WO2020026895A1 - 電波到来方向推定装置 - Google Patents

電波到来方向推定装置 Download PDF

Info

Publication number
WO2020026895A1
WO2020026895A1 PCT/JP2019/028867 JP2019028867W WO2020026895A1 WO 2020026895 A1 WO2020026895 A1 WO 2020026895A1 JP 2019028867 W JP2019028867 W JP 2019028867W WO 2020026895 A1 WO2020026895 A1 WO 2020026895A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio waves
radio wave
antennas
radio
arrival
Prior art date
Application number
PCT/JP2019/028867
Other languages
English (en)
French (fr)
Inventor
滝澤 晃一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020533452A priority Critical patent/JP6860121B2/ja
Priority to CN201980051532.9A priority patent/CN112534292B/zh
Publication of WO2020026895A1 publication Critical patent/WO2020026895A1/ja
Priority to US17/165,083 priority patent/US11467243B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/72Diversity systems specially adapted for direction-finding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/043Receivers

Definitions

  • the present invention relates to a radio wave arrival direction estimating apparatus.
  • Patent Document 1 In a multipath environment, a device for estimating an arrival direction of an incoming direct wave (or direct wave) and a reflected wave is known (Patent Document 1 and the like).
  • the device disclosed in Patent Literature 1 estimates the arrival direction of a radio wave using a center of a turntable and two antennas installed at positions other than the center.
  • the MUSIC method and the MODE method are known as methods for estimating the arrival direction of an incoming direct wave and a reflected wave in a multipath environment.
  • the number of antennas must be greater than the number of incoming waves. For example, when a direct wave and mainly one reflected wave arrive, three antennas must be installed. In the case of using the device disclosed in Patent Document 1, it is not necessary to increase the number of antennas to the number of arriving waves, but since a turntable must be installed, the number of elements constituting the device increases and the size increases. I do.
  • Two antennas for receiving three radio waves having different frequencies The arrival of the three radio waves arriving at the two antennas by propagating through two different paths from the same transmission point and based on the received signals of the three radio waves having different frequencies respectively received by the two antennas.
  • a radio wave arrival direction estimating device having a calculation unit for obtaining a direction.
  • the arrival direction of the radio waves can be estimated using two antennas without using a mechanical movable device such as a turntable for rotating the antennas.
  • FIG. 1 is a schematic diagram of a wireless communication system including a radio wave direction-of-arrival estimation device and a transmitter according to a first embodiment.
  • FIG. 2 is a flowchart of a process performed by the calculation unit of the radio wave direction-of-arrival estimation apparatus according to the first embodiment.
  • FIG. 3A is a diagram showing a relationship between two antennas of the radio wave direction-of-arrival estimation device and directions of arrival of radio waves
  • FIG. 3B is a diagram showing complex signals S 11 , S 12 , S 21 , S 22 , p 1 , and the p 2 is a graph showing on the complex plane.
  • FIG. 4 is a schematic diagram of a radio wave transmitting and receiving system in which a simulation is performed.
  • FIG. 4 is a schematic diagram of a radio wave transmitting and receiving system in which a simulation is performed.
  • FIG. 5A is a graph showing the locus of the product p 1 * ⁇ p 2 on the complex plane when the frequency is changed.
  • FIG. 5B is a graph showing the quotient p 2 / p 1 when the frequency is changed.
  • 5 is a graph showing a trajectory on a complex plane.
  • FIG. 6 is a chart showing a comparison between a true value defined in the radio wave transmission / reception system (FIG. 4) to be simulated and a value obtained by the simulation.
  • FIG. 7 is a block diagram of a radio wave direction-of-arrival estimation apparatus according to the second embodiment.
  • FIG. 1 is a schematic diagram of a wireless communication system including a radio wave direction-of-arrival estimation device 10 and a transmitter 20 according to a first embodiment.
  • the transmitter 20 includes a local oscillator 21, a signal generator 22, and an antenna 23.
  • Local oscillator 21 outputs a local clock signal.
  • the signal generation unit 22 sequentially outputs a specific transmission signal having a predetermined pattern at three different carrier frequencies. This transmission signal is radiated from the antenna 23 as a radio wave. In this way, three radio waves having different frequencies are sequentially emitted from the same transmission point.
  • radio waves emitted as the main propagation paths to reach the radio wave arrival direction estimating apparatus 10 two of the first path differ from each other P 1 and the second path P 2 exists from the transmitter 20 Shall be.
  • the first path P 1 is, for example, corresponds to the path of the direct wave reaching directly to the radio wave arrival direction estimating apparatus 10 from the transmitter 20.
  • the second path P 2 is, for example, a building in outdoors, indoors corresponds to the path of the reflected wave that reaches the radio wave arrival direction estimating apparatus 10 is reflected by the walls and floor.
  • the radio wave direction-of-arrival estimation device 10 has two antennas 11.
  • the two antennas 11 are arranged at spatially different positions and have a function of receiving three radio waves having different frequencies radiated from the transmitter 20.
  • the received signals received by the two antennas 11 are input to the corresponding receiving units 13 respectively.
  • the two receiving units 13 operate with a local clock supplied from the local oscillator 12, and perform down-conversion of the received signal received by the antenna 11. That is, the two receiving units 13 operate with the synchronized local clock signals.
  • the receiving unit 13 outputs a complex signal (IQ signal) obtained by replacing the received signal with a complex expression by comparing the received signal with a local clock signal.
  • the complex signal includes amplitude information and phase information of the received signal. This complex signal is output for each of three radio waves having different frequencies.
  • the complex signals output from the two receiving units 13 are input to the arithmetic unit 14.
  • Calculation unit 14 based on the three radio reception signals of different frequencies, through a first path P 1 and the second path P 2 obtains an arrival direction of the radio wave reaches the two antennas 11.
  • the arithmetic unit 14 calculates the arrival direction of the radio wave by performing a numerical operation on a complex signal obtained by down-converting the received signal received by each of the two antennas 11.
  • ⁇ Information on the direction of arrival of the radio wave obtained by the arithmetic unit 14 is input to the output unit 15.
  • the output unit 15 outputs information on the direction of arrival of the radio wave to the output device 16.
  • the output device 16 for example, a printer, a display, a communication device, or the like is used.
  • FIG. 3A is a diagram illustrating an example of a relationship between the two antennas 11 of the radio wave arrival direction estimation device 10 and the radio wave arrival directions.
  • Two antennas 11 are installed at an interval D.
  • One antenna 11 is called a first antenna 11A
  • the other antenna 11 is called a second antenna 11B.
  • the arrival direction of the radio wave is represented by an inclination angle from a virtual plane orthogonal to a virtual straight line VL passing through the two antennas 11.
  • the inclination angle from a reference virtual plane to the first path P 1 and the second path P 2 represented respectively theta 1 and theta 2.
  • the path length of the transmitter 20 (FIG. 1) first path to the first antenna 11A from P 1, the difference between the first path length of the path P 1 to the second antenna 11B expressed by [Delta] d 1. Similarly, it represents the path length of the transmitter 20 (FIG. 1) the second path to the first antenna 11A from P 2, a difference between the second path length of the path P 2 to the second antenna 11B in [Delta] d 2.
  • step ST1 in FIG. 2 by replacing the three waves of different frequencies received by the first antenna 11A and the second antenna 11B each complex representation, obtaining a complex signal p 1 and p 2 for each frequency.
  • Complex signal S 11 and S 12 of the signal received by replacing the complex representation at a first antenna 11A through the first path P 1 and the second path P 2 it is expressed by the following equations.
  • a 1 and a 2 represent the amplitude of the received signal at a first antenna 11A through the first path P 1 and the second path P 2, respectively.
  • represents the angular frequency of the radio wave.
  • ⁇ 11 and ⁇ 12 represent the time corresponding to the phase of the received signal passing through the first path P 1 and the second path P 2 with respect to the local clock signal, respectively.
  • the first path P 1 and the complex signal S 21 and S 22 replaces the received signal to a complex representation at the second path P 2 through the second antenna 11B is expressed by the following equation.
  • ⁇ 21 and ⁇ 22 represent the time corresponding to the phase delay of the received signal passing through the first path P 1 and the second path P 2 with respect to the local clock signal, respectively.
  • FIG. 3B is a graph showing the complex signals S 11 , S 12 , S 21 , S 22 , p 1 , and p 2 on a complex plane.
  • the amplitudes and phases of the complex signals p 1 and p 2 can be obtained by down-converting the signals received by the first antenna 11A and the second antenna 11B, respectively.
  • the amplitude and phase of each of the complex signals S 11 , S 12 , S 21 , S 22 are unknown.
  • ⁇ 1 , ⁇ 2 , and ⁇ 12 are defined as follows.
  • .DELTA..tau 1 represents the arrival time difference of the radio wave reaching the first antenna 11A and the second antenna 11B through the first path P 1.
  • .DELTA..tau 2 represents the arrival time difference of the radio wave reaching the first antenna 11A and the second antenna 11B through the second path P 2.
  • .DELTA..tau 12 denotes a radio wave reaching the first antenna 11A through the first path P 1, the arrival time difference between radio waves that reaches the first antenna 11A through the second path P 2.
  • Equation (7) can be modified as follows.
  • step ST2 of FIG. 3 obtains a complex conjugate p 1 * of the complex signal p 1, the product p 1 * ⁇ p 2 of the complex signal p 2.
  • This product p 1 * ⁇ p 2 can be transformed into the following equation.
  • a 1 , A 2 , and A 3 are represented by the following equations.
  • step ST3 of FIG. 2 ⁇ 1 + ⁇ 2 is obtained based on the product p 1 * ⁇ p 2 .
  • a method of obtaining ⁇ 1 + ⁇ 2 will be described.
  • Transmitter 20 the difference between the path length of the first path P 1 from (FIG. 1) to the first first path length of the path P 1 to the antenna 11A and the second antenna 11B, a first path P 1 and the second sufficiently smaller than the path length difference between the path P 2.
  • the transmitter 20 the difference between the path length (Fig. 1) from the second path P 2 of the second path length of the path P 2 to the first antenna 11A and to the second antenna 11B also, the first path P 1 When sufficiently smaller than the difference in path length between the second path P 2. Therefore, the arrival time differences ⁇ 1 and ⁇ 2 are sufficiently smaller than the arrival time differences ⁇ 12 . If the difference between the angular frequencies ⁇ of the three radio waves having different frequencies is sufficiently small, for example, if the fractional band is sufficiently small, ⁇ 1 and ⁇ 2 can be regarded as constants.
  • f is the maximum frequency of the three radio waves received by the radio wave direction-of-arrival estimation device 10.
  • ⁇ d 1 and ⁇ d 2 are the differences between the path lengths shown in FIG. 3A.
  • is the smallest of the wavelengths of the three radio waves received by the radio wave arrival direction estimation device 10.
  • step ST4 in FIG. 2 obtaining the quotient p 2 / p 1 obtained by dividing a complex signal p 2 a complex signal p 1.
  • step ST5 of FIG. 2 a difference ⁇ 1 ⁇ 2 of the arrival time difference is obtained based on ⁇ 1 + ⁇ 2 obtained in step ST3 and the quotient p 2 / p 1 obtained in step ST4.
  • a method of obtaining the difference ⁇ 1 ⁇ 2 between the arrival time differences will be described.
  • the real part is represented by the following equation.
  • the imaginary part is represented by the following equation.
  • step ST6 of FIG. 2 obtaining the .DELTA..tau 1 and .DELTA..tau 2.
  • ⁇ 1 and ⁇ 2 can be determined from ⁇ 1 + ⁇ 2 determined in step ST3 and ⁇ 1 ⁇ 2 determined in step ST5.
  • step ST7 of FIG. 2 the arrival directions ⁇ 1 and ⁇ 2 of the radio wave (FIG. 3A) are obtained from the arrival time differences ⁇ 1 and ⁇ 2 obtained in step ST6.
  • the arrival directions ⁇ 1 and ⁇ 2 can be obtained from the following equations.
  • D is the interval between the two antennas 11 (FIG. 3A)
  • c is the speed of light.
  • Solving Equation (18) leaves uncertainty of plus and minus signs in the arrival directions ⁇ 1 and ⁇ 2 . Furthermore, since there is a state in which ⁇ 1 and ⁇ 2 are interchanged, it is not possible to determine which of the arrival directions ⁇ 1 and ⁇ 2 is the direct wave. To uniquely identify the arrival direction theta 1 of the direct wave, the moving range of the actual transmitter 20 (FIG. 1), the arrangement of the object that reflects radio waves, it is sufficient to check the advance another way. From this information, it is possible to uniquely identify the arrival direction theta 1 of the direct wave.
  • FIG. 4 is a schematic diagram of a radio wave transmitting and receiving system in which a simulation is performed.
  • the distance from the transmitting antenna 23 to the two receiving antennas 11 was 5 m.
  • the arrival direction ⁇ 1 of the direct wave propagating in the first path P 1 was set to 0 °
  • the arrival direction ⁇ 2 of the reflected wave propagating in the second path P 2 was set to ⁇ 45 °.
  • the interval D between the two receiving antennas 11 was set to 0.1 m.
  • the frequency of the radio wave used for estimating the direction of arrival of the radio wave was set to 2.40 GHz or more and 2.48 GHz or less, and the frequency was changed every 2 MHz.
  • FIG. 5A is a graph showing the locus on the complex plane of the product p 1 * ⁇ p 2 when the frequency is changed. It can be seen that this locus can be approximated by a straight line L. The inclination angle from the real axis to the straight line L is represented by ⁇ .
  • FIG. 5B is a graph showing the locus of the quotient p 2 / p 1 on a complex plane when the frequency is changed.
  • This locus is a portion of the circumference C 1.
  • the circumference C 1 a portion of the circumference C 2 obtained by only rotating movement tilt angle ⁇ in the opposite direction to the gradient of the approximate straight line L shown in FIG. 5A, corresponds to the locus of the formula (16) .
  • the real part of the center coordinates of the circle C 2 corresponds to Formula (17).
  • Inclination angle of the approximated straight line L alpha, and the real part of the center coordinates of the circle C 2, ⁇ 1, can be obtained .DELTA..tau 2.
  • the arrival directions ⁇ 1 and ⁇ 2 of the radio wave can be obtained from ⁇ 1 and ⁇ 2 and the interval D between the antennas 11.
  • FIG. 6 is a chart showing a comparison between a true value defined in the radio wave transmission / reception system (FIG. 4) to be simulated and a value obtained by the simulation.
  • the difference between the true value of the arrival direction ⁇ 1 of the direct wave propagating in the first path P 1 and the simulation value is 0.2 °, and the true value of the arrival direction ⁇ 2 of the reflected wave propagating in the second path P 2 Is 1.8 °. From this result, it is understood that the direction of arrival can be estimated with sufficiently high accuracy by using the radio wave direction of arrival estimation device 10 according to the first embodiment.
  • the frequency was changed in steps of 2 MHz in a frequency band of not less than 2.40 GHz and not more than 2.48 GHz, but in actual measurement, three radio waves having different frequencies may be used.
  • the direction of arrival of radio waves can be estimated using two fixed receiving antennas 11 (FIG. 1).
  • the first embodiment does not require three or more receiving antennas and does not require a mechanical movable mechanism such as a turntable. For this reason, it is possible to estimate the arrival direction of the radio wave using the existing wireless system as it is.
  • the amount of calculation for determining the direction of arrival of the radio wave is extremely small as compared with the conventional method, it is possible to reduce the hardware cost and power consumption of the calculation unit 14 (FIG. 1).
  • the fractional band of the three radio waves means a value obtained by dividing the difference (bandwidth) between the highest frequency and the lowest frequency of the three radio waves by the center frequency.
  • the frequency of a radio wave used in the simulations described in the drawings of FIGS. 4 to 6 is not less than 2.40 GHz and not more than 2.48 GHz.
  • the bandwidth is 0.08 GHz and the center frequency is 2.44 GHz. It is. In this case, the fractional band is about 3.3%.
  • the fractional band is made too small, three points on the complex plane corresponding to the three radio waves come close to each other, and errors tend to occur when calculating the inclination of the approximate straight line and the center coordinates of the circumference.
  • a microwave or a millimeter wave as the three radio waves having different frequencies used in the first embodiment.
  • the distance D between the two antennas 11 can be set in a range from several mm to several cm. Therefore, it is possible to obtain an effect that the manufacturing of the radio wave arrival direction estimating apparatus 10 is easy and the estimation accuracy of the radio wave arrival direction can be improved. Further, it is preferable to use the 2.4 GHz band ISM band which does not require registration or license acquisition as a wireless station.
  • the interval D between the two antennas 11 be less than ⁇ / 4.
  • the moving range of the transmitter 20 is limited and the direction of arrival of the radio wave is also limited to a certain angle range, even if the distance D between the two antennas 11 is ⁇ / 4 or more, ⁇ 1 In some cases, + ⁇ 2 can be uniquely obtained.
  • the direction of arrival of the radio wave is an angle with respect to the horizontal direction. Limited to a range of 90 °.
  • the direction of arrival of the radio wave may be obtained based on the product p 1 * ⁇ p 2 and the quotient p 1 / p 2 by exchanging the denominator and numerator of the division.
  • ⁇ 1 and ⁇ 2 may be obtained by solving a simultaneous equation composed of Expressions (5) and (6). From the equations (5) and (6), a system of six elements having different angular frequencies ⁇ is obtained. The unknowns are six amplitudes a 1 and a 2 , and times ⁇ 11 , ⁇ 12 , ⁇ 21 , and ⁇ 22 corresponding to the phases based on the local clock signal. Therefore, the arrival time differences ⁇ 1 and ⁇ 2 can be obtained by solving the six-element simultaneous equations.
  • the receiving units 13 are provided for the two antennas 11 respectively. However, it is not always necessary to arrange the two receiving units 13, and even if one receiving unit 13 is shared by the two antennas 11, Good. For example, one receiving unit 13 may perform reception processing of the two antennas 11 in a time-division manner.
  • the direction of arrival of a radio wave can be estimated using the radio wave direction-of-arrival estimation device 10 according to the first embodiment.
  • the radio wave direction-of-arrival estimation device 10 By arranging a plurality of radio wave arrival direction estimating apparatuses 10, it becomes possible to characterize the position of the transmitter 20 (FIG. 1).
  • the transmitter 20 (FIG. 1) and the radio wave direction-of-arrival estimation device 10 perform communication conforming to the existing wireless communication protocol.
  • wireless communication protocols include, for example, Bluetooth Low Energy (BLE), WiFi, ZigBee (registered trademark), and the like.
  • FIG. 7 is a block diagram of the radio wave direction of arrival estimating apparatus 10 according to the second embodiment.
  • the radio wave direction-of-arrival estimation device 10 according to the second embodiment includes a demodulation unit 17.
  • the complex signals output from the two receiving units 13 are input to the demodulation unit 17.
  • the demodulation unit 17 demodulates the input complex signal.
  • the receiver of the existing wireless communication system can be shared with the radio wave direction-of-arrival estimation device. Further, one apparatus can perform both the process of estimating the radio wave arrival direction and the process of data communication.
  • a signal of a BLE advertising channel may be used as a radio wave used when estimating a radio wave arrival direction.
  • a field in which the signal pattern in the transmission / reception signal is predetermined is preferably used for estimating the radio wave arrival direction.
  • radio wave arrival direction estimation device 11 antenna 11A first antenna 11B second antenna 12 local oscillator 13 reception unit 14 operation unit 15 output unit 16 output device 17 demodulation unit 20 transmitter 21 local oscillator 22 signal generator 23 antenna P 1 first Route P 2 Second route ⁇ 1 Arrival direction of radio wave propagating on the first route ⁇ 2 Arrival direction of radio wave propagating on the second route

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

2つのアンテナが、周波数が異なる3つの電波を受信する。演算部が、2つのアンテナでそれぞれ受信した周波数の異なる3つの電波の受信信号に基づいて、同一の送信箇所から相互に異なる2つの経路を伝搬して2つのアンテナに到来する3つの電波の到来方向を求める。

Description

電波到来方向推定装置
 本発明は、電波到来方向推定装置に関する。
 マルチパス環境において、到来する直接波(または直達波)及び反射波の到来方向を推定する装置が知られている(特許文献1等)。特許文献1に開示された装置は、回転台の中心と、中心以外の位置に設置された2つのアンテナを用いて電波の到来方向を推定する。その他に、マルチパス環境において、到来する直達波及び反射波の到来方向を推定する方法として、MUSIC法やMODE法が知られている。
特開2009-14688号公報
 MUSIC法やMODE法を用いて電波の到来方向を推定するには、アンテナの数を到来波の個数よりも多くしなければならない。例えば、直達波と、主として1つの反射波とが到来する場合、3個のアンテナを設置しなければならない。特許文献1に開示された装置を用いる場合は、アンテナの個数を到来波の個数より多くする必要はないが、回転台を設置しなければならないため、装置を構成する素子数が増えて大型化する。
 本発明の目的は、アンテナの個数を到来波の数より増加させる必要がなく、回転台も不要な電波到来方向推定装置を提供することである。
 本発明の一観点によると、
 周波数が異なる3つの電波を受信する2つのアンテナと、
 前記2つのアンテナでそれぞれ受信した周波数の異なる前記3つの電波の受信信号に基づいて、同一の送信箇所から相互に異なる2つの経路を伝搬して前記2つのアンテナに到来する前記3つの電波の到来方向を求める演算部と
を有する電波到来方向推定装置が提供される。
 周波数の異なる3つの電波を受信することにより、2つのアンテナを用い、アンテナを回転させる回転台等の機械的な可動装置を用いることなく、電波の到来方向を推定することができる。
図1は、第1実施例による電波到来方向推定装置及び送信機を含む無線通信システムの概略図である。 図2は、第1実施例による電波到来方向推定装置の演算部が行う処理のフローチャートである。 図3Aは、電波到来方向推定装置の2つのアンテナと、電波の到来方向との関係を示す図であり、図3Bは、複素信号S11、S12、S21、S22、p、及びpを複素平面上に表したグラフである。 図4は、シミュレーションを行った電波送受信系の概略図である。 図5Aは、周波数を変化させたときの積p ・pの、複素平面上における軌跡を示すグラフであり、図5Bは、周波数を変化させたときの商p/pの、複素平面上における軌跡を示すグラフである。 図6は、シミュレーション対象の電波送受信系(図4)で定義した真値と、シミュレーションによって求めた値とを比較して示す図表である。 図7は、第2実施例による電波到来方向推定装置のブロック図である。
 [第1実施例]
 図1から図6までの図面を参照して、第1実施例による電波到来方向推定装置について説明する。
 図1は、第1実施例による電波到来方向推定装置10及び送信機20を含む無線通信システムの概略図である。送信機20は、局部発振器21、信号生成部22、及びアンテナ23を含む。局部発振器21はローカルクロック信号を出力する。信号生成部22は、ある決まったパターンの特定の送信信号を、3つの異なるキャリア周波数で順番に出力する。この送信信号がアンテナ23から電波として放射される。このように、同一の送信箇所から、異なる周波数を持つ3つの電波が順番に放射される。
 第1実施例では、送信機20から放射された電波が電波到来方向推定装置10に達するまでの主な伝搬経路として、相互に異なる第1経路P及び第2経路Pの2つが存在するものとする。第1経路Pは、例えば、送信機20から電波到来方向推定装置10に直接到達する直達波の経路に相当する。第2経路Pは、例えば、屋外ではビル等、屋内では壁や床等で反射して電波到来方向推定装置10に到達する反射波の経路に相当する。
 電波到来方向推定装置10は、2つのアンテナ11を有する。2つのアンテナ11は、空間的に異なる位置に配置され、送信機20から放射された周波数の異なる3つの電波を受信する機能を持つ。2つのアンテナ11で受信された受信信号が、それぞれ対応する受信部13に入力される。2つの受信部13は、局部発振器12から供給されるローカルクロックで動作し、アンテナ11で受信された受信信号のダウンコンバートを行う。すなわち、2つの受信部13は、それぞれ同期したローカルクロック信号で動作する。例えば、受信部13は、受信信号をローカルクロック信号と比較することにより、受信信号を複素表現に置き換えた複素信号(IQ信号)を出力する。複素信号は、受信信号の振幅情報と位相情報とを含む。この複素信号は、周波数の異なる3つの電波についてそれぞれ出力される。
 2つの受信部13からそれぞれ出力された複素信号が演算部14に入力される。演算部14は、周波数の異なる3つの電波の受信信号に基づいて、第1経路P及び第2経路Pを通って2つのアンテナ11まで到達した電波の到来方向を求める。例えば、演算部14は、2つのアンテナ11でそれぞれ受信された受信信号をダウンコンバートした複素信号を数値演算することにより、電波の到来方向を求める。
 演算部14で求められた電波の到来方向に関する情報が出力部15に入力される。出力部15は、電波の到来方向に関する情報を出力装置16に出力する。出力装置16として、例えばプリンタ、ディスプレイ、通信装置等が用いられる。
 次に、図2、図3A、及び図3Bを参照して、演算部14の処理について説明する。
 図2は、演算部14(図1)が行う処理のフローチャートである。
 図3Aは、電波到来方向推定装置10の2つのアンテナ11と、電波の到来方向との関係の一例を示す図である。2つのアンテナ11が間隔Dを隔てて設置されている。一方のアンテナ11を第1アンテナ11Aといい、他方のアンテナ11を第2アンテナ11Bということとする。電波の到来方向を、2つのアンテナ11を通過する仮想直線VLに対して直交する仮想平面からの傾斜角で表すこととする。基準となる仮想平面から第1経路P及び第2経路Pまでの傾斜角を、それぞれθ及びθで表す。送信機20(図1)から第1アンテナ11Aまでの第1経路Pの経路長と、第2アンテナ11Bまでの第1経路Pの経路長との差をΔdで表す。同様に、送信機20(図1)から第1アンテナ11Aまでの第2経路Pの経路長と、第2アンテナ11Bまでの第2経路Pの経路長との差をΔdで表す。
 まず、図2のステップST1において、第1アンテナ11A及び第2アンテナ11Bで受信した周波数の異なる3つの電波をそれぞれ複素表現に置き換えて、周波数ごとに複素信号p及びpを求める。第1経路P及び第2経路Pを通って第1アンテナ11Aで受信される信号を複素表現に置き換えた複素信号S11及びS12は、それぞれ以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、a及びaは、それぞれ第1経路P及び第2経路Pを通って第1アンテナ11Aで受信された信号の振幅を表す。ωは電波の角周波数を表す。τ11及びτ12は、それぞれ第1経路P及び第2経路Pを通った受信信号の、ローカルクロック信号を基準とした位相に相当する時間を表す。
 同様に、第1経路P及び第2経路Pを通って第2アンテナ11Bで受信された信号を複素表現に置き換えた複素信号S21及びS22は、以下の式で表される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 第1経路P及び第2経路Pを通って第2アンテナ11Bで受信された信号の振幅は、それぞれ第1経路P及び第2経路Pを通って第1アンテナ11Aで受信された信号の振幅と同一であると仮定している。τ21及びτ22は、それぞれ第1経路P及び第2経路Pを通った受信信号の、ローカルクロック信号に対する位相の遅れに相当する時間を表す。
 第1アンテナ11A及び第2アンテナ11Bで受信される複素信号p及びpは、以下の式で表すことができる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 図3Bは、複素信号S11、S12、S21、S22、p、及びpを複素平面上に表したグラフである。複素信号p、pの振幅及び位相は、それぞれ第1アンテナ11A及び第2アンテナ11Bで受信した受信信号をダウンコンバートすることにより求めることができる。複素信号S11、S12、S21、S22の各々の振幅及び位相は未知である。
 第1アンテナ11A及び第2アンテナ11Bで受信される信号を到着時刻差(位相差に相当)のパラメータで表現するために、Δτ、Δτ、Δτ12を以下のように定義する。
Figure JPOXMLDOC01-appb-M000007
 Δτは、第1経路Pを通って第1アンテナ11A及び第2アンテナ11Bに到達する電波の到着時刻差を表す。Δτは、第2経路Pを通って第1アンテナ11A及び第2アンテナ11Bに到達する電波の到着時刻差を表す。Δτ12は、第1経路Pを通って第1アンテナ11Aに到達する電波と、第2経路Pを通って第1アンテナ11Aに到達する電波との到着時刻差を表す。
 式(7)は、以下のように変形することができる。
Figure JPOXMLDOC01-appb-M000008
 次に、図3のステップST2において、複素信号pの複素共役p と、複素信号pとの積p ・pを求める。この積p ・pは、以下の式に変形することができる。
Figure JPOXMLDOC01-appb-M000009
 ここで、A、A、Aは、以下の式で表される。
Figure JPOXMLDOC01-appb-M000010
 次に、図2のステップST3において、積p ・pに基づいてΔτ+Δτを求める。以下、Δτ+Δτの求め方について説明する。
 送信機20(図1)から第1アンテナ11Aまでの第1経路Pの経路長と第2アンテナ11Bまでの第1経路Pの経路長との差は、第1経路Pと第2経路Pとの経路長の差よりも十分小さい。同様に、送信機20(図1)から第1アンテナ11Aまでの第2経路Pの経路長と第2アンテナ11Bまでの第2経路Pの経路長との差も、第1経路Pと第2経路Pとの経路長の差より十分小さい。このため、到着時刻差Δτ及びΔτは、到着時刻差Δτ12より十分小さい。異なる周波数を持つ3つの電波の角周波数ωの差が十分小ければ、例えば比帯域が十分小さければ、ωΔτ、及びωΔτは定数とみなすことができる。
 この仮定の下、角周波数ωが変化したとき、式(9)においてΔτ12を含む項Aのみが変動すると考えることができる。Aの係数である指数関数が、積p ・pの複素平面上における軌跡の、実数軸(I軸)からの回転量を示す。積p ・pの軌跡は、この回転量に相当する傾きを持つ直線で近似される。式(9)のAの係数である指数関数の指数部分にΔτ+Δτが含まれているため、積p ・pの軌跡の近似直線の傾きから、Δτ+Δτを求めることができる。Δτ+Δτを求めるときの角周波数ωとして、3つの電波の角周波数の平均値を用いるとよい。
 ただし、Δτ+Δτを求める際に、一般的に複数の解が存在し、一意に求めることができない。唯一の解を持つには、以下の条件が満たされればよい。
Figure JPOXMLDOC01-appb-M000011
 ここで、fは、電波到来方向推定装置10が受信する3つの電波の周波数のうち最大のものとする。式(11)から以下の式が導出される。
Figure JPOXMLDOC01-appb-M000012
 ここで、Δd、Δdは、図3Aに示した経路長の差である。λは、電波到来方向推定装置10が受信する3つの電波の波長のうち最小のものである。
 式(12)から、2つのアンテナ11の間隔Dをλ/4未満にすることにより、到着時刻差の和Δτ+Δτの解を一意に求めることができる。
 次に、図2のステップST4において、複素信号pを複素信号pで除算した商p/pを求める。
 その後、図2のステップST5において、ステップST3で求めたΔτ+Δτ、及びステップST4で求めた商p/pに基づいて、到着時刻差の差Δτ-Δτを求める。以下、到着時刻差の差Δτ-Δτを求める方法について説明する。
 まず、商p/p
Figure JPOXMLDOC01-appb-M000013
を乗じて実部と虚部とを算出する。実部は以下の式で表される。
Figure JPOXMLDOC01-appb-M000014
 虚部は以下の式で表される。
Figure JPOXMLDOC01-appb-M000015
 式(14)及び式(15)から、
Figure JPOXMLDOC01-appb-M000016
は、角周波数ωが変動したとき、複素平面上で円周の軌跡を描くことがわかる。角周波数ωを変動させたときの式(16)の軌跡は、商p/pの軌跡を、式(9)で表される近似直線の傾きと逆方向に、近似直線の傾きと同じ角度だけ回転させたものである。
 回転後の円周の中心座標の実数成分は、式(14)から、以下の式で表されることがわかる。
Figure JPOXMLDOC01-appb-M000017
 従って、回転後の円周の中心座標の実数成分がわかれば、式(17)からΔτ-Δτの値を決定することができる。円周上の少なくとも3点の座標がわかれば、その円周の中心座標を決定することができる。第1実施例では、周波数の異なる3つの電波を受信するため、商p/pの計算結果から、円周上の3点の座標を決定することができる。式(17)からΔτ-Δτの値を求めるときには、角周波数ωとして、3つの電波の角周波数の平均値を採用するとよい。
 次に、図2のステップST6において、Δτ及びΔτを求める。Δτ及びΔτは、ステップST3で求めたΔτ+Δτ、及びステップST5で求めたΔτ-Δτから求めることができる。
 次に、図2のステップST7において、ステップST6で求められた到着時刻差Δτ、Δτから、電波の到来方向θ、θ(図3A)を求める。到来方向θ及びθは、以下の式から求めることができる。
Figure JPOXMLDOC01-appb-M000018
 ここで、Dは2つのアンテナ11の間隔(図3A)であり、cは光速である。
 式(18)を解くと、到来方向θ、θには、プラスマイナスの符号の不確定性が残る。さらに、ΔτとΔτとが入れ替わった状態が存在するため、到来方向θとθとのどちらが直達波のものかを決定することができない。直達波の到来方向θを一意に特定するには、実際の送信機20(図1)の移動範囲、電波を反射させる物体の配置等を、予め別の方法で確認しておけばよい。これらの情報から、直達波の到来方向θを一意に特定することが可能になる。
 次に、図4から図6までの各図面を参照して、第1実施例による電波到来方向推定装置10で電波の到来方向を推定する方法で到来方向を求めるシミュレーションについて説明する。
 図4は、シミュレーションを行った電波送受信系の概略図である。送信用のアンテナ23から受信用の2つのアンテナ11までの距離を5mとした。第1経路Pを伝搬する直達波の到来方向θを0°とし、第2経路Pを伝搬する反射波の到来方向θを-45°とした。受信用の2つのアンテナ11の間隔Dを0.1mとした。電波到来方向の推定に用いる電波の周波数を2.40GHz以上2.48GHz以下とし、2MHz刻みで周波数を変化させた。
 図5Aは、周波数を変化させたときの積p ・pの、複素平面上における軌跡を示すグラフである。この軌跡は、ほぼ直線Lで近似できることがわかる。実数軸からこの直線Lまでの傾き角をαで表す。
 図5Bは、周波数を変化させたときの商p/pの、複素平面上における軌跡を示すグラフである。この軌跡は、円周Cの一部分である。この円周Cを、図5Aに示した近似直線Lの傾きとは反対向きに傾き角αだけ回転移動させて得られる円周Cの一部が、式(16)の軌跡に対応する。円周Cの中心座標の実部が式(17)に相当する。
 近似直線Lの傾き角α、及び円周Cの中心座標の実部から、Δτ、Δτを求めることができる。Δτ、Δτ、及びアンテナ11の間隔Dから、電波の到来方向θ、θを求めることができる。
 図6は、シミュレーション対象の電波送受信系(図4)で定義した真値と、シミュレーションによって求めた値とを比較して示す図表である。第1経路Pを伝搬する直達波の到来方向θの真値とシミュレーション値との差は0.2°であり、第2経路Pを伝搬する反射波の到来方向θの真値とシミュレーション値との差は1.8°である。この結果から、第1実施例による電波到来方向推定装置10を用いることにより、十分高い精度で到来方向を推定できることがわかる。
 上記シミュレーションでは、周波数2.40GHz以上2.48GHz以下の帯域内で、2MHz刻みで周波数を変化させたが、実際の測定では、周波数の異なる3つの電波を用いればよい。
 次に、第1実施例の優れた効果について説明する。
 第1実施例では、マルチパス環境下においても、固定された2つの受信用のアンテナ11(図1)を用いて、電波の到来方向を推定することができる。このように、第1実施例では、3個以上の受信用のアンテナを必要とせず、回転台等の機械的な可動機構を必要としない。このため、既存の無線システムをそのまま利用して、電波の到来方向を推定することができる。また、電波の到来方向を求めるための演算量が、従来の方法と比べて極めて少ないため、演算部14(図1)のハードウェアの低コスト化及び低消費電力化を図ることができる。
 第1実施例では、周波数の異なる3つの電波のそれぞれに関する積p ・pの値を複素平面上にプロットした3点が1本の近似直線(図5Aの近似直線L)上に位置すると仮定した。この近似が成立するようにするために、3つの電波の比帯域を5%未満にすることが好ましい。ここで、比帯域とは、3つの電波の最高周波数と最低周波数との差(帯域幅)を、中心周波数で除した値を意味する。例えば、図4から図6までの図面で説明したシミュレーションで用いた電波の周波数は2.40GHz以上2.48GHz以下である。この帯域内の電波から、周波数2.40GHz、2.44GHz、2.48GHzの3つの電波を用いて電波の到来方向を推定する場合、帯域幅は0.08GHzであり、中心周波数は2.44GHzである。この場合、比帯域は約3.3%になる。
 逆に、比帯域を小さくしすぎると、3つの電波に対応する複素平面上の3つの点が接近して、近似直線の傾きや、円周の中心座標を求めるときに誤差が生じやすくなる。近似直線の傾きや、円周の中心座標の計算精度を高く維持するために、比帯域を3%以上にすることが好ましい。
 第1実施例で用いる周波数の異なる3つの電波として、マイクロ波またはミリ波を用いることが好ましい。マイクロ波またはミリ波を用いると、2つのアンテナ11(図1、図3A)の間隔Dを数mmから数cmの範囲に設定することができる。このため、電波到来方向推定装置10の製造が容易であり、かつ電波の到来方向の推定精度を高めることができるという効果が得られる。さらに、無線局としての登録や免許取得が不要かまたは簡易な2.4GHz帯のISMバンドを用いるとよい。
 次に、第1実施例の種々の変形例について説明する。
 第1実施例では、前述のように、ステップST3(図2)でΔτ+Δτを一意に求めるために、2つのアンテナ11の間隔Dをλ/4未満にすることが好ましい。送信機20の移動範囲が制限されており、電波の到来方向も一定の角度範囲内に制限されている場合には、2つのアンテナ11の間隔Dがλ/4以上であっても、Δτ+Δτを一意に求めることができる場合がある。例えば、建物内の直交する壁面の角部分に受信用のアンテナ11を設置し、建物内の送信機20からの電波の到来方向を推定する場合には、電波の到来方向は、水平方向に関して角度90°の範囲内に制限される。
 上記第1実施例では、複素信号pの複素共役p と、他の複素信号pとの積p ・p、及び複素信号pを複素信号pで除した商p/pとに基づいて、電波の到来方向を求めた。その他の方法として、除算の分母分子を入れ替えて、積p ・p、及び商p/pとに基づいて、電波の到来方向を求めてもよい。
 その他に、式(5)及び式(6)とからなる連立方程式を解いて、Δτ及びΔτを求めてもよい。式(5)及び式(6)から、角周波数ωが異なる6元連立方程式が得られる。未知数は、振幅a、a、ローカルクロック信号を基準とした位相に相当する時間τ11、τ12、τ21、τ22の6個である。従って、この6元連立方程式を解くことにより、到着時刻差Δτ及びΔτを求めることができる。
 第1実施例では、2つのアンテナ11に対してそれぞれ受信部13を設けたが、受信部13は必ずしも2つ配置する必要はなく、1つの受信部13を2つのアンテナ11で共用してもよい。例えば、1つの受信部13が、2つのアンテナ11の受信処理を時分割で行うようにするとよい。
 上述のように、第1実施例による電波到来方向推定装置10を用いて、電波の到来方向を推定することができる。複数の電波到来方向推定装置10を配置することにより、送信機20(図1)の位置を特性することが可能になる。
 [第2実施例]
 次に、図7を参照して第2実施例による電波到来方向推定装置10について説明する。以下、第1実施例による電波到来方向推定装置10と共通の構成については説明を省略する。第2実施例では、送信機20(図1)と電波到来方向推定装置10とが、既存の無線通信用プロトコルに準拠した通信を行う。無線通信用プロトコルの例として、例えばブルートゥースローエナジ(BLE)、WiFi、ZigBee(登録商標)等が挙げられる。
 図7は、第2実施例による電波到来方向推定装置10のブロック図である。第2実施例による電波到来方向推定装置10は復調部17を備えている。2つの受信部13から出力された複素信号が復調部17に入力される。復調部17は、入力された複素信号を復調する。
 第2実施例においては、既存の無線通信システムの受信機を、電波到来方向推定装置と共用することができる。さらに、1つの装置で、電波到来方向の推定とデータ通信との両方の処理を行うことができる。例えば、電波到来方向の推定を行う際に用いる電波として、BLEのアドバタイジングチャネルの信号を用いるとよい。特に、送受信信号中の信号パターンが予め決まっているようなフィールドを、電波到来方向の推定に用いるとよい。
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
10 電波到来方向推定装置
11 アンテナ
11A 第1アンテナ
11B 第2アンテナ
12 局部発振器
13 受信部
14 演算部
15 出力部
16 出力装置
17 復調部
20 送信機
21 局部発振器
22 信号生成部
23 アンテナ
 第1経路
 第2経路
θ 第1経路を伝搬する電波の到来方向
θ 第2経路を伝搬する電波の到来方向

Claims (8)

  1.  周波数が異なる3つの電波を受信する2つのアンテナと、
     前記2つのアンテナでそれぞれ受信した周波数の異なる前記3つの電波の受信信号に基づいて、同一の送信箇所から相互に異なる2つの経路を伝搬して前記2つのアンテナに到来する前記3つの電波の到来方向を求める演算部と
    を有する電波到来方向推定装置。
  2.  前記演算部は、
     前記3つの電波のそれぞれについて、前記2つのアンテナで受信した受信信号をそれぞれ複素表現に置き換えた2つの複素信号の一方の複素共役と他方との積、及び前記2つの複素信号の一方を他方で除算した商とを求め、
     前記3つの電波のそれぞれについて求められた前記積と前記商とに基づいて、前記3つの電波の到来方向を求める請求項1に記載の電波到来方向推定装置。
  3.  前記演算部は、
     前記3つの電波についてそれぞれ求められた前記積に対応する複素平面上の3つの点に基づいて求められた近似直線の傾き、及び前記3つの電波についてそれぞれ求められた前記商に対応する複素平面上の3つの点を通過する円周の中心座標に基づいて、前記3つの電波の到来方向を求める請求項2に記載の電波到来方向推定装置。
  4.  前記2つのアンテナの間隔が、前記3つの電波の波長のうち最小の波長の1/4以下である請求項1乃至3のいずれか1項に記載の電波到来方向推定装置。
  5.  前記3つの電波の比帯域が5%未満である請求項1乃至4のいずれか1項に記載の電波到来方向推定装置。
  6.  前記3つの電波は、マイクロ波またはミリ波である請求項1乃至5のいずれか1項に記載の電波到来方向推定装置。
  7.  前記3つの電波は、ある無線通信用プロトコルに準拠したものである請求項1乃至6のいずれか1項に記載の電波到来方向推定装置。
  8.  前記3つの電波は、2.4GHz帯のISMバンドの電波である請求項1乃至7のいずれか1項に記載の電波到来方向推定装置。
     
PCT/JP2019/028867 2018-08-03 2019-07-23 電波到来方向推定装置 WO2020026895A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020533452A JP6860121B2 (ja) 2018-08-03 2019-07-23 電波到来方向推定装置
CN201980051532.9A CN112534292B (zh) 2018-08-03 2019-07-23 电波到来方向推定装置
US17/165,083 US11467243B2 (en) 2018-08-03 2021-02-02 Radio wave arrival direction estimation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-146495 2018-08-03
JP2018146495 2018-08-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/165,083 Continuation US11467243B2 (en) 2018-08-03 2021-02-02 Radio wave arrival direction estimation apparatus

Publications (1)

Publication Number Publication Date
WO2020026895A1 true WO2020026895A1 (ja) 2020-02-06

Family

ID=69231732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028867 WO2020026895A1 (ja) 2018-08-03 2019-07-23 電波到来方向推定装置

Country Status (4)

Country Link
US (1) US11467243B2 (ja)
JP (1) JP6860121B2 (ja)
CN (1) CN112534292B (ja)
WO (1) WO2020026895A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007937B4 (de) * 2017-10-23 2022-03-03 Mitsubishi Electric Corporation Kommunikationseinrichtung, Steuerungsverfahren und Steuerungsprogramm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014688A (ja) * 2007-07-09 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> 電波到来方向推定装置
WO2011123065A1 (en) * 2010-03-30 2011-10-06 Agency For Science, Technology And Research A device for performing signal processing and a signal processing method for localization of another device
US20150304979A1 (en) * 2013-12-27 2015-10-22 Massachusetts Institute Of Technology Characterizing multipath delays in antenna array and synthetic aperture radar systems
JP2016194454A (ja) * 2015-03-31 2016-11-17 三菱重工メカトロシステムズ株式会社 電波到来角度検出装置、車両検出システム、電波到来角度検出方法及び車両誤検出防止方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708550B2 (ja) * 1989-06-02 1998-02-04 株式会社トキメック 方位計測方法、方位計測システム、送信装置および受信装置
JP2011237359A (ja) * 2010-05-13 2011-11-24 Seiko Epson Corp 電波到来角度検出装置および電波到来角度検出方法
EP3566072B1 (en) * 2017-01-04 2023-04-05 Alps Alpine Co., Ltd. Personal radar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014688A (ja) * 2007-07-09 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> 電波到来方向推定装置
WO2011123065A1 (en) * 2010-03-30 2011-10-06 Agency For Science, Technology And Research A device for performing signal processing and a signal processing method for localization of another device
US20150304979A1 (en) * 2013-12-27 2015-10-22 Massachusetts Institute Of Technology Characterizing multipath delays in antenna array and synthetic aperture radar systems
JP2016194454A (ja) * 2015-03-31 2016-11-17 三菱重工メカトロシステムズ株式会社 電波到来角度検出装置、車両検出システム、電波到来角度検出方法及び車両誤検出防止方法

Also Published As

Publication number Publication date
US11467243B2 (en) 2022-10-11
US20210156947A1 (en) 2021-05-27
JP6860121B2 (ja) 2021-04-14
CN112534292A (zh) 2021-03-19
JPWO2020026895A1 (ja) 2021-05-13
CN112534292B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US20240168147A1 (en) Method and apparatus for determining location using phase difference of arrival
Zand et al. A high-accuracy phase-based ranging solution with Bluetooth Low Energy (BLE)
US10142778B2 (en) Direction finding for legacy bluetooth devices
US9551775B2 (en) Enhancing client location via beacon detection
JP6400589B2 (ja) 制御された帯域幅の複数のスケールを使用した無線装置間における距離の検知
TW201305589A (zh) 無線區域網路定位方法及設備
JP2011153997A (ja) 無線通信装置、無線通信装置における位置測位方法、及び無線通信システム
US20130181861A1 (en) System and method for enhanced point-to-point direction finding
TWI655450B (zh) 線性調頻展頻定位系統的定位方法與無線節點
US20160077204A1 (en) Measurement accuracy classifier for high-resolution ranging
CN110914699A (zh) 基于信标的位置感知系统
WO2020060686A1 (en) Methods and apparatus for improved accuracy and positioning estimates
US11696092B2 (en) Multi-wireless device location determination
WO2020026895A1 (ja) 電波到来方向推定装置
Paulino et al. Design and experimental evaluation of a Bluetooth 5.1 antenna array for angle-of-arrival estimation
Jiang et al. Locra: Enable practical long-range backscatter localization for low-cost tags
Scheiblhofer et al. A high-precision long range cooperative radar system for rail crane distance measurement
Panta et al. Distance Variation Monitoring with Wireless Two-way Interferometry (Wi-Wi).
US20230284177A1 (en) Method and apparatus for carrier-phase positioning with multiple frequencies
Ledeczi et al. Towards precise indoor RF localization
US11555932B2 (en) Round trip phase extended range
JP2023036222A (ja) 制御装置、システムおよび制御方法
JP2023036223A (ja) 制御装置、システムおよび制御方法
EP4046285A1 (en) Access point (ap) placement using fine time measurement (ftm)
JP4728923B2 (ja) 無線測位システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843812

Country of ref document: EP

Kind code of ref document: A1