WO2020026860A1 - Heat transport device, heat transfer sheet, heat transport composite body, electronic device, and method for producing heat transport device - Google Patents

Heat transport device, heat transfer sheet, heat transport composite body, electronic device, and method for producing heat transport device Download PDF

Info

Publication number
WO2020026860A1
WO2020026860A1 PCT/JP2019/028535 JP2019028535W WO2020026860A1 WO 2020026860 A1 WO2020026860 A1 WO 2020026860A1 JP 2019028535 W JP2019028535 W JP 2019028535W WO 2020026860 A1 WO2020026860 A1 WO 2020026860A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
transport device
heat transport
storage material
heat storage
Prior art date
Application number
PCT/JP2019/028535
Other languages
French (fr)
Japanese (ja)
Inventor
弘幸 良尊
荒巻 慶輔
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2020026860A1 publication Critical patent/WO2020026860A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention provides a heat transport device, a heat conductive sheet, a heat transport composite, and an electronic device capable of suppressing a sharp rise in surface temperature while having excellent heat transport characteristics, and having excellent heat transport characteristics.
  • the present invention relates to a method for manufacturing a heat transport device capable of obtaining a heat transport device capable of suppressing a rapid rise in surface temperature while reducing the temperature.
  • a heat sink or a heat sink made of a metal material having high thermal conductivity such as copper or aluminum is widely used.
  • These heat radiating components having excellent thermal conductivity are arranged close to electronic components, such as semiconductor packages, which are heat generating portions in the electronic device, in order to achieve a heat radiating effect or reduce the temperature inside the device.
  • a heat pipe is one of the heat dissipating components (heat transport devices) having a high heat transport capability.
  • the principle of the heat pipe is that the base of the heat sink has a hollow structure, and a liquid (operating fluid) that is easily volatilized is sealed in the base. , Heat is released and returns to liquid. This repetition lowers the thermal resistance value as compared with a normal heat sink.
  • the heat pipe When mounted on a thin mobile terminal, the heat pipe is flattened and used. However, there is a limit to thinning because a round tube having a complicated internal structure is flattened.
  • the heat transport device is required to be further reduced in thickness, and a technology corresponding to this is a thin “vapor chamber”.
  • the vapor chamber has a structure in which a capillary phenomenon is generated between two metal plates, such as a surface-type or plate-type heat pipe, and they are bonded together.
  • a wick material for generating a capillary pressure is provided on at least one of the upper surface and the lower surface facing each other in the thickness direction of a flat closed container, and the upper surface and the lower surface are provided with a wick material.
  • a flat heat pipe (vapor chamber) in which a support is disposed between the heat pipes is disclosed.
  • Patent Document 1 Although a certain heat transfer characteristic can be realized, there is a problem that the surface temperature of the vapor chamber rapidly rises, which causes the surface temperature of the electronic device to rise. In electronic devices such as smartphones, from the viewpoint of safety, it is important that the surface temperature does not become too high. Therefore, the development of a technology capable of suppressing a rapid increase in the surface temperature of the vapor chamber has been desired. .
  • the present invention has been made in view of the above circumstances, and has excellent heat transport characteristics, a heat transport device capable of suppressing a rapid rise in surface temperature, a heat conductive sheet, a heat transport composite, and An object is to provide an electronic device. Another object of the present invention is to provide a method for manufacturing a heat transport device capable of obtaining a heat transport device having excellent heat transport characteristics and capable of suppressing a rapid rise in surface temperature. Aim.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, as for the heat transport device, a heat transport device having the same configuration as the vapor chamber (the configuration having the wick and the working fluid in the metal housing).
  • a heat transport device having the same configuration as the vapor chamber (the configuration having the wick and the working fluid in the metal housing).
  • the main body By providing the main body, excellent heat transport characteristics are realized, and further, within the metal housing, a heat storage material portion filled with a heat storage material having a phase transition temperature is provided, and the heat storage material portion and the heat transport device main body are provided. It has been found that by integrating the heat transfer, heat transmitted from the heat transport device body can be accumulated with high efficiency, and a rapid rise in surface temperature can be suppressed.
  • the present invention has been made based on the above findings, and the gist is as follows.
  • a heat transport device main body having a wick and a working fluid in a metal housing, and a heat storage material portion filled with a heat storage material having a phase transition temperature in the metal housing.
  • a heat transport device, wherein the heat storage material section is integrated.
  • the heat transport device according to (1), wherein the heat storage material has a latent heat per unit mass of 150 / g or more.
  • the heat transport device according to (1), wherein the heat storage material has a latent heat per unit volume of 150 J / cm 3 or more.
  • a heat conductive sheet, wherein the heat conductive sheet is provided.
  • a heat transport composite comprising: the heat transport device according to any one of (1) to (7); and a heat conductive sheet provided adjacent to the heat transport device.
  • An electronic apparatus including a heat source, a heat radiating member, and a heat transport device provided between the heat source and the heat radiating member, wherein the transport device is one of the above (1) to (7).
  • An electronic apparatus which is the heat transport device according to any one of the above.
  • (11) The method for manufacturing a heat transport device according to any one of (1) to (7), wherein the metal plates are etched, and then the etched metal plates are overlapped to perform diffusion bonding.
  • a heat transport device it is possible to provide a heat transport device, a heat conductive sheet, a heat transport composite, and an electronic device that have excellent heat transport characteristics and can suppress a rapid rise in surface temperature.
  • a method for manufacturing a heat transport device capable of obtaining a heat transport device having excellent heat transport characteristics and capable of suppressing a rapid rise in surface temperature.
  • FIG. 2 is a cross-sectional view schematically showing one embodiment of the heat transport device of the present invention. It is sectional drawing which showed typically other Embodiment of the heat transport device of this invention.
  • (A) is a cross-sectional view schematically showing another embodiment of the heat transport device of the present invention
  • (b) is a cross-sectional view schematically showing another embodiment of the heat transport device of the present invention.
  • FIG. FIG. 3 is a diagram illustrating a process flow in one embodiment of the method for manufacturing a heat transport device of the present invention. It is the figure explaining the flow of the process about other embodiments of the manufacturing method of the heat transport device of the present invention.
  • FIG. 1 is a cross-sectional view schematically illustrating an embodiment of an electronic apparatus according to the invention. It is the perspective view which showed typically the assembly state about the semiconductor device of each sample in an Example.
  • FIG. 4 is a diagram illustrating a relationship between a time lapse and a surface temperature of a semiconductor device of each sample in an example.
  • ⁇ Heat transport device> First, the heat transport device of the present invention will be described.
  • a heat transport device main body 20 having a wick and a working fluid is filled in a metal housing 10
  • a heat storage material 31 having a phase transition temperature is filled in the metal housing 10.
  • a heat storage material section 30 is integrated.
  • the heat absorbed by the heat transport device body 20 from the heating element is not immediately released to the outside, but is temporarily stored at high efficiency. It is possible to accumulate in the material section 30, and it is possible to suppress a rapid increase in the surface temperature of the heat transport device 1 itself, and in turn, the surface temperature of the entire semiconductor device.
  • a heat storage material portion is not provided in the device, a rapid rise in surface temperature cannot be suppressed.
  • a sheet or the like capable of storing heat is provided on the surface of the conventional heat transport device, the heat transport device main body 20 and the heat storage material section 30 are not integrated, although some heat storage effect can be obtained. Therefore, the efficiency of heat transport to the heat storage material section 30 is low, and sufficient heat storage cannot be performed, so that it is difficult to suppress a rapid rise in surface temperature.
  • a heat storage sheet or the like is provided on the heat transport device as a separate member, there is a problem that the dimensions of the entire heat transport device become large and space saving is hindered.
  • the heat transport device 1 is a device for absorbing a heat of a heating element (an electronic component such as a semiconductor package) in an electronic device and dissipating the heat to reduce the temperature inside the device.
  • a heating element an electronic component such as a semiconductor package
  • a vapor chamber, a heat pipe, a heat spreader, or the like can be used.
  • the heat transport device 1 of the present invention is preferably a vapor chamber. This is because it is desired to have a better heat transport effect and to suppress a rise in the surface temperature of the device.
  • heat transport device main body 20 and the heat storage material section 30 are integrated means that the heat transport device main body 20 and the heat storage material section 30 are connected to each other to form one member (the heat transport device 30). This is the state where 1) is formed.
  • the heat transport device 1 of the present invention for example, as shown in FIG. 1, a configuration in which the heat transport device main body 20 and the heat storage material section 30 are present in one and the same metal casing 10 is exemplified.
  • the thickness T (see FIG. 1) of the heat transport device 1 is not particularly limited, and can be appropriately changed according to design contents and the like. For example, from the viewpoint of space saving, it is preferably 1.0 mm or less, more preferably 0.8 mm or less.
  • the thickness T of the heat transport device 1 is preferably 0.1 mm or more, and more preferably 0.2 mm or more, from the viewpoint of the heat transport characteristics and heat storage efficiency of the heat transport device 1.
  • the heat transport device 1 of the present invention includes a heat transport device main body 20, as shown in FIG.
  • the heat transport device main body 20 is a member having a wick and a hydraulic fluid inside the metal housing 10 and responsible for the heat transport effect of the heat transport device 1 of the present invention.
  • the metal casing 10 constituting the heat transport device main body 20 is not particularly limited, and a casing made of a known metal can be used. Although there is no particular limitation on the type of metal, copper, aluminum, titanium, nickel, silver, or an alloy thereof is used because it has a certain strength, high thermal conductivity, and an electromagnetic wave shielding function. Is preferred.
  • the wick and the working fluid in the metal casing 10 are members for carrying out heat transport in the heat transport device main body 20, and the working fluid is evaporated in the metal casing 10 (in contact with the heating element).
  • the working fluid that has absorbed heat and evaporated in a gaseous phase moves to a cooling portion (a portion not in contact with the heating element) in the metal housing 10 and emits heat in the cooling portion.
  • the cycle in which the working fluid condensed and becomes a liquid phase moves to the evaporating section again is repeated.
  • the wick included in the metal casing 10 is not particularly limited, and a known technique (a technique used in a conventional vapor chamber or a heat pipe) may be used according to required heat transport performance and the like. It can be used as appropriate.
  • a structure capable of moving the hydraulic fluid by capillary pressure such as a fine uneven structure, a porous structure, a fiber structure, a mesh structure, and a groove structure, may be mentioned.
  • the location of the wick is not particularly limited.
  • the hydraulic fluid is continuously provided inside the metal housing 10.
  • it can be provided on at least one of the inner wall surfaces 10a of the metal housing 10.
  • the wick can be obtained by processing the inner wall surface 10a of the metal housing 10 by etching or the like to form an uneven structure, or separately formed on the inner wall surface 10a of the metal housing 10. It can also be obtained by coating fibers, nets, structures having irregularities and the like.
  • the working fluid in the metal casing 10 is not particularly limited, and a known technique can be appropriately used according to the required heat transport performance and the like.
  • a known technique can be appropriately used according to the required heat transport performance and the like.
  • water, alcohols, chlorofluorocarbon, and the like can be used in terms of the ease of phase change between the liquid phase and the gas phase.
  • the heat transport device main body 20 may include members other than the above-described wick and hydraulic fluid in the metal housing 10 as necessary.
  • a member for assisting the strength of the metal housing 10 a member for assisting movement of the hydraulic fluid, and the like are included.
  • the heat transport device 1 of the present invention includes a heat storage material section 30 as shown in FIG.
  • the heat storage material section 30 is a member in which the metal housing 10 is filled with a heat storage material 31 having a phase transition temperature.
  • the heat storage material 31 filled in the metal housing 10 is a material having a phase transition temperature (a phase transition can be performed by a change in temperature).
  • a phase transition temperature when the heat storage material 31 has a phase transition temperature, when the heat transport device body 20 generates heat, a certain amount of heat can be absorbed and accumulated.
  • the heat storage material 31 has a phase transition temperature, and the phase transition temperature is preferably in the range of 30 to 100 ° C, more preferably in the range of 30 to 40 ° C or in the range of 70 to 100 ° C. preferable.
  • the phase transition temperature of the heat storage material 31 is in the range of 30 to 100 ° C.
  • heat absorption when the heat transport device body 20 generates heat can be effectively performed, and the heat transport device 1 can be used in electronic equipment. This is because the heat storage efficiency when used can be further improved.
  • CPU central processing unit
  • the heat storage material 31 preferably has a latent heat per unit mass of 150 J / g or more, more preferably 200 J / g.
  • the latent heat per unit mass of the heat storage material 31 is 150 J / g or more, heat absorption when the heat transport device body 20 generates heat can be efficiently performed. Further, from the viewpoint that the temperature rise can be suppressed for a long time and the heat storage efficiency when the heat transport device 1 is used in an electronic device can be further increased, the latent heat per unit mass of the heat storage material 31 is reduced by 150%. It is preferably in the range of 300 to 300 J / g, more preferably in the range of 200 to 300 J / g.
  • the heat storage material 31 preferably has a latent heat per unit volume of 150 J / cm 3 or more, more preferably 200 J / cm 3 or more.
  • the latent heat per unit volume of the heat storage material 31 is 150 J / cm 3 or more, heat absorption when the heat transport device main body 20 generates heat can be efficiently performed.
  • the latent heat per unit volume of the heat storage material 31 is defined as: It is preferably in the range of 150 to 600 J / cm 3 , more preferably in the range of 200 to 600 J / cm 3 .
  • the type of the heat storage material 31 is not particularly limited, but preferably has water of crystallization from the viewpoint of obtaining a better heat storage effect. This is because the heat storage material 31 has crystal water, so that the heat storage amount can be increased, and a rise in surface temperature can be suppressed more reliably.
  • the heat storage material 31 having the crystallization water is not particularly limited, but is preferably a hydrate of a metal salt from the viewpoint that the heat storage amount is large and a better heat storage effect can be obtained.
  • Examples of the hydrate of the metal salt include lithium perchlorate trihydrate (LiClO 3 .3H 2 O), potassium fluoride tetrahydrate (KF.4H 2 O), and manganese (II) nitrate hexahydrate.
  • sodium acetate trihydrate, zinc nitrate hexahydrate, sodium carbonate decahydrate, and phosphoric acid are preferred from the viewpoints of large heat storage, relatively easy processing, and low corrosion. It is preferable to use at least one of disodium hydrogen dodecahydrate.
  • Examples of the heat storage material 31 having no crystallization water include, for example, paraffin, vanadium dioxide, and sugar alcohol (sorbitol, xylitol, adonitol, threitol, D-mannitol, pentaerythritol, dalcitol, etc.). Among them, it is preferable to use paraffin from the viewpoint of a large heat storage amount.
  • the heat storage material 31 may be filled in the entire space in the metal housing 10 or may be filled at a predetermined filling rate.
  • the filling rate of the heat storage material 31 in the metal housing 10 is preferably 60% by volume or more, and more preferably 70% by volume or more.
  • the heat storage material section 30 may include a filler other than the heat storage material 31 as necessary.
  • a filler other than the heat storage material 31 as necessary.
  • it is a melting point adjusting agent, a supercooling inhibitor, a diluent, or an auxiliary agent for filling the metal housing 10 with the heat storage material 31.
  • the position where the heat storage material section 30 is provided is integrated with the heat transport device main body 20 so that the heat of the heat transport device main body 20 can be absorbed and accumulated.
  • the heat transport device main body 20 and the heat storage material section 30 are laminated, or as shown in FIG. 2 and FIG.
  • a structure in which the transport device body 20 and the heat storage material section 30 are arranged side by side is exemplified.
  • a structure in which the heat transport device main body 20 and the heat storage material portion 30 are laminated for example, as shown in FIGS.
  • the heat transport device main body 20 is provided at a position in contact with a heating element such as a semiconductor element, and the position in contact with a heat radiator and other members, from the viewpoint that the heat transport characteristics and the surface temperature suppression effect can be realized at a higher level. It is most preferable that the heat storage material section 30 is provided at the bottom. Further, from the viewpoint of suppressing the thickness of the entire heat transport device, the heat transport device main body 20 and the heat storage material portion 30 are provided side by side (for example, a structure as shown in FIGS. 2 and 3A). Is preferred.
  • the ratio occupied by the heat storage material section 30 ensures that the surface temperature increases sharply.
  • the content is preferably 10% by volume or more.
  • the ratio occupied by the heat storage material section 30 is preferably 50% by volume or less.
  • the ratio of the heat storage material portion 30 is a ratio of the total volume.
  • the volume ratio of the metal casing 10 at the boundary between the heat transport device main body 20 and the heat storage material section 30 is calculated so as to be equally divided.
  • a coating for corrosion resistance is applied to the inner wall of the metal housing 10 constituting the heat storage material portion 30. This is because a reduction in the heat storage effect due to corrosion of the metal housing 10 can be prevented.
  • Metal casing manufacturing process In the method for manufacturing a heat transport device according to the present invention, the metal plate is etched, and then the etched metal plate is overlapped and diffusion bonded to form a metal housing (hereinafter referred to as “metal housing”). Manufacturing process ”). In this metal housing manufacturing step, a plurality of metal plates including a metal plate etched to form a wick of the heat transport device main body 20 are stacked. Then, the superposed metal plates are bonded by diffusion bonding to form one metal housing 10.
  • the number of metal plates to be overlapped and the shape of the etching performed on the metal plates are not particularly limited, and can be appropriately changed according to required performance.
  • FIG. 4A when manufacturing the metal housing 10 used for the heat transport device 1 (the heat transport device 1 as shown in FIG. 1) in which the heat transport device main body 20 and the heat storage material unit 30 are stacked, FIG. As shown in FIG. 4A, a metal plate 12 that has been etched to form the heat transport device body 20, a metal plate 13 that forms the heat storage material section 30, and a metal plate 11 that serves as a lid The three metal plates can be overlapped.
  • casing 10 used for the heat transport device 1 the heat transport device 1 as shown in FIG.
  • a metal plate 14 having been subjected to etching 14a for forming the heat transport device main body 20 and etching 14b for forming the heat storage material section 30, and a metal plate serving as a lid 11 and two metal plates can be overlapped.
  • the metal plates 12, 13, and 14 for forming the heat transport device body 20 and the heat storage material section 30 have a working liquid hole 12 a and a heat storage material hole so that a working liquid and a heat storage material described later can be injected. 13a is provided.
  • a base material metal plate
  • pressure is applied so as not to cause plastic deformation as much as possible. It is a method of joining.
  • the conditions for the diffusion bonding are not particularly limited, and can be set according to the conditions of the metal plate. In order to prevent oxidation of the metal, it is preferable to perform the treatment in an inert gas atmosphere or in a vacuum.
  • Heat transport device body manufacturing process In the method for manufacturing a heat transport device of the present invention, after the above-described metal housing manufacturing step, the inside of the metal housing is evacuated, a coolant serving as a working fluid is injected, and the heat seal device is sealed to manufacture the heat transport device main body. (Hereinafter, referred to as a “heat transport device body manufacturing step”). In this heat transport device main body manufacturing process, the heat transport device main body 20 portion of the heat transport device 1 of the present invention is manufactured by injecting a working fluid into the obtained metal casing 10.
  • the working fluid to be injected is injected through a working fluid hole 12a provided in the metal casing 10, as shown in FIGS. 4 (c) and 5 (c).
  • the conditions for the injection are not particularly limited, except that the injection is performed after the inside of the metal housing is evacuated, and the injection can be performed by a known method.
  • the conditions of the sealing (FIGS. 4D and 5D) in the heat transport device main body manufacturing step are not particularly limited as long as the method can seal the working fluid hole 12a. Not done.
  • a method of sealing by laser welding, ultrasonic bonding, or the like can be given.
  • Heat storage material part manufacturing process In the method for manufacturing a heat transport device according to the present invention, after the above-described heat transport device main body manufacturing step, the inside of the metal housing 10 is evacuated, and then the heat storage material 31 is injected and sealed, so that the heat storage material section is formed. 30 (hereinafter, referred to as a “heat storage material section manufacturing step”). In the heat storage material section manufacturing step, the heat storage material 31 is injected into the obtained metal casing 10 to manufacture the heat storage material section 30 of the heat transport device 1 of the present invention.
  • the heat storage material 31 to be injected is injected through the heat storage material hole 13a provided in the metal casing 10, as shown in FIGS. 4 (e) and 5 (e).
  • the conditions for the injection are not particularly limited, except that the injection is performed after the inside of the metal housing is evacuated, and a known method can be appropriately selected according to the type of the heat storage material 31.
  • the heat storage material holes 13a are formed similarly to the sealing in the heat transport device main body manufacturing step. There is no particular limitation as long as it can be sealed.
  • the heat transport device 1 of the present invention is obtained.
  • the method for manufacturing a heat transport device of the present invention can include, as necessary, steps other than the above-described metal casing manufacturing step, heat transport device main body manufacturing step, and heat storage material section manufacturing step. For example, there are a step of processing the surface of the obtained heat transport device 1 and a step of bonding another member to the obtained heat transport device 1.
  • the heat conductive sheet of the present invention is a heat conductive sheet containing a polymer matrix component and a heat conductive filler, and is provided adjacent to the above-described heat transport device of the present invention.
  • the heat conductive sheet containing the polymer matrix component and the heat conductive filler adjacent to the heat transport device of the present invention, further excellent heat transport characteristics can be realized by a synergistic effect.
  • the heat conductive sheet of the present invention is provided adjacent to the heat transport device of the present invention, an effect of suppressing a rapid rise in surface temperature can be obtained.
  • the heat conductive sheet is not particularly limited as long as it contains a polymer matrix component and a heat conductive filler, and can be appropriately selected according to required performance.
  • a magnetic metal powder for improving electromagnetic wave shielding properties can be included.
  • the polymer matrix component is a component serving as a base material of the heat conductive sheet of the present invention, and a known resin or the like can be appropriately selected.
  • one of the polymer matrix components includes a thermosetting resin, and examples of the thermosetting resin include a crosslinkable rubber, an epoxy resin, a polyimide resin, a bismaleimide resin, a benzocyclobutene resin, and a phenol resin. , Unsaturated polyester, diallyl phthalate resin, silicone, polyurethane, polyimide silicone, thermosetting polyphenylene ether, thermosetting modified polyphenylene ether, and the like. These may be used alone or in combination of two or more.
  • the thermal conductive filler is not particularly limited, and a known thermal conductive filler can be appropriately selected.
  • the heat conductive filler may be a fibrous material.
  • “fibrous” refers to a shape having a high aspect ratio (about 6 or more).
  • the kind of the heat conductive filler is not particularly limited as long as it is a material having high heat conductivity, and examples thereof include metals such as silver, copper, and aluminum, alumina, aluminum nitride, silicon carbide, and graphite. Ceramics, carbon fibers and the like. These thermal conductive fillers may be used alone or in a combination of two or more. However, among the heat conductive fillers, it is preferable to use carbon fibers from the viewpoint of obtaining higher heat conductivity.
  • an amorphous metal powder or a crystalline metal powder can be used.
  • the amorphous metal powder include Fe-Si-B-Cr, Fe-Si-B, Co-Si-B, Co-Zr, Co-Nb, and Co-Ta powders.
  • the crystalline metal powder include pure iron, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, and Fe-Si-Al-based. And Fe-Ni-Si-Al type.
  • a microcrystalline metal obtained by adding a trace amount of N (nitrogen), C (carbon), O (oxygen), B (boron), etc. Powder can be used.
  • the heat conductive sheet of the present invention in addition to the above-described polymer matrix component and heat conductive filler, magnetic metal powder as an optional component, may optionally contain other components depending on the purpose. is there.
  • other components include an inorganic filler, a thixotropic agent, a dispersant, a curing accelerator, a retarder, a tackifier, a plasticizer, a flame retardant, an antioxidant, a stabilizer, and a colorant.
  • a heat transport composite of the present invention includes the above-described heat transport device of the present invention and a heat conductive sheet provided adjacent to the heat transport device.
  • the heat transport composite of the present invention by providing the heat conductive sheet and the heat transport device of the present invention adjacent to each other, further excellent heat transport characteristics can be realized by a synergistic effect. Further, since the heat transport composite of the present invention includes the heat transport device of the present invention, an effect of suppressing a rapid rise in surface temperature can be obtained.
  • the heat conductive sheet used in the heat transport composite of the present invention is not particularly limited as long as it has heat conductive properties. For example, the same thing as the above-mentioned heat conductive sheet of the present invention can be used.
  • the electronic device of the present invention is an electronic device including a heat source, a heat radiating member, and a heat transport device provided between the heat source and the heat radiating member. And the electronic device of the present invention is characterized in that the transport device is the above-described heat transport device of the present invention. Since the electronic device of the present invention includes the heat transport device of the present invention, excellent heat transport characteristics can be realized and a rapid rise in surface temperature can be suppressed.
  • FIG. 6A is a schematic cross-sectional view illustrating an example of the electronic device of the present invention.
  • the electronic device shown in FIG. 6A includes a heat transport device 1, a heat conductive sheet 2, an electronic component 3, a heat sink 5, and a wiring board 6.
  • the electronic component 3 is a semiconductor package such as a BGA, for example, and is mounted on the wiring board 6.
  • the heat transport device 1 is the above-described heat transport device of the present invention, and is provided between the heat conductive sheet 2 and the heat sink 5 as a heat radiating member, as shown in FIG. Heat generated from the electronic component 3 as a heat source is transmitted to the heat sink 5 through the heat conductive sheet 2 and the heat transport device 1 and is radiated. At this time, since the heat transport device 1 of the present invention has a heat storage effect, it is possible to suppress a rapid rise in the surface temperature of the electronic device.
  • the electronic device shown in FIG. 6B includes the heat transport device 1, the electronic component 3, the heat sink 5, and the wiring board 6.
  • the heat generated from the electronic component 3 as a heating element is transmitted to the heat sink 5 through the heat transport device 1 and is radiated. Also in this case, since the heat transport device 1 of the present invention has a heat storage effect, it is possible to suppress a rapid rise in the surface temperature of the electronic device.
  • the electronic device of the present invention may include other members such as an electromagnetic wave shielding member and an electronic component, if necessary, in addition to the above-described heat source, heat radiating member, and heat transport device.
  • FIG. 7 After a model of an apparatus including a heating element and a heat transport device having a metal plate and / or a heat storage material portion is prepared as a sample, the heat storage material is analyzed by finite element analysis (FEM analysis). With respect to the temperature of the front surface (the back surface of the model of the device shown in FIG. 7), the transition with the passage of time was calculated. FIG. 8 shows the calculation results.
  • FEM analysis finite element analysis
  • the heating element was a chip with a power consumption of 5.8 W, assuming a semiconductor element.
  • a 0.1 mm thick copper plate thermal conductivity: 398 W / mK
  • a 0.2 mm thick vapor chamber metal housing: copper, hydraulic fluid: water, thermal conductivity: 20000 W / mK
  • the metal casing is filled with disodium hydrogen phosphate dodecahydrate (filling rate: 75% by volume), thickness: 0.2 mm, density: The sheet was 1.52 g / cm 3 , heat storage per mass: 280 J / g, and heat storage per volume 320 J / cm 3 in consideration of the filling factor.
  • a model without a heat storage material part was also manufactured.
  • the metal plate and the heat storage material unit are stacked and integrated.
  • a heat transport device it is possible to provide a heat transport device, a heat conductive sheet, a heat transport composite, and an electronic device that have excellent heat transport characteristics and can suppress a rapid rise in surface temperature.
  • a method for manufacturing a heat transport device capable of obtaining a heat transport device having excellent heat transport characteristics and capable of suppressing a rapid rise in surface temperature.
  • heat transport device 2 heat conductive sheet 3 electronic component 5 heat sink 6 wiring board 10 metal housing 11 metal plate serving as lid 12 etched metal plate for constituting heat transport device main body 12 a working fluid hole 13 heat storage Metal plate 13a for forming the material portion 13a Hole for heat storage material 14 Metal plate 14a subjected to etching for forming the heat transport device body and the heat storage material portion 14a Etching for forming the heat transport device body 14b Heat storage material portion 20 Heat transport device body 30 Thermal storage material section 31 Thermal storage material T Thickness of thermal transport device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The purpose of the present invention is to provide a heat transport device which is capable of suppressing an abrupt increase in the surface temperature, while having excellent heat transport characteristics. In order to solve the above-described problem, a heat transport device 1 according to the present invention is characterized by comprising: a heat transport device main body 20 which is positioned in a metal case 10, and which has a wick and a working liquid; and a heat storage material part 30 which is positioned in the metal case 10, and which is filled with a heat storage material 31 that has a phase transition temperature. This heat transport device 1 is also characterized in that the heat transport device main body 20 and the heat storage material part 30 are integrated with each other.

Description

熱輸送デバイス、熱伝導シート、熱輸送複合体、電子機器、及び、熱輸送デバイスの製造方法Heat transport device, heat conductive sheet, heat transport composite, electronic equipment, and method of manufacturing heat transport device
 本発明は、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイス、熱伝導シート、熱輸送複合体及び電子機器、並びに、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイスを得ることができる熱輸送デバイスの製造方法に関するものである。 The present invention provides a heat transport device, a heat conductive sheet, a heat transport composite, and an electronic device capable of suppressing a sharp rise in surface temperature while having excellent heat transport characteristics, and having excellent heat transport characteristics. The present invention relates to a method for manufacturing a heat transport device capable of obtaining a heat transport device capable of suppressing a rapid rise in surface temperature while reducing the temperature.
 近年、電子機器は、小型化の傾向をたどる一方、アプリケーションの多様性のために電力消費量を大きく変化させることができないため、機器内外における放熱対策がより一層重要視されている。 In recent years, electronic devices have been following the trend of miniaturization, but since the power consumption cannot be largely changed due to the variety of applications, measures to dissipate heat inside and outside the devices have become even more important.
 上述した電子機器における放熱対策として、銅やアルミ等といった熱伝導率の高い金属材料で作製された放熱板や、ヒートシンク等が広く利用されている。これらの熱伝導性に優れた放熱部品は、放熱効果又は機器内の温度緩和を図るため、電子機器内における発熱部である半導体パッケージ等の電子部品に近接するようにして配置される。また、熱輸送力が高い放熱部品(熱輸送デバイス)の一つとして、ヒートパイプが挙げられる。 放熱 As a measure for heat dissipation in the electronic devices described above, a heat sink or a heat sink made of a metal material having high thermal conductivity such as copper or aluminum is widely used. These heat radiating components having excellent thermal conductivity are arranged close to electronic components, such as semiconductor packages, which are heat generating portions in the electronic device, in order to achieve a heat radiating effect or reduce the temperature inside the device. Further, a heat pipe is one of the heat dissipating components (heat transport devices) having a high heat transport capability.
 ヒートパイプの原理は、ヒートシンクのベースを中空構造にし、その中に揮発しやすい液体(作動液)を封入し、熱源からの熱でその液体が気化した蒸気がその空間内を移動し、ヒートシンク側に到達すると熱が放出されて液体に戻る。この繰り返しで、普通のヒートシンクに比べて熱抵抗値が下がるというものである。薄型のモバイル端末に搭載される場合、ヒートパイプを扁平して用いられるが、複雑な内部構造を持った丸型管を扁平するため薄型化には限界がある。 The principle of the heat pipe is that the base of the heat sink has a hollow structure, and a liquid (operating fluid) that is easily volatilized is sealed in the base. , Heat is released and returns to liquid. This repetition lowers the thermal resistance value as compared with a normal heat sink. When mounted on a thin mobile terminal, the heat pipe is flattened and used. However, there is a limit to thinning because a round tube having a complicated internal structure is flattened.
 そのため、熱輸送デバイスは、さらなる薄型化が要求されており、これに対応する技術としては、薄型の「ベーパーチャンバー」が挙げられる。ベーパーチャンバーは、面型・板型のヒートパイプのような、金属板二枚の間に毛細管現象を起こす構造を作り、それらを貼り合わせたものである。例えば、特許文献1には、平板状の密閉容器の厚さ方向で対向する上面部および下面部の少なくとも一方の内面に毛細管圧を生じさせるウィック材が設けられ、且つ前記上面部と下面部との間に支柱が配置された平板型ヒートパイプ(ベーパーチャンバー)が開示されている。 Therefore, the heat transport device is required to be further reduced in thickness, and a technology corresponding to this is a thin “vapor chamber”. The vapor chamber has a structure in which a capillary phenomenon is generated between two metal plates, such as a surface-type or plate-type heat pipe, and they are bonded together. For example, in Patent Literature 1, a wick material for generating a capillary pressure is provided on at least one of the upper surface and the lower surface facing each other in the thickness direction of a flat closed container, and the upper surface and the lower surface are provided with a wick material. A flat heat pipe (vapor chamber) in which a support is disposed between the heat pipes is disclosed.
特開2004-238672号公報JP 2004-238672 A
 しかしながら、特許文献1の技術では、一定の熱輸送特性を実現できるものの、ベーパーチャンバーの表面温度が急激に上昇し、電子機器の表面温度の上昇を招くという問題があった。スマートフォン等の電子機器では、安全性の観点から、表面温度が高くなりすぎないことが重要であることから、ベーパーチャンバーの表面温度の急激な上昇を抑えることができる技術の開発が望まれていた。 However, in the technique of Patent Document 1, although a certain heat transfer characteristic can be realized, there is a problem that the surface temperature of the vapor chamber rapidly rises, which causes the surface temperature of the electronic device to rise. In electronic devices such as smartphones, from the viewpoint of safety, it is important that the surface temperature does not become too high. Therefore, the development of a technology capable of suppressing a rapid increase in the surface temperature of the vapor chamber has been desired. .
 本発明は、かかる事情に鑑みてなされたものであって、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイス、熱伝導シート、熱輸送複合体及び電子機器を提供することを目的とする。また、本発明の他の目的は、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイスを得ることができる熱輸送デバイスの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has excellent heat transport characteristics, a heat transport device capable of suppressing a rapid rise in surface temperature, a heat conductive sheet, a heat transport composite, and An object is to provide an electronic device. Another object of the present invention is to provide a method for manufacturing a heat transport device capable of obtaining a heat transport device having excellent heat transport characteristics and capable of suppressing a rapid rise in surface temperature. Aim.
 本発明者らは、上記の課題を解決するべく鋭意研究を重ねた結果、熱輸送デバイスについて、ベーパーチャンバーと同じような構成(金属筐体内に、ウィック及び作動液を有する構成)の熱輸送デバイス本体を設けることによって、優れた熱輸送特性を実現し、さらに、金属筐体内に、相転移温度を有する蓄熱材料が充填された蓄熱材料部を設けるとともに、該蓄熱材料部と熱輸送デバイス本体とを一体化させることによって、熱輸送デバイス本体から伝わった熱を高い効率で蓄積させることを可能にし、表面温度の急激な上昇を抑えることができることを見出した。 The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, as for the heat transport device, a heat transport device having the same configuration as the vapor chamber (the configuration having the wick and the working fluid in the metal housing). By providing the main body, excellent heat transport characteristics are realized, and further, within the metal housing, a heat storage material portion filled with a heat storage material having a phase transition temperature is provided, and the heat storage material portion and the heat transport device main body are provided. It has been found that by integrating the heat transfer, heat transmitted from the heat transport device body can be accumulated with high efficiency, and a rapid rise in surface temperature can be suppressed.
 本発明は、上記知見に基づきなされたものであり、その要旨は以下の通りである。
(1)金属筐体内に、ウィック及び作動液を有する熱輸送デバイス本体と、金属筐体内に、相転移温度を有する蓄熱材料が充填された蓄熱材料部と、を備え、前記熱輸送デバイス本体と前記蓄熱材料部とが、一体化していることを特徴とする、熱輸送デバイス。
(2)前記蓄熱材料は、相転移温度が、30~100℃の範囲であることを特徴とする、上記(1)に記載の熱輸送デバイス。
(3)前記蓄熱材料は、単位質量あたりの潜熱が、150/g以上の範囲であることを特徴とする、上記(1)に記載の熱輸送デバイス。
(4)前記蓄熱材料は、単位体積当たりの潜熱が、150J/cm3以上の範囲であることを特徴とする、上記(1)に記載の熱輸送デバイス。
(5)前記蓄熱材料は、結晶水を有することを特徴とする、上記(1)~(4)のいずれかに記載の熱輸送デバイス。
(6)前記蓄熱材料は、金属塩の水和物であることを特徴とする、上記(5)に記載の熱輸送デバイス。
(7)前記熱輸送デバイスが、ベーパーチャンバー、ヒートパイプ又はヒートスプレッダであることを特徴とする、上記(1)~(6)のいずれかに記載の熱輸送デバイス。
(8)高分子マトリックス成分と、熱伝導性充填剤とを含んだ熱伝導シートであって、前記熱伝導シートは、上記(1)~(7)のいずれかに記載の熱輸送デバイスに隣接して設けられることを特徴とする、熱伝導シート。
(9)上記(1)~(7)のいずれかに記載の熱輸送デバイスと、該熱輸送デバイスに隣接して設けられた熱伝導シートとを備えることを特徴とする、熱輸送複合体。
(10)熱源と、放熱部材と、該熱源と該放熱部材との間に設けられた熱輸送デバイスと、を備える電子機器であって、前記輸送デバイスが、上記(1)~(7)のいずれかに記載の熱輸送デバイスであることを特徴とする、電子機器。
(11)上記(1)~(7)のいずれかに記載の熱輸送デバイスの製造方法であって、金属プレートをエッチングした後、該エッチングを施した金属プレートを重ね合わせ、拡散接合を行うことで、金属筐体を作製する工程と、前記金属筐体内を真空化した後、作動液となる冷媒を注入し、封止することで、熱輸送デバイス本体を作製する工程と、前記金属筐体内を真空化した後、蓄熱材料を注入し、封止することで、蓄熱材料部を作製する工程と、を含むことを特徴とする、熱輸送デバイスの製造方法。
The present invention has been made based on the above findings, and the gist is as follows.
(1) A heat transport device main body having a wick and a working fluid in a metal housing, and a heat storage material portion filled with a heat storage material having a phase transition temperature in the metal housing. A heat transport device, wherein the heat storage material section is integrated.
(2) The heat transport device according to (1), wherein the heat storage material has a phase transition temperature in a range of 30 to 100 ° C.
(3) The heat transport device according to (1), wherein the heat storage material has a latent heat per unit mass of 150 / g or more.
(4) The heat transport device according to (1), wherein the heat storage material has a latent heat per unit volume of 150 J / cm 3 or more.
(5) The heat transport device according to any one of the above (1) to (4), wherein the heat storage material has crystallization water.
(6) The heat transport device according to (5), wherein the heat storage material is a hydrate of a metal salt.
(7) The heat transport device according to any one of (1) to (6), wherein the heat transport device is a vapor chamber, a heat pipe, or a heat spreader.
(8) A heat conductive sheet containing a polymer matrix component and a heat conductive filler, wherein the heat conductive sheet is adjacent to the heat transport device according to any one of the above (1) to (7). A heat conductive sheet, wherein the heat conductive sheet is provided.
(9) A heat transport composite, comprising: the heat transport device according to any one of (1) to (7); and a heat conductive sheet provided adjacent to the heat transport device.
(10) An electronic apparatus including a heat source, a heat radiating member, and a heat transport device provided between the heat source and the heat radiating member, wherein the transport device is one of the above (1) to (7). An electronic apparatus, which is the heat transport device according to any one of the above.
(11) The method for manufacturing a heat transport device according to any one of (1) to (7), wherein the metal plates are etched, and then the etched metal plates are overlapped to perform diffusion bonding. A step of manufacturing a metal housing, and a step of manufacturing a heat transport device main body by evacuating the inside of the metal housing, injecting a coolant serving as a working liquid, and sealing it, Producing a heat storage material part by injecting and sealing a heat storage material after evacuation of the heat transfer device.
 本発明によれば、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイス、熱伝導シート、熱輸送複合体及び電子機器を提供することが可能となる。また、本発明によれば、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイスを得ることができる熱輸送デバイスの製造方法を提供することが可能となる。 Advantageous Effects of Invention According to the present invention, it is possible to provide a heat transport device, a heat conductive sheet, a heat transport composite, and an electronic device that have excellent heat transport characteristics and can suppress a rapid rise in surface temperature. . Further, according to the present invention, it is possible to provide a method for manufacturing a heat transport device capable of obtaining a heat transport device having excellent heat transport characteristics and capable of suppressing a rapid rise in surface temperature. Become.
本発明の熱輸送デバイスの一実施形態を模式的に示した断面図である。FIG. 2 is a cross-sectional view schematically showing one embodiment of the heat transport device of the present invention. 本発明の熱輸送デバイスの他の実施形態を模式的に示した断面図である。It is sectional drawing which showed typically other Embodiment of the heat transport device of this invention. (a)は、本発明の熱輸送デバイスの他の実施形態を模式的に示した断面図であり、(b)は、本発明の熱輸送デバイスの他の実施形態を模式的に示した断面図である。(A) is a cross-sectional view schematically showing another embodiment of the heat transport device of the present invention, and (b) is a cross-sectional view schematically showing another embodiment of the heat transport device of the present invention. FIG. 本発明の熱輸送デバイスの製造方法の一実施形態について、工程の流れを説明した図である。FIG. 3 is a diagram illustrating a process flow in one embodiment of the method for manufacturing a heat transport device of the present invention. 本発明の熱輸送デバイスの製造方法の他の実施形態について、工程の流れを説明した図である。It is the figure explaining the flow of the process about other embodiments of the manufacturing method of the heat transport device of the present invention. 本発明の電子機器の一実施形態を模式的に示した断面図である。FIG. 1 is a cross-sectional view schematically illustrating an embodiment of an electronic apparatus according to the invention. 実施例における各サンプルの半導体装置について、組立状態を模式的に示した斜視図である。It is the perspective view which showed typically the assembly state about the semiconductor device of each sample in an Example. 実施例における各サンプルの半導体装置の、時間経過と表面温度との関係を示した図である。FIG. 4 is a diagram illustrating a relationship between a time lapse and a surface temperature of a semiconductor device of each sample in an example.
 以下、本発明の実施形態の一例について、図面を用いて具体的に説明する。なお、図面では、説明の便宜のため、実際の寸法とは異なる比率で、各構成部材の寸法を示している。
<熱輸送デバイス>
 まず、本発明の熱輸送デバイスについて説明する。
 本発明は、図1に示すように、金属筐体10内に、ウィック及び作動液を有する熱輸送デバイス本体20と、金属筐体10内に、相転移温度を有する蓄熱材料31が充填された蓄熱材料部30と、を備える、熱輸送デバイス1である。
 そして、本発明の熱輸送デバイス1では、前記熱輸送デバイス本体20と、前記蓄熱材料部30とが、一体化していることを特徴とする。
 前記熱輸送デバイス本体20と前記蓄熱材料部30とを一体化させることで、熱輸送デバイス本体20が発熱体から吸収した熱を、すぐに外部へ放出するのではなく、高い効率で一旦、蓄熱材料部30へ蓄積させることが可能となり、熱輸送デバイス1自体の表面温度、ひいては半導体装置全体の表面温度の急激な上昇を抑えることができる。
Hereinafter, an example of an embodiment of the present invention will be specifically described with reference to the drawings. In the drawings, the dimensions of each component are shown at a different ratio from the actual dimensions for convenience of explanation.
<Heat transport device>
First, the heat transport device of the present invention will be described.
In the present invention, as shown in FIG. 1, a heat transport device main body 20 having a wick and a working fluid is filled in a metal housing 10, and a heat storage material 31 having a phase transition temperature is filled in the metal housing 10. And a heat storage material section 30.
The heat transport device 1 of the present invention is characterized in that the heat transport device main body 20 and the heat storage material section 30 are integrated.
By integrating the heat transport device body 20 and the heat storage material section 30, the heat absorbed by the heat transport device body 20 from the heating element is not immediately released to the outside, but is temporarily stored at high efficiency. It is possible to accumulate in the material section 30, and it is possible to suppress a rapid increase in the surface temperature of the heat transport device 1 itself, and in turn, the surface temperature of the entire semiconductor device.
 一方、ベーパーチャンバーや、ヒートパイプ等の従来の熱輸送デバイスでは、デバイス内に蓄熱材料部が設けられていないため、表面温度の急激な上昇を抑えることができない。
 また、従来の熱輸送デバイスの表面に蓄熱ができるシート等を設けた場合には、多少の蓄熱効果が得られるものの、記熱輸送デバイス本体20と前記蓄熱材料部30とを一体化されていないため、蓄熱材料部30への熱輸送効率が低く、十分な蓄熱を行うことができないため、表面温度の急激な上昇を抑えることが難しい。加えて、蓄熱用のシート等を別部材として熱輸送デバイスに設けているため、熱輸送デバイス全体の寸法が大きくなり、省スペース化を阻害するという問題もある。
On the other hand, in a conventional heat transport device such as a vapor chamber or a heat pipe, since a heat storage material portion is not provided in the device, a rapid rise in surface temperature cannot be suppressed.
In the case where a sheet or the like capable of storing heat is provided on the surface of the conventional heat transport device, the heat transport device main body 20 and the heat storage material section 30 are not integrated, although some heat storage effect can be obtained. Therefore, the efficiency of heat transport to the heat storage material section 30 is low, and sufficient heat storage cannot be performed, so that it is difficult to suppress a rapid rise in surface temperature. In addition, since a heat storage sheet or the like is provided on the heat transport device as a separate member, there is a problem that the dimensions of the entire heat transport device become large and space saving is hindered.
 ここで、前記熱輸送デバイス1とは、電子機器内における発熱体(半導体パッケージ等の電子部品)の熱を吸収し、放熱させることで、機器内の温度緩和を図るためのデバイスのことであり、具体的には、ベーパーチャンバー、ヒートパイプ又はヒートスプレッダ等が挙げられる。これらの中でも、本発明の熱輸送デバイス1が、ベーパーチャンバーであることが好ましい。より優れた熱輸送効果を有し、デバイスの表面温度の上昇を抑えることが望まれているためである。 Here, the heat transport device 1 is a device for absorbing a heat of a heating element (an electronic component such as a semiconductor package) in an electronic device and dissipating the heat to reduce the temperature inside the device. Specifically, a vapor chamber, a heat pipe, a heat spreader, or the like can be used. Among these, the heat transport device 1 of the present invention is preferably a vapor chamber. This is because it is desired to have a better heat transport effect and to suppress a rise in the surface temperature of the device.
 なお、前記熱輸送デバイス本体20と、前記蓄熱材料部30とが、一体化しているとは、前記熱輸送デバイス本体20と前記蓄熱材料部30とが結合して、1つの部材(熱輸送デバイス1)を形成している状態のことである。本発明の熱輸送デバイス1では、例えば図1に示すように、同じ1つの金属筐体10に、前記熱輸送デバイス本体20と前記蓄熱材料部30とが存在するような構成が挙げられる。 In addition, that the heat transport device main body 20 and the heat storage material section 30 are integrated means that the heat transport device main body 20 and the heat storage material section 30 are connected to each other to form one member (the heat transport device 30). This is the state where 1) is formed. In the heat transport device 1 of the present invention, for example, as shown in FIG. 1, a configuration in which the heat transport device main body 20 and the heat storage material section 30 are present in one and the same metal casing 10 is exemplified.
 前記熱輸送デバイス1の厚さT(図1を参照。)については、特に限定はされず、設計内容等に応じて適宜変更することができる。例えば、省スペース化の観点からは、1.0mm以下であることが好ましく、0.8mm以下であることがより好ましい。また、熱輸送デバイス1の厚さTは、熱輸送デバイス1の熱輸送特性及び蓄熱効率の観点からは、0.1mm以上であることが好ましく、0.2mm以上であることがより好ましい。 厚 The thickness T (see FIG. 1) of the heat transport device 1 is not particularly limited, and can be appropriately changed according to design contents and the like. For example, from the viewpoint of space saving, it is preferably 1.0 mm or less, more preferably 0.8 mm or less. The thickness T of the heat transport device 1 is preferably 0.1 mm or more, and more preferably 0.2 mm or more, from the viewpoint of the heat transport characteristics and heat storage efficiency of the heat transport device 1.
(熱輸送デバイス本体)
 本発明の熱輸送デバイス1は、図1に示すように、熱輸送デバイス本体20を備える。
 熱輸送デバイス本体20は、金属筐体10の内部に、ウィック及び作動液を有し、本発明の熱輸送デバイス1の熱輸送効果を担う部材である。
(Heat transport device body)
The heat transport device 1 of the present invention includes a heat transport device main body 20, as shown in FIG.
The heat transport device main body 20 is a member having a wick and a hydraulic fluid inside the metal housing 10 and responsible for the heat transport effect of the heat transport device 1 of the present invention.
 前記熱輸送デバイス本体20を構成する金属筐体10については、特に限定はされず、公知の金属からなる筐体を用いることができる。
 金属の種類についても特に限定はされないが、一定の強度があり、熱伝導性が高く、電磁波シールド機能を有する点からは、銅、アルミニウム、チタン、ニッケル、銀、又は、これらの合金を用いることが好ましい。
The metal casing 10 constituting the heat transport device main body 20 is not particularly limited, and a casing made of a known metal can be used.
Although there is no particular limitation on the type of metal, copper, aluminum, titanium, nickel, silver, or an alloy thereof is used because it has a certain strength, high thermal conductivity, and an electromagnetic wave shielding function. Is preferred.
 前記金属筐体10内に有するウィック及び作動液については、前記熱輸送デバイス本体20において熱輸送を行うための部材であり、作動液が前記金属筐体10内の蒸発部(発熱体と接している部分)において熱を吸収して蒸発し、気相となった作動液が前記金属筐体10内の冷却部(発熱体と接していない部分)へと移動し、冷却部において熱を放出することで凝縮し、液相となった作動液が再び蒸発部へと移動するサイクルが繰り返される。 The wick and the working fluid in the metal casing 10 are members for carrying out heat transport in the heat transport device main body 20, and the working fluid is evaporated in the metal casing 10 (in contact with the heating element). The working fluid that has absorbed heat and evaporated in a gaseous phase moves to a cooling portion (a portion not in contact with the heating element) in the metal housing 10 and emits heat in the cooling portion. As a result, the cycle in which the working fluid condensed and becomes a liquid phase moves to the evaporating section again is repeated.
 前記金属筐体10内に有するウィックについては、特に限定はされず、要求される熱輸送性能等に応じて、公知の技術(従来のベーパーチャンバーやヒートパイプの中で用いられている技術)を適宜用いることができる。
 例えば、微細凹凸構造、多孔構造、繊維構造、網目構造、溝構造のような、毛細管圧力によって作動液を移動させることができる構造が挙げられる。
The wick included in the metal casing 10 is not particularly limited, and a known technique (a technique used in a conventional vapor chamber or a heat pipe) may be used according to required heat transport performance and the like. It can be used as appropriate.
For example, a structure capable of moving the hydraulic fluid by capillary pressure, such as a fine uneven structure, a porous structure, a fiber structure, a mesh structure, and a groove structure, may be mentioned.
 また、前記ウィックの設置個所についても、特に限定はされない。例えば、作動液を効率的に移動させることができる点からは、前記金属筐体10の内部に連続的に設けられることが好ましい。例えば、前記金属筐体10の内壁面10aのうちの少なくとも一面に設けることができる。
 さらに、前記ウィックについては、前記金属筐体10の内壁面10aを、エッチング等によって加工し、凹凸構造を形成することによって得ることもできるし、前記金属筐体10の内壁面10aに、別途作成した繊維や網、凹凸を有する構造体等をコーティングすることによって得ることもできる。
Also, the location of the wick is not particularly limited. For example, from the viewpoint that the hydraulic fluid can be moved efficiently, it is preferable that the hydraulic fluid is continuously provided inside the metal housing 10. For example, it can be provided on at least one of the inner wall surfaces 10a of the metal housing 10.
Further, the wick can be obtained by processing the inner wall surface 10a of the metal housing 10 by etching or the like to form an uneven structure, or separately formed on the inner wall surface 10a of the metal housing 10. It can also be obtained by coating fibers, nets, structures having irregularities and the like.
 前記金属筐体10内に有する作動液についても、特に限定はされず、要求される熱輸送性能等に応じて、公知の技術を適宜用いることができる。例えば、液相と気相との相変化のしやすさの点からは、水、アルコール類、フロン等をとして用いることができる。 The working fluid in the metal casing 10 is not particularly limited, and a known technique can be appropriately used according to the required heat transport performance and the like. For example, water, alcohols, chlorofluorocarbon, and the like can be used in terms of the ease of phase change between the liquid phase and the gas phase.
 なお、前記熱輸送デバイス本体20については、前記金属筐体10内に、上述したウィック及び作動液以外の部材を、必要に応じて含むことも可能である。例えば、前記金属筐体10の強度を補助するための部材や、作動液の移動を補助するための部材等が挙げられる。 The heat transport device main body 20 may include members other than the above-described wick and hydraulic fluid in the metal housing 10 as necessary. For example, a member for assisting the strength of the metal housing 10, a member for assisting movement of the hydraulic fluid, and the like are included.
(蓄熱材料部)
 本発明の熱輸送デバイス1は、図1に示すように、蓄熱材料部30を備える。
 蓄熱材料部30は、金属筐体10内に、相転移温度を有する蓄熱材料31が充填された部材である。前記熱輸送デバイス本体20と一体化した状態で設けられることで、前記熱輸送デバイス本体20の熱を吸収、蓄積し、表面温度の急激な上昇を抑える効果を奏する。
(Heat storage material department)
The heat transport device 1 of the present invention includes a heat storage material section 30 as shown in FIG.
The heat storage material section 30 is a member in which the metal housing 10 is filled with a heat storage material 31 having a phase transition temperature. By being provided in a state integrated with the heat transport device main body 20, the heat of the heat transport device main body 20 is absorbed and accumulated, and an effect of suppressing a rapid rise in surface temperature is exhibited.
 ここで、金属筐体10内に充填される前記蓄熱材料31とは、相転移温度を有する(温度の変化によって相転移を行うことができる)材料のことである。前記蓄熱材料31が相転移温度を有することによって、熱輸送デバイス本体20が発熱した際に、一定量の熱を吸収し、蓄積することが可能となる。 Here, the heat storage material 31 filled in the metal housing 10 is a material having a phase transition temperature (a phase transition can be performed by a change in temperature). When the heat storage material 31 has a phase transition temperature, when the heat transport device body 20 generates heat, a certain amount of heat can be absorbed and accumulated.
 また、前記蓄熱材料31は、相転移温度を有するが、その相転移温度は30~100℃の範囲であることが好ましく、30~40℃の範囲又は70~100℃の範囲であることがより好ましい。前記蓄熱材料31の相転移温度が30~100℃の範囲であることによって、熱輸送デバイス本体20が発熱した際の熱吸収を効果的に行うことができ、熱輸送デバイス1が電子機器内で使用される場合の蓄熱効率をより高めることができるためである。
 また、前記蓄熱材料31の相転移温度を30~40℃の範囲とすることによって、人体と接する場合における火傷の危険性をより確実減らすことができ、70~100℃の範囲であることによって、CPU(中央処理装置)を保護することができる。
The heat storage material 31 has a phase transition temperature, and the phase transition temperature is preferably in the range of 30 to 100 ° C, more preferably in the range of 30 to 40 ° C or in the range of 70 to 100 ° C. preferable. When the phase transition temperature of the heat storage material 31 is in the range of 30 to 100 ° C., heat absorption when the heat transport device body 20 generates heat can be effectively performed, and the heat transport device 1 can be used in electronic equipment. This is because the heat storage efficiency when used can be further improved.
Further, by setting the phase transition temperature of the heat storage material 31 in the range of 30 to 40 ° C., it is possible to more reliably reduce the risk of burns when coming into contact with the human body. CPU (central processing unit) can be protected.
 さらに、前記蓄熱材料31は、単位質量あたりの潜熱が、150J/g以上の範囲であることが好ましく、200J/gであることがより好ましい。前記蓄熱材料31の単位質量あたりの潜熱が150J/g以上であることによって、前記熱輸送デバイス本体20が発熱した際の熱吸収を効率的に行うことができるためである。また、温度上昇をより長時間抑制でき、熱輸送デバイス1が電子機器内で使用される場合の蓄熱効率をより高めることができるという観点からは、前記蓄熱材料31の単位質量あたりの潜熱を150~300J/gの範囲とすることが好ましく、200~300J/gの範囲とすることがより好ましい。 Further, the heat storage material 31 preferably has a latent heat per unit mass of 150 J / g or more, more preferably 200 J / g. When the latent heat per unit mass of the heat storage material 31 is 150 J / g or more, heat absorption when the heat transport device body 20 generates heat can be efficiently performed. Further, from the viewpoint that the temperature rise can be suppressed for a long time and the heat storage efficiency when the heat transport device 1 is used in an electronic device can be further increased, the latent heat per unit mass of the heat storage material 31 is reduced by 150%. It is preferably in the range of 300 to 300 J / g, more preferably in the range of 200 to 300 J / g.
 さらにまた、前記蓄熱材料31は、単位体積当たりの潜熱が、150J/cm3以上の範囲であることが好ましく、200J/cm3以上であることがより好ましい。前記蓄熱材料31の単位体積当たりの潜熱が150J/cm3以上であることによって、前記熱輸送デバイス本体20が発熱した際の熱吸収を効率的に行うことができるためである。また、温度上昇をより長時間抑制でき、熱輸送デバイス1が電子機器内で使用される場合の蓄熱効率をより高めることができるという観点からは、前記蓄熱材料31の単位体積あたりの潜熱を、150~600J/cm3の範囲とすることが好ましく、200~600J/cm3の範囲とすることがより好ましい。 Further, the heat storage material 31 preferably has a latent heat per unit volume of 150 J / cm 3 or more, more preferably 200 J / cm 3 or more. When the latent heat per unit volume of the heat storage material 31 is 150 J / cm 3 or more, heat absorption when the heat transport device main body 20 generates heat can be efficiently performed. Further, from the viewpoint that the temperature rise can be suppressed for a longer time and the heat storage efficiency when the heat transport device 1 is used in the electronic device can be further increased, the latent heat per unit volume of the heat storage material 31 is defined as: It is preferably in the range of 150 to 600 J / cm 3 , more preferably in the range of 200 to 600 J / cm 3 .
 また、前記蓄熱材料31の種類については、特に限定はされないが、より優れた蓄熱効果が得られる点からは、結晶水を有することが好ましい。前記蓄熱材料31が結晶水を有することによって、蓄熱量を大きくすることができ、表面温度の上昇をより確実に抑制できるためである。
 ここで、前記結晶水を有する蓄熱材料31については、特に限定はされないが、蓄熱量が大きく、より優れた蓄熱効果が得られる点からは、金属塩の水和物であることが好ましい。
The type of the heat storage material 31 is not particularly limited, but preferably has water of crystallization from the viewpoint of obtaining a better heat storage effect. This is because the heat storage material 31 has crystal water, so that the heat storage amount can be increased, and a rise in surface temperature can be suppressed more reliably.
Here, the heat storage material 31 having the crystallization water is not particularly limited, but is preferably a hydrate of a metal salt from the viewpoint that the heat storage amount is large and a better heat storage effect can be obtained.
 前記金属塩の水和物については、例えば、過塩素酸リチウム三水和物(LiClO3・3H2O)、フッ化カリウム四水和物(KF・4H2O)、硝酸マンガン(II)六水和物(Mn(NO3)2・6 H2O)、塩化カルシウム六水和物(CaCl2・6 H2O)、硝酸リチウム三水和物(LiNO3・3H2O)、硫酸ナトリウム十水和物(Na2SO4・10 H2O)、炭酸ナトリウム十水和物(Na2CO3・10 H2O)、臭化カルシウム四水和物(CaBr2・4 H2O)、臭化リチウム二水和物(LiBr2・2H2O)、リン酸水素二ナトリウム十二水和物(Na2HPO4・12H2O)、硝酸亜鉛六水和物(Zn(NO3)2・6H2O)、フッ化カリウム二水和物(KF・2H2O)、ヨウ化マグネシウム二水和物(MgI2・2H2O)、硝酸カルシウム四水和物(Ca(NO3)2・4H2O)、硝酸鉄(III)九水和物(Fe(NO3)3・9H2O)、メタケイ酸ナトリウム四水和物(Na2SiO3・4H2O)、リン酸水素二カリウム七水和物(K2HPO4・7H2O)、硫酸マグネシウム七水和物(MgSO4・7H2O)、チオ硫酸ナトリウム五水和物(Na2S2O3・5H2O)、硝酸カルシウム三水和物(Ca(NO3)2・3H2O)、塩化鉄(III)二水和物(FeCl3・2H2O)、硝酸ニッケル(II)六水和物(Ni(NO3)2・6H2O)、酢酸ナトリウム三水和物(CH3COONa・3H2O)、塩化マグネシウム四水和物(MgCl2・4H2O)、リン酸三ナトリウム十二水和物(Na3PO4・12H2O)、酢酸リチウム二水和物(CH3COOLi・3H2O)、二リン酸ナトリウム十二水和物(Na2P2O7・12H2O)等が挙げられる。
 これらの中でも、蓄熱量が大きく、加工が比較的容易である、腐食が起きにくい等の観点からは、酢酸ナトリウム三水和物、硝酸亜鉛六水和物、炭酸ナトリウム十水和物又はリン酸水素二ナトリウム十二水和物のうちの少なくとも一種を用いることが好ましい。
Examples of the hydrate of the metal salt include lithium perchlorate trihydrate (LiClO 3 .3H 2 O), potassium fluoride tetrahydrate (KF.4H 2 O), and manganese (II) nitrate hexahydrate. Hydrate (Mn (NO 3 ) 2 .6 H 2 O), calcium chloride hexahydrate (CaCl 2 .6 H 2 O), lithium nitrate trihydrate (LiNO 3 .3H 2 O), sodium sulfate Decahydrate (Na 2 SO 4 · 10 H 2 O), sodium carbonate decahydrate (Na 2 CO 3 · 10 H 2 O), calcium bromide tetrahydrate (CaBr 2 · 4 H 2 O) , lithium bromide dihydrate (LiBr 2 · 2H 2 O) , disodium hydrogen phosphate twelve dihydrate (Na 2 HPO 4 · 12H 2 O), zinc nitrate hexahydrate (Zn (NO 3) 2 · 6H 2 O), potassium fluoride dihydrate (KF · 2H 2 O), magnesium iodide dihydrate (MgI 2 · 2H 2 O) , calcium nitrate tetrahydrate (Ca (NO 3) 2 · 4H 2 O), iron (III) nitrate nonahydrate (Fe (NO 3) 3 · 9H 2 O), sodium metasilicate tetrahydrate Objects (Na 2 SiO 3 · 4H 2 O), dipotassium hydrogen phosphate heptahydrate (K 2 HPO 4 · 7H 2 O), magnesium sulphate heptahydrate (MgSO 4 · 7H 2 O) , sodium thiosulfate Pentahydrate (Na 2 S 2 O 3 .5H 2 O), calcium nitrate trihydrate (Ca (NO 3 ) 2 .3H 2 O), iron chloride (III) dihydrate (FeCl 3 .2H 2 O), nickel (II) nitrate hexahydrate (Ni (NO 3 ) 2 · 6H 2 O), sodium acetate trihydrate (CH 3 COONa · 3H 2 O), magnesium chloride tetrahydrate (MgCl 2・ 4H 2 O), trisodium phosphate dodecahydrate (Na 3 PO 4・ 12H 2 O), lithium acetate dihydrate (CH 3 COOLi ・ 3H 2 O), sodium diphosphate dodecahydrate And the like (Na 2 P 2 O 7 .12H 2 O).
Among these, sodium acetate trihydrate, zinc nitrate hexahydrate, sodium carbonate decahydrate, and phosphoric acid are preferred from the viewpoints of large heat storage, relatively easy processing, and low corrosion. It is preferable to use at least one of disodium hydrogen dodecahydrate.
 また、前記結晶水を有しない蓄熱材料31については、例えば、パラフィン、二酸化バナジウム、糖アルコール(ソルビトール、キシリトール、アドニトール、トレイトール、D-マンニトール、ペンタエリトリトール、ダルシトール等)が挙げられる。
 これらの中でも、蓄熱量が大きいという点からは、パラフィンを用いることが好ましい。
Examples of the heat storage material 31 having no crystallization water include, for example, paraffin, vanadium dioxide, and sugar alcohol (sorbitol, xylitol, adonitol, threitol, D-mannitol, pentaerythritol, dalcitol, etc.).
Among them, it is preferable to use paraffin from the viewpoint of a large heat storage amount.
 なお、蓄熱材料31については、金属筐体10内の全空間に充填されていても良いし、所定の充填率で充填されていても良い。
 ただし、優れた蓄熱量を得る観点からは、前記金属筐体10内における前記蓄熱材料31の充填率は、60体積%以上であることが好ましく、70体積%以上であることがより好ましい。また、金属筐体10内が高圧になりすぎないように考慮した場合には、60体積%以上100体積%未満、又は、70体積%以上100体積%未満の範囲とすることが好ましい。
The heat storage material 31 may be filled in the entire space in the metal housing 10 or may be filled at a predetermined filling rate.
However, from the viewpoint of obtaining an excellent heat storage amount, the filling rate of the heat storage material 31 in the metal housing 10 is preferably 60% by volume or more, and more preferably 70% by volume or more. In addition, when considering that the inside of the metal housing 10 does not become too high in pressure, it is preferable to set the range of 60% by volume to less than 100% by volume, or 70% by volume to less than 100% by volume.
 さらに、前記蓄熱材料部30では、必要に応じて、前記蓄熱材料31以外の充填材を含むこともできる。例えば、融点調整剤、過冷却防止剤、希釈剤や、前記蓄熱材料31を金属筐体10内へ充填する際の助剤等である。 Furthermore, the heat storage material section 30 may include a filler other than the heat storage material 31 as necessary. For example, it is a melting point adjusting agent, a supercooling inhibitor, a diluent, or an auxiliary agent for filling the metal housing 10 with the heat storage material 31.
 なお、本発明の熱輸送デバイス1において、前記蓄熱材料部30が設けられる位置については、前記熱輸送デバイス本体20と一体化され、熱輸送デバイス本体20の熱を吸収し、蓄積できるような態様できれば特に限定はされない。
 例えば、図1や図3(b)に示すように、前記熱輸送デバイス本体20と前記蓄熱材料部30とが積層された構造や、図2及び図3(a)に示すように、前記熱輸送デバイス本体20と前記蓄熱材料部30とを横に並んだ構造が挙げられる。
 これらの中でも、表面温度の急激な上昇をより確実に抑えられる観点からは、前記熱輸送デバイス本体20と前記蓄熱材料部30とが積層された構造(例えば、図1、図3(b)に示すような構造)が好ましい。また、熱輸送特性及び表面温度抑制効果をより高いレベルで実現できる点からは、半導体素子等の発熱体と接する位置に前記熱輸送デバイス本体20が設けられ、放熱体やその他の部材と接する位置に前記蓄熱材料部30が設けられることが最も好ましい。さらに、熱輸送デバイス全体の厚さを抑える観点からは、前記熱輸送デバイス本体20と前記蓄熱材料部30とを横に並べて設けること(例えば、図2及び図3(a)に示すような構造)が好ましい。
In the heat transport device 1 of the present invention, the position where the heat storage material section 30 is provided is integrated with the heat transport device main body 20 so that the heat of the heat transport device main body 20 can be absorbed and accumulated. There is no particular limitation if possible.
For example, as shown in FIG. 1 and FIG. 3 (b), a structure in which the heat transport device main body 20 and the heat storage material section 30 are laminated, or as shown in FIG. 2 and FIG. A structure in which the transport device body 20 and the heat storage material section 30 are arranged side by side is exemplified.
Among these, from the viewpoint of more surely preventing a rapid rise in surface temperature, a structure in which the heat transport device main body 20 and the heat storage material portion 30 are laminated (for example, as shown in FIGS. 1 and 3B). Are preferred. In addition, the heat transport device main body 20 is provided at a position in contact with a heating element such as a semiconductor element, and the position in contact with a heat radiator and other members, from the viewpoint that the heat transport characteristics and the surface temperature suppression effect can be realized at a higher level. It is most preferable that the heat storage material section 30 is provided at the bottom. Further, from the viewpoint of suppressing the thickness of the entire heat transport device, the heat transport device main body 20 and the heat storage material portion 30 are provided side by side (for example, a structure as shown in FIGS. 2 and 3A). Is preferred.
 さらに、本発明の熱輸送デバイス1において、前記蓄熱材料部30が占める割合(蓄熱材料部30の体積/熱輸送デバイス1の体積×100%)については、表面温度の急激な上昇をより確実に抑えられる観点からは、10体積%以上であることが好ましい。また、本発明の熱輸送デバイス1の省スペース化を図る観点からは、前記蓄熱材料部30が占める割合は、50体積%以下であることが好ましい。
 なお、前記蓄熱材料部30が占める割合については、図2に示すように、前記蓄熱材料部30が複数存在する場合には、合計体積の割合としている。また、前記熱輸送デバイス本体20と、前記蓄熱材料部30との境界部分の金属筐体10については、図1に示すように、均等に分かれるようにして体積の割合を算出している。
Furthermore, in the heat transport device 1 of the present invention, the ratio occupied by the heat storage material section 30 (volume of the heat storage material section 30 / volume of the heat transport device 1 × 100%) ensures that the surface temperature increases sharply. From the viewpoint of suppression, the content is preferably 10% by volume or more. Further, from the viewpoint of saving the space of the heat transport device 1 of the present invention, the ratio occupied by the heat storage material section 30 is preferably 50% by volume or less.
In addition, as shown in FIG. 2, when there are a plurality of the heat storage material portions 30, the ratio of the heat storage material portion 30 is a ratio of the total volume. Further, as shown in FIG. 1, the volume ratio of the metal casing 10 at the boundary between the heat transport device main body 20 and the heat storage material section 30 is calculated so as to be equally divided.
 なお、前記蓄熱材料31として、強い酸性ものを用いる場合には、前記蓄熱材料部30を構成する金属筐体10については、耐食性のためのコーティングを、内壁に施すことが好ましい。前記金属筐体10の腐食による蓄熱効果の低下を防ぐことができるためである。 In the case where a strongly acidic material is used as the heat storage material 31, it is preferable that a coating for corrosion resistance is applied to the inner wall of the metal housing 10 constituting the heat storage material portion 30. This is because a reduction in the heat storage effect due to corrosion of the metal housing 10 can be prevented.
<熱輸送デバイスの製造方法>
 次に、本発明の熱輸送デバイスの製造方法について説明する。
 本発明の熱輸送デバイスの製造方法は、例えば図4に示すように、金属プレートをエッチングした後、該エッチングを施した金属プレートを重ね合わせ、拡散接合を行うことで、金属筐体を作製する工程(図4(a)及び(b))と、
 前記金属筐体内を真空化した後、作動液となる冷媒を注入し、封止することで、熱輸送デバイス本体を作製する工程(図4(c)及び(d))と、
 前記金属筐体内を真空化した後、蓄熱材料を注入し、封止することで、蓄熱材料部を作製する工程(図4(e)及び(f))と、を含むことを特徴とする。
 上述した工程を経ることによって、本発明の熱輸送デバイスを得ることができる。得られた優れた熱輸送デバイスについては、熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる。
<Method of manufacturing heat transport device>
Next, a method for manufacturing the heat transport device of the present invention will be described.
In the method for manufacturing a heat transport device of the present invention, for example, as shown in FIG. 4, after etching a metal plate, the etched metal plates are overlapped, and diffusion bonding is performed to produce a metal housing. Steps (FIGS. 4A and 4B);
A step of producing a heat transport device main body by evacuating the inside of the metal casing and then injecting and sealing a coolant serving as a working fluid (FIGS. 4C and 4D);
After the inside of the metal housing is evacuated, a heat storage material is injected and sealed to form a heat storage material portion (FIGS. 4E and 4F).
Through the above-described steps, the heat transport device of the present invention can be obtained. With respect to the obtained excellent heat transport device, it is possible to suppress a sharp rise in surface temperature while having heat transport characteristics.
(金属筐体作製工程)
 本発明の熱輸送デバイスの製造方法は、金属プレートをエッチングした後、該エッチングを施した金属プレートを重ね合わせ、拡散接合を行うことで、金属筐体を作製する工程(以下、「金属筐体作製工程」という。)を含む。
 この金属筐体作製工程では、前記熱輸送デバイス本体20のウィックを形成するためにエッチングを施した金属プレートを含む複数の金属プレートを重ね合わせる。そして、重ね合わせた金属プレートを拡散接合することによって、接合させ1つの金属筐体10を作製する。
(Metal casing manufacturing process)
In the method for manufacturing a heat transport device according to the present invention, the metal plate is etched, and then the etched metal plate is overlapped and diffusion bonded to form a metal housing (hereinafter referred to as “metal housing”). Manufacturing process ”).
In this metal housing manufacturing step, a plurality of metal plates including a metal plate etched to form a wick of the heat transport device main body 20 are stacked. Then, the superposed metal plates are bonded by diffusion bonding to form one metal housing 10.
 前記金属筐体作製工程において、重ね合わせる金属プレートの数や、金属プレートに施されたエッチングの形状については、特に限定はされず、要求される性能に応じて適宜変更することができる。
 例えば、前記熱輸送デバイス本体20と前記蓄熱材料部30とが積層された熱輸送デバイス1(図1に示されるような熱輸送デバイス1)に用いる金属筐体10を作製する場合には、図4(a)に示すように、熱輸送デバイス本体20を構成するためのエッチングが施された金属プレート12と、蓄熱材料部30を構成するための金属プレート13と、蓋となる金属プレート11との、三枚の金属プレートを重ね合わせることができる。
 また、前記熱輸送デバイス本体20と前記蓄熱材料部30とが並列して設けられた熱輸送デバイス1(図2に示されるような熱輸送デバイス1)に用いる金属筐体10を作製する場合には、図5(a)に示すように、熱輸送デバイス本体20を構成するためのエッチング14a及び蓄熱材料部30を構成するためのエッチング14bが施された金属プレート14と、蓋となる金属プレート11との、二枚の金属プレートを重ね合わせることができる。
In the metal casing manufacturing step, the number of metal plates to be overlapped and the shape of the etching performed on the metal plates are not particularly limited, and can be appropriately changed according to required performance.
For example, when manufacturing the metal housing 10 used for the heat transport device 1 (the heat transport device 1 as shown in FIG. 1) in which the heat transport device main body 20 and the heat storage material unit 30 are stacked, FIG. As shown in FIG. 4A, a metal plate 12 that has been etched to form the heat transport device body 20, a metal plate 13 that forms the heat storage material section 30, and a metal plate 11 that serves as a lid The three metal plates can be overlapped.
Moreover, when manufacturing the metal housing | casing 10 used for the heat transport device 1 (the heat transport device 1 as shown in FIG. 2) in which the said heat transport device main body 20 and the said heat storage material part 30 were provided in parallel. As shown in FIG. 5A, a metal plate 14 having been subjected to etching 14a for forming the heat transport device main body 20 and etching 14b for forming the heat storage material section 30, and a metal plate serving as a lid 11 and two metal plates can be overlapped.
 なお、熱輸送デバイス本体20及び蓄熱材料部30を構成するための金属プレート12、13、14については、後述する作動液及び蓄熱材料を注入できるように、作動液用孔12a及び蓄熱材料用孔13aが設けられている。 The metal plates 12, 13, and 14 for forming the heat transport device body 20 and the heat storage material section 30 have a working liquid hole 12 a and a heat storage material hole so that a working liquid and a heat storage material described later can be injected. 13a is provided.
 前記拡散接合については、母材(金属プレート)を密着させ、母材の融点以下の温度条件で、塑性変形を出来るだけ生じない程度に加圧して、接合面間に生じる原子の拡散を利用して接合する方法である。
 前記拡散接合の条件については、特に限定はされず、金属プレートの条件に応じて設定することができる。なお、金属の酸化を防ぐ点からは、不活性ガス雰囲気下又は真空下で行うことが好ましい。
In the diffusion bonding, a base material (metal plate) is brought into close contact with the base material, and under a temperature condition equal to or lower than the melting point of the base material, pressure is applied so as not to cause plastic deformation as much as possible. It is a method of joining.
The conditions for the diffusion bonding are not particularly limited, and can be set according to the conditions of the metal plate. In order to prevent oxidation of the metal, it is preferable to perform the treatment in an inert gas atmosphere or in a vacuum.
(熱輸送デバイス本体作製工程)
 本発明の熱輸送デバイスの製造方法は、上述した金属筐体作製工程の後、前記金属筐体内を真空化し、作動液となる冷媒を注入し、封止することで、熱輸送デバイス本体を作製する工程(以下、「熱輸送デバイス本体作製工程」という。)を含む。
 この熱輸送デバイス本体作製工程では、得られた金属筐体10内に、作動液を注入することによって、本発明の熱輸送デバイス1の前記熱輸送デバイス本体20部分を作製する。
(Heat transport device body manufacturing process)
In the method for manufacturing a heat transport device of the present invention, after the above-described metal housing manufacturing step, the inside of the metal housing is evacuated, a coolant serving as a working fluid is injected, and the heat seal device is sealed to manufacture the heat transport device main body. (Hereinafter, referred to as a “heat transport device body manufacturing step”).
In this heat transport device main body manufacturing process, the heat transport device main body 20 portion of the heat transport device 1 of the present invention is manufactured by injecting a working fluid into the obtained metal casing 10.
 注入される作動液については、図4(c)及び図5(c)に示すように、前記金属筐体10に設けられた作動液用孔12aを通して注入される。注入の条件については、金属筐体内を真空化した後に行うこと以外は、特に限定はされず、公知の方法によって行うことができる。 (4) The working fluid to be injected is injected through a working fluid hole 12a provided in the metal casing 10, as shown in FIGS. 4 (c) and 5 (c). The conditions for the injection are not particularly limited, except that the injection is performed after the inside of the metal housing is evacuated, and the injection can be performed by a known method.
 また、前記熱輸送デバイス本体作製工程における封止(図4(d)及び図5(d))の条件についても、前記作動液用孔12aを封止することができる方法であれば特に限定はされない。例えば、レーザー溶接、超音波接合等によって封止する方法が挙げられる。 In addition, the conditions of the sealing (FIGS. 4D and 5D) in the heat transport device main body manufacturing step are not particularly limited as long as the method can seal the working fluid hole 12a. Not done. For example, a method of sealing by laser welding, ultrasonic bonding, or the like can be given.
(蓄熱材料部作製工程)
 本発明の熱輸送デバイスの製造方法は、上述した熱輸送デバイス本体作製工程の後、前記金属筐体10内を真空化した後、蓄熱材料31を注入し、封止することで、蓄熱材料部30を作製する工程(以下、「蓄熱材料部作製工程」という。)を含む。
 この蓄熱材料部作製工程では、得られた金属筐体10内に、蓄熱材料31を注入することによって、本発明の熱輸送デバイス1の蓄熱材料部30部分を作製する。
(Heat storage material part manufacturing process)
In the method for manufacturing a heat transport device according to the present invention, after the above-described heat transport device main body manufacturing step, the inside of the metal housing 10 is evacuated, and then the heat storage material 31 is injected and sealed, so that the heat storage material section is formed. 30 (hereinafter, referred to as a “heat storage material section manufacturing step”).
In the heat storage material section manufacturing step, the heat storage material 31 is injected into the obtained metal casing 10 to manufacture the heat storage material section 30 of the heat transport device 1 of the present invention.
 注入される蓄熱材料31ついては、図4(e)及び図5(e)に示すように、前記金属筐体10に設けられた蓄熱材料用孔13aを通して注入される。注入の条件については、金属筐体内を真空化した後に行うこと以外は、特に限定はされず、蓄熱材料31の種類に応じて、公知の方法を適宜選択することができる。 (4) The heat storage material 31 to be injected is injected through the heat storage material hole 13a provided in the metal casing 10, as shown in FIGS. 4 (e) and 5 (e). The conditions for the injection are not particularly limited, except that the injection is performed after the inside of the metal housing is evacuated, and a known method can be appropriately selected according to the type of the heat storage material 31.
 また、前記蓄熱材料部作製工程の封止(図4(f)及び図5(f))の条件についても、前記熱輸送デバイス本体作製工程における封止と同様に、前記蓄熱材料用孔13aを封止することができる方法であれば特に限定はされない。 Also, as for the conditions of the sealing (FIGS. 4 (f) and 5 (f)) in the heat storage material part manufacturing step, the heat storage material holes 13a are formed similarly to the sealing in the heat transport device main body manufacturing step. There is no particular limitation as long as it can be sealed.
 前記蓄熱材料部作製工程の後、本発明の熱輸送デバイス1が得られる。
 なお、本発明の熱輸送デバイスの製造方法は、上述した金属筐体作製工程、熱輸送デバイス本体作製工程及び蓄熱材料部作製工程以外の工程を、必要に応じて含むことができる。例えば、得られた熱輸送デバイス1の表面を加工する工程や、得られた熱輸送デバイス1に別の部材を接着する工程等が挙げられる。
After the heat storage material section manufacturing step, the heat transport device 1 of the present invention is obtained.
Note that the method for manufacturing a heat transport device of the present invention can include, as necessary, steps other than the above-described metal casing manufacturing step, heat transport device main body manufacturing step, and heat storage material section manufacturing step. For example, there are a step of processing the surface of the obtained heat transport device 1 and a step of bonding another member to the obtained heat transport device 1.
<熱伝導シート>
 次に、本発明の熱伝導シートについて説明する。
 本発明の熱伝導シートは、高分子マトリックス成分と、熱伝導性充填剤とを含んだ熱伝導シートであって、上述した本発明の熱輸送デバイスに隣接して設けられることを特徴とする。
 高分子マトリックス成分と、熱伝導性充填剤とを含んだ熱伝導シートが、本発明の熱輸送デバイスに隣接して設けられることによって、相乗効果により、さらに優れた熱輸送特性を実現できる。また、本発明の熱輸送デバイスに隣接して設けられているため、本発明の熱伝導シートは、表面温度の急激な上昇が抑えられるという効果も得られる。
<Heat conductive sheet>
Next, the heat conductive sheet of the present invention will be described.
The heat conductive sheet of the present invention is a heat conductive sheet containing a polymer matrix component and a heat conductive filler, and is provided adjacent to the above-described heat transport device of the present invention.
By providing the heat conductive sheet containing the polymer matrix component and the heat conductive filler adjacent to the heat transport device of the present invention, further excellent heat transport characteristics can be realized by a synergistic effect. Further, since the heat conductive sheet of the present invention is provided adjacent to the heat transport device of the present invention, an effect of suppressing a rapid rise in surface temperature can be obtained.
 前記熱伝導シートについては、高分子マトリックス成分と、熱伝導性充填剤とを含むものであれば特に限定はされず、要求される性能に応じて、適宜選択することが可能である。例えば、高分子マトリックス成分及び熱伝導性充填剤に加え、電磁波シールド性を向上させるための磁性金属粉を含むこともできる。 熱 The heat conductive sheet is not particularly limited as long as it contains a polymer matrix component and a heat conductive filler, and can be appropriately selected according to required performance. For example, in addition to the polymer matrix component and the thermally conductive filler, a magnetic metal powder for improving electromagnetic wave shielding properties can be included.
 例えば、前記高分子マトリックス成分については、本発明の熱伝導シートの基材となる成分であり、公知の樹脂等を適宜選択することができる。例えば、前記高分子マトリックス成分の一つとして、熱硬化性樹脂が挙げられ、熱硬化性樹脂としては、例えば、架橋性ゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、シリコーン、ポリウレタン、ポリイミドシリコーン、熱硬化型ポリフェニレンエーテル、熱硬化型変性ポリフェニレンエーテル等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 For example, the polymer matrix component is a component serving as a base material of the heat conductive sheet of the present invention, and a known resin or the like can be appropriately selected. For example, one of the polymer matrix components includes a thermosetting resin, and examples of the thermosetting resin include a crosslinkable rubber, an epoxy resin, a polyimide resin, a bismaleimide resin, a benzocyclobutene resin, and a phenol resin. , Unsaturated polyester, diallyl phthalate resin, silicone, polyurethane, polyimide silicone, thermosetting polyphenylene ether, thermosetting modified polyphenylene ether, and the like. These may be used alone or in combination of two or more.
 さらに、前記熱伝導性充填剤についても、特に限定されず、公知の熱伝導性充填剤を適宜選択することができる。
 なお、前記熱伝導性充填剤は、繊維状のものを用いることができる。ここで、「繊維状」とは、アスペクト比の高い(およそ6以上)の形状のことをいう。
 さらにまた、前記熱伝導性充填剤の種類については、熱伝導性の高い材料であれば特に限定はされず、例えば、銀、銅、アルミニウム等の金属、アルミナ、窒化アルミニウム、炭化ケイ素、グラファイト等のセラミックス、炭素繊維等が挙げられる。これらの熱伝導性充填剤については、一種単独でもよいし、二種以上を混合して用いてもよい。ただし、前記熱伝導性充填剤の中でも、より高い熱伝導性を得られる点からは、炭素繊維を用いることが好ましい。
Further, the thermal conductive filler is not particularly limited, and a known thermal conductive filler can be appropriately selected.
The heat conductive filler may be a fibrous material. Here, “fibrous” refers to a shape having a high aspect ratio (about 6 or more).
Furthermore, the kind of the heat conductive filler is not particularly limited as long as it is a material having high heat conductivity, and examples thereof include metals such as silver, copper, and aluminum, alumina, aluminum nitride, silicon carbide, and graphite. Ceramics, carbon fibers and the like. These thermal conductive fillers may be used alone or in a combination of two or more. However, among the heat conductive fillers, it is preferable to use carbon fibers from the viewpoint of obtaining higher heat conductivity.
 また、前記磁性金属粉については、例えば、アモルファス金属粉や、結晶質の金属粉末を用いることができる。アモルファス金属粉としては、例えば、Fe-Si-B-Cr系、Fe-Si-B系、Co-Si-B系、Co-Zr系、Co-Nb系、Co-Ta系のもの等が挙げられ、結晶質の金属粉としては、例えば、純鉄、Fe系、Co系、Ni系、Fe-Ni系、Fe-Co系、Fe-Al系、Fe-Si系、Fe-Si-Al系、Fe-Ni-Si-Al系のもの等が挙げられる。さらに、前記結晶質の金属粉としては、結晶質の金属粉に、N(窒素)、C(炭素)、O(酸素)、B(ホウ素)等を微量加えて微細化させた微結晶質金属粉を用いることができる。 磁性 As the magnetic metal powder, for example, an amorphous metal powder or a crystalline metal powder can be used. Examples of the amorphous metal powder include Fe-Si-B-Cr, Fe-Si-B, Co-Si-B, Co-Zr, Co-Nb, and Co-Ta powders. Examples of the crystalline metal powder include pure iron, Fe-based, Co-based, Ni-based, Fe-Ni-based, Fe-Co-based, Fe-Al-based, Fe-Si-based, and Fe-Si-Al-based. And Fe-Ni-Si-Al type. Further, as the crystalline metal powder, a microcrystalline metal obtained by adding a trace amount of N (nitrogen), C (carbon), O (oxygen), B (boron), etc. Powder can be used.
 なお、本発明の熱伝導シートについては、上述した、高分子マトリックス成分及び熱伝導性充填剤、任意成分としての磁性金属粉に加えて、目的に応じてその他の成分を適宜含むことも可能である。
 その他の成分としては、例えば、無機物フィラー、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤等が挙げられる。
In addition, the heat conductive sheet of the present invention, in addition to the above-described polymer matrix component and heat conductive filler, magnetic metal powder as an optional component, may optionally contain other components depending on the purpose. is there.
Examples of other components include an inorganic filler, a thixotropic agent, a dispersant, a curing accelerator, a retarder, a tackifier, a plasticizer, a flame retardant, an antioxidant, a stabilizer, and a colorant.
<熱輸送複合体>
 次に、本発明の熱輸送複合体について説明する。
 本発明の熱輸送複合体は、上述した本発明の熱輸送デバイスと、該熱輸送デバイスに隣接して設けられた熱伝導シートとを備えることを特徴とする。
 本発明の熱輸送複合体では、熱伝導シートと、本発明の熱輸送デバイスとが隣接して設けられることによって、相乗効果により、さらに優れた熱輸送特性を実現できる。また、本発明の熱輸送複合体は、本発明の熱輸送デバイスを備えているため、表面温度の急激な上昇が抑えられるという効果も得られる。
 なお、本発明の熱輸送複合体に用いられる熱伝導シートについては、熱伝導特性があるものであれば、特に限定はされない。例えば、上述した本発明の熱伝導シートと同様物を用いることができる。
<Heat transport composite>
Next, the heat transport composite of the present invention will be described.
A heat transport composite of the present invention includes the above-described heat transport device of the present invention and a heat conductive sheet provided adjacent to the heat transport device.
In the heat transport composite of the present invention, by providing the heat conductive sheet and the heat transport device of the present invention adjacent to each other, further excellent heat transport characteristics can be realized by a synergistic effect. Further, since the heat transport composite of the present invention includes the heat transport device of the present invention, an effect of suppressing a rapid rise in surface temperature can be obtained.
The heat conductive sheet used in the heat transport composite of the present invention is not particularly limited as long as it has heat conductive properties. For example, the same thing as the above-mentioned heat conductive sheet of the present invention can be used.
<電子機器>
 次に、本発明の電子機器について説明する。
 本発明の電子機器は、熱源と、放熱部材と、該熱源と該放熱部材との間に設けられた熱輸送デバイスと、を備える電子機器である。
 そして、本発明の電子機器は、前記輸送デバイスが、上述した本発明の熱輸送デバイスであることを特徴とする。
 本発明の電子機器は、本発明の熱輸送デバイスを備えているため、優れた熱輸送特性を実現できるとともに、表面温度の急激な上昇を抑えることができる。
<Electronic equipment>
Next, the electronic device of the present invention will be described.
The electronic device of the present invention is an electronic device including a heat source, a heat radiating member, and a heat transport device provided between the heat source and the heat radiating member.
And the electronic device of the present invention is characterized in that the transport device is the above-described heat transport device of the present invention.
Since the electronic device of the present invention includes the heat transport device of the present invention, excellent heat transport characteristics can be realized and a rapid rise in surface temperature can be suppressed.
 本発明の電子機器の一例について、図6(a)及び(b)を用いて説明する。
 図6(a)は、本発明の電子機器の一例を示す断面模式図である。図6(a)で示された電子機器では、熱輸送デバイス1と、熱伝導シート2と、電子部品3と、ヒートシンク5と、配線基板6と、を備える。
 なお、電子部品3は、例えば、BGA等の半導体パッケージであり、配線基板6へ実装される。
An example of the electronic device of the present invention will be described with reference to FIGS.
FIG. 6A is a schematic cross-sectional view illustrating an example of the electronic device of the present invention. The electronic device shown in FIG. 6A includes a heat transport device 1, a heat conductive sheet 2, an electronic component 3, a heat sink 5, and a wiring board 6.
The electronic component 3 is a semiconductor package such as a BGA, for example, and is mounted on the wiring board 6.
 熱輸送デバイス1は、上述した本発明の熱輸送デバイスであり、図6(a)に示すように、熱伝導シート2と放熱部材であるヒートシンク5との間に設けられる。熱源である電子部品3から発生した熱は、熱伝導シート2及び熱輸送デバイス1を通して、ヒートシンク5へと伝わり放熱される。この際、本発明の熱輸送デバイス1は、蓄熱作用を有するため、電子機器の表面温度の急激な上昇を抑えることができる。 The heat transport device 1 is the above-described heat transport device of the present invention, and is provided between the heat conductive sheet 2 and the heat sink 5 as a heat radiating member, as shown in FIG. Heat generated from the electronic component 3 as a heat source is transmitted to the heat sink 5 through the heat conductive sheet 2 and the heat transport device 1 and is radiated. At this time, since the heat transport device 1 of the present invention has a heat storage effect, it is possible to suppress a rapid rise in the surface temperature of the electronic device.
 図6(b)で示された電子機器では、熱輸送デバイス1と、電子部品3と、ヒートシンク5と、配線基板6と、を備える。
 発熱体である電子部品3から発生した熱は、熱輸送デバイス1を通して、ヒートシンク5へと伝わり放熱される。この場合も、本発明の熱輸送デバイス1は、蓄熱作用を有するため、電子機器の表面温度の急激な上昇を抑えることができる。
The electronic device shown in FIG. 6B includes the heat transport device 1, the electronic component 3, the heat sink 5, and the wiring board 6.
The heat generated from the electronic component 3 as a heating element is transmitted to the heat sink 5 through the heat transport device 1 and is radiated. Also in this case, since the heat transport device 1 of the present invention has a heat storage effect, it is possible to suppress a rapid rise in the surface temperature of the electronic device.
 なお、本発明の電子機器は、上述した熱源、放熱部材及び熱輸送デバイスの他にも、必要に応じて、電磁波シールド部材や、電子部品等の他の部材を含むこともできる。 The electronic device of the present invention may include other members such as an electromagnetic wave shielding member and an electronic component, if necessary, in addition to the above-described heat source, heat radiating member, and heat transport device.
 次に、本発明を実施例に基づき具体的に説明する。ただし、本発明は下記の実施例に何ら限定されるものではない。 Next, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.
 図7に示すように、発熱体と、金属板及び/又は蓄熱材料部を有する熱輸送デバイスと、を備える装置のモデルをサンプルとして作製した後、有限要素法解析(FEM解析)によって、蓄熱材料表面(図7で示す装置のモデルの裏面)の温度について、時間が経過した際の推移を算出した。算出結果を図8に示す。 As shown in FIG. 7, after a model of an apparatus including a heating element and a heat transport device having a metal plate and / or a heat storage material portion is prepared as a sample, the heat storage material is analyzed by finite element analysis (FEM analysis). With respect to the temperature of the front surface (the back surface of the model of the device shown in FIG. 7), the transition with the passage of time was calculated. FIG. 8 shows the calculation results.
 なお、(1)発熱体については、半導体素子を想定し、消費電力が5.8Wのチップとした。
 また、(2)金属板については、0.1mm厚の銅板(熱伝導率:398W/mK)又は0.2mm厚のベーパーチャンバー(金属筐体:銅、作動液:水、熱伝導率:20000W/mK)を用いた。
 さらに、(3)蓄熱材料部については、金属筐体内にリン酸水素二ナトリウム十二水和物を充填させた(充填率:75体積%)ものを想定し、厚さ:0.2mm、密度:1.52g/cm3 、質量あたりの蓄熱量:280J/g、充填率を考慮した体積あたりの蓄熱量320J/cm3のシートとした。また、蓄熱材料部のないモデルについても作製した。
 なお、実施例の各サンプルとなる装置のモデルにおいては、金属板と蓄熱材料部とは、積層され一体化したものを想定している。
Note that (1) the heating element was a chip with a power consumption of 5.8 W, assuming a semiconductor element.
(2) For the metal plate, a 0.1 mm thick copper plate (thermal conductivity: 398 W / mK) or a 0.2 mm thick vapor chamber (metal housing: copper, hydraulic fluid: water, thermal conductivity: 20000 W / mK) ) Was used.
Furthermore, as for (3) the heat storage material section, it is assumed that the metal casing is filled with disodium hydrogen phosphate dodecahydrate (filling rate: 75% by volume), thickness: 0.2 mm, density: The sheet was 1.52 g / cm 3 , heat storage per mass: 280 J / g, and heat storage per volume 320 J / cm 3 in consideration of the filling factor. In addition, a model without a heat storage material part was also manufactured.
In addition, in the model of the device serving as each sample of the embodiment, it is assumed that the metal plate and the heat storage material unit are stacked and integrated.
 図8の結果から、本発明の範囲に含まれる熱輸送デバイスのサンプル(ベーパーチャンバー+蓄熱材料部のモデル)を用いた場合は、表面温度の上昇が長時間(250秒程度)抑えられていることがわかった。一方、その他の熱輸送デバイスのサンプル(銅板+蓄熱材料部、銅板のみ、ベーパーチャンバーのみのモデル)を用いた場合には、いずれもすぐに表面温度の上昇が見られた。 From the results shown in FIG. 8, when the sample of the heat transport device (model of the vapor chamber + the heat storage material section) included in the scope of the present invention is used, the rise in the surface temperature is suppressed for a long time (about 250 seconds). I understand. On the other hand, when samples of other heat transport devices (copper plate + heat storage material part, copper plate only, model of vapor chamber only) were used, the surface temperature was immediately increased.
 本発明によれば、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイス、熱伝導シート、熱輸送複合体及び電子機器を提供することが可能となる。また、本発明によれば、優れた熱輸送特性を有しつつ、表面温度の急激な上昇を抑えることができる熱輸送デバイスを得ることができる熱輸送デバイスの製造方法を提供することが可能となる。 Advantageous Effects of Invention According to the present invention, it is possible to provide a heat transport device, a heat conductive sheet, a heat transport composite, and an electronic device that have excellent heat transport characteristics and can suppress a rapid rise in surface temperature. . Further, according to the present invention, it is possible to provide a method for manufacturing a heat transport device capable of obtaining a heat transport device having excellent heat transport characteristics and capable of suppressing a rapid rise in surface temperature. Become.
 1   熱輸送デバイス
 2   熱伝導シート
 3   電子部品
 5   ヒートシンク
 6   配線基板
 10  金属筐体
 11  蓋となる金属プレート
 12  熱輸送デバイス本体を構成するためのエッチングが施された金属プレート
 12a 作動液用孔
 13  蓄熱材料部を構成するための金属プレート
 13a 蓄熱材料用孔
 14  熱輸送デバイス本体及び蓄熱材料部を構成するためのエッチングが施された金属プレート
 14a 熱輸送デバイス本体を構成するためのエッチング
 14b 蓄熱材料部を構成するためのエッチング
 20  熱輸送デバイス本体
 30  蓄熱材料部
 31  蓄熱材料
 T   熱輸送デバイスの厚さ
REFERENCE SIGNS LIST 1 heat transport device 2 heat conductive sheet 3 electronic component 5 heat sink 6 wiring board 10 metal housing 11 metal plate serving as lid 12 etched metal plate for constituting heat transport device main body 12 a working fluid hole 13 heat storage Metal plate 13a for forming the material portion 13a Hole for heat storage material 14 Metal plate 14a subjected to etching for forming the heat transport device body and the heat storage material portion 14a Etching for forming the heat transport device body 14b Heat storage material portion 20 Heat transport device body 30 Thermal storage material section 31 Thermal storage material T Thickness of thermal transport device

Claims (11)

  1.  金属筐体内に、ウィック及び作動液を有する熱輸送デバイス本体と、
     金属筐体内に、相転移温度を有する蓄熱材料が充填された蓄熱材料部と、を備え、
     前記熱輸送デバイス本体と前記蓄熱材料部とが、一体化していることを特徴とする、熱輸送デバイス。
    In a metal housing, a heat transport device body having a wick and a working fluid,
    A heat storage material portion filled with a heat storage material having a phase transition temperature in a metal housing,
    The heat transport device, wherein the heat transport device body and the heat storage material section are integrated.
  2.  前記蓄熱材料は、相転移温度が、30~100℃の範囲であることを特徴とする、請求項1に記載の熱輸送デバイス。 熱 The heat transport device according to claim 1, wherein the heat storage material has a phase transition temperature in a range of 30 to 100 ° C.
  3.  前記蓄熱材料は、単位質量あたりの潜熱が、150J/g以上の範囲であることを特徴とする、請求項1に記載の熱輸送デバイス。 The heat transport device according to claim 1, wherein the heat storage material has a latent heat per unit mass of 150 J / g or more.
  4.  前記蓄熱材料は、単位体積当たりの潜熱が150J/cm3以上の範囲であることを特徴とする、請求項1に記載の熱輸送デバイス。 The heat storage material is characterized in that the latent heat per unit volume is in the range of 150 J / cm 3 or more, the heat transport device according to claim 1.
  5.  前記蓄熱材料は、結晶水を有することを特徴とする、請求項1~4のいずれか1項に記載の熱輸送デバイス。 (5) The heat transport device according to any one of (1) to (4), wherein the heat storage material has water of crystallization.
  6.  前記蓄熱材料は、金属塩の水和物であることを特徴とする、請求項5に記載の熱輸送デバイス。 6. The heat transport device according to claim 5, wherein the heat storage material is a hydrate of a metal salt.
  7.  前記熱輸送デバイスが、ベーパーチャンバー、ヒートパイプ又はヒートスプレッダであることを特徴とする、請求項1~6のいずれか1項に記載の熱輸送デバイス。 The heat transport device according to any one of claims 1 to 6, wherein the heat transport device is a vapor chamber, a heat pipe, or a heat spreader.
  8.  高分子マトリックス成分と、熱伝導性充填剤とを含んだ熱伝導シートであって、
     前記熱伝導シートは、請求項1~7のいずれか1項に記載の熱輸送デバイスに隣接して設けられることを特徴とする、熱伝導シート。
    A heat conductive sheet containing a polymer matrix component and a heat conductive filler,
    The heat conductive sheet, wherein the heat conductive sheet is provided adjacent to the heat transport device according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか1項に記載の熱輸送デバイスと、該熱輸送デバイスに隣接して設けられた熱伝導シートとを備えることを特徴とする、熱輸送複合体。 A heat transport composite comprising the heat transport device according to any one of claims 1 to 7, and a heat conductive sheet provided adjacent to the heat transport device.
  10.  熱源と、放熱部材と、該熱源と該放熱部材との間に設けられた熱輸送デバイスと、を備える電子機器であって、
     前記輸送デバイスが、請求項1~7のいずれか1項に記載の輸送デバイスであることを特徴とする、電子機器。
    A heat source, a heat dissipating member, and a heat transport device provided between the heat source and the heat dissipating member, comprising:
    An electronic apparatus, wherein the transport device is the transport device according to any one of claims 1 to 7.
  11.  請求項1~7のいずれか1項に記載の熱輸送デバイスの製造方法であって、
     金属プレートをエッチングした後、該エッチングを施した金属プレートを重ね合わせ、拡散接合を行うことで、金属筐体を作製する工程と、
     前記金属筐体内を真空化した後、作動液となる冷媒を注入し、封止することで、熱輸送デバイス本体を作製する工程と、
     前記金属筐体内を真空化した後、蓄熱材料を注入し、封止することで、蓄熱材料部を作製する工程と、
    を含むことを特徴とする、熱輸送デバイスの製造方法。
    A method for manufacturing a heat transport device according to any one of claims 1 to 7,
    After etching the metal plate, a step of fabricating a metal housing by overlapping the etched metal plates and performing diffusion bonding,
    After evacuating the inside of the metal housing, a coolant serving as a working fluid is injected and sealed, whereby a heat transport device body is manufactured.
    After evacuating the inside of the metal housing, a heat storage material is injected and sealed, thereby producing a heat storage material portion.
    A method for manufacturing a heat transport device, comprising:
PCT/JP2019/028535 2018-07-31 2019-07-19 Heat transport device, heat transfer sheet, heat transport composite body, electronic device, and method for producing heat transport device WO2020026860A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018143545A JP7184559B2 (en) 2018-07-31 2018-07-31 HEAT TRANSPORT DEVICE, HEAT CONDUCTIVE SHEET, HEAT TRANSPORT COMPOSITE, ELECTRONIC DEVICE, AND HEAT TRANSPORT DEVICE MANUFACTURING METHOD
JP2018-143545 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020026860A1 true WO2020026860A1 (en) 2020-02-06

Family

ID=69231111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028535 WO2020026860A1 (en) 2018-07-31 2019-07-19 Heat transport device, heat transfer sheet, heat transport composite body, electronic device, and method for producing heat transport device

Country Status (2)

Country Link
JP (1) JP7184559B2 (en)
WO (1) WO2020026860A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029204A1 (en) * 2019-08-09 2021-02-18 矢崎エナジーシステム株式会社 Structure, and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202979A (en) * 1998-01-08 1999-07-30 Fujikura Ltd Cooling device for electronic element
JP2004203978A (en) * 2002-12-24 2004-07-22 Sekisui Chem Co Ltd Heat-accumulating microcapsule
JP2008051444A (en) * 2006-08-28 2008-03-06 Calsonic Kansei Corp Manufacturing method of thermal accumulator
JP2008277684A (en) * 2007-05-07 2008-11-13 Ricoh Co Ltd Contact member, cooling device of electronic apparatus, electronic apparatus and image forming apparatus
JP2014179483A (en) * 2013-03-15 2014-09-25 Furukawa Electric Co Ltd:The Heat exchange module, motor structure using the same, method for manufacturing heat exchange module and heating system
JP2017122555A (en) * 2016-01-08 2017-07-13 パナソニックIpマネジメント株式会社 Heat storage device and heat storage method
JP2018115813A (en) * 2017-01-18 2018-07-26 大日本印刷株式会社 Vapor chamber, metal sheet assembly for vapor chamber, and manufacturing method of vapor chamber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202979A (en) * 1998-01-08 1999-07-30 Fujikura Ltd Cooling device for electronic element
JP2004203978A (en) * 2002-12-24 2004-07-22 Sekisui Chem Co Ltd Heat-accumulating microcapsule
JP2008051444A (en) * 2006-08-28 2008-03-06 Calsonic Kansei Corp Manufacturing method of thermal accumulator
JP2008277684A (en) * 2007-05-07 2008-11-13 Ricoh Co Ltd Contact member, cooling device of electronic apparatus, electronic apparatus and image forming apparatus
JP2014179483A (en) * 2013-03-15 2014-09-25 Furukawa Electric Co Ltd:The Heat exchange module, motor structure using the same, method for manufacturing heat exchange module and heating system
JP2017122555A (en) * 2016-01-08 2017-07-13 パナソニックIpマネジメント株式会社 Heat storage device and heat storage method
JP2018115813A (en) * 2017-01-18 2018-07-26 大日本印刷株式会社 Vapor chamber, metal sheet assembly for vapor chamber, and manufacturing method of vapor chamber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029204A1 (en) * 2019-08-09 2021-02-18 矢崎エナジーシステム株式会社 Structure, and method for manufacturing same
GB2600039A (en) * 2019-08-09 2022-04-20 Yazaki Energy System Corp Structure, and method for manufacturing same
GB2600039B (en) * 2019-08-09 2023-06-07 Yazaki Energy System Corp Structure, and method for manufacturing same

Also Published As

Publication number Publication date
JP2020020510A (en) 2020-02-06
JP7184559B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
CN100453955C (en) Heat pipe and manufacturing method thereof
US10184729B2 (en) Heat pipe
US7213637B2 (en) Heat pipe operating fluid, heat pipe, and method for manufacturing the heat pipe
JP2006503436A (en) Plate heat transfer device and manufacturing method thereof
JP2007519877A (en) Plate heat transfer device and manufacturing method thereof
TWI633269B (en) Heat pipe
CN111863746B (en) Heat abstractor, circuit board and electronic equipment
TWI633266B (en) Heat pipe
JP2011112330A (en) Heat radiation component and method for manufacturing the same
TW201104806A (en) Microelectronic packaging and fabrications thereof
JP2010118503A (en) Reactor
CN204291722U (en) A kind of heat abstractor
WO2020026860A1 (en) Heat transport device, heat transfer sheet, heat transport composite body, electronic device, and method for producing heat transport device
CN104900611A (en) Flexible-substrate-based three-dimensional packaging heat-radiation structure and preparation method thereof
JP2005303248A (en) Radiation module
CN212034657U (en) Integrated uniform temperature plate radiator
JP2010216676A (en) Cooling substrate
JP2005347616A (en) Heat spreader, manufacturing method thereof and electronic apparatus
KR101044351B1 (en) Heat cooler
JP2008196787A (en) Heat pipe
JP6115264B2 (en) Cold plate
US20120024500A1 (en) Thermosyphon for cooling electronic components
US9230879B2 (en) Thermal management in electronic apparatus with phase-change material and silicon heat sink
JP3217881U (en) Metal heat dissipation device
JP6011499B2 (en) Adsorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844361

Country of ref document: EP

Kind code of ref document: A1