WO2024038667A1 - Optical laminated body and method for manufacturing same - Google Patents

Optical laminated body and method for manufacturing same Download PDF

Info

Publication number
WO2024038667A1
WO2024038667A1 PCT/JP2023/021503 JP2023021503W WO2024038667A1 WO 2024038667 A1 WO2024038667 A1 WO 2024038667A1 JP 2023021503 W JP2023021503 W JP 2023021503W WO 2024038667 A1 WO2024038667 A1 WO 2024038667A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
adhesive
liquid crystal
optical laminate
Prior art date
Application number
PCT/JP2023/021503
Other languages
French (fr)
Japanese (ja)
Inventor
敏幸 上野
伸行 幡中
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024038667A1 publication Critical patent/WO2024038667A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to an optical laminate and a method for manufacturing the same.
  • An elliptically polarizing plate is an optical member in which a polarizing plate and a retardation plate are laminated.
  • a polarizing plate for example, in an image display device such as an organic EL image display device, it is used to prevent light reflection at the electrodes constituting the device. It is used.
  • a retardation plate a retardation plate using a cured liquid crystal film produced by applying a polymerizable liquid crystal compound onto a base material and curing it is known (Patent Document 1).
  • An object of the present invention is to provide an optical laminate having excellent flexibility.
  • the present invention provides the following optical laminate and method for manufacturing the same.
  • An optical laminate comprising a transparent protective film, a first adhesive layer, a polarizer, a second adhesive layer, an optically anisotropic layer, and an adhesive layer in this order, Only the first adhesive layer is interposed between the transparent protective film and the polarizer, and only the second adhesive layer is interposed between the polarizer and the optically anisotropic layer,
  • the optically anisotropic layer is a liquid crystal cured film,
  • the thickness of the optically anisotropic layer is 0.1 ⁇ m or more and 5 ⁇ m or less,
  • the optical laminate, wherein the optically anisotropic layer and the adhesive layer are in direct contact with each other, or an alignment layer is provided between the optically anisotropic layer and the adhesive layer.
  • the alignment layer is a photoalignment film made of a photoalignable polymer containing a photoreactive group.
  • the polarizer is composed of a polyvinyl alcohol resin film containing a dichroic dye.
  • An image display device comprising the optical laminate according to any one of [1] to [9].
  • a method for producing an optical laminate according to any one of [1] to [9], comprising: a retardation film preparation step of preparing a retardation film including an optically anisotropic layer, an alignment layer, and a base film in this order; a first bonding step of bonding the transparent protective film and the polarizer using a first adhesive; a second bonding step of bonding the polarizer and the optically anisotropic layer of the retardation film using a second adhesive; a peeling step of peeling and removing the base film, or the base film and the alignment layer from the laminate obtained in the second bonding step; an adhesive layer lamination step of laminating the adhesive layer on the surface exposed by the peeling step;
  • a method for producing an optical laminate comprising: [12] The method for producing an optical laminate according to [11], wherein the first adhesive and the second adhesive are active energy ray-curable adhesives.
  • An optical laminate with excellent flexibility can be provided.
  • FIG. 3 is a schematic cross-sectional view showing another example of the layer structure of the optical laminate.
  • FIGS. 1 and 2 are schematic cross-sectional views showing an example of the layer structure of an optical laminate (hereinafter also simply referred to as "optical laminate") according to the present invention.
  • the optical laminate 1 shown in FIG. 1 includes a transparent protective film 10, a first adhesive layer 51, a polarizer 20, a second adhesive layer 52, and an optically anisotropic layer (retardation layer) 30. , adhesive layer 40 in this order.
  • the transparent protective film 10 and the polarizer 20 are laminated with a first adhesive layer 51 interposed therebetween.
  • the polarizer 20 and the optically anisotropic layer 30 are laminated with a second adhesive layer 52 in between.
  • the optical laminate 1 includes an alignment layer 60 between the optically anisotropic layer 30 and the adhesive layer 40.
  • the first adhesive layer 51 is in direct contact with the transparent protective film 10 and the polarizer 20
  • the second adhesive layer 52 is in direct contact with the polarizer 20 and the optically anisotropic layer 30.
  • the alignment layer 60 is in direct contact with the optically anisotropic layer 30 and the adhesive layer 40.
  • the optical laminate 2 shown in FIG. 2 has the same layer structure as the optical laminate 1 shown in FIG. 1 except that it does not have the alignment layer 60.
  • the optically anisotropic layer 30 and the adhesive layer 40 are in direct contact with each other.
  • the optical laminate includes a base material used when forming the optically anisotropic layer 30 between the polarizer 20 and the optically anisotropic layer 30. It does not have a material film (usually a thermoplastic resin film), and an adhesive layer (first adhesive layer 51) is used to bond the transparent protective film 10 and the polarizer 20. An adhesive layer (second adhesive layer 52) is used for bonding with the orientation layer 30. Since the optical laminate according to the present invention has such a configuration, it has excellent flexibility, and even if it is repeatedly bent, problems such as peeling and cracking are unlikely to occur at the bent portion. From the viewpoint of further improving flexibility, when the optical laminate has the alignment layer 60, it is preferable that only the alignment layer 60 is interposed between the optically anisotropic layer 30 and the adhesive layer 40.
  • the optical laminate includes a transparent protective film 10, a first adhesive layer 51, a polarizer 20, a second adhesive layer 52, an optically anisotropic layer 30, an alignment layer 60, and layers other than the adhesive layer 40 (e.g. , other layers having various functions that can be incorporated into image display devices, etc.).
  • layers other than the adhesive layer 40 e.g. , other layers having various functions that can be incorporated into image display devices, etc.
  • other layers are not arranged between the transparent protective film 10 and the polarizer 20 and between the polarizer 20 and the optically anisotropic layer 30.
  • it is not disposed between the optically anisotropic layer 30 and the adhesive layer 40 either.
  • the optical laminate can be suitably used as, for example, an elliptically polarizing plate.
  • elliptically polarizer includes circularly polarizers.
  • the optical laminate includes a transparent protective film 10 that is laminated on the opposite side of the polarizer 20 to the optically anisotropic layer 30. Since the polarizer 20 has a thin film thickness and its surface is easily damaged, protective films are usually provided on both sides of the polarizer 20 to prevent external damage and dirt. In the optical laminate, a transparent protective film is not laminated on the surface of the polarizer 20 on the optically anisotropic layer 30 side. This makes it possible to obtain an optical laminate that is thinner and has a lower diagonal reflectance.
  • the transparent protective film 10 preferably has a total light transmittance of 90% or more, more preferably 92% or more. When the total light transmittance is at least the above lower limit, an optical laminate having high transparency and excellent optical properties can be constructed.
  • the upper limit of the total light transmittance of the transparent protective film 10 is not particularly limited, and may be 100% or less. The total light transmittance can be measured, for example, according to JIS K 7361.
  • the transmittance of the transparent protective film 10 at a wavelength of 380 nm is preferably 30% or less, more preferably 25% or less, even more preferably 20% or less. If the transmittance is below the above upper limit value, when the optical laminate including the transparent protective film 10 is incorporated into an image display device, the layers constituting the interior of the optical laminate (polarized light 20, optically anisotropic layer 30, etc.).
  • the lower limit of the transmittance of the transparent protective film 10 at a wavelength of 380 nm is not particularly limited, and may be 0%.
  • the transparent protective film 10 may contain an ultraviolet absorber or the like. Transmittance at a wavelength of 380 nm can be measured using a spectrophotometer, for example.
  • thermoplastic resin film can be used as the transparent protective film 10.
  • thermoplastic resins that can constitute the transparent protective film include cellulose resins such as triacetylcellulose; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyethersulfone resins; polysulfone resins; polycarbonate resins; nylon and aromatic polyamides.
  • polyamide resins such as; polyimide resins; polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymers; cyclic polyolefin resins having cyclo and norbornene structures (also referred to as norbornene resins); (meth)acrylic resins; polyarylate resins ; polystyrene resin; polyvinyl alcohol resin, and mixtures thereof.
  • (meth)acrylic means either acrylic or methacryl.
  • “(Meta)" in (meth)acrylate, (meth)acryloyl, etc. has the same meaning.
  • Such a resin can be formed into a film by known means such as a solvent casting method and a melt extrusion method.
  • the surface of the transparent protective film may be subjected to a surface treatment such as a release treatment such as a silicone treatment, a corona treatment, a plasma treatment, or the like.
  • the transparent protective film 10 is preferably a triacetyl cellulose film, a (meth)acrylic resin film, a cyclic polyolefin resin film, or a polyethylene terephthalate film.
  • the transparent protective film 10 preferably has a moisture permeability of 100 g/m 2 /24 hours or more, more preferably 150 g/m 2 /24 hours or more, and still more preferably 200 g/m 2 /24 hours or more.
  • the moisture permeability of the transparent protective film 10 is equal to or higher than the above lower limit value, when forming an optical laminate by laminating the optically anisotropic layer 30 and the polarizer 20 using a dry-setting adhesive, the transparent protective film 10 is The solvent in the dry-setting adhesive can be efficiently removed from the film 10. This can shorten the time for removing the solvent in the dry-setting adhesive, which can be advantageous in terms of productivity.
  • the upper limit of the moisture permeability of the transparent protective film 10 is not particularly limited, but is usually 1000 g/m 2 /24 hours or less, preferably 500 g/m 2 /24 hours or less.
  • the moisture permeability is the moisture permeability at a temperature of 40° C. and a relative humidity of 90%, and can be measured by the cup method specified in JIS Z 0208.
  • the thickness of the transparent protective film 10 is usually 5 ⁇ m or more and 300 ⁇ m or less, preferably 20 ⁇ m or more and 200 ⁇ m or less, more preferably 20 ⁇ m or more and 150 ⁇ m or less, from the viewpoint of thinning the optical laminate, workability, flexibility, strength, etc. It is.
  • the transparent protective film 10 can include a surface treatment layer laminated on the surface opposite to the polarizer 20.
  • the surface treatment layer include a hard coat layer and an antireflection layer.
  • the hard coat layer is intended to prevent scratches on the surface, and includes, for example, a cured film made of ultraviolet curable resin such as (meth)acrylic and silicone.
  • the antireflection layer is intended to prevent reflection of external light on the surface, and may be a conventionally known antireflection film or the like.
  • Polarizer A polarizer is a film that has a function of extracting linearly polarized light from incident natural light, and is preferably a polyvinyl alcohol resin film containing a dichroic dye.
  • the polyvinyl alcohol resin constituting the polyvinyl alcohol resin film saponified polyvinyl acetate resin can be used.
  • polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers that can be copolymerized with vinyl acetate (for example, ethylene-vinyl acetate copolymer). combination, etc.).
  • Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth)acrylamides having an ammonium group.
  • the degree of saponification of the polyvinyl alcohol resin is usually 85 mol% or more and 100 mol% or less, preferably 98 mol% or more.
  • the polyvinyl alcohol resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used.
  • the degree of polymerization of the polyvinyl alcohol resin is usually 1,000 or more and 10,000 or less, preferably 1,500 or more and 5,000 or less.
  • a film formed from the above polyvinyl alcohol resin is used as the original film of the polarizer.
  • the method of forming a polyvinyl alcohol resin into a film is not particularly limited, and any known method can be used to form the film.
  • the thickness of the polyvinyl alcohol base film can be, for example, 10 ⁇ m or more and 150 ⁇ m or less.
  • Polarizers are usually produced through a process of uniaxially stretching the polyvinyl alcohol resin film, a process of dyeing the polyvinyl alcohol resin film with a dichroic dye, and a process of adsorbing the dichroic dye. It is manufactured through the steps of treating a polyvinyl alcohol-based resin film with a boric acid aqueous solution, and washing with water after the treatment with the boric acid aqueous solution. Note that by dyeing the polyvinyl alcohol resin film with a dichroic dye, the dichroic dye will be included in the polyvinyl alcohol resin film.
  • the polarizer is a stretched polyvinyl alcohol resin film containing a dichroic dye.
  • the uniaxial stretching of the polyvinyl alcohol resin film may be performed before dyeing with the dichroic dye, simultaneously with the dyeing, or after the dyeing.
  • this uniaxial stretching may be performed before or during the boric acid treatment. It is also possible to perform uniaxial stretching in these multiple steps.
  • the uniaxial stretching it may be uniaxially stretched between rolls having different circumferential speeds, or it may be uniaxially stretched using hot rolls. Further, the uniaxial stretching may be dry stretching in which the film is stretched in the atmosphere, or wet stretching in which the polyvinyl alcohol resin film is stretched in a swollen state using a solvent.
  • the stretching ratio is preferably 8 times or less, more preferably 7.5 times or less, and even more preferably 7 times or less. Further, the stretching ratio is usually 4.5 times or more from the viewpoint of exhibiting the function as a polarizer. By setting the stretching ratio within the above range, deformation of the polarizer over time can be suppressed.
  • An example of a method for dyeing a polyvinyl alcohol resin film with a dichroic dye is a method of immersing the polyvinyl alcohol resin film in an aqueous solution containing a dichroic dye.
  • a dichroic dye for example, iodine or a dichroic dye is used.
  • dichroic dyes include C.I. I. Dichroic direct dyes made of disazo compounds such as DIRECT RED 39, dichroic direct dyes made of trisazo, tetrakisazo compounds, etc. are included.
  • the polyvinyl alcohol resin film is subjected to a water immersion treatment before the dyeing treatment.
  • iodine When using iodine as a dichroic dye, a method is usually employed in which a polyvinyl alcohol resin film is immersed in an aqueous solution containing iodine and potassium iodide for dyeing.
  • the content of iodine in this aqueous solution is usually about 0.01 part by mass or more and about 1 part by mass or less per 100 parts by mass of water.
  • the content of potassium iodide is usually about 0.5 parts by mass or more and about 20 parts by mass or less per 100 parts by mass of water.
  • the temperature of the aqueous solution used for dyeing is usually about 20°C or more and about 40°C or less.
  • the immersion time (staining time) in this aqueous solution is usually 20 seconds or more and about 1,800 seconds or less.
  • the film may be immersed in water in order to swell it and facilitate dyeing.
  • the temperature of such immersion treatment is usually 20°C or more and 80°C or less, preferably 30°C or more and 60°C or less, and the immersion time (dying time) is usually 20 seconds or more and 1,800 seconds or less.
  • a method of dyeing by immersing a polyvinyl alcohol resin film in an aqueous solution containing a water-soluble dichroic dye is usually employed.
  • the content of the dichroic organic dye in this aqueous solution is usually 1 x 10 -4 parts by mass or more and 10 parts by mass or less, preferably 1 x 10 -3 parts by mass or more and 1 part by mass or less, per 100 parts by mass of water.
  • the amount is more preferably 1 ⁇ 10 ⁇ 3 parts by mass or more and 1 ⁇ 10 ⁇ 2 parts by mass or less.
  • This aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing aid.
  • the temperature of the dichroic dye aqueous solution used for dyeing is usually about 20°C or more and about 80°C or less. Further, the immersion time (staining time) in this aqueous solution is usually 10 seconds or more and about 1,800 seconds or less.
  • the boric acid treatment after dyeing with a dichroic dye can usually be carried out by immersing the dyed polyvinyl alcohol resin film in an aqueous boric acid solution.
  • the content of boric acid in this boric acid aqueous solution is usually about 2 parts by mass or more and 15 parts by mass or less, preferably 5 parts by mass or more and 12 parts by mass or less, per 100 parts by mass of water.
  • the boric acid aqueous solution preferably contains potassium iodide, and the content of potassium iodide in this case is usually 0.1 mass parts per 100 mass parts of water.
  • the amount is about 15 parts by mass or more, and preferably 5 parts by mass or more and 12 parts by mass or less.
  • the immersion time in the boric acid aqueous solution is usually 60 seconds or more and about 1,200 seconds or less, preferably 150 seconds or more and 600 seconds or less, and more preferably 200 seconds or more and 400 seconds or less.
  • the temperature of the boric acid treatment is usually 50°C or higher, preferably 50°C or higher and 85°C or lower, and more preferably 60°C or higher and 80°C or lower.
  • the polyvinyl alcohol resin film is usually washed with water.
  • the water washing treatment can be performed, for example, by immersing a boric acid-treated polyvinyl alcohol resin film in water.
  • the temperature of the water in the water washing process is usually about 5°C or more and about 40°C or less. Further, the immersion time is usually 1 second or more and about 120 seconds or less.
  • a drying process is performed to obtain the polarizer 20.
  • the drying process can be performed using, for example, a hot air dryer or a far-infrared heater.
  • the temperature of the drying treatment is usually 30°C or more and about 100°C or less, preferably 50°C or more and 80°C or less.
  • the drying treatment time is usually about 60 seconds or more and about 600 seconds or less, preferably 120 seconds or more and about 600 seconds or less.
  • the drying process reduces the moisture content of the polarizer to a practical level.
  • the moisture content is usually about 5% by mass or more and about 20% by mass or less, preferably 8% by mass or more and about 15% by mass or less. When the moisture content is within the above range, it is easy to obtain a polarizer that has appropriate flexibility and excellent thermal stability.
  • the thickness of the polarizer 20 is preferably 5 ⁇ m or more and 40 ⁇ m or less, more preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the optically anisotropic layer 30 is formed by coating a composition containing a polymerizable liquid crystal compound (hereinafter also referred to as "composition for forming a liquid crystal cured film") on a transparent base material.
  • a composition for forming a liquid crystal cured film a polymerizable liquid crystal compound
  • it is an optically anisotropic layer (hereinafter also referred to as "cured liquid crystal film”) made of an oriented polymer of a polymerizable liquid crystal compound. Since the optically anisotropic layer 30 is a cured liquid crystal film, it is possible to reduce the thickness of the optically anisotropic layer 30 and to arbitrarily design the wavelength dispersion characteristics.
  • the composition for forming a liquid crystal cured film may further contain a solvent, a photopolymerization initiator, a photosensitizer, a polymerization inhibitor, a leveling agent, an adhesion improver, and the like.
  • a cured liquid crystal film is usually formed by coating a composition for forming a cured liquid crystal film on an alignment layer formed on a base material, and polymerizing the polymerizable liquid crystal compound contained in the composition for forming a cured liquid crystal film.
  • formed by A liquid crystal cured film is usually a film that is cured with a polymerizable liquid crystal compound oriented.In order to generate a phase difference within the viewing plane, the polymerizable liquid crystal compound must be oriented horizontally with respect to the substrate surface. It is necessary that the film be a cured film in which the polymerizable groups are polymerized under the conditions. At this time, if the polymerizable liquid crystal compound is a rod-shaped liquid crystal, a positive A plate may be used, and if the polymerizable liquid crystal compound is a disk-shaped liquid crystal, a negative A plate may be used.
  • the liquid crystal cured film may be a ⁇ /4 layer, a ⁇ /2 layer, or a positive C layer.
  • the optically anisotropic layer 30 may include two or more layers of liquid crystal cured films. Examples of the combination of two or more layers of liquid crystal cured films include a combination of a ⁇ /4 layer and a ⁇ /2 layer, a combination of a ⁇ /4 layer and a positive C layer, and the like. From the viewpoint of achieving a high degree of antireflection function, it is sufficient to have a ⁇ /4 plate function (that is, a ⁇ /2 phase difference function) in the entire visible light range.
  • a reverse wavelength dispersion ⁇ /4 layer is preferable, and a combination of a positive wavelength dispersion ⁇ /2 layer and a positive wavelength dispersion ⁇ /4 layer may be used. Furthermore, from the viewpoint of compensating for the antireflection function in the oblique direction, it is preferable to further include a layer having anisotropy in the thickness direction (positive C plate). Further, each optically anisotropic layer may have a tilt orientation or may form a cholesteric orientation state. When the optically anisotropic layer 30 includes two or more liquid crystal cured films, the optically anisotropic layer 30 includes a bonding layer (adhesive layer or adhesive layer) for bonding these liquid crystal cured films to each other. May contain.
  • Re( ⁇ ) which is an in-plane retardation value for light with a wavelength of ⁇ nm, preferably satisfies the following formula (1), the following formula (1), the following formula (2), and the following formula (1). It is more preferable that formula (3) is further satisfied.
  • Re(550) represents the in-plane retardation value (in-plane retardation) for light with a wavelength of 550 nm.
  • Re (450) is the in-plane retardation value for light with a wavelength of 450 nm
  • Re (550) is the in-plane retardation value for light with a wavelength of 550 nm
  • Re (650) is the in-plane retardation value for light with a wavelength of 650 nm. (Represents the phase difference value.)
  • optically anisotropic layer 30 When the optically anisotropic layer 30 satisfies the formula (1), when an optical laminate (elliptically polarizing plate) including the optically anisotropic layer 30 is applied to an image display device such as an organic EL display device, black display will occur. The front reflection hue is easily improved.
  • Re(550) of the optically anisotropic layer 30 is more preferably 130 nm or more and 150 nm or less.
  • the optically anisotropic layer 30 preferably has reverse wavelength dispersion, and specifically preferably satisfies formulas (2) and (3).
  • the value of “Re(450)/Re(550)” of the optically anisotropic layer 30 exceeds 1.0, light leakage on the short wavelength side in the elliptically polarizing plate including the optically anisotropic layer becomes large.
  • the value of “Re(450)/Re(550)” is preferably 0.7 or more and 1.0 or less, more preferably 0.80 or more and 0.95 or less, and even more preferably 0.80 or more and 0.92 or less. , particularly preferably 0.82 or more and 0.88 or less.
  • the value of "Re(450)/Re(550)” can be arbitrarily adjusted by adjusting the mixing ratio of the polymerizable liquid crystal compound, the stacking angle of the plurality of cured liquid crystal films, and the retardation value.
  • the in-plane retardation value Re( ⁇ ) of the optically anisotropic layer 30 can be adjusted by adjusting the thickness of the optically anisotropic layer 30. Since the in-plane retardation value Re( ⁇ ) is determined by the following formula (4), in order to obtain the desired in-plane retardation value Re( ⁇ ), ⁇ n( ⁇ ) and the film thickness d must be adjusted. Bye.
  • the thickness of the optically anisotropic layer 30 can be measured using an interference thickness meter, a laser microscope, or a stylus thickness meter. Note that ⁇ n( ⁇ ) depends on the molecular structure of the polymerizable liquid crystal compound described later.
  • Re( ⁇ ) d ⁇ n( ⁇ )...(4) (In the formula, Re( ⁇ ) represents the in-plane retardation value at the wavelength ⁇ nm, d represents the film thickness, and ⁇ n( ⁇ ) represents the birefringence at the wavelength ⁇ nm.)
  • the positive C layer has a retardation value Rth (550 nm) in the thickness direction at a wavelength of 550 nm. ) is usually in the range of -170 nm or more and -10 nm or less, preferably -150 nm or more and -20 nm or less, and more preferably -100 nm or more and -40 nm. If the retardation value in the thickness direction is within this range, the antireflection properties from oblique directions can be further improved.
  • Rth 550 nm in the thickness direction at a wavelength of 550 nm.
  • the polymerizable liquid crystal compound means a liquid crystal compound having a polymerizable group, particularly a photopolymerizable group, and as the polymerizable liquid crystal compound, it is possible to use a conventionally known polymerizable liquid crystal compound in the field of retardation films, for example. can.
  • the photopolymerizable group refers to a group that can participate in a polymerization reaction by reactive species generated from a photopolymerization initiator, such as active radicals and acids.
  • Examples of the photopolymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, oxetanyl group, and the like. Among these, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable.
  • the liquid crystal may be thermotropic liquid crystal or lyotropic liquid crystal, but thermotropic liquid crystal is preferable because it allows precise control of the film thickness.
  • thermotropic liquid crystal may be either a nematic liquid crystal or a smectic liquid crystal. Further, it may be a rod-shaped liquid crystal or a disc-shaped liquid crystal.
  • the polymerizable liquid crystal compounds can be used alone or in combination of two or more.
  • the polymerizable liquid crystal compound is preferably a liquid crystal having a T-shaped or H-shaped mesogenic structure that has further birefringence in the direction perpendicular to the long axis direction of the molecules, and has stronger dispersion.
  • a T-shaped liquid crystal is more preferable from the viewpoint of obtaining the following.
  • the structure of the T-shaped liquid crystal is, for example, the following formula (I): Examples include compounds represented by:
  • Ar represents a divalent aromatic group which may have a substituent.
  • the divalent aromatic group contains at least one of a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the divalent group Ar contains two or more aromatic groups, the two or more aromatic groups are bonded to each other through a single bond or a divalent bonding group such as -CO-O- or -O-. You can leave it there.
  • G 1 and G 2 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group.
  • the hydrogen atom contained in the divalent aromatic group or divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, or a fluoroalkyl group having 1 to 4 carbon atoms. It may be substituted with 1 to 4 alkoxy groups, cyano groups, or nitro groups, and the carbon atoms constituting the divalent aromatic group or divalent alicyclic hydrocarbon group are oxygen atoms, sulfur atoms. Alternatively, it may be substituted with a nitrogen atom.
  • L 1 , L 2 , B 1 and B 2 are each independently a single bond or a divalent linking group.
  • k and l each independently represent an integer from 0 to 3, and satisfy the relationship 1 ⁇ k+l.
  • B 1 and B 2 and G 1 and G 2 may be the same or different from each other.
  • E 1 and E 2 each independently represent an alkanediyl group having 1 to 17 carbon atoms, where the hydrogen atom contained in the alkanediyl group may be substituted with a halogen atom, and the alkanediyl group
  • the -CH 2 - contained therein may be substituted with -O-, -S-, or -COO-, and when a plurality of -O-, -S-, or -COO- are present, they are not adjacent to each other.
  • P 1 and P 2 each independently represent a polymerizable group or a hydrogen atom, and at least one of them is a polymerizable group.
  • G 1 and G 2 are each independently preferably a 1,4-phenylenediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms. , a 1,4-cyclohexanediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, and more preferably a 1,4-cyclohexanediyl group substituted with a methyl group.
  • At least one of the plurality of G 1 and G 2 is preferably a divalent alicyclic hydrocarbon group, and at least one of G 1 and G 2 bonded to L 1 or L 2 More preferably, one is a divalent alicyclic hydrocarbon group.
  • R a1 to R a8 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms
  • R c and R d represent an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • L 1 and L 2 are each independently more preferably a single bond, -OR a2-1 -, -CH 2 -, -CH 2 CH 2 -, -COOR a4-1 -, or -OCOR a6-1 - be.
  • R a2-1 , R a4-1 , and R a6-1 each independently represent a single bond, -CH 2 -, or -CH 2 CH 2 -.
  • L 1 and L 2 are each independently more preferably a single bond, -O-, -CH 2 CH 2 -, -COO-, -COOCH 2 CH 2 -, or -OCO-.
  • R a9 to R a16 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms.
  • B 1 and B 2 are each independently more preferably a single bond, -OR a10-1 -, -CH 2 -, -CH 2 CH 2 -, -COOR a12-1 -, or -OCOR a14-1 - be.
  • R a10-1 , R a12-1 , and R a14-1 each independently represent a single bond, -CH 2 -, or -CH 2 CH 2 -.
  • B 1 and B 2 are each independently, more preferably, a single bond, -O-, -CH 2 CH 2 -, -COO-, -COOCH 2 CH 2 -, -OCO-, or -OCOCH 2 CH 2 - be.
  • E 1 and E 2 are each independently preferably an alkanediyl group having 1 to 17 carbon atoms, more preferably an alkanediyl group having 4 to 12 carbon atoms.
  • Examples of the polymerizable group represented by P 1 or P 2 include epoxy group, vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, and oxiranyl group. , and oxetanyl group.
  • acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable.
  • Ar has at least one selected from an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocycle which may have a substituent, and an electron-withdrawing group.
  • aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring, an anthracene ring, and the like, with benzene rings and naphthalene rings being preferred.
  • the aromatic heterocycles include a furan ring, a benzofuran ring, a pyrrole ring, an indole ring, a thiophene ring, a benzothiophene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazole ring, a triazine ring, a pyrroline ring, an imidazole ring, and a pyrazole ring.
  • a thiazole ring it is preferable to have a thiazole ring, benzothiazole ring, or benzofuran ring, and more preferably to have a benzothiazole group.
  • Ar when Ar includes a nitrogen atom, it is preferable that the nitrogen atom has ⁇ electrons.
  • the total number N ⁇ of ⁇ electrons contained in the divalent aromatic group represented by Ar is usually 6 or more, preferably 8 or more, more preferably 10 or more, and even more preferably 14 or more. , particularly preferably 16 or more. Further, the total number N ⁇ is preferably 30 or less, more preferably 26 or less, and still more preferably 24 or less.
  • Preferred examples of the aromatic group represented by Ar include the following groups.
  • the mark * represents a connecting part
  • Z 0 , Z 1 and Z 2 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 12 carbon atoms.
  • alkylsulfinyl group having 1 to 12 carbon atoms alkylsulfonyl group having 1 to 12 carbon atoms, carboxyl group, fluoroalkyl group having 1 to 12 carbon atoms, alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, an N-alkylamino group having 1 to 12 carbon atoms, an N,N-dialkylamino group having 2 to 12 carbon atoms, an N-alkylsulfamoyl group having 1 to 12 carbon atoms, or Represents an N,N-dialkylsulfamoyl group having 2 to 12 carbon atoms.
  • Q 1 , Q 2 and Q 3 each independently represent -CR 2' R 3' -, -S-, -NH-, -NR 2' -, -CO- or -O-, and R 2' and R 3' each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • J 1 and J 2 each independently represent a carbon atom or a nitrogen atom.
  • Y 1 , Y 2 and Y 3 each independently represent an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.
  • W 1 and W 2 each independently represent a hydrogen atom, a cyano group, a methyl group, or a halogen atom, and m represents an integer of 0 to 6.
  • Examples of the aromatic hydrocarbon group for Y 1 , Y 2 and Y 3 include aromatic hydrocarbon groups having 6 to 20 carbon atoms such as phenyl group, naphthyl group, anthryl group, phenanthryl group, and biphenyl group. , naphthyl group is preferred, and phenyl group is more preferred.
  • Examples of the aromatic heterocyclic group include a group having 4 to 20 carbon atoms and containing at least one heteroatom such as a nitrogen atom, an oxygen atom, or a sulfur atom, such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group. Examples include aromatic heterocyclic groups, and furyl, thienyl, pyridinyl, thiazolyl, and benzothiazolyl groups are preferred.
  • Y 1 , Y 2 and Y 3 may each independently be an optionally substituted polycyclic aromatic hydrocarbon group or a polycyclic aromatic heterocyclic group.
  • the polycyclic aromatic hydrocarbon group refers to a fused polycyclic aromatic hydrocarbon group or a group derived from an aromatic ring assembly.
  • the polycyclic aromatic heterocyclic group refers to a fused polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
  • Z 0 , Z 1 and Z 2 are each independently preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a cyano group, a nitro group, or an alkoxy group having 1 to 12 carbon atoms; 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a cyano group, and Z 1 and Z 2 are more preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, or a cyano group.
  • Q 1 , Q 2 and Q 3 are preferably -NH-, -S-, -NR 2' -, -O-, and R 2' is preferably a hydrogen atom. Among them, -S-, -O-, and -NH- are particularly preferred.
  • formulas (Ar-1) to (Ar-23) are preferred from the viewpoint of molecular stability.
  • Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 .
  • the aromatic heterocyclic group include those mentioned above as aromatic heterocycles that Ar may have, such as a pyrrole ring, an imidazole ring, a pyrroline ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, and an indole ring.
  • This aromatic heterocyclic group may have a substituent.
  • Y 1 may be the aforementioned optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group, together with the nitrogen atom to which it is bonded and Z 0 .
  • examples include a benzofuran ring, a benzothiazole ring, a benzoxazole ring, and the like.
  • polymerizable liquid crystal compounds compounds with a maximum absorption wavelength of 300 nm or more and 400 nm or less are preferred.
  • the composition for forming a liquid crystal cured film contains a photopolymerization initiator, there is a possibility that the polymerization reaction and gelation of the polymerizable liquid crystal compound will proceed during long-term storage.
  • the maximum absorption wavelength of the polymerizable liquid crystal compound is 300 nm or more and 400 nm or less, even if exposed to ultraviolet light during storage, the generation of reactive species from the photopolymerization initiator and the polymerizable liquid crystal compound due to the reactive species The progress of polymerization reaction and gelation can be effectively suppressed.
  • the maximum absorption wavelength of the polymerizable liquid crystal compound can be measured in a solvent using an ultraviolet-visible spectrophotometer.
  • the solvent is a solvent that can dissolve the polymerizable liquid crystal compound, and includes, for example, chloroform.
  • the content of the polymerizable liquid crystal compound in the composition for forming a liquid crystal cured film is, for example, 70 parts by mass or more and 99.5 parts by mass or less, based on 100 parts by mass of the solid content of the composition for forming a liquid crystal cured film, and is preferably is 80 parts by mass or more and 99 parts by mass or less, more preferably 85 parts by mass or more and 98 parts by mass or less, still more preferably 90 parts by mass or more and 95 parts by mass or less. If the content of the polymerizable liquid crystal compound is within the above range, it is advantageous from the viewpoint of orientation of the optically anisotropic layer obtained.
  • the solid content of the composition for forming a liquid crystal cured film means all the components excluding volatile components such as organic solvents from the composition for forming the liquid crystal cured film.
  • the composition for forming a liquid crystal cured film contains a solvent, a polymerization initiator, a leveling agent, an antioxidant, a photosensitizer, a reactive additive, a vertical alignment promoter, and a polymerizable non-liquid crystal compound. It may further contain additives such as. These components may be used alone or in combination of two or more.
  • the composition for forming a liquid crystal cured film is usually applied to a base film or the like in a state dissolved in a solvent, so it preferably contains a solvent.
  • a polymerizable liquid crystal compound has a high viscosity, so a composition for forming a liquid crystal cured film dissolved in a solvent facilitates coating, and as a result, it often becomes easier to form an optically anisotropic layer.
  • the solvent is preferably one that can completely dissolve the polymerizable liquid crystal compound, and is also preferably a solvent that is inert to the polymerization reaction of the polymerizable liquid crystal compound. Further, it is preferable that the solvent is a solvent that does not dissolve the base film used.
  • solvents examples include alcohols such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, 2-butoxyethanol, and propylene glycol monomethyl ether.
  • alcohols such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, 2-butoxyethanol, and propylene glycol monomethyl ether.
  • Solvents Ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene glycol methyl ether acetate and ethyl lactate; Acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone, etc.
  • Ketone solvents such as pentane, hexane and heptane; cycloaliphatic hydrocarbon solvents such as ethylcyclohexane; aromatic hydrocarbon solvents such as toluene, xylene and anisole; nitrile solvents such as acetonitrile; tetrahydrofuran and dimethoxyethane Ether solvents such as; chlorine-containing solvents such as chloroform and chlorobenzene; amide solvents such as dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone (NMP), and 1,3-dimethyl-2-imidazolidinone. It will be done.
  • solvents can be used alone or in combination.
  • the content of the solvent in the composition for forming a liquid crystal cured film is preferably 50 parts by mass or more and 98 parts by mass or less, more preferably 70 parts by mass or more and 95 parts by mass or less, based on 100 parts by mass of the polymerizable liquid crystal composition. be. Therefore, the solid content in 100 parts by mass of the composition for forming a liquid crystal cured film is preferably 2 parts by mass or more and 50 parts by mass or less, more preferably 5 to 30 parts by mass. When the solid content is 50 parts by mass or less, the viscosity of the composition for forming a liquid crystal cured film becomes low, so that the thickness of the film tends to be substantially uniform and unevenness is less likely to occur.
  • the solid content can be determined as appropriate in consideration of the thickness of the cured liquid crystal film to be produced.
  • a polymerization initiator is a compound that generates reactive species by the contribution of heat or light and can initiate a polymerization reaction of a polymerizable liquid crystal compound or the like.
  • reactive species include radicals, cations, anions, and the like.
  • a photopolymerization initiator that generates radicals upon irradiation with light is preferred.
  • any known photopolymerization initiator can be used as long as it is a compound that can initiate the polymerization reaction of the polymerizable liquid crystal compound.
  • photopolymerization initiators that can generate active radicals or acids by the action of light can be mentioned, and among them, photopolymerization initiators that can generate radicals by the action of light are preferred.
  • the photopolymerization initiators can be used alone or in combination of two or more.
  • photopolymerization initiator a known photopolymerization initiator can be used.
  • a photopolymerization initiator that generates active radicals self-cleavable benzoin compounds, acetophenone compounds, hydroxyacetophenone compounds, ⁇ -Aminoacetophenone compounds, oxime ester compounds, acylphosphine oxide compounds, azo compounds, etc.
  • benzophenone compounds alkylphenone compounds, benzoin ether compounds, benzyl ketal compounds, dibenzo Suberone-based compounds, anthraquinone-based compounds, xanthone-based compounds, thioxanthone-based compounds, halogenoacetophenone-based compounds, dialkoxyacetophenone-based compounds, halogenobisimidazole-based compounds, halogenotriazine-based compounds, triazine-based compounds, etc.
  • the photopolymerization initiator that generates acid
  • iodonium salts, sulfonium salts, etc. can be used as the photopolymerization initiator that generates acid.
  • the photopolymerization initiator contained in the composition for forming a liquid crystal cured film is at least one type, and multiple types may be used in combination. You can select it as appropriate.
  • the content of the polymerization initiator in the composition for forming a liquid crystal cured film can be adjusted as appropriate depending on the type and amount of the polymerizable liquid crystal compound, but it is usually 0 parts by mass based on 100 parts by mass of the polymerizable liquid crystal compound. .1 parts by mass or more and 30 parts by mass or less, preferably 0.5 parts by mass or more and 10 parts by mass or less, more preferably 0.5 parts by mass or more and 8 parts by mass or less.
  • polymerization can be carried out without disturbing the orientation of the polymerizable liquid crystal compound.
  • the leveling agent is an additive that has the function of adjusting the fluidity of the composition for forming a liquid crystal cured film and making the coating film obtained by applying the composition for forming a liquid crystal cured film more flat.
  • a polymer component containing a silicon atom or a polyacrylate-based polymer is preferable, and a surfactant whose main component is a polymer component containing a fluorine atom or a silicon atom is more preferable.
  • Specific examples include organically modified silicone oil-based, polyacrylate-based, and perfluoroalkyl-based leveling agents. Among these, polyacrylate leveling agents and perfluoroalkyl leveling agents are preferred.
  • the content of the leveling agent is preferably 0.01 parts by mass or more and 5 parts by mass or less, more preferably 0.05 parts by mass or more and 3 parts by mass or less, and still more preferably 0.01 parts by mass or more and 3 parts by mass or less, based on 100 parts by mass of the polymerizable liquid crystal compound. 05 parts by mass or more and 1 part by mass or less.
  • the content of the leveling agent is within the above range, it is easy to orient the polymerizable liquid crystal compound, and the resulting optically anisotropic layer 30 tends to be smoother.
  • the content of the leveling agent in the polymerizable liquid crystal compound exceeds the above range, the resulting optically anisotropic layer 30 tends to be uneven.
  • the composition for forming a liquid crystal cured film may contain two or more types of leveling agents.
  • the polymerization reaction of the polymerizable liquid crystal compound can be controlled.
  • the antioxidant may be a primary antioxidant selected from phenolic antioxidants, amine antioxidants, quinone antioxidants, and nitroso antioxidants, or phosphorus antioxidants and A secondary antioxidant selected from sulfur-based antioxidants may also be used.
  • the content of the antioxidant is usually 0.01 parts by mass or more and 10 parts by mass based on 100 parts by mass of the polymerizable liquid crystal compound.
  • the amount is preferably 0.1 parts by mass or more and 5 parts by mass or less, more preferably 0.1 parts by mass or more and 3 parts by mass or less.
  • Antioxidants can be used alone or in combination of two or more.
  • the sensitivity of the photopolymerization initiator can be increased.
  • the photosensitizer include xanthone such as xanthone and thioxanthone; anthracene having a substituent such as anthracene and alkyl ether; phenothiazine; and rubrene.
  • the photosensitizers can be used alone or in combination of two or more.
  • the content of the photosensitizer is usually 0.01 parts by mass or more and 10 parts by mass or less, preferably 0.05 parts by mass or more and 5 parts by mass or less, more preferably It is 0.1 parts by mass or more and 3 parts by mass or less.
  • a liquid crystal cured film forming composition for forming a liquid crystal cured film can be obtained by stirring a polymerizable liquid crystal compound and components such as a solvent and a polymerization initiator at a predetermined temperature.
  • the liquid crystal cured film is, for example, A coating film of a composition for forming a liquid crystal cured film containing at least one kind of polymerizable liquid crystal compound is formed on the base film or the alignment layer 60 described below, the coating film is dried, and the liquid crystal curing is performed. It can be produced by a method including a step of aligning a polymerizable liquid crystal compound in a film-forming composition, and a step of polymerizing the polymerizable liquid crystal compound while maintaining the alignment state to form a cured liquid crystal film.
  • the coating film of the composition for forming a cured liquid crystal film can be formed by applying the composition for forming a cured liquid crystal film onto the base film or the alignment layer 60 formed on the base film.
  • methods for applying the composition for forming a liquid crystal cured film to a base film include coating methods such as spin coating, extrusion, gravure coating, die coating, bar coating, and applicator methods, flexography, and the like. Examples include known methods such as printing methods.
  • the base film examples include glass base materials and film base materials, with film base materials being preferred and long roll-shaped film base materials being more preferred since they can be produced continuously.
  • resins constituting the film base material include polyolefins such as polyethylene, polypropylene, and norbornene polymers; cyclic olefin resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic esters; polyacrylic esters; triacetyl cellulose, diacetyl cellulose and cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyether sulfone; polyether ketone; and plastics such as polyphenylene sulfide and polyphenylene oxide.
  • a film base material selected from triacetylcellulose, cyclic olefin resin, polymethacrylic acid ester, and polyethylene terephthalate is more preferable from the viewpoint of transparency when used in optical film
  • the thickness of the base film is usually 5 ⁇ m or more and 300 ⁇ m or less, preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 10 ⁇ m or more and 50 ⁇ m or less, from the viewpoints of handleability, processability, strength, etc.
  • a dry coating film is formed by removing the solvent by drying or the like.
  • the drying method include natural drying, ventilation drying, heating drying, and reduced pressure drying.
  • the heating temperature of the coating film can be appropriately determined in consideration of the polymerizable liquid crystal compound used and the material of the base film forming the coating film, etc. Usually, the temperature needs to be higher than the liquid crystal phase transition temperature.
  • the liquid crystal phase transition temperature of the polymerizable liquid crystal compound contained in the composition for forming a cured liquid crystal film may be adjusted. (smectic phase transition temperature or nematic phase transition temperature) or higher.
  • the heating temperature is preferably 3° C. or more, more preferably 5° C. or more higher than the liquid crystal phase transition temperature of the polymerizable liquid crystal compound.
  • the upper limit of the heating temperature is not particularly limited, but is preferably 180° C. or lower, more preferably 150° C. or lower in order to avoid damage to the coating film, base film, etc. due to heating.
  • the liquid crystal phase transition temperature can be measured using, for example, a polarizing microscope equipped with a temperature control stage, a differential scanning calorimeter (DSC), a thermogravimetric differential thermal analyzer (TG-DTA), or the like.
  • the above phase transition temperature is such that the total polymerizable liquid crystal compound constituting the composition for forming a liquid crystal cured film is mixed in the same proportion as the composition in the composition for forming a liquid crystal cured film. It means the temperature measured using a mixture of polymerizable liquid crystal compounds mixed in the same manner as when one type of polymerizable liquid crystal compound is used.
  • the liquid crystal phase transition temperature of the polymerizable liquid crystal compound in the composition for forming a cured liquid crystal film may be lower than the liquid crystal phase transition temperature of the polymerizable liquid crystal compound alone.
  • the heating time can be appropriately determined depending on the heating temperature, the type of polymerizable liquid crystal compound used, the type of solvent, its boiling point, its amount, etc., but is usually 0.5 minutes or more and 10 minutes or less, preferably 0. .5 minutes or more and 5 minutes or less.
  • Removal of the solvent from the coating film may be performed simultaneously with heating the polymerizable liquid crystal compound to a temperature equal to or higher than the liquid crystal phase transition temperature, or may be performed separately, but it is preferably performed simultaneously from the viewpoint of improving productivity.
  • the solvent in the coating film is removed under conditions such that the polymerizable liquid crystal compound contained in the coating film obtained from the composition for forming a liquid crystal cured film does not polymerize.
  • a preliminary drying step may be provided to remove the particles appropriately. Examples of the drying method in this preliminary drying step include natural drying, ventilation drying, heating drying, and reduced pressure drying.
  • the polymerizable liquid crystal compound is polymerized by light irradiation while maintaining the orientation state of the polymerizable liquid crystal compound, thereby forming a polymer of the polymerizable liquid crystal compound existing in the desired orientation state.
  • a certain liquid crystal cured film is formed.
  • a photopolymerization method is usually used. In photopolymerization, the light irradiated to the dry coating film depends on the type of photopolymerization initiator contained in the dry coating film, the type of polymerizable liquid crystal compound (especially the type of polymerizable group possessed by the polymerizable liquid crystal compound) and the amount thereof is appropriately selected.
  • Specific examples include one or more types of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, ⁇ -rays, ⁇ -rays, and ⁇ -rays, and active energy rays such as active electron beams. It will be done.
  • ultraviolet light is preferable because it is easy to control the progress of the polymerization reaction and it is possible to use photopolymerization equipment that is widely used in the field. It is preferable to select the type of polymerizable liquid crystal compound and photopolymerization initiator in advance.
  • the polymerization temperature can also be controlled by irradiating the dry coating film with light while cooling it with an appropriate cooling means.
  • a cured liquid crystal film By employing such a cooling means and polymerizing the polymerizable liquid crystal compound at a lower temperature, a cured liquid crystal film can be appropriately formed even if a substrate film with relatively low heat resistance is used. It is also possible to promote the polymerization reaction by increasing the polymerization temperature within a range that does not cause problems due to heat during light irradiation (such as deformation of the base film due to heat). A patterned cured film can also be obtained by performing masking or development during photopolymerization.
  • Examples of active energy ray light sources include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, halogen lamps, carbon arc lamps, tungsten lamps, gallium lamps, excimer lasers, 380 nm or more and 440 nm.
  • Examples include LED light sources, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps that emit light in the following wavelength ranges.
  • the ultraviolet irradiation intensity is usually 10 mW/cm 2 or more and 3,000 mW/cm 2 or less.
  • the ultraviolet irradiation intensity is preferably an intensity in a wavelength range effective for activating the photopolymerization initiator.
  • the light irradiation time is usually 0.1 seconds or more and 10 minutes or less, preferably 0.1 seconds or more and 5 minutes or less, more preferably 0.1 seconds or more and 3 minutes or less, and even more preferably 0.1 seconds or more. It takes less than 1 minute.
  • the cumulative light amount is 10 mJ/cm 2 or more and 3,000 mJ/cm 2 or less, preferably 50 mJ/cm 2 or more and 2,000 mJ/cm 2 or less, more preferably is 100 mJ/cm 2 or more and 1,000 mJ/cm 2 or less.
  • the thickness of the optically anisotropic layer 30 is 0.1 ⁇ m or more and 5 ⁇ m or less, preferably 0.5 ⁇ m or more and 3 ⁇ m or less, and more preferably 1.0 ⁇ m or more. , more preferably 1.5 ⁇ m or more, and more preferably 2.5 ⁇ m or less.
  • the thickness of the cured liquid crystal film can be measured using an interference film thickness meter, a laser microscope, a stylus type film thickness meter, or the like.
  • the optical laminate of the present invention may include an alignment layer 60.
  • a liquid crystal cured film may be formed on the alignment layer 60.
  • the alignment layer 60 has an alignment regulating force that aligns the polymerizable liquid crystal compound in a desired direction.
  • the alignment regulating force can be arbitrarily adjusted by the type of alignment layer, surface condition, rubbing conditions, etc., and if the alignment layer is made of a photo-alignable polymer, it can be arbitrarily adjusted by changing the polarized light irradiation conditions, etc. It is possible to do so.
  • the state of liquid crystal alignment changes depending on the properties of the alignment layer 60 and the polymerizable liquid crystal compound, and the combination thereof can be arbitrarily selected.
  • the alignment layer 60 is made of a material that exhibits horizontal alignment as an alignment regulating force
  • the polymerizable liquid crystal compound can form horizontal alignment or hybrid alignment
  • the alignment layer 60 is a material that exhibits vertical alignment
  • the polymerizable liquid crystal compound The compounds can form vertical or tilted orientations. Expressions such as horizontal and vertical indicate the direction of the long axis of the oriented polymerizable liquid crystal compound with respect to the plane (principal surface) of the optically anisotropic layer 30.
  • vertical alignment means that the long axis of the polymerizable liquid crystal compound is aligned in a direction perpendicular to the plane (principal surface) of the optically anisotropic layer 30.
  • Vertical means 90° ⁇ 20° with respect to the plane (principal surface) of the optically anisotropic layer 30.
  • the alignment layer it is preferable to have a solvent resistance that prevents dissolution by application of the composition for forming a liquid crystal cured film, and a heat resistance in heat treatment for removing the solvent and orienting the polymerizable liquid crystal compound.
  • the alignment layer include an alignment film containing an alignment polymer, a photo-alignment film, a groove alignment film having a concavo-convex pattern or a plurality of grooves on the surface, and a stretched film stretched in the alignment direction.
  • a photo-alignment film is preferred from the viewpoint of quality.
  • oriented polymers include polyamides and gelatins having an amide bond in the molecule, polyimide having an imide bond in the molecule, polyamic acid which is a hydrolyzate thereof, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, polyacrylamide, etc. Examples include oxazole, polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid and polyacrylic esters. Among them, polyvinyl alcohol is preferred.
  • the oriented polymers can be used alone or in combination of two or more.
  • An alignment film containing an alignment polymer is usually produced by applying a composition in which an alignment polymer is dissolved in a solvent (hereinafter also referred to as an "alignment polymer composition") onto the surface of a base film or the like on which an alignment layer is to be formed. and then removing the solvent, or by applying the oriented polymer composition to a base material, removing the solvent, and rubbing (rubbing method).
  • a solvent hereinafter also referred to as an "alignment polymer composition”
  • the solvent include the same solvents as those exemplified above as solvents that can be used in the composition for forming a liquid crystal cured film.
  • the concentration of the oriented polymer in the oriented polymer composition may be within a range that allows the oriented polymer material to be completely dissolved in the solvent, but it is 0.1% by mass or more and 20% by mass or less in terms of solid content based on the solution. is preferable, and more preferably 0.1% by mass or more and 10% by mass or less.
  • Examples of the method for applying the oriented polymer composition to the surface on which the oriented layer is to be formed, such as the base film include the same methods as those exemplified as the method for applying the composition for forming a liquid crystal cured film to the base film. It will be done.
  • Examples of methods for removing the solvent contained in the oriented polymer composition include natural drying, ventilation drying, heating drying, and reduced pressure drying.
  • rubbing treatment can be performed as necessary (rubbing method).
  • a method of imparting alignment regulating force using the rubbing method is to apply an oriented polymer composition to the base film on a rotating rubbing roll wrapped around a rubbing cloth, and then annealing it to form it on the surface of the base film.
  • An example of this method is to bring a film of an oriented polymer into contact with the film. If masking is performed during the rubbing process, a plurality of regions (patterns) with different orientation directions can be formed in the alignment layer.
  • a photo-alignment film is usually a composition containing a polymer having a photo-reactive group (photo-alignment polymer) and/or a monomer having a photo-reactive group (photo-alignment monomer) and a solvent (hereinafter referred to as "photo-alignment film"). It can be obtained by coating the surface of the base film on which the alignment layer is to be formed, and irradiating it with polarized light (preferably polarized UV) after removing the solvent.
  • the photo-alignment film is also advantageous in that the direction of the alignment regulating force can be arbitrarily controlled by selecting the polarization direction of the polarized light to be irradiated.
  • a photoreactive group refers to a group that produces liquid crystal alignment ability when irradiated with light. Specifically, groups that are involved in photoreactions that are the origin of liquid crystal alignment ability, such as molecular orientation induction or isomerization reaction, dimerization reaction, photocrosslinking reaction, or photodecomposition reaction, which are caused by light irradiation, can be mentioned. Among these, groups that participate in a dimerization reaction or a photocrosslinking reaction are preferable because they have excellent orientation.
  • Examples of the photoreactive group having a C ⁇ C bond include a vinyl group, a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a chalcone group, and a cinnamoyl group.
  • a chalcone group and a cinnamoyl group are preferred from the viewpoint of easy control of reactivity and expression of alignment regulating force during photoalignment.
  • Examples of the photoreactive group having a C ⁇ O bond include a benzophenone group, a coumarin group, an anthraquinone group, and a maleimide group.
  • These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, or a halogenated alkyl group.
  • the polymer side chain having a photoreactive group may have an adhesion group.
  • the adhesive group include an epoxy group, an oxetane group, and a (meth)acryloyl group.
  • Examples of the solvent contained in the composition for forming a photo-alignment film include those similar to the solvents exemplified above as solvents that can be used in the composition for forming a cured liquid crystal film. It can be appropriately selected depending on the solubility of the photo-alignable monomer.
  • the content of the polymer or monomer having a photoreactive group in the composition for forming a photo-alignment film can be adjusted as appropriate depending on the type of the polymer or monomer and the desired thickness of the photo-alignment film.
  • the content is preferably at least 0.2% by mass, and more preferably 0.3% by mass or more and 10% by mass or less, based on the mass of the product.
  • the composition for forming a photo-alignment film may contain a polymeric material such as polyvinyl alcohol or polyimide, and a photosensitizer as long as the properties of the photo-alignment film are not significantly impaired.
  • Examples of the method for applying the composition for forming a photo-alignment film onto the surface of the substrate film or the like on which an alignment layer is to be formed include the same method as the method for applying the alignment polymer composition.
  • Examples of methods for removing the solvent from the applied composition for forming a photoalignment film include natural drying, ventilation drying, heat drying, and reduced pressure drying.
  • polarized UV can be directly irradiated onto the photo-alignment film-forming composition coated on the substrate film from which the solvent has been removed, or polarized light can be irradiated from the base film side. It may also be of a type in which the light is transmitted and irradiated. Moreover, it is preferable that the polarized light is substantially parallel light.
  • the wavelength of the polarized light to be irradiated is preferably in a wavelength range in which a photoreactive group of a photoalignable polymer or a photoalignable monomer having a photoreactive group can absorb light energy.
  • UV ultraviolet light
  • the light source used for the polarized light irradiation include xenon lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, and ultraviolet lasers such as KrF and ArF, with high-pressure mercury lamps, ultra-high-pressure mercury lamps, and metal halide lamps being preferred. . These lamps are preferable because they emit a high intensity of ultraviolet light with a wavelength of 313 nm.
  • Polarized UV can be irradiated by passing the light from the light source through a suitable polarizer.
  • a polarizing filter, a polarizing prism such as Glan-Thompson or Glan-Taylor, or a wire grid type polarizer can be used.
  • a groove alignment film is a film that has an uneven pattern or a plurality of grooves on its surface.
  • a polymerizable liquid crystal compound is applied to a film having a plurality of linear grooves arranged at equal intervals, liquid crystal molecules are aligned in the direction along the grooves.
  • the groove alignment film can be obtained by exposing the surface of a photosensitive polyimide film to light through an exposure mask having pattern-shaped slits, followed by development and rinsing to form a concavo-convex pattern, and by using a plate with grooves on the surface.
  • the thickness of the alignment layer 60 is usually 10 nm or more and 10,000 nm or less, preferably 10 nm or more and 2,500 nm or less, more preferably 10 nm or more and 1,000 nm or less, and even more preferably 10 nm or more and 500 nm or less.
  • it is particularly preferably 50 nm or more and 250 nm or less.
  • First adhesive layer and second adhesive layer The transparent protective film 10 and the polarizer 20 are laminated with the first adhesive layer 51 in between. Only one adhesive layer 51 is present. Further, the polarizer 20 and the optically anisotropic layer 30 are laminated with a second adhesive layer 52 interposed therebetween, and only the second adhesive layer 52 is interposed between the polarizer 20 and the optically anisotropic layer 30. are doing. Bonding the transparent protective film 10 and the polarizer 20 using the first adhesive layer 51 and bonding the polarizer 20 and the optically anisotropic layer 30 using the second adhesive layer 52 is a method of bonding the optical laminate.
  • the first adhesive layer 51 and the second adhesive layer 52 can be formed of adhesive.
  • adhesives that can form the adhesive layer include dry-setting adhesives such as water-based adhesives, and chemically reactive adhesives such as active energy ray-curing adhesives.
  • the first adhesive layer 51 and the second adhesive layer 52 may be formed from different adhesives, but are preferably formed from the same adhesive.
  • the dry-setting adhesive may contain, for example, a polymer of monomers having a protic functional group such as a hydroxyl group, a carboxyl group, or an amino group and an ethylenically unsaturated group, or a urethane resin as a main component;
  • a polymer of monomers having a protic functional group such as a hydroxyl group, a carboxyl group, or an amino group and an ethylenically unsaturated group, or a urethane resin
  • examples include compositions containing crosslinking agents or curable compounds such as aldehydes, epoxy compounds, melamine compounds, zirconia compounds, or zinc compounds.
  • polymers of monomers having a protic functional group such as a hydroxyl group, a carboxyl group, or an amino group and an ethylenically unsaturated group include ethylene-maleic acid copolymers, itaconic acid copolymers, acrylic acid copolymers, and acrylamide.
  • examples include copolymers, saponified polyvinyl acetate, and polyvinyl alcohol resins. Preferably, it is a polyvinyl alcohol resin.
  • polyvinyl alcohol resins examples include polyvinyl alcohol, partially saponified polyvinyl alcohol, completely saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol. Can be mentioned.
  • the content of polyvinyl alcohol resin in the water-based dry-setting adhesive is usually 1 part by mass or more and 10 parts by mass or less, preferably 1 part by mass or more and 5 parts by mass or less, based on 100 parts by mass of water. .
  • the urethane resin examples include polyester-based ionomer-type urethane resins.
  • the polyester-based ionomer type urethane resin referred to herein is a urethane resin having a polyester skeleton into which a small amount of an ionic component (hydrophilic component) is introduced.
  • Such an ionomer-type urethane resin emulsifies in water to form an emulsion without using an emulsifier, and therefore can be used as a water-based dry-setting adhesive.
  • it is effective to blend a water-soluble epoxy compound as a crosslinking agent.
  • the epoxy compound examples include polyamide epoxy resins obtained by reacting epichlorohydrin with polyamide polyamines obtained by reacting polyalkylene polyamines such as diethylenetriamine or triethylenetetramine with dicarboxylic acids such as adipic acid.
  • Commercial products of such polyamide epoxy resins include "SUMIREZ RESIN (registered trademark) 650" and “SUMIRAZE RESIN (registered trademark) 675" (manufactured by Sumika Chemtex Co., Ltd.), and "WS-525” (manufactured by Nippon PMC). Co., Ltd.), etc.
  • the amount added is usually 1 part by mass or more and 100 parts by mass or less, preferably 1 part by mass or more and 50 parts by mass or less, per 100 parts by mass of the polyvinyl alcohol resin.
  • the dry-setting adhesive is preferably an aqueous dry-setting adhesive containing a polyvinyl alcohol resin.
  • the dry-setting adhesive may contain a solvent.
  • the solvent include water, a mixed solvent of water and a hydrophilic organic solvent (for example, an alcohol solvent, an ether solvent, an ester solvent, etc.), an organic solvent, and the like.
  • An active energy ray-curable adhesive which is a chemically reactive adhesive, is an adhesive that hardens upon irradiation with active energy rays.
  • the active energy ray curable adhesive may contain a solvent.
  • Examples of active energy ray-curable adhesives include cationically polymerizable adhesives containing an epoxy compound and a cationic polymerization initiator, and radically polymerizable adhesives containing a (meth)acrylic curing component and a radical polymerization initiator.
  • a cationically polymerizable curing component such as an epoxy compound
  • a radically polymerizable curing component such as a (meth)acrylic compound
  • a cationic polymerization initiator and a radical polymerization initiator examples include adhesives that do not contain these polymerization initiators and are cured by electron beam irradiation.
  • active energy ray-curable adhesives include radically polymerizable active energy ray-curable adhesives containing a (meth)acrylic curing component and a radical polymerization initiator, and active energy ray-curable adhesives containing an epoxy compound and a cationic polymerization initiator.
  • a cationically polymerizable active energy ray-curable adhesive is preferred.
  • the (meth)acrylic curing component include (meth)acrylates such as methyl (meth)acrylate and hydroxyethyl (meth)acrylate, and (meth)acrylic acid.
  • the active energy ray-curable adhesive containing an epoxy compound may further contain a polymerizable compound other than the epoxy compound.
  • polymerizable compounds other than epoxy compounds include oxetane compounds and acrylic compounds.
  • radical polymerization initiator examples include the photopolymerization initiators described above that can be blended into the liquid crystal cured film forming composition for forming the liquid crystal cured film.
  • commercially available cationic polymerization initiators include the "Kayarad” (registered trademark) series (manufactured by Nippon Kayaku Co., Ltd.), the “Cylacure UVI” series (manufactured by Dow Chemical Co., Ltd.), the “CPI” series (manufactured by Sun-Apro Co., Ltd.), Examples include “TAZ", "BBI", and “DTS” (manufactured by Midori Kagaku Co., Ltd.), “ADEKA Optomer” series (manufactured by ADEKA Co., Ltd.), and “RHODORSIL” (registered trademark) (manufactured by Rhodia Co., Ltd.).
  • the content of the radical polymerization initiator and the cationic polymerization initiator is usually 0.5 parts by mass or more and 20 parts by mass or less, preferably 1 part by mass or more and 15 parts by mass or less, per 100 parts by mass of the active energy ray-curable adhesive. Parts by mass or less.
  • the second adhesive layer 52 is preferably a layer formed from an active energy ray-curable adhesive, and is a radically polymerizable adhesive. It is more preferable that the layer is formed from an active energy ray-curable adhesive of More preferably, it is a layer that The same applies to the first adhesive layer 51.
  • the thickness of the first adhesive layer 51 and the second adhesive layer 52 is preferably 10 nm or more, more preferably 30 nm or more, even more preferably 50 nm or more, and preferably 5000 nm or less, more preferably 3000 nm or less, and Preferably it is 2000 nm or less.
  • the thickness of the adhesive layer, especially the second adhesive layer 52 is within the above range, the flexibility of the optical laminate can be easily improved, so that even if it is repeatedly bent, problems such as peeling and cracks will not occur at the bent part. This can be made less likely to occur.
  • the thicknesses of the first adhesive layer 51 and the second adhesive layer 52 may be the same or different from each other.
  • the thickness of the adhesive layer can be measured using, for example, an interference thickness meter, a laser microscope, or a stylus thickness meter.
  • the optical laminate includes an adhesive layer 40 disposed on the side of the optically anisotropic layer 30 opposite to the polarizer 20 side.
  • the adhesive layer 40 may constitute one of the two main surfaces of the optical laminate.
  • the adhesive layer 40 can be laminated on the surface of the optical laminate opposite to the viewing side (transparent protective film 10 side), and is suitable for laminating the optical laminate to an image display element such as an organic EL display element. Can be used.
  • the thickness of the adhesive layer 40 may be, for example, 150 ⁇ m or less, and from the viewpoint of thinning, it is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and still more preferably 40 ⁇ m or less. From the viewpoint of durability, the thickness of the adhesive layer 40 is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the adhesive layer 40 can be composed of an adhesive composition whose main components are (meth)acrylic resin, rubber resin, urethane resin, ester resin, silicone resin, and polyvinyl ether resin. Among these, a pressure-sensitive adhesive composition whose base polymer is a (meth)acrylic resin having excellent transparency, weather resistance, heat resistance, etc. is suitable.
  • the adhesive composition may be of an active energy ray-curable type or a thermosetting type.
  • Examples of the (meth)acrylic resin (base polymer) used in the adhesive composition include butyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, etc. Polymers or copolymers containing one or more types of (meth)acrylic esters as monomers are preferably used. It is preferable to copolymerize a polar monomer with the base polymer.
  • Polar monomers include (meth)acrylic acid, 2-hydroxypropyl (meth)acrylate, hydroxyethyl (meth)acrylate, (meth)acrylamide, N,N-dimethylaminoethyl (meth)acrylate, and glycidyl (meth)acrylate.
  • Examples include monomers having carboxyl groups, hydroxyl groups, amide groups, amino groups, epoxy groups, etc., such as acrylates.
  • the adhesive composition may contain only the above base polymer, but usually further contains a crosslinking agent.
  • crosslinking agents include metal ions with a valence of two or more that form carboxylic acid metal salts with carboxyl groups, polyamine compounds that form amide bonds with carboxyl groups, and metal ions that form carboxylic acid metal salts with carboxyl groups.
  • examples include polyepoxy compounds or polyols that form ester bonds with and polyisocyanate compounds that form amide bonds with carboxyl groups. Among these, polyisocyanate compounds are preferred.
  • the present invention also relates to a method for manufacturing the optical laminate according to the above-described present invention.
  • the method for manufacturing an optical laminate according to the present invention includes the following steps. a retardation film preparation step of preparing a laminate (hereinafter, this laminate is also referred to as a "retardation film") including an optically anisotropic layer, an alignment layer, and a base film in this order; a first bonding step of bonding the transparent protective film and the polarizer using a first adhesive; a second bonding step of bonding the polarizer and the optically anisotropic layer of the retardation film using a second adhesive; A peeling step of peeling and removing the base film or the base film and the alignment layer from the laminate obtained in the second lamination step; An adhesive layer lamination process in which an adhesive layer is laminated on the surface exposed by the peeling process.
  • a retardation film may be produced in the retardation film preparation step.
  • the method for forming the alignment layer and the optically anisotropic layer on the base film is as described above.
  • the first adhesive used in the first bonding step is an adhesive that forms the first adhesive layer, and the details of the adhesive are as described above.
  • the first adhesive is preferably an active energy ray-curable adhesive, more preferably a radically polymerizable active energy ray-curable adhesive, and includes a (meth)acrylic curing component and a radical polymerization initiator. More preferably, it is a radically polymerizable active energy ray-curable adhesive containing.
  • the solvent in the first adhesive is removed from the resulting laminate. Dry, remove and optionally cure.
  • This drying treatment and/or removal of the solvent can be performed, for example, by blowing hot air, and the temperature depends on the type of solvent, but is usually 30°C or higher and 200°C or lower, preferably 35°C or higher and 150°C or higher.
  • the temperature is preferably 40°C or higher and 100°C or lower, and even more preferably 50°C or higher and 100°C or lower.
  • the drying and removal (curing in some cases) of the solvent in the first adhesive is carried out after performing a second lamination step of laminating (laminating) the polarizer and the retardation film via the second adhesive. It is preferable to carry out this process together with drying and removal (and in some cases, curing) of the solvent in the second adhesive.
  • the first adhesive layer is obtained by curing the first adhesive by irradiating the active energy ray.
  • the light source of active energy rays is not particularly limited, active energy rays having an emission distribution at a wavelength of 400 nm or less are preferable, and ultraviolet rays are more preferable.
  • Specific examples of the light source include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps.
  • the intensity of light irradiation to the active energy ray curable adhesive is appropriately determined depending on the composition of the active energy ray curable adhesive, and is not particularly limited, but the irradiation intensity in the wavelength range effective for activating the polymerization initiator is usually , 10 mW/cm 2 or more and 3,000 mW/cm 2 or less.
  • the light irradiation time to the active energy ray curable adhesive may be selected appropriately depending on the active energy ray curable adhesive to be cured, and is not particularly limited, but is usually 0.1 seconds or more and 10 minutes or less. , preferably 1 second or more and 5 minutes or less, more preferably 5 seconds or more and 3 minutes or less, and even more preferably 10 seconds or more and 1 minute or less.
  • the cumulative light amount is usually 10 mJ/cm 2 or more and 3,000 mJ/cm 2 or less, preferably 50 mJ/cm 2 or more and 2,000 mJ/cm 2 or less, or more. Preferably it is 100 mJ/cm 2 or more and 1,000 mJ/cm 2 or less.
  • the first adhesive is cured by irradiation with active energy rays after performing a second laminating step of laminating (laminating) the polarizer and the retardation film via the second adhesive. Preferably, this is carried out together with the curing of the inside.
  • the second bonding step can be performed in the same manner as the first bonding step. In one embodiment, the first bonding step and the second bonding step are performed simultaneously.
  • the second adhesive is an adhesive forming the second adhesive layer, and the details of the adhesive are as described above.
  • the second adhesive is preferably an active energy ray-curable adhesive, more preferably a radically polymerizable active energy ray-curable adhesive, and includes a (meth)acrylic curing component and a radical polymerization initiator. More preferably, it is a radically polymerizable active energy ray-curable adhesive containing.
  • the first adhesive and the second adhesive may be different adhesives, but are preferably the same adhesive.
  • a laminate having a layer structure of transparent protective film/first adhesive/polarizer/second adhesive/retardation film is obtained.
  • the solvents of the first adhesive and the second adhesive are dried, removed (cured in some cases), or cured by irradiation with active energy rays.
  • the active energy ray is irradiated from the retardation film side.
  • This embodiment is advantageous in that the first adhesive and the second adhesive can be sufficiently cured even when the transparent protective film has ultraviolet absorbing ability, such as when it contains an ultraviolet absorber. .
  • the base film or the base film is removed in the peeling process.
  • the alignment layer is peeled off and removed, and an adhesive layer is laminated on the surface exposed by the peeling process, thereby obtaining an optical laminate.
  • an optical laminate including the alignment layer 60 as shown in FIG. 1 is obtained, and when the base film and the alignment layer are peeled off and removed in the peeling process, In this case, an optical laminate without the alignment layer 60 as shown in FIG. 2 is obtained.
  • the optical laminate can be manufactured continuously using a roll-to-roll method. For example, a retardation film wound into a roll is produced, this retardation film is unwound and conveyed, and an adhesive is used to bond each layer to a separately produced polarized light film on the retardation film. After sequentially laminating the protective film and the transparent protective film, the adhesive is dried or cured, and then the base film or the base film and alignment layer are peeled off, and an adhesive layer is laminated on the surface exposed by peeling.
  • the method allows optical laminates to be manufactured continuously.
  • the optical laminate may be in the form of a rolled optical laminate roll.
  • the optical laminate so that the angle between the slow axis (optical axis) of the optically anisotropic layer constituting the optical laminate and the absorption axis of the polarizer is 45 ⁇ 5°.
  • An image display device is a device having an image display element, and includes a light emitting element or a light emitting device as a light source.
  • Image display devices include liquid crystal display devices, organic electroluminescence (EL) display devices, inorganic electroluminescence (EL) display devices, touch panel display devices, and electron emission display devices (e.g., field emission displays (FEDs), surface field emission displays).
  • display device (SED) electronic paper (display device using electronic ink or electrophoretic element), plasma display device, projection type display device (e.g. grating light valve (GLV) display device, digital micromirror device (DMD)) display devices), piezoelectric ceramic displays, etc.
  • GLV grating light valve
  • DMD digital micromirror device
  • the liquid crystal display device may be any of a transmissive liquid crystal display device, a transflective liquid crystal display device, a reflective liquid crystal display device, a direct view liquid crystal display device, a projection liquid crystal display device, and the like. These display devices may be display devices that display two-dimensional images, or may be stereoscopic display devices that display three-dimensional images.
  • the optical laminate of the present invention can be suitably used for organic electroluminescent (EL) display devices, inorganic electroluminescent (EL) display devices, liquid crystal display devices, and touch panel display devices.
  • the image display device is preferably a flexible image display device.
  • the flexible image display device further includes a window and a touch sensor.
  • the flexible image display device includes, for example, a laminate for a flexible image display device and an organic EL display panel, the laminate for a flexible image display device is arranged on the viewing side of the organic EL display panel, and is configured to be foldable. has been done.
  • the laminate for a flexible image display device may include a window, a touch sensor, and the like. Although the order of stacking them is arbitrary, it is preferable that they are stacked in the order of the window, the optical laminate, and the touch sensor from the viewing side, or in the order of the window, the touch sensor, and the elliptically polarizing plate.
  • the optical laminate is present on the viewing side of the touch sensor because the pattern of the touch sensor becomes less visible and the visibility of the displayed image improves.
  • Each member can be laminated using an adhesive, a pressure-sensitive adhesive, or the like.
  • the laminate for a flexible image display device can include a light-shielding pattern formed on at least one surface of any one of the window, optical laminate, and touch sensor layer.
  • a window is usually placed on the viewing side of a flexible image display device, and has the role of protecting other components from external shocks or environmental changes such as temperature and humidity.
  • the window is made of a flexible transparent base material and may include a hard coat layer on at least one surface.
  • the window, touch sensor, etc. that constitute the laminate for a flexible image display device are not particularly limited, and conventionally known ones can be employed.
  • a polymerizable liquid crystal compound (A1) and a polymerizable liquid crystal compound (A2) having the structures shown below were respectively prepared.
  • the polymerizable liquid crystal compound (A1) was prepared in the same manner as the method described in JP-A-2019-003177.
  • Polymerizable liquid crystal compound (A2) was prepared in the same manner as described in JP-A-2009-173893.
  • a solution was obtained by dissolving 1 mg of polymerizable liquid crystal compound (A1) in 10 mL of chloroform.
  • the obtained solution was placed in a measurement cell with an optical path length of 1 cm, and the measurement sample was set in an ultraviolet-visible spectrophotometer ("UV-2450" manufactured by Shimadzu Corporation) to measure the absorption spectrum.
  • UV-2450 ultraviolet-visible spectrophotometer
  • the maximum absorption wavelength ⁇ max in the wavelength range of 300 to 400 nm was 356 nm.
  • the photo-alignment film forming composition (X) was applied to a biaxially oriented polyethylene terephthalate (PET) film (Diafoil, manufactured by Mitsubishi Plastics Co., Ltd.) as a base film using a bar coater.
  • PET polyethylene terephthalate
  • the obtained coating film was dried at 120° C. for 2 minutes, and then cooled to room temperature to form a dry film.
  • 100 mJ of polarized ultraviolet light (313 nm standard) was irradiated using a UV irradiation device (SPOT CURE SP-9; manufactured by Ushio Inc.) to obtain a photoalignment film D.
  • the thickness of the photo-alignment film D was 200 nm as measured using an ellipsometer M-220 manufactured by JASCO Corporation.
  • the above composition for forming a liquid crystal cured film was applied onto the obtained photo-alignment film using a bar coater to form a coating film.
  • This coating film was dried by heating at 120° C. for 2 minutes, and then cooled to room temperature to obtain a dry film.
  • a high-pressure mercury lamp (Unicure VB-15201BY-A manufactured by Ushio Inc.)
  • the dried film is irradiated with ultraviolet light at an exposure amount of 500 mJ/cm 2 (365 nm standard) in a nitrogen atmosphere. to form an optically anisotropic layer that is cured with the polymerizable liquid crystal compound oriented in the horizontal direction with respect to the plane of the substrate, and then A retardation film (Z) consisting of a film) was obtained.
  • the thickness of the optically anisotropic layer measured using a laser microscope LEXT OLS4100 manufactured by Olympus Corporation was 2.0 ⁇ m.
  • Corona treatment was performed on the liquid crystal side of the retardation film (Z), and it was bonded to glass via a 25 ⁇ m thick pressure-sensitive adhesive manufactured by Lintec, and the PET film was peeled off and removed.
  • the in-plane phase difference value was measured using KOBRA-WR manufactured by Oji Scientific Instruments Co., Ltd.
  • the in-plane retardation values for light with wavelengths of 450 nm, 550 nm, and 650 nm are It was calculated using Cauchy's dispersion formula obtained from the measurement results.
  • Re (450) is the in-plane retardation value for light with a wavelength of 450 nm
  • Re (550) is the in-plane retardation value for light with a wavelength of 550 nm
  • Re (650) is the in-plane retardation value for light with a wavelength of 650 nm. (Represents the phase difference value.)
  • a polyvinyl alcohol film (PVA: average polymerization degree of about 2400, saponification degree of 99.9 mol% or more) with a thickness of 30 ⁇ m was uniaxially stretched to about 5 times by dry stretching, and then kept under tension in a pure state at 40°C. Immersed in water for 40 seconds. Thereafter, it was immersed in a dyeing aqueous solution having a mass ratio of iodine/potassium iodide/water of 0.044/5.7/100 at 28° C. for 30 seconds to perform a dyeing treatment.
  • PVA average polymerization degree of about 2400, saponification degree of 99.9 mol% or more
  • a water-based dry-setting adhesive was injected between the cured liquid crystal film and the polarizer and between the polarizer and the transparent protective film. Further, these were laminated so that the absorption axis of the polarizer and the slow axis of the cured liquid crystal film in the retardation film formed an angle of 45°.
  • the obtained laminate was passed through nip rolls to bond each layer together. The resulting bond was dried at 60° C. for 2 minutes while maintaining the tension at 430 N/m. After that, only the base film (PET film) of the retardation film is peeled off, and an adhesive layer with a separate film is laminated on the surface exposed by peeling.
  • An optical laminate (1) consisting of layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protective film was obtained. The thickness of the optical laminate (1) excluding the adhesive layer was 54 ⁇ m.
  • the above water-based dry-setting adhesive is made of 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol (Kuraray Poval KL318; manufactured by Kuraray Co., Ltd.), and a water-soluble polyamide epoxy resin (Sumirezu Resin 650; Sumika Chemtex Co., Ltd.). 1.5 parts of an aqueous solution with a solid content concentration of 30%) was added.
  • the bending speed was 60 rpm.
  • the number of bending times when cracks or lifting of the adhesive layer occurred in the area bent by the bending operation was recorded as the limit number of bending times.
  • the limit number of bends was evaluated according to the following criteria. A: No cracks or lifts occur even after 100,000 bends B: Cracks or lifts occur after 80,000 or more bends but less than 100,000 times C: Cracks or lifts occur after 50,000 or more bends but less than 80,000 times D: Cracks and lifting occur when the number of bends is 10,000 to less than 50,000 times. E: Cracks and lifting occur when the number of bends is less than 10,000 times.
  • Example 2 An optical laminate (2) was produced in the same manner as in Example 1, except that a corona-treated polymethyl methacrylate resin film (PMMA: manufactured by Sumitomo Chemical Co., Ltd., thickness 40 ⁇ m) was used as the transparent protective film. , conducted an evaluation. The results are shown in Table 2.
  • PMMA polymethyl methacrylate resin film manufactured by Sumitomo Chemical Co., Ltd., thickness 40 ⁇ m
  • Example 3 An optical laminate (3) was produced in the same manner as in Example 1, except that a corona-treated cyclic polyolefin resin film (COP: ZF-14 manufactured by Nippon Zeon, thickness 40 ⁇ m) was used as the transparent protective film. , conducted an evaluation. The results are shown in Table 2.
  • COP corona-treated cyclic polyolefin resin film
  • Example 4 An optical laminate (4) was produced in the same manner as in Example 1, except that a corona-treated polyethylene terephthalate film (PET: Diafoil, manufactured by Mitsubishi Plastics Co., Ltd., thickness 38 ⁇ m) was used as the transparent protective film. and evaluated it. The results are shown in Table 2.
  • PET polyethylene terephthalate film
  • Table 2 The results are shown in Table 2.
  • a retardation film (Z), a polarizer, and a triacetyl cellulose film (TAC: "KC4UY” manufactured by Konica Minolta Opto Co., Ltd.) that has been saponified as a transparent protective film are cured in this order by liquid crystal curing of the retardation film.
  • TAC triacetyl cellulose film
  • lamination is performed so that the cured liquid crystal film side of the retardation film faces the polarizer, and the side of the polarizer opposite to the retardation film faces the transparent protective film. did.
  • a radically polymerizable ultraviolet curable adhesive was injected between the liquid crystal cured film and the polarizer and between the polarizer and the transparent protective film.
  • the obtained laminate was passed through nip rolls to bond each layer together.
  • the obtained bonded product was irradiated with ultraviolet rays at an exposure dose of 1000 mJ from the retardation film side.
  • PET film base film
  • an adhesive layer with a separate film is laminated on the surface exposed by peeling.
  • An optical laminate (5) consisting of layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protective film was obtained.
  • the thickness of the optical laminate (5) excluding the adhesive layer was 56 ⁇ m.
  • the radically polymerizable ultraviolet curable adhesive is an ultraviolet curable adhesive containing a (meth)acrylic curing component and a radical polymerization initiator, which was prepared by mixing the following components.
  • Acryloylmorpholine manufactured by Kojinsha
  • Isostearyl acrylate manufactured by Osaka Organic Chemical Industry
  • Light acrylate LA Lauryl acrylate (manufactured by Kyoei Chemical) 7.7 parts
  • PLACCEL FA1DDM Unsaturated fatty acid Hydroxyalkyl ester modified ⁇ -caprolactone (manufactured by Daicel) 23.1 parts
  • Light acrylate 1,9NDA 1,9-nonanediol diacrylate (manufactured by Kyoei Kagaku) 15.0 parts
  • ARUFON-UP1190 Acrylic polymer (manufactured by Toagosei) 15.
  • Example 6 An optical laminate (6) was produced in the same manner as in Example 5, except that a corona-treated polymethyl methacrylate resin film (PMMA: manufactured by Sumitomo Chemical Co., Ltd., thickness 40 ⁇ m) was used as the transparent protective film. and evaluated it. The results are shown in Table 2.
  • PMMA manufactured by Sumitomo Chemical Co., Ltd., thickness 40 ⁇ m
  • Example 7 An optical laminate (7) was produced in the same manner as in Example 5, except that a corona-treated cyclic polyolefin resin film (COP: ZF-14 manufactured by Nippon Zeon, thickness 40 ⁇ m) was used as the transparent protective film. , conducted an evaluation. The results are shown in Table 2.
  • COP cyclic polyolefin resin film
  • Example 8> An optical laminate (8) was produced in the same manner as in Example 5, except that a corona-treated polyethylene terephthalate film (PET: Diafoil, manufactured by Mitsubishi Plastics Co., Ltd., thickness 38 ⁇ m) was used as the transparent protective film. and conducted an evaluation. The results are shown in Table 2.
  • PET polyethylene terephthalate film
  • Table 2 The results are shown in Table 2.
  • a retardation film (Z), a polarizer, and a triacetyl cellulose film (TAC: "KC4UY” manufactured by Konica Minolta Opto Co., Ltd.) that has been saponified as a transparent protective film are cured in this order by liquid crystal curing of the retardation film.
  • TAC triacetyl cellulose film
  • lamination is performed so that the cured liquid crystal film side of the retardation film faces the polarizer, and the side of the polarizer opposite to the retardation film faces the transparent protective film. did.
  • a cationically polymerizable ultraviolet curable adhesive was injected between the cured liquid crystal film and the polarizer and between the polarizer and the transparent protective film.
  • the obtained laminate was passed through nip rolls to bond each layer together. While maintaining the tension of the obtained bond at 430 N/m, ultraviolet rays were irradiated from the optically anisotropic layer side at an exposure dose of 1000 mJ. After that, only the base film (PET film) of the retardation film is peeled off, and an adhesive layer with a separate film is laminated on the surface exposed by peeling.
  • An optical laminate (9) consisting of layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protective film was obtained. The thickness of the optical laminate (9) excluding the adhesive layer was 55 ⁇ m.
  • the above-mentioned cationic polymerizable ultraviolet curable adhesive is an ultraviolet curable adhesive containing an epoxy compound and a cationic polymerization initiator, prepared by mixing the following components.
  • 3,4-Epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate 40 parts Diglycidyl ether of bisphenol A 60 parts Diphenyl (4-phenylthiophenyl) sulfonium hexafluoroantimonate (photocationic polymerization initiator) 4 parts
  • Example 10 An optical laminate (10) was produced in the same manner as in Example 9, except that a corona-treated polymethyl methacrylate resin film (PMMA: manufactured by Sumitomo Chemical Co., Ltd., thickness 40 ⁇ m) was used as the transparent protective film. and evaluated it. The results are shown in Table 2.
  • PMMA manufactured by Sumitomo Chemical Co., Ltd., thickness 40 ⁇ m
  • Example 11 An optical laminate (11) was produced in the same manner as in Example 9, except that a corona-treated cyclic polyolefin resin film (COP: ZF-14 manufactured by Nippon Zeon, thickness 40 ⁇ m) was used as the transparent protective film. , conducted an evaluation. The results are shown in Table 2.
  • COP corona-treated cyclic polyolefin resin film
  • Example 12 An optical laminate (12) was produced in the same manner as in Example 9, except that a corona-treated polyethylene terephthalate film (PET: Diafoil, manufactured by Mitsubishi Plastics Co., Ltd., thickness 38 ⁇ m) was used as the transparent protective film. and evaluated it. The results are shown in Table 2.
  • PET polyethylene terephthalate film
  • Table 2 The results are shown in Table 2.
  • ⁇ Comparative example 1> An adhesive layer with a separate film was laminated on the base film surface of a laminate produced according to Example 2 of JP-A-2022-044293 to obtain an optical laminate (13).
  • the layer structure of the optical laminate (13) is adhesive layer with separate film/base film/photo alignment film/optical anisotropic layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protection. It's a film.
  • ⁇ Comparative example 2> An adhesive layer with a separate film was laminated on the optically anisotropic layer (cured liquid crystal film) surface of a laminate produced according to Example 1 of JP-A-2022-044293 to obtain an optical laminate (14).
  • the layer structure of the optical laminate (14) is adhesive layer with separate film/optically anisotropic layer (cured liquid crystal film)/photo alignment film/base film/adhesive layer/polarizer/adhesive layer/transparent protection. It's a film.
  • ⁇ Comparative example 3> An adhesive layer with a separate film was laminated on the base film surface of a laminate produced according to Example 3 of JP-A-2022-044293 to obtain an optical laminate (15).
  • the layer structure of the optical laminate (15) is adhesive layer with separate film/base film/photo alignment film/optical anisotropic layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protection. It's a film.
  • ⁇ Comparative example 4> An adhesive layer with a separate film was laminated on the base film surface of a laminate produced according to Example 4 of JP-A-2022-044293 to obtain an optical laminate (16).
  • the layer structure of the optical laminate (16) is adhesive layer with separate film/base film/photo alignment film/optical anisotropic layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protection. It's a film.
  • An optical laminate (17) was obtained by laminating an adhesive layer with a separate film on the photo-alignment film surface of a laminate produced according to Comparative Example 1 of JP-A-2022-044293.
  • the layer structure of the optical laminate (17) is adhesive layer with separate film/photo alignment film/optically anisotropic layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protective film.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an optical laminated body having excellent bendability. The optical laminated body includes a transparent protective film, a first adhesive layer, a polarizer, a second adhesive layer, an optical anisotropic layer, and an adhesive layer in this order. Only the first adhesive layer is present between the transparent protective film and the polarizer, and only the second adhesive layer is present between the polarizer and the optical anisotropic layer. The optical anisotropic layer is a liquid crystal cured film, and the thickness of the optical anisotropic layer is 0.1-5 µm. The optical anisotropic layer and the adhesive layer are directly in contact with each other or there is an alignment layer between the optical anisotropic layer and the adhesive layer.

Description

光学積層体及びその製造方法Optical laminate and its manufacturing method
 本発明は、光学積層体及びその製造方法に関する。 The present invention relates to an optical laminate and a method for manufacturing the same.
 楕円偏光板は、偏光板と位相差板とが積層された光学部材であり、例えば、有機EL画像表示装置等の画像表示装置において、該装置を構成する電極での光反射を防止するために用いられている。位相差板として、基材上に重合性液晶化合物を塗布し、硬化させることにより作製される液晶硬化膜を用いた位相差板が知られている(特許文献1)。 An elliptically polarizing plate is an optical member in which a polarizing plate and a retardation plate are laminated. For example, in an image display device such as an organic EL image display device, it is used to prevent light reflection at the electrodes constituting the device. It is used. As a retardation plate, a retardation plate using a cured liquid crystal film produced by applying a polymerizable liquid crystal compound onto a base material and curing it is known (Patent Document 1).
特開2022-044293号公報JP2022-044293A
 近年、折り曲げ可能なフレキシブルディスプレイの普及に伴って楕円偏光板にもさらなる屈曲性が求められるようになっている。本発明の目的は、屈曲性に優れる光学積層体を提供することにある。 In recent years, with the spread of bendable flexible displays, elliptically polarizing plates are also required to have greater flexibility. An object of the present invention is to provide an optical laminate having excellent flexibility.
 本発明は、以下の光学積層体及びその製造方法を提供する。
 [1] 透明保護フィルムと、第1接着剤層と、偏光子と、第2接着剤層と、光学異方性層と、粘着剤層とをこの順に含む光学積層体であって、
 前記透明保護フィルムと前記偏光子との間に前記第1接着剤層のみが介在し、前記偏光子と前記光学異方性層との間に前記第2接着剤層のみが介在しており、
 前記光学異方性層が液晶硬化膜であり、
 前記光学異方性層の厚みが0.1μm以上5μm以下であり、
 前記光学異方性層と前記粘着剤層とは直接接しているか、又は、前記光学異方性層と前記粘着剤層との間に配向層を含む、光学積層体。
 [2] 前記第1接着剤層及び前記第2接着剤層は、厚みが50nm以上2000nm以下である、[1]に記載の光学積層体。
 [3] 前記第1接着剤層及び前記第2接着剤層は、乾燥固化型接着剤又は活性エネルギー線硬化型接着剤から形成される層である、[1]又は[2]に記載の光学積層体。
 [4] 前記光学異方性層が逆波長分散性を有する、[1]~[3]のいずれかに記載の光学積層体。
 [5] 前記光学異方性層は、波長550nmの光に対する面内位相差値が100nm以上160nm以下である、[1]~[4]のいずれかに記載の光学積層体。
 [6] 前記光学異方性層が、前記偏光子の長尺方向に対して斜め方向の光軸を有する、[1]~[5]のいずれかに記載の光学積層体。
 [7] 前記配向層は、光反応性基を含む光配向性ポリマーからなる光配向膜である、[1]~[6]のいずれかに記載の光学積層体。
 [8] 前記透明保護フィルムにおける前記偏光子とは反対側に反射防止層をさらに含む、[1]~[7]のいずれかに記載の光学積層体。
 [9] 前記偏光子は、二色性色素を含むポリビニルアルコール系樹脂フィルムから構成される、[1]~[8]のいずれかに記載の光学積層体。
 [10] [1]~[9]のいずれかに記載の光学積層体を含む、画像表示装置。
 [11] [1]~[9]のいずれかに記載の光学積層体の製造方法であって、
 光学異方性層と、配向層と、基材フィルムとをこの順に含む位相差フィルムを準備する位相差フィルム準備工程と、
 前記透明保護フィルムと、前記偏光子とを第1接着剤により貼合する第1貼合工程と、
 前記偏光子と、前記位相差フィルムの前記光学異方性層とを第2接着剤により貼合する第2貼合工程と、
 前記第2貼合工程により得られる積層体から、前記基材フィルム、又は、前記基材フィルム及び前記配向層を剥離除去する剥離工程と、
 前記剥離工程により露出した面に、前記粘着剤層を積層する粘着剤層積層工程と、
を含む、光学積層体の製造方法。
 [12] 前記第1接着剤及び前記第2接着剤が活性エネルギー線硬化型接着剤である、[11]に記載の光学積層体の製造方法。
 [13] 前記第2貼合工程の後であって前記剥離工程の前に、前記第2貼合工程により得られる積層体の前記位相差フィルム側から活性エネルギー線を照射して、前記第1接着剤及び前記第2接着剤を硬化させる工程をさらに含む、[12]に記載の光学積層体の製造方法。
The present invention provides the following optical laminate and method for manufacturing the same.
[1] An optical laminate comprising a transparent protective film, a first adhesive layer, a polarizer, a second adhesive layer, an optically anisotropic layer, and an adhesive layer in this order,
Only the first adhesive layer is interposed between the transparent protective film and the polarizer, and only the second adhesive layer is interposed between the polarizer and the optically anisotropic layer,
The optically anisotropic layer is a liquid crystal cured film,
The thickness of the optically anisotropic layer is 0.1 μm or more and 5 μm or less,
The optical laminate, wherein the optically anisotropic layer and the adhesive layer are in direct contact with each other, or an alignment layer is provided between the optically anisotropic layer and the adhesive layer.
[2] The optical laminate according to [1], wherein the first adhesive layer and the second adhesive layer have a thickness of 50 nm or more and 2000 nm or less.
[3] The optical device according to [1] or [2], wherein the first adhesive layer and the second adhesive layer are layers formed from a dry solidifying adhesive or an active energy ray curable adhesive. laminate.
[4] The optical laminate according to any one of [1] to [3], wherein the optically anisotropic layer has reverse wavelength dispersion.
[5] The optical laminate according to any one of [1] to [4], wherein the optically anisotropic layer has an in-plane retardation value of 100 nm or more and 160 nm or less for light with a wavelength of 550 nm.
[6] The optical laminate according to any one of [1] to [5], wherein the optically anisotropic layer has an optical axis oblique to the longitudinal direction of the polarizer.
[7] The optical laminate according to any one of [1] to [6], wherein the alignment layer is a photoalignment film made of a photoalignable polymer containing a photoreactive group.
[8] The optical laminate according to any one of [1] to [7], further comprising an antireflection layer on the opposite side of the transparent protective film from the polarizer.
[9] The optical laminate according to any one of [1] to [8], wherein the polarizer is composed of a polyvinyl alcohol resin film containing a dichroic dye.
[10] An image display device comprising the optical laminate according to any one of [1] to [9].
[11] A method for producing an optical laminate according to any one of [1] to [9], comprising:
a retardation film preparation step of preparing a retardation film including an optically anisotropic layer, an alignment layer, and a base film in this order;
a first bonding step of bonding the transparent protective film and the polarizer using a first adhesive;
a second bonding step of bonding the polarizer and the optically anisotropic layer of the retardation film using a second adhesive;
a peeling step of peeling and removing the base film, or the base film and the alignment layer from the laminate obtained in the second bonding step;
an adhesive layer lamination step of laminating the adhesive layer on the surface exposed by the peeling step;
A method for producing an optical laminate, comprising:
[12] The method for producing an optical laminate according to [11], wherein the first adhesive and the second adhesive are active energy ray-curable adhesives.
[13] After the second bonding step and before the peeling step, active energy rays are irradiated from the retardation film side of the laminate obtained in the second bonding step to remove the first The method for producing an optical laminate according to [12], further comprising a step of curing the adhesive and the second adhesive.
 屈曲性に優れる光学積層体を提供することができる。 An optical laminate with excellent flexibility can be provided.
光学積層体の層構成の一例を示す概略断面図である。It is a schematic sectional view showing an example of the layer composition of an optical layered product. 光学積層体の層構成の他の一例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing another example of the layer structure of the optical laminate.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。以下のすべての図面は、本発明の理解を助けるために示すものであり、図面に示される各構成要素のサイズや形状は、実際の構成要素のサイズや形状とは必ずしも一致しない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. All the drawings below are shown to help understand the present invention, and the size and shape of each component shown in the drawings do not necessarily correspond to the size and shape of the actual component.
 <光学積層体>
 (1)光学積層体の構成
 図1及び図2は、本発明に係る光学積層体(以下、単に「光学積層体」ともいう。)の層構成の例を示す概略断面図である。
 図1に示される光学積層体1は、透明保護フィルム10と、第1接着剤層51と、偏光子20と、第2接着剤層52と、光学異方性層(位相差層)30と、粘着剤層40とをこの順に含む。透明保護フィルム10と偏光子20とは、第1接着剤層51を介して積層されている。偏光子20と光学異方性層30とは、第2接着剤層52を介して積層されている。透明保護フィルム10と偏光子20との間には第1接着剤層51のみが介在している。偏光子20と光学異方性層30との間には第2接着剤層52のみが介在している。光学積層体1は、光学異方性層30と粘着剤層40との間に配向層60を含む。光学積層体1において、第1接着剤層51は、透明保護フィルム10及び偏光子20に直接接しており、第2接着剤層52は、偏光子20及び光学異方性層30に直接接しており、配向層60は、光学異方性層30及び粘着剤層40に直接接している。
<Optical laminate>
(1) Structure of optical laminate FIGS. 1 and 2 are schematic cross-sectional views showing an example of the layer structure of an optical laminate (hereinafter also simply referred to as "optical laminate") according to the present invention.
The optical laminate 1 shown in FIG. 1 includes a transparent protective film 10, a first adhesive layer 51, a polarizer 20, a second adhesive layer 52, and an optically anisotropic layer (retardation layer) 30. , adhesive layer 40 in this order. The transparent protective film 10 and the polarizer 20 are laminated with a first adhesive layer 51 interposed therebetween. The polarizer 20 and the optically anisotropic layer 30 are laminated with a second adhesive layer 52 in between. Only the first adhesive layer 51 is interposed between the transparent protective film 10 and the polarizer 20. Only the second adhesive layer 52 is interposed between the polarizer 20 and the optically anisotropic layer 30. The optical laminate 1 includes an alignment layer 60 between the optically anisotropic layer 30 and the adhesive layer 40. In the optical laminate 1, the first adhesive layer 51 is in direct contact with the transparent protective film 10 and the polarizer 20, and the second adhesive layer 52 is in direct contact with the polarizer 20 and the optically anisotropic layer 30. The alignment layer 60 is in direct contact with the optically anisotropic layer 30 and the adhesive layer 40.
 図2に示される光学積層体2は、配向層60を有しないこと以外は図1に示される光学積層体1と同じ層構成を有している。光学積層体2において、光学異方性層30と粘着剤層40とは、直接接している。 The optical laminate 2 shown in FIG. 2 has the same layer structure as the optical laminate 1 shown in FIG. 1 except that it does not have the alignment layer 60. In the optical laminate 2, the optically anisotropic layer 30 and the adhesive layer 40 are in direct contact with each other.
 図1及び図2に示される例のように、光学積層体は、偏光子20と光学異方性層30との間に、光学異方性層30を形成する際に用いる基材である基材フィルム(通常は熱可塑性樹脂フィルム)を有さず、かつ、透明保護フィルム10と偏光子20との貼合に接着剤層(第1接着剤層51)を用い、偏光子20と光学異方性層30との貼合に接着剤層(第2接着剤層52)を用いている。本発明に係る光学積層体は、かかる構成を有しているため、屈曲性に優れており、くり返し屈曲させても屈曲部分に剥離やクラック等の不具合が生じにくい。屈曲性をより高める観点から、光学積層体が配向層60を有する場合、光学異方性層30と粘着剤層40との間には配向層60のみが介在していることが好ましい。 As in the example shown in FIGS. 1 and 2, the optical laminate includes a base material used when forming the optically anisotropic layer 30 between the polarizer 20 and the optically anisotropic layer 30. It does not have a material film (usually a thermoplastic resin film), and an adhesive layer (first adhesive layer 51) is used to bond the transparent protective film 10 and the polarizer 20. An adhesive layer (second adhesive layer 52) is used for bonding with the orientation layer 30. Since the optical laminate according to the present invention has such a configuration, it has excellent flexibility, and even if it is repeatedly bent, problems such as peeling and cracking are unlikely to occur at the bent portion. From the viewpoint of further improving flexibility, when the optical laminate has the alignment layer 60, it is preferable that only the alignment layer 60 is interposed between the optically anisotropic layer 30 and the adhesive layer 40.
 光学積層体は、透明保護フィルム10、第1接着剤層51、偏光子20、第2接着剤層52、光学異方性層30、配向層60及び粘着剤層40以外の他の層(例えば、画像表示装置等に組み込まれ得る各種機能を有する他の層)を含むことができる。ただし、光学積層体の屈曲性を向上させる観点から、他の層は、透明保護フィルム10と偏光子20との間、及び、偏光子20と光学異方性層30との間には配置されず、好ましくは、光学異方性層30と粘着剤層40との間にも配置されない。 The optical laminate includes a transparent protective film 10, a first adhesive layer 51, a polarizer 20, a second adhesive layer 52, an optically anisotropic layer 30, an alignment layer 60, and layers other than the adhesive layer 40 (e.g. , other layers having various functions that can be incorporated into image display devices, etc.). However, from the viewpoint of improving the flexibility of the optical laminate, other layers are not arranged between the transparent protective film 10 and the polarizer 20 and between the polarizer 20 and the optically anisotropic layer 30. First, preferably, it is not disposed between the optically anisotropic layer 30 and the adhesive layer 40 either.
 光学積層体は、例えば、楕円偏光板として好適に用いることができる。用語「楕円偏光板」は、円偏光板を含む。 The optical laminate can be suitably used as, for example, an elliptically polarizing plate. The term "elliptically polarizer" includes circularly polarizers.
 以下、光学積層体を構成する又は構成し得る要素について詳細に説明する。
 (2)透明保護フィルム
 光学積層体は、偏光子20の光学異方性層30とは反対側に積層される透明保護フィルム10を含む。偏光子20は膜厚が薄く、その表面が損傷しやすいことから、通常、外部からの損傷や汚れを防止するために偏光子20の両面に保護フィルムを備えていることが多いが、本発明の光学積層体において、偏光子20の光学異方性層30側の面には透明保護フィルムは積層されない。これによって、より薄型で、斜め反射率の低い光学積層体となり得る。
Elements that constitute or can constitute the optical laminate will be described in detail below.
(2) Transparent Protective Film The optical laminate includes a transparent protective film 10 that is laminated on the opposite side of the polarizer 20 to the optically anisotropic layer 30. Since the polarizer 20 has a thin film thickness and its surface is easily damaged, protective films are usually provided on both sides of the polarizer 20 to prevent external damage and dirt. In the optical laminate, a transparent protective film is not laminated on the surface of the polarizer 20 on the optically anisotropic layer 30 side. This makes it possible to obtain an optical laminate that is thinner and has a lower diagonal reflectance.
 透明保護フィルム10は、好ましくは90%以上、より好ましくは92%以上の全光線透過率を有する。全光線透過率が上記下限値以上であると、透明性が高く、光学特性に優れる光学積層体を構成できる。透明保護フィルム10の全光線透過率の上限値は特に限定されず、100%以下であればよい。全光線透過率は、例えば、JIS K 7361に従い測定できる。 The transparent protective film 10 preferably has a total light transmittance of 90% or more, more preferably 92% or more. When the total light transmittance is at least the above lower limit, an optical laminate having high transparency and excellent optical properties can be constructed. The upper limit of the total light transmittance of the transparent protective film 10 is not particularly limited, and may be 100% or less. The total light transmittance can be measured, for example, according to JIS K 7361.
 透明保護フィルム10は、波長380nmにおける透過率が、好ましくは30%以下、より好ましくは25%以下、さらに好ましくは20%以下である。該透過率が上記上限値以下であると、透明保護フィルム10を含む光学積層体を画像表示装置に組み込んだ場合に、視認側において曝される紫外線から光学積層体の内部を構成する層(偏光子20や光学異方性層30等)を保護することができる。透明保護フィルム10の波長380nmにおける透過率の下限値は特に限定されるものではなく、0%であってもよい。透明保護フィルム10の波長380nmにおける透過率を30%以下にするために、透明保護フィルム10は紫外線吸収剤等を含んでいてもよい。波長380nmにおける透過率は、例えば、分光光度計に従い測定できる。 The transmittance of the transparent protective film 10 at a wavelength of 380 nm is preferably 30% or less, more preferably 25% or less, even more preferably 20% or less. If the transmittance is below the above upper limit value, when the optical laminate including the transparent protective film 10 is incorporated into an image display device, the layers constituting the interior of the optical laminate (polarized light 20, optically anisotropic layer 30, etc.). The lower limit of the transmittance of the transparent protective film 10 at a wavelength of 380 nm is not particularly limited, and may be 0%. In order to make the transmittance of the transparent protective film 10 30% or less at a wavelength of 380 nm, the transparent protective film 10 may contain an ultraviolet absorber or the like. Transmittance at a wavelength of 380 nm can be measured using a spectrophotometer, for example.
 透明保護フィルム10としては、熱可塑性樹脂フィルムを用いることができる。透明保護フィルムを構成し得る熱可塑性樹脂としては、例えば、トリアセチルセルロース等のセルロース樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリエーテルスルホン樹脂;ポリスルホン樹脂;ポリカーボネート樹脂;ナイロンや芳香族ポリアミド等のポリアミド樹脂;ポリイミド樹脂;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン樹脂;シクロ系及びノルボルネン構造を有する環状ポリオレフィン樹脂(ノルボルネン系樹脂ともいう);(メタ)アクリル樹脂;ポリアリレート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂、並びにこれらの混合物が挙げられる。なお、本明細書において「(メタ)アクリル」とは、アクリル又はメタクリルのいずれでもよいことを意味する。(メタ)アクリレート、(メタ)アクリロイル等の「(メタ)」も同様の意味である。このような樹脂を、溶媒キャスト法、溶融押出法等の公知の手段により製膜してフィルム状にすることができる。透明保護フィルムの表面には、シリコーン処理のような離型処理、コロナ処理、プラズマ処理等の表面処理が施されていてもよい。 A thermoplastic resin film can be used as the transparent protective film 10. Examples of thermoplastic resins that can constitute the transparent protective film include cellulose resins such as triacetylcellulose; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyethersulfone resins; polysulfone resins; polycarbonate resins; nylon and aromatic polyamides. polyamide resins such as; polyimide resins; polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymers; cyclic polyolefin resins having cyclo and norbornene structures (also referred to as norbornene resins); (meth)acrylic resins; polyarylate resins ; polystyrene resin; polyvinyl alcohol resin, and mixtures thereof. In this specification, "(meth)acrylic" means either acrylic or methacryl. "(Meta)" in (meth)acrylate, (meth)acryloyl, etc. has the same meaning. Such a resin can be formed into a film by known means such as a solvent casting method and a melt extrusion method. The surface of the transparent protective film may be subjected to a surface treatment such as a release treatment such as a silicone treatment, a corona treatment, a plasma treatment, or the like.
 透明保護フィルム10は、好ましくは、トリアセチルセルロースフィルム、(メタ)アクリル樹脂フィルム、環状ポリオレフィン樹脂フィルム、又はポリエチレンテレフタレートフィルムである。 The transparent protective film 10 is preferably a triacetyl cellulose film, a (meth)acrylic resin film, a cyclic polyolefin resin film, or a polyethylene terephthalate film.
 一実施態様において透明保護フィルム10は、好ましくは100g/m/24時間以上、より好ましくは150g/m/24時間以上、さらに好ましくは200g/m/24時間以上の透湿度を有する。透明保護フィルム10の透湿度が上記下限値以上であると、乾燥固化型接着剤を用いて光学異方性層30と偏光子20とを積層して光学積層体を形成する際に、透明保護フィルム10から乾燥固化型接着剤中の溶媒を効率よく除去することができる。これにより、乾燥固化型接着剤中の溶媒を除去する時間を短くし得るため、生産性の点において有利となり得る。透明保護フィルム10の透湿度の上限は特に限定されるものではないが、通常、1000g/m/24時間以下、好ましくは500g/m/24時間以下である。該透湿度は、温度40℃、相対湿度90%における透湿度であり、JIS Z 0208に規定されるカップ法により測定することができる。 In one embodiment, the transparent protective film 10 preferably has a moisture permeability of 100 g/m 2 /24 hours or more, more preferably 150 g/m 2 /24 hours or more, and still more preferably 200 g/m 2 /24 hours or more. When the moisture permeability of the transparent protective film 10 is equal to or higher than the above lower limit value, when forming an optical laminate by laminating the optically anisotropic layer 30 and the polarizer 20 using a dry-setting adhesive, the transparent protective film 10 is The solvent in the dry-setting adhesive can be efficiently removed from the film 10. This can shorten the time for removing the solvent in the dry-setting adhesive, which can be advantageous in terms of productivity. The upper limit of the moisture permeability of the transparent protective film 10 is not particularly limited, but is usually 1000 g/m 2 /24 hours or less, preferably 500 g/m 2 /24 hours or less. The moisture permeability is the moisture permeability at a temperature of 40° C. and a relative humidity of 90%, and can be measured by the cup method specified in JIS Z 0208.
 透明保護フィルム10の厚みは、光学積層体の薄型化、加工性、屈曲性及び強度等の観点から、通常、5μm以上300μm以下であり、好ましくは20μm以上200μm以下、より好ましくは20μm以上150μm以下である。 The thickness of the transparent protective film 10 is usually 5 μm or more and 300 μm or less, preferably 20 μm or more and 200 μm or less, more preferably 20 μm or more and 150 μm or less, from the viewpoint of thinning the optical laminate, workability, flexibility, strength, etc. It is.
 透明保護フィルム10は、偏光子20とは反対側の表面に積層される表面処理層を含むことができる。表面処理層としては、例えば、ハードコート層、反射防止層等が挙げられる。ハードコート層は、表面の傷付き防止等を目的とするものであり、例えば(メタ)アクリル系、シリコーン系等の紫外線硬化型樹脂による硬化膜が挙げられる。反射防止層は、表面での外光の反射防止を目的とするものであり、従来公知の反射防止膜等であってよい。 The transparent protective film 10 can include a surface treatment layer laminated on the surface opposite to the polarizer 20. Examples of the surface treatment layer include a hard coat layer and an antireflection layer. The hard coat layer is intended to prevent scratches on the surface, and includes, for example, a cured film made of ultraviolet curable resin such as (meth)acrylic and silicone. The antireflection layer is intended to prevent reflection of external light on the surface, and may be a conventionally known antireflection film or the like.
 (3)偏光子
 偏光子は、入射する自然光から直線偏光を取り出す機能を有するフィルムであり、好ましくは、二色性色素を含むポリビニルアルコール系樹脂フィルムである。ポリビニルアルコール系樹脂フィルムを構成するポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂のケン化物を用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルとこれに共重合可能な他の単量体との共重合体(例えば、エチレン-酢酸ビニル共重合体等)が挙げられる。酢酸ビニルと共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有する(メタ)アクリルアミド類等が挙げられる。
(3) Polarizer A polarizer is a film that has a function of extracting linearly polarized light from incident natural light, and is preferably a polyvinyl alcohol resin film containing a dichroic dye. As the polyvinyl alcohol resin constituting the polyvinyl alcohol resin film, saponified polyvinyl acetate resin can be used. Examples of polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers that can be copolymerized with vinyl acetate (for example, ethylene-vinyl acetate copolymer). combination, etc.). Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth)acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、通常85モル%以上100モル%以下であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールも使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1,000以上10,000以下であり、好ましくは1,500以上5,000以下である。 The degree of saponification of the polyvinyl alcohol resin is usually 85 mol% or more and 100 mol% or less, preferably 98 mol% or more. The polyvinyl alcohol resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used. The degree of polymerization of the polyvinyl alcohol resin is usually 1,000 or more and 10,000 or less, preferably 1,500 or more and 5,000 or less.
 上記ポリビニルアルコール系樹脂を製膜したものが、偏光子の原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系原反フィルムの厚みは、例えば、10μm以上150μm以下とすることができる。 A film formed from the above polyvinyl alcohol resin is used as the original film of the polarizer. The method of forming a polyvinyl alcohol resin into a film is not particularly limited, and any known method can be used to form the film. The thickness of the polyvinyl alcohol base film can be, for example, 10 μm or more and 150 μm or less.
 偏光子は、通常、上記ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗処理を行う工程を経て製造される。なお、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、二色性色素がポリビニルアルコール系樹脂フィルムに含まれることとなる。かかる製造方法にて偏光子を製造する場合、偏光子は二色性色素を含む延伸ポリビニルアルコール系樹脂フィルムとなる。 Polarizers are usually produced through a process of uniaxially stretching the polyvinyl alcohol resin film, a process of dyeing the polyvinyl alcohol resin film with a dichroic dye, and a process of adsorbing the dichroic dye. It is manufactured through the steps of treating a polyvinyl alcohol-based resin film with a boric acid aqueous solution, and washing with water after the treatment with the boric acid aqueous solution. Note that by dyeing the polyvinyl alcohol resin film with a dichroic dye, the dichroic dye will be included in the polyvinyl alcohol resin film. When manufacturing a polarizer using such a manufacturing method, the polarizer is a stretched polyvinyl alcohol resin film containing a dichroic dye.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素の染色前に行ってもよく、染色と同時に行ってもよく、又は染色の後に行ってもよい。一軸延伸を染色の後で行う場合には、この一軸延伸は、ホウ酸処理の前に行ってもよく、ホウ酸処理中に行ってもよい。これらの複数の段階で一軸延伸を行うことも可能である。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよく、熱ロールを用いて一軸に延伸してもよい。また、一軸延伸は、大気中で延伸を行う乾式延伸であってもよく、溶剤を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は、偏光子の変形を抑制する観点から、好ましくは8倍以下、より好ましくは7.5倍以下、さらに好ましくは7倍以下である。また、延伸倍率は、偏光子としての機能を発現させる観点からは、通常4.5倍以上である。延伸倍率を前記範囲とすることにより、偏光子の経時的な変形を抑制することができる。 The uniaxial stretching of the polyvinyl alcohol resin film may be performed before dyeing with the dichroic dye, simultaneously with the dyeing, or after the dyeing. When uniaxial stretching is performed after dyeing, this uniaxial stretching may be performed before or during the boric acid treatment. It is also possible to perform uniaxial stretching in these multiple steps. In the uniaxial stretching, it may be uniaxially stretched between rolls having different circumferential speeds, or it may be uniaxially stretched using hot rolls. Further, the uniaxial stretching may be dry stretching in which the film is stretched in the atmosphere, or wet stretching in which the polyvinyl alcohol resin film is stretched in a swollen state using a solvent. From the viewpoint of suppressing deformation of the polarizer, the stretching ratio is preferably 8 times or less, more preferably 7.5 times or less, and even more preferably 7 times or less. Further, the stretching ratio is usually 4.5 times or more from the viewpoint of exhibiting the function as a polarizer. By setting the stretching ratio within the above range, deformation of the polarizer over time can be suppressed.
 ポリビニルアルコール系樹脂フィルムを二色性色素で染色する方法としては、例えば、ポリビニルアルコール系樹脂フィルムを、二色性色素を含有する水溶液に浸漬する方法が挙げられる。二色性色素としては、例えば、ヨウ素又は二色性染料が用いられる。二色性染料には、例えば、C.I.DIRECT RED 39等のジスアゾ化合物からなる二色性直接染料、トリスアゾ、テトラキスアゾ化合物等からなる二色性直接染料が包含される。なお、ポリビニルアルコール系樹脂フィルムは、染色処理の前に、水への浸漬処理を施しておくことが好ましい。 An example of a method for dyeing a polyvinyl alcohol resin film with a dichroic dye is a method of immersing the polyvinyl alcohol resin film in an aqueous solution containing a dichroic dye. As the dichroic dye, for example, iodine or a dichroic dye is used. Examples of dichroic dyes include C.I. I. Dichroic direct dyes made of disazo compounds such as DIRECT RED 39, dichroic direct dyes made of trisazo, tetrakisazo compounds, etc. are included. In addition, it is preferable that the polyvinyl alcohol resin film is subjected to a water immersion treatment before the dyeing treatment.
 二色性色素としてヨウ素を用いる場合は通常、ヨウ素及びヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液におけるヨウ素の含有量は、水100質量部あたり、通常、0.01質量部以上1質量部程度以下である。またヨウ化カリウムの含有量は、水100質量部あたり、通常、0.5質量部以上20質量部程度以下である。染色に用いる水溶液の温度は、通常20℃以上40℃程度以下である。また、この水溶液への浸漬時間(染色時間)は、通常20秒以上1,800秒程度以下である。
 なお、ヨウ素及びヨウ化カリウムを含有する水溶液にポリビニルアルコール系樹脂フィルムを浸漬する前に、膨潤させて染色を容易にするために、該フィルムを水に浸漬してもよい。かかる浸漬処理の温度は通常20℃以上80℃以下、好ましくは30℃以上60℃以下であり、浸漬時間(染色時間)は通常20秒以上1,800秒以下である。
When using iodine as a dichroic dye, a method is usually employed in which a polyvinyl alcohol resin film is immersed in an aqueous solution containing iodine and potassium iodide for dyeing. The content of iodine in this aqueous solution is usually about 0.01 part by mass or more and about 1 part by mass or less per 100 parts by mass of water. Further, the content of potassium iodide is usually about 0.5 parts by mass or more and about 20 parts by mass or less per 100 parts by mass of water. The temperature of the aqueous solution used for dyeing is usually about 20°C or more and about 40°C or less. Further, the immersion time (staining time) in this aqueous solution is usually 20 seconds or more and about 1,800 seconds or less.
Note that before the polyvinyl alcohol resin film is immersed in an aqueous solution containing iodine and potassium iodide, the film may be immersed in water in order to swell it and facilitate dyeing. The temperature of such immersion treatment is usually 20°C or more and 80°C or less, preferably 30°C or more and 60°C or less, and the immersion time (dying time) is usually 20 seconds or more and 1,800 seconds or less.
 一方、二色性色素として二色性の有機染料を用いる場合は通常、水溶性二色性染料を含む水溶液にポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液における二色性有機染料の含有量は、水100質量部あたり、通常、1×10-4質量部以上10質量部程度以下であり、好ましくは1×10-3質量部以上1質量部以下、さらに好ましくは1×10-3質量部以上1×10-2質量部以下である。この水溶液は、硫酸ナトリウム等の無機塩を染色助剤として含んでいてもよい。染色に用いる二色性染料水溶液の温度は、通常、20℃以上80℃程度以下である。また、この水溶液への浸漬時間(染色時間)は、通常、10秒以上1,800秒程度以下である。 On the other hand, when using a dichroic organic dye as the dichroic dye, a method of dyeing by immersing a polyvinyl alcohol resin film in an aqueous solution containing a water-soluble dichroic dye is usually employed. The content of the dichroic organic dye in this aqueous solution is usually 1 x 10 -4 parts by mass or more and 10 parts by mass or less, preferably 1 x 10 -3 parts by mass or more and 1 part by mass or less, per 100 parts by mass of water. The amount is more preferably 1×10 −3 parts by mass or more and 1×10 −2 parts by mass or less. This aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing aid. The temperature of the dichroic dye aqueous solution used for dyeing is usually about 20°C or more and about 80°C or less. Further, the immersion time (staining time) in this aqueous solution is usually 10 seconds or more and about 1,800 seconds or less.
 二色性色素による染色後のホウ酸処理は通常、染色されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液に浸漬する方法により行うことができる。このホウ酸水溶液におけるホウ酸の含有量は、水100質量部あたり、通常2質量部以上15質量部程度以下であり、好ましくは5質量部以上12質量部以下である。二色性色素としてヨウ素を用いた場合には、このホウ酸水溶液はヨウ化カリウムを含有することが好ましく、その場合のヨウ化カリウムの含有量は、水100質量部あたり、通常0.1質量部以上15質量部程度以下であり、好ましくは5質量部以上12質量部以下である。ホウ酸水溶液への浸漬時間は、通常60秒以上1,200秒程度以下であり、好ましくは150秒以上600秒以下、さらに好ましくは200秒以上400秒以下である。ホウ酸処理の温度は、通常50℃以上であり、好ましくは50℃以上85℃以下、さらに好ましくは60℃以上80℃以下である。 The boric acid treatment after dyeing with a dichroic dye can usually be carried out by immersing the dyed polyvinyl alcohol resin film in an aqueous boric acid solution. The content of boric acid in this boric acid aqueous solution is usually about 2 parts by mass or more and 15 parts by mass or less, preferably 5 parts by mass or more and 12 parts by mass or less, per 100 parts by mass of water. When iodine is used as the dichroic dye, the boric acid aqueous solution preferably contains potassium iodide, and the content of potassium iodide in this case is usually 0.1 mass parts per 100 mass parts of water. The amount is about 15 parts by mass or more, and preferably 5 parts by mass or more and 12 parts by mass or less. The immersion time in the boric acid aqueous solution is usually 60 seconds or more and about 1,200 seconds or less, preferably 150 seconds or more and 600 seconds or less, and more preferably 200 seconds or more and 400 seconds or less. The temperature of the boric acid treatment is usually 50°C or higher, preferably 50°C or higher and 85°C or lower, and more preferably 60°C or higher and 80°C or lower.
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムは通常、水洗処理される。水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬する方法により行うことができる。水洗処理における水の温度は、通常5℃以上40℃程度以下である。また浸漬時間は、通常1秒以上120秒程度以下である。 After the boric acid treatment, the polyvinyl alcohol resin film is usually washed with water. The water washing treatment can be performed, for example, by immersing a boric acid-treated polyvinyl alcohol resin film in water. The temperature of the water in the water washing process is usually about 5°C or more and about 40°C or less. Further, the immersion time is usually 1 second or more and about 120 seconds or less.
 水洗後に乾燥処理が施されて、偏光子20が得られる。乾燥処理は例えば、熱風乾燥機や遠赤外線ヒーターを用いて行うことができる。乾燥処理の温度は、通常30℃以上100℃程度以下であり、好ましくは50℃以上80℃以下である。乾燥処理の時間は、通常60秒以上600秒程度以下であり、好ましくは120秒以上600秒以下である。乾燥処理により、偏光子の水分率は実用程度にまで低減される。その水分率は、通常5質量%以上20質量%程度以下であり、好ましくは8質量%以上15質量%以下である。水分率が上記範囲内であると、適度な可撓性を有し、かつ、熱安定性に優れる偏光子が得られやすい。 After washing with water, a drying process is performed to obtain the polarizer 20. The drying process can be performed using, for example, a hot air dryer or a far-infrared heater. The temperature of the drying treatment is usually 30°C or more and about 100°C or less, preferably 50°C or more and 80°C or less. The drying treatment time is usually about 60 seconds or more and about 600 seconds or less, preferably 120 seconds or more and about 600 seconds or less. The drying process reduces the moisture content of the polarizer to a practical level. The moisture content is usually about 5% by mass or more and about 20% by mass or less, preferably 8% by mass or more and about 15% by mass or less. When the moisture content is within the above range, it is easy to obtain a polarizer that has appropriate flexibility and excellent thermal stability.
 偏光子20の厚みは、好ましくは5μm以上40μm以下、より好ましくは5μm以上20μm以下である。 The thickness of the polarizer 20 is preferably 5 μm or more and 40 μm or less, more preferably 5 μm or more and 20 μm or less.
 (4)光学異方性層及び配向層
 光学異方性層30は、重合性液晶化合物を含む組成物(以下、「液晶硬化膜形成用組成物」ともいう)を透明基材上に塗布形成し、重合性液晶化合物の配向した重合体からなる光学異方性層(以下、「液晶硬化膜」ともいう)である。光学異方性層30が液晶硬化膜であることにより、薄型化を図ることができるとともに波長分散特性を任意に設計できる。また、液晶硬化膜形成用組成物は、溶剤、光重合開始剤、光増感剤、重合禁止剤、レベリング剤及び密着性向上剤等をさらに含み得る。
(4) Optically anisotropic layer and alignment layer The optically anisotropic layer 30 is formed by coating a composition containing a polymerizable liquid crystal compound (hereinafter also referred to as "composition for forming a liquid crystal cured film") on a transparent base material. However, it is an optically anisotropic layer (hereinafter also referred to as "cured liquid crystal film") made of an oriented polymer of a polymerizable liquid crystal compound. Since the optically anisotropic layer 30 is a cured liquid crystal film, it is possible to reduce the thickness of the optically anisotropic layer 30 and to arbitrarily design the wavelength dispersion characteristics. Furthermore, the composition for forming a liquid crystal cured film may further contain a solvent, a photopolymerization initiator, a photosensitizer, a polymerization inhibitor, a leveling agent, an adhesion improver, and the like.
 液晶硬化膜は、通常、基材上に形成された配向層上に、液晶硬化膜形成用組成物を塗布により形成し、上記液晶硬化膜形成用組成物に含まれる重合性液晶化合物を重合することによって形成される。液晶硬化膜は、通常、重合性液晶化合物が配向した状態で硬化した膜であり、視認面内で位相差を生じるためには、重合性液晶化合物が基材面に対して水平方向に配向した状態で重合性基が重合した硬化膜である必要がある。この際、重合性液晶化合物が棒状の液晶である場合にはポジティブAプレートであればよく、重合性液晶化合物が円盤状の液晶であればネガティブAプレートであればよい。 A cured liquid crystal film is usually formed by coating a composition for forming a cured liquid crystal film on an alignment layer formed on a base material, and polymerizing the polymerizable liquid crystal compound contained in the composition for forming a cured liquid crystal film. formed by A liquid crystal cured film is usually a film that is cured with a polymerizable liquid crystal compound oriented.In order to generate a phase difference within the viewing plane, the polymerizable liquid crystal compound must be oriented horizontally with respect to the substrate surface. It is necessary that the film be a cured film in which the polymerizable groups are polymerized under the conditions. At this time, if the polymerizable liquid crystal compound is a rod-shaped liquid crystal, a positive A plate may be used, and if the polymerizable liquid crystal compound is a disk-shaped liquid crystal, a negative A plate may be used.
 液晶硬化膜は、λ/4層、λ/2層、又はポジティブC層であってよい。光学異方性層30は、2層以上の液晶硬化膜を含んでいてもよい。2層以上の液晶硬化膜の組み合わせとしては、例えば、λ/4層とλ/2層との組み合わせ、λ/4層とポジティブC層との組み合わせ等が挙げられる。反射防止機能を高度に達成する観点からは、可視光全域でのλ/4板機能(すなわちπ/2の位相差機能)を有すればよい。具体的には逆波長分散性λ/4層が好ましく、正波長分散性λ/2層と正波長分散性λ/4層を組み合わせたものであってもよい。さらに、斜め方向での反射防止機能を補償し得る観点から、厚み方向に異方性を有する層(ポジティブCプレート)をさらに含んでいることが好ましい。また、それぞれの光学異方性層はチルト配向をしていてもよいし、コレステリック配向状態を形成していてもよい。光学異方性層30が2層以上の液晶硬化膜を含む場合、光学異方性層30は、これらの液晶硬化膜を互いに貼合するための貼合層(粘着剤層又は接着剤層)を含んでいてもよい。 The liquid crystal cured film may be a λ/4 layer, a λ/2 layer, or a positive C layer. The optically anisotropic layer 30 may include two or more layers of liquid crystal cured films. Examples of the combination of two or more layers of liquid crystal cured films include a combination of a λ/4 layer and a λ/2 layer, a combination of a λ/4 layer and a positive C layer, and the like. From the viewpoint of achieving a high degree of antireflection function, it is sufficient to have a λ/4 plate function (that is, a π/2 phase difference function) in the entire visible light range. Specifically, a reverse wavelength dispersion λ/4 layer is preferable, and a combination of a positive wavelength dispersion λ/2 layer and a positive wavelength dispersion λ/4 layer may be used. Furthermore, from the viewpoint of compensating for the antireflection function in the oblique direction, it is preferable to further include a layer having anisotropy in the thickness direction (positive C plate). Further, each optically anisotropic layer may have a tilt orientation or may form a cholesteric orientation state. When the optically anisotropic layer 30 includes two or more liquid crystal cured films, the optically anisotropic layer 30 includes a bonding layer (adhesive layer or adhesive layer) for bonding these liquid crystal cured films to each other. May contain.
 光学異方性層30は、波長λnmの光に対する面内位相差値であるRe(λ)が、下記式(1)を満たすことが好ましく、下記式(1)、下記式(2)及び下記式(3)をさらに満たすことがより好ましい。
  100nm≦Re(550)≦160nm ・・・(1)
(式中、Re(550)は波長550nmの光に対する面内位相差値(面内リタデーション)を表す。)
  Re(450)/Re(550)≦1.0 ・・・(2)
  1.00≦Re(650)/Re(550) ・・(3)
(式中、Re(450)は波長450nmの光に対する面内位相差値を、Re(550)は波長550nmの光に対する面内位相差値を、Re(650)は波長650nmの光に対する面内位相差値を表す。)
In the optically anisotropic layer 30, Re(λ), which is an in-plane retardation value for light with a wavelength of λ nm, preferably satisfies the following formula (1), the following formula (1), the following formula (2), and the following formula (1). It is more preferable that formula (3) is further satisfied.
100nm≦Re(550)≦160nm...(1)
(In the formula, Re(550) represents the in-plane retardation value (in-plane retardation) for light with a wavelength of 550 nm.)
Re(450)/Re(550)≦1.0...(2)
1.00≦Re(650)/Re(550)...(3)
(In the formula, Re (450) is the in-plane retardation value for light with a wavelength of 450 nm, Re (550) is the in-plane retardation value for light with a wavelength of 550 nm, and Re (650) is the in-plane retardation value for light with a wavelength of 650 nm. (Represents the phase difference value.)
 光学異方性層30が式(1)を満たすと、光学異方性層30を含む光学積層体(楕円偏光板)を有機EL表示装置等の画像表示装置に適用した場合の黒表示時の正面反射色相が向上しやすくなる。光学異方性層30のRe(550)は、より好ましくは、130nm以上150nm以下である。 When the optically anisotropic layer 30 satisfies the formula (1), when an optical laminate (elliptically polarizing plate) including the optically anisotropic layer 30 is applied to an image display device such as an organic EL display device, black display will occur. The front reflection hue is easily improved. Re(550) of the optically anisotropic layer 30 is more preferably 130 nm or more and 150 nm or less.
 光学異方性層30は、逆波長分散性を有することが好ましく、具体的には、式(2)及び式(3)を満たすことが好ましい。光学異方性層30の「Re(450)/Re(550)」の値が1.0を超えると、当該光学異方性層を備える楕円偏光板での短波長側での光抜けが大きくなる。「Re(450)/Re(550)」の値は、好ましくは、0.7以上1.0以下、より好ましくは0.80以上0.95以下、さらに好ましくは0.80以上0.92以下、特に好ましくは0.82以上0.88以下である。「Re(450)/Re(550)」の値は、重合性液晶化合物の混合比率や複数の液晶硬化膜の積層角度や位相差値を調整することで任意に調整することが可能である。 The optically anisotropic layer 30 preferably has reverse wavelength dispersion, and specifically preferably satisfies formulas (2) and (3). When the value of "Re(450)/Re(550)" of the optically anisotropic layer 30 exceeds 1.0, light leakage on the short wavelength side in the elliptically polarizing plate including the optically anisotropic layer becomes large. Become. The value of “Re(450)/Re(550)” is preferably 0.7 or more and 1.0 or less, more preferably 0.80 or more and 0.95 or less, and even more preferably 0.80 or more and 0.92 or less. , particularly preferably 0.82 or more and 0.88 or less. The value of "Re(450)/Re(550)" can be arbitrarily adjusted by adjusting the mixing ratio of the polymerizable liquid crystal compound, the stacking angle of the plurality of cured liquid crystal films, and the retardation value.
 光学異方性層30の面内位相差値Re(λ)は、光学異方性層30の厚みによって調整することができる。面内位相差値Re(λ)は下記式(4)によって決定されることから、所望の面内位相差値Re(λ)を得るには、Δn(λ)と膜厚dとを調整すればよい。光学異方性層30の厚みは、干渉膜厚計、レーザー顕微鏡又は触針式膜厚計により測定することができる。なお、Δn(λ)は、後述する重合性液晶化合物の分子構造に依存する。
  Re(λ)=d×Δn(λ) ・・・(4)
(式中、Re(λ)は波長λnmにおける面内位相差値を表し、dは膜厚を表し、Δn(λ)は波長λnmにおける複屈折率を表す。)
The in-plane retardation value Re(λ) of the optically anisotropic layer 30 can be adjusted by adjusting the thickness of the optically anisotropic layer 30. Since the in-plane retardation value Re(λ) is determined by the following formula (4), in order to obtain the desired in-plane retardation value Re(λ), Δn(λ) and the film thickness d must be adjusted. Bye. The thickness of the optically anisotropic layer 30 can be measured using an interference thickness meter, a laser microscope, or a stylus thickness meter. Note that Δn(λ) depends on the molecular structure of the polymerizable liquid crystal compound described later.
Re(λ)=d×Δn(λ)...(4)
(In the formula, Re(λ) represents the in-plane retardation value at the wavelength λnm, d represents the film thickness, and Δn(λ) represents the birefringence at the wavelength λnm.)
 また、ポジティブC層は、波長550nmにおける厚み方向の位相差値Rth(550
)が、通常-170nm以上-10nm以下の範囲であり、好ましくは-150nm以上-20nm以下、より好ましくは-100nm以上-40nmの範囲である。厚み方向の位相差値がこの範囲であれば、斜め方向からの反射防止特性を一段向上させることができる。
In addition, the positive C layer has a retardation value Rth (550 nm) in the thickness direction at a wavelength of 550 nm.
) is usually in the range of -170 nm or more and -10 nm or less, preferably -150 nm or more and -20 nm or less, and more preferably -100 nm or more and -40 nm. If the retardation value in the thickness direction is within this range, the antireflection properties from oblique directions can be further improved.
 重合性液晶化合物とは、重合性基、特に光重合性基を有する液晶化合物を意味し、該重合性液晶化合物としては、例えば位相差フィルムの分野において従来公知の重合性液晶化合物を用いることができる。光重合性基とは、光重合開始剤から発生した反応活性種、例えば活性ラジカルや酸などによって重合反応に関与し得る基のことをいう。光重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶性はサーモトロピック性液晶でもリオトロピック性液晶でもよいが、緻密な膜厚制御が可能な点でサーモトロピック性液晶が好ましい。また、サーモトロピック性液晶における相秩序構造としてはネマチック液晶でもスメクチック液晶でもよい。また、棒状液晶であってもよいし円盤状液晶であってもよい。重合性液晶化合物は単独又は二種以上組み合わせて使用できる。 The polymerizable liquid crystal compound means a liquid crystal compound having a polymerizable group, particularly a photopolymerizable group, and as the polymerizable liquid crystal compound, it is possible to use a conventionally known polymerizable liquid crystal compound in the field of retardation films, for example. can. The photopolymerizable group refers to a group that can participate in a polymerization reaction by reactive species generated from a photopolymerization initiator, such as active radicals and acids. Examples of the photopolymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, oxetanyl group, and the like. Among these, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable. The liquid crystal may be thermotropic liquid crystal or lyotropic liquid crystal, but thermotropic liquid crystal is preferable because it allows precise control of the film thickness. Further, the phase ordered structure of the thermotropic liquid crystal may be either a nematic liquid crystal or a smectic liquid crystal. Further, it may be a rod-shaped liquid crystal or a disc-shaped liquid crystal. The polymerizable liquid crystal compounds can be used alone or in combination of two or more.
 重合性液晶化合物としては、逆波長分散性発現の観点から、分子長軸方向に対して垂直方向にさらに複屈折性を有するT字型あるいはH型にメソゲン構造を有する液晶が好ましく、より強い分散が得られる観点から、T字型液晶がより好ましく、T字型液晶の構造としては、具体的には、例えば、下記式(I):
Figure JPOXMLDOC01-appb-C000001

で表される化合物が挙げられる。
From the viewpoint of exhibiting reverse wavelength dispersion, the polymerizable liquid crystal compound is preferably a liquid crystal having a T-shaped or H-shaped mesogenic structure that has further birefringence in the direction perpendicular to the long axis direction of the molecules, and has stronger dispersion. A T-shaped liquid crystal is more preferable from the viewpoint of obtaining the following. Specifically, the structure of the T-shaped liquid crystal is, for example, the following formula (I):
Figure JPOXMLDOC01-appb-C000001

Examples include compounds represented by:
 式(I)中、Arは置換基を有していてもよい二価の芳香族基を表す。該二価の芳香族基中には窒素原子、酸素原子、硫黄原子のうち少なくとも1つ以上が含まれることが好ましい。二価の基Arに含まれる芳香族基が2つ以上である場合、2つ以上の芳香族基は互いに単結合、-CO-O-、-O-などの二価の結合基で結合していてもよい。
 G及びGはそれぞれ独立に、二価の芳香族基又は二価の脂環式炭化水素基を表す。ここで、該二価の芳香族基又は二価の脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシ基、シアノ基又はニトロ基に置換されていてもよく、該二価の芳香族基又は二価の脂環式炭化水素基を構成する炭素原子が、酸素原子、硫黄原子又は窒素原子に置換されていてもよい。
 L、L、B及びBはそれぞれ独立に、単結合又は二価の連結基である。
 k、lは、それぞれ独立に0~3の整数を表し、1≦k+lの関係を満たす。ここで、2≦k+lである場合、B及びB、G及びGは、それぞれ互いに同一であってもよく、異なっていてもよい。
 E及びEはそれぞれ独立に、炭素数1~17のアルカンジイル基を表し、ここで、アルカンジイル基に含まれる水素原子は、ハロゲン原子で置換されていてもよく、該アルカンジイル基に含まれる-CH-は、-O-、-S-、-COO-で置換されていてもよく、-O-、-S-、-COO-を複数有する場合は互いに隣接しない。P及びPは互いに独立に、重合性基又は水素原子を表し、少なくとも1つは重合性基である。
In formula (I), Ar represents a divalent aromatic group which may have a substituent. Preferably, the divalent aromatic group contains at least one of a nitrogen atom, an oxygen atom, and a sulfur atom. When the divalent group Ar contains two or more aromatic groups, the two or more aromatic groups are bonded to each other through a single bond or a divalent bonding group such as -CO-O- or -O-. You can leave it there.
G 1 and G 2 each independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group. Here, the hydrogen atom contained in the divalent aromatic group or divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, or a fluoroalkyl group having 1 to 4 carbon atoms. It may be substituted with 1 to 4 alkoxy groups, cyano groups, or nitro groups, and the carbon atoms constituting the divalent aromatic group or divalent alicyclic hydrocarbon group are oxygen atoms, sulfur atoms. Alternatively, it may be substituted with a nitrogen atom.
L 1 , L 2 , B 1 and B 2 are each independently a single bond or a divalent linking group.
k and l each independently represent an integer from 0 to 3, and satisfy the relationship 1≦k+l. Here, when 2≦k+l, B 1 and B 2 and G 1 and G 2 may be the same or different from each other.
E 1 and E 2 each independently represent an alkanediyl group having 1 to 17 carbon atoms, where the hydrogen atom contained in the alkanediyl group may be substituted with a halogen atom, and the alkanediyl group The -CH 2 - contained therein may be substituted with -O-, -S-, or -COO-, and when a plurality of -O-, -S-, or -COO- are present, they are not adjacent to each other. P 1 and P 2 each independently represent a polymerizable group or a hydrogen atom, and at least one of them is a polymerizable group.
 G及びGは、それぞれ独立に、好ましくは、ハロゲン原子及び炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-フェニレンジイル基、ハロゲン原子及び炭素数1~4のアルキル基からなる群より選ばれる少なくとも1つの置換基で置換されていてもよい1,4-シクロヘキサンジイル基であり、より好ましくはメチル基で置換された1,4-フェニレンジイル基、無置換の1,4-フェニレンジイル基、又は無置換の1,4-trans-シクロヘキサンジイル基であり、特に好ましくは無置換の1,4-フェニレンジイル基、又は無置換の1,4-trans-シクロへキサンジイル基である。
 また、複数存在するG及びGのうち少なくとも1つは二価の脂環式炭化水素基であることが好ましく、また、L又はLに結合するG及びGのうち少なくとも1つは二価の脂環式炭化水素基であることがより好ましい。
G 1 and G 2 are each independently preferably a 1,4-phenylenediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms. , a 1,4-cyclohexanediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, and more preferably a 1,4-cyclohexanediyl group substituted with a methyl group. ,4-phenylenediyl group, unsubstituted 1,4-phenylenediyl group, or unsubstituted 1,4-trans-cyclohexanediyl group, particularly preferably unsubstituted 1,4-phenylenediyl group or unsubstituted It is a substituted 1,4-trans-cyclohexanediyl group.
Furthermore, at least one of the plurality of G 1 and G 2 is preferably a divalent alicyclic hydrocarbon group, and at least one of G 1 and G 2 bonded to L 1 or L 2 More preferably, one is a divalent alicyclic hydrocarbon group.
 L及びLはそれぞれ独立に、好ましくは、単結合、炭素数1~4のアルキレン基、-O-、-S-、-Ra1ORa2-、-Ra3COORa4-、-Ra5OCORa6-、Ra7OC=OORa8-、-N=N-、-CR=CR-、又は-C≡C-である。ここで、Ra1~Ra8はそれぞれ独立に、単結合、又は炭素数1~4のアルキレン基を表し、R及びRは炭素数1~4のアルキル基又は水素原子を表す。L及びLはそれぞれ独立に、より好ましくは単結合、-ORa2-1-、-CH-、-CHCH-、-COORa4-1-、又は-OCORa6-1-である。ここで、Ra2-1、Ra4-1、Ra6-1はそれぞれ独立に単結合、-CH-、-CHCH-のいずれかを表す。L及びLはそれぞれ独立に、さらに好ましくは単結合、-O-、-CHCH-、-COO-、-COOCHCH-、又は-OCO-である。 L 1 and L 2 are each independently preferably a single bond, an alkylene group having 1 to 4 carbon atoms, -O-, -S-, -R a1 OR a2 -, -R a3 COOR a4 -, -R a5 OCOR a6 -, R a7 OC=OOR a8 -, -N=N-, -CR c =CR d -, or -C≡C-. Here, R a1 to R a8 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms, and R c and R d represent an alkyl group having 1 to 4 carbon atoms or a hydrogen atom. L 1 and L 2 are each independently more preferably a single bond, -OR a2-1 -, -CH 2 -, -CH 2 CH 2 -, -COOR a4-1 -, or -OCOR a6-1 - be. Here, R a2-1 , R a4-1 , and R a6-1 each independently represent a single bond, -CH 2 -, or -CH 2 CH 2 -. L 1 and L 2 are each independently more preferably a single bond, -O-, -CH 2 CH 2 -, -COO-, -COOCH 2 CH 2 -, or -OCO-.
 B及びBはそれぞれ独立に、好ましくは、単結合、炭素数1~4のアルキレン基、-O-、-S-、-Ra9ORa10-、-Ra11COORa12-、-Ra13OCORa14-、又は-Ra15OC=OORa16-である。ここで、Ra9~Ra16はそれぞれ独立に、単結合、又は炭素数1~4のアルキレン基を表す。B及びBはそれぞれ独立に、より好ましくは単結合、-ORa10-1-、-CH-、-CHCH-、-COORa12-1-、又は-OCORa14-1-である。ここで、Ra10-1、Ra12-1、Ra14-1はそれぞれ独立に、単結合、-CH-、-CHCH-のいずれかを表す。B及びBはそれぞれ独立に、さらに好ましくは単結合、-O-、-CHCH-、-COO-、-COOCHCH-、-OCO-、又は-OCOCHCH-である。 B 1 and B 2 are each independently preferably a single bond, an alkylene group having 1 to 4 carbon atoms, -O-, -S-, -R a9 OR a10 -, -R a11 COOR a12 -, -R a13 OCOR a14 - or -R a15 OC=OOR a16 -. Here, R a9 to R a16 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms. B 1 and B 2 are each independently more preferably a single bond, -OR a10-1 -, -CH 2 -, -CH 2 CH 2 -, -COOR a12-1 -, or -OCOR a14-1 - be. Here, R a10-1 , R a12-1 , and R a14-1 each independently represent a single bond, -CH 2 -, or -CH 2 CH 2 -. B 1 and B 2 are each independently, more preferably, a single bond, -O-, -CH 2 CH 2 -, -COO-, -COOCH 2 CH 2 -, -OCO-, or -OCOCH 2 CH 2 - be.
 k及びlは、逆波長分散性発現の観点から、2≦k+l≦6を満たすことが好ましく、k+l=4であることがより好ましく、k=2かつl=2であることがさらに好ましい。k=2かつl=2であると対称構造となるため好ましい。 From the viewpoint of expressing reverse wavelength dispersion, k and l preferably satisfy 2≦k+l≦6, more preferably k+l=4, and even more preferably k=2 and l=2. It is preferable that k=2 and l=2 because a symmetrical structure is obtained.
 E及びEはそれぞれ独立に、炭素数1~17のアルカンジイル基が好ましく、炭素数4~12のアルカンジイル基がより好ましい。 E 1 and E 2 are each independently preferably an alkanediyl group having 1 to 17 carbon atoms, more preferably an alkanediyl group having 4 to 12 carbon atoms.
 P又はPで表される重合性基としては、エポキシ基、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、及びオキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。 Examples of the polymerizable group represented by P 1 or P 2 include epoxy group, vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, and oxiranyl group. , and oxetanyl group. Among these, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable.
 Arは、置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、及び電子吸引性基から選ばれる少なくとも一つを有することが好ましい。当該芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられ、ベンゼン環、ナフタレン環が好ましい。当該芳香族複素環としては、フラン環、ベンゾフラン環、ピロール環、インドール環、チオフェン環、ベンゾチオフェン環、ピリジン環、ピラジン環、ピリミジン環、トリアゾール環、トリアジン環、ピロリン環、イミダゾール環、ピラゾール環、チアゾール環、ベンゾチアゾール環、チエノチアゾール環、オキサゾール環、ベンゾオキサゾール環、及びフェナンスロリン環等が挙げられる。中でも、チアゾール環、ベンゾチアゾール環、又はベンゾフラン環を有することが好ましく、ベンゾチアゾール基を有することがさらに好ましい。また、Arに窒素原子が含まれる場合、当該窒素原子は、π電子を有することが好ましい。 It is preferable that Ar has at least one selected from an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocycle which may have a substituent, and an electron-withdrawing group. Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, and the like, with benzene rings and naphthalene rings being preferred. The aromatic heterocycles include a furan ring, a benzofuran ring, a pyrrole ring, an indole ring, a thiophene ring, a benzothiophene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazole ring, a triazine ring, a pyrroline ring, an imidazole ring, and a pyrazole ring. , thiazole ring, benzothiazole ring, thienothiazole ring, oxazole ring, benzoxazole ring, and phenanthroline ring. Among these, it is preferable to have a thiazole ring, benzothiazole ring, or benzofuran ring, and more preferably to have a benzothiazole group. Further, when Ar includes a nitrogen atom, it is preferable that the nitrogen atom has π electrons.
 式(I)中、Arで表される2価の芳香族基に含まれるπ電子の合計数Nπは、通常6以上であり、好ましくは8以上、より好ましくは10以上、さらに好ましくは14以上、特に好ましくは16以上である。また、合計数Nπは、好ましくは30以下、より好ましくは26以下、さらに好ましくは24以下である。 In formula (I), the total number Nπ of π electrons contained in the divalent aromatic group represented by Ar is usually 6 or more, preferably 8 or more, more preferably 10 or more, and even more preferably 14 or more. , particularly preferably 16 or more. Further, the total number Nπ is preferably 30 or less, more preferably 26 or less, and still more preferably 24 or less.
 Arで表される芳香族基としては、例えば以下の基が好適に挙げられる。 Preferred examples of the aromatic group represented by Ar include the following groups.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(Ar-1)~式(Ar-23)中、*印は連結部を表し、Z、Z及びZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルキルスルフィニル基、炭素数1~12のアルキルスルホニル基、カルボキシル基、炭素数1~12のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~12のアルキルチオ基、炭素数1~12のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~12のN-アルキルスルファモイル基、又は炭素数2~12のN,N-ジアルキルスルファモイル基を表す。 In formulas (Ar-1) to (Ar-23), the mark * represents a connecting part, and Z 0 , Z 1 and Z 2 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 12 carbon atoms. group, cyano group, nitro group, alkylsulfinyl group having 1 to 12 carbon atoms, alkylsulfonyl group having 1 to 12 carbon atoms, carboxyl group, fluoroalkyl group having 1 to 12 carbon atoms, alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, an N-alkylamino group having 1 to 12 carbon atoms, an N,N-dialkylamino group having 2 to 12 carbon atoms, an N-alkylsulfamoyl group having 1 to 12 carbon atoms, or Represents an N,N-dialkylsulfamoyl group having 2 to 12 carbon atoms.
 Q、Q及びQは、それぞれ独立に、-CR2’3’-、-S-、-NH-、-NR2’-、-CO-又は-O-を表し、R2’及びR3’は、それぞれ独立に、水素原子又は炭素数1~4のアルキル基を表す。 Q 1 , Q 2 and Q 3 each independently represent -CR 2' R 3' -, -S-, -NH-, -NR 2' -, -CO- or -O-, and R 2' and R 3' each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 J、及びJは、それぞれ独立に、炭素原子、又は窒素原子を表す。 J 1 and J 2 each independently represent a carbon atom or a nitrogen atom.
 Y、Y及びYは、それぞれ独立に、置換されていてもよい芳香族炭化水素基又は芳香族複素環基を表す。 Y 1 , Y 2 and Y 3 each independently represent an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.
 W及びWは、それぞれ独立に、水素原子、シアノ基、メチル基又はハロゲン原子を表し、mは0~6の整数を表す。 W 1 and W 2 each independently represent a hydrogen atom, a cyano group, a methyl group, or a halogen atom, and m represents an integer of 0 to 6.
 Y、Y及びYにおける芳香族炭化水素基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等の炭素数6~20の芳香族炭化水素基が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。芳香族複素環基としては、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも1つ含む炭素数4~20の芳香族複素環基が挙げられ、フリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基が好ましい。 Examples of the aromatic hydrocarbon group for Y 1 , Y 2 and Y 3 include aromatic hydrocarbon groups having 6 to 20 carbon atoms such as phenyl group, naphthyl group, anthryl group, phenanthryl group, and biphenyl group. , naphthyl group is preferred, and phenyl group is more preferred. Examples of the aromatic heterocyclic group include a group having 4 to 20 carbon atoms and containing at least one heteroatom such as a nitrogen atom, an oxygen atom, or a sulfur atom, such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group. Examples include aromatic heterocyclic groups, and furyl, thienyl, pyridinyl, thiazolyl, and benzothiazolyl groups are preferred.
 Y、Y及びYは、それぞれ独立に、置換されていてもよい多環系芳香族炭化水素基又は多環系芳香族複素環基であってもよい。多環系芳香族炭化水素基は、縮合多環系芳香族炭化水素基、又は芳香環集合に由来する基をいう。多環系芳香族複素環基は、縮合多環系芳香族複素環基、又は芳香環集合に由来する基をいう。 Y 1 , Y 2 and Y 3 may each independently be an optionally substituted polycyclic aromatic hydrocarbon group or a polycyclic aromatic heterocyclic group. The polycyclic aromatic hydrocarbon group refers to a fused polycyclic aromatic hydrocarbon group or a group derived from an aromatic ring assembly. The polycyclic aromatic heterocyclic group refers to a fused polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
 Z、Z及びZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルコキシ基であることが好ましく、Zは、水素原子、炭素数1~12のアルキル基、シアノ基がさらに好ましく、Z及びZは、水素原子、フッ素原子、塩素原子、メチル基、シアノ基がさらに好ましい。 Z 0 , Z 1 and Z 2 are each independently preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, a cyano group, a nitro group, or an alkoxy group having 1 to 12 carbon atoms; 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a cyano group, and Z 1 and Z 2 are more preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, or a cyano group.
 Q、Q及びQは、-NH-、-S-、-NR2’-、-O-が好ましく、R2’は水素原子が好ましい。中でも-S-、-O-、-NH-が特に好ましい。 Q 1 , Q 2 and Q 3 are preferably -NH-, -S-, -NR 2' -, -O-, and R 2' is preferably a hydrogen atom. Among them, -S-, -O-, and -NH- are particularly preferred.
 式(Ar-1)~(Ar-23)の中でも、式(Ar-6)及び式(Ar-7)が分子の安定性の観点から好ましい。 Among formulas (Ar-1) to (Ar-23), formulas (Ar-6) and (Ar-7) are preferred from the viewpoint of molecular stability.
 式(Ar-16)~(Ar-23)において、Yは、これが結合する窒素原子及びZと共に、芳香族複素環基を形成していてもよい。芳香族複素環基としては、Arが有していてもよい芳香族複素環として前記したものが挙げられるが、例えば、ピロール環、イミダゾール環、ピロリン環、ピリジン環、ピラジン環、ピリミジン環、インドール環、キノリン環、イソキノリン環、プリン環、ピロリジン環等が挙げられる。この芳香族複素環基は、置換基を有していてもよい。また、Yは、これが結合する窒素原子及びZと共に、前述した置換されていてもよい多環系芳香族炭化水素基又は多環系芳香族複素環基であってもよい。例えば、ベンゾフラン環、ベンゾチアゾール環、ベンゾオキサゾール環等が挙げられる。 In formulas (Ar-16) to (Ar-23), Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 . Examples of the aromatic heterocyclic group include those mentioned above as aromatic heterocycles that Ar may have, such as a pyrrole ring, an imidazole ring, a pyrroline ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, and an indole ring. ring, quinoline ring, isoquinoline ring, purine ring, pyrrolidine ring, etc. This aromatic heterocyclic group may have a substituent. Further, Y 1 may be the aforementioned optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group, together with the nitrogen atom to which it is bonded and Z 0 . Examples include a benzofuran ring, a benzothiazole ring, a benzoxazole ring, and the like.
 重合性液晶化合物の中でも、極大吸収波長が300nm以上400nm以下である化合物が好ましい。液晶硬化膜形成用組成物に光重合開始剤が含まれる場合、長期保管時に重合性液晶化合物の重合反応及びゲル化が進行するおそれがある。しかし、重合性液晶化合物の極大吸収波長が300nm以上400nm以下であれば保管中に紫外光が曝露されても、光重合開始剤からの反応活性種の発生及び該反応活性種による重合性液晶化合物の重合反応及びゲル化の進行を有効に抑制できる。従って、液晶硬化膜形成用組成物の長期安定性の点で有利となり、得られる液晶硬化膜の配向性及び膜厚の均一性を向上できる。なお、重合性液晶化合物の極大吸収波長は、溶媒中で紫外可視分光光度計を用いて測定できる。該溶媒は重合性液晶化合物を溶解し得る溶媒であり、例えばクロロホルム等が挙げられる。 Among polymerizable liquid crystal compounds, compounds with a maximum absorption wavelength of 300 nm or more and 400 nm or less are preferred. When the composition for forming a liquid crystal cured film contains a photopolymerization initiator, there is a possibility that the polymerization reaction and gelation of the polymerizable liquid crystal compound will proceed during long-term storage. However, if the maximum absorption wavelength of the polymerizable liquid crystal compound is 300 nm or more and 400 nm or less, even if exposed to ultraviolet light during storage, the generation of reactive species from the photopolymerization initiator and the polymerizable liquid crystal compound due to the reactive species The progress of polymerization reaction and gelation can be effectively suppressed. Therefore, it is advantageous in terms of long-term stability of the composition for forming a cured liquid crystal film, and the orientation and uniformity of the film thickness of the obtained cured liquid crystal film can be improved. Note that the maximum absorption wavelength of the polymerizable liquid crystal compound can be measured in a solvent using an ultraviolet-visible spectrophotometer. The solvent is a solvent that can dissolve the polymerizable liquid crystal compound, and includes, for example, chloroform.
 液晶硬化膜形成用組成物中の重合性液晶化合物の含有量は、液晶硬化膜形成用組成物の固形分100質量部に対して、例えば70質量部以上99.5質量部以下であり、好ましくは80質量部以上99質量部以下であり、より好ましくは85質量部以上98質量部以下であり、さらに好ましくは90質量部以上95質量部以下である。重合性液晶化合物の含有量が上記範囲内であれば、得られる光学異方性層の配向性の観点から有利である。なお、本明細書において、液晶硬化膜形成用組成物の固形分とは、液晶硬化膜形成用組成物から有機溶剤等の揮発性成分を除いた全ての成分を意味する。 The content of the polymerizable liquid crystal compound in the composition for forming a liquid crystal cured film is, for example, 70 parts by mass or more and 99.5 parts by mass or less, based on 100 parts by mass of the solid content of the composition for forming a liquid crystal cured film, and is preferably is 80 parts by mass or more and 99 parts by mass or less, more preferably 85 parts by mass or more and 98 parts by mass or less, still more preferably 90 parts by mass or more and 95 parts by mass or less. If the content of the polymerizable liquid crystal compound is within the above range, it is advantageous from the viewpoint of orientation of the optically anisotropic layer obtained. In addition, in this specification, the solid content of the composition for forming a liquid crystal cured film means all the components excluding volatile components such as organic solvents from the composition for forming the liquid crystal cured film.
 液晶硬化膜形成用組成物は、重合性液晶化合物に加えて、溶媒、重合開始剤、レベリング剤、酸化防止剤、光増感剤、反応性添加剤、垂直配向促進剤、重合性非液晶化合物等の添加剤をさらに含んでいてもよい。これらの成分は、それぞれ、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 In addition to the polymerizable liquid crystal compound, the composition for forming a liquid crystal cured film contains a solvent, a polymerization initiator, a leveling agent, an antioxidant, a photosensitizer, a reactive additive, a vertical alignment promoter, and a polymerizable non-liquid crystal compound. It may further contain additives such as. These components may be used alone or in combination of two or more.
 液晶硬化膜形成用組成物は、通常、溶媒に溶解した状態で基材フィルム等に塗布されるため、溶媒を含むことが好ましい。一般に重合性液晶化合物は粘度が高いため、溶剤に溶解させた液晶硬化膜形成用組成物とすることで塗布が容易になり、結果として光学異方性層の形成がし易くなる場合が多い。溶剤としては、重合性液晶化合物を完全に溶解し得るものが好ましく、また、重合性液晶化合物の重合反応に不活性な溶剤であることが好ましい。また、用いる基材フィルムを溶解しない溶媒であることが好ましい。溶媒としては、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノール及びプロピレングリコールモノメチルエーテル等のアルコール溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート及び乳酸エチル等のエステル溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン及びメチルイソブチルケトン等のケトン溶媒;ペンタン、ヘキサン及びヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン及びアニソール等の芳香族炭化水素溶媒;アセトニトリル等のニトリル溶媒;テトラヒドロフラン及びジメトキシエタン等のエーテル溶媒;クロロホルム及びクロロベンゼン等の塩素含有溶媒;ジメチルアセトアミド、ジメチルホルムアミド、N-メチル-2-ピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒等が挙げられる。これらの溶媒は、単独又は二種以上組み合わせて使用できる。中でも、フィルムコーティングの観点から、アルコール溶媒、エステル溶媒、ケトン溶媒、塩素含有溶媒、アミド系溶媒及び芳香族炭化水素溶媒から選択される少なくとも1種を用いることが好ましく、重合性液晶化合物の溶解性の観点から、エステル溶媒、ケトン溶媒、アミド系溶媒及び芳香族炭化水素溶媒から選択される少なくとも1種を用いることがより好ましい。 The composition for forming a liquid crystal cured film is usually applied to a base film or the like in a state dissolved in a solvent, so it preferably contains a solvent. Generally, a polymerizable liquid crystal compound has a high viscosity, so a composition for forming a liquid crystal cured film dissolved in a solvent facilitates coating, and as a result, it often becomes easier to form an optically anisotropic layer. The solvent is preferably one that can completely dissolve the polymerizable liquid crystal compound, and is also preferably a solvent that is inert to the polymerization reaction of the polymerizable liquid crystal compound. Further, it is preferable that the solvent is a solvent that does not dissolve the base film used. Examples of solvents include alcohols such as water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, 2-butoxyethanol, and propylene glycol monomethyl ether. Solvents: Ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, propylene glycol methyl ether acetate and ethyl lactate; Acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone, etc. Ketone solvents; aliphatic hydrocarbon solvents such as pentane, hexane and heptane; cycloaliphatic hydrocarbon solvents such as ethylcyclohexane; aromatic hydrocarbon solvents such as toluene, xylene and anisole; nitrile solvents such as acetonitrile; tetrahydrofuran and dimethoxyethane Ether solvents such as; chlorine-containing solvents such as chloroform and chlorobenzene; amide solvents such as dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone (NMP), and 1,3-dimethyl-2-imidazolidinone. It will be done. These solvents can be used alone or in combination. Among these, from the viewpoint of film coating, it is preferable to use at least one selected from alcohol solvents, ester solvents, ketone solvents, chlorine-containing solvents, amide solvents, and aromatic hydrocarbon solvents, and the solubility of the polymerizable liquid crystal compound From this viewpoint, it is more preferable to use at least one selected from ester solvents, ketone solvents, amide solvents, and aromatic hydrocarbon solvents.
 液晶硬化膜形成用組成物中の溶媒の含有量は、重合性液晶組成物100質量部に対して、好ましくは50質量部以上98質量部以下、より好ましくは70質量部以上95質量部以下である。したがって、液晶硬化膜形成用組成物100質量部に占める固形分は、2質量部以上50質量部以下であることが好ましく、5~30質量%がより好ましい。固形分が50質量部以下であると、液晶硬化膜形成用組成物の粘度が低くなることから、膜の厚みが略均一になり、ムラが生じ難くなる傾向がある。上記固形分は、製造しようとする液晶硬化膜の厚みを考慮して適宜定めることができる。 The content of the solvent in the composition for forming a liquid crystal cured film is preferably 50 parts by mass or more and 98 parts by mass or less, more preferably 70 parts by mass or more and 95 parts by mass or less, based on 100 parts by mass of the polymerizable liquid crystal composition. be. Therefore, the solid content in 100 parts by mass of the composition for forming a liquid crystal cured film is preferably 2 parts by mass or more and 50 parts by mass or less, more preferably 5 to 30 parts by mass. When the solid content is 50 parts by mass or less, the viscosity of the composition for forming a liquid crystal cured film becomes low, so that the thickness of the film tends to be substantially uniform and unevenness is less likely to occur. The solid content can be determined as appropriate in consideration of the thickness of the cured liquid crystal film to be produced.
 重合開始剤は、熱又は光の寄与によって反応活性種を生成し、重合性液晶化合物等の重合反応を開始し得る化合物である。反応活性種としては、ラジカル、カチオン又はアニオン等の活性種が挙げられる。中でも反応制御が容易であるという観点から、光照射によってラジカルを発生する光重合開始剤が好ましい。 A polymerization initiator is a compound that generates reactive species by the contribution of heat or light and can initiate a polymerization reaction of a polymerizable liquid crystal compound or the like. Examples of reactive species include radicals, cations, anions, and the like. Among them, from the viewpoint of easy reaction control, a photopolymerization initiator that generates radicals upon irradiation with light is preferred.
 光重合開始剤は、重合性液晶化合物の重合反応を開始し得る化合物であれば、公知の光重合開始剤を用いることができる。具体的には、光の作用により活性ラジカル又は酸を発生できる光重合開始剤が挙げられ、中でも、光の作用によりラジカルを発生する光重合開始剤が好ましい。光重合開始剤は単独又は二種以上組み合わせて使用できる。 As the photopolymerization initiator, any known photopolymerization initiator can be used as long as it is a compound that can initiate the polymerization reaction of the polymerizable liquid crystal compound. Specifically, photopolymerization initiators that can generate active radicals or acids by the action of light can be mentioned, and among them, photopolymerization initiators that can generate radicals by the action of light are preferred. The photopolymerization initiators can be used alone or in combination of two or more.
 光重合開始剤としては、公知の光重合開始剤を用いることができ、例えば、活性ラジカルを発生する光重合開始剤としては、自己開裂型のベンゾイン系化合物、アセトフェノン系化合物、ヒドロキシアセトフェノン系化合物、α-アミノアセトフェノン系化合物、オキシムエステル系化合物、アシルホスフィンオキサイド系化合物、アゾ系化合物等を使用でき、水素引き抜き型のベンゾフェノン系化合物、アルキルフェノン系化合物、ベンゾインエーテル系化合物、ベンジルケタール系化合物、ジベンゾスベロン系化合物、アントラキノン系化合物、キサントン系化合物、チオキサントン系化合物、ハロゲノアセトフェノン系化合物、ジアルコキシアセトフェノン系化合物、ハロゲノビスイミダゾール系化合物、ハロゲノトリアジン系化合物、トリアジン系化合物等を使用できる。酸を発生する光重合開始剤としては、ヨードニウム塩及びスルホニウム塩等を使用することができる。低温での反応効率に優れるという観点から自己開裂型の光重合開始剤が好ましく、特にアセトフェノン系化合物、ヒドロキシアセトフェノン系化合物、α-アミノアセトフェノン系化合物、オキシムエステル系化合物が好ましい。 As the photopolymerization initiator, a known photopolymerization initiator can be used. For example, as a photopolymerization initiator that generates active radicals, self-cleavable benzoin compounds, acetophenone compounds, hydroxyacetophenone compounds, α-Aminoacetophenone compounds, oxime ester compounds, acylphosphine oxide compounds, azo compounds, etc. can be used, and hydrogen abstraction type benzophenone compounds, alkylphenone compounds, benzoin ether compounds, benzyl ketal compounds, dibenzo Suberone-based compounds, anthraquinone-based compounds, xanthone-based compounds, thioxanthone-based compounds, halogenoacetophenone-based compounds, dialkoxyacetophenone-based compounds, halogenobisimidazole-based compounds, halogenotriazine-based compounds, triazine-based compounds, etc. can be used. As the photopolymerization initiator that generates acid, iodonium salts, sulfonium salts, etc. can be used. From the viewpoint of excellent reaction efficiency at low temperatures, self-cleavable photopolymerization initiators are preferred, and acetophenone compounds, hydroxyacetophenone compounds, α-aminoacetophenone compounds, and oxime ester compounds are particularly preferred.
 液晶硬化膜形成用組成物に含まれる光重合開始剤は、少なくとも1種類であり、複数種を組み合わせて用いてもよく、液晶硬化膜形成用組成物に含まれる重合性液晶化合物との関係において適宜選択すればよい。 The photopolymerization initiator contained in the composition for forming a liquid crystal cured film is at least one type, and multiple types may be used in combination. You can select it as appropriate.
 液晶硬化膜形成用組成物中の重合開始剤の含有量は、重合性液晶化合物の種類及びその量に応じて適宜調節できるが、重合性液晶化合物の含有量100質量部に対して、通常0.1質量部以上30質量部以下、好ましくは0.5質量部以上10質量部以下、より好ましくは0.5質量部以上8質量部以下である。重合開始剤の含有量が上記範囲内であると、重合性液晶化合物の配向を乱すことなく重合を行うことができる。 The content of the polymerization initiator in the composition for forming a liquid crystal cured film can be adjusted as appropriate depending on the type and amount of the polymerizable liquid crystal compound, but it is usually 0 parts by mass based on 100 parts by mass of the polymerizable liquid crystal compound. .1 parts by mass or more and 30 parts by mass or less, preferably 0.5 parts by mass or more and 10 parts by mass or less, more preferably 0.5 parts by mass or more and 8 parts by mass or less. When the content of the polymerization initiator is within the above range, polymerization can be carried out without disturbing the orientation of the polymerizable liquid crystal compound.
 レベリング剤は、液晶硬化膜形成用組成物の流動性を調整し、液晶硬化膜形成用組成物を塗布して得られる塗膜をより平坦にする機能を有する添加剤であり、例えば、フッ素原子又はケイ素原子を含有するポリマー成分又はポリアクリレート系ポリマーであることが好ましく、フッ素原子又はケイ素原子を含有するポリマー成分を主成分とする界面活性剤がより好ましい。具体的には、有機変性シリコーンオイル系、ポリアクリレート系及びパーフルオロアルキル系のレベリング剤が挙げられる。中でも、ポリアクリレート系レベリング剤及びパーフルオロアルキル系レベリング剤が好ましい。 The leveling agent is an additive that has the function of adjusting the fluidity of the composition for forming a liquid crystal cured film and making the coating film obtained by applying the composition for forming a liquid crystal cured film more flat. Alternatively, a polymer component containing a silicon atom or a polyacrylate-based polymer is preferable, and a surfactant whose main component is a polymer component containing a fluorine atom or a silicon atom is more preferable. Specific examples include organically modified silicone oil-based, polyacrylate-based, and perfluoroalkyl-based leveling agents. Among these, polyacrylate leveling agents and perfluoroalkyl leveling agents are preferred.
 レベリング剤の含有量は、重合性液晶化合物100質量部に対して、好ましくは0.01質量部以上5質量部以下、より好ましくは0.05質量部以上3質量部以下、さらに好ましくは0.05質量部以上1質量部以下である。レベリング剤の含有量が上記範囲内であると、重合性液晶化合物を配向させることが容易であり、かつ得られる光学異方性層30がより平滑となる傾向がある。重合性液晶化合物に対するレベリング剤の含有量が上記範囲を超えると、得られる光学異方性層30にムラが生じやすい傾向がある。液晶硬化膜形成用組成物は、レベリング剤を2種以上含有していてもよい。 The content of the leveling agent is preferably 0.01 parts by mass or more and 5 parts by mass or less, more preferably 0.05 parts by mass or more and 3 parts by mass or less, and still more preferably 0.01 parts by mass or more and 3 parts by mass or less, based on 100 parts by mass of the polymerizable liquid crystal compound. 05 parts by mass or more and 1 part by mass or less. When the content of the leveling agent is within the above range, it is easy to orient the polymerizable liquid crystal compound, and the resulting optically anisotropic layer 30 tends to be smoother. When the content of the leveling agent in the polymerizable liquid crystal compound exceeds the above range, the resulting optically anisotropic layer 30 tends to be uneven. The composition for forming a liquid crystal cured film may contain two or more types of leveling agents.
 酸化防止剤を配合することにより、重合性液晶化合物の重合反応をコントロールすることができる。酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、キノン系酸化防止剤、及びニトロソ系酸化防止剤から選ばれる一次酸化防止剤であってもよいし、リン系酸化防止剤及び硫黄系酸化防止剤から選ばれる二次酸化防止剤であってもよい。重合性液晶化合物の配向を乱すことなく、重合性液晶化合物を重合するためには、酸化防止剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01質量部以上10質量部以下であり、好ましくは0.1質量部以上5質量部以下、より好ましくは0.1質量部以上3質量部以下である。酸化防止剤は単独又は2種以上を組み合わせて使用できる。 By blending an antioxidant, the polymerization reaction of the polymerizable liquid crystal compound can be controlled. The antioxidant may be a primary antioxidant selected from phenolic antioxidants, amine antioxidants, quinone antioxidants, and nitroso antioxidants, or phosphorus antioxidants and A secondary antioxidant selected from sulfur-based antioxidants may also be used. In order to polymerize the polymerizable liquid crystal compound without disturbing the orientation of the polymerizable liquid crystal compound, the content of the antioxidant is usually 0.01 parts by mass or more and 10 parts by mass based on 100 parts by mass of the polymerizable liquid crystal compound. The amount is preferably 0.1 parts by mass or more and 5 parts by mass or less, more preferably 0.1 parts by mass or more and 3 parts by mass or less. Antioxidants can be used alone or in combination of two or more.
 光増感剤を用いることにより、光重合開始剤を高感度化することができる。光増感剤としては、例えば、キサントン、チオキサントン等のキサントン類;アントラセン、アルキルエーテル等の置換基を有するアントラセン類;フェノチアジン;ルブレンが挙げられる。光増感剤は単独又は2種以上を組み合わせて使用できる。光増感剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01質量部以上10質量部以下であり、好ましくは0.05質量部以上5質量部以下、より好ましくは0.1質量部以上3質量部以下である。 By using a photosensitizer, the sensitivity of the photopolymerization initiator can be increased. Examples of the photosensitizer include xanthone such as xanthone and thioxanthone; anthracene having a substituent such as anthracene and alkyl ether; phenothiazine; and rubrene. The photosensitizers can be used alone or in combination of two or more. The content of the photosensitizer is usually 0.01 parts by mass or more and 10 parts by mass or less, preferably 0.05 parts by mass or more and 5 parts by mass or less, more preferably It is 0.1 parts by mass or more and 3 parts by mass or less.
 液晶硬化膜を形成するための液晶硬化膜形成用組成物は、重合性液晶化合物と、溶媒や重合開始剤などの成分とを所定温度で撹拌等することにより得ることができる。 A liquid crystal cured film forming composition for forming a liquid crystal cured film can be obtained by stirring a polymerizable liquid crystal compound and components such as a solvent and a polymerization initiator at a predetermined temperature.
 液晶硬化膜は、例えば、
 基材フィルム又は後述する配向層60等の上に、少なくとも1種の重合性液晶化合物を含む液晶硬化膜形成用組成物の塗膜を形成し、該塗膜を乾燥し、かつ、該液晶硬化膜形成用組成物中の重合性液晶化合物を配向させる工程、及び
 配向状態を保持したまま重合性液晶化合物を重合させ、液晶硬化膜を形成する工程
を含む方法により製造することができる。
The liquid crystal cured film is, for example,
A coating film of a composition for forming a liquid crystal cured film containing at least one kind of polymerizable liquid crystal compound is formed on the base film or the alignment layer 60 described below, the coating film is dried, and the liquid crystal curing is performed. It can be produced by a method including a step of aligning a polymerizable liquid crystal compound in a film-forming composition, and a step of polymerizing the polymerizable liquid crystal compound while maintaining the alignment state to form a cured liquid crystal film.
 液晶硬化膜形成用組成物の塗膜は、基材フィルム又は基材フィルム上に形成された配向層60等の上に液晶硬化膜形成用組成物を塗布することにより形成することができる。液晶硬化膜形成用組成物を基材フィルム等に塗布する方法としては、スピンコーティング法、エクストルージョン法、グラビアコーティング法、ダイコーティング法、バーコーティング法、アプリケータ法等の塗布法、フレキソ法等の印刷法等の公知の方法が挙げられる。 The coating film of the composition for forming a cured liquid crystal film can be formed by applying the composition for forming a cured liquid crystal film onto the base film or the alignment layer 60 formed on the base film. Examples of methods for applying the composition for forming a liquid crystal cured film to a base film include coating methods such as spin coating, extrusion, gravure coating, die coating, bar coating, and applicator methods, flexography, and the like. Examples include known methods such as printing methods.
 基材フィルムとしては、ガラス基材及びフィルム基材が挙げられ、フィルム基材が好ましく、連続的に製造できる点で長尺のロール状フィルム基材がより好ましい。フィルム基材を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマー等のポリオレフィン;環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネート等のセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィド及びポリフェニレンオキシド;等のプラスチックが挙げられる。中でも光学フィルム用途で使用する際の透明性等の観点からトリアセチルセルロース、環状オレフィン系樹脂、ポリメタクリル酸エステル、ポリエチレンテレフタレートのいずれかから選ばれるフィルム基材がより好ましい。 Examples of the base film include glass base materials and film base materials, with film base materials being preferred and long roll-shaped film base materials being more preferred since they can be produced continuously. Examples of resins constituting the film base material include polyolefins such as polyethylene, polypropylene, and norbornene polymers; cyclic olefin resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylic esters; polyacrylic esters; triacetyl cellulose, diacetyl cellulose and cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyether sulfone; polyether ketone; and plastics such as polyphenylene sulfide and polyphenylene oxide. Among them, a film base material selected from triacetylcellulose, cyclic olefin resin, polymethacrylic acid ester, and polyethylene terephthalate is more preferable from the viewpoint of transparency when used in optical film applications.
 基材フィルムの厚みは、取扱性、加工性及び強度等の観点から、通常、5μm以上300μm以下であり、好ましくは10μm以上200μm以下、より好ましくは10μm以上50μm以下である。 The thickness of the base film is usually 5 μm or more and 300 μm or less, preferably 10 μm or more and 200 μm or less, and more preferably 10 μm or more and 50 μm or less, from the viewpoints of handleability, processability, strength, etc.
 次いで、溶媒を乾燥等により除去することにより、乾燥塗膜が形成される。乾燥方法としては、自然乾燥法、通風乾燥法、加熱乾燥及び減圧乾燥法等が挙げられる。この際、液晶硬化膜形成用組成物から得られた塗膜を加熱することにより、塗膜から溶媒を乾燥除去させるとともに、重合性液晶化合物を塗膜平面に対して水平方向等の所望の方向に配向させることができる。塗膜の加熱温度は、用いる重合性液晶化合物及び塗膜を形成する基材フィルム等の材質等を考慮して適宜決定し得るが、重合性液晶化合物を液晶相状態へ相転移させるために、通常、液晶相転移温度以上の温度であることが必要である。液晶硬化膜形成用組成物に含まれる溶媒を除去しながら、重合性液晶化合物を所望の配向状態とするため、例えば、液晶硬化膜形成用組成物に含まれる重合性液晶化合物の液晶相転移温度(スメクチック相転移温度又はネマチック相転移温度)程度以上の温度まで加熱することができる。加熱温度は、好ましくは重合性液晶化合物の液晶相転移温度よりも3℃以上高い、より好ましくは5℃以上高い温度である。加熱温度の上限値は特に限定されないが、加熱による塗膜や基材フィルム等への損傷を避けるため、好ましくは180℃以下、より好ましくは150℃以下である。 Next, a dry coating film is formed by removing the solvent by drying or the like. Examples of the drying method include natural drying, ventilation drying, heating drying, and reduced pressure drying. At this time, by heating the coating film obtained from the composition for forming a liquid crystal cured film, the solvent is dried and removed from the coating film, and the polymerizable liquid crystal compound is directed in a desired direction such as horizontal to the plane of the coating film. It can be oriented to The heating temperature of the coating film can be appropriately determined in consideration of the polymerizable liquid crystal compound used and the material of the base film forming the coating film, etc. Usually, the temperature needs to be higher than the liquid crystal phase transition temperature. In order to bring the polymerizable liquid crystal compound into a desired alignment state while removing the solvent contained in the composition for forming a cured liquid crystal film, for example, the liquid crystal phase transition temperature of the polymerizable liquid crystal compound contained in the composition for forming a cured liquid crystal film may be adjusted. (smectic phase transition temperature or nematic phase transition temperature) or higher. The heating temperature is preferably 3° C. or more, more preferably 5° C. or more higher than the liquid crystal phase transition temperature of the polymerizable liquid crystal compound. The upper limit of the heating temperature is not particularly limited, but is preferably 180° C. or lower, more preferably 150° C. or lower in order to avoid damage to the coating film, base film, etc. due to heating.
 なお、液晶相転移温度は、例えば、温度調節ステージを備えた偏光顕微鏡や、示差走査熱量計(DSC)、熱重量示差熱分析装置(TG-DTA)等を用いて測定することができる。また、重合性液晶化合物として2種以上を組み合わせて用いる場合、上記相転移温度は、液晶硬化膜形成用組成物を構成する全重合性液晶化合物を液晶硬化膜形成用組成物における組成と同じ比率で混合した重合性液晶化合物の混合物を用いて、1種の重合性液晶化合物を用いる場合と同様にして測定される温度を意味する。また、一般に液晶硬化膜形成用組成物中における重合性液晶化合物の液晶相転移温度は、重合性液晶化合物単体としての液晶相転移温度よりも下がる場合があることも知られている。 Note that the liquid crystal phase transition temperature can be measured using, for example, a polarizing microscope equipped with a temperature control stage, a differential scanning calorimeter (DSC), a thermogravimetric differential thermal analyzer (TG-DTA), or the like. In addition, when using a combination of two or more types of polymerizable liquid crystal compounds, the above phase transition temperature is such that the total polymerizable liquid crystal compound constituting the composition for forming a liquid crystal cured film is mixed in the same proportion as the composition in the composition for forming a liquid crystal cured film. It means the temperature measured using a mixture of polymerizable liquid crystal compounds mixed in the same manner as when one type of polymerizable liquid crystal compound is used. It is also known that, in general, the liquid crystal phase transition temperature of the polymerizable liquid crystal compound in the composition for forming a cured liquid crystal film may be lower than the liquid crystal phase transition temperature of the polymerizable liquid crystal compound alone.
 加熱時間は、加熱温度、用いる重合性液晶化合物の種類、溶媒の種類やその沸点及びその量等に応じて適宜決定し得るが、通常、0.5分以上10分以下であり、好ましくは0.5分以上5分以下である。 The heating time can be appropriately determined depending on the heating temperature, the type of polymerizable liquid crystal compound used, the type of solvent, its boiling point, its amount, etc., but is usually 0.5 minutes or more and 10 minutes or less, preferably 0. .5 minutes or more and 5 minutes or less.
 塗膜からの溶媒の除去は、重合性液晶化合物の液晶相転移温度以上への加熱と同時に行ってもよいし、別途で行ってもよいが、生産性向上の観点から同時に行うことが好ましい。重合性液晶化合物の液晶相転移温度以上への加熱を行う前に、液晶硬化膜形成用組成物から得られた塗膜中に含まれる重合性液晶化合物が重合しない条件で塗膜中の溶媒を適度に除去させるための予備乾燥工程を設けてもよい。かかる予備乾燥工程における乾燥方法としては、自然乾燥法、通風乾燥法、加熱乾燥及び減圧乾燥法等が挙げられる。 Removal of the solvent from the coating film may be performed simultaneously with heating the polymerizable liquid crystal compound to a temperature equal to or higher than the liquid crystal phase transition temperature, or may be performed separately, but it is preferably performed simultaneously from the viewpoint of improving productivity. Before heating the polymerizable liquid crystal compound to a temperature higher than the liquid crystal phase transition temperature, the solvent in the coating film is removed under conditions such that the polymerizable liquid crystal compound contained in the coating film obtained from the composition for forming a liquid crystal cured film does not polymerize. A preliminary drying step may be provided to remove the particles appropriately. Examples of the drying method in this preliminary drying step include natural drying, ventilation drying, heating drying, and reduced pressure drying.
 次いで、得られた乾燥塗膜において、重合性液晶化合物の配向状態を保持したまま、光照射により重合性液晶化合物を重合させることにより、所望の配向状態で存在する重合性液晶化合物の重合体である液晶硬化膜が形成される。重合方法としては、通常、光重合法が用いられる。光重合において、乾燥塗膜に照射する光としては、当該乾燥塗膜に含まれる光重合開始剤の種類、重合性液晶化合物の種類(特に、該重合性液晶化合物が有する重合性基の種類)及びその量に応じて適宜選択される。その具体例としては、可視光、紫外光、赤外光、X線、α線、β線及びγ線からなる群より選択される1種以上の光や活性電子線等の活性エネルギー線が挙げられる。中でも、重合反応の進行を制御し易い点や、光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって、光重合可能なように、重合性液晶化合物や光重合開始剤の種類を選択しておくことが好ましい。また、重合時に、適切な冷却手段により乾燥塗膜を冷却しながら光照射することで、重合温度を制御することもできる。このような冷却手段の採用により、より低温で重合性液晶化合物の重合を実施すれば、基材フィルムとして比較的耐熱性が低いものを用いたとしても、適切に液晶硬化膜を形成できる。また、光照射時の熱による不具合(基材フィルムの熱による変形等)が発生しない範囲で重合温度を高くすることにより重合反応を促進することも可能である。光重合の際、マスキングや現像を行うなどによって、パターニングされた硬化膜を得ることもできる。 Next, in the obtained dry coating film, the polymerizable liquid crystal compound is polymerized by light irradiation while maintaining the orientation state of the polymerizable liquid crystal compound, thereby forming a polymer of the polymerizable liquid crystal compound existing in the desired orientation state. A certain liquid crystal cured film is formed. As the polymerization method, a photopolymerization method is usually used. In photopolymerization, the light irradiated to the dry coating film depends on the type of photopolymerization initiator contained in the dry coating film, the type of polymerizable liquid crystal compound (especially the type of polymerizable group possessed by the polymerizable liquid crystal compound) and the amount thereof is appropriately selected. Specific examples include one or more types of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, α-rays, β-rays, and γ-rays, and active energy rays such as active electron beams. It will be done. Among these, ultraviolet light is preferable because it is easy to control the progress of the polymerization reaction and it is possible to use photopolymerization equipment that is widely used in the field. It is preferable to select the type of polymerizable liquid crystal compound and photopolymerization initiator in advance. Moreover, during polymerization, the polymerization temperature can also be controlled by irradiating the dry coating film with light while cooling it with an appropriate cooling means. By employing such a cooling means and polymerizing the polymerizable liquid crystal compound at a lower temperature, a cured liquid crystal film can be appropriately formed even if a substrate film with relatively low heat resistance is used. It is also possible to promote the polymerization reaction by increasing the polymerization temperature within a range that does not cause problems due to heat during light irradiation (such as deformation of the base film due to heat). A patterned cured film can also be obtained by performing masking or development during photopolymerization.
 活性エネルギー線の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、380nm以上440nm以下の波長範囲の光を発するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。 Examples of active energy ray light sources include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, halogen lamps, carbon arc lamps, tungsten lamps, gallium lamps, excimer lasers, 380 nm or more and 440 nm. Examples include LED light sources, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps that emit light in the following wavelength ranges.
 紫外線照射強度は、通常、10mW/cm以上3,000mW/cm以下である。紫外線照射強度は、好ましくは光重合開始剤の活性化に有効な波長領域における強度である。光を照射する時間は、通常0.1秒以上10分以下であり、好ましくは0.1秒以上5分以下、より好ましくは0.1秒以上3 分以下、さらに好ましくは0.1秒以上1分以下である。このような紫外線照射強度で1回又は複数回照射すると、その積算光量は、10mJ/cm以上3,000mJ/cm以下、好ましくは50mJ/cm以上2,000mJ/cm以下、より好ましくは100mJ/cm以上1,000mJ/cm以下である。 The ultraviolet irradiation intensity is usually 10 mW/cm 2 or more and 3,000 mW/cm 2 or less. The ultraviolet irradiation intensity is preferably an intensity in a wavelength range effective for activating the photopolymerization initiator. The light irradiation time is usually 0.1 seconds or more and 10 minutes or less, preferably 0.1 seconds or more and 5 minutes or less, more preferably 0.1 seconds or more and 3 minutes or less, and even more preferably 0.1 seconds or more. It takes less than 1 minute. When irradiated once or multiple times with such ultraviolet irradiation intensity, the cumulative light amount is 10 mJ/cm 2 or more and 3,000 mJ/cm 2 or less, preferably 50 mJ/cm 2 or more and 2,000 mJ/cm 2 or less, more preferably is 100 mJ/cm 2 or more and 1,000 mJ/cm 2 or less.
 光学異方性層30(2種以上の液晶硬化膜を含む場合には各層)の厚みは、0.1μm以上5μm以下であり、好ましくは0.5μm以上3μm以下、より好ましくは1.0μm以上、さらに好ましくは1.5μm以上であり、また、より好ましくは2.5μm以下である。液晶硬化膜の厚みが上記範囲であると、所定の光学特性を発現させやすいとともに、光学積層体の屈曲性を向上させやすい。液晶硬化膜の厚みは、干渉膜厚計、レーザー顕微鏡又は触針式膜厚計等を用いて測定することができる。 The thickness of the optically anisotropic layer 30 (each layer when two or more types of liquid crystal cured films are included) is 0.1 μm or more and 5 μm or less, preferably 0.5 μm or more and 3 μm or less, and more preferably 1.0 μm or more. , more preferably 1.5 μm or more, and more preferably 2.5 μm or less. When the thickness of the liquid crystal cured film is within the above range, predetermined optical properties can be easily developed, and the flexibility of the optical laminate can be easily improved. The thickness of the cured liquid crystal film can be measured using an interference film thickness meter, a laser microscope, a stylus type film thickness meter, or the like.
 図1に示される光学積層体1のように、本発明の光学積層体は、配向層60を含んでいてもよい。この場合、液晶硬化膜は、配向層60上に形成してもよい。配向層60は、重合性液晶化合物を所望の方向に配向させる配向規制力を有する。重合性液晶化合物を水平方向に配向させる配向規制力を有する水平配向層や、垂直方向に配向させる配向規制力を有する垂直配向層を利用して液晶硬化膜を形成することにより、重合性液晶化合物を所望の方向により高い精度で配向させることができ、画像表示装置等に組み込んだ際に優れた光学特性を示す液晶硬化膜を得ることができる。配向規制力は、配向層の種類、表面状態やラビング条件等によって任意に調整することが可能であり、配向層が光配向性ポリマーから形成されている場合は、偏光照射条件等によって任意に調整することが可能である。 Like the optical laminate 1 shown in FIG. 1, the optical laminate of the present invention may include an alignment layer 60. In this case, a liquid crystal cured film may be formed on the alignment layer 60. The alignment layer 60 has an alignment regulating force that aligns the polymerizable liquid crystal compound in a desired direction. By forming a cured liquid crystal film using a horizontal alignment layer that has an alignment regulating force that aligns the polymerizable liquid crystal compound in the horizontal direction and a vertical alignment layer that has an alignment regulating force that aligns the polymerizable liquid crystal compound in the vertical direction, can be oriented in a desired direction with higher precision, and a cured liquid crystal film that exhibits excellent optical properties when incorporated into an image display device or the like can be obtained. The alignment regulating force can be arbitrarily adjusted by the type of alignment layer, surface condition, rubbing conditions, etc., and if the alignment layer is made of a photo-alignable polymer, it can be arbitrarily adjusted by changing the polarized light irradiation conditions, etc. It is possible to do so.
 水平配向、垂直配向、ハイブリッド配向、傾斜配向等の液晶配向の状態は、配向層60及び重合性液晶化合物の性質によって変化し、その組み合わせは任意に選択することができる。例えば、配向層60が配向規制力として水平配向を発現させる材料であれば、重合性液晶化合物は水平配向又はハイブリッド配向を形成することができ、垂直配向を発現させる材料であれば、重合性液晶化合物は垂直配向又は傾斜配向を形成することができる。水平、垂直等の表現は、光学異方性層30の平面(主面)を基準とした場合の、配向した重合性液晶化合物の長軸の方向を表す。例えば、垂直配向とは、光学異方性層30の平面(主面)に対して垂直な方向に、配向した重合性液晶化合物の長軸を有することである。ここでいう垂直とは、光学異方性層30の平面(主面)に対して90°±20°であることを意味する。 The state of liquid crystal alignment, such as horizontal alignment, vertical alignment, hybrid alignment, and tilted alignment, changes depending on the properties of the alignment layer 60 and the polymerizable liquid crystal compound, and the combination thereof can be arbitrarily selected. For example, if the alignment layer 60 is made of a material that exhibits horizontal alignment as an alignment regulating force, the polymerizable liquid crystal compound can form horizontal alignment or hybrid alignment; if the alignment layer 60 is a material that exhibits vertical alignment, the polymerizable liquid crystal compound The compounds can form vertical or tilted orientations. Expressions such as horizontal and vertical indicate the direction of the long axis of the oriented polymerizable liquid crystal compound with respect to the plane (principal surface) of the optically anisotropic layer 30. For example, vertical alignment means that the long axis of the polymerizable liquid crystal compound is aligned in a direction perpendicular to the plane (principal surface) of the optically anisotropic layer 30. Vertical here means 90°±20° with respect to the plane (principal surface) of the optically anisotropic layer 30.
 配向層としては、液晶硬化膜形成用組成物の塗布等により溶解しない溶媒耐性を有し、また、溶媒の除去や重合性液晶化合物の配向のための加熱処理における耐熱性を有するものが好ましい。配向層としては、配向性ポリマーを含む配向膜、光配向膜及び表面に凹凸パターンや複数の溝を有するグルブ配向膜、配向方向に延伸してある延伸フィルム等が挙げられ、配向角の精度及び品質の観点から光配向膜が好ましい。 As the alignment layer, it is preferable to have a solvent resistance that prevents dissolution by application of the composition for forming a liquid crystal cured film, and a heat resistance in heat treatment for removing the solvent and orienting the polymerizable liquid crystal compound. Examples of the alignment layer include an alignment film containing an alignment polymer, a photo-alignment film, a groove alignment film having a concavo-convex pattern or a plurality of grooves on the surface, and a stretched film stretched in the alignment direction. A photo-alignment film is preferred from the viewpoint of quality.
 配向性ポリマーとしては、例えば、分子内にアミド結合を有するポリアミドやゼラチン類、分子内にイミド結合を有するポリイミド及びその加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸及びポリアクリル酸エステル類が挙げられる。中でも、ポリビニルアルコールが好ましい。配向性ポリマーは単独又は2種以上を組み合わせて使用できる。 Examples of oriented polymers include polyamides and gelatins having an amide bond in the molecule, polyimide having an imide bond in the molecule, polyamic acid which is a hydrolyzate thereof, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, polyacrylamide, etc. Examples include oxazole, polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid and polyacrylic esters. Among them, polyvinyl alcohol is preferred. The oriented polymers can be used alone or in combination of two or more.
 配向性ポリマーを含む配向膜は、通常、配向性ポリマーが溶媒に溶解した組成物(以下、「配向性ポリマー組成物」ともいう。)を基材フィルム等の配向層を形成すべき表面に塗布し、溶媒を除去する、又は、配向性ポリマー組成物を基材に塗布し、溶媒を除去し、ラビングする(ラビング法)ことで得られる。溶媒としては、液晶硬化膜形成用組成物に用い得る溶媒として先に例示した溶媒と同様のものが挙げられる。 An alignment film containing an alignment polymer is usually produced by applying a composition in which an alignment polymer is dissolved in a solvent (hereinafter also referred to as an "alignment polymer composition") onto the surface of a base film or the like on which an alignment layer is to be formed. and then removing the solvent, or by applying the oriented polymer composition to a base material, removing the solvent, and rubbing (rubbing method). Examples of the solvent include the same solvents as those exemplified above as solvents that can be used in the composition for forming a liquid crystal cured film.
 配向性ポリマー組成物中の配向性ポリマーの濃度は、配向性ポリマー材料が、溶媒に完溶できる範囲であればよいが、溶液に対して固形分換算で0.1質量%以上20質量%以下が好ましく、0.1質量%以上10質量%以下がより好ましい。 The concentration of the oriented polymer in the oriented polymer composition may be within a range that allows the oriented polymer material to be completely dissolved in the solvent, but it is 0.1% by mass or more and 20% by mass or less in terms of solid content based on the solution. is preferable, and more preferably 0.1% by mass or more and 10% by mass or less.
 配向性ポリマー組成物を基材フィルム等の配向層を形成すべき表面に塗布する方法としては、液晶硬化膜形成用組成物を基材フィルムへ塗布する方法として例示したものと同様のものが挙げられる。配向性ポリマー組成物に含まれる溶媒を除去する方法としては、自然乾燥法、通風乾燥法、加熱乾燥及び減圧乾燥法等が挙げられる。 Examples of the method for applying the oriented polymer composition to the surface on which the oriented layer is to be formed, such as the base film, include the same methods as those exemplified as the method for applying the composition for forming a liquid crystal cured film to the base film. It will be done. Examples of methods for removing the solvent contained in the oriented polymer composition include natural drying, ventilation drying, heating drying, and reduced pressure drying.
 配向層に配向規制力を付与するために、必要に応じてラビング処理を行うことができる(ラビング法)。ラビング法により配向規制力を付与する方法としては、ラビング布が巻きつけられ、回転しているラビングロールに、配向性ポリマー組成物を基材フィルムに塗布しアニールすることで基材フィルム表面に形成された配向性ポリマーの膜を接触させる方法が挙げられる。ラビング処理を行う時に、マスキングを行えば、配向の方向が異なる複数の領域(パターン)を配向層に形成することもできる。 In order to impart an alignment regulating force to the alignment layer, rubbing treatment can be performed as necessary (rubbing method). A method of imparting alignment regulating force using the rubbing method is to apply an oriented polymer composition to the base film on a rotating rubbing roll wrapped around a rubbing cloth, and then annealing it to form it on the surface of the base film. An example of this method is to bring a film of an oriented polymer into contact with the film. If masking is performed during the rubbing process, a plurality of regions (patterns) with different orientation directions can be formed in the alignment layer.
 光配向膜は、通常、光反応性基を有するポリマー(光配向性ポリマー)及び/又は光反応性基を有するモノマー(光配向性モノマー)と溶媒とを含む組成物(以下、「光配向膜形成用組成物」ともいう。)を、配向層を形成すべき基材フィルム表面に塗布し、溶媒を除去後に偏光(好ましくは、偏光UV)を照射することで得られる。光配向膜は、照射する偏光の偏光方向を選択することにより、配向規制力の方向を任意に制御することができる点でも有利である。 A photo-alignment film is usually a composition containing a polymer having a photo-reactive group (photo-alignment polymer) and/or a monomer having a photo-reactive group (photo-alignment monomer) and a solvent (hereinafter referred to as "photo-alignment film"). It can be obtained by coating the surface of the base film on which the alignment layer is to be formed, and irradiating it with polarized light (preferably polarized UV) after removing the solvent. The photo-alignment film is also advantageous in that the direction of the alignment regulating force can be arbitrarily controlled by selecting the polarization direction of the polarized light to be irradiated.
 光反応性基とは、光照射することにより液晶配向能を生じる基をいう。具体的には、光照射により生じる分子の配向誘起又は異性化反応、二量化反応、光架橋反応若しくは光分解反応等の液晶配向能の起源となる光反応に関与する基が挙げられる。中でも、二量化反応又は光架橋反応に関与する基が、配向性に優れる点で好ましい。光反応性基としては、不飽和結合、特に二重結合を有する基が好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)、及び炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも1つを有する基が特に好ましい。 A photoreactive group refers to a group that produces liquid crystal alignment ability when irradiated with light. Specifically, groups that are involved in photoreactions that are the origin of liquid crystal alignment ability, such as molecular orientation induction or isomerization reaction, dimerization reaction, photocrosslinking reaction, or photodecomposition reaction, which are caused by light irradiation, can be mentioned. Among these, groups that participate in a dimerization reaction or a photocrosslinking reaction are preferable because they have excellent orientation. The photoreactive group is preferably a group having an unsaturated bond, especially a double bond, such as a carbon-carbon double bond (C=C bond), a carbon-nitrogen double bond (C=N bond), or a nitrogen-nitrogen double bond. Particularly preferred is a group having at least one selected from the group consisting of a double bond (N=N bond) and a carbon-oxygen double bond (C=O bond).
 C=C結合を有する光反応性基としては、ビニル基、ポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、カルコン基及びシンナモイル基等が挙げられる。反応性の制御が容易であるという点や光配向時の配向規制力発現の観点から、カルコン基及びシンナモイル基が好ましい。C=N結合を有する光反応性基としては、芳香族シッフ塩基、芳香族ヒドラゾン等の構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基、及びアゾキシベンゼン構造を有する基等が挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基、及びマレイミド基等が挙げられる。これらの基は、アルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基等の置換基を有していてもよい。 Examples of the photoreactive group having a C═C bond include a vinyl group, a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a chalcone group, and a cinnamoyl group. A chalcone group and a cinnamoyl group are preferred from the viewpoint of easy control of reactivity and expression of alignment regulating force during photoalignment. Examples of the photoreactive group having a C=N bond include groups having structures such as an aromatic Schiff base and an aromatic hydrazone. Examples of the photoreactive group having an N=N bond include an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group, a formazan group, and a group having an azoxybenzene structure. Examples of the photoreactive group having a C═O bond include a benzophenone group, a coumarin group, an anthraquinone group, and a maleimide group. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, or a halogenated alkyl group.
 さらに、基材フィルムや光学異方性層30と密着性を得るために、光反応性基を有するポリマー側鎖に密着性基を有していてもよい。密着性基としては、エポキシ基、オキセタン基、(メタ)アクリロイル基等が挙げられる。 Furthermore, in order to obtain adhesion to the base film and the optically anisotropic layer 30, the polymer side chain having a photoreactive group may have an adhesion group. Examples of the adhesive group include an epoxy group, an oxetane group, and a (meth)acryloyl group.
 光配向膜形成用組成物に含まれる溶媒としては、液晶硬化膜形成用組成物に用い得る溶媒として先に例示した溶媒と同様のものが挙げられ、光反応性基を有する光配向性ポリマー又は光配向性モノマーの溶解性に応じて適宜選択することができる。 Examples of the solvent contained in the composition for forming a photo-alignment film include those similar to the solvents exemplified above as solvents that can be used in the composition for forming a cured liquid crystal film. It can be appropriately selected depending on the solubility of the photo-alignable monomer.
 光配向膜形成用組成物中の光反応性基を有するポリマー又はモノマーの含有量は、該ポリマー又はモノマーの種類や目的とする光配向膜の厚みによって適宜調節できるが、光配向膜形成用組成物の質量に対して、少なくとも0.2質量%とすることが好ましく、0.3質量%以上10質量%以下の範囲がより好ましい。光配向膜の特性が著しく損なわれない範囲で、光配向膜形成用組成物は、ポリビニルアルコールやポリイミドなどの高分子材料や光増感剤を含んでいてもよい。 The content of the polymer or monomer having a photoreactive group in the composition for forming a photo-alignment film can be adjusted as appropriate depending on the type of the polymer or monomer and the desired thickness of the photo-alignment film. The content is preferably at least 0.2% by mass, and more preferably 0.3% by mass or more and 10% by mass or less, based on the mass of the product. The composition for forming a photo-alignment film may contain a polymeric material such as polyvinyl alcohol or polyimide, and a photosensitizer as long as the properties of the photo-alignment film are not significantly impaired.
 光配向膜形成用組成物を基材フィルム等の配向層を形成すべき表面に塗布する方法としては、配向性ポリマー組成物を塗布する方法と同様の方法が挙げられる。塗布された光配向膜形成用組成物から、溶媒を除去する方法としては例えば、自然乾燥法、通風乾燥法、加熱乾燥及び減圧乾燥法等が挙げられる。 Examples of the method for applying the composition for forming a photo-alignment film onto the surface of the substrate film or the like on which an alignment layer is to be formed include the same method as the method for applying the alignment polymer composition. Examples of methods for removing the solvent from the applied composition for forming a photoalignment film include natural drying, ventilation drying, heat drying, and reduced pressure drying.
 偏光を照射するには、基板フィルム上に塗布された光配向膜形成用組成物から、溶媒を除去したものに直接、偏光UVを照射する形式でも、基材フィルム側から偏光を照射し、偏光を透過させて照射する形式でもよい。また、当該偏光は、実質的に平行光であることが好ましい。照射する偏光の波長は、光反応性基を有する光配向性ポリマー又は光配向性モノマーの光反応性基が、光エネルギーを吸収し得る波長領域のものがよい。具体的には、波長250nm以上400nm以下の範囲のUV(紫外光)が好ましい。当該偏光照射に用いる光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArF等の紫外光レーザー等が挙げられ、高圧水銀ランプ、超高圧水銀ランプ及びメタルハライドランプが好ましい。これらのランプは、波長313nmの紫外光の発光強度が大きいため好ましい。前記光源からの光を、適当な偏光子を通過して照射することにより、偏光UVを照射することができる。かかる偏光子としては、偏光フィルターやグラントムソン、グランテーラー等の偏光プリズムやワイヤーグリッドタイプの偏光子を用いることができる。 In order to irradiate polarized light, polarized UV can be directly irradiated onto the photo-alignment film-forming composition coated on the substrate film from which the solvent has been removed, or polarized light can be irradiated from the base film side. It may also be of a type in which the light is transmitted and irradiated. Moreover, it is preferable that the polarized light is substantially parallel light. The wavelength of the polarized light to be irradiated is preferably in a wavelength range in which a photoreactive group of a photoalignable polymer or a photoalignable monomer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet light) having a wavelength of 250 nm or more and 400 nm or less is preferable. Examples of the light source used for the polarized light irradiation include xenon lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, and ultraviolet lasers such as KrF and ArF, with high-pressure mercury lamps, ultra-high-pressure mercury lamps, and metal halide lamps being preferred. . These lamps are preferable because they emit a high intensity of ultraviolet light with a wavelength of 313 nm. Polarized UV can be irradiated by passing the light from the light source through a suitable polarizer. As such a polarizer, a polarizing filter, a polarizing prism such as Glan-Thompson or Glan-Taylor, or a wire grid type polarizer can be used.
 グルブ(groove)配向膜は、膜表面に凹凸パターン又は複数のグルブ(溝)を有する膜である。等間隔に並んだ複数の直線状のグルブを有する膜に重合性液晶化合物を塗布した場合、その溝に沿った方向に液晶分子が配向する。 A groove alignment film is a film that has an uneven pattern or a plurality of grooves on its surface. When a polymerizable liquid crystal compound is applied to a film having a plurality of linear grooves arranged at equal intervals, liquid crystal molecules are aligned in the direction along the grooves.
 グルブ配向膜を得る方法としては、感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光後、現像及びリンス処理を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、硬化前のUV硬化樹脂の層を形成し、形成された樹脂層を基材等へ移してから硬化する方法、及び、配向層を形成すべき表面に形成した硬化前のUV硬化樹脂の膜に、複数の溝を有するロール状の原盤を押し当てて凹凸を形成し、その後硬化する方法等が挙げられる。 The groove alignment film can be obtained by exposing the surface of a photosensitive polyimide film to light through an exposure mask having pattern-shaped slits, followed by development and rinsing to form a concavo-convex pattern, and by using a plate with grooves on the surface. A method of forming a layer of UV-cured resin before curing on a shaped master, transferring the formed resin layer to a base material, etc., and then curing it, and a method of forming a layer of UV-cured resin before curing on a surface on which an alignment layer is to be formed. Examples include a method in which a roll-shaped master having a plurality of grooves is pressed against a cured resin film to form irregularities, and then hardened.
 配向層60(配向性ポリマーを含む配向膜又は光配向膜等)の厚みは、通常10nm以上10000nm以下であり、好ましくは10nm以上2500nm以下、より好ましくは10nm以上1000nm以下、さらに好ましくは10nm以上500nm以下、特に好ましくは50nm以上250nm以下である。 The thickness of the alignment layer 60 (an alignment film containing an alignment polymer or a photo-alignment film, etc.) is usually 10 nm or more and 10,000 nm or less, preferably 10 nm or more and 2,500 nm or less, more preferably 10 nm or more and 1,000 nm or less, and even more preferably 10 nm or more and 500 nm or less. Hereinafter, it is particularly preferably 50 nm or more and 250 nm or less.
 (5)第1接着剤層及び第2接着剤層
 透明保護フィルム10と偏光子20とは第1接着剤層51を介して積層され、透明保護フィルム10と偏光子20との間には第1接着剤層51のみが介在している。また、偏光子20と光学異方性層30とは第2接着剤層52を介して積層され、偏光子20と光学異方性層30との間には第2接着剤層52のみが介在している。透明保護フィルム10と偏光子20とを第1接着剤層51により貼合し、偏光子20と光学異方性層30とを第2接着剤層52により貼合することは、光学積層体の屈曲性を向上させることに寄与し、これにより、くり返し屈曲させても屈曲部分に剥離やクラック等の不具合が生じにくくすることができる。また、透明保護フィルム10と偏光子20とを第1接着剤層51により貼合し、偏光子20と光学異方性層30とを第2接着剤層52により貼合することにより、これらの層の間の密着性が良好な光学積層体となり得る。
(5) First adhesive layer and second adhesive layer The transparent protective film 10 and the polarizer 20 are laminated with the first adhesive layer 51 in between. Only one adhesive layer 51 is present. Further, the polarizer 20 and the optically anisotropic layer 30 are laminated with a second adhesive layer 52 interposed therebetween, and only the second adhesive layer 52 is interposed between the polarizer 20 and the optically anisotropic layer 30. are doing. Bonding the transparent protective film 10 and the polarizer 20 using the first adhesive layer 51 and bonding the polarizer 20 and the optically anisotropic layer 30 using the second adhesive layer 52 is a method of bonding the optical laminate. This contributes to improving the flexibility, thereby making it difficult for defects such as peeling and cracking to occur in the bent portion even if the bent portion is repeatedly bent. In addition, by bonding the transparent protective film 10 and the polarizer 20 with the first adhesive layer 51 and bonding the polarizer 20 and the optically anisotropic layer 30 with the second adhesive layer 52, these An optical laminate with good adhesion between layers can be obtained.
 第1接着剤層51及び第2接着剤層52は、接着剤により形成することができる。該接着剤層を形成し得る接着剤としては、例えば、水系接着剤等の乾燥固化型接着剤、及び、活性エネルギー線硬化型接着剤等の化学反応型接着剤が挙げられる。第1接着剤層51及び第2接着剤層52は、互いに異なる接着剤から形成されていてもよいが、同じ接着剤から形成されることが好ましい。 The first adhesive layer 51 and the second adhesive layer 52 can be formed of adhesive. Examples of adhesives that can form the adhesive layer include dry-setting adhesives such as water-based adhesives, and chemically reactive adhesives such as active energy ray-curing adhesives. The first adhesive layer 51 and the second adhesive layer 52 may be formed from different adhesives, but are preferably formed from the same adhesive.
 乾燥固化型接着剤としては、例えば、水酸基、カルボキシル基又はアミノ基等のプロトン性官能基とエチレン性不飽和基とを有するモノマーの重合体、若しくはウレタン樹脂を主成分として含有し、さらに、多価アルデヒド、エポキシ化合物、メラミン化合物、ジルコニア化合物、若しくは亜鉛化合物等の架橋剤又は硬化性化合物を含有する組成物等が挙げられる。水酸基、カルボキシル基又はアミノ基等のプロトン性官能基とエチレン性不飽和基とを有するモノマーの重合体としては、エチレン-マレイン酸共重合体、イタコン酸共重合体、アクリル酸共重合体、アクリルアミド共重合体、ポリ酢酸ビニルのケン化物、及び、ポリビニルアルコール系樹脂等が挙げられる。好ましくは、ポリビニルアルコール系樹脂である。 The dry-setting adhesive may contain, for example, a polymer of monomers having a protic functional group such as a hydroxyl group, a carboxyl group, or an amino group and an ethylenically unsaturated group, or a urethane resin as a main component; Examples include compositions containing crosslinking agents or curable compounds such as aldehydes, epoxy compounds, melamine compounds, zirconia compounds, or zinc compounds. Examples of polymers of monomers having a protic functional group such as a hydroxyl group, a carboxyl group, or an amino group and an ethylenically unsaturated group include ethylene-maleic acid copolymers, itaconic acid copolymers, acrylic acid copolymers, and acrylamide. Examples include copolymers, saponified polyvinyl acetate, and polyvinyl alcohol resins. Preferably, it is a polyvinyl alcohol resin.
 ポリビニルアルコール系樹脂としては、ポリビニルアルコール、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、カルボキシル基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコール、及び、アミノ基変性ポリビニルアルコール等が挙げられる。水系の乾燥固化型接着剤におけるポリビニルアルコール系樹脂の含有量は、水100質量部に対して、通常、1質量部以上10質量部以下であり、好ましくは1質量部以上5質量部以下である。 Examples of polyvinyl alcohol resins include polyvinyl alcohol, partially saponified polyvinyl alcohol, completely saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol. Can be mentioned. The content of polyvinyl alcohol resin in the water-based dry-setting adhesive is usually 1 part by mass or more and 10 parts by mass or less, preferably 1 part by mass or more and 5 parts by mass or less, based on 100 parts by mass of water. .
 ウレタン樹脂としては、ポリエステル系アイオノマー型ウレタン樹脂等が挙げられる。ここでいうポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その中に少量のイオン性成分(親水成分)が導入された樹脂である。係るアイオノマー型ウレタン樹脂は、乳化剤を使用せずに、水中で乳化してエマルジョンとなるため、水系の乾燥固化型接着剤とすることができる。ポリエステル系アイオノマー型ウレタン樹脂を用いる場合は、架橋剤として水溶性のエポキシ化合物を配合することが有効である。 Examples of the urethane resin include polyester-based ionomer-type urethane resins. The polyester-based ionomer type urethane resin referred to herein is a urethane resin having a polyester skeleton into which a small amount of an ionic component (hydrophilic component) is introduced. Such an ionomer-type urethane resin emulsifies in water to form an emulsion without using an emulsifier, and therefore can be used as a water-based dry-setting adhesive. When using a polyester ionomer type urethane resin, it is effective to blend a water-soluble epoxy compound as a crosslinking agent.
 エポキシ化合物としては、ジエチレントリアミン又はトリエチレンテトラミン等のポリアルキレンポリアミンとアジピン酸等のジカルボン酸との反応で得られるポリアミドポリアミンに、エピクロロヒドリンを反応させて得られるポリアミドエポキシ樹脂等が挙げられる。かかるポリアミドエポキシ樹脂の市販品としては、「スミレーズレジン(登録商標)650」及び「スミレーズレジン(登録商標)675」(以上、住化ケムテックス株式会社製)、「WS-525」(日本PMC株式会社製)等が挙げられる。エポキシ化合物を配合する場合、その添加量は、ポリビニルアルコール系樹脂100質量部に対して、通常、1質量部以上100質量部以下であり、好ましくは1質量部以上50質量部以下である。 Examples of the epoxy compound include polyamide epoxy resins obtained by reacting epichlorohydrin with polyamide polyamines obtained by reacting polyalkylene polyamines such as diethylenetriamine or triethylenetetramine with dicarboxylic acids such as adipic acid. Commercial products of such polyamide epoxy resins include "SUMIREZ RESIN (registered trademark) 650" and "SUMIRAZE RESIN (registered trademark) 675" (manufactured by Sumika Chemtex Co., Ltd.), and "WS-525" (manufactured by Nippon PMC). Co., Ltd.), etc. When blending an epoxy compound, the amount added is usually 1 part by mass or more and 100 parts by mass or less, preferably 1 part by mass or more and 50 parts by mass or less, per 100 parts by mass of the polyvinyl alcohol resin.
 中でも、乾燥固化型接着剤は、ポリビニルアルコール系樹脂を含む水系の乾燥固化型接着剤であることが好ましい。 Among these, the dry-setting adhesive is preferably an aqueous dry-setting adhesive containing a polyvinyl alcohol resin.
 乾燥固化型接着剤は、溶媒を含んでいてよい。溶媒としては、水、水と親水性有機溶媒(例えばアルコール溶媒、エーテル溶媒、エステル溶媒等)との混合溶媒、有機溶媒等が挙げられる。 The dry-setting adhesive may contain a solvent. Examples of the solvent include water, a mixed solvent of water and a hydrophilic organic solvent (for example, an alcohol solvent, an ether solvent, an ester solvent, etc.), an organic solvent, and the like.
 化学反応型接着剤である活性エネルギー線硬化型接着剤とは、活性エネルギー線の照射を受けて硬化する接着剤である。活性エネルギー線硬化型接着剤は溶媒を含んでいてもよい。活性エネルギー線硬化型接着剤としては、エポキシ化合物とカチオン重合開始剤とを含有するカチオン重合性の接着剤、(メタ)アクリル系硬化成分とラジカル重合開始剤とを含有するラジカル重合性の接着剤、エポキシ化合物等のカチオン重合性の硬化成分及び(メタ)アクリル系化合物等のラジカル重合性の硬化成分の両者を含有し、さらにカチオン重合開始剤及びラジカル重合開始剤を含有する接着剤、並びに、これら重合開始剤を含まずに電子ビームを照射することで硬化される接着剤等が挙げられる。 An active energy ray-curable adhesive, which is a chemically reactive adhesive, is an adhesive that hardens upon irradiation with active energy rays. The active energy ray curable adhesive may contain a solvent. Examples of active energy ray-curable adhesives include cationically polymerizable adhesives containing an epoxy compound and a cationic polymerization initiator, and radically polymerizable adhesives containing a (meth)acrylic curing component and a radical polymerization initiator. , an adhesive containing both a cationically polymerizable curing component such as an epoxy compound and a radically polymerizable curing component such as a (meth)acrylic compound, and further containing a cationic polymerization initiator and a radical polymerization initiator; Examples include adhesives that do not contain these polymerization initiators and are cured by electron beam irradiation.
 中でも、活性エネルギー線硬化型接着剤としては、(メタ)アクリル系硬化成分とラジカル重合開始剤とを含有するラジカル重合性の活性エネルギー線硬化型接着剤、エポキシ化合物とカチオン重合開始剤とを含有するカチオン重合性の活性エネルギー線硬化型接着剤が好ましい。(メタ)アクリル系硬化成分としては、メチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリレート、及び(メタ)アクリル酸等が挙げられる。エポキシ化合物を含有する活性エネルギー線硬化型接着剤は、エポキシ化合物以外の重合性化合物をさらに含有していてもよい。エポキシ化合物以外の重合性化合物としては、オキセタン化合物やアクリル化合物等が挙げられる。 Among them, active energy ray-curable adhesives include radically polymerizable active energy ray-curable adhesives containing a (meth)acrylic curing component and a radical polymerization initiator, and active energy ray-curable adhesives containing an epoxy compound and a cationic polymerization initiator. A cationically polymerizable active energy ray-curable adhesive is preferred. Examples of the (meth)acrylic curing component include (meth)acrylates such as methyl (meth)acrylate and hydroxyethyl (meth)acrylate, and (meth)acrylic acid. The active energy ray-curable adhesive containing an epoxy compound may further contain a polymerizable compound other than the epoxy compound. Examples of polymerizable compounds other than epoxy compounds include oxetane compounds and acrylic compounds.
 ラジカル重合開始剤としては、液晶硬化膜を形成するための液晶硬化膜形成用組成物に配合し得るものとして前述した光重合開始剤が挙げられる。カチオン重合開始剤の市販品としては、「カヤラッド」(登録商標)シリーズ(日本化薬株式会社製)、「サイラキュアUVI」シリーズ(ダウケミカル社製)、「CPI」シリーズ(サンアプロ株式会社製)、「TAZ」、「BBI」及び「DTS」(以上、みどり化学株式会社製)、「アデカオプトマー」シリーズ(株式会社ADEKA製)、「RHODORSIL」(登録商標)(ローディア株式会社製)等が挙げられる。ラジカル重合開始剤並びにカチオン重合開始剤の含有量は、活性エネルギー線硬化型接着剤100質量部に対して、通常、0.5質量部以上20質量部以下であり、好ましくは1質量部以上15質量部以下である。 Examples of the radical polymerization initiator include the photopolymerization initiators described above that can be blended into the liquid crystal cured film forming composition for forming the liquid crystal cured film. Commercially available cationic polymerization initiators include the "Kayarad" (registered trademark) series (manufactured by Nippon Kayaku Co., Ltd.), the "Cylacure UVI" series (manufactured by Dow Chemical Co., Ltd.), the "CPI" series (manufactured by Sun-Apro Co., Ltd.), Examples include "TAZ", "BBI", and "DTS" (manufactured by Midori Kagaku Co., Ltd.), "ADEKA Optomer" series (manufactured by ADEKA Co., Ltd.), and "RHODORSIL" (registered trademark) (manufactured by Rhodia Co., Ltd.). It will be done. The content of the radical polymerization initiator and the cationic polymerization initiator is usually 0.5 parts by mass or more and 20 parts by mass or less, preferably 1 part by mass or more and 15 parts by mass or less, per 100 parts by mass of the active energy ray-curable adhesive. Parts by mass or less.
 透明保護フィルム10と偏光子20との貼合に第1接着剤層51を用い、偏光子20と光学異方性層30との貼合に第2接着剤層52を用いることは、粘着剤層を用いる場合と比較して、光学積層体の屈曲性及び薄型化において有利である。偏光子20と光学異方性層30との間の密着性を高める観点から、第2接着剤層52は、活性エネルギー線硬化型接着剤から形成される層であることが好ましく、ラジカル重合性の活性エネルギー線硬化型接着剤から形成される層であることがより好ましく、(メタ)アクリル系硬化成分とラジカル重合開始剤とを含有するラジカル重合性の活性エネルギー線硬化型接着剤から形成される層であることがさらに好ましい。第1接着剤層51についても同様である。 Using the first adhesive layer 51 for bonding the transparent protective film 10 and the polarizer 20 and using the second adhesive layer 52 for bonding the polarizer 20 and the optically anisotropic layer 30 means that the adhesive Compared to the case where layers are used, it is advantageous in terms of flexibility and thinning of the optical laminate. From the viewpoint of increasing the adhesion between the polarizer 20 and the optically anisotropic layer 30, the second adhesive layer 52 is preferably a layer formed from an active energy ray-curable adhesive, and is a radically polymerizable adhesive. It is more preferable that the layer is formed from an active energy ray-curable adhesive of More preferably, it is a layer that The same applies to the first adhesive layer 51.
 第1接着剤層51及び第2接着剤層52の厚みは、それぞれ、好ましくは10nm以上、より好ましくは30nm以上、さらに好ましくは50nm以上であり、好ましくは5000nm以下、より好ましくは3000nm以下、さらに好ましくは2000nm以下である。接着剤層、とりわけ第2接着剤層52の厚みが上記範囲内であると、光学積層体の屈曲性を向上しやすく、これにより、くり返し屈曲させても屈曲部分に剥離やクラック等の不具合が生じにくくすることができる。第1接着剤層51及び第2接着剤層52の厚みは、同じであってもよく、互いに異なっていてもよい。
 接着剤層の厚みは、例えば、干渉膜厚計、レーザー顕微鏡又は触針式膜厚計等を用いて測定することができる。
The thickness of the first adhesive layer 51 and the second adhesive layer 52 is preferably 10 nm or more, more preferably 30 nm or more, even more preferably 50 nm or more, and preferably 5000 nm or less, more preferably 3000 nm or less, and Preferably it is 2000 nm or less. When the thickness of the adhesive layer, especially the second adhesive layer 52, is within the above range, the flexibility of the optical laminate can be easily improved, so that even if it is repeatedly bent, problems such as peeling and cracks will not occur at the bent part. This can be made less likely to occur. The thicknesses of the first adhesive layer 51 and the second adhesive layer 52 may be the same or different from each other.
The thickness of the adhesive layer can be measured using, for example, an interference thickness meter, a laser microscope, or a stylus thickness meter.
 (6)粘着剤層
 光学積層体は、光学異方性層30における偏光子20側とは反対側に配置される粘着剤層40を備える。粘着剤層40は、光学積層体が有する2つの主面の一方を構成していてよい。粘着剤層40は、光学積層体の視認側(透明保護フィルム10側)とは反対側の面に積層することができ、有機EL表示素子等の画像表示素子への光学積層体の貼合に用いることができる。
(6) Adhesive Layer The optical laminate includes an adhesive layer 40 disposed on the side of the optically anisotropic layer 30 opposite to the polarizer 20 side. The adhesive layer 40 may constitute one of the two main surfaces of the optical laminate. The adhesive layer 40 can be laminated on the surface of the optical laminate opposite to the viewing side (transparent protective film 10 side), and is suitable for laminating the optical laminate to an image display element such as an organic EL display element. Can be used.
 粘着剤層40の厚みは、例えば150μm以下であってよく、薄型化の観点から好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは40μm以下である。粘着剤層40の厚みは、耐久性の観点から、通常1μm以上であり、好ましくは5μm以上、より好ましくは10μm以上である。 The thickness of the adhesive layer 40 may be, for example, 150 μm or less, and from the viewpoint of thinning, it is preferably 100 μm or less, more preferably 50 μm or less, and still more preferably 40 μm or less. From the viewpoint of durability, the thickness of the adhesive layer 40 is usually 1 μm or more, preferably 5 μm or more, and more preferably 10 μm or more.
 粘着剤層40は、(メタ)アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、エステル系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂を主成分とする粘着剤組成物から構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型又は熱硬化型であってもよい。 The adhesive layer 40 can be composed of an adhesive composition whose main components are (meth)acrylic resin, rubber resin, urethane resin, ester resin, silicone resin, and polyvinyl ether resin. Among these, a pressure-sensitive adhesive composition whose base polymer is a (meth)acrylic resin having excellent transparency, weather resistance, heat resistance, etc. is suitable. The adhesive composition may be of an active energy ray-curable type or a thermosetting type.
 粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等の、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーが挙げられる。 Examples of the (meth)acrylic resin (base polymer) used in the adhesive composition include butyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, etc. Polymers or copolymers containing one or more types of (meth)acrylic esters as monomers are preferably used. It is preferable to copolymerize a polar monomer with the base polymer. Polar monomers include (meth)acrylic acid, 2-hydroxypropyl (meth)acrylate, hydroxyethyl (meth)acrylate, (meth)acrylamide, N,N-dimethylaminoethyl (meth)acrylate, and glycidyl (meth)acrylate. Examples include monomers having carboxyl groups, hydroxyl groups, amide groups, amino groups, epoxy groups, etc., such as acrylates.
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成する金属イオン、カルボキシル基との間でアミド結合を形成するポリアミン化合物、カルボキシル基との間でエステル結合を形成するポリエポキシ化合物又はポリオール、カルボキシル基との間でアミド結合を形成するポリイソシアネート化合物が挙げられる。中でも、ポリイソシアネート化合物が好ましい。 The adhesive composition may contain only the above base polymer, but usually further contains a crosslinking agent. Examples of crosslinking agents include metal ions with a valence of two or more that form carboxylic acid metal salts with carboxyl groups, polyamine compounds that form amide bonds with carboxyl groups, and metal ions that form carboxylic acid metal salts with carboxyl groups. Examples include polyepoxy compounds or polyols that form ester bonds with and polyisocyanate compounds that form amide bonds with carboxyl groups. Among these, polyisocyanate compounds are preferred.
 <光学積層体の製造方法>
 本発明は、上述の本発明に係る光学積層体の製造方法にも関する。本発明に係る光学積層体の製造方法は、下記の工程を含む。
 光学異方性層と、配向層と、基材フィルムとをこの順に含む積層体(以下、この積層体を「位相差フィルム」ともいう。)を準備する位相差フィルム準備工程、
 透明保護フィルムと、偏光子とを第1接着剤により貼合する第1貼合工程、
 偏光子と、位相差フィルムの光学異方性層とを第2接着剤により貼合する第2貼合工程、
 第2貼合工程により得られる積層体から、前記基材フィルム、又は、基材フィルム及び配向層を剥離除去する剥離工程、
 剥離工程により露出した面に、粘着剤層を積層する粘着剤層積層工程。
<Method for manufacturing optical laminate>
The present invention also relates to a method for manufacturing the optical laminate according to the above-described present invention. The method for manufacturing an optical laminate according to the present invention includes the following steps.
a retardation film preparation step of preparing a laminate (hereinafter, this laminate is also referred to as a "retardation film") including an optically anisotropic layer, an alignment layer, and a base film in this order;
a first bonding step of bonding the transparent protective film and the polarizer using a first adhesive;
a second bonding step of bonding the polarizer and the optically anisotropic layer of the retardation film using a second adhesive;
A peeling step of peeling and removing the base film or the base film and the alignment layer from the laminate obtained in the second lamination step;
An adhesive layer lamination process in which an adhesive layer is laminated on the surface exposed by the peeling process.
 位相差フィルム準備工程において、位相差フィルムを作製してもよい。この場合における、基材フィルムへの配向層及び光学異方性層の形成方法については上述のとおりである。 A retardation film may be produced in the retardation film preparation step. In this case, the method for forming the alignment layer and the optically anisotropic layer on the base film is as described above.
 第1貼合工程で用いる第1接着剤は、第1接着剤層を形成する接着剤であり、該接着剤の詳細は上述のとおりである。第1接着剤は、活性エネルギー線硬化型接着剤であることが好ましく、ラジカル重合性の活性エネルギー線硬化型接着剤であることがより好ましく、(メタ)アクリル系硬化成分とラジカル重合開始剤とを含有するラジカル重合性の活性エネルギー線硬化型接着剤であることがさらに好ましい。 The first adhesive used in the first bonding step is an adhesive that forms the first adhesive layer, and the details of the adhesive are as described above. The first adhesive is preferably an active energy ray-curable adhesive, more preferably a radically polymerizable active energy ray-curable adhesive, and includes a (meth)acrylic curing component and a radical polymerization initiator. More preferably, it is a radically polymerizable active energy ray-curable adhesive containing.
 第1接着剤が乾燥固化型接着剤である場合、透明保護フィルムと偏光子とを第1接着剤を介して貼合(積層)した後、得られる積層体から第1接着剤中の溶媒を乾燥、除去し、場合により硬化させる。この乾燥処理及び/又は溶媒の除去は、例えば熱風を吹き付けることにより行うことができ、その温度は、溶媒の種類にもよるが、通常30℃以上200℃以下であり、好ましくは35℃以上150℃以下、より好ましくは40℃以上100℃以下、さらに好ましくは50℃以上100℃以下である。 When the first adhesive is a dry-setting adhesive, after laminating (laminating) the transparent protective film and the polarizer via the first adhesive, the solvent in the first adhesive is removed from the resulting laminate. Dry, remove and optionally cure. This drying treatment and/or removal of the solvent can be performed, for example, by blowing hot air, and the temperature depends on the type of solvent, but is usually 30°C or higher and 200°C or lower, preferably 35°C or higher and 150°C or higher. The temperature is preferably 40°C or higher and 100°C or lower, and even more preferably 50°C or higher and 100°C or lower.
 上記第1接着剤中の溶媒の乾燥、除去(場合により硬化)は、偏光子と位相差フィルムとを第2接着剤を介して貼合(積層)する第2貼合工程を行った後、第2接着剤中の溶媒の乾燥、除去(場合により硬化)とともに実施することが好ましい。 The drying and removal (curing in some cases) of the solvent in the first adhesive is carried out after performing a second lamination step of laminating (laminating) the polarizer and the retardation film via the second adhesive. It is preferable to carry out this process together with drying and removal (and in some cases, curing) of the solvent in the second adhesive.
 第1接着剤が活性エネルギー線硬化型接着剤である場合、活性エネルギー線を照射することによって第1接着剤を硬化させることにより第1接着剤層が得られる。活性エネルギー線の光源は特に限定されないが、波長400nm以下に発光分布を有する活性エネルギー線が好ましく、紫外線がより好ましい。光源としては、具体的に、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、及びメタルハライドランプ等が挙げられる。 When the first adhesive is an active energy ray-curable adhesive, the first adhesive layer is obtained by curing the first adhesive by irradiating the active energy ray. Although the light source of active energy rays is not particularly limited, active energy rays having an emission distribution at a wavelength of 400 nm or less are preferable, and ultraviolet rays are more preferable. Specific examples of the light source include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps.
 活性エネルギー線硬化型接着剤への光照射強度は、活性エネルギー線硬化型接着剤の組成によって適宜決定され、特に限定されないが、重合開始剤の活性化に有効な波長領域の照射強度は、通常、10mW/cm以上3,000mW/cm以下である。活性エネルギー線硬化型接着剤への光照射時間は、硬化させる活性エネルギー線硬化型接着剤によって適宜選択すればよく、特に制限されるものではないが、通常0.1秒以上10分以下であり、好ましくは1秒以上5分以下、より好ましくは5秒以上3分以下、さらに好ましくは10秒以上1分以下である。このような紫外線照射強度で1回又は複数回照射すると、その積算光量は、通常10mJ/cm以上3,000mJ/cm以下、好ましくは50mJ/cm以上2,000mJ/cm以下、より好ましくは100mJ/cm以上1,000mJ/cm以下である。 The intensity of light irradiation to the active energy ray curable adhesive is appropriately determined depending on the composition of the active energy ray curable adhesive, and is not particularly limited, but the irradiation intensity in the wavelength range effective for activating the polymerization initiator is usually , 10 mW/cm 2 or more and 3,000 mW/cm 2 or less. The light irradiation time to the active energy ray curable adhesive may be selected appropriately depending on the active energy ray curable adhesive to be cured, and is not particularly limited, but is usually 0.1 seconds or more and 10 minutes or less. , preferably 1 second or more and 5 minutes or less, more preferably 5 seconds or more and 3 minutes or less, and even more preferably 10 seconds or more and 1 minute or less. When irradiated once or multiple times with such ultraviolet irradiation intensity, the cumulative light amount is usually 10 mJ/cm 2 or more and 3,000 mJ/cm 2 or less, preferably 50 mJ/cm 2 or more and 2,000 mJ/cm 2 or less, or more. Preferably it is 100 mJ/cm 2 or more and 1,000 mJ/cm 2 or less.
 活性エネルギー線の照射による上記第1接着剤の硬化は、偏光子と位相差フィルムとを第2接着剤を介して貼合(積層)する第2貼合工程を行った後、第2接着剤中の硬化とともに実施することが好ましい。 The first adhesive is cured by irradiation with active energy rays after performing a second laminating step of laminating (laminating) the polarizer and the retardation film via the second adhesive. Preferably, this is carried out together with the curing of the inside.
 第2貼合工程は、第1貼合工程と同様にして行うことができる。一実施態様において、第1貼合工程と第2貼合工程とは同時に行われる。第2接着剤は、第2接着剤層を形成する接着剤であり、該接着剤の詳細は上述のとおりである。第2接着剤は、活性エネルギー線硬化型接着剤であることが好ましく、ラジカル重合性の活性エネルギー線硬化型接着剤であることがより好ましく、(メタ)アクリル系硬化成分とラジカル重合開始剤とを含有するラジカル重合性の活性エネルギー線硬化型接着剤であることがさらに好ましい。第1接着剤と第2接着剤とは、互いに異なる接着剤であってもよいが、同じ接着剤であることが好ましい。 The second bonding step can be performed in the same manner as the first bonding step. In one embodiment, the first bonding step and the second bonding step are performed simultaneously. The second adhesive is an adhesive forming the second adhesive layer, and the details of the adhesive are as described above. The second adhesive is preferably an active energy ray-curable adhesive, more preferably a radically polymerizable active energy ray-curable adhesive, and includes a (meth)acrylic curing component and a radical polymerization initiator. More preferably, it is a radically polymerizable active energy ray-curable adhesive containing. The first adhesive and the second adhesive may be different adhesives, but are preferably the same adhesive.
 第1貼合工程及び第2貼合工程を経て、透明保護フィルム/第1接着剤/偏光子/第2接着剤/位相差フィルムの層構成を有する積層体が得られる。この積層体について、剥離工程の前に、第1接着剤及び第2接着剤の溶媒の乾燥、除去(場合により硬化)、又は活性エネルギー線の照射による硬化が行われる。 Through the first bonding step and the second bonding step, a laminate having a layer structure of transparent protective film/first adhesive/polarizer/second adhesive/retardation film is obtained. For this laminate, before the peeling step, the solvents of the first adhesive and the second adhesive are dried, removed (cured in some cases), or cured by irradiation with active energy rays.
 第1接着剤及び第2接着剤が活性エネルギー線硬化型接着剤であり、上記積層体に含まれる第1接着剤及び第2接着剤を活性エネルギー線の照射により硬化させるとき、一実施態様において、活性エネルギー線は、位相差フィルム側から照射される。この実施態様は、透明保護フィルムが紫外線吸収剤を含む場合など、紫外線吸収能を有している場合でも、第1接着剤及び第2接着剤を十分に硬化させることができる点で有利である。 In one embodiment, when the first adhesive and the second adhesive are active energy ray-curable adhesives, and the first adhesive and the second adhesive included in the laminate are cured by irradiation with active energy rays, , the active energy ray is irradiated from the retardation film side. This embodiment is advantageous in that the first adhesive and the second adhesive can be sufficiently cured even when the transparent protective film has ultraviolet absorbing ability, such as when it contains an ultraviolet absorber. .
 第1接着剤及び第2接着剤の溶媒の乾燥、除去(場合により硬化)、又は活性エネルギー線の照射による硬化が行われた上記積層体について、剥離工程において基材フィルム、又は、基材フィルム及び配向層を剥離除去し、剥離工程により露出した面に、粘着剤層を積層することにより、光学積層体を得る。剥離工程において基材フィルムが剥離除去される場合には、図1に示されるような配向層60を含む光学積層体が得られ、剥離工程において基材フィルム及び配向層が剥離除去される場合には、図2に示されるような配向層60を含まない光学積層体が得られる。 For the laminate, which has been cured by drying or removing (curing in some cases) the solvent of the first adhesive and the second adhesive, or by irradiating active energy rays, the base film or the base film is removed in the peeling process. Then, the alignment layer is peeled off and removed, and an adhesive layer is laminated on the surface exposed by the peeling process, thereby obtaining an optical laminate. When the base film is peeled off in the peeling process, an optical laminate including the alignment layer 60 as shown in FIG. 1 is obtained, and when the base film and the alignment layer are peeled off and removed in the peeling process, In this case, an optical laminate without the alignment layer 60 as shown in FIG. 2 is obtained.
 光学積層体は、Roll to Roll 方式により連続的に製造することができる。例えば、ロール状に巻回された位相差フィルムを作製し、この位相差フィルムを巻出しながら搬送して、各層を接着するための接着剤を用いて、該位相差フィルム上に別途作製した偏光子及び透明保護フィルムを順に積層した後、接着剤を乾燥又は硬化させ、ついで、基材フィルム、又は、基材フィルム及び配向層を剥離除去し、剥離により露出した面に粘着剤層を積層する方法により、連続的に光学積層体を製造し得る。したがって、一実施態様において光学積層体は、ロール状に巻回された光学積層体ロールの形態であり得る。 The optical laminate can be manufactured continuously using a roll-to-roll method. For example, a retardation film wound into a roll is produced, this retardation film is unwound and conveyed, and an adhesive is used to bond each layer to a separately produced polarized light film on the retardation film. After sequentially laminating the protective film and the transparent protective film, the adhesive is dried or cured, and then the base film or the base film and alignment layer are peeled off, and an adhesive layer is laminated on the surface exposed by peeling. The method allows optical laminates to be manufactured continuously. Thus, in one embodiment, the optical laminate may be in the form of a rolled optical laminate roll.
 一実施態様において、光学積層体を構成する光学異方性層の遅相軸(光軸)と偏光子の吸収軸とのなす角が45±5°となるように積層することが好ましい。 In one embodiment, it is preferable to laminate the optical laminate so that the angle between the slow axis (optical axis) of the optically anisotropic layer constituting the optical laminate and the absorption axis of the polarizer is 45±5°.
 <画像表示装置>
 本発明の光学積層体は、画像表示装置に用いることができる。画像表示装置とは、画像表示素子を有する装置であり、発光源として発光素子又は発光装置を含む。画像表示装置としては、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、タッチパネル表示装置、電子放出表示装置(例えば電場放出表示装置(FED)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置)、プラズマ表示装置、投射型表示装置(例えばグレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置)、及び圧電セラミックディスプレイ等が挙げられる。液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置、及び投写型液晶表示装置等のいずれであってもよい。これらの表示装置は、2次元画像を表示する表示装置であってもよいし、3次元画像を表示する立体表示装置であってもよい。特に本発明の光学積層体は、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、液晶表示装置及びタッチパネル表示装置に好適に用いることができる。
<Image display device>
The optical laminate of the present invention can be used in an image display device. An image display device is a device having an image display element, and includes a light emitting element or a light emitting device as a light source. Image display devices include liquid crystal display devices, organic electroluminescence (EL) display devices, inorganic electroluminescence (EL) display devices, touch panel display devices, and electron emission display devices (e.g., field emission displays (FEDs), surface field emission displays). display device (SED)), electronic paper (display device using electronic ink or electrophoretic element), plasma display device, projection type display device (e.g. grating light valve (GLV) display device, digital micromirror device (DMD)) display devices), piezoelectric ceramic displays, etc. The liquid crystal display device may be any of a transmissive liquid crystal display device, a transflective liquid crystal display device, a reflective liquid crystal display device, a direct view liquid crystal display device, a projection liquid crystal display device, and the like. These display devices may be display devices that display two-dimensional images, or may be stereoscopic display devices that display three-dimensional images. In particular, the optical laminate of the present invention can be suitably used for organic electroluminescent (EL) display devices, inorganic electroluminescent (EL) display devices, liquid crystal display devices, and touch panel display devices.
 本発明の光学積層体は屈曲性に優れることから、上記画像表示装置は、フレキシブル画像表示装置であることが好ましい。フレキシブル画像表示装置は、ウインドウとタッチセンサとをさらに有することが好ましい。 Since the optical laminate of the present invention has excellent flexibility, the image display device is preferably a flexible image display device. Preferably, the flexible image display device further includes a window and a touch sensor.
 フレキシブル画像表示装置は、例えば、フレキシブル画像表示装置用積層体と、有機EL表示パネルとからなり、有機EL表示パネルに対して視認側にフレキシブル画像表示装置用積層体が配置され、折り曲げ可能に構成されている。フレキシブル画像表示装置用積層体としては、本発明の光学積層体に加え、ウインドウ、タッチセンサ等が含まれ得る。それらの積層順は任意であるが、視認側からウインドウ、光学積層体、タッチセンサの順、又は、ウインドウ、タッチセンサ、楕円偏光板の順に積層されていることが好ましい。 The flexible image display device includes, for example, a laminate for a flexible image display device and an organic EL display panel, the laminate for a flexible image display device is arranged on the viewing side of the organic EL display panel, and is configured to be foldable. has been done. In addition to the optical laminate of the present invention, the laminate for a flexible image display device may include a window, a touch sensor, and the like. Although the order of stacking them is arbitrary, it is preferable that they are stacked in the order of the window, the optical laminate, and the touch sensor from the viewing side, or in the order of the window, the touch sensor, and the elliptically polarizing plate.
 タッチセンサの視認側に光学積層体が存在すると、タッチセンサのパターンが視認されにくくなり表示画像の視認性がよくなるので好ましい。それぞれの部材は接着剤、粘着剤等を用いて積層することができる。また、フレキシブル画像表示装置用積層体は、ウインドウ、光学積層体、タッチセンサのいずれかの層の少なくとも一面に形成された遮光パターンを具備することができる。 It is preferable that the optical laminate is present on the viewing side of the touch sensor because the pattern of the touch sensor becomes less visible and the visibility of the displayed image improves. Each member can be laminated using an adhesive, a pressure-sensitive adhesive, or the like. Further, the laminate for a flexible image display device can include a light-shielding pattern formed on at least one surface of any one of the window, optical laminate, and touch sensor layer.
 ウインドウは通常、フレキシブル画像表示装置の視認側に配置され、その他の構成要素を外部からの衝撃又は温湿度等の環境変化から保護する役割を担っている。ウインドウは、フレキシブルな透明基材からなり、少なくとも一面にハードコート層を含んでいてもよい。フレキシブル画像表示装置用積層体を構成するウインドウ、タッチセンサ等としては、特に限定されず、従来公知のものを採用し得る。 A window is usually placed on the viewing side of a flexible image display device, and has the role of protecting other components from external shocks or environmental changes such as temperature and humidity. The window is made of a flexible transparent base material and may include a hard coat layer on at least one surface. The window, touch sensor, etc. that constitute the laminate for a flexible image display device are not particularly limited, and conventionally known ones can be employed.
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中の「%」及び「部」は、特記のない限り、それぞれ質量%及び質量部を意味する。 Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. "%" and "parts" in the examples mean % by mass and parts by mass, respectively, unless otherwise specified.
 <実施例1>
 [光配向膜形成用組成物(X)の調製]
 下記構造の光配向性材料(重量平均分子量:50000、m:n=50:50)を、特開2021-196514号公報に記載の方法に準じて製造した。該光配向性材料2部とシクロペンタノン(溶剤)98部とを混合し、得られた混合物を80℃で1時間攪拌することにより、光配向膜形成用組成物(X)を調製した。
 光配向性材料:
Figure JPOXMLDOC01-appb-C000003
<Example 1>
[Preparation of photoalignment film forming composition (X)]
A photoalignable material having the following structure (weight average molecular weight: 50000, m:n=50:50) was produced according to the method described in JP-A-2021-196514. A composition (X) for forming a photo-alignment film was prepared by mixing 2 parts of the photo-alignment material and 98 parts of cyclopentanone (solvent), and stirring the resulting mixture at 80° C. for 1 hour.
Photoalignable material:
Figure JPOXMLDOC01-appb-C000003
 [重合性液晶化合物の製造]
 下記に示す構造を有する重合性液晶化合物(A1)及び重合性液晶化合物(A2)を、それぞれ調製した。重合性液晶化合物(A1)は、特開2019-003177号公報に記載の方法と同様にして調製した。重合性液晶化合物(A2)は、特開2009-173893号公報に記載の方法と同様にして調製した。
 重合性液晶化合物(A1):
Figure JPOXMLDOC01-appb-C000004

 重合性液晶化合物(A2):
Figure JPOXMLDOC01-appb-C000005
[Manufacture of polymerizable liquid crystal compound]
A polymerizable liquid crystal compound (A1) and a polymerizable liquid crystal compound (A2) having the structures shown below were respectively prepared. The polymerizable liquid crystal compound (A1) was prepared in the same manner as the method described in JP-A-2019-003177. Polymerizable liquid crystal compound (A2) was prepared in the same manner as described in JP-A-2009-173893.
Polymerizable liquid crystal compound (A1):
Figure JPOXMLDOC01-appb-C000004

Polymerizable liquid crystal compound (A2):
Figure JPOXMLDOC01-appb-C000005
 クロロホルム10mLに重合性液晶化合物(A1)1mgを溶解させて溶液を得た。得られた溶液を光路長1cmの測定用セルに測定用試料を入れ、測定用試料を紫外可視分光光度計(株式会社島津製作所製「UV-2450」)にセットして吸収スペクトルを測定した。得られた吸収スペクトルから極大吸収度となる波長を読み取ったところ、波長300~400nmの範囲における極大吸収波長λmaxは356nmであった。 A solution was obtained by dissolving 1 mg of polymerizable liquid crystal compound (A1) in 10 mL of chloroform. The obtained solution was placed in a measurement cell with an optical path length of 1 cm, and the measurement sample was set in an ultraviolet-visible spectrophotometer ("UV-2450" manufactured by Shimadzu Corporation) to measure the absorption spectrum. When the wavelength at which the maximum absorption occurs was read from the obtained absorption spectrum, the maximum absorption wavelength λmax in the wavelength range of 300 to 400 nm was 356 nm.
 [液晶硬化膜形成用組成物(Y)の調製]
 重合性液晶化合物(A1)及び重合性液晶化合物(A2)を質量比90:10で混合し、混合物を得た。得られた混合物100部に対して、レベリング剤「BYK-361N」(BM Chemie社製)0.1部と、光重合開始剤として「イルガキュアOXE-03」(BASFジャパン株式会社製)3部を添加した。さらに、固形分濃度が13%となるようにN-メチル-2-ピロリドン(NMP)を添加した。この混合物を温度80℃で1時間撹拌することにより、液晶硬化膜形成用組成物(Y)を調製した。液晶硬化膜形成用組成物(Y)の組成(溶剤以外)を表1に示す。
[Preparation of liquid crystal cured film forming composition (Y)]
A polymerizable liquid crystal compound (A1) and a polymerizable liquid crystal compound (A2) were mixed at a mass ratio of 90:10 to obtain a mixture. To 100 parts of the obtained mixture, 0.1 part of a leveling agent "BYK-361N" (manufactured by BM Chemie) and 3 parts of "Irgacure OXE-03" (manufactured by BASF Japan Co., Ltd.) as a photopolymerization initiator were added. Added. Furthermore, N-methyl-2-pyrrolidone (NMP) was added so that the solid content concentration was 13%. A liquid crystal cured film forming composition (Y) was prepared by stirring this mixture at a temperature of 80° C. for 1 hour. Table 1 shows the composition (other than the solvent) of the composition (Y) for forming a liquid crystal cured film.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 [位相差フィルム(Z)の作製]
 基材フィルムとして二軸延伸ポリエチレンテレフタレート(PET)フィルム(ダイアホイル 三菱樹脂(株)製)に、上記光配向膜形成用組成物(X)をバーコーターにより塗布した。得られた塗布膜を120℃で2分間乾燥させた後、室温まで冷却して乾燥被膜を形成した。その後、UV照射装置(SPOT CURE SP-9;ウシオ電機株式会社製)を用いて、偏光紫外光100mJ(313nm基準)を照射し光配向膜Dを得た。日本分光株式会社製のエリプソメータ M-220を用いて測定した光配向膜Dの厚みは200nmであった。
[Production of retardation film (Z)]
The photo-alignment film forming composition (X) was applied to a biaxially oriented polyethylene terephthalate (PET) film (Diafoil, manufactured by Mitsubishi Plastics Co., Ltd.) as a base film using a bar coater. The obtained coating film was dried at 120° C. for 2 minutes, and then cooled to room temperature to form a dry film. Thereafter, 100 mJ of polarized ultraviolet light (313 nm standard) was irradiated using a UV irradiation device (SPOT CURE SP-9; manufactured by Ushio Inc.) to obtain a photoalignment film D. The thickness of the photo-alignment film D was 200 nm as measured using an ellipsometer M-220 manufactured by JASCO Corporation.
 得られた光配向膜上に、上記液晶硬化膜形成用組成物をバーコーターにより塗布し、塗布膜を形成した。この塗布膜を120℃で2分間加熱乾燥後、室温まで冷却して乾燥被膜を得た。次いで、高圧水銀ランプ(ウシオ電機株式会社製「ユニキュアVB-15201BY-A」)を用いて、窒素雰囲気下にて露光量500mJ/cm(365nm基準)の紫外光を上記乾燥被膜に照射することにより、重合性液晶化合物が基材面内に対して水平方向に配向した状態で硬化した光学異方性層を形成し、基材フィルム/光配向膜/光学異方性層(水平配向液晶硬化膜)からなる位相差フィルム(Z)を得た。オリンパス株式会社製のレーザー顕微鏡LEXT OLS4100を用いて測定した光学異方性層の厚みは2.0μmであった。 The above composition for forming a liquid crystal cured film was applied onto the obtained photo-alignment film using a bar coater to form a coating film. This coating film was dried by heating at 120° C. for 2 minutes, and then cooled to room temperature to obtain a dry film. Next, using a high-pressure mercury lamp (Unicure VB-15201BY-A manufactured by Ushio Inc.), the dried film is irradiated with ultraviolet light at an exposure amount of 500 mJ/cm 2 (365 nm standard) in a nitrogen atmosphere. to form an optically anisotropic layer that is cured with the polymerizable liquid crystal compound oriented in the horizontal direction with respect to the plane of the substrate, and then A retardation film (Z) consisting of a film) was obtained. The thickness of the optically anisotropic layer measured using a laser microscope LEXT OLS4100 manufactured by Olympus Corporation was 2.0 μm.
 位相差フィルム(Z)の液晶面側にコロナ処理を実施し、リンテック社製の厚み25μm感圧式粘着剤を介してガラスに貼合し、PETフィルムを剥離、除去した。面内位相差値は、王子計測機器株式会社製のKOBRA-WRを用いて測定した。なお、波長450nm、550nm及び650nmの光に対する面内位相差値は波長448.2nm、498.6nm、548.4nm、587.3nm、628.7nm、748.6nmの光に対する面内位相差値の測定結果から得られたコーシーの分散公式より求めた。
 その結果、面内位相差値は、Re(450)=122nm、Re(550)=140nm、Re(650)=144nmであり、各波長での面内位相差値の関係は以下のとおりとなった。
  Re(450)/Re(550)=0.87
  Re(650)/Re(550)=1.03
(式中、Re(450)は波長450nmの光に対する面内位相差値を、Re(550)は波長550nmの光に対する面内位相差値を、Re(650)は波長650nmの光に対する面内位相差値を表す。)
Corona treatment was performed on the liquid crystal side of the retardation film (Z), and it was bonded to glass via a 25 μm thick pressure-sensitive adhesive manufactured by Lintec, and the PET film was peeled off and removed. The in-plane phase difference value was measured using KOBRA-WR manufactured by Oji Scientific Instruments Co., Ltd. The in-plane retardation values for light with wavelengths of 450 nm, 550 nm, and 650 nm are It was calculated using Cauchy's dispersion formula obtained from the measurement results.
As a result, the in-plane retardation values are Re (450) = 122 nm, Re (550) = 140 nm, and Re (650) = 144 nm, and the relationship between the in-plane retardation values at each wavelength is as follows. Ta.
Re(450)/Re(550)=0.87
Re(650)/Re(550)=1.03
(In the formula, Re (450) is the in-plane retardation value for light with a wavelength of 450 nm, Re (550) is the in-plane retardation value for light with a wavelength of 550 nm, and Re (650) is the in-plane retardation value for light with a wavelength of 650 nm. (Represents the phase difference value.)
 [偏光子の作製]
 厚み30μmのポリビニルアルコールフィルム(PVA:平均重合度約2400、ケン化度99.9モル%以上)を、乾式延伸により約5倍に一軸延伸し、さらに緊張状態を保ったまま、40℃の純水に40秒間浸漬した。その後、ヨウ素/ヨウ化カリウム/水の質量比が0.044/5.7/100の染色水溶液に28℃で30秒間浸漬して染色処理を行った。次に、ヨウ化カリウム/ホウ酸/水の質量比が11.0/6.2/100のホウ酸水溶液に70℃で120秒間浸漬した。引き続き、8℃の純水で15秒間洗浄した後、300Nの張力で保持した状態で、60℃で50秒間、次いで75℃で20秒間乾燥して、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚み12μmの偏光子を得た。
[Preparation of polarizer]
A polyvinyl alcohol film (PVA: average polymerization degree of about 2400, saponification degree of 99.9 mol% or more) with a thickness of 30 μm was uniaxially stretched to about 5 times by dry stretching, and then kept under tension in a pure state at 40°C. Immersed in water for 40 seconds. Thereafter, it was immersed in a dyeing aqueous solution having a mass ratio of iodine/potassium iodide/water of 0.044/5.7/100 at 28° C. for 30 seconds to perform a dyeing treatment. Next, it was immersed in a boric acid aqueous solution having a mass ratio of potassium iodide/boric acid/water of 11.0/6.2/100 at 70° C. for 120 seconds. Subsequently, after washing with pure water at 8°C for 15 seconds, the polyvinyl alcohol film was dried at 60°C for 50 seconds and then at 75°C for 20 seconds while being held under a tension of 300N, so that iodine was adsorbed and oriented in the polyvinyl alcohol film. A polarizer with a thickness of 12 μm was obtained.
 [光学積層体の作製]
 上記で作製した位相差フィルム(Z)、偏光子、及び、透明保護フィルムとしてケン化処理を施したトリアセチルセルロースフィルム(TAC:コニカミノルタオプト(株)製「KC4UY」、厚み40μm)をこの順に、位相差フィルムの液晶硬化膜側をコロナ処理した後、位相差フィルムの液晶硬化膜側と偏光子とが対向するように、かつ、該偏光子の位相差フィルムとは反対側と透明保護フィルムとが対向するように積層した。この際、液晶硬化膜と偏光子との間、及び、偏光子と透明保護フィルムとの間に水系の乾燥固化型接着剤を注入した。また、偏光子の吸収軸と位相差フィルムにおける液晶硬化膜の遅相軸とが45°の角度をなすようにこれらを積層した。得られた積層体をニップロールに通して各層を貼り合わせた。得られた貼合物の張力を430N/mに保ちながら、60℃で2分間乾燥した。その後、位相差フィルムの基材フィルム(PETフィルム)のみを剥離し、剥離により露出した面にセパレートフィルム付き粘着剤層を積層して、セパレートフィルム付き粘着剤層/光配向膜/光学異方性層(液晶硬化膜)/接着剤層/偏光子/接着剤層/透明保護フィルムからなる光学積層体(1)を得た。粘着剤層を除く光学積層体(1)の厚みは54μmであった。
[Preparation of optical laminate]
The retardation film (Z) produced above, the polarizer, and the saponified triacetyl cellulose film (TAC: "KC4UY" manufactured by Konica Minolta Opto Co., Ltd., thickness 40 μm) as a transparent protective film were placed in this order. After the liquid crystal cured film side of the retardation film is subjected to corona treatment, the liquid crystal cured film side of the retardation film and the polarizer are opposed to each other, and the side of the polarizer opposite to the retardation film is treated with a transparent protective film. They were stacked so that they were facing each other. At this time, a water-based dry-setting adhesive was injected between the cured liquid crystal film and the polarizer and between the polarizer and the transparent protective film. Further, these were laminated so that the absorption axis of the polarizer and the slow axis of the cured liquid crystal film in the retardation film formed an angle of 45°. The obtained laminate was passed through nip rolls to bond each layer together. The resulting bond was dried at 60° C. for 2 minutes while maintaining the tension at 430 N/m. After that, only the base film (PET film) of the retardation film is peeled off, and an adhesive layer with a separate film is laminated on the surface exposed by peeling. An optical laminate (1) consisting of layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protective film was obtained. The thickness of the optical laminate (1) excluding the adhesive layer was 54 μm.
 上記水系の乾燥固化型接着剤は、水100部に、カルボキシル基変性ポリビニルアルコール(クラレポバールKL318;株式会社クラレ製)3部と、水溶性ポリアミドエポキシ樹脂(スミレーズレジン650;住化ケムテックス株式会社製、固形分濃度30%の水溶液)1.5部とを添加して調製した。 The above water-based dry-setting adhesive is made of 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol (Kuraray Poval KL318; manufactured by Kuraray Co., Ltd.), and a water-soluble polyamide epoxy resin (Sumirezu Resin 650; Sumika Chemtex Co., Ltd.). 1.5 parts of an aqueous solution with a solid content concentration of 30%) was added.
 [光学積層体の評価]
 (1)屈曲性評価
 屈曲性の評価は、屈曲試験機(Covotech社製「CFT-720C」(商品名))を使用して、光学積層体(1)の透明保護フィルム側が内側になるように屈曲させて試験した。セパレートフィルムを剥離した光学積層体(1)の粘着剤層側を、屈曲試験機のサンプルステージに平坦な状態(屈曲していない状態)で貼合した。光学積層体(1)を屈曲させた時に、対向する透明保護フィルムの距離が4.0mmとなるように(屈曲半径R=2mm)、光学積層体を180°屈曲させた。その後、元の平坦な状態に戻した。一連の操作を1回行ったときを屈曲回数1回と数え、この屈曲操作を繰返し行った。屈曲速度は60rpmとした。屈曲操作で屈曲した領域においてクラックや粘着剤層の浮きが発生したときの屈曲回数を限界屈曲回数として記録した。限界屈曲回数について、以下の基準に従って評価を行った。
 A:屈曲回数10万回でもクラック、浮きの発生なし
 B:屈曲回数8万回以上10万回未満でクラック、浮きが発生
 C:屈曲回数5万回以上8万回未満でクラック、浮きが発生
 D:屈曲回数1万回以上5万回未満でクラック、浮きが発生
 E:屈曲回数1万回未満でクラック、浮きが発生
[Evaluation of optical laminate]
(1) Flexibility evaluation Flexibility evaluation was performed using a bending tester (“CFT-720C” (trade name) manufactured by Covotech) with the transparent protective film side of the optical laminate (1) facing inside. Tested by bending. The adhesive layer side of the optical laminate (1) from which the separate film had been peeled was bonded in a flat state (not bent) on a sample stage of a bending tester. The optical laminate (1) was bent by 180° so that when the optical laminate (1) was bent, the distance between the opposing transparent protective films was 4.0 mm (bending radius R=2 mm). It was then returned to its original flat state. The number of times of bending was counted as one time when the series of operations were performed once, and this bending operation was repeated. The bending speed was 60 rpm. The number of bending times when cracks or lifting of the adhesive layer occurred in the area bent by the bending operation was recorded as the limit number of bending times. The limit number of bends was evaluated according to the following criteria.
A: No cracks or lifts occur even after 100,000 bends B: Cracks or lifts occur after 80,000 or more bends but less than 100,000 times C: Cracks or lifts occur after 50,000 or more bends but less than 80,000 times D: Cracks and lifting occur when the number of bends is 10,000 to less than 50,000 times. E: Cracks and lifting occur when the number of bends is less than 10,000 times.
 (2)密着性評価
 光学積層体(1)の光配向膜上に粘着剤層を形成する前に、任意の箇所からサンプル片を切り出し、JIS K 5600のクロスカット法に従って光学異方性層と偏光子との密着性を評価した。具体的な評価基準は以下のとおりとした。結果を表2に示す。光学積層体(1)の光学異方性層と偏光子の密着性はBであった。
 A:どの格子も剥離がない
 B:塗膜が部分的に剥離している(1%以上50%未満)
 C:塗膜が全面的に剥離している(50%以上)
(2) Adhesion evaluation Before forming the adhesive layer on the photo-alignment film of the optical laminate (1), cut out a sample piece from an arbitrary location and cross-cut it with the optically anisotropic layer according to JIS K 5600 cross-cut method. Adhesion to the polarizer was evaluated. The specific evaluation criteria were as follows. The results are shown in Table 2. The adhesion between the optically anisotropic layer and the polarizer of the optical laminate (1) was B.
A: No peeling on any grid B: Partial peeling of the paint film (1% or more and less than 50%)
C: The paint film has completely peeled off (50% or more)
 <実施例2>
 透明保護フィルムとして、コロナ処理を施したポリメタクリル酸メチル樹脂フィルム(PMMA:住友化学株式会社製、厚み40μm)を用いたこと以外は実施例1と同様にして光学積層体(2)を作製し、評価を行った。結果を表2に示す。
<Example 2>
An optical laminate (2) was produced in the same manner as in Example 1, except that a corona-treated polymethyl methacrylate resin film (PMMA: manufactured by Sumitomo Chemical Co., Ltd., thickness 40 μm) was used as the transparent protective film. , conducted an evaluation. The results are shown in Table 2.
 <実施例3>
 透明保護フィルムとして、コロナ処理を施した環状ポリオレフィン樹脂フィルム(COP:ZF-14 日本ゼオン製、厚み40μm)を用いたこと以外は、実施例1と同様にして光学積層体(3)を作製し、評価を行った。結果を表2に示す。
<Example 3>
An optical laminate (3) was produced in the same manner as in Example 1, except that a corona-treated cyclic polyolefin resin film (COP: ZF-14 manufactured by Nippon Zeon, thickness 40 μm) was used as the transparent protective film. , conducted an evaluation. The results are shown in Table 2.
 <実施例4>
 透明保護フィルムとして、コロナ処理を施したポリエチレンテレフタレートフィルム(PET:ダイアホイル 三菱樹脂(株)製、厚み38μm)を用いたこと以外は、実施例1と同様にして光学積層体(4)を作製し、評価を行った。結果を表2に示す。
<Example 4>
An optical laminate (4) was produced in the same manner as in Example 1, except that a corona-treated polyethylene terephthalate film (PET: Diafoil, manufactured by Mitsubishi Plastics Co., Ltd., thickness 38 μm) was used as the transparent protective film. and evaluated it. The results are shown in Table 2.
 <実施例5>
 位相差フィルム(Z)、偏光子、及び、透明保護フィルムとしてケン化処理を施したトリアセチルセルロースフィルム(TAC:コニカミノルタオプト(株)製「KC4UY」)をこの順に、位相差フィルムの液晶硬化膜側をコロナ処理した後、位相差フィルムの液晶硬化膜側と偏光子とが対向するように、かつ、該偏光子の位相差フィルムとは反対側と透明保護フィルムとが対向するように積層した。この際、液晶硬化膜と偏光子との間、及び、偏光子と透明保護フィルムとの間にラジカル重合性紫外線硬化型接着剤を注入した。また、偏光子の吸収軸と位相差フィルムにおける液晶硬化膜の遅相軸とが45°の角度をなすようにこれらを積層した。得られた積層体をニップロールに通して各層を貼り合わせた。得られた貼合物の位相差フィルム側から露光量1000mJの紫外線を照射した。その後、位相差フィルムの基材フィルム(PETフィルム)のみを剥離し、剥離により露出した面にセパレートフィルム付き粘着剤層を積層して、セパレートフィルム付き粘着剤層/光配向膜/光学異方性層(液晶硬化膜)/接着剤層/偏光子/接着剤層/透明保護フィルムからなる光学積層体(5)を得た。粘着剤層を除く光学積層体(5)の厚みは56μmであった。
<Example 5>
A retardation film (Z), a polarizer, and a triacetyl cellulose film (TAC: "KC4UY" manufactured by Konica Minolta Opto Co., Ltd.) that has been saponified as a transparent protective film are cured in this order by liquid crystal curing of the retardation film. After corona treatment of the film side, lamination is performed so that the cured liquid crystal film side of the retardation film faces the polarizer, and the side of the polarizer opposite to the retardation film faces the transparent protective film. did. At this time, a radically polymerizable ultraviolet curable adhesive was injected between the liquid crystal cured film and the polarizer and between the polarizer and the transparent protective film. Further, these were laminated so that the absorption axis of the polarizer and the slow axis of the cured liquid crystal film in the retardation film formed an angle of 45°. The obtained laminate was passed through nip rolls to bond each layer together. The obtained bonded product was irradiated with ultraviolet rays at an exposure dose of 1000 mJ from the retardation film side. After that, only the base film (PET film) of the retardation film is peeled off, and an adhesive layer with a separate film is laminated on the surface exposed by peeling. An optical laminate (5) consisting of layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protective film was obtained. The thickness of the optical laminate (5) excluding the adhesive layer was 56 μm.
 上記ラジカル重合性紫外線硬化型接着剤は、以下の各成分を混合して調製した、(メタ)アクリル系硬化成分とラジカル重合開始剤とを含有する紫外線硬化型接着剤である。
 アクリロイルモルフォリン(興人社製) 23.1部
 イソステアリルアクリレート(大阪有機化学工業製) 31.1部
 ライトアクリレートL-A:ラウリルアクリレート(共栄化学製) 7.7部
 PLACCEL FA1DDM:不飽和脂肪酸ヒドロキシアルキルエステル修飾ε-カプロラクトン(ダイセル製) 23.1部
 ライトアクリレート1,9NDA:1,9-ノナンジオールジアクリレート(共栄化学製) 15.0部
 ARUFON-UP1190:アクリル系ポリマー(東亜合成製) 15.3部
 IRGCURE.907:2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(BASF製) 3.5部
 KAYACURE DETX-S:ジエチルチオキサントン(日本化薬製) 3.5部
The radically polymerizable ultraviolet curable adhesive is an ultraviolet curable adhesive containing a (meth)acrylic curing component and a radical polymerization initiator, which was prepared by mixing the following components.
Acryloylmorpholine (manufactured by Kojinsha) 23.1 parts Isostearyl acrylate (manufactured by Osaka Organic Chemical Industry) 31.1 parts Light acrylate LA: Lauryl acrylate (manufactured by Kyoei Chemical) 7.7 parts PLACCEL FA1DDM: Unsaturated fatty acid Hydroxyalkyl ester modified ε-caprolactone (manufactured by Daicel) 23.1 parts Light acrylate 1,9NDA: 1,9-nonanediol diacrylate (manufactured by Kyoei Kagaku) 15.0 parts ARUFON-UP1190: Acrylic polymer (manufactured by Toagosei) 15. Part 3 IRGCURE. 907: 2-Methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (manufactured by BASF) 3.5 parts KAYACURE DETX-S: Diethylthioxanthone (manufactured by Nippon Kayaku) 3.5 parts
 <実施例6>
 透明保護フィルムとして、コロナ処理を施したポリメタクリル酸メチル樹脂フィルム(PMMA:住友化学株式会社製、厚み40μm)を用いたこと以外は、実施例5と同様にして光学積層体(6)を作製し、評価を行った。結果を表2に示す。
<Example 6>
An optical laminate (6) was produced in the same manner as in Example 5, except that a corona-treated polymethyl methacrylate resin film (PMMA: manufactured by Sumitomo Chemical Co., Ltd., thickness 40 μm) was used as the transparent protective film. and evaluated it. The results are shown in Table 2.
 <実施例7>
 透明保護フィルムとして、コロナ処理を施した環状ポリオレフィン樹脂フィルム(COP:ZF-14 日本ゼオン製、厚み40μm)を用いたこと以外は、実施例5と同様にして光学積層体(7)を作製し、評価を行った。結果を表2に示す。
<Example 7>
An optical laminate (7) was produced in the same manner as in Example 5, except that a corona-treated cyclic polyolefin resin film (COP: ZF-14 manufactured by Nippon Zeon, thickness 40 μm) was used as the transparent protective film. , conducted an evaluation. The results are shown in Table 2.
 <実施例8>
 透明保護フィルムとして、コロナ処理を施したポリエチレンテレフタレートフィルム(PET:ダイアホイル 三菱樹脂(株)製、厚み38μm)を用いたこと以外は、実施例5と同様にして光学積層体(8)を作製し、評価を行った。結果を表2に示す。
<Example 8>
An optical laminate (8) was produced in the same manner as in Example 5, except that a corona-treated polyethylene terephthalate film (PET: Diafoil, manufactured by Mitsubishi Plastics Co., Ltd., thickness 38 μm) was used as the transparent protective film. and conducted an evaluation. The results are shown in Table 2.
 <実施例9>
 位相差フィルム(Z)、偏光子、及び、透明保護フィルムとしてケン化処理を施したトリアセチルセルロースフィルム(TAC:コニカミノルタオプト(株)製「KC4UY」)をこの順に、位相差フィルムの液晶硬化膜側をコロナ処理した後、位相差フィルムの液晶硬化膜側と偏光子とが対向するように、かつ、該偏光子の位相差フィルムとは反対側と透明保護フィルムとが対向するように積層した。この際、液晶硬化膜と偏光子との間、及び、偏光子と透明保護フィルムとの間にカチオン重合性紫外線硬化型接着剤を注入した。また、偏光子の吸収軸と位相差フィルムにおける液晶硬化膜の遅相軸とが45°の角度をなすようにこれらを積層した。得られた積層体をニップロールに通して各層を貼り合わせた。得られた貼合物の張力を430N/mに保ちながら、光学異方性層側から露光量1000mJの紫外線を照射した。その後、位相差フィルムの基材フィルム(PETフィルム)のみを剥離し、剥離により露出した面にセパレートフィルム付き粘着剤層を積層して、セパレートフィルム付き粘着剤層/光配向膜/光学異方性層(液晶硬化膜)/接着剤層/偏光子/接着剤層/透明保護フィルムからなる光学積層体(9)を得た。粘着剤層を除く光学積層体(9)の厚みは55μmであった。
<Example 9>
A retardation film (Z), a polarizer, and a triacetyl cellulose film (TAC: "KC4UY" manufactured by Konica Minolta Opto Co., Ltd.) that has been saponified as a transparent protective film are cured in this order by liquid crystal curing of the retardation film. After corona treatment of the film side, lamination is performed so that the cured liquid crystal film side of the retardation film faces the polarizer, and the side of the polarizer opposite to the retardation film faces the transparent protective film. did. At this time, a cationically polymerizable ultraviolet curable adhesive was injected between the cured liquid crystal film and the polarizer and between the polarizer and the transparent protective film. Further, these were laminated so that the absorption axis of the polarizer and the slow axis of the cured liquid crystal film in the retardation film formed an angle of 45°. The obtained laminate was passed through nip rolls to bond each layer together. While maintaining the tension of the obtained bond at 430 N/m, ultraviolet rays were irradiated from the optically anisotropic layer side at an exposure dose of 1000 mJ. After that, only the base film (PET film) of the retardation film is peeled off, and an adhesive layer with a separate film is laminated on the surface exposed by peeling. An optical laminate (9) consisting of layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protective film was obtained. The thickness of the optical laminate (9) excluding the adhesive layer was 55 μm.
 上記カチオン重合性紫外線硬化型接着剤は、以下の各成分を混合して調製した、エポキシ化合物とカチオン重合開始剤とを含有する紫外線硬化型接着剤である。
 3,4-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート      40部
 ビスフェノールAのジグリシジルエーテル      60部
 ジフェニル(4-フェニルチオフェニル)スルホニウムヘキサフルオロアンチモネート(光カチオン重合開始剤)  4部
The above-mentioned cationic polymerizable ultraviolet curable adhesive is an ultraviolet curable adhesive containing an epoxy compound and a cationic polymerization initiator, prepared by mixing the following components.
3,4-Epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate 40 parts Diglycidyl ether of bisphenol A 60 parts Diphenyl (4-phenylthiophenyl) sulfonium hexafluoroantimonate (photocationic polymerization initiator) 4 parts
 <実施例10>
 透明保護フィルムとして、コロナ処理を施したポリメタクリル酸メチル樹脂フィルム(PMMA:住友化学株式会社製、厚み40μm)を用いたこと以外は、実施例9と同様にして光学積層体(10)を作製し、評価を行った。結果を表2に示す。
<Example 10>
An optical laminate (10) was produced in the same manner as in Example 9, except that a corona-treated polymethyl methacrylate resin film (PMMA: manufactured by Sumitomo Chemical Co., Ltd., thickness 40 μm) was used as the transparent protective film. and evaluated it. The results are shown in Table 2.
 <実施例11>
 透明保護フィルムとして、コロナ処理を施した環状ポリオレフィン樹脂フィルム(COP:ZF-14 日本ゼオン製、厚み40μm)を用いたこと以外は、実施例9と同様にして光学積層体(11)を作製し、評価を行った。結果を表2に示す。
<Example 11>
An optical laminate (11) was produced in the same manner as in Example 9, except that a corona-treated cyclic polyolefin resin film (COP: ZF-14 manufactured by Nippon Zeon, thickness 40 μm) was used as the transparent protective film. , conducted an evaluation. The results are shown in Table 2.
 <実施例12>
 透明保護フィルムとして、コロナ処理を施したポリエチレンテレフタレートフィルム(PET:ダイアホイル 三菱樹脂(株)製、厚み38μm)を用いたこと以外は、実施例9と同様にして光学積層体(12)を作製し、評価を行った。結果を表2に示す。
<Example 12>
An optical laminate (12) was produced in the same manner as in Example 9, except that a corona-treated polyethylene terephthalate film (PET: Diafoil, manufactured by Mitsubishi Plastics Co., Ltd., thickness 38 μm) was used as the transparent protective film. and evaluated it. The results are shown in Table 2.
 <比較例1>
 特開2022-044293号公報の実施例2に従って作製した積層体の基材フィルム面にセパレートフィルム付き粘着剤層を積層して、光学積層体(13)を得た。光学積層体(13)の層構成は、セパレートフィルム付き粘着剤層/基材フィルム/光配向膜/光学異方性層(液晶硬化膜)/接着剤層/偏光子/接着剤層/透明保護フィルムである。
<Comparative example 1>
An adhesive layer with a separate film was laminated on the base film surface of a laminate produced according to Example 2 of JP-A-2022-044293 to obtain an optical laminate (13). The layer structure of the optical laminate (13) is adhesive layer with separate film/base film/photo alignment film/optical anisotropic layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protection. It's a film.
 <比較例2>
 特開2022-044293号公報の実施例1に従って作製した積層体の光学異方性層(液晶硬化膜)面にセパレートフィルム付き粘着剤層を積層して、光学積層体(14)を得た。光学積層体(14)の層構成は、セパレートフィルム付き粘着剤層/光学異方性層(液晶硬化膜)/光配向膜/基材フィルム/接着剤層/偏光子/接着剤層/透明保護フィルムである。
<Comparative example 2>
An adhesive layer with a separate film was laminated on the optically anisotropic layer (cured liquid crystal film) surface of a laminate produced according to Example 1 of JP-A-2022-044293 to obtain an optical laminate (14). The layer structure of the optical laminate (14) is adhesive layer with separate film/optically anisotropic layer (cured liquid crystal film)/photo alignment film/base film/adhesive layer/polarizer/adhesive layer/transparent protection. It's a film.
 <比較例3>
 特開2022-044293号公報の実施例3に従って作製した積層体の基材フィルム面にセパレートフィルム付き粘着剤層を積層して、光学積層体(15)を得た。光学積層体(15)の層構成は、セパレートフィルム付き粘着剤層/基材フィルム/光配向膜/光学異方性層(液晶硬化膜)/接着剤層/偏光子/接着剤層/透明保護フィルムである。
<Comparative example 3>
An adhesive layer with a separate film was laminated on the base film surface of a laminate produced according to Example 3 of JP-A-2022-044293 to obtain an optical laminate (15). The layer structure of the optical laminate (15) is adhesive layer with separate film/base film/photo alignment film/optical anisotropic layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protection. It's a film.
 <比較例4>
 特開2022-044293号公報の実施例4に従って作製した積層体の基材フィルム面にセパレートフィルム付き粘着剤層を積層して、光学積層体(16)を得た。光学積層体(16)の層構成は、セパレートフィルム付き粘着剤層/基材フィルム/光配向膜/光学異方性層(液晶硬化膜)/接着剤層/偏光子/接着剤層/透明保護フィルムである。
<Comparative example 4>
An adhesive layer with a separate film was laminated on the base film surface of a laminate produced according to Example 4 of JP-A-2022-044293 to obtain an optical laminate (16). The layer structure of the optical laminate (16) is adhesive layer with separate film/base film/photo alignment film/optical anisotropic layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protection. It's a film.
 <比較例5>
 特開2022-044293号公報の比較例1に従って作製した積層体の光配向膜面にセパレートフィルム付き粘着剤層を積層して、光学積層体(17)を得た。光学積層体(17)の層構成は、セパレートフィルム付き粘着剤層/光配向膜/光学異方性層(液晶硬化膜)/粘着剤層/偏光子/接着剤層/透明保護フィルムである。
<Comparative example 5>
An optical laminate (17) was obtained by laminating an adhesive layer with a separate film on the photo-alignment film surface of a laminate produced according to Comparative Example 1 of JP-A-2022-044293. The layer structure of the optical laminate (17) is adhesive layer with separate film/photo alignment film/optically anisotropic layer (cured liquid crystal film)/adhesive layer/polarizer/adhesive layer/transparent protective film.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 1,2 光学積層体、10 透明保護フィルム、20 偏光子、30 光学異方性層、40 粘着剤層、51 第1接着剤層、52 第2接着剤層、60 配向層。 1, 2 Optical laminate, 10 Transparent protective film, 20 Polarizer, 30 Optically anisotropic layer, 40 Adhesive layer, 51 First adhesive layer, 52 Second adhesive layer, 60 Orientation layer.

Claims (13)

  1.  透明保護フィルムと、第1接着剤層と、偏光子と、第2接着剤層と、光学異方性層と、粘着剤層とをこの順に含む光学積層体であって、
     前記透明保護フィルムと前記偏光子との間に前記第1接着剤層のみが介在し、前記偏光子と前記光学異方性層との間に前記第2接着剤層のみが介在しており、
     前記光学異方性層が液晶硬化膜であり、
     前記光学異方性層の厚みが0.1μm以上5μm以下であり、
     前記光学異方性層と前記粘着剤層とは直接接しているか、又は、前記光学異方性層と前記粘着剤層との間に配向層を含む、光学積層体。
    An optical laminate comprising a transparent protective film, a first adhesive layer, a polarizer, a second adhesive layer, an optically anisotropic layer, and an adhesive layer in this order,
    Only the first adhesive layer is interposed between the transparent protective film and the polarizer, and only the second adhesive layer is interposed between the polarizer and the optically anisotropic layer,
    The optically anisotropic layer is a liquid crystal cured film,
    The thickness of the optically anisotropic layer is 0.1 μm or more and 5 μm or less,
    The optical laminate, wherein the optically anisotropic layer and the adhesive layer are in direct contact with each other, or an alignment layer is provided between the optically anisotropic layer and the adhesive layer.
  2.  前記第1接着剤層及び前記第2接着剤層は、厚みが50nm以上2000nm以下である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the first adhesive layer and the second adhesive layer have a thickness of 50 nm or more and 2000 nm or less.
  3.  前記第1接着剤層及び前記第2接着剤層は、乾燥固化型接着剤又は活性エネルギー線硬化型接着剤から形成される層である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the first adhesive layer and the second adhesive layer are layers formed from a dry-setting adhesive or an active energy ray-curing adhesive.
  4.  前記光学異方性層が逆波長分散性を有する、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the optically anisotropic layer has reverse wavelength dispersion.
  5.  前記光学異方性層は、波長550nmの光に対する面内位相差値が100nm以上160nm以下である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the optically anisotropic layer has an in-plane retardation value of 100 nm or more and 160 nm or less for light with a wavelength of 550 nm.
  6.  前記光学異方性層が、前記偏光子の長尺方向に対して斜め方向の光軸を有する、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the optically anisotropic layer has an optical axis oblique to the longitudinal direction of the polarizer.
  7.  前記配向層は、光反応性基を含む光配向性ポリマーからなる光配向膜である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the alignment layer is a photoalignment film made of a photoalignable polymer containing a photoreactive group.
  8.  前記透明保護フィルムにおける前記偏光子とは反対側に反射防止層をさらに含む、請求項1に記載の光学積層体。 The optical laminate according to claim 1, further comprising an antireflection layer on a side of the transparent protective film opposite to the polarizer.
  9.  前記偏光子は、二色性色素を含むポリビニルアルコール系樹脂フィルムから構成される、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the polarizer is composed of a polyvinyl alcohol resin film containing a dichroic dye.
  10.  請求項1~9のいずれか1項に記載の光学積層体を含む、画像表示装置。 An image display device comprising the optical laminate according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載の光学積層体の製造方法であって、
     光学異方性層と、配向層と、基材フィルムとをこの順に含む位相差フィルムを準備する位相差フィルム準備工程と、
     前記透明保護フィルムと、前記偏光子とを第1接着剤により貼合する第1貼合工程と、
     前記偏光子と、前記位相差フィルムの前記光学異方性層とを第2接着剤により貼合する第2貼合工程と、
     前記第2貼合工程により得られる積層体から、前記基材フィルム、又は、前記基材フィルム及び前記配向層を剥離除去する剥離工程と、
     前記剥離工程により露出した面に、前記粘着剤層を積層する粘着剤層積層工程と、
    を含む、光学積層体の製造方法。
    A method for producing an optical laminate according to any one of claims 1 to 9, comprising:
    a retardation film preparation step of preparing a retardation film including an optically anisotropic layer, an alignment layer, and a base film in this order;
    a first bonding step of bonding the transparent protective film and the polarizer using a first adhesive;
    a second bonding step of bonding the polarizer and the optically anisotropic layer of the retardation film using a second adhesive;
    a peeling step of peeling and removing the base film, or the base film and the alignment layer from the laminate obtained in the second bonding step;
    an adhesive layer lamination step of laminating the adhesive layer on the surface exposed by the peeling step;
    A method for producing an optical laminate, comprising:
  12.  前記第1接着剤及び前記第2接着剤が活性エネルギー線硬化型接着剤である、請求項11に記載の光学積層体の製造方法。 The method for manufacturing an optical laminate according to claim 11, wherein the first adhesive and the second adhesive are active energy ray-curable adhesives.
  13.  前記第2貼合工程の後であって前記剥離工程の前に、前記第2貼合工程により得られる積層体の前記位相差フィルム側から活性エネルギー線を照射して、前記第1接着剤及び前記第2接着剤を硬化させる工程をさらに含む、請求項12に記載の光学積層体の製造方法。 After the second bonding step and before the peeling step, active energy rays are irradiated from the retardation film side of the laminate obtained in the second bonding step to remove the first adhesive and The method for manufacturing an optical laminate according to claim 12, further comprising the step of curing the second adhesive.
PCT/JP2023/021503 2022-08-19 2023-06-09 Optical laminated body and method for manufacturing same WO2024038667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022130939A JP2024027813A (en) 2022-08-19 2022-08-19 Optical laminate and its manufacturing method
JP2022-130939 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024038667A1 true WO2024038667A1 (en) 2024-02-22

Family

ID=89941428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021503 WO2024038667A1 (en) 2022-08-19 2023-06-09 Optical laminated body and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2024027813A (en)
WO (1) WO2024038667A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009733A (en) * 2015-06-19 2017-01-12 東洋紡株式会社 Polarizing plate and liquid crystal display
WO2019022156A1 (en) * 2017-07-26 2019-01-31 富士フイルム株式会社 Organic electroluminescence display device
JP2021131532A (en) * 2020-02-18 2021-09-09 住友化学株式会社 Optical laminate
JP2021192978A (en) * 2019-10-04 2021-12-23 日東電工株式会社 Multilayer structure and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009733A (en) * 2015-06-19 2017-01-12 東洋紡株式会社 Polarizing plate and liquid crystal display
WO2019022156A1 (en) * 2017-07-26 2019-01-31 富士フイルム株式会社 Organic electroluminescence display device
JP2021192978A (en) * 2019-10-04 2021-12-23 日東電工株式会社 Multilayer structure and production method thereof
JP2021131532A (en) * 2020-02-18 2021-09-09 住友化学株式会社 Optical laminate

Also Published As

Publication number Publication date
JP2024027813A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
KR102658083B1 (en) Liquid crystal cured film, optical film including the liquid crystal cured film, and display device
JP6937554B2 (en) A display device including a laminated body, a circularly polarizing plate including the laminated body, and the laminated body.
WO2019039288A1 (en) Retardation plate with optical compensation function
CN114375418B (en) Laminate and elliptical polarizing plate comprising same
KR20210127704A (en) Circular polarizing plate and organic EL display device using same
JP7397683B2 (en) Laminated body for organic EL display and circularly polarizing plate used therein
WO2022050003A1 (en) Optical laminate, and ellipsoidally polarizing plate including same
WO2019039287A1 (en) Phase difference plate having optical compensation function for flexible display
JP2022176121A (en) Laminate and display
CN112585513B (en) Laminate comprising horizontally aligned liquid crystal cured film
WO2024038667A1 (en) Optical laminated body and method for manufacturing same
TW202035116A (en) Laminate for organic EL display and circular polarizing plate used therefor wherein the organic EL display is excellent in display characteristics, flexibility and excellent deterioration over the years
JP7405576B2 (en) optically anisotropic film
TW202409621A (en) Optical laminated body and manufacturing method thereof
CN112513697B (en) Horizontally oriented liquid crystal cured film and laminate comprising same
JP2024018583A (en) Optical laminate and method of manufacturing the same
JP2024068090A (en) Rolled body
JP2024018584A (en) Optical laminate and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854705

Country of ref document: EP

Kind code of ref document: A1