WO2020026900A1 - 産業車両用充電システム - Google Patents

産業車両用充電システム Download PDF

Info

Publication number
WO2020026900A1
WO2020026900A1 PCT/JP2019/028927 JP2019028927W WO2020026900A1 WO 2020026900 A1 WO2020026900 A1 WO 2020026900A1 JP 2019028927 W JP2019028927 W JP 2019028927W WO 2020026900 A1 WO2020026900 A1 WO 2020026900A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
charge
power
charger
industrial vehicle
Prior art date
Application number
PCT/JP2019/028927
Other languages
English (en)
French (fr)
Inventor
岩田泰城
森昌吾
石原義昭
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to EP19844529.8A priority Critical patent/EP3832837A4/en
Priority to US17/260,672 priority patent/US20210261014A1/en
Publication of WO2020026900A1 publication Critical patent/WO2020026900A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/67Controlling two or more charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • B60L2200/42Fork lift trucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/54The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads according to a pre-established time schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the present invention relates to a charging system for an industrial vehicle.
  • An object of the present invention is to provide a charging system for an industrial vehicle that can be appropriately charged.
  • An industrial vehicle charging system for solving the above-mentioned problems is an industrial vehicle charging system having a plurality of chargers connected to a system power supply, and a charge controller for indicating a charging power value of the plurality of chargers. And, via the charge controller, comprising a management device that receives the charging information of the industrial vehicle connected to the charger, wherein the charger receives the charging information from the connected industrial vehicle A communication unit for transmitting to the charging controller, the management device stores a charging schedule of the industrial vehicle, and an operating load until the next charging, a storage unit for storing the charging schedule, the operating load, and the charging information.
  • a required charge amount calculation unit that calculates a required charge amount of the industrial vehicle connected to the charger based on And amount, based on at least one of contract demand and installed capacity and available power, and summarized in that a charging power value calculation unit configured to calculate the charging power value to the charger.
  • the required charge amount of the industrial vehicle connected to the charger is calculated by the required charge amount calculation unit based on the charge schedule, the operating load, and the charge information.
  • the charging power value calculation unit calculates a charging power value for the charger based on the required charging amount and at least one of the contract power, the facility capacity, and the available power. Therefore, it is possible to perform appropriate charging by calculating the charging power value based on the operating load while collectively managing the lower charging controller using the higher management device.
  • the charging controller further includes an available power calculation unit that calculates available power in the charger. Further, regarding the charging system for an industrial vehicle, the charge controller further includes a chargeable time calculation unit that calculates a chargeable time in the charger, and the charge power value to the charger based on the chargeable time. Is preferably calculated.
  • the battery can be charged appropriately.
  • FIG. 1 is a block diagram showing a configuration of an industrial vehicle charging system according to an embodiment.
  • FIG. 1 is a block diagram showing a configuration of an industrial vehicle charging system.
  • FIG. 1 is a block diagram showing a configuration of an industrial vehicle charging system.
  • FIG. 4 is an explanatory diagram of charging information. Explanatory drawing of operation information. The figure for demonstrating the relationship between an operating load and actual power consumption. The figure for explaining available electric power. The figure for demonstrating the electric energy at the time of charge. The control flow figure. The control flow figure. The figure for demonstrating the electric energy at the time of charge. The figure for demonstrating the electric energy at the time of charge. The figure for demonstrating the electric energy at the time of charge. The figure for demonstrating the electric energy at the time of charge.
  • the industrial vehicle charging system 10 includes a plurality of chargers 31, 32, and 33 connected to a system power supply 30 (see FIG. 3). Forklifts 51, 52, and 53 (see FIGS. 1 and 2) as industrial vehicles are connected to the chargers 31, 32, and 33.
  • the industrial vehicles are the electric forklifts 51, 52, 53. That is, as shown in FIG. 4, the forklift 100 is a battery forklift, which is a forklift that performs a transport / loading operation by an electric motor.
  • the vehicle body 101 has a battery 117, a traveling motor (electric motor for traveling) 118, and a cargo handling motor (electric motor for cargo handling) 119 mounted thereon.
  • the running motor 118 is driven by the battery 117, and the driving wheels 102a are driven.
  • the output shaft of the traveling motor 118 is connected to the rotating shaft of the driving wheel 102a via a speed reducer, and when the output shaft rotates by the driving of the traveling motor 118, the rotating shaft of the driving wheel 102a rotates with the rotation.
  • the drive wheel 102a rotates to drive.
  • the loading motor 119 is driven by the battery 117, and the hydraulic pump (not shown) is driven by the driving of the loading motor 119. Based on the driving of the hydraulic pump, the lift cylinder 105 and the tilt cylinder 108 can be extended and contracted to perform the up and down movement and the tilt operation of the fork 106.
  • the forklifts 51, 52, and 53 are mounted with, for example, a lithium ion secondary battery as the battery 117 as a secondary battery, and can perform traveling and cargo handling with the power of the battery 117 as the secondary battery.
  • the industrial vehicle charging system 10 includes a plurality of charge controllers 40 and a management device 60.
  • the management device 60 is a server connected to the plurality of charge controllers 40 via a network.
  • Each charge controller 40 instructs the charge power value of the charger 31, 32, 33.
  • the management device 60 receives charging information (see FIG. 5 described later) of the forklifts 51, 52, and 53 connected to the chargers 31, 32, and 33 via the charging controller 40.
  • An upper management device 60 is provided for the lower charge controller 40, and the upper management device 60 collectively manages the plurality of chargers connected to the charge controller 40 using the upper management device 60. . That is, instead of accumulating and analyzing information in the charge controller 40, information is accumulated and analyzed in the management device 60, and information is given to the charge controller 40 so that the charge controller 40 controls power. That is, the charging information is sent to the charging controller 40, the management device 60 receives the charging information from the charging controller 40, and the management device 60 compiles the charging information into a database and holds the operation information (operation time, material flow rate, etc.). The required amount of charge is sent to the charge controller 40, and the charge controller 40 instructs the chargers 31, 32, and 33 from the information on the contracted power, the installed capacity, and the available power to determine the charge power value.
  • the charge controller 40 has a communication unit 47.
  • Each of the chargers 31, 32, 33 has a communication unit 35.
  • the communication unit 47 of each charger 31, 32, 33 is connected to the communication unit 47 of the charge controller 40.
  • the management device 60 is connected to the communication unit 47 of the charge controller 40.
  • the communication unit 35 of each charger 31, 32, 33 receives charging information (current SOC, identification information, etc.) from the connected forklifts 51, 52, 53, and transmits it to the charging controller 40. Further, the charging information (current SOC, identification information, etc.) is transmitted to the management device 60 via the communication unit 47.
  • the charging information includes the machine number of the forklift, the secondary battery management number, the SOC (charging state) of the secondary battery, the maximum charging power value of the charger, and the like.
  • the machine numbers are $ 1, $ 2, $ 3
  • the secondary battery management number is No. 1, No. 2, No. 3.
  • the SOC of the secondary battery is a%, b%, c%
  • the maximum charging power value of the charger is ⁇ , ⁇ , ⁇ .
  • the management device 60 in FIG. 2 includes a management device storage unit 65 as a storage unit and a required charge amount calculation unit 66.
  • the management device storage unit 65 stores a charging schedule (see FIG. 6 described later) of the forklifts 51, 52, and 53, and an operating load until the next charging (see FIG. 7 described later).
  • the operation information includes the operation and charging time. Specifically, in the example of FIG. 6, charging is performed from 0 to 8:00, operation is performed from 8 to 12:00, charging is performed from 12 to 13:00, operation is performed from 13 to 17:00, and charging is performed from 17:00 to 24:00.
  • the required charge amount calculation unit 66 in FIG. 2 calculates the required charge amount of the forklifts 51, 52, 53 connected to the chargers 31, 32, 33 based on the charging schedule, the operating load, and the charging information.
  • the relationship between the operating load and the actual power consumption (work amount) as shown in FIG. 7 is determined in advance. Specifically, in the example of FIG. 7, the actual power consumption (required SOC) increases as the operating load (the number of loads to be carried in / out) increases.
  • the operation load is in accordance with the material flow rate (or the production amount).
  • the charge controller 40 of FIG. 2 includes a controller storage unit 45 and a charging power value calculation unit 46.
  • the controller storage unit 45 stores at least one of contract power, facility capacity, and available power.
  • the charging power value calculation unit 46 calculates a charging power value for the chargers 31, 32, and 33 based on the required charging amount and at least one of the contract power, the facility capacity, and the available power.
  • the charge controller 40 has a chargeable time calculation unit 48.
  • the chargeable time is the difference between the connection time when the forklift and the charger are connected by the connector and the operation start time, and is the actual charging time during which charging can be actually performed.
  • the chargeable time calculator 48 calculates a chargeable time during which the chargers 31, 32, and 33 can charge the forklifts 51, 52, and 53.
  • the charge controller 40 calculates a charge power value for the charger based on the chargeable time.
  • the management device 60 has an available power calculator 67.
  • the available power calculating unit 67 calculates the power other than the facilities 70 and 71 as the power (usable power) that can be used for charging by the chargers 31, 32, and 33 with respect to the facility capacity. Is done. 8, the pattern (1) uses more power in the facilities 70 and 71 than the pattern (2), and the available power that is used for charging is smaller.
  • the available power calculation unit 67 compares the contract power in FIG. Is calculated as power (available power) that can be used for charging by the chargers 31, 32, and 33.
  • the charging information includes the machine number, the secondary battery management number, the SOC (charging state) of the secondary battery, the maximum charging power value of the charger, and the like.
  • the operation information includes the operation and charging time. Specifically, in the example of FIG. 6, charging is performed from 0 to 8:00, operation is performed from 8 to 12:00, charging is performed from 12 to 13:00, operation is performed from 13 to 17:00, and charging is performed from 17:00 to 24:00.
  • a schedule for charging is determined. Specifically, in the example of FIG. 9, three forklifts are charged from 12:00 to 13:00, and the forklifts are operated from 13:00 to 17:00. Vehicle A has a 10% SOC before charging, vehicle B has a 20% SOC before charging, and vehicle C has a 50% SOC before charging. As illustrated in FIG. 7, the relationship between the operating load and the actual power consumption is determined in advance.
  • the SOC of the vehicle A becomes 70% at 17:00 by referring to FIG. 7 from the operating load due to the operation from 13:00 to 17:00.
  • the required charge amount is 60% and the charge power value is 100W.
  • the SOC of the vehicle B becomes 1% at 17:00 from the operating load by referring to FIG.
  • the required charging amount is 30%, and the charging power value is 60W.
  • the SOC of the vehicle C becomes 60% from the operation load by referring to FIG.
  • the required charge amount is 10% and the charge power value is 30W.
  • charging information is transmitted from the forklift to the charger. Further, the charging information is sent from the charger to the charging controller 40 and from the charging controller 40 to the management device 60.
  • the management device 60 holds operation data (operation time data).
  • the chargeable time is sent from the management device 60 to the charge controller 40.
  • the chargeable time is calculated in the chargeable time calculation unit 48 (see FIG. 2) of the charge controller 40.
  • the required power amount is estimated from the past charging data and the material flow rate.
  • the required power value is sent from the management device 60 to the charging controller 40, and the charging controller 40 sends charging information from the charger of another forklift, and the charging controller 40 collects the information.
  • the contract power and the equipment capacity information are stored in the management device 60, and the available power is calculated by the available power calculation unit 67 (see FIG. 2).
  • the calculated available power is sent to the charging controller 40.
  • the charging power value calculation section 46 (see FIG. 2) of the charging controller 40 calculates the charging power value of each charger. The calculated charging power value is sent to each charger.
  • the charging information of the electric forklift is transmitted from the charging controller 40 to the management device 60.
  • the management device 60 has a charging information database including past data.
  • the management device 60 also has operation (operation time and material flow) data.
  • the management device 60 transmits to the charging controller 40 prediction of the amount of power required for the next operation and information on the time at which charging is possible, based on its own data.
  • the charging controller 40 calculates charging power available for charging from information such as contract power and equipment capacity, and falls within the available charging power based on information from the management device 60.
  • the charging power value of each of the chargers 31, 32, 33 is calculated and an instruction is issued.
  • charging was performed from 12:00 to 13:20, so that charging was performed even at 13:00 of the operation start time of the forklift, which could affect the operation of the forklift.
  • charging is subdivided such that charging to vehicle A is increased and charging to vehicle C is reduced, so that the peak of charging power is suppressed in accordance with contract power and electric equipment. Charge from 12:00 to 13:00. In this way, it is possible to suppress the power while reducing the influence on the operation of the forklift.
  • the configuration of the industrial vehicle charging system 10 includes a plurality of chargers 31, 32, and 33 connected to the system power supply 30.
  • a charge controller 40 for instructing a charge power value of the plurality of chargers 31, 32, 33, and a forklift 51, 52, 53 as an industrial vehicle connected to the chargers 31, 32, 33 via the charge controller 40.
  • a management device 60 that receives the charging information.
  • the chargers 31, 32, and 33 include a communication unit 35 that receives charging information (current SOC, identification information, and the like) from the connected forklifts 51, 52, and 53, and transmits the charging information to the charging controller 40.
  • the management device 60 stores a management schedule as a storage unit for storing charging schedules (operating time, next charging start time, and the like) of the forklifts 51, 52, and 53 and operating loads (material flow, production volume, and the like) until the next charging.
  • the charge controller 40 includes a charge power value calculation unit 46 that calculates a charge power value for the chargers 31, 32, and 33 based on the required charge amount and at least one of the contract power, the facility capacity, and the available power.
  • the charge can be appropriately performed by calculating the charge power value based on the operating load (required power amount) while collectively managing the lower charge controller 40 using the higher management device 60. As a result, power is suppressed while avoiding shortage of charge (power shortage) and reducing influence on operation.
  • the charge controller 40 further includes a chargeable time calculator 48 for calculating a chargeable time in the chargers 31, 32, and 33, and charges the chargers 31, 32, and 33 based on the chargeable time. Calculate the power value. Therefore, when the upper management device 60 performs the processing, it is necessary to perform the processing for the number of the chargers.
  • the controller calculates the required power, whereas in the present embodiment, the controller manages the power collectively using the upper management device 60, and the management device that does not perform charge control calculates the required charge amount. I do. In other words, the management is facilitated by the higher management device 60 instead of the charge controller 40.
  • the operating information (operating time, operating load) of the industrial vehicle cannot be estimated without information other than the traveling distance.
  • the operating load is calculated using the material flow rate and the production amount.
  • the operation information is held by the management device.
  • the charge controller 40 may have a configuration that has the available power calculation unit 49 as shown by a virtual line in FIG. Then, as shown in FIG. 11 instead of FIG. 10, the charge controller 40 may calculate the available power. In this case, the available power calculator 67 is not required in the management device 60.
  • the charging controller 40 further includes the available power calculation unit 49 that calculates the available power in the chargers 31, 32, and 33. Therefore, since the charge controller 40 grasps the power other than the charge, it is preferable to grasp the power in the facilities other than the charger.
  • two charge controllers 40 are used, but the number of charge controllers 40 is not limited.
  • the number of charge controllers 40 may be “1” or “3” or more.
  • a forklift is used as an industrial vehicle, the industrial vehicle may be an industrial vehicle other than a forklift.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

管理装置(60)は、フォークリフト(51,52,53)の充電スケジュール及び次回充電までの稼働負荷を記憶する管理装置記憶部(65)と、充電スケジュール及び稼働負荷と充電情報とに基づき、充電器(31,32,33)に接続されたフォークリフト(51,52,53)の必要充電量を算出する必要充電量算出部(66)と、を有する。充電コントローラ(40)は、必要充電量と、契約電力および設備容量および利用可能電力の少なくとも一つとに基づき、充電器(31,32,33)への充電電力値を算出する充電電力値算出部(46)を有する。

Description

産業車両用充電システム
 本発明は、産業車両用充電システムに関するものである。
 特許文献1に開示の移動体の充給電管理装置においては、複数の移動体のうち充放電器に接続された移動体の識別情報、現在の充電残量を含む電池状態、および次回稼働予定時刻を含む移動体情報を取得して、移動体の充給電スケジュールを作成して、充給電スケジュールに従って移動体に搭載される二次電池の充電または放電を制御する。また、契約電力を超過すると判断した場合にピークカット設定を行うようにしている。
特開2013-172488号公報
 ところで、系統電源に接続された複数の充電器を有する産業車両用充電システムにおいて、複数台を同時に充電する際に、電力値が規定値を超えないようにすべくピーク電力値をカットするように各車両の充電量を決定するだけでは充電後の産業車両の作業開始時に適切に充電できていないことが懸念される。
 本発明の目的は、適切に充電することができる産業車両用充電システムを提供することにある。
 上記問題点を解決するための産業車両用充電システムは、系統電源に接続された複数の充電器を有する産業車両用充電システムであって、前記複数の充電器の充電電力値を指示する充電コントローラと、前記充電コントローラを介して、前記充電器に接続された産業車両の充電情報を受信する管理装置と、を備え、前記充電器は、接続された前記産業車両から前記充電情報を受信して、前記充電コントローラに送信する通信部を有し、前記管理装置は、前記産業車両の充電スケジュール、及び次回充電までの稼働負荷を記憶する記憶部と、前記充電スケジュール及び前記稼働負荷と前記充電情報とに基づき、前記充電器に接続された前記産業車両の必要充電量を算出する必要充電量算出部と、を有し、前記充電コントローラは、前記必要充電量と、契約電力および設備容量および利用可能電力の少なくとも一つとに基づき、前記充電器への前記充電電力値を算出する充電電力値算出部を有することを要旨とする。
 これによれば、必要充電量算出部により、充電スケジュール及び稼働負荷と充電情報とに基づき、充電器に接続された産業車両の必要充電量が算出される。充電電力値算出部により、必要充電量と、契約電力および設備容量および利用可能電力の少なくとも一つとに基づき、充電器への充電電力値が算出される。よって、下位の充電コントローラに対し上位の管理装置を用いて一括管理しつつ稼動負荷に基づいて充電電力値を算出することにより、適切に充電することができる。
 また、産業車両用充電システムについて、前記充電コントローラは、充電器での利用可能電力を算出する利用可能電力算出部を更に有するのが好ましい。
 また、産業車両用充電システムについて、前記充電コントローラは、充電器での充電可能時間を算出する充電可能時間算出部を更に有し、前記充電可能時間に基づき、前記充電器への前記充電電力値を算出するのが好ましい。
 本発明によれば、適切に充電することができる。
実施形態における産業車両用充電システムの構成を示すブロック図。 産業車両用充電システムの構成を示すブロック図。 産業車両用充電システムの構成を示すブロック図。 フォークリフトの側面図。 充電情報の説明図。 稼動情報の説明図。 稼動負荷と実消費電力の関係を説明するための図。 利用可能電力を説明するための図。 充電の際の電力量を説明するための図。 制御フロー図。 制御フロー図。 充電の際の電力量を説明するための図。 充電の際の電力量を説明するための図。 充電の際の電力量を説明するための図。
 以下、本発明を具体化した一実施形態を図面に従って説明する。
 図1,2,3に示すように、産業車両用充電システム10は、系統電源30(図3参照)に接続された複数の充電器31,32,33を有する。充電器31,32,33に産業車両としてのフォークリフト51,52,53(図1,2参照)が接続される。
 本実施形態では、産業車両は電動式のフォークリフト51,52,53である。つまり、図4に示すように、フォークリフト100はバッテリフォークリフトであって、電動モータにて搬送・荷役作業を行うフォークリフトである。
 車体101にはバッテリ117、走行モータ(走行用電動モータ)118および荷役モータ(荷役用電動モータ)119が搭載されている。バッテリ117により走行モータ118を駆動させ、駆動輪102aが駆動されるようになっている。詳しくは、走行モータ118の出力軸が駆動輪102aの回転軸と減速機を介して連結されており、走行モータ118の駆動により出力軸が回転するとその回転に伴って駆動輪102aの回転軸が回転して駆動輪102aが駆動される。
 また、バッテリ117により荷役モータ119が駆動され、この荷役モータ119の駆動により油圧ポンプ(図示略)が駆動される。この油圧ポンプの駆動に基づいてリフトシリンダ105やティルトシリンダ108を伸縮動作してフォーク106の上下動やティルト動作を行うことができるようになっている。
 このように、フォークリフト51,52,53は二次電池としてのバッテリ117として例えばリチウムイオン二次電池が搭載され、二次電池としてのバッテリ117の電力にて走行や荷役を行うことができる。
 図1に示すように、産業車両用充電システム10は、複数の充電コントローラ40と、管理装置60と、を備える。管理装置60は複数の充電コントローラ40とネットワーク接続されたサーバである。
 各充電コントローラ40は、充電器31,32,33の充電電力値を指示する。管理装置60は、充電コントローラ40を介して、充電器31,32,33に接続されたフォークリフト51,52,53の充電情報(後記する図5参照)を受信する。
 下位の充電コントローラ40に対し上位の管理装置60を備え、上位の管理装置60において一括管理しており、上位の管理装置60を用いて、充電コントローラ40に接続された複数の充電器を管理する。つまり、充電コントローラ40で情報の蓄積や解析を行うのではなく管理装置60において情報の蓄積や解析を行い、充電コントローラ40に情報を与えて充電コントローラ40が電力の制御を行う。つまり、充電情報が充電コントローラ40に送られ、管理装置60は充電コントローラ40から充電情報が送られ、管理装置60は充電情報をデータベース化するとともに稼動情報(稼動時刻、物流量等)を保持し、充電コントローラ40に対し必要充電量を送り、充電コントローラ40は契約電力や設備容量や利用可能電力についての情報から充電器31,32,33に充電電力値を指示する。
 図2に示すように、充電コントローラ40は、通信部47を有する。各充電器31,32,33は、通信部35を有する。充電コントローラ40の通信部47には各充電器31,32,33の通信部35が接続されている。充電コントローラ40の通信部47には管理装置60が接続されている。
 各充電器31,32,33の通信部35は、接続されたフォークリフト51,52,53から充電情報(現在のSOC、識別情報等)を受信して、充電コントローラ40に送信する。さらに、充電情報(現在のSOC、識別情報等)は通信部47を介して管理装置60に送信される。
 図5を用いて充電情報の例を示す。図5において、充電情報はフォークリフトの機台番号、二次電池管理番号、二次電池のSOC(充電状態)、充電器の最大充電電力値等を含んでいる。具体的には、図5の例では、機台番号が♯1、♯2、♯3、二次電池管理番号がNo.1、No.2、No.3、二次電池のSOCがa%、b%、c%、充電器の最大充電電力値がα、β、γである。
 図2の管理装置60は、記憶部としての管理装置記憶部65と必要充電量算出部66とを有する。管理装置記憶部65は、フォークリフト51,52,53の充電スケジュール(後記する図6参照)、及び次回充電までの稼働負荷(後記する図7参照)を記憶する。
 図6を用いて充電スケジュールの例を示す。図6において、稼動情報は、稼動、充電時刻を含んでいる。具体的には、図6の例では、0~8時は充電、8~12時は稼動、12~13時は充電、13~17時は稼動、17~24時は充電である。
 図2の必要充電量算出部66は、充電スケジュール及び稼働負荷と充電情報とに基づき、充電器31,32,33に接続されたフォークリフト51,52,53の必要充電量を算出する。
 管理装置60において、例えば図7に示すような稼動負荷と実消費電力(仕事量)の関係が予め決められている。具体的には、図7の例では、稼動負荷(搬入・搬出を行う荷の搬送個数)が大きくなればなるほど実消費電力(必要SOC)も大きくなる。例えば、稼動負荷(搬入・搬出を行う荷の搬送個数)が「1」ならば実消費電力(必要SOC)は13パーセント、稼動負荷(搬入・搬出を行う荷の搬送個数)が「2」ならば実消費電力(必要SOC)は16パーセント、稼動負荷(搬入・搬出を行う荷の搬送個数)が「3」ならば実消費電力(必要SOC)は19パーセントである。このように、稼動負荷は物流量(又は生産量)に応じたものとなる。
 そして、稼働負荷と実消費電力とを対応付けしてデータとして蓄積し、必要充電量を算出する。
 図2の充電コントローラ40は、コントローラ記憶部45と充電電力値算出部46を有する。コントローラ記憶部45は、契約電力および設備容量および利用可能電力の少なくとも一つを記憶する。充電電力値算出部46は、必要充電量と、契約電力および設備容量および利用可能電力の少なくとも一つとに基づき、充電器31,32,33への充電電力値を算出する。
 充電コントローラ40は、充電可能時間算出部48を有する。充電可能時間とは、フォークリフトと充電器とをコネクタで接続したときの接続時刻と稼動開始時刻の差であり、実際に充電することができる実充電時間である。充電可能時間算出部48は、充電器31,32,33においてフォークリフト51,52,53を充電することができる充電可能時間を算出する。充電コントローラ40は充電可能時間に基づき、充電器への充電電力値を算出する。
 管理装置60は利用可能電力算出部67を有する。利用可能電力算出部67において、例えば図8に示したように、設備容量に対し、設備70,71以外の電力が充電器31,32,33で充電に利用できる電力(利用可能電力)として算出される。図8においてパターン(2)に比べパターン(1)の方が設備70,71で使用する電力が多くなっており、充電に供する電力である利用可能電力が少なくなっている。
 なお、図8で設備容量について説明したが契約電力(図3参照)についても同様であり、利用可能電力算出部67において、図3での契約電力に対し、設備70,71,80,81以外の電力が充電器31,32,33で充電に利用できる電力(利用可能電力)として算出される。
 次に、産業車両用充電システム10の作用について説明する。
 図5で例示したごとく、充電情報は機台番号、二次電池管理番号、二次電池のSOC(充電状態)、充電器の最大充電電力値等を含んでいる。図6で例示したごく、稼動情報は、稼動、充電時刻を含んでいる。具体的には、図6の例では、0~8時は充電、8~12時は稼動、12~13時は充電、13~17時は稼動、17~24時は充電である。
 そして、図9に示すように、充電の際のスケジュールが決定される。具体的には、図9の例では、12時~13時において3台のフォークリフトを充電し、13時から17時まで稼働する。車両Aは充電前のSOCが10%、車両Bは充電前のSOCが20%、車両Cは充電前のSOCが50%である。図7で例示したごとく、稼動負荷と実消費電力の関係が予め決められている。
 図9において、13時~17時の稼動により、17時において車両Aは稼動負荷から図7を参照することによりSOCが70%となる。その結果、必要充電量が60%、充電電力値が100Wとなる。同様に、13時~17時の稼動により、17時において車両Bは稼動負荷から図7を参照することによりSOCが50%となる。その結果、必要充電量が30%、充電電力値が60Wとなる。13時~17時の稼動により、17時において車両Cは稼動負荷から図7を参照することによりSOCが60%となる。その結果、必要充電量が10%、充電電力値が30Wとなる。
 図10の制御フローを用いて、フォークリフトと、充電器と、充電コントローラ40と、管理装置60での処理を説明する。
 フォークリフトと充電器とをコネクタで接続することによりフォークリフトから充電情報が充電器に送られる。更に充電情報が充電器から充電コントローラ40に送られるとともに充電コントローラ40から管理装置60に送られる。管理装置60において稼動データ(稼動時刻データ)を保持している。管理装置60から充電可能時刻が充電コントローラ40に送られる。充電コントローラ40の充電可能時間算出部48(図2参照)において充電可能時間が算出される。管理装置60において必要電力量が過去充電データや物流量から推定される。必要電力値が管理装置60から充電コントローラ40に送られるとともに充電コントローラ40において他のフォークリフトの充電器から充電情報が送られて充電コントローラ40で情報が収集される。
 管理装置60において契約電力や設備容量情報が保持されているとともに、利用可能電力算出部67(図2参照)において利用可能電力が算出される。算出された利用可能電力が充電コントローラ40に送られる。充電コントローラ40の充電電力値算出部46(図2参照)において各充電器での充電電力値が算出される。算出された充電電力値が各充電器に送られる。
 そして、各充電器31,32,33においてフォークリフト51,52,53に対し充電電力値での充電が行われる。
 以下、詳しく説明する。
 従来、複数の電動フォークリフトを使っている事業所において、図12に示すように、フォークリフトを充電するタイミングは多くの場合、休憩時間や業務終了後になる。この時、複数の充電が同時に開始されるので、電力が一気に使われて、電気設備(配電盤、配線)の容量を超えてしまうおそれがある。また、電力会社との契約電力を超えてしまい、契約料金の増加になってしまう。
 そこで、フォークリフトの作業者が同時に休憩に入るときに充電を開始しても、実際に充電が始まるタイミングをずらしたり、充電電力をしぼったりして、図13に示すように、電力のピークを抑えることが考えられる。ところが、充電電力のピークを契約電力や電気設備に合わせて抑制すると、例えば図13において12時~13時20分まで充電を行うとフォークリフトの稼動開始時間の13時になっても充電しており、図13でハッチングを付した時間帯においてフォークリフトの稼動に影響を及ぼす可能性がある。
 本実施形態においては、電動フォークリフトの充電情報を充電コントローラ40から管理装置60に送付する。管理装置60は過去データも含めて、充電情報データベースを持つ。また、管理装置60には稼動(稼動時刻・物流量)データも持つ。管理装置60は、自らのデータを元に、次の稼動に必要な電力量の予測や充電可能な時刻情報を、充電コントローラ40に送信する。充電コントローラ40は、図14に示すように、契約電力、設備容量等の情報から充電に利用可能な充電電力を算出し、管理装置60からの情報を元に、利用可能な充電電力内に収まるように各充電器31,32,33の充電電力値を算出し、指示を出す。
 これにより、図13においては12時~13時20分まで充電を行うことによりフォークリフトの稼動開始時間の13時になっても充電しておりフォークリフトの稼動に影響を及ぼす可能性があったが、図14の本実施形態においては、車両Aへの充電を多くし車両Cへの充電を少なくするといったように充電を細分化することにより充電電力のピークを契約電力や電気設備に合わせて抑制しつつ12時~13時まで充電を行う。このようにして、フォークリフトの稼動への影響を低減しながら電力抑制を図ることが可能となる。
 上記実施形態によれば、以下のような効果を得ることができる。
 (1)産業車両用充電システム10の構成として、系統電源30に接続された複数の充電器31,32,33を有する。複数の充電器31,32,33の充電電力値を指示する充電コントローラ40と、充電コントローラ40を介して、充電器31,32,33に接続された産業車両としてのフォークリフト51,52,53の充電情報を受信する管理装置60と、を備える。充電器31,32,33は、接続されたフォークリフト51,52,53から充電情報(現在のSOC、識別情報等)を受信して、充電コントローラ40に送信する通信部35を有する。管理装置60は、フォークリフト51,52,53の充電スケジュール(稼働時間、次回充電開始時刻等)、及び次回充電までの稼働負荷(物流量、生産量等)を記憶する記憶部としての管理装置記憶部65と、充電スケジュール及び稼働負荷と充電情報とに基づき、充電器31,32,33に接続されたフォークリフト51,52,53の必要充電量を算出する必要充電量算出部66と、を有する。充電コントローラ40は、必要充電量と、契約電力および設備容量および利用可能電力の少なくとも一つとに基づき、充電器31,32,33への充電電力値を算出する充電電力値算出部46を有する。よって、下位の充電コントローラ40に対し上位の管理装置60を用いて一括管理しつつ稼動負荷(必要電力量)に基づいて充電電力値を算出することにより、適切に充電することができる。これにより充電の不足(電欠)を回避しつつ稼動への影響を低減しながらの電力抑制が図られる。
 (2)充電コントローラ40は、充電器31,32,33での充電可能時間を算出する充電可能時間算出部48を更に有し、充電可能時間に基づき、充電器31,32,33への充電電力値を算出する。よって、上位の管理装置60で行う場合には充電器の台数分の処理を行う必要があるのに比べ充電コントローラ40で行うことで処理負荷の軽減が図られる。
 (3)特許文献1ではコントローラが必要な電力を算出するのに対し、本実施形態では、上位の管理装置60を用いて一括管理することとし、充電制御をしない管理装置が必要充電量を算出する。つまり、充電コントローラ40ではなく上位の管理装置60で管理することにより管理が容易となる。
 (4)稼働時間に加え稼動負荷を用いて必要充電量を算出する。つまり、走行距離以外の情報がないと産業車両は稼働情報(稼働時間、稼働負荷)が推定できないが、本実施形態では稼働負荷は物流量や生産量を使って算出する。稼働情報は管理装置が有する。
 なお、フォークリフトと充電器とが接続される度に図10の処理(演算)が行われる。また、図7における稼動負荷と必要充電量との関係は変わらない。
 実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
 ○ 図2において管理装置60は利用可能電力算出部67を有していたが、図2において仮想線で示すように充電コントローラ40は利用可能電力算出部49を有する構成としてもよい。そして、図10に代わり図11に示すように、充電コントローラ40において、利用可能電力の算出を行うようにしてもよい。この場合、管理装置60に利用可能電力算出部67が不要となる。
 このように、充電コントローラ40は、充電器31,32,33での利用可能電力を算出する利用可能電力算出部49を更に有する。よって、充電以外の電力については充電コントローラ40が把握しているので充電器以外の設備での電力を把握する上で好ましい。
 ○ 図1では充電コントローラ40は2つ用いているが、充電コントローラ40の数は問わない。充電コントローラ40の数は「1」でも「3」以上でもよい。
 ○ 産業車両としてフォークリフトを用いたが、産業車両はフォークリフト以外の産業車両であってもよい。
 10  産業車両用充電システム
 30  系統電源
 31  充電器
 32  充電器
 33  充電器
 35  通信部
 40  充電コントローラ
 45  コントローラ記憶部
 46  充電電力値算出部
 48  充電可能時間算出部
 49  利用可能電力算出部
 51  フォークリフト
 52  フォークリフト
 53  フォークリフト
 60  管理装置
 65  管理装置記憶部
 66  必要充電量算出部

Claims (3)

  1.  系統電源に接続された複数の充電器を有する産業車両用充電システムであって、
     前記複数の充電器の充電電力値を指示する充電コントローラと、
     前記充電コントローラを介して、前記充電器に接続された産業車両の充電情報を受信する管理装置と、
    を備え、
     前記充電器は、接続された前記産業車両から前記充電情報を受信して、前記充電コントローラに送信する通信部を有し、
     前記管理装置は、
     前記産業車両の充電スケジュール、及び次回充電までの稼働負荷を記憶する記憶部と、
     前記充電スケジュール及び前記稼働負荷と前記充電情報とに基づき、前記充電器に接続された前記産業車両の必要充電量を算出する必要充電量算出部と、
    を有し、
     前記充電コントローラは、
     前記必要充電量と、契約電力および設備容量および利用可能電力の少なくとも一つとに基づき、前記充電器への前記充電電力値を算出する充電電力値算出部を有する
    ことを特徴とする産業車両用充電システム。
  2.  前記充電コントローラは、充電器での利用可能電力を算出する利用可能電力算出部を更に有することを特徴とする請求項1に記載の産業車両用充電システム。
  3.  前記充電コントローラは、充電器での充電可能時間を算出する充電可能時間算出部を更に有し、前記充電可能時間に基づき、前記充電器への前記充電電力値を算出することを特徴とする請求項1または2に記載の産業車両用充電システム。
PCT/JP2019/028927 2018-07-31 2019-07-24 産業車両用充電システム WO2020026900A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19844529.8A EP3832837A4 (en) 2018-07-31 2019-07-24 INDUSTRIAL VEHICLE CHARGING SYSTEM
US17/260,672 US20210261014A1 (en) 2018-07-31 2019-07-24 Industrial vehicle charging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018143926A JP2020022262A (ja) 2018-07-31 2018-07-31 産業車両用充電システム
JP2018-143926 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020026900A1 true WO2020026900A1 (ja) 2020-02-06

Family

ID=69230760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028927 WO2020026900A1 (ja) 2018-07-31 2019-07-24 産業車両用充電システム

Country Status (4)

Country Link
US (1) US20210261014A1 (ja)
EP (1) EP3832837A4 (ja)
JP (1) JP2020022262A (ja)
WO (1) WO2020026900A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022128666A1 (de) * 2020-12-18 2022-06-23 Zf Friedrichshafen Ag Verfahren zur energieversorgung einer landmaschine
WO2022138095A1 (ja) * 2020-12-25 2022-06-30 株式会社日立製作所 状態予測システム、状態予測方法、及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178472A (ja) * 2019-04-19 2020-10-29 株式会社豊田自動織機 施設内の充放電制御システム
JP7461205B2 (ja) 2020-04-23 2024-04-03 レシップホールディングス株式会社 充電システムおよび充電装置
GB202006089D0 (en) * 2020-04-24 2020-06-10 Ocado Innovation Ltd Apparatus and method for charging a load handling device on a grid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136109A (ja) * 2007-11-30 2009-06-18 Toyota Motor Corp 充電制御装置および充電制御方法
JP2011176968A (ja) * 2010-02-25 2011-09-08 Mitsubishi Heavy Ind Ltd 充電式フォークリフトの充電管理システム及び充電管理方法
JP2013172488A (ja) 2012-02-17 2013-09-02 Mitsubishi Nichiyu Forklift Co Ltd 充給電器および充給電管理装置、エネルギーマネジメントシステム、並びに充給電管理方法
JP2014096928A (ja) * 2012-11-09 2014-05-22 Mitsubishi Heavy Ind Ltd 充電スケジュール管理装置及び方法ならびにプログラム、それを備えた充電スケジュール管理システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136109A (ja) * 2007-11-30 2009-06-18 Toyota Motor Corp 充電制御装置および充電制御方法
JP2011176968A (ja) * 2010-02-25 2011-09-08 Mitsubishi Heavy Ind Ltd 充電式フォークリフトの充電管理システム及び充電管理方法
JP2013172488A (ja) 2012-02-17 2013-09-02 Mitsubishi Nichiyu Forklift Co Ltd 充給電器および充給電管理装置、エネルギーマネジメントシステム、並びに充給電管理方法
JP2014096928A (ja) * 2012-11-09 2014-05-22 Mitsubishi Heavy Ind Ltd 充電スケジュール管理装置及び方法ならびにプログラム、それを備えた充電スケジュール管理システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022128666A1 (de) * 2020-12-18 2022-06-23 Zf Friedrichshafen Ag Verfahren zur energieversorgung einer landmaschine
WO2022138095A1 (ja) * 2020-12-25 2022-06-30 株式会社日立製作所 状態予測システム、状態予測方法、及びプログラム
JP7454491B2 (ja) 2020-12-25 2024-03-22 株式会社日立製作所 状態予測システム、状態予測方法、及びプログラム

Also Published As

Publication number Publication date
EP3832837A1 (en) 2021-06-09
US20210261014A1 (en) 2021-08-26
EP3832837A4 (en) 2021-09-08
JP2020022262A (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2020026900A1 (ja) 産業車両用充電システム
WO2011083613A1 (ja) 作業車の二次電池充電マネージメント方法、及び作業車の二次電池充電システム
CN103490485B (zh) 应用智能电网的电动汽车双向供电装置及利用该供电装置的双向供电方法
KR102352434B1 (ko) 전기 차량의 배터리 교환 제어방법 및 장치
EP2755100A1 (en) Delivery vehicle system and charge method for delivery vehicle
CN104619628A (zh) 包含垂直输送机的驱动系统的驱动控制装置
WO2014196270A1 (ja) 電池及び充電装置の管理システム、方法並びに充電装置
CN102458901A (zh) 电池充放电控制装置
CN112385111A (zh) 采掘机械的电池充电管理
CN110445138B (zh) 自动化码头agv节能控制方法和装置
JP5850672B2 (ja) 駐車装置
WO2020149102A1 (ja) 充電システム、及び充電システムの制御方法
JP2021016243A (ja) 充放電システム
CN114580984B (zh) 移动换电车的调度控制方法、装置、系统及移动换电车
JP2018148658A (ja) 自動走行移動体及び自動走行移動体システム
EP3818249B1 (en) Methods and devices for power control in mining machines
CN114194070A (zh) 一种动力系统的能量管理方法、装置及工程机械
US20230021793A1 (en) An electric machine with hybrid energy storage devices
JP2012158435A (ja) 充電状態管理システム及び充電状態管理方法
JP7115397B2 (ja) 電動車両の充電システム
WO2023101875A1 (en) Charging management for an autonomous electric work vehicles at a worksite
CA3239438A1 (en) Charging management for electric work vehicles
CA3240680A1 (en) Charging management for electric work vehicles
CN116491040A (zh) 充放电管理方法和充放电管理装置、充放电管理控制器以及充放电管理系统
CN113910946A (zh) 一种重载卡车充换电系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019844529

Country of ref document: EP

Effective date: 20210301