WO2020026674A1 - Polarizing plate and liquid crystal display device - Google Patents

Polarizing plate and liquid crystal display device Download PDF

Info

Publication number
WO2020026674A1
WO2020026674A1 PCT/JP2019/026110 JP2019026110W WO2020026674A1 WO 2020026674 A1 WO2020026674 A1 WO 2020026674A1 JP 2019026110 W JP2019026110 W JP 2019026110W WO 2020026674 A1 WO2020026674 A1 WO 2020026674A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation layer
group
polarizer
liquid crystal
polarizing plate
Prior art date
Application number
PCT/JP2019/026110
Other languages
French (fr)
Japanese (ja)
Inventor
正寛 市原
廷敏 趙
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020217004859A priority Critical patent/KR20210039397A/en
Priority to CN201980050271.9A priority patent/CN112513696B/en
Publication of WO2020026674A1 publication Critical patent/WO2020026674A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays

Definitions

  • the present invention relates to a polarizing plate and a liquid crystal display device.
  • Patent Document 1 discloses that an elliptically polarizing plate using two retardation films having a predetermined positive refractive index anisotropy improves color shift while suppressing a decrease in contrast. Have been.
  • An object of the present invention is to provide a polarizing plate capable of suppressing light leakage more than before, and a liquid crystal display device using the same.
  • the present invention includes a polarizer, a first retardation layer and a second retardation layer laminated on one surface of the polarizer, and a slow axis of the first retardation layer and a polarizer. and the absorption axis, are substantially perpendicular or substantially parallel to each other, the direction of the refractive index of the refractive index is the maximum in-plane and n x, the refractive index in the direction perpendicular to the direction in the plane thereof and n y , when the refractive index in the thickness direction and n z, the second retardation layer, n z> n x ⁇ n y was filled, the retardation value in the thickness direction for light at a wavelength of [lambda] nm R th (lambda ),
  • the second retardation layer provides a polarizing plate satisfying R th (450) / R th (550) ⁇ 1.00. According to this polarizing plate, light leakage can be suppressed
  • the slow axis of the first retardation layer and the absorption axis of the polarizer are substantially orthogonal to each other, and the polarizer, the first retardation layer, and the second retardation layer are arranged in this order. You may have.
  • the slow axis of the first retardation layer and the absorption axis of the polarizer are substantially parallel to each other, and the polarizer, the second retardation layer, and the first retardation layer They may be provided in this order.
  • the first retardation layer preferably satisfies n x> n y ⁇ n z . According to this, it is possible to suppress a decrease in contrast due to a change in the axis of the polarizer caused by a change in the viewing angle, and it is possible to improve a color shift.
  • the polarizing plate of the present invention may further include a pressure-sensitive adhesive layer provided on the surface of the outermost layer on the side where the first retardation layer and the second retardation layer of the polarizer are laminated.
  • a pressure-sensitive adhesive layer provided on the surface of the outermost layer on the side where the first retardation layer and the second retardation layer of the polarizer are laminated.
  • the present invention also provides a liquid crystal display device including the above polarizing plate and an IPS mode liquid crystal cell.
  • the present invention it is possible to provide a polarizing plate capable of suppressing light leakage more than before, and a liquid crystal display device using the same.
  • FIG. 2 is a cross-sectional view of the polarizing plate according to the first embodiment. It is a sectional view of a polarizing plate concerning a 2nd embodiment. FIG. 2 is a cross-sectional view of a liquid crystal display device including the polarizing plate according to the first embodiment.
  • a polarizing plate 1A of the present embodiment includes retardation layers 4 and 5 on one surface of a polarizer 3, and includes a protective film 2, a polarizer 3, The first retardation layer 4, the second retardation layer 5, and the pressure-sensitive adhesive layer 6 are laminated in this order. Each of these layers is in the form of a film.
  • an alignment film horizontal to be described later is provided between the first retardation layer 4 and the second retardation layer 5 or between the polarizer 3 and the first retardation layer 4. (Alignment film, vertical alignment film), an adhesive (adhesive layer), an adhesive layer, and a protective film.
  • the protective film 2 is a layer that physically protects the polarizer 3.
  • the constituent material is not particularly limited.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate; cellulose polymers such as diacetyl cellulose and triacetyl cellulose; acrylic polymers such as polymethyl methacrylate; polystyrene, acrylonitrile / styrene copolymer (AS resin) And styrene-based polymers, polycarbonate-based polymers, and the like.
  • Other examples include polyolefin-based polymers such as polyethylene, polypropylene, polyolefin having a cyclo- or norbornene structure, and ethylene-propylene copolymer.
  • the thickness of the protective film 2 is preferably 0.1 ⁇ m to 40 ⁇ m, more preferably 0.5 ⁇ m to 35 ⁇ m, and still more preferably 1 ⁇ m to 30 ⁇ m.
  • the polarizer 3 is a stretched film in which a dichroic dye such as iodine having absorption anisotropy is adsorbed, and examples of the material include polyvinyl alcohol.
  • the polarizer 3 is obtained by applying and curing a composition containing a dichroic dye and a polymerizable liquid crystal compound, that is, a polarizer 3 in which the dichroic dye is oriented in a cured layer of the polymerizable liquid crystal compound. You may.
  • the polarizer 3 may be obtained by applying and curing a composition containing a dichroic dye having liquid crystallinity.
  • the thickness of the polarizer 3 can be 1 ⁇ m to 40 ⁇ m, preferably 5 ⁇ m to 20 ⁇ m.
  • the first retardation layer 4 is a layer having at least an in-plane retardation, and preferably has an in-plane retardation value R O of 110 to 150 nm for light having a wavelength of 590 nm.
  • the first retardation layer 4 and the polarizer 3 are stacked such that the slow axis of the first retardation layer 4 and the absorption axis of the polarizer 3 are substantially orthogonal to each other.
  • the first retardation layer 4 and the polarizer 3 are attached to each other using, for example, an adhesive.
  • the first retardation layer 4 preferably has a refractive index anisotropy in the plane of the film, and preferably has a uniaxially oriented positive refractive index anisotropy. That is, when the in-plane refractive index and the refractive indices n x direction becomes maximum, the direction of the refractive index perpendicular to the direction in the plane thereof and n y, the refractive index in the thickness direction and n z it is preferable to satisfy the n x> n y ⁇ n z ( positive a plate).
  • n y ⁇ n z in addition to the case where the n y and n z equal completely, but also a case where the n y and n z are substantially equal. Specifically, if it is within 0.01 the magnitude of the difference between n y and n z, and n y and n z it can be said to substantially equal.
  • the first retardation layer 4 can be a stretched film obtained from a resin exemplified as a constituent material of the above-mentioned protective film, or a polymer of a composition containing a polymerizable liquid crystal compound.
  • the first retardation layer 4 is preferably formed from a polymer of a composition containing a polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound is a liquid crystal compound having a polymerizable functional group, particularly a photopolymerizable functional group.
  • the photopolymerizable functional group refers to a group capable of participating in a polymerization reaction by an active radical, an acid, or the like generated from a photopolymerization initiator.
  • Examples of the photopolymerizable functional group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxiranyl group, and an oxetanyl group.
  • an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.
  • the liquid crystallinity may be a thermotropic liquid crystal or a lyotropic liquid crystal
  • the phase ordered structure may be a nematic liquid crystal or a smectic liquid crystal.
  • the polymerizable liquid crystal compound is preferably a polymerizable liquid crystal compound having a positive wavelength dispersion, and has the following formula (II)
  • the compound represented by is preferred.
  • G 1 , G 2 and G 3 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group.
  • the hydrogen atom contained in the divalent aromatic group or the divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms,
  • the carbon atom constituting the divalent aromatic group or the divalent alicyclic hydrocarbon group may be substituted with an alkoxy group, a cyano group or a nitro group represented by the formulas 1 to 4, wherein an oxygen atom, a sulfur atom Alternatively, it may be substituted by a nitrogen atom.
  • L 1 , L 2 , B 1 and B 2 are each independently a single bond or a divalent linking group.
  • K and l each independently represent an integer of 0 to 3, and satisfy the relationship of 1 ⁇ k + 1.
  • E 1 and E 2 each independently represent an alkanediyl group having 1 to 17 carbon atoms, wherein a hydrogen atom contained in the alkanediyl group may be substituted with a halogen atom.
  • —CH 2 — contained therein may be substituted with —O—, —S—, or —Si—.
  • P 1 and P 2 independently represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.
  • G 1 , G 2 and G 3 are each independently preferably 1,4-, which may be substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms.
  • a 1,4-cyclohexanediyl group optionally substituted with at least one substituent selected from the group consisting of a phenylenediyl group, a halogen atom and an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group
  • a 1,4-phenylenediyl group, an unsubstituted 1,4-phenylenediyl group or an unsubstituted 1,4-trans-cyclohexanediyl group particularly preferably an unsubstituted 1,4-phenylenediyl group Or an unsubstituted 1,4-trans-cyclohexanediyl group.
  • At least one of a plurality of G 1 and G 2 is preferably a divalent alicyclic hydrocarbon group, and at least one of G 1 and G 2 bonded to L 1 or L 2.
  • One is more preferably a divalent alicyclic hydrocarbon group.
  • L 1 and L 2 are each independently preferably a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a1 OR a2 —, —R a3 COOR a4 —, and —R a5.
  • R a1 to R a8 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms
  • R c and R d each represent an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • L 1 and L 2 are each independently preferably a single bond, —OR a2-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a4-1 —, or OCOR a6-1 — .
  • R a2-1 , R a4-1 , and R a6-1 each independently represent any one of a single bond, —CH 2 —, and —CH 2 CH 2 —.
  • L 1 and L 2 are each independently preferably a single bond, —O—, —CH 2 CH 2 —, —COO—, —COOCH 2 CH 2 —, or OCO—.
  • B 1 and B 2 are each independently preferably a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a9 OR a10 —, —R a11 COOR a12 —, and —R a13.
  • OCOR a14 — or R a15 OC OOR a16 —.
  • R a9 to R a16 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms.
  • B 1 and B 2 are each independently preferably a single bond, —OR a10-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a12-1 —, or OCOR a14-1 — .
  • R a10-1 , R a12-1 , and R a14-1 each independently represent a single bond, —CH 2 —, or —CH 2 CH 2 —.
  • B 1 and B 2 are each independently more preferably a single bond, —O—, —CH 2 CH 2 —, —COO—, —COOCH 2 CH 2 —, —OCO—, or OCOCH 2 CH 2 —. is there.
  • B 1 and B 2 and G 1 , G 2 and G 3 may be the same or different from each other.
  • E 1 and E 2 are each independently preferably an alkanediyl group having 1 to 17 carbon atoms, more preferably an alkanediyl group having 4 to 12 carbon atoms.
  • Examples of the polymerizable group represented by P 1 or P 2 include an epoxy group, a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, and an oxiranyl. And oxetanyl groups. Among these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred.
  • the above-mentioned polymerizable liquid crystal compounds can be used alone or in combination of two or more.
  • the content of the compound represented by the formula (II) is preferably at least 50 parts by mass, more preferably at least 70 parts by mass, and still more preferably 100 parts by mass of the polymerizable liquid crystal compound. 80 parts by mass or more.
  • a composition containing a polymerizable liquid crystal compound used for forming the first retardation layer 4 (hereinafter, also referred to as a composition for forming a retardation layer) includes a solvent, a photopolymerization initiator, a polymerization inhibitor, and a photosensitizer. And an additive such as a leveling agent and an adhesion improver. Various known additives can be used as these additives, and they can be used alone or in combination of two or more.
  • the content of the polymerizable liquid crystal compound is, for example, 70 to 99.5 parts by mass, preferably 80 to 99 parts by mass, and more preferably 100 parts by mass of the solid content of the composition for forming a retardation layer. 90 to 98 parts by mass.
  • the orientation of the first retardation layer 4 tends to be high.
  • the solid content refers to the total amount of components excluding the solvent from the composition.
  • the thickness of the first retardation layer 4 is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and still more preferably 2.5 ⁇ m or less, from the viewpoint of reducing the thickness of the polarizing plate.
  • the lower limit of the thickness of the first retardation layer 4 is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 1.0 ⁇ m or more.
  • the film thickness of the first retardation layer 4 can be measured using an ellipsometer or a contact type film thickness meter.
  • the second retardation layer 5 is a layer having a phase difference of at least the thickness direction retardation value R th in the thickness direction for light at a wavelength of 590nm is preferably -150 ⁇ -30 nm.
  • the second retardation layer 5 preferably has a refractive index anisotropy in a direction perpendicular to the film plane, and preferably has a uniaxially oriented positive refractive index anisotropy. That is, when the in-plane refractive index and the refractive indices n x direction becomes maximum, the direction of the refractive index perpendicular to the direction in the plane thereof and n y, the refractive index in the thickness direction and n z It is preferable that the second retardation layer satisfies n z > n x ⁇ ny (positive C plate).
  • n x ⁇ n y in addition to the case where the n x and n y equal completely, but also a case where the n x and n y are substantially equal. Specifically, if it is within 0.01 the magnitude of the difference between n x and n y, and n x and n y can be said to substantially equal.
  • the second retardation layer 5 has reverse wavelength dispersion. That is, assuming that the phase difference value in the thickness direction with respect to light having a wavelength of ⁇ nm is R th ( ⁇ ), R th (450) / R th (550) ⁇ 1.00 is satisfied. If this value exceeds 1.0, it becomes difficult to suppress light leakage from the polarizing plate 1A.
  • the value of “R th (450) / R th (550)” is preferably 0.75 to 0.92, more preferably 0.77 to 0.87, and still more preferably 0.79 to 0.85. .
  • the material constituting the second retardation layer 5 is represented by the following formula (I) Is preferable.
  • G 1 , G 2 , L 1 , L 2 , B 1 , B 2 , k, l, E 1 , E 2 , P 1 , and P 2 are the same as those in the structural formula (II). It is defined.
  • Ar represents a divalent aromatic group which may have a substituent.
  • the aromatic group referred to here is a group having a planar structure with a cyclic structure, and the cyclic structure has [4n + 2] ⁇ electrons according to the Huckel rule.
  • n represents an integer.
  • the divalent aromatic group preferably contains at least one of a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Ar preferably has at least one selected from an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocyclic ring which may have a substituent, and an electron-withdrawing group.
  • aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring, and an anthracene ring, and a benzene ring and a naphthalene ring are preferable.
  • aromatic heterocycle examples include a furan ring, a benzofuran ring, a pyrrole ring, an indole ring, a thiophene ring, a benzothiophene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazole ring, a triazine ring, a pyrroline ring, an imidazole ring, and a pyrazole ring.
  • a thiazole ring, a benzothiazole ring, or a benzofuran ring is preferable, and a benzothiazole group is more preferable.
  • Ar contains a nitrogen atom, the nitrogen atom preferably has ⁇ electrons.
  • 2-valent of [pi Total N [pi electrons contained in the aromatic group is preferably 8 or more represented by Ar, more preferably 10 or more, more preferably 14 or more, particularly Preferably it is 16 or more. Further, it is preferably 30 or less, more preferably 26 or less, and further preferably 24 or less.
  • Examples of the aromatic group represented by Ar include the following groups.
  • an asterisk (*) represents a connecting portion
  • Z 0 , Z 1 and Z 2 each independently represent a hydrogen atom, a halogen atom, or an alkyl having 1 to 12 carbons.
  • Q 1 and Q 2 each independently represent —CR 2 ′ R 3 ′ —, —S—, —NH—, —NR 2 ′ —, —CO— or O—, and R 2 ′ and R 3 ′ Each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • J 1 and J 2 each independently represent a carbon atom or a nitrogen atom.
  • Y 1 , Y 2 and Y 3 each independently represent an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.
  • W 1 and W 2 each independently represent a hydrogen atom, a cyano group, a methyl group or a halogen atom, and m represents an integer of 0 to 6.
  • Examples of the aromatic hydrocarbon group for Y 1 , Y 2 and Y 3 include an aromatic hydrocarbon group having 6 to 20 carbon atoms such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group and a biphenyl group. , A naphthyl group is preferred, and a phenyl group is more preferred.
  • Examples of the aromatic heterocyclic group include those having 4 to 20 carbon atoms including at least one nitrogen atom such as furyl, pyrrolyl, thienyl, pyridinyl, thiazolyl, and benzothiazolyl, and at least one heteroatom such as oxygen and sulfur.
  • An aromatic heterocyclic group is mentioned, and a furyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group are preferable.
  • Y 1 and Y 2 may each independently be a polycyclic aromatic hydrocarbon group or a polycyclic aromatic heterocyclic group which may be substituted.
  • the polycyclic aromatic hydrocarbon group refers to a condensed polycyclic aromatic hydrocarbon group or a group derived from an aromatic ring assembly.
  • the polycyclic aromatic heterocyclic group refers to a condensed polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
  • Z 0 , Z 1 and Z 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a cyano group, a nitro group, or an alkoxy group having 1 to 12 carbon atoms.
  • 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and a cyano group
  • Z 1 and Z 2 are more preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, and a cyano group.
  • Q 1 and Q 2 are preferably -NH-, -S-, -NR 2 ' -, -O-, and R 2' is preferably a hydrogen atom. Among them, —S—, —O—, and —NH— are particularly preferable.
  • Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is bound and Z 0 .
  • the aromatic heterocyclic group include those described above as the aromatic heterocyclic ring which Ar may have, for example, a pyrrole ring, an imidazole ring, a pyrroline ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, an indole Ring, quinoline ring, isoquinoline ring, purine ring, pyrrolidine ring and the like.
  • This aromatic heterocyclic group may have a substituent.
  • Y 1 may be the above-mentioned optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 .
  • a benzofuran ring, a benzothiazole ring, a benzoxazole ring and the like can be mentioned.
  • the compound represented by the formula (I) can be produced, for example, according to the method described in JP-A-2010-31223.
  • the second retardation layer 5 may be formed by using the polymerizable liquid crystal compound represented by the formula (I) alone, and the polymerizable liquid crystal compound represented by the formula (I) and the polymerizable liquid crystal compound represented by the formula (II). It may be formed in combination with the polymerizable liquid crystal compound represented. By combining both, the magnitude of the inverse wavelength dispersion can be adjusted.
  • the weight ratio of the polymerizable compound represented by the formula (I) is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
  • the same material as the material constituting the first retardation layer 4 can be used.
  • the thickness of the second retardation layer 5 is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and further preferably 1.5 ⁇ m or less, from the viewpoint of reducing the thickness of the polarizing plate.
  • the lower limit of the thickness of the second retardation layer 5 is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and further preferably 0.5 ⁇ m or more.
  • the thickness of the second retardation layer 5 can be measured using an ellipsometer or a contact type thickness gauge.
  • the pressure-sensitive adhesive layer 6 is the outermost layer (here, the second retardation layer 5) of the polarizer 1A on the side where the first retardation layer 4 and the second retardation layer 5 of the polarizer 3 are laminated. ).
  • Examples of the pressure-sensitive adhesive layer 6 include a pressure-sensitive pressure-sensitive adhesive.
  • the pressure-sensitive adhesive usually contains a polymer and may contain a solvent. Examples of the polymer include an acrylic polymer, a silicone polymer, polyester, polyurethane, and polyether.
  • acrylic pressure-sensitive adhesives containing acrylic polymers are excellent in optical transparency, have appropriate wettability and cohesion, are excellent in adhesiveness, and have high weather resistance and heat resistance, and Floating or peeling hardly occurs under the condition of humidification or humidification, which is preferable.
  • the thickness of the pressure-sensitive adhesive is not particularly limited because it is determined in accordance with the adhesive strength and the like, but is usually 1 ⁇ m to 40 ⁇ m. From the viewpoints of workability, durability and the like, the thickness is preferably 3 ⁇ m to 25 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m.
  • the polarizing plate 1A can be manufactured as follows.
  • the polarizer 3 is formed of, for example, polyvinyl alcohol
  • a step of uniaxially stretching the polyvinyl alcohol-based resin film a step of adsorbing the dichroic dye by dyeing the polyvinyl alcohol-based resin film with a dichroic dye
  • the polyvinyl alcohol resin film to which the dichroic dye is adsorbed is processed through a step of treating with a boric acid aqueous solution and a step of washing with water after the treatment with the boric acid aqueous solution.
  • the dichroic dye include iodine and a dichroic organic dye.
  • the alignment film is a film having an alignment regulating force for aligning the polymerizable liquid crystal compound constituting the retardation layer in a predetermined direction.
  • various alignments such as vertical alignment, horizontal alignment, hybrid alignment, and tilt alignment can be controlled depending on the type of alignment film, rubbing conditions, and light irradiation conditions.
  • the horizontal alignment film is an alignment film having an alignment control force for horizontally aligning the polymerizable liquid crystal compound constituting the retardation layer.
  • the alignment film preferably has solvent resistance that does not dissolve by application of the polymerizable liquid crystal composition or the like, and has heat resistance in heat treatment for removing the solvent or aligning the polymerizable liquid crystal compound.
  • the horizontal alignment film exhibiting an alignment regulating force for aligning the polymerizable liquid crystal compound constituting the first retardation layer 4 in the horizontal direction (in-plane direction) includes a rubbing alignment film, a photo alignment film, and a concavo-convex pattern on the surface.
  • a grub alignment film having a plurality of grooves is exemplified.
  • a photo-alignment film is preferable because the alignment direction can be easily controlled.
  • the rubbing alignment film is usually formed by applying a composition containing an alignment polymer and a solvent (hereinafter, also referred to as a rubbing alignment film forming composition) on a base material (the base material will be described later) and the like. Is removed to form a coating film, and by rubbing the coating film, an alignment regulating force can be imparted.
  • a composition containing an alignment polymer and a solvent hereinafter, also referred to as a rubbing alignment film forming composition
  • oriented polymer examples include polyamide and gelatin having an amide bond, polyimide having an imide bond and polyamic acid which is a hydrolyzate thereof, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, polyoxazole, polyethylene imine, and polystyrene. , Polyvinylpyrrolidone, polyacrylic acid and polyacrylates. These orientation polymers can be used alone or in combination of two or more.
  • the photo-alignment film is usually coated with a composition containing a polymer or monomer having a photoreactive group and a solvent on a substrate (substrate will be described later) or the like, and after removing the solvent, polarized light (preferably , Polarized UV).
  • polarized light preferably , Polarized UV.
  • the photo-alignment film can arbitrarily control the direction of the alignment regulating force by selecting the polarization direction of the polarized light to be irradiated.
  • a glove (groove) alignment film is a film having an uneven pattern or a plurality of grubs (grooves) on the film surface.
  • a polymerizable liquid crystal compound is applied to a film having a plurality of linear grubs arranged at equal intervals, liquid crystal molecules are aligned in a direction along the groove.
  • the thickness of the horizontal alignment film is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, further preferably 0.3 ⁇ m or less, from the viewpoint of reducing the thickness of the retardation plate with an optical compensation function.
  • the thickness of the horizontal alignment film is preferably at least 1 nm, more preferably at least 5 nm, further preferably at least 10 nm, particularly preferably at least 30 nm.
  • the thickness of the horizontal alignment film can be measured using an ellipsometer or a contact type film thickness meter.
  • the first retardation layer 4 is formed on the horizontal alignment film.
  • the first retardation layer 4 is formed by coating a composition for forming a retardation layer containing a polymerizable liquid crystal compound represented by the formula (II) on a horizontal alignment film, and then removing a solvent to obtain a polymerizable liquid crystal in an alignment state. It can be obtained by curing the composition for forming a retardation layer containing a liquid crystal compound by heating and / or active energy rays.
  • Examples of a method of applying the composition for forming a retardation layer on a horizontal alignment film include, for example, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a CAP coating method, and a slit.
  • a coating method, a microgravure method, a die coating method, an ink jet method and the like can be mentioned. Further, a coating method using a coater such as a dip coater, a bar coater, and a spin coater may be used. Above all, in the case of continuous application in a roll-to-roll format, an application method using a microgravure method, an inkjet method, a slit coating method, or a die coating method is preferable.
  • Examples of the method for removing the solvent include, for example, natural drying, ventilation drying, heat drying, drying under reduced pressure, and a combination thereof. Above all, natural drying or heat drying is preferable.
  • the drying temperature is preferably in the range of 0 to 200 ° C, more preferably in the range of 20 to 150 ° C, and still more preferably in the range of 50 to 130 ° C.
  • the drying time is preferably from 10 seconds to 20 minutes, more preferably from 30 seconds to 10 minutes.
  • the type of the polymerizable liquid crystal compound contained (particularly, the type of the photopolymerizable functional group of the polymerizable liquid crystal compound)
  • a photopolymerization initiator is contained, it is appropriately selected according to the type of the photopolymerization initiator and the amount thereof. Specifically, it includes at least one kind of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-ray, ⁇ -ray, ⁇ -ray, and ⁇ -ray.
  • ultraviolet light is preferable in that it is easy to control the progress of the polymerization reaction and that a photopolymerization device that is widely used in this field can be used, and the photopolymerization can be performed by ultraviolet light. It is preferable to select the type of the liquid crystal compound.
  • Examples of the light source of the active energy ray include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excimer laser, and a wavelength range.
  • Examples include an LED light source that emits light at 380 to 440 nm, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, and a metal halide lamp.
  • the ultraviolet irradiation intensity is usually from 10 to 3,000 mW / cm 2 .
  • the ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating a photocationic polymerization initiator or a photoradical polymerization initiator.
  • the time for irradiating light is generally 0.1 second to 10 minutes, preferably 0.1 second to 5 minutes, more preferably 0.1 second to 3 minutes, and further preferably 0.1 second to 1 minute. is there.
  • the integrated light amount is 10 to 3,000 mJ / cm 2 , preferably 50 to 2,000 mJ / cm 2 , and more preferably 100 to 1,000 mJ / cm 2. 2 .
  • the integrated light amount is less than the above lower limit, curing of the polymerizable liquid crystal compound may be insufficient, and good transferability may not be obtained. Conversely, when the integrated light amount is equal to or more than the above upper limit, the retardation plate with the optical compensation function including the first retardation layer 4 may be colored.
  • the first retardation layer 4 thus formed on the horizontal alignment film using the polymerizable liquid crystal compound represented by the formula (II) becomes a positive A plate having a positive wavelength dispersion.
  • a resin film that has been stretched in advance is bonded to the polarizer 3 with an adhesive. A method can also be used.
  • the second retardation layer 5 is formed. However, before forming the second retardation layer 5, a vertical alignment film is formed.
  • the vertical alignment film is an alignment film having an alignment controlling force for vertically aligning the polymerizable liquid crystal compound constituting the retardation layer. Therefore, a vertical alignment liquid crystal film can be formed by using the vertical alignment film.
  • the vertical alignment film it is preferable to apply a material that lowers the surface tension of the surface of the substrate or the like.
  • materials include the above-mentioned oriented polymers, for example, polyimides, polyamides, polyamic acids that are hydrolysates thereof, fluorine-based polymers such as perfluoroalkyl, and silane compounds and polysiloxane compounds obtained by a condensation reaction thereof. Is mentioned.
  • the vertical alignment film is obtained by applying a composition containing such a material and a solvent (hereinafter, also referred to as a composition for forming a vertical alignment film) on a substrate or the like, removing the solvent, and then heating the applied film. Can be obtained at
  • the vertical alignment film is composed of Si and C elements as constituent elements from the viewpoint of easily lowering the surface tension and increasing the adhesion to the layer adjacent to the vertical alignment film. Is preferable, and a silane compound can be suitably used.
  • a vertical alignment film is disposed between the first retardation layer 4 and the second retardation layer 5, the vertical alignment film, the first retardation layer 4 and the second retardation layer High adhesion to the layer 5 is exhibited, and in the retardation layers 4 and 5, peeling at the interface between the respective layers can be effectively suppressed or prevented.
  • the vertical alignment film is preferably a film made of a compound containing Si, C, and O elements as constituent elements.
  • the number of carbon atoms of a substituent containing a C atom bonded to a Si atom of a silane compound forming a vertical alignment film is preferably 1 to 30, more preferably 2 to 25, and even more preferably 2 to 25. Preferably it is 3-20.
  • the ratio of Si element to C element is preferably 0.03 to 1.00, more preferably 0.04 to 0.50, and even more preferably 0.05 to 0. 33.
  • Si / C ratio is equal to or more than the above lower limit, the coatability of the composition for forming a retardation layer is improved, and when the Si / C ratio is equal to or less than the above upper limit, the adhesion to an adjacent layer can be improved.
  • the solvent for example, the solvent exemplified in the section of the first retardation layer 4 can be used.
  • the method for applying the composition for forming a vertical alignment film includes the above-mentioned coating method A, and the method for removing the solvent includes the above-described solvent removing method A.
  • composition for forming a vertical alignment film may contain, in addition to the solvent, the additives exemplified in the section of the first retardation layer.
  • the thickness of the vertical alignment film is preferably 1 ⁇ m or less, more preferably 0.3 ⁇ m or less, and still more preferably 0.1 ⁇ m or less, from the viewpoint of reducing the thickness of the retardation plate with an optical compensation function and expressing the alignment regulating force. is there.
  • the thickness of the vertical alignment film is preferably at least 1 nm, more preferably at least 5 nm, further preferably at least 10 nm, particularly preferably at least 30 nm.
  • the thickness of the vertical alignment film can be measured using an ellipsometer or a contact type film thickness meter.
  • the second retardation layer 5 is formed on the vertical alignment film.
  • the second retardation layer 5 is formed by applying a composition for forming a retardation layer containing a polymerizable liquid crystal compound represented by the formula (I) on a vertical alignment film, and then removing the solvent to obtain a polymerizable liquid crystal in the alignment state. It can be obtained by curing a composition for forming a retardation layer containing a liquid crystal compound by heating and / or active energy rays.
  • the method of applying the composition for forming a retardation layer on the vertical alignment film may be the same as the method for forming the first retardation layer 4.
  • the method of removing the solvent may be the same as the method of forming the first retardation layer 4.
  • the same ones as used when forming the first retardation layer 4 can be used.
  • the irradiation intensity can be performed in the same manner as when the first retardation layer 4 is formed.
  • the second retardation layer 5 thus formed on the vertical alignment film using the polymerizable liquid crystal compound represented by the formula (I) becomes a positive C plate having reverse wavelength dispersion.
  • the degree of the reverse wavelength dispersion is adjusted by mixing and using the polymerizable liquid crystal compound represented by the formula (II) with the polymerizable liquid crystal compound represented by the formula (I).
  • the substrate may be either designed to transfer the film applied on the substrate after being peeled off, or may be designed so that adhesion to the substrate cannot be transferred due to adhesion to the substrate.
  • a design capable of transferring to a transfer body and peeling the substrate is preferable.
  • the substrate as described above include a glass substrate and a film substrate, and a film substrate is preferable from the viewpoint of processability, and a long roll-shaped film is more preferable because it can be continuously manufactured.
  • the resin constituting the film substrate examples include polyolefins such as polyethylene, polypropylene and norbornene polymers; cyclic olefin resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid esters; And cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyether sulfone; polyether ketone; and plastics such as polyphenylene sulfide and polyphenylene oxide.
  • the base material surface may be subjected to a release treatment such as a silicone treatment.
  • a resin can be used as a substrate by forming a film by a known means such as a solvent casting method and a melt extrusion method.
  • the base material has such a thickness that a horizontal alignment film or a vertical alignment film can be easily laminated, and that it can be easily separated.
  • the thickness of such a substrate is usually from 5 to 300 ⁇ m, preferably from 20 to 200 ⁇ m.
  • the polarizer 3 may be used as a base material for forming a horizontal alignment film
  • the first retardation layer 4 may be used as a base material for forming a vertical alignment film. May be used.
  • the pressure-sensitive adhesive layer 6 is laminated on the surface of the second retardation layer 5 by a conventionally known method. Thus, the polarizing plate 1A is completed.
  • a polarizing plate 1A in which a protective film 2, a polarizer 3, a first retardation layer 4, a second retardation layer 5, and an adhesive layer 6 are laminated in this order.
  • the stacking order of the first retardation layer 4 and the second retardation layer 5 may be reversed.
  • the polarizing plate 1 ⁇ / b> B of the second embodiment includes retardation layers 4 and 5 on one surface of a polarizer 3, and includes a protective film 2, a polarizer 3, ,
  • the second retardation layer 5, the first retardation layer 4, and the pressure-sensitive adhesive layer 6 are laminated in this order.
  • the first retardation layer 4 and the polarizer 3 are laminated such that the slow axis of the first retardation layer 4 and the absorption axis of the polarizer 3 are substantially parallel to each other.
  • the constituent materials, characteristics, and manufacturing method of each layer can be the same as those of the polarizing plate 1A of the first embodiment.
  • the polarizing plate of the present invention is suitable for manufacturing a liquid crystal display device by attaching the polarizing plate to an IPS mode (transverse electric field type) liquid crystal cell. As shown in FIG. 3, a polarizing plate 1A is attached to the viewing side of the liquid crystal cell 8, and another polarizing plate 11 is attached to the back side of the liquid crystal cell 8 to form a liquid crystal panel 9.
  • the liquid crystal display device 10 can be manufactured by combining a backlight (surface light source device) and other members.
  • the other polarizing plate 11 may include a polarizer, a protective film, and a brightness enhancement film.
  • the retardation value in the in-plane direction with respect to light having a wavelength of 590 nm is preferably 10 nm or less, and the absolute value of the retardation value in the thickness direction with respect to light having a wavelength of 590 nm is absolute.
  • the value is 10 nm or less.
  • a polarizer having iodine adsorbed and oriented on a polyvinyl alcohol resin was prepared.
  • the thickness of the polarizer was 8 ⁇ m.
  • the first retardation layer A stretched cyclic olefin-based resin film was prepared.
  • the in-plane retardation value was 125 nm at a wavelength of 590 nm.
  • the first retardation layer is a lambda / 4 plate satisfying n x> n y ⁇ n z , it showed a positive wavelength dispersion properties.
  • composition for forming retardation layer The following “composition for forming a retardation layer P” and “composition for forming a retardation layer Q” were prepared as compositions for forming the second retardation layer.
  • a polymerizable liquid crystal compound A and a polymerizable liquid crystal compound B having the following structures were mixed at a mass ratio of 90:10.
  • a leveling agent product name "F-556", manufactured by DIC
  • 2-dimethylamino-2-benzyl-1-photon as a photopolymerization initiator were added.
  • 6 parts by mass of (4-morpholinophenyl) butan-1-one product name “Irgacure 369 (Irg369)”, manufactured by BASF Japan Ltd.
  • NMP N-methyl-2-pyrrolidone
  • Example 1 The silane coupling agent KBE-9103 (manufactured by Shin-Etsu Chemical Co., Ltd.) is dissolved in a solvent in which ethanol and water are mixed at a ratio of 9: 1 (mass ratio), and the liquid crystal is vertically aligned at a solid content of 0.5%. A composition for film formation was obtained. Next, the surface of the first retardation layer as a substrate was subjected to corona treatment. The composition for forming a vertical alignment film was applied on the corona-treated surface with a bar coater, and dried at 80 ° C. for 1 minute to obtain a vertical alignment film. The thickness of the obtained vertical alignment film was 50 nm.
  • the composition for forming a retardation layer P was applied on the vertical alignment film using a bar coater, and dried at 120 ° C. for 1 minute.
  • the phase difference layer P was formed by irradiating ultraviolet rays using a high-pressure mercury lamp (“Unicure VB-15201BY-A”, manufactured by Ushio Inc.). Irradiation with ultraviolet light was performed under a nitrogen atmosphere such that the integrated light amount at a wavelength of 365 nm was 500 mJ / cm 2 .
  • the characteristics of the obtained retardation layer P were as follows. ⁇ Film thickness: 1.2 ⁇ m ⁇ Phase difference value in the thickness direction: ⁇ 140 nm at a wavelength of 590 nm ⁇ Type: positive C-plate (n z> n x ⁇ n y) -Wavelength dispersion ( Rth (450) / Rth (550)): 0.85
  • the protective film and the polarizer were bonded with an adhesive layer.
  • the polarizer and the first retardation layer were bonded with an adhesive layer.
  • a polarizing plate was obtained in which the protective film, the polarizer, the first retardation layer, and the retardation layer P (the second retardation layer) were laminated in this order.
  • the layers were laminated such that the slow axis of the first retardation layer was orthogonal to the absorption axis of the polarizer.
  • Example 2 The lamination order was changed to be a protective film, a polarizer, a retardation layer P (a second retardation layer), and a first retardation layer, and the slow axis and polarization of the first retardation layer were changed.
  • a polarizing plate was obtained in the same manner as in Example 1 except that the layers were stacked so that the absorption axis of the element became parallel.
  • ⁇ Comparative Example 1> The surface of the first retardation layer as a substrate was subjected to corona treatment. On the corona-treated surface, Sanever (registered trademark) SE610 (manufactured by Nissan Chemical Industries, Ltd.) as a composition for forming a vertical alignment film is applied with a bar coater, and dried at 80 ° C. for 1 minute to obtain a vertical alignment film. Was. The thickness of the obtained vertical alignment film was 50 nm.
  • the composition for forming the retardation layer Q was applied on the vertical alignment film using a bar coater, and dried at 90 ° C. for 120 seconds.
  • the retardation layer Q was formed by irradiating ultraviolet rays using the high-pressure mercury lamp. Irradiation with ultraviolet light was performed under a nitrogen atmosphere such that the integrated light amount at a wavelength of 365 nm was 500 mJ / cm 2 .
  • the characteristics of the obtained retardation layer Q were as follows. ⁇ Film thickness: 1.0 ⁇ m ⁇ Phase difference value in the thickness direction: ⁇ 140 nm at a wavelength of 590 nm ⁇ Type: positive C-plate (n z> n x ⁇ n y) Wavelength dispersion (R th (450) / R th (550)): 1.01
  • the protective film and the polarizer were bonded with an adhesive layer.
  • the polarizer and the first retardation layer were bonded with an adhesive layer.
  • a polarizing plate was obtained in which the protective film, the polarizer, the first retardation layer, and the retardation layer Q (the second retardation layer) were laminated in this order.
  • the layers were laminated such that the slow axis of the first retardation layer was orthogonal to the absorption axis of the polarizer.
  • the contrast in the oblique direction was measured by a viewing angle characteristic measuring and evaluating apparatus.
  • EZ-contrast manufactured by ELDIM was used for the viewing angle characteristic measurement and evaluation device.
  • An adhesive layer was laminated on the surface of the polarizing plate produced in each of the examples and comparative examples.
  • the pressure-sensitive adhesive layer was laminated on the surface on the side of the retardation layer (first retardation layer or second retardation layer).
  • a glass plate was prepared, and the polarizing plates produced in each of Examples and Comparative Examples were adhered to one surface of the glass plate via an adhesive layer. On the other surface of the glass plate, a rear-side polarizing plate was adhered.
  • the rear-side polarizing plate includes an adhesive layer, a protective film (in-plane retardation value for light having a wavelength of 590 nm ⁇ 10 nm, absolute value of thickness retardation value for light having a wavelength of 590 nm ⁇ 10 nm), and polarization.
  • the pair of polarizing plates were bonded so that their absorption axes were orthogonal to each other.
  • the backlight was turned on, and the oblique contrast was evaluated. Table 1 shows the results.
  • the present invention can be used for manufacturing a liquid crystal display device.
  • 1A, 1B polarizing plate, 2 ... Protective film, 3 ... polarizer, 4. first retardation layer, 5: second retardation layer, 6 ... adhesive layer, 8 ... Liquid crystal cell, 9 ... LCD panel, 10. Liquid crystal display device, 11 Other polarizing plate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention addresses the problem of providing a polarizing plate capable of improved suppression of light leakage over the prior art. This polarizing plate 1A is provided with a polarizer 3, and a first phase difference layer 4 and a second phase difference layer 5 layered on the surface on one side of the polarizer 3. The slow axis of the first phase difference layer 4 and the absorption axis of the polarizer 3 are substantially orthogonal or substantially parallel to each other. The second phase difference layer 5 satisfies the expression nz > nx ≈ ny, where nx is the refractive index in the in-plane direction in which the refractive index is maximized, ny is the refractive index in the in-plane direction orthogonal to the aforementioned direction, and nz is the refractive index in the thickness direction. The second phase difference layer 5 satisfies the expression Rth(450)/Rth(550) ≤ 1.00, where Rth(λ) is the phase difference value in the thickness direction with respect to light having a wavelength of λ nm.

Description

偏光板及び液晶表示装置Polarizing plate and liquid crystal display
 本発明は、偏光板及び液晶表示装置に関する。 The present invention relates to a polarizing plate and a liquid crystal display device.
 従来、液晶表示装置の視野角補償が課題とされている。すなわち、バックライトを点灯させた液晶表示装置を斜め方向から観察した場合に、偏光板から光漏れが生じるために完全な黒色表示を達成できないこと(コントラストの低下)や、見かけの位相差が変化することによって偏光板を透過してくる光の波長が変化すること(カラーシフト)等が、解決すべき課題として存在する。これに関し、例えば特許文献1には、所定の正の屈折率異方性を有する二枚の位相差フィルムを用いた楕円偏光板によって、コントラストの低下を抑制しつつカラーシフトを改善することが開示されている。 Conventionally, viewing angle compensation of liquid crystal display devices has been an issue. That is, when the liquid crystal display device with the backlight turned on is observed from an oblique direction, light leakage occurs from the polarizing plate, so that a complete black display cannot be achieved (decrease in contrast) or an apparent phase difference changes. As a result, there is a problem to be solved, such as changing the wavelength of light transmitted through the polarizing plate (color shift). In this regard, for example, Patent Document 1 discloses that an elliptically polarizing plate using two retardation films having a predetermined positive refractive index anisotropy improves color shift while suppressing a decrease in contrast. Have been.
特開2006-126770公報JP 2006-126770 A
 これらの課題は完全に解決することは困難であり、なお一層の視野角補償を求めて研究開発が進められている。本発明は、従来よりも光漏れを抑制することができる偏光板、及び、これを用いた液晶表示装置を提供することを目的とする。 It is difficult to completely solve these problems, and R & D is being pursued to seek even more viewing angle compensation. An object of the present invention is to provide a polarizing plate capable of suppressing light leakage more than before, and a liquid crystal display device using the same.
 本発明は、偏光子と、偏光子の一方側の面に積層された第1の位相差層及び第2の位相差層とを備え、第1の位相差層の遅相軸と偏光子の吸収軸とが、互いに略直交又は略平行しており、面内の屈折率が最大となる方向の屈折率をnとし、その面内において当該方向に直交する方向の屈折率をnとし、厚さ方向の屈折率をnとするとき、第2の位相差層は、n>n≒nを満たし、波長λnmの光に対する厚さ方向の位相差値をRth(λ)とするとき、第2の位相差層は、Rth(450)/Rth(550)≦1.00を満たす偏光板を提供する。この偏光板によれば、従来よりも光漏れを抑制することができる。 The present invention includes a polarizer, a first retardation layer and a second retardation layer laminated on one surface of the polarizer, and a slow axis of the first retardation layer and a polarizer. and the absorption axis, are substantially perpendicular or substantially parallel to each other, the direction of the refractive index of the refractive index is the maximum in-plane and n x, the refractive index in the direction perpendicular to the direction in the plane thereof and n y , when the refractive index in the thickness direction and n z, the second retardation layer, n z> n x ≒ n y was filled, the retardation value in the thickness direction for light at a wavelength of [lambda] nm R th (lambda ), The second retardation layer provides a polarizing plate satisfying R th (450) / R th (550) ≦ 1.00. According to this polarizing plate, light leakage can be suppressed more than before.
 この偏光板において、第1の位相差層の遅相軸と偏光子の吸収軸とが、互いに略直交しており、偏光子、第1の位相差層、第2の位相差層をこの順に備えていてもよい。あるいは、この偏光板において、第1の位相差層の遅相軸と偏光子の吸収軸とが、互いに略平行しており、偏光子、第2の位相差層、第1の位相差層をこの順に備えていてもよい。 In this polarizing plate, the slow axis of the first retardation layer and the absorption axis of the polarizer are substantially orthogonal to each other, and the polarizer, the first retardation layer, and the second retardation layer are arranged in this order. You may have. Alternatively, in this polarizing plate, the slow axis of the first retardation layer and the absorption axis of the polarizer are substantially parallel to each other, and the polarizer, the second retardation layer, and the first retardation layer They may be provided in this order.
 第1の位相差層は、n>n≒nを満たすことが好ましい。これによれば、視野角の変化によって生じる偏光子の軸変化に基づくコントラストの低下を抑制することができ、カラーシフトを改善することができる。 The first retardation layer preferably satisfies n x> n y ≒ n z . According to this, it is possible to suppress a decrease in contrast due to a change in the axis of the polarizer caused by a change in the viewing angle, and it is possible to improve a color shift.
 本発明の偏光板は、偏光子の第1の位相差層及び第2の位相差層が積層されている側の最外層の表面に設けられた粘着剤層を更に備えていてもよい。偏光板が粘着剤層を備えていると、液晶表示装置を構成する液晶セルに貼着するのに都合がよい。 The polarizing plate of the present invention may further include a pressure-sensitive adhesive layer provided on the surface of the outermost layer on the side where the first retardation layer and the second retardation layer of the polarizer are laminated. When the polarizing plate has an adhesive layer, it is convenient to attach the polarizing plate to a liquid crystal cell constituting a liquid crystal display device.
 また、本発明は上記偏光板とIPSモードの液晶セルとを含む液晶表示装置を提供する。 The present invention also provides a liquid crystal display device including the above polarizing plate and an IPS mode liquid crystal cell.
 本発明によれば、従来よりも光漏れを抑制することができる偏光板、及び、これを用いた液晶表示装置を提供することができる。 According to the present invention, it is possible to provide a polarizing plate capable of suppressing light leakage more than before, and a liquid crystal display device using the same.
第1の実施形態に係る偏光板の断面図である。FIG. 2 is a cross-sectional view of the polarizing plate according to the first embodiment. 第2の実施形態に係る偏光板の断面図である。It is a sectional view of a polarizing plate concerning a 2nd embodiment. 第1の実施形態に係る偏光板を備える液晶表示装置の断面図である。FIG. 2 is a cross-sectional view of a liquid crystal display device including the polarizing plate according to the first embodiment.
 以下、本発明の好適な実施形態について、図面を参照しながら詳細に説明する。なお、各図において同一部分又は相当部分には同一符号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In each of the drawings, the same or corresponding portions have the same reference characters allotted, and overlapping description will be omitted.
<偏光板>
(第1の実施形態)
 図1に示されているとおり、本実施形態の偏光板1Aは、偏光子3の一方側の面に位相差層4,5を備えるものであり、保護フィルム2と、偏光子3と、第1の位相差層4と、第2の位相差層5と、粘着剤層6とがこの順に積層されて成るものである。これらの層は、いずれもフィルム状である。なお、図示していないが、第1の位相差層4と第2の位相差層5との間や、偏光子3と第1の位相差層4との間に、後述する配向膜(水平配向膜,垂直配向膜)、接着剤(接着剤層)、粘着剤層、保護フィルムを備えていてもよい。
<Polarizing plate>
(First embodiment)
As shown in FIG. 1, a polarizing plate 1A of the present embodiment includes retardation layers 4 and 5 on one surface of a polarizer 3, and includes a protective film 2, a polarizer 3, The first retardation layer 4, the second retardation layer 5, and the pressure-sensitive adhesive layer 6 are laminated in this order. Each of these layers is in the form of a film. Although not shown, an alignment film (horizontal) to be described later is provided between the first retardation layer 4 and the second retardation layer 5 or between the polarizer 3 and the first retardation layer 4. (Alignment film, vertical alignment film), an adhesive (adhesive layer), an adhesive layer, and a protective film.
[保護フィルム]
 保護フィルム2は、偏光子3を物理的に保護する層である。構成材料は特に制限されず、例えば、多官能アクリレート(メタクリレート)、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート等からなるアクリル系オリゴマーあるいはポリマー;ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルピロリドン、デンプン類、メチルセルロース、カルボキシメチルセルロース、アルギン酸ナトリウム等の水溶性ポリマーと溶媒とを含有する保護層形成用組成物から形成されることが好ましい。また、構成材料としてポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロース等のセルロース系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマー等が挙げられる。他に、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のポリオレフィン系ポリマーが挙げられる。保護フィルム2の膜厚は、好ましくは0.1μm~40μm、より好ましくは0.5μm~35μm、更に好ましくは1μm~30μmである。
[Protective film]
The protective film 2 is a layer that physically protects the polarizer 3. The constituent material is not particularly limited. For example, acrylic oligomers or polymers composed of polyfunctional acrylate (methacrylate), urethane acrylate, polyester acrylate, epoxy acrylate, etc .; polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl pyrrolidone, starches It is preferably formed from a composition for forming a protective layer containing a water-soluble polymer such as methyl cellulose, carboxymethyl cellulose, sodium alginate and a solvent. As constituent materials, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate; cellulose polymers such as diacetyl cellulose and triacetyl cellulose; acrylic polymers such as polymethyl methacrylate; polystyrene, acrylonitrile / styrene copolymer (AS resin) And styrene-based polymers, polycarbonate-based polymers, and the like. Other examples include polyolefin-based polymers such as polyethylene, polypropylene, polyolefin having a cyclo- or norbornene structure, and ethylene-propylene copolymer. The thickness of the protective film 2 is preferably 0.1 μm to 40 μm, more preferably 0.5 μm to 35 μm, and still more preferably 1 μm to 30 μm.
[偏光子]
 偏光子3は、吸収異方性を有するヨウ素等の二色性色素を吸着させた延伸フィルムであり、材料としてはポリビニルアルコールが挙げられる。偏光子3は、二色性色素と重合性液晶化合物とを含む組成物を塗布し硬化させて得られるもの、すなわち、重合性液晶化合物の硬化層中に二色性色素が配向したものであってもよい。偏光子3は、液晶性を有する二色性色素を含む組成物を塗布し硬化させて得られるものであってもよい。偏光子3の厚さは、1μm~40μmであることができ、好ましくは5μm~20μmである。
[Polarizer]
The polarizer 3 is a stretched film in which a dichroic dye such as iodine having absorption anisotropy is adsorbed, and examples of the material include polyvinyl alcohol. The polarizer 3 is obtained by applying and curing a composition containing a dichroic dye and a polymerizable liquid crystal compound, that is, a polarizer 3 in which the dichroic dye is oriented in a cured layer of the polymerizable liquid crystal compound. You may. The polarizer 3 may be obtained by applying and curing a composition containing a dichroic dye having liquid crystallinity. The thickness of the polarizer 3 can be 1 μm to 40 μm, preferably 5 μm to 20 μm.
[第1の位相差層]
 第1の位相差層4は、少なくとも面内方向の位相差を有する層であり、波長590nmの光に対する面内方向の位相差値Rは、110~150nmであることが好ましい。偏光板1Aにおいて、第1の位相差層4の遅相軸と偏光子3の吸収軸とが互いに略直交するように、第1の位相差層4と偏光子3とが積層されている。なお、図示していないが、第1の位相差層4と偏光子3とは、例えば接着剤を用いて貼り合わされている。
[First retardation layer]
The first retardation layer 4 is a layer having at least an in-plane retardation, and preferably has an in-plane retardation value R O of 110 to 150 nm for light having a wavelength of 590 nm. In the polarizing plate 1A, the first retardation layer 4 and the polarizer 3 are stacked such that the slow axis of the first retardation layer 4 and the absorption axis of the polarizer 3 are substantially orthogonal to each other. Although not shown, the first retardation layer 4 and the polarizer 3 are attached to each other using, for example, an adhesive.
 第1の位相差層4は、フィルム平面内に屈折率異方性を有することが好ましく、一軸配向した正の屈折率異方性を有することが好ましい。すなわち、面内の屈折率が最大となる方向の屈折率をnとし、その面内において当該方向に直交する方向の屈折率をnとし、厚さ方向の屈折率をnとするとき、n>n≒n(ポジティブAプレート)を満たすことが好ましい。これによれば、視野角の変化によって生じる偏光子の軸変化に基づくコントラストの低下を抑制することができ、カラーシフトを改善することができる。n≒nは、nとnとが完全に等しい場合に加え、nとnとが実質的に等しい場合も包含する。具体的には、nとnとの差の大きさが0.01以内であれば、nとnとが実質的に等しいと言うことができる。 The first retardation layer 4 preferably has a refractive index anisotropy in the plane of the film, and preferably has a uniaxially oriented positive refractive index anisotropy. That is, when the in-plane refractive index and the refractive indices n x direction becomes maximum, the direction of the refractive index perpendicular to the direction in the plane thereof and n y, the refractive index in the thickness direction and n z it is preferable to satisfy the n x> n y ≒ n z ( positive a plate). According to this, it is possible to suppress a decrease in contrast due to a change in the axis of the polarizer caused by a change in the viewing angle, and it is possible to improve a color shift. n yn z, in addition to the case where the n y and n z equal completely, but also a case where the n y and n z are substantially equal. Specifically, if it is within 0.01 the magnitude of the difference between n y and n z, and n y and n z it can be said to substantially equal.
 第1の位相差層4は、上述の保護フィルムの構成材料として例示された樹脂から得られる延伸フィルムや重合性液晶化合物を含む組成物の重合体であることができる。第1の位相差層4は、重合性液晶化合物を含む組成物の重合体から形成されていることが好ましい。重合性液晶化合物は、重合性官能基、特に光重合性官能基を有する液晶化合物である。
光重合性官能基とは、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基のことをいう。光重合性官能基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶性はサーモトロピック性液晶でもリオトロピック性液晶でもよく、相秩序構造としてはネマチック液晶でもスメクチック液晶でもよい。
The first retardation layer 4 can be a stretched film obtained from a resin exemplified as a constituent material of the above-mentioned protective film, or a polymer of a composition containing a polymerizable liquid crystal compound. The first retardation layer 4 is preferably formed from a polymer of a composition containing a polymerizable liquid crystal compound. The polymerizable liquid crystal compound is a liquid crystal compound having a polymerizable functional group, particularly a photopolymerizable functional group.
The photopolymerizable functional group refers to a group capable of participating in a polymerization reaction by an active radical, an acid, or the like generated from a photopolymerization initiator. Examples of the photopolymerizable functional group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxiranyl group, and an oxetanyl group. Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable. The liquid crystallinity may be a thermotropic liquid crystal or a lyotropic liquid crystal, and the phase ordered structure may be a nematic liquid crystal or a smectic liquid crystal.
 本発明において、重合性液晶化合物は、正の波長分散性を示す重合性液晶化合物であることが好ましく、下記式(II)
Figure JPOXMLDOC01-appb-I000001
で表される化合物が好ましい。
In the present invention, the polymerizable liquid crystal compound is preferably a polymerizable liquid crystal compound having a positive wavelength dispersion, and has the following formula (II)
Figure JPOXMLDOC01-appb-I000001
The compound represented by is preferred.
 式(II)中、G、G及びGはそれぞれ独立に、二価の芳香族基又は二価の脂環式炭化水素基を表す。ここで、該二価の芳香族基又は二価の脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシ基、シアノ基又はニトロ基に置換されていてもよく、該二価の芳香族基又は二価の脂環式炭化水素基を構成する炭素原子が、酸素原子、硫黄原子又は窒素原子に置換されていてもよい。 In the formula (II), G 1 , G 2 and G 3 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group. Here, the hydrogen atom contained in the divalent aromatic group or the divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, The carbon atom constituting the divalent aromatic group or the divalent alicyclic hydrocarbon group may be substituted with an alkoxy group, a cyano group or a nitro group represented by the formulas 1 to 4, wherein an oxygen atom, a sulfur atom Alternatively, it may be substituted by a nitrogen atom.
 L、L 及びBはそれぞれ独立に、単結合又は二価の連結基である。 L 1 , L 2 , B 1 and B 2 are each independently a single bond or a divalent linking group.
 k、lは、それぞれ独立に0~3の整数を表し、1≦k+lの関係を満たす。 K and l each independently represent an integer of 0 to 3, and satisfy the relationship of 1 ≦ k + 1.
 E及びEはそれぞれ独立に、炭素数1~17のアルカンジイル基を表し、ここで、アルカンジイル基に含まれる水素原子は、ハロゲン原子で置換されていてもよく、該アルカンジイル基に含まれる-CH-は、-O-、-S-、-Si-で置換されていてもよい。P及びPは互いに独立に、重合性基又は水素原子を表し、少なくとも1つは重合性基である。 E 1 and E 2 each independently represent an alkanediyl group having 1 to 17 carbon atoms, wherein a hydrogen atom contained in the alkanediyl group may be substituted with a halogen atom. —CH 2 — contained therein may be substituted with —O—, —S—, or —Si—. P 1 and P 2 independently represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.
 G、G及びGは、それぞれ独立に、好ましくは、ハロゲン原子及び炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-フェニレンジイル基、ハロゲン原子及び炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-シクロヘキサンジイル基であり、より好ましくはメチル基で置換された1,4-フェニレンジイル基、無置換の1,4-フェニレンジイル基、又は無置換の1,4-trans-シクロヘキサンジイル基であり、特に好ましくは無置換の1,4-フェニレンジイル基、又は無置換の1,4-trans-シクロへキサンジイル基である。また、複数存在するG及びGのうち少なくとも1つは二価の脂環式炭化水素基であることが好ましく、また、L又はLに結合するG及びGのうち少なくとも1つは二価の脂環式炭化水素基であることがより好ましい。 G 1 , G 2 and G 3 are each independently preferably 1,4-, which may be substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms. A 1,4-cyclohexanediyl group optionally substituted with at least one substituent selected from the group consisting of a phenylenediyl group, a halogen atom and an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group A 1,4-phenylenediyl group, an unsubstituted 1,4-phenylenediyl group or an unsubstituted 1,4-trans-cyclohexanediyl group, particularly preferably an unsubstituted 1,4-phenylenediyl group Or an unsubstituted 1,4-trans-cyclohexanediyl group. Further, at least one of a plurality of G 1 and G 2 is preferably a divalent alicyclic hydrocarbon group, and at least one of G 1 and G 2 bonded to L 1 or L 2. One is more preferably a divalent alicyclic hydrocarbon group.
 L及びLはそれぞれ独立に、好ましくは、単結合、炭素数1~4のアルキレン基、-O-、-S-、-Ra1ORa2-、-Ra3COORa4-、-Ra5OCORa6-、Ra7OC=OORa8-、-N=N-、-CR=CR-、又はC≡C-である。ここで、Ra1~Ra8はそれぞれ独立に単結合、又は炭素数1~4のアルキレン基を表し、R及びRは炭素数1~4のアルキル基又は水素原子を表す。L及びLはそれぞれ独立に、より好ましくは単結合、-ORa2-1-、-CH-、-CHCH-、-COORa4-1-、又はOCORa6-1-である。ここで、Ra2-1、Ra4-1、Ra6-1はそれぞれ独立に単結合、-CH-、-CHCH-のいずれかを表す。L及びLはそれぞれ独立に、さらに好ましくは単結合、-O-、-CHCH-、-COO-、-COOCHCH-、又はOCO-である。 L 1 and L 2 are each independently preferably a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a1 OR a2 —, —R a3 COOR a4 —, and —R a5. OCOR a6 -, R a7 OC = OOR a8 -, - N = N -, - CR c = CR d -, or C≡C-. Here, R a1 to R a8 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms, and R c and R d each represent an alkyl group having 1 to 4 carbon atoms or a hydrogen atom. L 1 and L 2 are each independently preferably a single bond, —OR a2-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a4-1 —, or OCOR a6-1 — . Here, R a2-1 , R a4-1 , and R a6-1 each independently represent any one of a single bond, —CH 2 —, and —CH 2 CH 2 —. L 1 and L 2 are each independently preferably a single bond, —O—, —CH 2 CH 2 —, —COO—, —COOCH 2 CH 2 —, or OCO—.
 B及びBはそれぞれ独立に、好ましくは、単結合、炭素数1~4のアルキレン基、-O-、-S-、-Ra9ORa10-、-Ra11COORa12-、-Ra13OCORa14-、又はRa15OC=OORa16-である。ここで、Ra9~Ra16はそれぞれ独立に単結合、又は炭素数1~4のアルキレン基を表す。B及びBはそれぞれ独立に、より好ましくは単結合、-ORa10-1-、-CH-、-CHCH-、-COORa12-1-、又はOCORa14-1-である。ここで、Ra10-1、Ra12-1、Ra14-1はそれぞれ独立に単結合、-CH-、-CHCH-のいずれかを表す。B及びBはそれぞれ独立に、さらに好ましくは単結合、-O-、-CHCH-、-COO-、-COOCHCH-、-OCO-、又はOCOCHCH-、である。 B 1 and B 2 are each independently preferably a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a9 OR a10 —, —R a11 COOR a12 —, and —R a13. OCOR a14 — or R a15 OC = OOR a16 —. Here, R a9 to R a16 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms. B 1 and B 2 are each independently preferably a single bond, —OR a10-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a12-1 —, or OCOR a14-1 — . Here, R a10-1 , R a12-1 , and R a14-1 each independently represent a single bond, —CH 2 —, or —CH 2 CH 2 —. B 1 and B 2 are each independently more preferably a single bond, —O—, —CH 2 CH 2 —, —COO—, —COOCH 2 CH 2 —, —OCO—, or OCOCH 2 CH 2 —. is there.
 k及びlは、1≦k+l≦6の範囲が好ましく、1≦k+l≦4の範囲がより好ましく、k+l=2の構造がさらに好ましい。2≦k+lである場合、B及びB、並びに、G、G及びGは、それぞれ互いに同一であってもよく、異なっていてもよい。 k and l are preferably in the range of 1 ≦ k + 1 ≦ 6, more preferably in the range of 1 ≦ k + 1 ≦ 4, and further preferably in the structure of k + 1 = 2. When 2 ≦ k + 1, B 1 and B 2 and G 1 , G 2 and G 3 may be the same or different from each other.
 E及びEはそれぞれ独立に、炭素数1~17のアルカンジイル基が好ましく、炭素数4~12のアルカンジイル基がより好ましい。 E 1 and E 2 are each independently preferably an alkanediyl group having 1 to 17 carbon atoms, more preferably an alkanediyl group having 4 to 12 carbon atoms.
 P又はPで表される重合性基としては、例えばエポキシ基、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、及びオキセタニル基等が挙げられる。これらの中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。 Examples of the polymerizable group represented by P 1 or P 2 include an epoxy group, a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, and an oxiranyl. And oxetanyl groups. Among these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred.
 上に挙げた重合性液晶化合物は、単独又は二種以上組み合わせて使用できる。二種以上併用する場合、式(II)で表される化合物の含有量は、重合性液晶化合物100質量部に対して、好ましくは50質量部以上、より好ましくは70質量部以上、さらに好ましくは80質量部以上である。 重合 The above-mentioned polymerizable liquid crystal compounds can be used alone or in combination of two or more. When two or more compounds are used in combination, the content of the compound represented by the formula (II) is preferably at least 50 parts by mass, more preferably at least 70 parts by mass, and still more preferably 100 parts by mass of the polymerizable liquid crystal compound. 80 parts by mass or more.
 第1の位相差層4の形成に使用する重合性液晶化合物を含む組成物(以下、位相差層形成用組成物ともいう)は、溶媒、光重合開始剤、重合禁止剤、光増感剤、レベリング剤、密着性向上剤等の添加材をさらに含むことができる。これらの添加剤は種々の公知のものを使用することができ、単独又は二種以上組み合わせて使用することができる。 A composition containing a polymerizable liquid crystal compound used for forming the first retardation layer 4 (hereinafter, also referred to as a composition for forming a retardation layer) includes a solvent, a photopolymerization initiator, a polymerization inhibitor, and a photosensitizer. And an additive such as a leveling agent and an adhesion improver. Various known additives can be used as these additives, and they can be used alone or in combination of two or more.
 重合性液晶化合物の含有量は、位相差層形成用組成物の固形分100質量部に対して、例えば70~99.5質量部であり、好ましくは80~99質量部であり、より好ましくは90~98質量部である。含有量が上記範囲内であれば、第1の位相差層4の配向性が高くなる傾向がある。ここで、固形分とは、組成物から溶媒を除いた成分の合計量のことをいう。 The content of the polymerizable liquid crystal compound is, for example, 70 to 99.5 parts by mass, preferably 80 to 99 parts by mass, and more preferably 100 parts by mass of the solid content of the composition for forming a retardation layer. 90 to 98 parts by mass. When the content is within the above range, the orientation of the first retardation layer 4 tends to be high. Here, the solid content refers to the total amount of components excluding the solvent from the composition.
 第1の位相差層4の膜厚は、偏光板の薄膜化の観点から、好ましくは5μm以下であり、より好ましくは3μm以下、さらに好ましくは2.5μm以下である。また、第1の位相差層4の膜厚の下限は、好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは1.0μm以上である。第1の位相差層4の膜厚は、エリプソメータ又は接触式膜厚計を用いて測定することができる。 膜厚 The thickness of the first retardation layer 4 is preferably 5 μm or less, more preferably 3 μm or less, and still more preferably 2.5 μm or less, from the viewpoint of reducing the thickness of the polarizing plate. The lower limit of the thickness of the first retardation layer 4 is preferably 0.1 μm or more, more preferably 0.5 μm or more, and further preferably 1.0 μm or more. The film thickness of the first retardation layer 4 can be measured using an ellipsometer or a contact type film thickness meter.
[第2の位相差層]
 第2の位相差層5は、少なくとも厚さ方向の位相差を有する層であり、波長590nmの光に対する厚さ方向の位相差値Rthは、-150~-30nmであることが好ましい。
[Second retardation layer]
The second retardation layer 5 is a layer having a phase difference of at least the thickness direction retardation value R th in the thickness direction for light at a wavelength of 590nm is preferably -150 ~ -30 nm.
 第2の位相差層5は、フィルム平面に対して垂直な方向に屈折率異方性を有することが好ましく、一軸配向した正の屈折率異方性を有することが好ましい。すなわち、面内の屈折率が最大となる方向の屈折率をnとし、その面内において当該方向に直交する方向の屈折率をnとし、厚さ方向の屈折率をnとするとき、前記第2の位相差層は、n>n≒n(ポジティブCプレート)を満たすことが好ましい。n≒nは、nとnとが完全に等しい場合に加え、nとnとが実質的に等しい場合も包含する。具体的には、nとnとの差の大きさが0.01以内であれば、nとnとが実質的に等しいと言うことができる。 The second retardation layer 5 preferably has a refractive index anisotropy in a direction perpendicular to the film plane, and preferably has a uniaxially oriented positive refractive index anisotropy. That is, when the in-plane refractive index and the refractive indices n x direction becomes maximum, the direction of the refractive index perpendicular to the direction in the plane thereof and n y, the refractive index in the thickness direction and n z It is preferable that the second retardation layer satisfies n z > n xny (positive C plate). n xn y, in addition to the case where the n x and n y equal completely, but also a case where the n x and n y are substantially equal. Specifically, if it is within 0.01 the magnitude of the difference between n x and n y, and n x and n y can be said to substantially equal.
 第2の位相差層5は、波長分散性が逆分散性である。すなわち、波長λnmの光に対する厚さ方向の位相差値をRth(λ)とするとき、Rth(450)/Rth(550)≦1.00を満たす。この値が1.0を超えると、偏光板1Aでの光漏れを抑制することが難しくなる。「Rth(450)/Rth(550)」の値は、好ましくは0.75~0.92、より好ましくは0.77~0.87、さらに好ましくは0.79~0.85である。 The second retardation layer 5 has reverse wavelength dispersion. That is, assuming that the phase difference value in the thickness direction with respect to light having a wavelength of λ nm is R th (λ), R th (450) / R th (550) ≦ 1.00 is satisfied. If this value exceeds 1.0, it becomes difficult to suppress light leakage from the polarizing plate 1A. The value of “R th (450) / R th (550)” is preferably 0.75 to 0.92, more preferably 0.77 to 0.87, and still more preferably 0.79 to 0.85. .
 第2の位相差層5を構成する材料としては、下記式(I)
Figure JPOXMLDOC01-appb-I000002
で表される重合性液晶化合物が好ましい。
The material constituting the second retardation layer 5 is represented by the following formula (I)
Figure JPOXMLDOC01-appb-I000002
Is preferable.
 式(I)中、G、G、L、L、B、B、k、l、E、E、P、お
よびPは前記構造式(II)と同様に定義されるものである。
In the formula (I), G 1 , G 2 , L 1 , L 2 , B 1 , B 2 , k, l, E 1 , E 2 , P 1 , and P 2 are the same as those in the structural formula (II). It is defined.
 k及びlは、逆波長分散性発現の観点から2≦k+l≦6の範囲が好ましく、k+l=4であることが好ましく、k=2かつl=2であることがより好ましい。k=2かつl=2であると対称構造となるためさらに好ましい。 K and l are preferably in the range of 2 ≦ k + 1 ≦ 6, preferably k + 1 = 4, more preferably k = 2 and l = 2, from the viewpoint of developing reverse wavelength dispersion. It is more preferable that k = 2 and l = 2, since a symmetrical structure results.
 式(I)中、Arは置換基を有していてもよい二価の芳香族基を表す。ここで言う芳香族基とは、平面性を有する環状構造の基であり、該環構造が有するπ電子数がヒュッケル則に従い[4n+2]個であるものをいう。ここで、nは整数を表す。-N=や-S-等のヘテロ原子を含んで環構造を形成している場合、これらヘテロ原子上の非共有結合電子対を含めてヒュッケル則を満たし、芳香族性を有する場合も含む。該二価の芳香族基中には窒素原子、酸素原子、硫黄原子のうち少なくとも1つ以上が含まれることが好ましい。 {In the formula (I), Ar represents a divalent aromatic group which may have a substituent. The aromatic group referred to here is a group having a planar structure with a cyclic structure, and the cyclic structure has [4n + 2] π electrons according to the Huckel rule. Here, n represents an integer. When a ring structure is formed including a hetero atom such as -N = or -S-, the case where the compound has the aromatic property, which satisfies the Huckel rule including non-covalent bond electron pairs on the hetero atom, is included. The divalent aromatic group preferably contains at least one of a nitrogen atom, an oxygen atom, and a sulfur atom.
 Arは置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、及び電子求引性基から選ばれる少なくとも一つを有することが好ましい。当該芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられ、ベンゼン環、ナフタレン環が好ましい。当該芳香族複素環としては、フラン環、ベンゾフラン環、ピロール環、インドール環、チオフェン環、ベンゾチオフェン環、ピリジン環、ピラジン環、ピリミジン環、トリアゾール環、トリアジン環、ピロリン環、イミダゾール環、ピラゾール環、チアゾール環、ベンゾチアゾール環、チエノチアゾール環、オキサゾール環、ベンゾオキサゾール環、及びフェナンスロリン環等が挙げられる。これらの中でも、チアゾール環、ベンゾチアゾール環、又はベンゾフラン環を有することが好ましく、ベンゾチアゾール基を有することがさらに好ましい。また、Arに窒素原子が含まれる場合、当該窒素原子はπ電子を有することが好ましい。 Ar preferably has at least one selected from an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocyclic ring which may have a substituent, and an electron-withdrawing group. Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, and an anthracene ring, and a benzene ring and a naphthalene ring are preferable. Examples of the aromatic heterocycle include a furan ring, a benzofuran ring, a pyrrole ring, an indole ring, a thiophene ring, a benzothiophene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazole ring, a triazine ring, a pyrroline ring, an imidazole ring, and a pyrazole ring. Thiazole ring, benzothiazole ring, thienothiazole ring, oxazole ring, benzoxazole ring, and phenanthroline ring. Among these, a thiazole ring, a benzothiazole ring, or a benzofuran ring is preferable, and a benzothiazole group is more preferable. When Ar contains a nitrogen atom, the nitrogen atom preferably has π electrons.
 式(I)中、Arで表される2価の芳香族基に含まれるπ電子の合計数Nπは8以上が好ましく、より好ましくは10以上であり、さらに好ましくは14以上であり、特に好ましくは16以上である。また、好ましくは30以下であり、より好ましくは26以下であり、さらに好ましくは24以下である。 Wherein (I), 2-valent of [pi Total N [pi electrons contained in the aromatic group is preferably 8 or more represented by Ar, more preferably 10 or more, more preferably 14 or more, particularly Preferably it is 16 or more. Further, it is preferably 30 or less, more preferably 26 or less, and further preferably 24 or less.
 Arで表される芳香族基としては、例えば以下の基が挙げられる。
Figure JPOXMLDOC01-appb-I000003
Examples of the aromatic group represented by Ar include the following groups.
Figure JPOXMLDOC01-appb-I000003
 式(Ar-1)~式(Ar-22)中、*印は連結部を表し、Z、Z及びZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルキルスルフィニル基、炭素数1~12のアルキルスルホニル基、カルボキシル基、炭素数1~12のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~12のアルキルチオ基、炭素数1~12のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~12のN-アルキルスルファモイル基又は炭素数2~12のN,N-ジアルキルスルファモイル基を表す。 In the formulas (Ar-1) to (Ar-22), an asterisk (*) represents a connecting portion, and Z 0 , Z 1 and Z 2 each independently represent a hydrogen atom, a halogen atom, or an alkyl having 1 to 12 carbons. Group, cyano group, nitro group, alkylsulfinyl group having 1 to 12 carbon atoms, alkylsulfonyl group having 1 to 12 carbon atoms, carboxyl group, fluoroalkyl group having 1 to 12 carbon atoms, alkoxy group having 1 to 6 carbon atoms, An alkylthio group having 1 to 12 carbon atoms, an N-alkylamino group having 1 to 12 carbon atoms, an N, N-dialkylamino group having 2 to 12 carbon atoms, an N-alkylsulfamoyl group having 1 to 12 carbon atoms or carbon Represents an N, N-dialkylsulfamoyl group represented by Formulas 2 to 12.
 Q及びQは、それぞれ独立に、-CR2’3’-、-S-、-NH-、-NR2’-、-CO-又はO-を表し、R2’及びR3’は、それぞれ独立に、水素原子又は炭素数1~4のアルキル基を表す。 Q 1 and Q 2 each independently represent —CR 2 ′ R 3 ′ —, —S—, —NH—, —NR 2 ′ —, —CO— or O—, and R 2 ′ and R 3 ′ Each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 J、及びJは、それぞれ独立に、炭素原子、又は窒素原子を表す。 J 1 and J 2 each independently represent a carbon atom or a nitrogen atom.
 Y、Y及びYは、それぞれ独立に、置換されていてもよい芳香族炭化水素基又は芳香族複素環基を表す。 Y 1 , Y 2 and Y 3 each independently represent an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.
 W及びWは、それぞれ独立に、水素原子、シアノ基、メチル基又はハロゲン原子を表し、mは0~6の整数を表す。 W 1 and W 2 each independently represent a hydrogen atom, a cyano group, a methyl group or a halogen atom, and m represents an integer of 0 to 6.
 Y、Y及びYにおける芳香族炭化水素基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等の炭素数6~20の芳香族炭化水素基が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。芳香族複素環基としては、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも1つ含む炭素数4~20の芳香族複素環基が挙げられ、フリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基が好ましい。 Examples of the aromatic hydrocarbon group for Y 1 , Y 2 and Y 3 include an aromatic hydrocarbon group having 6 to 20 carbon atoms such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group and a biphenyl group. , A naphthyl group is preferred, and a phenyl group is more preferred. Examples of the aromatic heterocyclic group include those having 4 to 20 carbon atoms including at least one nitrogen atom such as furyl, pyrrolyl, thienyl, pyridinyl, thiazolyl, and benzothiazolyl, and at least one heteroatom such as oxygen and sulfur. An aromatic heterocyclic group is mentioned, and a furyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group are preferable.
 Y及びYは、それぞれ独立に、置換されていてもよい多環系芳香族炭化水素基又は多環系芳香族複素環基であってもよい。多環系芳香族炭化水素基は、縮合多環系芳香族炭化水素基、又は芳香環集合に由来する基をいう。多環系芳香族複素環基は、縮合多環系芳香族複素環基、又は芳香環集合に由来する基をいう。 Y 1 and Y 2 may each independently be a polycyclic aromatic hydrocarbon group or a polycyclic aromatic heterocyclic group which may be substituted. The polycyclic aromatic hydrocarbon group refers to a condensed polycyclic aromatic hydrocarbon group or a group derived from an aromatic ring assembly. The polycyclic aromatic heterocyclic group refers to a condensed polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
 Z、Z及びZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルコキシ基であることが好ましく、Zは、水素原子、炭素数1~12のアルキル基、シアノ基がさらに好ましく、Z及びZは、水素原子、フッ素原子、塩素原子、メチル基、シアノ基がさらに好ましい。 Preferably, Z 0 , Z 1 and Z 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a cyano group, a nitro group, or an alkoxy group having 1 to 12 carbon atoms. 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and a cyano group, and Z 1 and Z 2 are more preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, and a cyano group.
 Q及びQは、-NH-、-S-、-NR2’-、-O-が好ましく、R2’は水素原子が好ましい。中でも-S-、-O-、-NH-が特に好ましい。 Q 1 and Q 2 are preferably -NH-, -S-, -NR 2 ' -, -O-, and R 2' is preferably a hydrogen atom. Among them, —S—, —O—, and —NH— are particularly preferable.
 式(Ar-1)~(Ar-22)の中でも、式(Ar-6)及び式(Ar-7)が分子の安定性の観点から好ましい。 中 で も Among the formulas (Ar-1) to (Ar-22), the formulas (Ar-6) and (Ar-7) are preferable from the viewpoint of molecular stability.
 式(Ar-16)~(Ar-22)において、Yは、これが結合する窒素原子及びZと共に、芳香族複素環基を形成していてもよい。芳香族複素環基としては、Arが有していてもよい芳香族複素環として前記したものが挙げられるが、例えば、ピロール環、イミダゾール環、ピロリン環、ピリジン環、ピラジン環、ピリミジン環、インドール環、キノリン環、イソキノリン環、プリン環、ピロリジン環等が挙げられる。この芳香族複素環基は、置換基を有していてもよい。また、Yは、これが結合する窒素原子及びZと共に、前述した置換されていてもよい多環系芳香族炭化水素基又は多環系芳香族複素環基であってもよい。例えば、ベンゾフラン環、ベンゾチアゾール環、ベンゾオキサゾール環等が挙げられる。なお、前記式(I)で表される化合物は、例えば、特開2010-31223号公報に記載の方法に準じて製造することができる。 In the formulas (Ar-16) to (Ar-22), Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is bound and Z 0 . Examples of the aromatic heterocyclic group include those described above as the aromatic heterocyclic ring which Ar may have, for example, a pyrrole ring, an imidazole ring, a pyrroline ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, an indole Ring, quinoline ring, isoquinoline ring, purine ring, pyrrolidine ring and the like. This aromatic heterocyclic group may have a substituent. In addition, Y 1 may be the above-mentioned optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 . For example, a benzofuran ring, a benzothiazole ring, a benzoxazole ring and the like can be mentioned. The compound represented by the formula (I) can be produced, for example, according to the method described in JP-A-2010-31223.
 第2の位相差層5は、式(I)で表される重合性液晶化合物を単独で用いて形成してもよく、式(I)で表される重合性液晶化合物と式(II)で表される重合性液晶化合物とを組み合わせて形成してもよい。両者を組み合わせることで逆波長分散性の大小の程度を調整することができる。この場合、式(I)で表される重合性化合物が重量比で好ましくは70%以上であり、より好ましくは80%以上であり、更に好ましくは90%以上である。 The second retardation layer 5 may be formed by using the polymerizable liquid crystal compound represented by the formula (I) alone, and the polymerizable liquid crystal compound represented by the formula (I) and the polymerizable liquid crystal compound represented by the formula (II). It may be formed in combination with the polymerizable liquid crystal compound represented. By combining both, the magnitude of the inverse wavelength dispersion can be adjusted. In this case, the weight ratio of the polymerizable compound represented by the formula (I) is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
 上記重合性液晶化合物に添加する添加材については、第1の位相差層4を構成する材料と同様のものを用いることができる。 添加 As the additive to be added to the polymerizable liquid crystal compound, the same material as the material constituting the first retardation layer 4 can be used.
 第2の位相差層5の膜厚は、偏光板の薄膜化の観点から、好ましくは3μm以下であり、より好ましくは2μm以下、さらに好ましくは1.5μm以下である。また、第2の位相差層5の膜厚の下限は、好ましくは0.1μm以上、より好ましくは0.3μm以上、さらに好ましくは0.5μm以上である。第2の位相差層5の膜厚は、エリプソメータ又は接触式膜厚計を用いて測定することができる。 膜厚 The thickness of the second retardation layer 5 is preferably 3 μm or less, more preferably 2 μm or less, and further preferably 1.5 μm or less, from the viewpoint of reducing the thickness of the polarizing plate. The lower limit of the thickness of the second retardation layer 5 is preferably 0.1 μm or more, more preferably 0.3 μm or more, and further preferably 0.5 μm or more. The thickness of the second retardation layer 5 can be measured using an ellipsometer or a contact type thickness gauge.
[粘着剤]
 粘着剤層6は、偏光板1Aのうち、偏光子3の第1の位相差層4及び第2の位相差層5が積層されている側の最外層(ここでは第2の位相差層5)の表面に設けられている。粘着剤層6としては、例えば感圧式粘着剤が挙げられる。感圧式粘着剤は、通常、ポリマーを含み、溶媒を含んでいてもよい。ポリマーとしては、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、又はポリエーテル等が挙げられる。中でも、アクリル系ポリマーを含むアクリル系の粘着剤は、光学的な透明性に優れ、適度の濡れ性や凝集力を有し、粘着性に優れ、さらには耐候性や耐熱性等が高く、加熱や加湿の条件下で浮きや剥がれ等が生じ難いため好ましい。感圧式粘着剤の厚さは、その密着力等に応じて決定されるため特に制限されないが、通常1μm~40μmである。加工性や耐久性等の点から、当該厚さは3μm~25μmが好ましく、5μm~20μmがより好ましい。
[Adhesive]
The pressure-sensitive adhesive layer 6 is the outermost layer (here, the second retardation layer 5) of the polarizer 1A on the side where the first retardation layer 4 and the second retardation layer 5 of the polarizer 3 are laminated. ). Examples of the pressure-sensitive adhesive layer 6 include a pressure-sensitive pressure-sensitive adhesive. The pressure-sensitive adhesive usually contains a polymer and may contain a solvent. Examples of the polymer include an acrylic polymer, a silicone polymer, polyester, polyurethane, and polyether. Above all, acrylic pressure-sensitive adhesives containing acrylic polymers are excellent in optical transparency, have appropriate wettability and cohesion, are excellent in adhesiveness, and have high weather resistance and heat resistance, and Floating or peeling hardly occurs under the condition of humidification or humidification, which is preferable. The thickness of the pressure-sensitive adhesive is not particularly limited because it is determined in accordance with the adhesive strength and the like, but is usually 1 μm to 40 μm. From the viewpoints of workability, durability and the like, the thickness is preferably 3 μm to 25 μm, more preferably 5 μm to 20 μm.
[偏光板の製造方法]
 偏光板1Aは、以下のようにして製造することができる。
[Manufacturing method of polarizing plate]
The polarizing plate 1A can be manufactured as follows.
 偏光子3は、例えばポリビニルアルコールから形成する場合、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造される。二色性色素として、ヨウ素や二色性の有機染料が挙げられる。 When the polarizer 3 is formed of, for example, polyvinyl alcohol, a step of uniaxially stretching the polyvinyl alcohol-based resin film, a step of adsorbing the dichroic dye by dyeing the polyvinyl alcohol-based resin film with a dichroic dye, The polyvinyl alcohol resin film to which the dichroic dye is adsorbed is processed through a step of treating with a boric acid aqueous solution and a step of washing with water after the treatment with the boric acid aqueous solution. Examples of the dichroic dye include iodine and a dichroic organic dye.
 このようにして得られた偏光子3と任意の保護フィルム2とを接着剤を用いて貼り合せる。貼り合わせには一対の貼合ロールを用いることができる。 (4) The polarizer 3 thus obtained and the optional protective film 2 are bonded to each other using an adhesive. A pair of bonding rolls can be used for bonding.
 第1の位相差層4を形成する前に、水平配向膜を形成する。一般に配向膜は、位相差層を構成する重合性液晶化合物を所定方向に配向させる配向規制力を有する膜である。また、配向膜の種類やラビング条件や光照射条件によって、垂直配向、水平配向、ハイブリッド配向、及び傾斜配向等の様々な配向の制御が可能である。この中でも、水平配向膜は、位相差層を構成する重合性液晶化合物を水平方向に配向させる配向規制力を有する配向膜である。 水平 Before forming the first retardation layer 4, a horizontal alignment film is formed. Generally, the alignment film is a film having an alignment regulating force for aligning the polymerizable liquid crystal compound constituting the retardation layer in a predetermined direction. Further, various alignments such as vertical alignment, horizontal alignment, hybrid alignment, and tilt alignment can be controlled depending on the type of alignment film, rubbing conditions, and light irradiation conditions. Among them, the horizontal alignment film is an alignment film having an alignment control force for horizontally aligning the polymerizable liquid crystal compound constituting the retardation layer.
 配向膜としては、重合性液晶組成物の塗布等により溶解しない溶媒耐性を有し、また、溶媒の除去や重合性液晶化合物の配向のための加熱処理における耐熱性を有するものが好ましい。 The alignment film preferably has solvent resistance that does not dissolve by application of the polymerizable liquid crystal composition or the like, and has heat resistance in heat treatment for removing the solvent or aligning the polymerizable liquid crystal compound.
 第1の位相差層4を構成する重合性液晶化合物を水平方向(面内方向)に配向させる配向規制力を示す水平配向膜としては、ラビング配向膜、光配向膜及び、表面に凹凸パターンや複数の溝を有するグルブ配向膜等が挙げられる。例えば長尺のロール状フィルムに適用する場合には、配向方向を容易に制御できる点で、光配向膜が好ましい。 The horizontal alignment film exhibiting an alignment regulating force for aligning the polymerizable liquid crystal compound constituting the first retardation layer 4 in the horizontal direction (in-plane direction) includes a rubbing alignment film, a photo alignment film, and a concavo-convex pattern on the surface. A grub alignment film having a plurality of grooves is exemplified. For example, when applied to a long roll-shaped film, a photo-alignment film is preferable because the alignment direction can be easily controlled.
 ラビング配向膜は、通常、配向性ポリマーと溶媒とを含む組成物(以下、ラビング配向膜形成用組成物ともいう)を基材(基材については後述する。)等の上に塗布し、溶媒を除去して塗布膜を形成し、該塗布膜をラビングすることで配向規制力を付与することができる。 The rubbing alignment film is usually formed by applying a composition containing an alignment polymer and a solvent (hereinafter, also referred to as a rubbing alignment film forming composition) on a base material (the base material will be described later) and the like. Is removed to form a coating film, and by rubbing the coating film, an alignment regulating force can be imparted.
 配向性ポリマーとしては、例えば、アミド結合を有するポリアミドやゼラチン類、イミド結合を有するポリイミド及びその加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸及びポリアクリル酸エステル類が挙げられる。これらの配向性ポリマーは単独又は二種以上組み合わせて使用できる。 Examples of the oriented polymer include polyamide and gelatin having an amide bond, polyimide having an imide bond and polyamic acid which is a hydrolyzate thereof, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, polyoxazole, polyethylene imine, and polystyrene. , Polyvinylpyrrolidone, polyacrylic acid and polyacrylates. These orientation polymers can be used alone or in combination of two or more.
 光配向膜は、通常、光反応性基を有するポリマー又はモノマーと溶媒とを含む組成物を基材(基材については後述する。)等の上に塗布し、溶媒を除去後に偏光(好ましくは、偏光UV)を照射することで得られる。光配向膜は、照射する偏光の偏光方向を選択することにより、配向規制力の方向を任意に制御することができる。 The photo-alignment film is usually coated with a composition containing a polymer or monomer having a photoreactive group and a solvent on a substrate (substrate will be described later) or the like, and after removing the solvent, polarized light (preferably , Polarized UV). The photo-alignment film can arbitrarily control the direction of the alignment regulating force by selecting the polarization direction of the polarized light to be irradiated.
 グルブ(groove)配向膜は、膜表面に凹凸パターン又は複数のグルブ(溝)を有する膜である。等間隔に並んだ複数の直線状のグルブを有する膜に重合性液晶化合物を塗布した場合、その溝に沿った方向に液晶分子が配向する。 A glove (groove) alignment film is a film having an uneven pattern or a plurality of grubs (grooves) on the film surface. When a polymerizable liquid crystal compound is applied to a film having a plurality of linear grubs arranged at equal intervals, liquid crystal molecules are aligned in a direction along the groove.
 水平配向膜の膜厚は、光学補償機能付き位相差板の薄膜化の観点から、好ましくは1μm以下、より好ましくは0.5μm以下、さらに好ましくは0.3μm以下である。また、水平配向膜の膜厚は、好ましくは1nm以上、より好ましくは5nm以上、さらに好ましくは10nm以上、特に好ましくは30nm以上である。水平配向膜の膜厚は、エリプソメータ又は接触式膜厚計を用いて測定することができる。 膜厚 The thickness of the horizontal alignment film is preferably 1 μm or less, more preferably 0.5 μm or less, further preferably 0.3 μm or less, from the viewpoint of reducing the thickness of the retardation plate with an optical compensation function. The thickness of the horizontal alignment film is preferably at least 1 nm, more preferably at least 5 nm, further preferably at least 10 nm, particularly preferably at least 30 nm. The thickness of the horizontal alignment film can be measured using an ellipsometer or a contact type film thickness meter.
 水平配向膜の上に、第1の位相差層4を形成する。第1の位相差層4は、式(II)で表される重合性液晶化合物を含む位相差層形成用組成物を水平配向膜上に塗布し、次いで溶媒を除去し、配向状態の重合性液晶化合物を含む位相差層形成用組成物を加熱及び/又は活性エネルギー線によって硬化させて得ることができる。 (4) The first retardation layer 4 is formed on the horizontal alignment film. The first retardation layer 4 is formed by coating a composition for forming a retardation layer containing a polymerizable liquid crystal compound represented by the formula (II) on a horizontal alignment film, and then removing a solvent to obtain a polymerizable liquid crystal in an alignment state. It can be obtained by curing the composition for forming a retardation layer containing a liquid crystal compound by heating and / or active energy rays.
 位相差層形成用組成物を水平配向膜上に塗布する方法(以下、塗布方法Aという場合がある)としては、例えば押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、CAPコーティング法、スリットコーティング法、マイクログラビア法、ダイコーティング法、インクジェット法等が挙げられる。また、ディップコーター、バーコーター、スピンコーター等のコーターを用いて塗布する方法等も挙げられる。中でも、Roll to Roll形式で連続的に塗布する場合には、マイクログラビア法、インクジェット法、スリットコーティング法、ダイコーティング法による塗布方法が好ましい。 Examples of a method of applying the composition for forming a retardation layer on a horizontal alignment film (hereinafter, may be referred to as an application method A) include, for example, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a CAP coating method, and a slit. A coating method, a microgravure method, a die coating method, an ink jet method and the like can be mentioned. Further, a coating method using a coater such as a dip coater, a bar coater, and a spin coater may be used. Above all, in the case of continuous application in a roll-to-roll format, an application method using a microgravure method, an inkjet method, a slit coating method, or a die coating method is preferable.
 溶媒を除去する方法(以下、溶媒除去方法Aという場合がある)としては、例えば、自然乾燥、通風乾燥、加熱乾燥、減圧乾燥及びこれらを組み合わせた方法が挙げられる。中でも、自然乾燥又は加熱乾燥が好ましい。乾燥温度は、0~200℃の範囲が好ましく、20~150℃の範囲がより好ましく、50~130℃の範囲がさらに好ましい。乾燥時間は、10秒間~20分間が好ましく、より好ましくは30秒間~10分間である。 方法 Examples of the method for removing the solvent (hereinafter, sometimes referred to as solvent removal method A) include, for example, natural drying, ventilation drying, heat drying, drying under reduced pressure, and a combination thereof. Above all, natural drying or heat drying is preferable. The drying temperature is preferably in the range of 0 to 200 ° C, more preferably in the range of 20 to 150 ° C, and still more preferably in the range of 50 to 130 ° C. The drying time is preferably from 10 seconds to 20 minutes, more preferably from 30 seconds to 10 minutes.
 位相差層形成用組成物を活性エネルギー線によって硬化させる場合、照射する活性エネルギー線としては、含まれている重合性液晶化合物の種類(特に、重合性液晶化合物が有する光重合性官能基の種類)、光重合開始剤を含む場合には光重合開始剤の種類、及びそれらの量に応じて適宜選択される。具体的には、可視光、紫外光、赤外光、X線、α線、β線、及びγ線からなる群より選択される一種以上の光が挙げられる。中でも、重合反応の進行を制御し易い点、及び光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって光重合可能なように、重合性液晶化合物の種類を選択することが好ましい。 When the composition for forming a retardation layer is cured by an active energy ray, the type of the polymerizable liquid crystal compound contained (particularly, the type of the photopolymerizable functional group of the polymerizable liquid crystal compound) ), When a photopolymerization initiator is contained, it is appropriately selected according to the type of the photopolymerization initiator and the amount thereof. Specifically, it includes at least one kind of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-ray, α-ray, β-ray, and γ-ray. Above all, ultraviolet light is preferable in that it is easy to control the progress of the polymerization reaction and that a photopolymerization device that is widely used in this field can be used, and the photopolymerization can be performed by ultraviolet light. It is preferable to select the type of the liquid crystal compound.
 前記活性エネルギー線の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。 Examples of the light source of the active energy ray include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excimer laser, and a wavelength range. Examples include an LED light source that emits light at 380 to 440 nm, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, and a metal halide lamp.
 紫外線照射強度は、通常、10~3,000mW/cmである。紫外線照射強度は、好ましくは光カチオン重合開始剤又は光ラジカル重合開始剤の活性化に有効な波長領域における強度である。光を照射する時間は、通常0.1秒~10分であり、好ましくは0.1秒~5分、より好ましくは0.1秒~3分、さらに好ましくは0.1秒~1分である。
このような紫外線照射強度で1回又は複数回照射すると、その積算光量は、10~3,000mJ/cm、好ましくは50~2,000mJ/cm、より好ましくは100~1,000mJ/cmである。積算光量が上記の下限以下である場合には、重合性液晶化合物の硬化が不十分となり、良好な転写性が得られない場合がある。逆に、積算光量が上記の上限以上である場合には、第1の位相差層4を含む光学補償機能付き位相差板が着色する場合がある。
The ultraviolet irradiation intensity is usually from 10 to 3,000 mW / cm 2 . The ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating a photocationic polymerization initiator or a photoradical polymerization initiator. The time for irradiating light is generally 0.1 second to 10 minutes, preferably 0.1 second to 5 minutes, more preferably 0.1 second to 3 minutes, and further preferably 0.1 second to 1 minute. is there.
When irradiation is performed once or more times with such ultraviolet irradiation intensity, the integrated light amount is 10 to 3,000 mJ / cm 2 , preferably 50 to 2,000 mJ / cm 2 , and more preferably 100 to 1,000 mJ / cm 2. 2 . When the integrated light amount is less than the above lower limit, curing of the polymerizable liquid crystal compound may be insufficient, and good transferability may not be obtained. Conversely, when the integrated light amount is equal to or more than the above upper limit, the retardation plate with the optical compensation function including the first retardation layer 4 may be colored.
 このようにして式(II)で表される重合性液晶化合物を用いて水平配向膜上に形成された第1の位相差層4は、正の波長分散性を有するポジティブAプレートになる。なお、第1の位相差層4を形成するには、位相差層形成用組成物を水平配向膜上に塗布する方法のほか、あらかじめ延伸した樹脂フィルムを接着剤によって偏光子3に貼合する方法を用いることもできる。 に し て The first retardation layer 4 thus formed on the horizontal alignment film using the polymerizable liquid crystal compound represented by the formula (II) becomes a positive A plate having a positive wavelength dispersion. In addition, in order to form the first retardation layer 4, in addition to a method of applying the composition for forming a retardation layer on a horizontal alignment film, a resin film that has been stretched in advance is bonded to the polarizer 3 with an adhesive. A method can also be used.
 次に、第2の位相差層5を形成する。ただし、第2の位相差層5を形成する前に、垂直配向膜を形成する。 Next, the second retardation layer 5 is formed. However, before forming the second retardation layer 5, a vertical alignment film is formed.
 垂直配向膜は、位相差層を構成する重合性液晶化合物を垂直方向に配向させる配向規制力を有する配向膜である。このため、垂直配向膜を用いることで、垂直配向液晶膜を形成することができる。 The vertical alignment film is an alignment film having an alignment controlling force for vertically aligning the polymerizable liquid crystal compound constituting the retardation layer. Therefore, a vertical alignment liquid crystal film can be formed by using the vertical alignment film.
 垂直配向膜としては、基材等の表面の表面張力を下げるような材料を適用することが好ましい。このような材料としては、上述した配向性ポリマー、例えばポリイミド、ポリアミド、その加水分解物であるポリアミック酸、パーフルオロアルキル等のフッ素系ポリマー、及びシラン化合物並びにそれらの縮合反応により得られるポリシロキサン化合物が挙げられる。垂直配向膜は、このような材料と溶媒とを含む組成物(以下、垂直配向膜形成用組成物ともいう)を基材等の上に塗布し、溶媒除去後、塗布膜に加熱等施すことで得ることができる。 材料 As the vertical alignment film, it is preferable to apply a material that lowers the surface tension of the surface of the substrate or the like. Such materials include the above-mentioned oriented polymers, for example, polyimides, polyamides, polyamic acids that are hydrolysates thereof, fluorine-based polymers such as perfluoroalkyl, and silane compounds and polysiloxane compounds obtained by a condensation reaction thereof. Is mentioned. The vertical alignment film is obtained by applying a composition containing such a material and a solvent (hereinafter, also referred to as a composition for forming a vertical alignment film) on a substrate or the like, removing the solvent, and then heating the applied film. Can be obtained at
 垂直配向膜にシラン化合物を使用する場合には、表面張力を低下させやすく、垂直配向膜に隣接する層との密着性を高めやすい観点から、垂直配向膜は構成元素にSi元素とC元素とを含む化合物からなる膜が好ましく、シラン化合物を好適に使用することができる。本実施形態において第1の位相差層4と第2の位相差層5との間に垂直配向膜が配置される場合、垂直配向膜と、第1の位相差層4及び第2の位相差層5との高い密着性が発現され、位相差層4,5において、各層間の界面における剥がれを有効に抑制又は防止することができる。 When a silane compound is used for the vertical alignment film, the vertical alignment film is composed of Si and C elements as constituent elements from the viewpoint of easily lowering the surface tension and increasing the adhesion to the layer adjacent to the vertical alignment film. Is preferable, and a silane compound can be suitably used. In the present embodiment, when a vertical alignment film is disposed between the first retardation layer 4 and the second retardation layer 5, the vertical alignment film, the first retardation layer 4 and the second retardation layer High adhesion to the layer 5 is exhibited, and in the retardation layers 4 and 5, peeling at the interface between the respective layers can be effectively suppressed or prevented.
 密着性をより向上しやすい観点、及び位相差層形成用組成物の塗布性の観点、及び後述する光学補償機能付き位相差板の製造方法において下層に配置される層が溶解しにくい観点から、垂直配向膜は、構成元素にSi元素、C元素及びO元素を含む化合物からなる膜であることが好ましい。また、垂直配向膜を形成するシラン化合物のSi原子に結合するC原子を含む置換基、好ましくはアルキル基又はアルコキシ基の炭素原子数は、好ましくは1~30、より好ましくは2~25、さらに好ましくは3~20である。すなわち、Si元素とC元素との比率(Si/C、モル比)は、好ましくは0.03~1.00、より好ましくは0.04~0.50、さらに好ましくは0.05~0.33である。Si/C比が上記の下限以上であると、位相差層形成用組成物の塗布性が向上し、Si/C比が上記の上限以下であると隣接する層との密着性を向上できる。 From the viewpoint of improving the adhesion more easily, and from the viewpoint of the applicability of the composition for forming a retardation layer, and from the viewpoint that the layer disposed as a lower layer is not easily dissolved in the method for producing a retardation plate with an optical compensation function described below, The vertical alignment film is preferably a film made of a compound containing Si, C, and O elements as constituent elements. Further, the number of carbon atoms of a substituent containing a C atom bonded to a Si atom of a silane compound forming a vertical alignment film, preferably an alkyl group or an alkoxy group, is preferably 1 to 30, more preferably 2 to 25, and even more preferably 2 to 25. Preferably it is 3-20. That is, the ratio of Si element to C element (Si / C, molar ratio) is preferably 0.03 to 1.00, more preferably 0.04 to 0.50, and even more preferably 0.05 to 0. 33. When the Si / C ratio is equal to or more than the above lower limit, the coatability of the composition for forming a retardation layer is improved, and when the Si / C ratio is equal to or less than the above upper limit, the adhesion to an adjacent layer can be improved.
 溶媒は、例えば第1の位相差層4の項で例示した溶媒を使用することができる。垂直配向膜形成用組成物を塗布する方法としては、上記塗布方法Aが挙げられ、溶媒を除去する方法としては、上記溶媒除去方法Aが挙げられる。 As the solvent, for example, the solvent exemplified in the section of the first retardation layer 4 can be used. The method for applying the composition for forming a vertical alignment film includes the above-mentioned coating method A, and the method for removing the solvent includes the above-described solvent removing method A.
 垂直配向膜形成用組成物は溶媒の他、第1の位相差層の項に例示の添加剤等を含むことができる。 (4) The composition for forming a vertical alignment film may contain, in addition to the solvent, the additives exemplified in the section of the first retardation layer.
 垂直配向膜の膜厚は、光学補償機能付き位相差板の薄膜化、及び配向規制力の発現の観点から、好ましくは1μm以下、より好ましくは0.3μm以下、さらに好ましくは0.1μm以下である。また、垂直配向膜の膜厚は、好ましくは1nm以上、より好ましくは5nm以上、さらに好ましくは10nm以上、特に好ましくは30nm以上である。垂直配向膜の膜厚は、エリプソメータ又は接触式膜厚計を用いて測定することができる。 The thickness of the vertical alignment film is preferably 1 μm or less, more preferably 0.3 μm or less, and still more preferably 0.1 μm or less, from the viewpoint of reducing the thickness of the retardation plate with an optical compensation function and expressing the alignment regulating force. is there. The thickness of the vertical alignment film is preferably at least 1 nm, more preferably at least 5 nm, further preferably at least 10 nm, particularly preferably at least 30 nm. The thickness of the vertical alignment film can be measured using an ellipsometer or a contact type film thickness meter.
 垂直配向膜の上に、第2の位相差層5を形成する。第2の位相差層5は、式(I)で表される重合性液晶化合物を含む位相差層形成用組成物を垂直配向膜上に塗布し、次いで溶媒を除去し、配向状態の重合性液晶化合物を含む位相差層形成用組成物を加熱及び/又は活性エネルギー線によって硬化させて得ることができる。 The second retardation layer 5 is formed on the vertical alignment film. The second retardation layer 5 is formed by applying a composition for forming a retardation layer containing a polymerizable liquid crystal compound represented by the formula (I) on a vertical alignment film, and then removing the solvent to obtain a polymerizable liquid crystal in the alignment state. It can be obtained by curing a composition for forming a retardation layer containing a liquid crystal compound by heating and / or active energy rays.
 位相差層形成用組成物を垂直配向膜上に塗布する方法は、第1の位相差層4を形成する際と同じ方法を使用することができる。 方法 The method of applying the composition for forming a retardation layer on the vertical alignment film may be the same as the method for forming the first retardation layer 4.
 溶媒を除去する方法は、第1の位相差層4を形成する際と同じ方法を使用できる。 The method of removing the solvent may be the same as the method of forming the first retardation layer 4.
 前記活性エネルギー線の種類や光源としては、第1の位相差層4を形成する際に使用するものと同じものが使用できる。照射強度に関しても、第1の位相差層4を形成する際と同様に行うことができる。 種類 As the kind of the active energy ray and the light source, the same ones as used when forming the first retardation layer 4 can be used. Regarding the irradiation intensity, the irradiation can be performed in the same manner as when the first retardation layer 4 is formed.
 このようにして式(I)で表される重合性液晶化合物を用いて垂直配向膜上に形成された第2の位相差層5は、逆波長分散性を有するポジティブCプレートになる。ここで、逆波長分散性の大小の程度は、式(I)で表される重合性液晶化合物に対して式(II)で表される重合性液晶化合物を混合して用いることで調整することができる。すなわち、逆波長分散性を示す式(I)で表される重合性液晶化合物と、正波長分散性を示す式(II)で表される重合性液晶化合物との混合比を変化させることで、第2の位相差層5全体としての逆波長分散性の大きさを調整することができる。 The second retardation layer 5 thus formed on the vertical alignment film using the polymerizable liquid crystal compound represented by the formula (I) becomes a positive C plate having reverse wavelength dispersion. Here, the degree of the reverse wavelength dispersion is adjusted by mixing and using the polymerizable liquid crystal compound represented by the formula (II) with the polymerizable liquid crystal compound represented by the formula (I). Can be. That is, by changing the mixing ratio of the polymerizable liquid crystal compound represented by the formula (I) exhibiting reverse wavelength dispersion and the polymerizable liquid crystal compound represented by the formula (II) exhibiting positive wavelength dispersion, The magnitude of the reverse wavelength dispersion of the entire second retardation layer 5 can be adjusted.
[基材]
 ここで、水平配向膜及び垂直配向膜を形成するための土台となる基材について説明する。基材は、剥離して基材上に塗布した膜を転写できる設計であっても、基材との密着性が付与され転写できない設計であってもどちらでも良いが、薄膜化の観点から被転写体への転写し、基材を剥離できる設計が好ましい。上述のような基材としては、ガラス基材及びフィルム基材が挙げられ、加工性の観点からフィルム基材が好ましく、連続的に製造できる点で長尺のロール状フィルムがより好ましい。
[Base material]
Here, a base material serving as a base for forming the horizontal alignment film and the vertical alignment film will be described. The substrate may be either designed to transfer the film applied on the substrate after being peeled off, or may be designed so that adhesion to the substrate cannot be transferred due to adhesion to the substrate. A design capable of transferring to a transfer body and peeling the substrate is preferable. Examples of the substrate as described above include a glass substrate and a film substrate, and a film substrate is preferable from the viewpoint of processability, and a long roll-shaped film is more preferable because it can be continuously manufactured.
 フィルム基材を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマー等のポリオレフィン;環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネート等のセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィド及びポリフェニレンオキシド等のプラスチックが挙げられる。この基材表面にシリコーン処理のような離型処理が施されたものであることができる。このような樹脂を、溶媒キャスト法、溶融押出法等の公知の手段により製膜して、基材とすることができる。 Examples of the resin constituting the film substrate include polyolefins such as polyethylene, polypropylene and norbornene polymers; cyclic olefin resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic acid esters; And cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyether sulfone; polyether ketone; and plastics such as polyphenylene sulfide and polyphenylene oxide. The base material surface may be subjected to a release treatment such as a silicone treatment. Such a resin can be used as a substrate by forming a film by a known means such as a solvent casting method and a melt extrusion method.
 基材は、水平配向膜や垂直配向膜を積層しやすく、かつ剥離が容易な厚さであることが好ましい。このような基材の厚さは、通常5~300μmであり、好ましくは20~200μmである。 It is preferable that the base material has such a thickness that a horizontal alignment film or a vertical alignment film can be easily laminated, and that it can be easily separated. The thickness of such a substrate is usually from 5 to 300 μm, preferably from 20 to 200 μm.
 また、基材を別途準備する代わりに、水平配向膜を形成する基材として偏光子3を使用してもよく、垂直配向膜を形成する基材として、形成済みの第1の位相差層4を使用してもよい。 Instead of separately preparing a base material, the polarizer 3 may be used as a base material for forming a horizontal alignment film, and the first retardation layer 4 may be used as a base material for forming a vertical alignment film. May be used.
 第2の位相差層5の表面に、従来公知の方法で粘着剤層6を積層する。これによって、偏光板1Aが完成する。 (4) The pressure-sensitive adhesive layer 6 is laminated on the surface of the second retardation layer 5 by a conventionally known method. Thus, the polarizing plate 1A is completed.
(第2の実施形態)
 上記第1の実施形態では保護フィルム2と、偏光子3と、第1の位相差層4と、第2の位相差層5と、粘着剤層6とがこの順に積層されて成る偏光板1Aを示したが、第1の位相差層4と第2の位相差層5とは積層順が逆であってもよい。
(Second embodiment)
In the first embodiment, a polarizing plate 1A in which a protective film 2, a polarizer 3, a first retardation layer 4, a second retardation layer 5, and an adhesive layer 6 are laminated in this order. However, the stacking order of the first retardation layer 4 and the second retardation layer 5 may be reversed.
 図2に示されているとおり、第2の実施形態の偏光板1Bは、偏光子3の一方側の面に位相差層4,5を備えるものであり、保護フィルム2と、偏光子3と、第2の位相差層5と、第1の位相差層4と、粘着剤層6とがこの順に積層されて成るものである。偏光板1Bにおいて、第1の位相差層4の遅相軸と偏光子3の吸収軸とが互いに略平行するように、第1の位相差層4と偏光子3とが積層されている。 As shown in FIG. 2, the polarizing plate 1 </ b> B of the second embodiment includes retardation layers 4 and 5 on one surface of a polarizer 3, and includes a protective film 2, a polarizer 3, , The second retardation layer 5, the first retardation layer 4, and the pressure-sensitive adhesive layer 6 are laminated in this order. In the polarizing plate 1B, the first retardation layer 4 and the polarizer 3 are laminated such that the slow axis of the first retardation layer 4 and the absorption axis of the polarizer 3 are substantially parallel to each other.
 第2の実施形態の偏光板1Bにおいて、各層の構成材料や特性、製造方法については第1の実施形態の偏光板1Aと同様とすることができる。 偏光 In the polarizing plate 1B of the second embodiment, the constituent materials, characteristics, and manufacturing method of each layer can be the same as those of the polarizing plate 1A of the first embodiment.
<液晶表示装置>
 本発明の偏光板は、IPSモード(横電界方式)の液晶セルに貼着して液晶表示装置を製造するのに好適である。図3に示されているとおり、偏光板1Aを液晶セル8の視認側に貼着し、他の偏光板11を液晶セル8の背面側に貼着して液晶パネル9を構成し、これにバックライト(面光源装置)その他の部材を組み合わせることで、液晶表示装置10を作製することができる。他の偏光板11は、偏光子、保護フィルム、及び輝度向上フィルムを含むものであることができる。他の偏光板11が備える保護フィルムの位相差値について、波長590nmの光に対する面内方向の位相差値が10nm以下であることが好ましく、波長590nmの光に対する厚さ方向の位相差値の絶対値が10nm以下であることが好ましい。
<Liquid crystal display device>
The polarizing plate of the present invention is suitable for manufacturing a liquid crystal display device by attaching the polarizing plate to an IPS mode (transverse electric field type) liquid crystal cell. As shown in FIG. 3, a polarizing plate 1A is attached to the viewing side of the liquid crystal cell 8, and another polarizing plate 11 is attached to the back side of the liquid crystal cell 8 to form a liquid crystal panel 9. The liquid crystal display device 10 can be manufactured by combining a backlight (surface light source device) and other members. The other polarizing plate 11 may include a polarizer, a protective film, and a brightness enhancement film. Regarding the retardation value of the protective film included in the other polarizing plate 11, the retardation value in the in-plane direction with respect to light having a wavelength of 590 nm is preferably 10 nm or less, and the absolute value of the retardation value in the thickness direction with respect to light having a wavelength of 590 nm is absolute. Preferably, the value is 10 nm or less.
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, the content of the present invention will be described more specifically with reference to Examples and Comparative Examples. Note that the present invention is not limited to the following examples.
<使用材料>
 使用材料として、以下のものを準備した。
<Material used>
The following materials were prepared as materials to be used.
[保護フィルム]
 一方の面にハードコート層を有するトリアセチルセルロースフィルムを準備した。このフィルムの厚さは30μmであった。
[Protective film]
A triacetyl cellulose film having a hard coat layer on one side was prepared. The thickness of this film was 30 μm.
[偏光子]
 ポリビニルアルコール樹脂にヨウ素が吸着配向した偏光子を準備した。偏光子の厚さは8μmであった。
[Polarizer]
A polarizer having iodine adsorbed and oriented on a polyvinyl alcohol resin was prepared. The thickness of the polarizer was 8 μm.
[第1の位相差層]
 延伸された環状オレフィン系樹脂フィルムを準備した。面内位相差値は、波長590nmにおいて125nmであった。第1の位相差層はn>n≒nを満たすλ/4板であり、正波長分散性を示した。
[First retardation layer]
A stretched cyclic olefin-based resin film was prepared. The in-plane retardation value was 125 nm at a wavelength of 590 nm. The first retardation layer is a lambda / 4 plate satisfying n x> n y ≒ n z , it showed a positive wavelength dispersion properties.
[位相差層形成用組成物]
 第2の位相差層を形成するための組成物として、以下の「位相差層P形成用組成物」及び「位相差層Q形成用組成物」を調製した。
[Composition for forming retardation layer]
The following “composition for forming a retardation layer P” and “composition for forming a retardation layer Q” were prepared as compositions for forming the second retardation layer.
・位相差層P形成用組成物
 以下に示す構造を有する重合性液晶化合物A及び重合性液晶化合物Bを90:10の質量比で混合した。この混合物100質量部に対して、レベリング剤(製品名「F-556」、DIC社製)を1.0質量部、及び、光重合開始剤である2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(製品名「イルガキュア369(Irg369)」、BASFジャパン株式会社製)を6質量部添加した。更に、固形分濃度が13質量%となるようにN-メチル-2-ピロリドン(NMP)を添加した。
混合物を80℃で1時間攪拌することにより、位相差層P形成用組成物を得た。
-Composition for forming retardation layer P A polymerizable liquid crystal compound A and a polymerizable liquid crystal compound B having the following structures were mixed at a mass ratio of 90:10. To 100 parts by mass of this mixture, 1.0 part by mass of a leveling agent (product name "F-556", manufactured by DIC) and 2-dimethylamino-2-benzyl-1-photon as a photopolymerization initiator were added. 6 parts by mass of (4-morpholinophenyl) butan-1-one (product name “Irgacure 369 (Irg369)”, manufactured by BASF Japan Ltd.) was added. Further, N-methyl-2-pyrrolidone (NMP) was added so that the solid concentration became 13% by mass.
The mixture was stirred at 80 ° C. for 1 hour to obtain a composition for forming a retardation layer P.
(重合性液晶化合物A)
Figure JPOXMLDOC01-appb-I000004
(Polymerizable liquid crystal compound A)
Figure JPOXMLDOC01-appb-I000004
(重合性液晶化合物B)
Figure JPOXMLDOC01-appb-I000005
(Polymerizable liquid crystal compound B)
Figure JPOXMLDOC01-appb-I000005
・位相差層Q形成用組成物
 重合性液晶化合物であるPaliocolor(登録商標)LC242 100質量部に対して、レベリング剤として上記「F-556」を0.1質量部、及び、重合開始剤として上記「イルガキュア369」を3質量部添加した。固形分濃度が13%となるようにシクロペンタノンを添加して、位相差層Q形成用組成物を得た。
-Composition for forming retardation layer Q With respect to 100 parts by mass of Palicolor (registered trademark) LC242, which is a polymerizable liquid crystal compound, 0.1 part by mass of "F-556" as a leveling agent and 0.1 part by mass of a polymerization initiator 3 parts by mass of the above “Irgacure 369” was added. Cyclopentanone was added so as to have a solid content of 13% to obtain a composition for forming a retardation layer Q.
<実施例1>
 シランカップリング剤であるKBE-9103(信越化学工業株式会社製)を、エタノールと水とを9:1(質量比)の割合で混合した溶媒に溶解させ、固形分0.5%の垂直配向膜形成用組成物を得た。次いで、基材としての第1の位相差層の表面をコロナ処理した。コロナ処理した表面上にその垂直配向膜形成用組成物をバーコーターで塗布し、80℃で1分間乾燥し、垂直配向膜を得た。得られた垂直配向膜の膜厚は50nmであった。
垂直配向膜上に、バーコーターを用いて位相差層P形成用組成物を塗布し、120℃で1分間乾燥した。高圧水銀ランプ(「ユニキュアVB-15201BY-A」、ウシオ電機株式会社製)を用いて、紫外線を照射することにより、位相差層Pを形成した。紫外線の照射は、窒素雰囲気下で、波長365nmにおける積算光量が500mJ/cmとなるように行った。
<Example 1>
The silane coupling agent KBE-9103 (manufactured by Shin-Etsu Chemical Co., Ltd.) is dissolved in a solvent in which ethanol and water are mixed at a ratio of 9: 1 (mass ratio), and the liquid crystal is vertically aligned at a solid content of 0.5%. A composition for film formation was obtained. Next, the surface of the first retardation layer as a substrate was subjected to corona treatment. The composition for forming a vertical alignment film was applied on the corona-treated surface with a bar coater, and dried at 80 ° C. for 1 minute to obtain a vertical alignment film. The thickness of the obtained vertical alignment film was 50 nm.
The composition for forming a retardation layer P was applied on the vertical alignment film using a bar coater, and dried at 120 ° C. for 1 minute. The phase difference layer P was formed by irradiating ultraviolet rays using a high-pressure mercury lamp (“Unicure VB-15201BY-A”, manufactured by Ushio Inc.). Irradiation with ultraviolet light was performed under a nitrogen atmosphere such that the integrated light amount at a wavelength of 365 nm was 500 mJ / cm 2 .
 得られた位相差層Pの特性は以下のとおりであった。
  ・膜厚:1.2μm
  ・厚さ方向の位相差値:波長590nmにおいて-140nm
  ・種別:ポジティブCプレート(n>n≒n
  ・波長分散性(Rth(450)/Rth(550)):0.85
The characteristics of the obtained retardation layer P were as follows.
・ Film thickness: 1.2 μm
・ Phase difference value in the thickness direction: −140 nm at a wavelength of 590 nm
· Type: positive C-plate (n z> n x ≒ n y)
-Wavelength dispersion ( Rth (450) / Rth (550)): 0.85
 保護フィルムと偏光子とを接着剤層により貼合した。偏光子と第1の位相差層とを粘着剤層により貼合した。このようにして保護フィルム、偏光子、第1の位相差層、位相差層P(第2の位相差層)がこの順に積層された偏光板を得た。このとき、第1の位相差層の遅相軸と偏光子の吸収軸とが直交するように積層した。 (4) The protective film and the polarizer were bonded with an adhesive layer. The polarizer and the first retardation layer were bonded with an adhesive layer. Thus, a polarizing plate was obtained in which the protective film, the polarizer, the first retardation layer, and the retardation layer P (the second retardation layer) were laminated in this order. At this time, the layers were laminated such that the slow axis of the first retardation layer was orthogonal to the absorption axis of the polarizer.
<実施例2>
 積層順が保護フィルム、偏光子、位相差層P(第2の位相差層)、第1の位相差層となるように変更したこと、及び、第1の位相差層の遅相軸と偏光子の吸収軸とが平行になるように積層したこと以外は実施例1と同様にして、偏光板を得た。
<Example 2>
The lamination order was changed to be a protective film, a polarizer, a retardation layer P (a second retardation layer), and a first retardation layer, and the slow axis and polarization of the first retardation layer were changed. A polarizing plate was obtained in the same manner as in Example 1 except that the layers were stacked so that the absorption axis of the element became parallel.
<比較例1>
 基材としての第1の位相差層の表面をコロナ処理した。コロナ処理した表面上に、垂直配向膜形成用組成物としてのサンエバー(登録商標)SE610(日産化学工業株式会社製)をバーコーターで塗布し、80℃で1分間乾燥し、垂直配向膜を得た。得られた垂直配向膜の膜厚は50nmであった。垂直配向膜上に、バーコーターを用いて位相差層Q形成用組成物を塗布し、90℃で120秒間乾燥した。上記高圧水銀ランプを用いて、紫外線を照射することにより、位相差層Qを形成した。紫外線の照射は、窒素雰囲気下で、波長365nmにおける積算光量が500mJ/cmとなるように行った。
<Comparative Example 1>
The surface of the first retardation layer as a substrate was subjected to corona treatment. On the corona-treated surface, Sanever (registered trademark) SE610 (manufactured by Nissan Chemical Industries, Ltd.) as a composition for forming a vertical alignment film is applied with a bar coater, and dried at 80 ° C. for 1 minute to obtain a vertical alignment film. Was. The thickness of the obtained vertical alignment film was 50 nm. The composition for forming the retardation layer Q was applied on the vertical alignment film using a bar coater, and dried at 90 ° C. for 120 seconds. The retardation layer Q was formed by irradiating ultraviolet rays using the high-pressure mercury lamp. Irradiation with ultraviolet light was performed under a nitrogen atmosphere such that the integrated light amount at a wavelength of 365 nm was 500 mJ / cm 2 .
 得られた位相差層Qの特性は以下のとおりであった。
  ・膜厚:1.0μm
  ・厚さ方向の位相差値:波長590nmにおいて-140nm
  ・種別:ポジティブCプレート(n>n≒n
  ・波長分散性(Rth(450)/Rth(550)):1.01
The characteristics of the obtained retardation layer Q were as follows.
・ Film thickness: 1.0 μm
・ Phase difference value in the thickness direction: −140 nm at a wavelength of 590 nm
· Type: positive C-plate (n z> n x ≒ n y)
Wavelength dispersion (R th (450) / R th (550)): 1.01
 保護フィルムと偏光子とを接着剤層により貼合した。偏光子と第1の位相差層とを粘着剤層により貼合した。このようにして保護フィルム、偏光子、第1の位相差層、位相差層Q(第2の位相差層)がこの順に積層された偏光板を得た。このとき、第1の位相差層の遅相軸と偏光子の吸収軸とが直交するように積層した。 (4) The protective film and the polarizer were bonded with an adhesive layer. The polarizer and the first retardation layer were bonded with an adhesive layer. In this way, a polarizing plate was obtained in which the protective film, the polarizer, the first retardation layer, and the retardation layer Q (the second retardation layer) were laminated in this order. At this time, the layers were laminated such that the slow axis of the first retardation layer was orthogonal to the absorption axis of the polarizer.
<比較例2>
 積層順が保護フィルム、偏光子、位相差層Q(第2の位相差層)、第1の位相差層となるように変更したこと、及び、第1の位相差層の遅相軸と偏光子の吸収軸とが平行になるように積層したこと以外は比較例1と同様にして、偏光板を得た。
<Comparative Example 2>
The lamination order was changed to be a protective film, a polarizer, a retardation layer Q (second retardation layer), a first retardation layer, and the slow axis and polarization of the first retardation layer A polarizing plate was obtained in the same manner as in Comparative Example 1 except that the layers were stacked so that the absorption axis of the element was parallel to the polarizing plate.
<評価>
 視野角特性測定評価装置により、斜め方向のコントラストを測定した。視野角特性測定評価装置には、ELDIM社製のEZ-contrastを使用した。各実施例及び比較例で作製した偏光板の表面に粘着剤層を積層させた。粘着剤層は、位相差層(第1の位相差層又は第2の位相差層)側の表面に積層させた。ガラス板を用意し、粘着剤層を介して各実施例及び比較例で作製した偏光板をガラス板の一方の面に貼着した。ガラス板のもう一方の面には、背面側偏光板を貼着した。ここで背面側偏光板は、粘着剤層、保護フィルム(波長590nmの光に対する面内方向の位相差値≦10nm、波長590nmの光に対する厚さ方向の位相差値の絶対値≦10nm)、偏光子、粘着剤層、及び輝度向上フィルムがこの順に積層された偏光板であった。一対の偏光板は、互いに吸収軸が直交するように貼合した。バックライトを点灯し、斜め方向のコントラストを評価した。結果を表1に示す。
<Evaluation>
The contrast in the oblique direction was measured by a viewing angle characteristic measuring and evaluating apparatus. EZ-contrast manufactured by ELDIM was used for the viewing angle characteristic measurement and evaluation device. An adhesive layer was laminated on the surface of the polarizing plate produced in each of the examples and comparative examples. The pressure-sensitive adhesive layer was laminated on the surface on the side of the retardation layer (first retardation layer or second retardation layer). A glass plate was prepared, and the polarizing plates produced in each of Examples and Comparative Examples were adhered to one surface of the glass plate via an adhesive layer. On the other surface of the glass plate, a rear-side polarizing plate was adhered. Here, the rear-side polarizing plate includes an adhesive layer, a protective film (in-plane retardation value for light having a wavelength of 590 nm ≦ 10 nm, absolute value of thickness retardation value for light having a wavelength of 590 nm ≦ 10 nm), and polarization. This was a polarizing plate in which a child, a pressure-sensitive adhesive layer, and a brightness enhancement film were laminated in this order. The pair of polarizing plates were bonded so that their absorption axes were orthogonal to each other. The backlight was turned on, and the oblique contrast was evaluated. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 この結果によれば、実施例1は比較例1に比べて斜め方向の光漏れが小さかったことがわかる。実施例2は、比較例2に比べて斜め方向の光漏れが小さかったことがわかる。 According to the results, it can be seen that light leakage in the oblique direction was smaller in Example 1 than in Comparative Example 1. It can be seen that light leakage in the oblique direction was smaller in Example 2 than in Comparative Example 2.
 本発明は、液晶表示装置の作製に利用することができる。 The present invention can be used for manufacturing a liquid crystal display device.
 1A,1B…偏光板、
 2…保護フィルム、
 3…偏光子、
 4…第1の位相差層、
 5…第2の位相差層、
 6…粘着剤層、
 8…液晶セル、
 9…液晶パネル、
10…液晶表示装置、
11…他の偏光板。
1A, 1B: polarizing plate,
2 ... Protective film,
3 ... polarizer,
4. first retardation layer,
5: second retardation layer,
6 ... adhesive layer,
8 ... Liquid crystal cell,
9 ... LCD panel,
10. Liquid crystal display device,
11 Other polarizing plate.

Claims (6)

  1.  偏光子と、前記偏光子の一方側の面に積層された第1の位相差層及び第2の位相差層とを備え、
     前記第1の位相差層の遅相軸と前記偏光子の吸収軸とが、互いに略直交又は略平行しており、
     面内の屈折率が最大となる方向の屈折率をnとし、その面内において当該方向に直交する方向の屈折率をnとし、厚さ方向の屈折率をnとするとき、前記第2の位相差層は、n>n≒nを満たし、
     波長λnmの光に対する厚さ方向の位相差値をRth(λ)とするとき、前記第2の位相差層は、Rth(450)/Rth(550)≦1.00を満たす、偏光板。
    A polarizer, comprising a first retardation layer and a second retardation layer laminated on one surface of the polarizer,
    The slow axis of the first retardation layer and the absorption axis of the polarizer are substantially orthogonal or substantially parallel to each other,
    When in-plane refractive index and the refractive indices n x direction becomes maximum, the direction of the refractive index perpendicular to the direction in the plane thereof and n y, the refractive index in the thickness direction and n z, wherein the second retardation layer satisfies n z> n x ≒ n y ,
    When the retardation value in the thickness direction with respect to light having a wavelength of λ nm is R th (λ), the second retardation layer has a polarization satisfying R th (450) / R th (550) ≦ 1.00. Board.
  2.  前記第1の位相差層の遅相軸と前記偏光子の吸収軸とが、互いに略直交しており、
     前記偏光子、前記第1の位相差層、前記第2の位相差層をこの順に備える請求項1記載の偏光板。
    The slow axis of the first retardation layer and the absorption axis of the polarizer are substantially orthogonal to each other,
    The polarizing plate according to claim 1, wherein the polarizer, the first retardation layer, and the second retardation layer are provided in this order.
  3.  前記第1の位相差層の遅相軸と前記偏光子の吸収軸とが、互いに略平行しており、
     前記偏光子、前記第2の位相差層、前記第1の位相差層をこの順に備える請求項1記載の偏光板。
    The slow axis of the first retardation layer and the absorption axis of the polarizer are substantially parallel to each other,
    The polarizing plate according to claim 1, wherein the polarizer, the second retardation layer, and the first retardation layer are provided in this order.
  4.  前記第1の位相差層は、n>n≒nを満たす、請求項1~3のいずれか一項記載の偏光板。 The polarizing plate according to any one of claims 1 to 3, wherein the first retardation layer satisfies n x > n ynz .
  5.  前記偏光子の前記第1の位相差層及び前記第2の位相差層が積層されている側の最外層の表面に設けられた粘着剤層を更に備える、請求項1~4のいずれか一項記載の偏光板。 5. The polarizer according to claim 1, further comprising an adhesive layer provided on a surface of an outermost layer on a side where the first retardation layer and the second retardation layer are laminated. The polarizing plate according to the item.
  6.  請求項1~5のいずれか一項記載の偏光板とIPSモードの液晶セルとを含む液晶表示装置。 A liquid crystal display device comprising the polarizing plate according to any one of claims 1 to 5 and an IPS mode liquid crystal cell.
PCT/JP2019/026110 2018-08-02 2019-07-01 Polarizing plate and liquid crystal display device WO2020026674A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217004859A KR20210039397A (en) 2018-08-02 2019-07-01 Polarizing plate and liquid crystal display
CN201980050271.9A CN112513696B (en) 2018-08-02 2019-07-01 Polarizing plate and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018146073A JP2020020996A (en) 2018-08-02 2018-08-02 Polarizing plate and liquid crystal display device
JP2018-146073 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020026674A1 true WO2020026674A1 (en) 2020-02-06

Family

ID=69230929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026110 WO2020026674A1 (en) 2018-08-02 2019-07-01 Polarizing plate and liquid crystal display device

Country Status (5)

Country Link
JP (1) JP2020020996A (en)
KR (1) KR20210039397A (en)
CN (1) CN112513696B (en)
TW (1) TWI803666B (en)
WO (1) WO2020026674A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193559B2 (en) 2020-02-18 2022-12-20 住友化学株式会社 optical laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189632A (en) * 2003-12-26 2005-07-14 Teijin Ltd Wide viewing angle polarizing film
US20140340619A1 (en) * 2013-05-14 2014-11-20 Au Optronics Corp. Display device
WO2017038415A1 (en) * 2015-08-31 2017-03-09 日東電工株式会社 Polarizing plate having optical compensation layer, and organic el panel using same
WO2018030244A1 (en) * 2016-08-08 2018-02-15 日本ゼオン株式会社 Optically anisotropic laminate, polarizing plate and image display device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3880996B2 (en) 2004-05-26 2007-02-14 日東電工株式会社 Elliptical polarizing plate and liquid crystal display device
JP2006189781A (en) * 2004-12-08 2006-07-20 Nitto Denko Corp Liquid crystal panel and liquid crystal display device
JP4592005B2 (en) * 2005-02-03 2010-12-01 日東電工株式会社 Polarizing element, liquid crystal panel, liquid crystal television, liquid crystal display device, and manufacturing method of polarizing element
JP2007206605A (en) * 2006-02-06 2007-08-16 Nitto Denko Corp Liquid crystal panel and liquid crystal display device
JP5036209B2 (en) * 2006-04-07 2012-09-26 富士フイルム株式会社 Liquid crystal display
JP2009103900A (en) * 2007-10-23 2009-05-14 Nitto Denko Corp Laminated optical film, liquid crystal panel, and liquid crystal display
TWI636285B (en) * 2013-08-09 2018-09-21 住友化學股份有限公司 Optical film
TWI653149B (en) * 2013-08-09 2019-03-11 住友化學股份有限公司 Optical film
KR102453716B1 (en) * 2016-06-30 2022-10-11 스미또모 가가꾸 가부시끼가이샤 retardation film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189632A (en) * 2003-12-26 2005-07-14 Teijin Ltd Wide viewing angle polarizing film
US20140340619A1 (en) * 2013-05-14 2014-11-20 Au Optronics Corp. Display device
WO2017038415A1 (en) * 2015-08-31 2017-03-09 日東電工株式会社 Polarizing plate having optical compensation layer, and organic el panel using same
WO2018030244A1 (en) * 2016-08-08 2018-02-15 日本ゼオン株式会社 Optically anisotropic laminate, polarizing plate and image display device

Also Published As

Publication number Publication date
KR20210039397A (en) 2021-04-09
CN112513696B (en) 2022-09-20
CN112513696A (en) 2021-03-16
TW202018338A (en) 2020-05-16
TWI803666B (en) 2023-06-01
JP2020020996A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP2019082723A (en) Laminate
WO2019009255A1 (en) Liquid crystal film, optical laminate, circularly polarizing plate, and organic electroluminescent display device
JP2018136483A (en) Optical film and method for producing the same
JP7491660B2 (en) Retardation plate with optical compensation function
CN110869827A (en) Elliptical polarizing plate
US11591519B2 (en) Polymerizable liquid crystal composition and retardation plate
JP2011150314A (en) Composite retardation plate and method for producing the same
JP7427619B2 (en) Compositions and display devices
JP2007188033A (en) Elliptically polarizing plate and image display device using the same
JP2009276761A (en) Composite retardation plate and method for manufacturing the same
JP7397683B2 (en) Laminated body for organic EL display and circularly polarizing plate used therein
WO2021246441A1 (en) Optical film, optical laminate, and image display device
WO2020026674A1 (en) Polarizing plate and liquid crystal display device
JP2024031796A (en) Laminated body and organic EL display device
CN111033331B (en) Phase difference plate with optical compensation function for flexible display
JP2020024357A (en) Optical film
KR20200092884A (en) Laminate for organic electroluminescent display and circularly polarizing plate used in the laminate
JP2006195424A (en) Elliptical polarization plate, manufacturing method thereof and image display device using elliptical polarization plate
JP7405576B2 (en) optically anisotropic film
WO2024038667A1 (en) Optical laminated body and method for manufacturing same
KR20240082204A (en) Laminate and organic el display apparatus
JP2024068090A (en) Rolled body
WO2020026804A1 (en) Optical film
WO2020026805A1 (en) Horizontally aligned liquid crystal cured film and laminate including same
JP2024018584A (en) Optical laminate and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217004859

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19844591

Country of ref document: EP

Kind code of ref document: A1