増幅反応の阻害が認められた(図16B)。なお、図16B中、「Input」は、鋳型DNA 0.02 ngを流した。
 また形質転換コロニーの青白判定の結果、0.3 μMの改変用オリゴDNAの存在下で、増幅産物の5.4%においてlacZins変異がlacZ野生型に改変されたことが示された(図16C)。
[実施例8]CRISPR-Cas9を用いた長鎖DNA ROGEの効率化
 実施例6と同様の実験系において、CRISPR-Cas9による改変効率の上昇が長鎖DNAのRCRに適用し得るか検討した。
 不要な直鎖状DNAを除く処理をしたpOri93Zins環状DNAを鋳型として、以下のように、0.3 μMの60merの改変用オリゴDNAの存在下で、RCR反応を行なった。
RCR反応液 ver.1(混合物の合計が5μLとなるように添加)、0.3 μM 60 mer 改変用オリゴDNA(SUE1357)、3 ng/μL lambda DNA、10 nM Cas9、100 nM gRNA_Zins(IDT社Alt-R(登録商標) CRISPR-Cas9 Systemに従って調製したガイドRNA;認識配列:ACCAUGAUUACGGAUUCACU(配列番号20)、1 pM pOri93Zinsを混合した。なお、反応液中の各成分の濃度は、反応液の総容積に対する濃度である。次いで、37℃ 1分間→24℃ 30分間の温度サイクルで40サイクルインキュベートした後、R8バッファーで5倍希釈して30℃で30分間さらにインキュベートした。RCR産物2.5 μL分を0.5%アガロースゲル電気泳動に供し、SYBR Green I染色により検出した。
 また、RCR産物を大腸菌に形質転換し、コロニーの青白判定を行うことにより、RCR産物中のlacZ変異が野生型に改変されたものの割合を調べた。RCR産物0.2 μL分を用いて、エレクトロポレーション法により大腸菌HST08株を形質転換した。形質転換後の大腸菌を、25 μg/mLカナマイシン、LBプレートの総容積に対して、0.1 mM IPTG、40 μg/mL X-galを含むLBプレート上に播き、37℃で一晩培養した。全コロニー数に対する青コロニーの数を計数した。
 結果を図17A及び図17Bに示す。改変用オリゴDNAの非存在下では、Cas9及びgRNA_Zinsの両方の添加によって、RCRによるスーパーコイルDNAの増幅が顕著に抑制された(図17A)。それに対し、改変用オリゴDNAの存在下では、CRISPR-Cas9を添加しても、増幅されるスーパーコイルDNA産物が検出された(図17A)。
 また形質転換コロニーの青白判定の結果、Cas9及びgRNA_Zinsの添加によって、改変用オリゴDNAの存在下では、ほぼ全ての増幅産物がlacZ野生型に改変されたことが確認された(図17B)。
[実施例9]複数塩基置換及び挿入
 実施例5と同様の実験系において、改変用オリゴDNAを用いて、複数の塩基を置換又は挿入が可能か検討した。
 複数塩基置換では、pPKOZinsを鋳型とし、3塩基置換により同義コドンとなる改変用オリゴDNAを用いた。pPKOZinsはlacZのコード領域への一塩基の挿入によりフレームシフト変異を持ち、大腸菌コロニーは白色を呈す。改変用オリゴの3塩基置換部位近傍には、この1塩基挿入を野生型の配列に戻す配列を含んでいる。改変によって野生型(青色大腸菌コロニー)となったプラスミドは、同時に3塩基置換が導入されていると予想される(図18A)。
 一方で、複数塩基挿入では、pPKOZを鋳型とし、4塩基挿入によりEcoRI認識配列が生じる改変用オリゴを用いた(図18B)。4塩基挿入によりフレームシフト変異が導かれ、lacZ遺伝子が合成されないため、大腸菌のコロニーは、白色を呈すと予想される。なお、pPKOZはすでに1箇所のEcoRIサイトを持つため(図18F)、4塩基挿入によりプラスミドはEcoRIサイトを2箇所持つようになる(図18G)。
 pPKOZins又はpPKOZを鋳型として、以下のように異なる濃度の改変用オリゴDNAの存在下でRCR反応を行なった。RCR反応液 ver.1(混合物の合計が5 μLとなるように添加)、0 μM~0.6 μM 60 mer改変用オリゴDNA(SUE4386又はSUE4387)、50 pg/μL pPKOZins又はpPKOZを混合した。なお、反応液中の各成分の濃度は、反応液の総容積に対する濃度である。次いで、反応液を33℃で18時間インキュベートした後、R8バッファーで5倍希釈して30℃で30分間さらにインキュベートした。RCR産物2.5 μL分を0.5%アガロースゲル電気泳動に供し、SYBR Green I染色により検出した。
Figure JPOXMLDOC01-appb-T000006
 また、RCR産物を大腸菌に形質転換し、コロニーの青白判定を行うことにより、pPKOZinsを用いた場合には青コロニーの割合、pPKOZを用いた場合には白コロニーの割合を調べた。RCR産物0.25 μLを用いて、ケミカル法により大腸菌DH5α株を形質転換した。形質転換後の大腸菌を、LBプレートの総容積に対して、25 μg/mLカナマイシン、0.1 mM IPTG、40 μg/mL X-galを含むLBプレート上に播き、37℃で一晩培養した。全コロニー数に対する青コロニー又は白コロニーの数を計数した。
 結果を図18C、図18D及び図18Eに示す。大腸菌形質転換コロニーの青白判定の結果、pPKOZins又はpPKOZのどちらについても、0.3 μMの改変用オリゴDNAを加えたサンプルにおいて、最も高い効率(それぞれ7.3 %、3.6 %)で、lacZが改変されたことが確認された(図18D及び図18E)。
 実際に目的の配列に改変されているか確認するために、pPKOZinsを鋳型とした改変実験における青コロニーから得られたプラスミド4つを、シークエンス解析を行ったところ、全てに目的の3塩基置換が導入されていた。
 また、pPKOZを鋳型とした4塩基挿入実験における白コロニーから得られたプラスミド7つに対して以下のような制限酵素処理により4塩基挿入を確認した。10×H buffer(混合物の合計が20 μLとなるように添加)、0.75 U/μL EcoRI、プラスミドそれぞれ2 μLを混合し、37℃で1時間インキュベートした。未改変と想定される青コロニーから得られたプラスミドについても同様の制限酵素処理を行った。制限酵素処理産物4 μL分を0.5%アガロースゲル電気泳動に供し、SYBR Green I染色により検出した。
 結果を図18Hに示す。制限酵素処理を行った7つの改変プラスミド全てにおいて、予想通り2箇所切断による2断片が検出され、目的の4塩基挿入配列に改変されていたことを確認した。未改変のプラスミド(wt)では、1箇所切断のみが検出された(図18H)。
[実施例10]複数箇所同時塩基置換
 ビオラセインの生合成経路を利用して以下のような試験を行なった。ビオラセインは、5つの遺伝子産物(vioA、vioB、vioC、vioD、vioE)を利用してトリプトファンを元に生産される二次代謝産物である。大腸菌内で、5つの遺伝子が全ての機能が揃った場合にコロニーは紫色を呈する(図19B)。vioC欠損ではビオラセイン生合成中間産物までが産生されコロニーは黒褐色を呈する(図19B)。また、vioA欠損又はvioA, vioC二重欠損では色を呈する産物は合成されずコロニーは白色のままである(図19B)。このようなコロニー色の変化を利用し、vioA, vioC二重欠損変異プラスミドについて、vioA及びvioCの2箇所の離れた領域を同時塩基置換することにより、vioA, vioC野生型プラスミドへと戻せるかを、紫色コロニー出現を指標に検出を試みた。
 使用するプラスミドpK3OV_insACは、vioA及びvioCのコード領域にそれぞれ一塩基の挿入を有する(図19A)。このpK3OV_insACは、pK3OVを鋳型とし、RCR反応と共役した1塩基挿入を2回連続して実施することにより調製した。1回目はオリゴDNA としてSUE4384(配列番号64)を用いてvioCに1塩基挿入を行い、生じた黒褐色コロニーからプラスミドpK3OV_insCを調製、続いて2回目は、pK3OV_insCを鋳型に、SUE4579(配列番号63)を用いてvioAに1塩基挿入を導入し、生じた白色コロニーからプラスミドpK3OV_insACを調製した。フレームシフト変異によりvioA及びvioCが発現しないため、pK3OV_insACで形質転換された大腸菌のコロニーは白色であり、色は呈しない。
 pK3OVはpETM6-vioABECD(Jones et al., Sci. Rep. (2015)5,11301)のvioABECD遺伝子をコードするDNA領域を、配列番号67で示すoriC、カナマイシン耐性遺伝子、及びLacIを含む3.5 kbのDNA断片とRA反応によって連結環状化することによって調製した。
 この変異型vioA及びvioCを野生型に戻すオリゴDNAとして、SUE4577(配列番号65)及びSUE4381(配列番号66)を用いた(図19C及び図19D)。
 vioA及びvioCにフレームシフト変異を持つpK3OV_insACを鋳型として、以下のようにRCR反応を行なった。RCR反応液 ver.1(混合物の合計が5 μLとなるように添加)、0.15 μM 60 mer 改変用オリゴDNA(SUE4577及びSUE4381)、並びに50 pg/μL pK3OV_insACを混合し、33℃で6時間、12時間又は18時間インキュベートした。なお、反応液中の各成分の濃度は、反応液の総容積に対する濃度である。
Figure JPOXMLDOC01-appb-T000007
 その後、RCR産物を大腸菌に形質転換し、コロニーの色判定を行うことにより、RCR産物中のvioA及びvioC変異が野生型に改変されたものの割合を調べた。RCR産物1 μLを直接用いて、ケミカル法により大腸菌BL21 Star(DE3)株(Thermo Fisher Scientific社)を形質転換した。形質転換後の大腸菌を、LBプレートの総容積に対して、25 μg/mLカナマイシン、及び10 μM IPTGを含むLBプレート上に播き、30℃で一晩培養した。全コロニー数に対する紫コロニーの数を計数した。
 結果を図19Eに示す。各時間でのRCR産物による大腸菌形質転換の結果、0.3%~0.7%ほどの効率で、紫色のコロニーが検出された。このことから、vioA変異及びvioC変異の2箇所が同時に野生型に改変されたことが確認された(図19E)。
 本実施形態の方法によれば、細胞を用いることなくDNA編集産物、特に長鎖DNA編集産物を増幅させる方法などを提供することができる。
配列番号1:gRNA_Km
配列番号2:gRNA_007
配列番号3:SUE1510
配列番号4:SUE1511
配列番号5:SUE1638
配列番号6:SUE1639
配列番号7:SUE1753
配列番号8:SUE1756
配列番号9:SUE1822
配列番号10:SUE1823
配列番号11:Cm-oriC断片
配列番号12:SUE818
配列番号13:SUE819
配列番号14:SUE1415
配列番号15:SUE1416
配列番号16:SUE1354
配列番号17:SUE1355
配列番号18:SUE1356
配列番号19:SUE1357
配列番号20:gRNA_Zins
配列番号21:SUE1745
配列番号22:SUE1746
配列番号23:ter配列(コンセンサス)
配列番号24:ter配列(コンセンサス)
配列番号25:ter配列(terA, B, D, E, 又はH)
配列番号26:ter配列(terA, B, D, E, 又はH)
配列番号27:ter配列(terC)
配列番号28:ter配列(terF)
配列番号29:ter配列(terG)
配列番号30:ter配列(terI)
配列番号31:ter配列(tarJ)
配列番号32:ter配列(バチルス、コンセンサス)
配列番号33:ter配列(枯草菌、コンセンサス)
配列番号34:ter配列(枯草菌、コンセンサス)
配列番号35:ter配列(terVII)
配列番号36:ter配列(terIX)
配列番号37:XerCDにより認識される配列(コンセンサス)
配列番号38:XerCDにより認識される配列(コンセンサス、dif及びcer)
配列番号39:XerCDにより認識される配列(コンセンサス、dif及びpsi)
配列番号40:XerCDにより認識される配列(コンセンサス、cer及びpsi)
配列番号41:dif配列
配列番号42:cer配列
配列番号43:psi配列
配列番号44:dif配列
配列番号45:cer配列
配列番号46:psi配列
配列番号47:loxPコンセンサス配列
配列番号48:lox511配列
配列番号49:lox2272配列
配列番号50:loxFAS配列
配列番号51:lox RE配列
配列番号52:lox LE配列
配列番号53:FRT配列
配列番号54:rox配列
配列番号55:Outside End(OE)配列
配列番号56:SUE4386
配列番号57:SUE4387
配列番号58:lacZ wtの開始コドンの下流の部分配列
配列番号59:lacZ insの開始コドンの下流の部分配列
配列番号60:lacZ misの開始コドンの下流の部分配列
配列番号61:pPKOZinsの開始コドン付近の部分配列
配列番号62:pPKOZの開始コドン付近の部分配列
配列番号63:SUE4579
配列番号64:SUE4384
配列番号65:SUE4577
配列番号66:SUE4381
配列番号67:pK3OV作製用DNA断片(3.5 kb)
配列番号68:vioA ins
配列番号69:vioC ins

Claims (14)

  1.  無細胞系でDNAを編集する方法であって、以下の工程:
     (1)無細胞系において、DNAの標的部位に欠失、置換、又は付加を導入する工程;及び
     (2)工程(1)において欠失、置換、又は付加が導入されたDNAを、無細胞系において増幅させる工程、ここで当該DNAは、20℃~80℃の範囲の温度でインキュベートする温度条件下で増幅される;
    を含む、前記方法。
  2.  無細胞系でDNAを編集する方法であって、以下の工程:
     (1)無細胞系において、DNAの標的部位に欠失、置換、又は付加を導入する工程;及び
     (2)工程(1)において欠失、置換、又は付加が導入されたDNAを、無細胞系において増幅させる工程、ここで当該DNAは、等温でインキュベートするか、又は65℃以下の2つの温度でのインキュベーションを繰り返す温度サイクル下でインキュベートする温度条件下で増幅される;
    を含む、請求項1に記載の前記方法。
  3.  無細胞系でDNAを編集する方法であって、以下の工程:
     (1)無細胞系において、DNAの標的部位に欠失、置換、又は付加を導入する工程;及び
     (2)工程(1)において欠失、置換、又は付加が導入されたDNAを、無細胞系において増幅させる工程、ここで当該DNAは、20℃~80℃の範囲に含まれる一定の温度でインキュベートするか、又は65℃以下の2つの温度でのインキュベーションを繰り返す温度サイクル下でインキュベートする温度条件下で増幅される;
    を含む、請求項1又は2に記載の前記方法。
  4.  工程(2)を、欠失、置換、又は付加が導入されていないDNAを特異的に切断する人工DNA切断酵素の存在下で行う、請求項1~3のいずれか一項に記載の方法。
  5.  人工DNA切断酵素が、人工ヌクレアーゼ又はRNA誘導型ヌクレアーゼである、請求項4に記載の方法。
  6.  人工DNA切断酵素が、CRISPR-Cas9である、請求項4に記載の方法。
  7.  DNAが、環状DNAである、請求項1~6のいずれか一項に記載の方法。
  8.  工程(2)が、以下の工程:
     (2-1)(a)環状DNAの複製を触媒する第一の酵素群、(b)岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群、及び(c)2つの姉妹環状DNAの分離反応を触媒する第三の酵素群を含む反応溶液と、工程(1)において欠失、置換、又は付加が導入された環状DNAとの反応混合物を調製する工程;並びに
     (2-2)工程(2-1)において調製した反応混合物を、20℃~80℃の範囲に含まれる一定の温度でインキュベートするか、又は65℃以下の2つの温度でのインキュベーションを繰り返す温度サイクル下でインキュベートする工程;
    を含む、請求項7に記載の方法。
  9.  環状DNAが、DnaA活性を有する酵素と結合可能な複製開始配列を含む、請求項8に記載の方法。
  10.  工程(2)において、環状DNAが、ローリングサークル増幅によって増幅される、請求項7に記載の方法。
  11.  工程(1)が、以下の工程:
     (1-1)人工DNA切断酵素をDNAに作用させることにより、当該DNAを標的部位で切断し、少なくとも一つの直鎖DNAを調製する工程;
     (1-2)工程(1-1)で調製された直鎖DNA、1種類以上のDNA断片、及びRecAファミリー組換え酵素活性をもつ蛋白質を含む反応溶液を調製する工程;並びに
     (1-3)当該直鎖DNAと当該1種類以上のDNA断片とを、塩基配列が相同である領域同士又は塩基配列が相補的である領域同士において互いに連結させ、鋳型DNAの標的部位に当該1種類以上のDNA断片が挿入されたDNAを形成させる工程;
    を含む、請求項1~10のいずれか一項に記載の方法。
  12.  工程(1)が、以下の工程:
     欠失、置換、又は付加の導入用一本鎖DNAの存在下で、DNAの複製反応を行う工程、ここで当該一本鎖DNAは、複製反応の条件下で当該DNAの標的部位にハイブリダイズし得る;
    を含む、請求項1~10のいずれか一項に記載の方法。
  13.  工程(2)において、DNAが、30℃以上でのインキュベーション及び27℃以下でのインキュベーションを繰り返す温度サイクル下でインキュベートする温度条件下で増幅される、請求項1~12のいずれか一項に記載の方法。
  14.  欠失、置換、又は付加が導入されたDNAのサイズが、50 kb以上である、請求項1~13のいずれか一項に記載の方法。
PCT/JP2019/029793 2018-07-30 2019-07-30 無細胞系でdnaを編集する方法 WO2020027110A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA3106822A CA3106822C (en) 2018-07-30 2019-07-30 Method for editing dna in cell-free system
RU2021101688A RU2766717C1 (ru) 2018-07-30 2019-07-30 Способ редактирования днк в бесклеточной системе
JP2020534660A JP7025552B2 (ja) 2018-07-30 2019-07-30 無細胞系でdnaを編集する方法
EP19844229.5A EP3831941A4 (en) 2018-07-30 2019-07-30 METHOD FOR EDITING DNA IN AN ACELLULAR SYSTEM
BR112021001473-0A BR112021001473A2 (pt) 2018-07-30 2019-07-30 método para edição de dna num sistema livre de células
CN201980047136.9A CN112424351B (zh) 2018-07-30 2019-07-30 在无细胞体系中对dna进行编辑的方法
SG11202100125WA SG11202100125WA (en) 2018-07-30 2019-07-30 Method for editing dna in cell-free system
KR1020217001327A KR102520700B1 (ko) 2018-07-30 2019-07-30 무세포계에서 dna를 편집하는 방법
US17/260,071 US20210277385A1 (en) 2018-07-30 2019-07-30 Method for editing dna in cell-free system
AU2019315179A AU2019315179B2 (en) 2018-07-30 2019-07-30 Method for editing dna in cell-free system
IL280203A IL280203A (en) 2018-07-30 2021-01-14 A method for editing DNA in a cell-free system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018142274 2018-07-30
JP2018-142274 2018-07-30

Publications (1)

Publication Number Publication Date
WO2020027110A1 true WO2020027110A1 (ja) 2020-02-06

Family

ID=69231782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029793 WO2020027110A1 (ja) 2018-07-30 2019-07-30 無細胞系でdnaを編集する方法

Country Status (12)

Country Link
US (1) US20210277385A1 (ja)
EP (1) EP3831941A4 (ja)
JP (1) JP7025552B2 (ja)
KR (1) KR102520700B1 (ja)
CN (1) CN112424351B (ja)
AU (1) AU2019315179B2 (ja)
BR (1) BR112021001473A2 (ja)
CA (1) CA3106822C (ja)
IL (1) IL280203A (ja)
RU (1) RU2766717C1 (ja)
SG (1) SG11202100125WA (ja)
WO (1) WO2020027110A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194886A1 (en) * 2021-03-15 2022-09-22 Countagen Ab Methods and uses for determining the efficiency of genetic-editing procedures
WO2023038145A1 (ja) * 2021-09-13 2023-03-16 オリシロジェノミクス株式会社 環状dnaの製造方法
WO2023140325A1 (ja) * 2022-01-19 2023-07-27 オリシロジェノミクス株式会社 機能性dnaカセット及びプラスミド

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7065260B2 (ja) 2019-04-04 2022-05-11 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 標的化ベクターへの標的化改変の瘢痕のない導入のための方法
US11990184B2 (en) * 2020-09-24 2024-05-21 Seagate Technology Llc DNA backbone editing for DNA data storage
CN112301020B (zh) * 2020-10-19 2024-04-12 复旦大学附属肿瘤医院 Iii类脱氧核酶突变体及其制备方法与应用
CN117801056A (zh) * 2023-06-29 2024-04-02 北京百普赛斯生物科技股份有限公司 一种从溶液中纯化目标蛋白的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070037196A1 (en) * 2005-08-11 2007-02-15 The J. Craig Venter Institute, Inc. Method for in vitro recombination
US7575860B2 (en) 2000-03-07 2009-08-18 Evans David H DNA joining method
US8968999B2 (en) 2008-02-15 2015-03-03 Synthetic Genomics, Inc. Methods for in vitro joining and combinatorial assembly of nucleic acid molecules
WO2015058008A2 (en) * 2013-10-18 2015-04-23 California Institute Of Technology Enhanced nucleic acid identification and detection
WO2016013592A1 (ja) 2014-07-24 2016-01-28 国立研究開発法人理化学研究所 改変型の耐熱性RecAタンパク質、該タンパク質をコードする核酸分子、該タンパク質を用いた核酸の増幅方法、及び核酸増幅用キット
JP2016077180A (ja) * 2014-10-10 2016-05-16 国立研究開発法人理化学研究所 RecA組換え酵素および組換え活性をもつ蛋白質を用いた直鎖二重鎖DNA多量体形成技術
WO2016080424A1 (ja) 2014-11-18 2016-05-26 国立研究開発法人 科学技術振興機構 環状dnaの増幅方法
WO2017123921A1 (en) * 2016-01-13 2017-07-20 The Trustees Of The University Of Pennsylvania Multiple stage isothermal enzymatic amplification
WO2017199991A1 (ja) 2016-05-17 2017-11-23 国立研究開発法人 科学技術振興機構 環状dnaの増幅方法
WO2018159669A1 (ja) 2017-02-28 2018-09-07 国立研究開発法人 科学技術振興機構 環状dnaの複製または増幅方法
JP2018142274A (ja) 2017-02-28 2018-09-13 キヤノン株式会社 情報処理装置とその制御方法、及びプログラム
WO2019009361A1 (ja) 2017-07-05 2019-01-10 国立研究開発法人科学技術振興機構 Dnaの産生方法及びdna断片連結用キット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279313B2 (en) * 1995-09-15 2007-10-09 Centelion Circular DNA molecule having a conditional origin of replication, process for their preparation and their use in gene therapy
EP1114184A2 (en) * 1998-09-15 2001-07-11 Yale University Molecular cloning using rolling circle amplification
IE20000887A1 (en) * 2000-11-03 2002-12-11 Univ College Cork Nat Univ Ie Method for the amplification and optional characterisation of nucleic acids
EP1362114B1 (en) * 2001-02-08 2012-05-09 HER MAJESTY THE QUEEN IN RIGHT OF CANADA, as represented by the Minister of Agriculture and Agri-Food Replicative in vivo gene targeting
DK1885880T3 (da) * 2005-04-29 2010-11-08 Synthetic Genomics Inc Amplifikation og kloning af enkelte DNA-molekyler ved anvendelse af rolling circle-amplifikation
IL267470B2 (en) * 2017-01-10 2023-10-01 F O R E Biotherapeutics Ltd Methods for in vitro site-directed mutagenesis using gene editing technologies

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575860B2 (en) 2000-03-07 2009-08-18 Evans David H DNA joining method
US20070037196A1 (en) * 2005-08-11 2007-02-15 The J. Craig Venter Institute, Inc. Method for in vitro recombination
US7776532B2 (en) 2005-08-11 2010-08-17 Synthetic Genomics, Inc. Method for in vitro recombination
US8968999B2 (en) 2008-02-15 2015-03-03 Synthetic Genomics, Inc. Methods for in vitro joining and combinatorial assembly of nucleic acid molecules
WO2015058008A2 (en) * 2013-10-18 2015-04-23 California Institute Of Technology Enhanced nucleic acid identification and detection
WO2016013592A1 (ja) 2014-07-24 2016-01-28 国立研究開発法人理化学研究所 改変型の耐熱性RecAタンパク質、該タンパク質をコードする核酸分子、該タンパク質を用いた核酸の増幅方法、及び核酸増幅用キット
JP2016077180A (ja) * 2014-10-10 2016-05-16 国立研究開発法人理化学研究所 RecA組換え酵素および組換え活性をもつ蛋白質を用いた直鎖二重鎖DNA多量体形成技術
WO2016080424A1 (ja) 2014-11-18 2016-05-26 国立研究開発法人 科学技術振興機構 環状dnaの増幅方法
WO2017123921A1 (en) * 2016-01-13 2017-07-20 The Trustees Of The University Of Pennsylvania Multiple stage isothermal enzymatic amplification
WO2017199991A1 (ja) 2016-05-17 2017-11-23 国立研究開発法人 科学技術振興機構 環状dnaの増幅方法
WO2018159669A1 (ja) 2017-02-28 2018-09-07 国立研究開発法人 科学技術振興機構 環状dnaの複製または増幅方法
JP2018142274A (ja) 2017-02-28 2018-09-13 キヤノン株式会社 情報処理装置とその制御方法、及びプログラム
WO2019009361A1 (ja) 2017-07-05 2019-01-10 国立研究開発法人科学技術振興機構 Dnaの産生方法及びdna断片連結用キット

Non-Patent Citations (45)

* Cited by examiner, † Cited by third party
Title
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 10
ANASTASSIADIS, K. ET AL., DIS. MODEL. MEEH., vol. 2, 2009, pages 508 - 515
ARAKI, H. ET AL., J. MOL. BIOL., vol. 182, no. 2, 1985, pages 191 - 203
ARAKI, K. ET AL., NUCLEIC ACIDS RES., vol. 25, no. 4, 1997, pages 868 - 872
ARCISZEWSKA, L. K. ET AL., J. MOL. BIOL., vol. 299, 2000, pages 391 - 403
CARROLL, D: "Genome Engineering with Targetable Nucleases", ANNUAL REVIEW OF BIOCHEMISTRY, vol. 83, 2014, pages 409 - 439, XP055251978, DOI: 10.1146/annurev-biochem-060713-035418
CELL, vol. 54, 1988, pages 915 - 918
COLLOMS ET AL., EMBO J., vol. 15, no. 5, 1996, pages 1172 - 1181
DATSENKO, K.A.WANNER, B.L.: "One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 97, 2000, pages 6640 - 6645, XP002210218, DOI: 10.1073/pnas.120163297
DEAN, F.B.NELSON, J.R.GIESLER, T.L.LASKEN, R.S., GENOME RES, vol. 11, no. 6, 2001, pages 1095 - 1099
ELLIS, H.M.YU, D.DITIZIO, T.COURT, D.L.: "High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 98, 2001, pages 6742 - 6746, XP002329453, DOI: 10.1073/pnas.121164898
FIRE, A.XU, S.Q., PROC. NATL. ACAD. SCI., vol. 92, no. 10, 1995, pages 4641 - 4645
GLASGOW. A. C. ET AL., J. BIOL. CHEM., vol. 264, 1989, pages 10072 - 10082
GORYSHIN, I. Y.REZNIKOFF, W. S., J. BIOL. CHEM., vol. 273, 1998, pages 7367 - 7374
GRINDLEY N. D. F. ET AL., CELL, vol. 30, no. 1, 1982, pages 227 - 234
HIASA, H.MARIANS, K. J., J. BIOL. CHEM., vol. 269, 1994, pages 26959 - 26968
IP, S. C. Y. ET AL., EMBO J., vol. 22, 2003, pages 6399 - 6407
J. LIJ. MACDONALD, BIOSENSORS AND BIOELECTRONICS, vol. 64, 2015, pages 196 - 211
JIANG, WENJUN ET AL.: "Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters", NATURE COMMUNICATIONS, vol. 6, 2015, pages 8101, XP055213782 *
JONES ET AL., SCI. REP., vol. 5, 2015, pages 11301
KAGUNI J MKORNBERG A, CELL, vol. 38, 1984, pages 183 - 90
KAHMANN. R ET AL., CELL, vol. 41, 1985, pages 771 - 780
LEI, CHAO ET AL.: "The CCTL (Cpfl-assisted Cutting and Taq DNA ligase-assisted Ligation) method for efficient editing of large DNA constructs in vitro", NUCLEIC ACIDS RESEARCH, vol. 45, no. 9, pages 1 - 7, XP055684541 *
LIU, YUNKUN ET AL.: "In vitro CRISPR/Cas9 system for efficient targeted DNA editing", MBIO, vol. 6, no. 6, 2015, pages e01714-15, XP002764664 *
MOUGIAKOS, I.BOSMA, E.F.DE VOS, W.M.VAN KRANENBURG, R.VAN DER OOST, J.: "Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit", TRENDS IN BIOTECHNOLOGY, vol. 34, 2016, pages 575 - 587, XP029607922, DOI: 10.1016/j.tibtech.2016.02.004
MOUGIAKOS, I.BOSMA, E.F.GANGULY, J.VAN DER OOST, J.VAN KRANENBURG, R.: "Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects", CURRENT OPINION IN BIOTECHNOLOGY, vol. 50, 2018, pages 146 - 157, XP085372860, DOI: 10.1016/j.copbio.2018.01.002
NEYLON, C. ET AL., MICROBIOL. MOL. BIOL. REV., September 2005 (2005-09-01), pages 501 - 526
NOTOMI, T.OKAYAMA, H.MASUBUCHI, H.YONEKAWA, T.WATANABE, K.AMINO, N.HASE, T., NUCLEIC ACIDS RES, vol. 28, no. 12, 2000, pages E63
NUCLEIC ACIDS RESEARCH, vol. 35, no. 1, 2007, pages 143 - 151
PENG HMARIANS K J, PNAS, vol. 90, 1993, pages 8571 - 8575
PIEPENBURG, O.WILLIAMS, C.H.STEMPLE, D.L.ARMES, N.A., PLOS. BIOL., vol. 4, no. 7, 2006, pages e204
RONDA, C.PEDERSEN, L.E.SOMMER, M.O.A.NIELSEN, A.T.: "CRMAGE: CRISPR Optimized MAGE Recombineering", SCIENTIFIC REPORTS, vol. 6, 2016, pages 1 - 11
SANSBURY, BRETT M. ET AL: "CRISPR-Directed In Vitro Gene Editing of Plasmid DNA Catalyzed by Cpfl (Casl2a) Nuclease and a Mammalian Cell -Free Extrac t", THE CRISPR JOURNAL, vol. 1, no. 2, April 2018 (2018-04-01), pages 191 - 202, XP055684539 *
SIEGEL, R. W. ET AL., FEBS LETT., vol. 499, no. 1-2, 2001, pages 147 - 153
SMITH, M. C. ET AL., MOL. MICROBIOL., vol. 44, 2002, pages 299
SPITS, C.LE CAIGNEC, C.DE RYCKE, M.VAN HAUTE, L.VAN STEIRTEGHEM, A.LIEBAERS, 1.SERMON, K., NAT. PROTOC., vol. 1, no. 4, 2006, pages 1965 - 1970
SU 'ETSUGU, MASAYUKI ET AL.: "Exponential propagation of large circular DNA by reconstitution of a chromosome-replication cycle", NUCLEIC ACIDS RESEARCH, vol. 45, no. 20, 2017, pages 11525 - 11534, XP055458551, DOI: 10.1093/nar/gkx822 *
SU'ETSUGU ET AL., NUCLEIC ACIDS RES, vol. 45, no. 20, 16 November 2017 (2017-11-16), pages 11525 - 11534
TAWARAGI, AYAKO ET AL.: "Abstarct. 3P-0707: RCR-Based Oligo-mediated Genome Engineering", 41ST ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN *
VINCENT, M.XU, Y.KONG, H., EMBO REP, vol. 5, no. 8, 2004, pages 795 - 800
VIVIAN ET AL., J. MOL. BIOL., vol. 370, 2007, pages 481 - 491
WANG, H.LI, Z.JIA, R.YIN, J.LI, A.XIA, L.YIN, Y.MULLER, R.FU, J.STEWART, A.F.: "ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes", NUCLEIC ACIDS RESEARCH, 2017
YU, D.ELLIS, H.M.LEE, E.C.JENKINS, N.A.COPELAND, N.G.COURT, D.L.: "An efficient recombination system for chromosome engineering in Escherichia coli", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 97, 2000, pages 5978 - 5983, XP002908442, DOI: 10.1073/pnas.100127597
ZHANG, D.Y.BRANDWEIN, M.HSUIH, T.LI, H.B., MOL. DIAGN., vol. 6, no. 2, 2001, pages 141 - 150
ZHANG, Y.BUCHHOLZ, F.MUYRERS, J.P.STEWART, A.F.: "A new logic for DNA engineering using recombination in Escherichia coli", NATURE GENETICS, vol. 20, 1998, pages 123 - 128

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194886A1 (en) * 2021-03-15 2022-09-22 Countagen Ab Methods and uses for determining the efficiency of genetic-editing procedures
GB2604872B (en) * 2021-03-15 2023-11-01 Countagen Ab Methods and uses for determining the efficiency of genetic-editing procedures
WO2023038145A1 (ja) * 2021-09-13 2023-03-16 オリシロジェノミクス株式会社 環状dnaの製造方法
WO2023140325A1 (ja) * 2022-01-19 2023-07-27 オリシロジェノミクス株式会社 機能性dnaカセット及びプラスミド

Also Published As

Publication number Publication date
US20210277385A1 (en) 2021-09-09
CA3106822A1 (en) 2020-02-06
AU2019315179B2 (en) 2023-02-02
EP3831941A4 (en) 2022-05-04
JP7025552B2 (ja) 2022-02-24
SG11202100125WA (en) 2021-02-25
CA3106822C (en) 2023-10-10
RU2766717C1 (ru) 2022-03-15
JPWO2020027110A1 (ja) 2021-08-10
BR112021001473A2 (pt) 2021-04-27
CN112424351B (zh) 2024-07-19
IL280203A (en) 2021-03-01
EP3831941A1 (en) 2021-06-09
KR102520700B1 (ko) 2023-04-10
AU2019315179A1 (en) 2021-02-04
CN112424351A (zh) 2021-02-26
KR20210020132A (ko) 2021-02-23

Similar Documents

Publication Publication Date Title
JP7025552B2 (ja) 無細胞系でdnaを編集する方法
JP6701450B2 (ja) Dnaの産生方法及びdna断片連結用キット
KR102491725B1 (ko) 환상 dna의 복제 또는 증폭 방법
KR102378346B1 (ko) 환상 dna의 증폭 방법
WO2023038145A1 (ja) 環状dnaの製造方法
WO2023191034A1 (ja) 配列エラーの減少した二本鎖dnaの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217001327

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3106822

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020534660

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019315179

Country of ref document: AU

Date of ref document: 20190730

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021001473

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2021101688

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2019844229

Country of ref document: EP

Effective date: 20210301

ENP Entry into the national phase

Ref document number: 112021001473

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210126