WO2022050003A1 - Optical laminate, and ellipsoidally polarizing plate including same - Google Patents

Optical laminate, and ellipsoidally polarizing plate including same Download PDF

Info

Publication number
WO2022050003A1
WO2022050003A1 PCT/JP2021/029483 JP2021029483W WO2022050003A1 WO 2022050003 A1 WO2022050003 A1 WO 2022050003A1 JP 2021029483 W JP2021029483 W JP 2021029483W WO 2022050003 A1 WO2022050003 A1 WO 2022050003A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
liquid crystal
group
optical laminate
polymerizable liquid
Prior art date
Application number
PCT/JP2021/029483
Other languages
French (fr)
Japanese (ja)
Inventor
伸行 幡中
耕太 村野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202180056410.6A priority Critical patent/CN116057430A/en
Priority to KR1020237004603A priority patent/KR20230062548A/en
Publication of WO2022050003A1 publication Critical patent/WO2022050003A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Definitions

  • the present invention relates to an optical laminate, a roll of the optical laminate, an elliptical polarizing plate including the optical laminate, and an organic EL display device.
  • the elliptical polarizing plate is an optical member in which a polarizing plate and a retardation plate are laminated.
  • a polarizing plate and a retardation plate are laminated.
  • the retardation plate constituting this elliptical polarizing plate a so-called ⁇ / 4 plate is generally used.
  • a retardation plate a retardation plate using a liquid crystal curing film produced by applying a polymerizable liquid crystal compound on a substrate and curing it is known (Patent Document 1).
  • a retardation film obtained by curing a polymerizable liquid crystal compound as described in Reference 1 is suitable for a flexible display from the viewpoint of realizing thinning, and is formed from such a cured liquid crystal film.
  • An elliptical polarizing plate (membrane) can be produced by transferring the phase difference plate (membrane) to the polarizing plate via a pressure-sensitive pressure-sensitive adhesive.
  • An object of the present invention is to provide an optical laminate that is less likely to be distorted when bent and is excellent in high flexibility and oblique reflectance, particularly an optical laminate suitable for a flexible display.
  • the present invention includes the following aspects.
  • the retardation film has a base film having a moisture permeability of 100 g / m 2/24 hours or more, and a thickness of 0.5 ⁇ m or more and 3 ⁇ m or less formed on the base film, and the following formula ( 1) and (2): Re (450) / Re (550) ⁇ 1.00 (1) 1.00 ⁇ Re (650) / Re (550) (2) [In the equation, Re ( ⁇ ) indicates the in-plane phase difference value at the wavelength ⁇ ] Contains a liquid crystal cured film, which fills with a single layer,
  • the polarizing element is composed of a polyvinyl alcohol-based resin film containing a dichroic dye, and the transparent protective film has a total light transmittance of 90% or more and a 380 nm transmit
  • the base film has a total light transmittance of 90% or more, and the absolute value of the phase difference value Rth (550) in the thickness direction with respect to light of 550 nm is 5 nm or less.
  • the liquid crystal cured film has the following formula (3): 100 nm ⁇ Re (550) ⁇ 170 nm (3) [In the equation, Re ( ⁇ ) indicates the in-plane phase difference value at the wavelength ⁇ ]
  • an optical laminate that is less likely to cause distortion when bent and is excellent in high flexibility and oblique reflectance, particularly an optical laminate suitable for a flexible display.
  • the optical laminate of the present invention includes a retardation film, a splitter, and a transparent protective film in this order, and the retardation film, the splitter, and the transparent protective film are adjacent to each other via an adhesive layer.
  • the retardation film and the polarizing element, and the polarizing element and the transparent protective film are laminated via an adhesive layer, respectively.
  • a liquid crystal cured film that constitutes a retardation film when the obtained optical laminate is repeatedly bent by bonding the retardation film and the polarizing element, and the polarizing element and the transparent protective film, respectively, with an adhesive layer. It is considered that the deformation in the above and the deformation of the optical laminate as a whole can easily follow each other, distortion at the bending point is unlikely to occur, and streak-like defects and an increase in oblique reflectance caused by the distortion can be suppressed. can.
  • the adhesive layer for adhering the retardation film and the polarizing element and the polarizing element and the transparent protective film can be formed by an adhesive.
  • the adhesive capable of forming such an adhesive layer include a dry solidification type adhesive such as a water-based adhesive and a chemical reaction type adhesive such as an active energy ray-curable adhesive.
  • the adhesive layer for adhering the retardation film and the polarizing element and the polarizing element and the transparent protective film may be formed of different adhesives, but is preferably formed of the same adhesive.
  • a polymer of a monomer having a protonic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group, or a urethane resin is contained as a main component, and more.
  • a cross-linking agent such as a valent aldehyde, an epoxy compound, an epoxy resin, a melamine compound, a zirconia compound, and a zinc compound, or a curable compound.
  • Examples of the polymer of the monomer having a protonic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group include ethylene-maleic acid copolymer, itaconic acid copolymer, acrylic acid copolymer and acrylamide. Examples thereof include a copolymer, a saponified product of polyvinyl acetate, and a polyvinyl alcohol-based resin.
  • polyvinyl alcohol-based resin examples include polyvinyl alcohol, partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol. Can be mentioned.
  • the content of the polyvinyl alcohol-based resin in the water-based dry solidifying adhesive is usually 1 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of water.
  • the urethane resin examples include polyester ionomer type urethane resin and the like.
  • the polyester-based ionomer type urethane resin referred to here is a urethane resin having a polyester skeleton, in which a small amount of an ionic component (hydrophilic component) is introduced. Since the ionomer type urethane resin is emulsified in water to form an emulsion without using an emulsifier, it can be used as a water-based dry solidifying adhesive. When a polyester ionomer type urethane resin is used, it is effective to add a water-soluble epoxy compound as a cross-linking agent.
  • the epoxy resin examples include a polyamide epoxy resin obtained by reacting a polyamide polyamine obtained by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid with epichlorohydrin.
  • Commercially available products of such polyamide epoxy resin include "Smiley's Resin (Registered Trademark) 650", “Smiley's Resin (Registered Trademark) 675" (all manufactured by Sumika Chemtex Co., Ltd.), and "WS-525" (Japan PMC). (Made by Co., Ltd.), etc.
  • the amount added is usually 1 to 100 parts by mass, preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polyvinyl alcohol-based resin.
  • the dry solidifying adhesive is a water-based dry solidifying adhesive containing a polyvinyl alcohol-based resin.
  • the dry solidified adhesive may contain a solvent.
  • the solvent include water, a mixed solvent of water and a hydrophilic organic solvent (for example, an alcohol solvent, an ether solvent, an ester solvent, etc.), an organic solvent, and the like.
  • the active energy ray-curable adhesive which is a chemical reaction type adhesive, is an adhesive that cures by being irradiated with active energy rays.
  • the active energy ray-curable adhesive may contain a solvent.
  • Examples of the active energy ray-curable adhesive include a cationically polymerizable adhesive containing an epoxy compound and a cationic polymerization initiator, a radically polymerizable adhesive containing an acrylic curing component and a radical polymerization initiator, and an epoxy compound.
  • It contains both a cationically polymerizable curing component such as, and a radically polymerizable curing component such as an acrylic compound, and further contains an adhesive containing a cationic polymerization initiator and a radical polymerization initiator, and these polymerization initiators. Examples thereof include an adhesive that is cured by irradiating it with an electron beam.
  • the active energy ray-curable adhesive includes a radically polymerizable active energy ray-curable adhesive containing an acrylic curing component and a radical polymerization initiator, and cationic polymerization containing an epoxy compound and a cationic polymerization initiator.
  • Active energy ray-curable adhesives are preferred.
  • the acrylic curing component include (meth) acrylates such as methyl (meth) acrylate and hydroxyethyl (meth) acrylate, and (meth) acrylic acid.
  • the active energy ray-curable adhesive containing an epoxy compound may further contain a compound other than the epoxy compound. Examples of the compound other than the epoxy compound include an oxetane compound and an acrylic compound.
  • radical polymerization initiator examples include photopolymerization initiators, which will be described later, which can be blended in the polymerizable liquid crystal composition forming the liquid crystal cured film.
  • commercially available products of cationic polymerization initiators include "Kayarad” (registered trademark) series (manufactured by Nippon Kayaku Co., Ltd.), “Syracure UVI” series (manufactured by Dow Chemical Co., Ltd.), and “CPI” series (manufactured by Sun Appro Co., Ltd.).
  • the content of the radical polymerization initiator and the cationic polymerization initiator is usually 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass with respect to 100 parts by mass of the active energy ray-curable adhesive.
  • the optical laminate of the present invention contains a liquid crystal cured film exhibiting the optical properties represented by the formulas (1) and (2) as a single layer, and the polymerizable liquid crystal compound forming such a liquid crystal cured film. Will generally have a maximum absorption wavelength between the wavelengths of 300 and 400 nm, as will be described later.
  • the transparent protective film located on the visual recognition side when incorporated in the image display device has an ultraviolet absorbing ability to protect the internal structure of the optical laminate from ultraviolet rays
  • the optical laminate having such a configuration In the production of the above, the irradiated ultraviolet rays are absorbed by the liquid crystal curing film or the transparent protective film, and it may be difficult for an amount of ultraviolet rays sufficient for curing the adhesive to reach the inside of the laminate. Therefore, in the optical laminate of the present invention, which may be sandwiched between layers having an ultraviolet absorbing ability (liquid crystal curing film and transparent protective film), a retardation film and a polarizing element, and a polarizing element and a transparent protective film are attached. It is advantageous to use a dry solidification type adhesive as the adhesive for bonding, from the viewpoint of thinning and improving the flexibility, and also from the viewpoint of obtaining an optical laminate having better adhesion between the layers.
  • the thickness of the adhesive layer for laminating the retardation film and the polarizing element and the polarizing element and the transparent protective film is preferably 10 nm or more, more preferably 30 nm or more, still more preferably 50 nm or more, and preferably 5 ⁇ m. Below, it is more preferably 3 ⁇ m or less, still more preferably 2 ⁇ m or less.
  • the thicknesses of the adhesive layer for adhering the retardation film and the polarizing element and the polarizing element and the transparent protective film may be the same or different from each other.
  • the thickness of the adhesive layer can be measured using, for example, an interference film thickness meter, a laser microscope, a stylus type film thickness meter, or the like.
  • the retardation film constituting the optical laminate of the present invention includes a base film having a moisture permeability of 100 g / m 2/24 hours or more and a liquid crystal cured film formed on the base film.
  • the moisture permeability of the base film is preferably 150 g / m 2/24 hours or more, and more preferably 200 g / m 2/24 hours or more.
  • the solvent in the adhesive can be easily removed, and the physical properties of the liquid crystal cured film formed on the base film are close to the elasticity and flexibility. It becomes easy to prepare the adhesive layer having. Therefore, when the optical laminate is bent, the adhesive layer that adheres each layer is unlikely to affect the deformation of the liquid crystal cured film, and the deformation of the entire optical laminate and the deformation of each layer are likely to follow each other. As a result, distortion is unlikely to occur at the bending point even when repeatedly bending, and it is possible to suppress streak-like defects and an increase in oblique reflectance due to this.
  • the upper limit of the moisture permeability of the base film is not particularly limited, but is usually 1000 g / m 2/24 hours or less, preferably 500 g / m 2/24 hours or less.
  • the moisture permeability of the base film can be measured by, for example, JIS Z 0208 (cup method). In detail, it can be measured according to the method described in Examples described later.
  • the moisture permeability of the base film can be controlled by the type of resin constituting the film, the thickness of the film, the surface treatment, and the like.
  • Examples of the resin constituting the base film having a moisture permeability of 100 g / m 2/24 hours or more include triacetyl cellulose, polyvinylpyrrolidone-based polymer, (meth) acrylamide-based polymer, and the like, which are available. Triacetyl cellulose is preferable from the viewpoint of ease of use and the like.
  • Such a resin can be formed into a film by a known means such as a solvent casting method and a melt extrusion method to obtain a base film. Further, a commercially available product may be used.
  • the thickness of the base film can be appropriately determined according to the desired configuration of the optical laminate, but is usually 5 ⁇ m to 300 ⁇ m from the viewpoint of thinning, processability, flexibility, strength, etc. of the optical laminate. It is preferably 15 ⁇ m to 200 ⁇ m, and more preferably 20 ⁇ m to 150 ⁇ m.
  • the base film has a total light transmittance of preferably 90% or more, more preferably 92% or more. When the total light transmittance is at least the above lower limit value, an optical laminate having high transparency and excellent optical characteristics can be formed.
  • the upper limit of the total light transmittance of the base film is not particularly limited, and may be 100% or less. The total light transmittance can be measured according to, for example, JIS K7361.
  • the base film preferably has an absolute value of the retardation value Rth (550) in the thickness direction with respect to light of 550 nm of 5 nm or less, and more preferably 3 nm or less.
  • Rth (550) in the thickness direction with respect to light of 550 nm of 5 nm or less, and more preferably 3 nm or less.
  • the surface of the base film is treated with corona in order to improve the adhesion with the liquid crystal cured film to be formed, the components constituting the alignment film, the components of the adhesive that can come into contact with the base film, and the like.
  • Surface treatment such as plasma treatment may be applied.
  • the liquid crystal cured film constituting the retardation film has the following formulas (1) and (2): Re (450) / Re (550) ⁇ 1.00 (1) 1.00 ⁇ Re (650) / Re (550) (2) [In the equation, Re ( ⁇ ) indicates the in-plane phase difference value at the wavelength ⁇ ] Is a liquid crystal curing film that fills with a single layer. "Filling with a single layer” means that the one-layer cured film obtained from the polymerizable liquid crystal compound containing the liquid crystal compound is a single layer and exhibits the optical characteristics represented by the above formulas (1) and (2). do.
  • the liquid crystal cured film When the liquid crystal cured film satisfies the formulas (1) and (2), the liquid crystal cured film has a so-called inverse wavelength dispersion in which the in-plane retardation value at a short wavelength is smaller than the in-plane retardation value at a long wavelength. Show sex. When the inverse wavelength dispersibility is exhibited, uniform phase difference performance tends to be exhibited in a wide wavelength range of visible light, and the optical characteristics of the optical laminate tend to be improved.
  • a liquid crystal cured film having optical characteristics satisfying the above formulas (1) and (2) with a single layer hereinafter, also referred to as "liquid crystal cured film (x)"
  • a thinner phase difference while having excellent optical characteristics. You can get the film.
  • Re (450) / Re (550) is preferably 0.70 or more, more preferably 0, because the reverse wavelength dispersibility is improved and the effect of improving the reflected hue in the front direction of the liquid crystal cured film can be further enhanced. It is .78 or more, preferably 0.95 or less, and more preferably 0.92 or less. Further, Re (650) / Re (550) is preferably 1.0 or more, more preferably 1.01 or more, and further preferably 1.02 or more.
  • the in-plane retardation value can be adjusted by the thickness d1 of the liquid crystal cured film.
  • the three-dimensional refractive index and the film thickness d are used to obtain a desired in-plane retardation value. Should be adjusted.
  • the liquid crystal cured film (x) has the following formula (3): 100 nm ⁇ Re (550) ⁇ 170 nm (3) [In the equation, Re ( ⁇ ) indicates the in-plane phase difference value at the wavelength ⁇ ] It is preferable to satisfy.
  • the liquid crystal cured film (x) satisfies the formula (3), the front reflection hue at the time of black display when the optical laminate (elliptic polarizing plate) containing the liquid crystal cured film (x) is applied to the organic EL display device becomes It will be easier to improve.
  • a more preferable range of the in-plane retardation value is 130 nm ⁇ ReA (550) ⁇ 150 nm.
  • the liquid crystal cured film (x) can be formed from a cured product of a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound is not particularly limited as long as it can form a liquid crystal cured film having desired optical properties, and conventionally known polymerizable liquid crystal compounds in the field of retardation film can be used.
  • the polymerizable liquid crystal compound is a liquid crystal compound having a polymerizable group.
  • the polymerizable liquid crystal compound generally, the polymer (cured product) obtained by polymerizing the polymerizable liquid crystal compound alone in a state of being oriented in a specific direction is opposite to that of the polymerizable liquid crystal compound exhibiting positive wavelength dispersity. Examples thereof include polymerizable liquid crystal compounds exhibiting wavelength dispersibility. From the viewpoint that it is easy to obtain a liquid crystal cured film that independently satisfies the optical characteristics represented by the above formulas (1) and (2), the liquid crystal cured film (x) constituting the retardation film in the present invention is independently in a specific direction. It is preferable that the polymer (cured product) obtained by polymerizing in a state oriented in the above direction is a cured product of a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound exhibiting reverse wavelength dispersibility.
  • a polymerizable group is a group that can participate in a polymerization reaction.
  • the polymerizable group contained in the polymerizable liquid crystal compound forming the liquid crystal cured film is preferably a photopolymerizable group.
  • the photopolymerizable group is a polymerizable group and refers to a group that can participate in the polymerization reaction by a reactive active species generated from the photopolymerization initiator, for example, an active radical or an acid.
  • Examples of the photopolymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group and an oxetanyl group.
  • an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.
  • the liquid crystal property exhibited by the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, but the thermotropic liquid crystal is preferable in that precise film thickness control is possible. Further, the phase-ordered structure of the thermotropic liquid crystal may be a nematic liquid crystal, a smectic liquid crystal, or a discotic liquid crystal.
  • the polymerizable liquid crystal compound can be used alone or in combination of two or more.
  • Polymerizable liquid crystal compounds having a so-called T-shaped or H-shaped molecular structure tend to exhibit reverse wavelength dispersibility, and polymerizable liquid crystal compounds having a T-shaped molecular structure tend to exhibit stronger reverse wavelength dispersibility.
  • the polymerizable liquid crystal compound exhibiting reverse wavelength dispersibility is preferably a compound having the following characteristics (A) to (D).
  • B) The polymerizable liquid crystal compound has ⁇ electrons in the long axis direction (a).
  • D A polymerizable liquid crystal compound defined by the following formula (i), where the total number of ⁇ electrons existing in the long axis direction (a) is N ( ⁇ a) and the total molecular weight existing in the long axis direction is N (Aa).
  • the long axis direction (a) and the number of ⁇ electrons N are defined as follows.
  • the major axis direction (a) is, for example, the rod-shaped major axis direction in the case of a compound having a rod-shaped structure.
  • the number of ⁇ electrons N ( ⁇ a) existing in the long axis direction (a) does not include ⁇ electrons that disappear due to the polymerization reaction.
  • the number of ⁇ electrons N ( ⁇ a) existing in the long axis direction (a) is the total number of ⁇ electrons on the long axis and ⁇ electrons coupled thereto, for example, existing in the long axis direction (a).
  • the number of ⁇ electrons present in the ring that satisfies Hückel's law is included.
  • the number of ⁇ electrons N ( ⁇ b) existing in the crossing direction (b) does not include ⁇ electrons that disappear due to the polymerization reaction.
  • the polymerizable liquid crystal compound satisfying the above has a mesogen structure in the long axis direction.
  • the liquid crystal phase (nematic phase, smectic phase) is expressed by this mesogen structure.
  • nematic phase or a smectic phase by heating the polymerizable liquid crystal compound satisfying the above (A) to (D) to a phase transition temperature or higher.
  • the polymerizable liquid crystal compound is usually oriented so that the major axis directions are parallel to each other, and the major axis direction is the nematic phase or smectic phase. Is the orientation direction of.
  • a polymer film composed of a polymer oriented in the long axis direction (a) can be formed. ..
  • This polymer film absorbs ultraviolet rays by ⁇ electrons in the major axis direction (a) and ⁇ electrons in the crossing direction (b).
  • the absorption maximum wavelength of ultraviolet rays absorbed by ⁇ electrons in the crossing direction (b) is defined as ⁇ bmax.
  • ⁇ bmax is usually 300 nm to 400 nm.
  • the density of ⁇ electrons satisfies the above equation (iii), and since the ⁇ electron density in the crossing direction (b) is larger than the ⁇ electron density in the major axis direction (a), the vibration surface in the crossing direction (b).
  • the absorption of linearly polarized ultraviolet rays (wavelength ⁇ bmax) having a vibration plane in the long axis direction (a) is larger than the absorption of linearly polarized ultraviolet rays (wavelength ⁇ bmax) having a vibration plane.
  • the ratio (the ratio of the absorbance in the crossing direction (b) of the linearly polarized ultraviolet rays / the absorbance in the major axis direction (a)) is, for example, more than 1.0, preferably 1.2 or more, usually 30 or less, and for example, 10 or less. Is.
  • a polymerizable liquid crystal compound having the above characteristics often exhibits reverse wavelength dispersibility in the birefringence of the polymer when polymerized in a state of being oriented in one direction.
  • a compound represented by the following formula (X) (hereinafter, also referred to as “polymerizable liquid crystal compound (X)”) can be mentioned.
  • Ar represents a divalent group having an aromatic group which may have a substituent.
  • the aromatic group referred to here include the groups exemplified by (Ar-1) to (Ar-23) described later.
  • Ar may have two or more aromatic groups.
  • the aromatic group may contain at least one or more of a nitrogen atom, an oxygen atom and a sulfur atom.
  • the two or more aromatic groups may be bonded to each other by a single bond or a divalent bonding group such as -CO-O- or -O-. ..
  • G 1 and G 2 independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group, respectively.
  • the hydrogen atom contained in the divalent aromatic group or the divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, and carbon.
  • the carbon atom constituting the divalent aromatic group or the divalent alicyclic hydrocarbon group may be substituted with an alkoxy group, a cyano group or a nitro group of the number 1 to 4, and is an oxygen atom or a sulfur atom. Alternatively, it may be substituted with a nitrogen atom.
  • L 1 , L 2 , B 1 and B 2 are independently single-bonded or divalent linking groups, respectively.
  • k and l each independently represent an integer of 0 to 3, and satisfy the relationship of 1 ⁇ k + l.
  • E 1 and E 2 each independently represent an alkanediyl group having 1 to 17 carbon atoms, and an alkanediyl group having 4 to 12 carbon atoms is more preferable.
  • P 1 and P 2 independently represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.
  • G 1 and G 2 are each independently substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, preferably a 1,4-phenylenediyl group.
  • a 1,4-cyclohexanediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group substituted 1.
  • a substituted 1,4-trans-cyclohexandiyl group is a substituted 1,4-trans-cyclohexandiyl group.
  • at least one of a plurality of G 1 and G 2 present is preferably a divalent alicyclic hydrocarbon group, and at least one of G 1 and G 2 bonded to L 1 or L 2 is preferable. More preferably, it is a divalent alicyclic hydrocarbon group.
  • L 1 and L 2 are independent of each other, preferably single bond, alkylene group having 1 to 4 carbon atoms, -O-, -S-, -R a1 OR a2- , -R a3 COOR a4- , -R a5 .
  • R a1 to R a8 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms
  • R c and R d represent an alkyl group or a hydrogen atom having 1 to 4 carbon atoms.
  • L 1 and L 2 are independent, more preferably single bonds, -OR a2-1- , -CH 2- , -CH 2 CH 2- , -COOR a4-1- , or -OCOR a6-1- .
  • R a2-1 , R a4-1 , and R a6-1 independently represent either single bond, -CH 2- , or -CH 2 CH 2- .
  • L 1 and L 2 are independent, more preferably single bonds, -O-, -CH 2 CH 2- , -COO-, -COOCH 2 CH 2- , or -OCO-, respectively.
  • B 1 and B 2 are independent of each other, preferably single bond, alkylene group having 1 to 4 carbon atoms, -O-, -S-, -R a9 OR a10- , -R a11 COOR a12- , -R a13 .
  • OCOR a14 -or-R a15 OC OOR a16- .
  • R a9 to R a16 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms.
  • B 1 and B 2 are independent, more preferably single-bonded, -OR a10-1- , -CH 2- , -CH 2 CH 2- , -COOR a12-1- , or -OCOR a14-1- .
  • R a10-1 , R a12-1 , and R a14-1 independently represent either single bond, -CH 2- , or -CH 2 CH 2- .
  • B 1 and B 2 are independent, more preferably single-bonded, -O-, -CH 2 CH 2- , -COO-, -COOCH 2 CH 2-, -OCO-, or -OCOCH 2 CH 2- . be.
  • the polymerizable group represented by P 1 or P 2 includes an epoxy group, a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, and an oxylanyl group. , And an oxetanyl group and the like.
  • acryloyloxy group, methacryloyloxy group, vinyl group and vinyloxy group are preferable, and acryloyloxy group and methacryloyloxy group are more preferable.
  • Ar preferably has at least one selected from an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocycle which may have a substituent, and an electron-withdrawing group.
  • aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring, an anthracene ring and the like, and a benzene ring and a naphthalene ring are preferable.
  • aromatic heterocycle examples include a furan ring, a benzofuran ring, a pyrrole ring, an indole ring, a thiophene ring, a benzothiophene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazole ring, a triazine ring, a pyrrolin ring, an imidazole ring, and a pyrazole ring.
  • a thiazole ring it is preferable to have a thiazole ring, a benzothiazole ring, or a benzofuran ring, and it is more preferable to have a benzothiazole ring.
  • Ar contains a nitrogen atom
  • the nitrogen atom preferably has ⁇ electrons.
  • the total number of ⁇ electrons N ⁇ of the group represented by Ar is usually 6 or more, preferably 8 or more, more preferably 10 or more, still more preferably 14 or more. Especially preferably, it is 16 or more. Further, it is preferably 32 or less, more preferably 26 or less, and further preferably 24 or less.
  • Examples of the aromatic group contained in Ar include the following groups.
  • Z 0 , Z 1 and Z 2 are independently hydrogen atoms, halogen atoms, and alkyl having 1 to 12 carbon atoms.
  • Z 0 , Z 1 and Z 2 may contain a polysulfinyl group having 1 to 12 carbon atoms, alkylsulf
  • Q 1 and Q 2 independently represent -CR 2'R 3'- , -S-, -NH-, -NR 2'- , -CO- or -O- , and R 2'and R 3 respectively .
  • ' Independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • J 1 and J 2 independently represent a carbon atom or a nitrogen atom, respectively.
  • Y 1 , Y 2 and Y 3 each independently represent an aromatic hydrocarbon group or an aromatic heterocyclic group which may be substituted.
  • W 1 and W 2 independently represent a hydrogen atom, a cyano group, a methyl group or a halogen atom, and m represents an integer of 0 to 6.
  • Examples of the aromatic hydrocarbon group in Y 1 , Y 2 and Y 3 include an aromatic hydrocarbon group having 6 to 20 carbon atoms such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group and a biphenyl group, and a phenyl group.
  • a naphthyl group is preferable, and a phenyl group is more preferable.
  • the aromatic heterocyclic group has 4 to 20 carbon atoms including at least one heteroatom such as a nitrogen atom such as a frill group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group and a benzothiazolyl group, an oxygen atom and a sulfur atom.
  • a nitrogen atom such as a frill group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group and a benzothiazolyl group
  • an aromatic heterocyclic group and a frill group, a thienyl group, a pyridinyl group, a thiazolyl group and a benzothiazolyl group are preferable.
  • Y 1 , Y 2 and Y 3 may be independently substituted polycyclic aromatic hydrocarbon groups or polycyclic aromatic heterocyclic groups, respectively.
  • the polycyclic aromatic hydrocarbon group refers to a condensed polycyclic aromatic hydrocarbon group or a group derived from an aromatic ring assembly.
  • the polycyclic aromatic heterocyclic group refers to a fused polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
  • Z 0 , Z 1 and Z 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 12 carbon atoms, cyano group, nitro group and alkoxy group having 1 to 12 carbon atoms, respectively.
  • 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and a cyano group
  • Z 1 and Z 2 are further preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, and a cyano group.
  • Z 0 , Z 1 and Z 2 may contain a polymerizable group.
  • Q 1 and Q 2 are preferably -NH-, -S-, -NR 2'-, and -O- , and R 2'is preferably a hydrogen atom.
  • R 2' is preferably a hydrogen atom.
  • -S-, -O-, and -NH- are particularly preferable.
  • Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is attached and Z 0 .
  • the aromatic heterocyclic group include those described above as the aromatic heterocycle that Ar may have.
  • a pyrrole ring, an imidazole ring, a pyrroline ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, and an indole examples thereof include a ring, a quinoline ring, an isoquinoline ring, a purine ring, a pyrroline ring, and the like.
  • This aromatic heterocyclic group may have a substituent.
  • Y 1 may be a polycyclic aromatic hydrocarbon group or a polycyclic aromatic heterocyclic group which may be substituted as described above, together with the nitrogen atom to which the Y 1 is bonded and Z 0 .
  • a benzofuran ring, a benzothiazole ring, a benzoxazole ring and the like can be mentioned.
  • the liquid crystal cured film (x) constituting the retardation film preferably has at least one maximum absorption between wavelengths of 300 to 400 nm
  • the polymerizable liquid crystal compound forming the liquid crystal cured film (x) is a polymerizable liquid crystal compound. It is preferably a polymerizable liquid crystal compound having a maximum absorption wavelength between the wavelengths of 300 and 400 nm.
  • the polymerizable liquid crystal composition contains a photopolymerization initiator, the polymerization reaction and gelation of the polymerizable liquid crystal compound may proceed during long-term storage, but the maximum absorption wavelength of the polymerizable liquid crystal compound should be 300 to 400 nm.
  • the maximum absorption wavelength of the polymerizable liquid crystal compound can be measured in a solvent using an ultraviolet-visible spectrophotometer.
  • the solvent is a solvent capable of dissolving a polymerizable liquid crystal compound, and examples thereof include chloroform and tetrahydrofuran.
  • polymerizable liquid crystal compound capable of forming the liquid crystal cured film (x) include polymerizable liquid crystal compounds as described in JP-A-2011-207765, JP-A-2010-031223 and the like. Be done. Further, as long as a single layer can form a liquid crystal cured film (x) satisfying the above formulas (1) and (2), a polymerizable liquid crystal compound whose homopolymer exhibits positive wavelength dispersibility may be used in an appropriate amount. ..
  • the content of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition for forming the liquid crystal cured film (x) is, for example, 70 to 99.5 parts by mass with respect to 100 parts by mass of the solid content of the polymerizable liquid crystal composition. It is preferably 80 to 99 parts by mass, more preferably 85 to 98 parts by mass, and further preferably 90 to 95 parts by mass.
  • the content of the polymerizable liquid crystal compound is within the above range, it is advantageous from the viewpoint of the orientation of the obtained liquid crystal cured film (x).
  • the solid content of a polymerizable liquid crystal composition means all components except a volatile component such as an organic solvent from a polymerizable liquid crystal composition.
  • the polymerizable liquid crystal composition for forming the liquid crystal cured film (x) includes, in addition to the polymerizable liquid crystal compound, a solvent, a polymerization initiator, a leveling agent, an antioxidant, a photosensitizer, a reactive additive and the like. It may further contain an additive. As each of these components, only one kind may be used, or two or more kinds may be used in combination.
  • the polymerizable liquid crystal composition is usually applied to a base film or the like in a state of being dissolved in a solvent, it is preferable to contain a solvent.
  • the solvent can dissolve the polymerizable liquid crystal compound, but is preferably a solvent that is inert to the polymerization reaction of the polymerizable liquid crystal compound. Further, it is preferable that the solvent is a solvent that does not dissolve the base film to be used. Examples of the solvent include water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, 2-butoxyethanol and propylene glycol monomethyl ether.
  • Ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, propylene glycol methyl ether acetate and ethyl lactate; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone.
  • Ketone solvent aliphatic hydrocarbon solvent such as pentane, hexane and heptane; alicyclic hydrocarbon solvent such as ethylcyclohexane; aromatic hydrocarbon solvent such as toluene, xylene and anisole; nitrile solvent such as acetonitrile; tetrahydrofuran and dimethoxyethane Ether solvents such as; chlorine-containing solvents such as chloroform and chlorobenzene; amide-based solvents such as dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone and the like. Can be mentioned.
  • aliphatic hydrocarbon solvent such as pentane, hexane and heptane
  • alicyclic hydrocarbon solvent such as ethylcyclohexane
  • aromatic hydrocarbon solvent such as toluene, xylene and anisole
  • solvents can be used alone or in combination of two or more.
  • the content of the solvent in the polymerizable liquid crystal composition is preferably 50 to 98 parts by mass, more preferably 70 to 95 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal composition. Therefore, the solid content in 100 parts by mass of the polymerizable liquid crystal composition is preferably 2 to 50 parts by mass.
  • the solid content is 50 parts by mass or less, the viscosity of the polymerizable liquid crystal composition is low, so that the thickness of the film becomes substantially uniform, and unevenness tends to be less likely to occur.
  • the solid content can be appropriately determined in consideration of the thickness of the polymerizable liquid crystal cured film to be produced.
  • the polymerization initiator is a compound that can initiate a polymerization reaction such as a polymerizable liquid crystal compound by producing a reactive species by the contribution of heat or light.
  • the reaction active species include active species such as radicals or cations or anions.
  • a photopolymerization initiator that generates radicals by light irradiation is preferable from the viewpoint of easy reaction control.
  • photopolymerization initiator examples include benzoin compounds, benzophenone compounds, benzyl ketal compounds, oxime compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, triazine compounds, iodonium salts and sulfonium salts, and commercially available products are used. May be good.
  • Irgacure (registered trademark) 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369, Irgacure 379, Irgacure 127, Irgacure 2959, Irgacure 754, Irgacure 379EG (above, BASF Japan) , Sakeol BZ, Sakeol Z, Sakeol BEE (manufactured by Seiko Kagaku Co., Ltd.), Kayacure BP100 (manufactured by Nippon Kayaku Co., Ltd.), Kayacure UVI-6992 (manufactured by Dow), ADEKA PTOMER SP- 152, ADEKA CORPORATION SP-170, ADEKA CORPORATION N-1717, ADEKA CORPORATION N-1919, ADEKA ARCULDS NCI-831, ADEKA ARCUL
  • the photopolymerization initiator contained in the polymerizable liquid crystal composition is at least one type, and a plurality of types may be used in combination, and may be appropriately selected in relation to the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition. good.
  • the maximum absorption wavelength is preferably 300 nm to 400 nm, more preferably 300 nm to 380 nm, and above all, the ⁇ -acetophenone type.
  • a polymerization initiator and an oxime-based photopolymerization initiator are preferable.
  • Examples of the ⁇ -acetophenone compound include 2-methyl-2-morpholino-1- (4-methylsulfanylphenyl) propan-1-one and 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutane-1.
  • Examples of the ⁇ -acetophenone compounds include Irgacure 369, 379EG, 907 (all manufactured by BASF Japan Ltd.) and Sequol BEE (manufactured by Seiko Kagaku Co., Ltd.).
  • the oxime ester-based photopolymerization initiator generates radicals such as phenyl radicals and methyl radicals when irradiated with light.
  • the polymerization of the polymerizable liquid crystal compound proceeds preferably by this radical, and among them, the oxime ester-based photopolymerization initiator that generates a methyl radical is preferable because the polymerization reaction initiation efficiency is high. Further, from the viewpoint of more efficiently advancing the polymerization reaction, it is preferable to use a photopolymerization initiator capable of efficiently utilizing ultraviolet rays having a wavelength of 350 nm or more.
  • a triazine compound or a carbazole compound having an oxime ester structure is preferable, and a carbazole compound having an oxime ester structure is more preferable from the viewpoint of sensitivity.
  • the carbazole compound containing an oxime ester structure include 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], etanone, 1- [9-ethyl-6- (2-).
  • Methylbenzoyl) -9H-carbazole-3-yl] -1- (O-acetyloxime) and the like can be mentioned.
  • Commercially available products of oxime ester-based photopolymerization initiators include Irgacure OXE-01, Irgacure OXE-02, Irgacure OXE-03 (above, manufactured by BASF Japan Ltd.), ADEKA PTOMER N-1919, and ADEKA ARCULDS NCI-831. (The above is manufactured by ADEKA CORPORATION) and the like.
  • the content of the photopolymerization initiator is usually 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Is. Within the above range, the reaction of the polymerizable group proceeds sufficiently, and the orientation of the polymerizable liquid crystal compound is not easily disturbed.
  • the leveling agent is an additive having a function of adjusting the fluidity of the polymerizable liquid crystal composition and making the coating film obtained by applying the composition flatter.
  • examples thereof include silicone-based, polyacrylate-based and perfluoroalkyl-based leveling agents.
  • Commercially available products may be used as the leveling agent, and specifically, DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, FZ2123 (all manufactured by Toray Dow Corning Co., Ltd.).
  • KP321, KP323, KP324, KP326, KP340, KP341, X22-161A, KF6001 (all manufactured by Shin-Etsu Chemical Industry Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF-4446, TSF4452, TSF44 (All of them are made by Momentive Performance Materials Japan GK), Florinert (registered trademark) FC-72, FC-40, FC-43, FC-3283 (All of which are made by Sumitomo 3M Co., Ltd.) ), Megafuck (registered trademark) R-08, R-30, R-90, F-410, F-411, F-443, F-445, F-470, F- 477, F-479, F-482, F-483, F-556 (all manufactured by DIC Co., Ltd.), Ftop (trade name) EF301, EF303, EF351, EF352 (all of which
  • the leveling agent can be used alone or in combination of two or more.
  • the content of the leveling agent is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound.
  • the content of the leveling agent is within the above range, it is easy to orient the polymerizable liquid crystal compound, and the obtained liquid crystal cured film tends to be smoother, which is preferable.
  • the antioxidant may be a primary antioxidant selected from phenol-based antioxidants, amine-based antioxidants, quinone-based antioxidants, and nitroso-based antioxidants, as well as phosphorus-based antioxidants and sulfur. It may be a secondary antioxidant selected from the system antioxidants.
  • the content of the antioxidant is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Yes, preferably 0.1 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass.
  • Antioxidants can be used alone or in combination of two or more.
  • the photopolymerization initiator can be made highly sensitive.
  • the photosensitizer include xanthones such as xanthones and thioxanthones; anthracenes having substituents such as anthracene and alkyl ethers; phenothiazines; rubrene.
  • the photosensitizer can be used alone or in combination of two or more.
  • the content of the photosensitizer is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. 3 parts by mass.
  • the reactive additive preferably has a carbon-carbon unsaturated bond and an active hydrogen reactive group in the molecule.
  • the "active hydrogen reactive group” as used herein is a group having reactivity with a group having active hydrogen such as a carboxyl group (-COOH), a hydroxyl group (-OH) and an amino group (-NH 2 ).
  • a typical example thereof is a glycidyl group, an oxazoline group, a carbodiimide group, an aziridine group, an imide group, an isocyanate group, a thioisocyanate group, a maleic anhydride group and the like.
  • the number of carbon-carbon unsaturated bonds or active hydrogen reactive groups contained in the reactive additive is usually 1 to 20 each, and preferably 1 to 10 each.
  • the plurality of active hydrogen-reactive groups may be the same or different.
  • the carbon-carbon unsaturated bond contained in the reactive additive may be a carbon-carbon double bond, a carbon-carbon triple bond, or a combination thereof, but a carbon-carbon double bond is preferable.
  • the reactive additive preferably contains a carbon-carbon unsaturated bond as a vinyl group and / or a (meth) acrylic group.
  • a reactive additive in which the active hydrogen reactive group is at least one selected from the group consisting of an epoxy group, a glycidyl group and an isocyanate group is preferable, and a reactive additive having an acrylic group and an isocyanate group is more preferable. ..
  • the reactive additive include compounds having a (meth) acrylic group and an epoxy group, such as methacryloxyglycidyl ether and acryloxyglycidyl ether; (meth) acrylic groups and oxetane, such as oxetan acrylate and oxetane methacrylate.
  • Compounds with groups Compounds with (meth) acrylic groups and lactone groups such as lactone acrylates and lactone methacrylates; Compounds with vinyl and oxazoline groups such as vinyl oxazoline and isopropenyl oxazoline; isocyanatomethyl acrylates , Isocyanatomethylmethacrylate, 2-isocyanatoethyl acrylate, 2-isocyanatoethyl methacrylate and the like, oligomers of compounds having a (meth) acrylic group and an isocyanate group.
  • examples thereof include compounds having a vinyl group, a vinylene group and an acid anhydride, such as methacrylic anhydride, acrylic acid anhydride, maleic anhydride or vinyl maleic anhydride.
  • methacryloxyglycidyl ether, acryloxyglycidyl ether, isocyanatomethyl acrylate, isocyanatomethyl methacrylate, vinyloxazoline, 2-isocyanatoethyl acrylate, 2-isocyanatoethyl methacrylate or the above-mentioned oligomer is preferable, and isocyanatomethyl acrylate, 2-Isocyanatoethyl acrylate or the above oligomers are particularly preferred.
  • a commercially available product can be used as it is or after being purified as needed.
  • examples of commercially available products include Laromar (registered trademark) LR-9000 (manufactured by BASF).
  • the content of the reactive additive is usually 0.01 to 10 parts by mass, preferably 0.1 part by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. ⁇ 7 parts by mass.
  • the polymerizable liquid crystal composition for forming the liquid crystal cured film (x) can be obtained by stirring the polymerizable liquid crystal compound and components such as a solvent and a polymerization initiator at a predetermined temperature, respectively.
  • the liquid crystal cured film (x) is, for example, A coating film of a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound is formed on a base film or an alignment film described later, the coating film is dried, and the polymerizable liquid crystal composition is formed.
  • the process of orienting the polymerizable liquid crystal compound inside, and It can be produced by a method including a step of polymerizing a polymerizable liquid crystal compound while maintaining an oriented state to form a liquid crystal cured film.
  • the coating film of the polymerizable liquid crystal composition can be formed by applying the polymerizable liquid crystal composition on a base film or an alignment film formed on a base film as described later.
  • a coating method such as a spin coating method, an extrusion method, a gravure coating method, a die coating method, a bar coating method, an applicator method, or a flexo method is used for printing.
  • Known methods such as a method can be mentioned.
  • the solvent is removed by drying or the like to form a dry coating film.
  • the drying method include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method.
  • the heating temperature of the coating film can be appropriately determined in consideration of the polymerizable liquid crystal compound to be used and the material of the base film or the like forming the coating film. Usually, it is necessary that the temperature is equal to or higher than the liquid crystal phase transition temperature.
  • the liquid crystal phase transition temperature (smetic phase) of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition can be heated to a temperature of about (transition temperature or nematic phase transition temperature) or higher.
  • the heating temperature is preferably 3 ° C. or higher, more preferably 5 ° C. or higher, higher than the liquid crystal phase transition temperature of the polymerizable liquid crystal compound.
  • the upper limit of the heating temperature is not particularly limited, but is preferably 180 ° C. or lower, more preferably 150 ° C. or lower in order to avoid damage to the coating film, the base film, or the like due to heating.
  • the liquid crystal phase transition temperature can be measured using, for example, a polarizing microscope equipped with a temperature control stage, a differential scanning calorimeter (DSC), a thermal weight differential thermal analyzer (TG-DTA), or the like.
  • the phase transition temperature is a polymerization in which all the polymerizable liquid crystal compounds constituting the polymerizable liquid crystal composition are mixed at the same ratio as the composition in the polymerizable liquid crystal composition. It means a temperature measured in the same manner as when one kind of polymerizable liquid crystal compound is used by using a mixture of sex liquid crystal compounds.
  • the liquid crystal phase transition temperature of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition may be lower than the liquid crystal phase transition temperature of the polymerizable liquid crystal compound as a single substance.
  • the heating time can be appropriately determined depending on the heating temperature, the type of the polymerizable liquid crystal compound used, the type of the solvent, its boiling point and its amount, etc., but is usually 0.5 to 10 minutes, preferably 0.5. ⁇ 5 minutes.
  • the solvent may be removed from the coating film at the same time as heating the polymerizable liquid crystal compound to the liquid crystal phase transition temperature or higher, or separately, but it is preferable to perform the removal at the same time from the viewpoint of improving productivity.
  • the solvent in the coating film should be appropriately added under the condition that the polymerizable liquid crystal compound contained in the coating film obtained from the polymerizable liquid crystal composition does not polymerize.
  • a pre-drying step may be provided for removal.
  • drying method in the pre-drying step examples include a natural drying method, a ventilation drying method, a heating drying method and a vacuum drying method, and the drying temperature (heating temperature) in the drying step is the type of polymerizable liquid crystal compound to be used and the solvent. It can be appropriately determined according to the type of the above, its boiling point, its amount and the like.
  • the polymerizable liquid crystal compound is polymerized by light irradiation while maintaining the orientation state of the polymerizable liquid crystal compound, whereby the polymer of the polymerizable liquid crystal compound existing in the desired orientation state is used.
  • a certain liquid crystal cured film is formed.
  • a photopolymerization method is usually used.
  • the light irradiating the dry coating film includes the type of the photopolymerization initiator contained in the dry coating film and the type of the polymerizable liquid crystal compound (particularly, the type of the polymerizable group of the polymerizable liquid crystal compound). And it is appropriately selected according to the amount.
  • ultraviolet light is preferable because it is easy to control the progress of the polymerization reaction and it is possible to use a photopolymerization apparatus widely used in the art, so that photopolymerization can be performed by ultraviolet light. It is preferable to select the type of the polymerizable liquid crystal compound or the photopolymerization initiator contained in the polymerizable liquid crystal composition.
  • the polymerization temperature can be controlled by irradiating light while cooling the dry coating film by an appropriate cooling means.
  • a cooling means By adopting such a cooling means, if the polymerizable liquid crystal compound is polymerized at a lower temperature, a liquid crystal cured film can be appropriately formed even if a substrate having a relatively low heat resistance is used. It is also possible to promote the polymerization reaction by raising the polymerization temperature within a range in which defects due to heat during light irradiation (deformation due to heat of the base film, etc.) do not occur. A patterned cured film can also be obtained by masking or developing during photopolymerization.
  • Examples of the light source of the active energy ray include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excima laser, and a wavelength range.
  • Examples thereof include LED light sources that emit light of 380 to 440 nm, chemical lamps, black light lamps, microwave-excited mercury lamps, metal halide lamps, and the like.
  • the ultraviolet irradiation intensity is usually 10 to 3,000 mW / cm 2 .
  • the ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating the photopolymerization initiator.
  • the time for irradiating light is usually 0.1 seconds to 10 minutes, preferably 0.1 seconds to 5 minutes, more preferably 0.1 seconds to 3 minutes, still more preferably 0.1 seconds to 1 minute. be.
  • the integrated light amount is 10 to 3,000 mJ / cm 2 , preferably 50 to 2,000 mJ / cm 2 , and more preferably 100 to 1,000 mJ / cm. It is 2 .
  • the thickness of the liquid crystal cured film (x) is 0.5 ⁇ m or more and 3 ⁇ m or less, more preferably 1.0 ⁇ m or more, still more preferably 1.5 ⁇ m or more, and even more preferably 2.5 ⁇ m or less.
  • the thickness of the liquid crystal cured film (x) can be measured using an interference film thickness meter, a laser microscope, a stylus type film thickness meter, or the like.
  • the liquid crystal cured film (x) may be formed on the alignment film.
  • the alignment film has an orientation-regulating force that orients the polymerizable liquid crystal compound in a desired direction.
  • a polymerizable liquid crystal compound is formed by forming a liquid crystal cured film using a horizontally oriented film having an orientation restricting force for orienting a polymerizable liquid crystal compound in the horizontal direction and a vertically oriented film having an orientation restricting force for orienting the polymerizable liquid crystal compound in the vertical direction.
  • the alignment control force can be arbitrarily adjusted according to the type of alignment film, surface condition, rubbing conditions, etc., and when the alignment film is formed of a photo-alignable polymer, it can be arbitrarily adjusted according to the polarization irradiation conditions, etc. It is possible to do.
  • the alignment film preferably has solvent resistance that does not dissolve when the polymerizable liquid crystal composition is applied, and also has heat resistance in heat treatment for removing the solvent and aligning the polymerizable liquid crystal compound.
  • the alignment film include an alignment film containing an orientation polymer, a photoalignment film, a grub alignment film having an uneven pattern or a plurality of grooves on the surface, a stretched film stretched in the orientation direction, and the like, and the accuracy of the alignment angle and From the viewpoint of quality, a photoalignment film is preferable.
  • the oriented polymer examples include polyamides and gelatins having an amide bond in the molecule, polyimide having an imide bond in the molecule and its hydrolyzate polyamic acid, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, and poly. Examples thereof include oxazol, polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid and polyacrylic acid esters. Of these, polyvinyl alcohol is preferable.
  • the oriented polymer can be used alone or in combination of two or more.
  • the alignment film containing the alignment polymer is usually formed by applying a composition in which the alignment polymer is dissolved in a solvent (hereinafter, also referred to as “orientation polymer composition”) to a surface such as a base film on which the alignment film should be formed. , The solvent is removed, or the oriented polymer composition is applied to the substrate, the solvent is removed, and rubbing is performed (rubbing method).
  • a solvent hereinafter, also referred to as “orientation polymer composition”
  • the concentration of the oriented polymer in the oriented polymer composition may be in the range where the oriented polymer material can be completely dissolved in the solvent, but is preferably 0.1 to 20% in terms of solid content with respect to the solution, and is 0. .1 to 10% is more preferable.
  • orientation polymer composition a commercially available alignment film material may be used as it is.
  • alignment film materials include Sunever (registered trademark, manufactured by Nissan Chemical Industries, Ltd.) and Optomer (registered trademark, manufactured by JSR Corporation).
  • Examples of the method of applying the oriented polymer composition to the surface of the base film or the like on which the oriented film should be formed include the same methods as those exemplified as the method of applying the polymerizable liquid crystal composition to the base film.
  • Examples of the method for removing the solvent contained in the oriented polymer composition include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method.
  • a rubbing process can be performed as needed to impart an orientation regulating force to the alignment film (rubbing method).
  • a method of imparting an orientation restricting force by the rubbing method a rubbing cloth is wound and formed on the surface of a base material by applying an orientation polymer composition to a base material and annealing it on a rotating rubbing roll. Examples thereof include a method of contacting a film of an oriented polymer. If masking is performed during the rubbing process, it is possible to form a plurality of regions (patterns) having different orientation directions on the alignment film.
  • the photo-alignment film is usually a composition containing a polymer having a photoreactive group and / or a monomer and a solvent (hereinafter, also referred to as "composition for forming a photo-alignment film"), and a substrate on which the alignment film is to be formed. It is obtained by applying it to the surface of a film, removing the solvent, and then irradiating it with polarized light (preferably polarized UV).
  • polarized light preferably polarized UV.
  • the photoalignment film is also advantageous in that the direction of the orientation regulating force can be arbitrarily controlled by selecting the polarization direction of the polarized light to be irradiated.
  • a photoreactive group is a group that produces a liquid crystal alignment ability when irradiated with light.
  • groups involved in photoreactions that are the origin of liquid crystal alignment ability such as molecular orientation induction or isomerization reaction, dimerization reaction, photocrosslinking reaction or photodecomposition reaction generated by light irradiation. Of these, groups involved in the dimerization reaction or the photocrosslinking reaction are preferable because they have excellent orientation.
  • a photoreactive group involved in the photodimerization reaction is preferable, and a photoalignment film having a relatively small amount of polarization irradiation required for photoalignment and excellent thermal stability and temporal stability can be easily obtained.
  • the photoreactive group is preferably a cinnamoyl group or a chalcone group.
  • the liquid crystal cured film is formed from a polymerizable liquid crystal compound having a (meth) acryloyloxy group as a polymerizable group, the end of the polymer side chain is cinnamic acid as a polymer having a photoreactive group forming an alignment film. Adhesion to the liquid crystal cured film can be improved by using a polymer having a cinnamoyl group having a structure.
  • Examples of the solvent contained in the composition for forming a photoalignment film include the same solvents as those exemplified above as the solvents that can be used in the polymerizable liquid crystal composition, and the solubility of the polymer or the monomer having a photoreactive group can be mentioned. It can be appropriately selected accordingly.
  • the content of the polymer or monomer having a photoreactive group in the composition for forming a photo-alignment film can be appropriately adjusted depending on the type of the polymer or monomer and the thickness of the target photo-alignment film, but the composition for forming a photo-alignment film. It is preferably at least 0.2% by mass, more preferably in the range of 0.3 to 10% by mass, based on the mass of the above.
  • the composition for forming a photoalignment film may contain a polymer material such as polyvinyl alcohol or polyimide or a photosensitizer as long as the characteristics of the photoalignment film are not significantly impaired.
  • the same method as the method of applying the alignment polymer composition can be mentioned.
  • the method for removing the solvent from the applied composition for forming a photoalignment film include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method.
  • the substrate film side is irradiated with the polarized light to obtain the polarized light. It may be in the form of transmitting and irradiating. Further, it is particularly preferable that the polarized light is substantially parallel light.
  • the wavelength of the polarized light to be irradiated is preferably in the wavelength range in which the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet rays) having a wavelength in the range of 250 to 400 nm is particularly preferable.
  • Examples of the light source used for the polarized light irradiation include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, ultraviolet light lasers such as KrF and ArF, and high-pressure mercury lamps, ultra-high pressure mercury lamps and metal halide lamps. preferable.
  • a high-pressure mercury lamp, an ultra-high pressure mercury lamp, and a metal halide lamp are preferable because they have a high emission intensity of ultraviolet rays having a wavelength of 313 nm.
  • Polarized UV can be irradiated by irradiating the light from the light source through an appropriate polarizing element.
  • a polarizing element a polarizing filter, a polarizing prism such as Gran Thomson or Gran Tailor, or a wire grid type polarizing element can be used.
  • the groove alignment film is a film having an uneven pattern or a plurality of grooves on the film surface.
  • the polymerizable liquid crystal compound is applied to a film having a plurality of linear grubs arranged at equal intervals, the liquid crystal molecules are oriented in the direction along the groove.
  • a method of forming an uneven pattern by performing exposure and rinsing treatment after exposure through an exposure mask having a pattern-shaped slit on the surface of the photosensitive polyimide film, and a plate having a groove on the surface A method in which a layer of UV-curable resin before curing is formed on a master, and the formed resin layer is transferred to a substrate or the like and then cured, and UV before curing formed on the surface on which an alignment film should be formed. Examples thereof include a method in which a roll-shaped master having a plurality of grooves is pressed against a film of a cured resin to form irregularities, and then the film is cured.
  • the thickness of the alignment film is usually in the range of 10 nm or more and 10,000 nm or less, preferably in the range of 10 nm or more and 2500 nm or less, and more preferably in the range of 10 nm or more and 1000 nm or less. It is more preferably 10 nm or more and 500 nm or less, and particularly preferably 50 nm or more and 250 nm or less.
  • the polarizing element constituting the optical laminate of the present invention is a film having a function of extracting linearly polarized light from incident natural light, and is a polyvinyl alcohol-based resin film containing a dichroic dye.
  • a saponified product of the polyvinyl acetate-based resin can be used.
  • the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and a copolymer of vinyl acetate and another monomer copolymerizable therewith (for example, ethylene-vinyl acetate copolymer weight).
  • Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the saponification degree of the polyvinyl alcohol-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually about 1,000 to 10,000, preferably in the range of 1,500 to 5,000.
  • a film made of such a polyvinyl alcohol-based resin is used as a raw film for a polarizing film.
  • the method for forming the film of the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method.
  • the film thickness of the polyvinyl alcohol-based raw film can be, for example, about 10 to 150 ⁇ m.
  • the modulator is usually a step of uniaxially stretching such a polyvinyl alcohol-based resin film, a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol-based resin film with a dichroic dye, and a dichroic dye. It is produced through a step of treating the adsorbed polyvinyl alcohol-based resin film with an aqueous boric acid solution and a step of washing with water after the treatment with the aqueous boric acid solution. By dyeing the polyvinyl alcohol-based resin film with the dichroic dye, the dichroic dye is contained in the polyvinyl alcohol-based resin film.
  • the polarizing element When the polarizing element is produced by such a production method, the polarizing element becomes a stretched polyvinyl alcohol-based resin film containing a dichroic dye.
  • the uniaxial stretching of the polyvinyl alcohol-based resin film may be performed before dyeing the dichroic dye, at the same time as dyeing, or after dyeing. If the uniaxial stretching is performed after staining, the uniaxial stretching may be performed before the boric acid treatment or during the boric acid treatment. It is also possible to perform uniaxial stretching at these multiple stages. In uniaxial stretching, rolls having different peripheral speeds may be uniaxially stretched, or may be uniaxially stretched using a thermal roll. Further, the uniaxial stretching may be a dry stretching performed in the atmosphere, or may be a wet stretching performed in a state where the polyvinyl alcohol-based resin film is swollen using a solvent.
  • the draw ratio is preferably 8 times or less, more preferably 7.5 times or less, still more preferably 7 times or less, from the viewpoint of suppressing deformation of the stator. Further, the draw ratio is usually 4.5 times or more from the viewpoint of expressing the function as a polarizing element. By setting the draw ratio within the above range, it is possible to suppress the deformation of the polarizing element over time.
  • a method of dyeing a polyvinyl alcohol-based resin film with a dichroic dye for example, a method of immersing the polyvinyl alcohol-based resin film in an aqueous solution containing a dichroic dye can be mentioned.
  • the dichroic dye for example, iodine or a dichroic dye is used.
  • dichroic dyes for example, C.I. I.
  • a dichroic direct dye composed of a disazo compound such as DIRECT RED 39 and a dichroic direct dye composed of a trisazo or a tetrakisazo compound are included.
  • the polyvinyl alcohol-based resin film is preferably immersed in water before the dyeing treatment.
  • iodine When iodine is used as the dichroic dye, a method of immersing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide for dyeing is usually adopted.
  • the iodine content in this aqueous solution is usually about 0.01 to 1 part by mass per 100 parts by mass of water.
  • the content of potassium iodide is usually about 0.5 to 20 parts by mass per 100 parts by mass of water.
  • the temperature of the aqueous solution used for dyeing is usually about 20 to 40 ° C.
  • the immersion time (staining time) in this aqueous solution is usually about 20 to 1,800 seconds.
  • the film Before immersing the polyvinyl alcohol-based resin film in the aqueous solution containing iodine and potassium iodide, the film may be immersed in water in order to swell and facilitate dyeing.
  • the temperature of the dipping treatment is usually 20 to 80 ° C., preferably 30 to 60 ° C., and the dipping time (staining time) is usually 20 to 1800 seconds.
  • a method of immersing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic dye and dyeing is usually adopted.
  • the content of the dichroic organic dye in this aqueous solution is usually about 1 ⁇ 10 -4 to 10 parts by mass, preferably 1 ⁇ 10 -3 to 1 part by mass, more preferably 1 part by mass, per 100 parts by mass of water. Is 1 ⁇ 10 -3 to 1 ⁇ 10 -2 parts by mass.
  • This aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing aid.
  • the temperature of the dichroic dye aqueous solution used for dyeing is usually about 20 to 80 ° C.
  • the immersion time (staining time) in this aqueous solution is usually about 10 to 1,800 seconds.
  • the boric acid treatment after dyeing with a dichroic dye can usually be performed by immersing the dyed polyvinyl alcohol-based resin film in a boric acid aqueous solution.
  • the content of boric acid in this aqueous boric acid solution is usually about 2 to 15 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of water.
  • this aqueous boric acid solution preferably contains potassium iodide, and the content of potassium iodide in that case is usually 0.1 to 100 parts by mass per 100 parts by mass of water. It is about 15 parts by mass, preferably 5 to 12 parts by mass.
  • the immersion time in the boric acid aqueous solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds.
  • the temperature of the boric acid treatment is usually 50 ° C. or higher, preferably 50 to 85 ° C., and more preferably 60 to 80 ° C.
  • the polyvinyl alcohol-based resin film after the boric acid treatment is usually washed with water.
  • the water washing treatment can be performed, for example, by immersing the boric acid-treated polyvinyl alcohol-based resin film in water.
  • the temperature of water in the washing treatment is usually about 5 to 40 ° C.
  • the immersion time is usually about 1 to 120 seconds.
  • the drying process can be performed using, for example, a hot air dryer or a far-infrared heater.
  • the temperature of the drying treatment is usually about 30 to 100 ° C, preferably 50 to 80 ° C.
  • the drying treatment time is usually about 60 to 600 seconds, preferably 120 to 600 seconds.
  • the water content is usually about 5 to 20% by mass, preferably 8 to 15% by mass.
  • the polyvinyl alcohol-based resin film is obtained by uniaxial stretching, dyeing with a dichroic dye, boric acid treatment, washing with water and drying.
  • the thickness of the splitter is preferably 5 to 40 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the optical laminate of the present invention includes a transparent protective film bonded to the surface of the stator opposite to the retardation film via an adhesive layer. Since the polarizing element has a thin film thickness and its surface is easily damaged, it is usually provided with protective films on both sides of the polarizing element in order to prevent external damage and stains. However, the optics of the present invention are provided. In the laminated body, the protective film is not laminated on the surface of the polarizing element on the retardation film side. This can result in an optical laminate that is thinner and has lower oblique reflectance.
  • the transparent protective film has a total light transmittance of 90% or more, more preferably 92% or more.
  • the total light transmittance is at least the above lower limit value, an optical laminate having high transparency and excellent optical characteristics can be formed.
  • the upper limit of the total light transmittance of the base film is not particularly limited, and may be 100% or less.
  • the total light transmittance can be measured according to, for example, JIS K7361.
  • the 380 nm transmittance of the transparent protective film is 30% or less, preferably 25% or less, and more preferably 20% or less.
  • the inside of the optical laminate is formed from the ultraviolet rays exposed on the visual recognition side when the optical laminate containing the transparent protective film is incorporated into the image display device.
  • the layer (polarizer, cured liquid crystal film, etc.) can be protected.
  • the lower limit of the 380 nm transmittance of the transparent protective film is not particularly limited and may be 0%.
  • the transparent protective film may contain an ultraviolet absorber or the like.
  • the 380 nm transmittance can be measured, for example, according to a spectrophotometer.
  • Resins that can constitute the transparent protective film include, for example, polyolefins such as polyethylene, polypropylene, and norbornene-based polymers; cyclic olefin-based resins; polyvinyl alcohol; polyethylene terephthalates; polymethacrylic acid esters; polyacrylic acid esters; triacetyl cellulose.
  • Diacetyl cellulose, and cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; polyphenylene sulfide and polyphenylene oxide and the like.
  • a resin can be formed into a film by a known means such as a solvent casting method and a melt extrusion method.
  • the surface of the transparent protective film may be subjected to surface treatment such as mold release treatment such as silicone treatment, corona treatment, and plasma treatment.
  • the transparent protective film preferably has a moisture permeability of 100 g / m 2/24 hours or more, more preferably 150 g / m 2/24 hours or more, and further preferably 200 g / m 2/24 hours or more.
  • a group constituting the retardation film is formed when the retardation film and the polarizing element are laminated by using a dry solidifying adhesive to form an optical laminate.
  • the solvent in the dry solidified adhesive can be efficiently removed from the transparent protective film in addition to the material film.
  • the upper limit of the moisture permeability of the transparent protective film is not particularly limited, but is usually 1000 g / m 2/24 hours or less, preferably 500 g / m 2/24 hours or less.
  • the moisture permeability of the transparent protective film can be measured by the same method as that of the base film.
  • the transparent protective film When a transparent protective film having a moisture permeability of 100 g / m 2/24 hours or more is used, the transparent protective film may be the same as or different from the base film.
  • the thickness of the transparent protective film can be appropriately determined according to the desired configuration of the optical laminate, but is usually 5 ⁇ m to 300 ⁇ m from the viewpoint of thinning, processability, flexibility, strength, etc. of the optical laminate. It is preferably 20 ⁇ m to 200 ⁇ m, and more preferably 20 ⁇ m to 150 ⁇ m.
  • the optical laminate 100 shown in FIG. 1 includes a retardation film 1, a polarizing element 3 laminated on one surface of the retardation film via an adhesive layer 2, and a retardation film 1 of the substituent 3. It is composed of a transparent protective film 5 laminated on the surface opposite to the above with an adhesive layer 4 interposed therebetween.
  • the retardation film 1 is composed of a liquid crystal curing film 13 formed on a base film 11 via an alignment film 12.
  • the optical laminate of the present invention includes a retardation film, a polarizing element, a transparent protective film, and an adhesive layer for adhering them to each other, as well as other layers having various functions that can be incorporated into an image display device or the like. Although it may be included, no other layer is incorporated into the layer structure of the retardation film / adhesive layer / polarizing element / adhesive layer / transparent protective film which is adjacent to each other.
  • Other layers include, for example, an adhesive layer for incorporating an optical laminate into an image display device, for example, a liquid crystal cured film (x) such that the liquid crystal compound is oriented in a direction perpendicular to the film surface. Examples thereof include a second retardation film containing a liquid crystal cured film having different optical characteristics.
  • the retardation film may be laminated on either side of the base film or the liquid crystal cured film constituting the retardation film via a polarizing element and an adhesive layer.
  • the base film 11 constituting the retardation film 1 is laminated with the polarizing element 3 via the adhesive layer 2.
  • the liquid crystal cured film 13 constituting the retardation film 1 is laminated with the polarizing element 3 via the adhesive layer 2.
  • the liquid crystal cured film (x) constituting the retardation film adheres to the optical laminate and a member constituting the image display device such as an image display cell.
  • the heat resistance of the optical laminate tends to be improved. Therefore, in one embodiment of the present invention, it is preferable that the retardation film is in contact with the adhesive layer that adheres the retardation film and the polarizing element on the liquid crystal cured film side constituting the retardation film.
  • the optical laminate of the present invention can be manufactured by laminating a retardation film, a polarizing element, and a transparent protective film, respectively, via an adhesive.
  • a dry-solidified adhesive is used as the adhesive, the dry-solidified adhesive is applied / injected onto the bonded surface of the retardation film, the stator and / or the transparent protective film, and the retardation film / adhesive layer /
  • each layer can be bonded by drying, removing, and curing the solvent in the adhesive from the laminate.
  • This drying treatment and / or removal of the solvent can be performed, for example, by blowing hot air, and the temperature thereof is usually 30 to 200 ° C., preferably 35 to 150 ° C., more preferably 35 to 150 ° C., depending on the type of solvent. It is in the range of 40 to 100 ° C, more preferably 50 to 100 ° C.
  • the drying time is usually about 10 seconds to 30 minutes.
  • an adhesive layer can be obtained by curing the active energy ray-curable adhesive by irradiating it with active energy rays.
  • the light source of the active energy ray is not particularly limited, but the active energy ray having an emission distribution having a wavelength of 400 nm or less is preferable, and ultraviolet rays are more preferable.
  • Specific examples of the light source include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, and a metal halide lamp.
  • the light irradiation intensity to the active energy ray-curable adhesive is appropriately determined by the composition of the active energy ray-curable adhesive and is not particularly limited, but the irradiation intensity in the wavelength region effective for activating the polymerization initiator is usually set. It is 10 to 3,000 mW / cm 2 .
  • the light irradiation time of the active energy ray-curable adhesive may be appropriately selected depending on the active energy ray-curable adhesive to be cured, and is not particularly limited, but is usually 0.1 seconds to 10 minutes. It is preferably 1 second to 5 minutes, more preferably 5 seconds to 3 minutes, and even more preferably 10 seconds to 1 minute.
  • the integrated light amount is usually 10 to 3,000 mJ / cm 2 , preferably 50 to 2,000 mJ / cm 2 , and more preferably 100 to 1,000 mJ /. It is cm 2 .
  • the optical laminate of the present invention can be continuously manufactured by the Roll to Roll method. For example, a retardation film containing a base film wound in a roll shape and a liquid crystal cured film (x) is produced, and the retardation film is unwound and conveyed to provide an adhesive for adhering each layer. It can be continuously produced by laminating a separately prepared polarizing element and a transparent protective film on the retardation film in order and then curing the adhesive by drying, photocuring or the like. Therefore, in one embodiment of the present invention, the optical laminate of the present invention may be in the form of an optical laminate roll wound in a roll shape.
  • the optical laminate of the present invention including the retardation film and the polarizing element can also be an elliptical polarizing plate
  • the present invention includes an elliptical polarizing plate including the optical laminate of the present invention.
  • the angle formed by the slow axis (optical axis) of the liquid crystal cured film constituting the optical laminate and the elliptical polarizing plate of the present invention and the absorption axis of the substituent is 45 ⁇ 5 °. It is preferable to stack them in such a manner.
  • the elliptical polarizing plate of the present invention can be used in various display devices.
  • the display device is a device having a display element, and includes a light emitting element or a light emitting device as a light emitting source.
  • Display devices include a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, a touch panel display device, an electron emission display device (for example, an electric field emission display device (FED), a surface electric field emission display device). (SED)), electronic paper (display device using electronic ink or electrophoretic element, plasma display device, projection type display device (for example, grating light valve (GLV) display device, display device having a digital micromirror device (DMD)).
  • EL organic electroluminescence
  • EL inorganic electroluminescence
  • SED surface electric field emission display device
  • electronic paper display device using electronic ink or electrophoretic element
  • plasma display device for example, grating light valve (GL
  • the liquid crystal display device includes any of a transmissive liquid crystal display device, a semi-transmissive liquid crystal display device, a reflective liquid crystal display device, a direct-view type liquid crystal display device, a projection type liquid crystal display device, and the like. These display devices may be display devices for displaying two-dimensional images or three-dimensional display devices for displaying three-dimensional images.
  • the elliptical polarizing plate of the present invention may be an organic electroluminescence (organic electroluminescence). It can be suitably used for an EL) display device and an inorganic electroluminescence (EL) display device, and the laminate of the present invention can be suitably used for a liquid crystal display device and a touch panel display device. These display devices have interference unevenness. By providing the laminated body of the present invention in which the above is unlikely to occur, good image display characteristics can be exhibited.
  • the display device is preferably a flexible image display device, and the present invention also includes a flexible image display device including the elliptical polarizing plate of the present invention.
  • the flexible image display device having the elliptical polarizing plate of the present invention preferably further has a window and a touch sensor.
  • the flexible image display device is composed of, for example, a laminated body for a flexible image display device and an organic EL display panel, and the laminated body for the flexible image display device is arranged on the visual side with respect to the organic EL display panel and is configured to be bendable. Has been done.
  • the laminated body for a flexible image display device may include a window, a (touch panel) touch sensor, and the like, in addition to the above-mentioned elliptical polarizing plate of the present invention.
  • the stacking order thereof is arbitrary, but it is preferable that the windows, the elliptical polarizing plate, and the touch sensor are laminated in this order from the visual side, or the window, the touch sensor, and the elliptical polarizing plate are stacked in this order.
  • the elliptical polarizing plate is present on the visual side of the touch sensor because the pattern of the touch sensor is difficult to be visually recognized and the visibility of the displayed image is improved.
  • Each member can be laminated using an adhesive, an adhesive, or the like.
  • the laminated body for a flexible image display device can be provided with a light-shielding pattern formed on at least one surface of any one of the windows, the elliptical polarizing plate, and the touch sensor.
  • the window is placed on the visual side of the flexible image display device and plays a role of protecting other components from external impacts or environmental changes such as temperature and humidity.
  • glass has been used as such a protective layer, but a window in a flexible image display device is not rigid and rigid like glass, but has flexible characteristics.
  • the window is made of a flexible transparent substrate and may include a hardcourt layer on at least one surface.
  • the window, touch sensor, etc. constituting the laminated body for the flexible image display device are not particularly limited, and conventionally known ones can be adopted.
  • Example 1 Preparation of composition for forming a photoalignment film A polymer (1) having a number average molecular weight of 28,000 represented by the following chemical formula was mixed with 98 parts of o-xylene, and the obtained mixture was mixed at 80 ° C. for 1 hour. By stirring, a composition for forming a photoalignment film was obtained.
  • a polymerizable liquid crystal compound A-1 (86.0 parts) having the following structure, a polymerizable liquid crystal compound A-2 (14.0 parts), and poly Acrylate compound (leveling agent / BYK-361N; manufactured by BYK-Chemie) (0.12 part) and 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butane-1-one (photopolymerization started) Agent / Irgacure 369; Ciba Specialty Chemicals (manufactured by 3.0 parts) and LALOMER LR9000 (manufactured by BASF Japan) (2.0 parts) were mixed.
  • a polymerizable liquid crystal composition (A1) containing the polymerizable liquid crystal compound A-1 and the polymerizable liquid crystal compound A-2 was obtained.
  • the polymerizable liquid crystal compound A-1 was synthesized by the method described in JP-A-2010-31223.
  • the maximum absorption wavelength ⁇ max (LC) of the polymerizable liquid crystal compound A-1 measured in chloroform was 350 nm.
  • the moisture permeability and the total light transmittance of the triacetyl cellulose film (KC4CZ-TAC) used as the base film of the retardation film were measured.
  • the moisture permeability [g / (m2, 24 hr)] of the protect film at a temperature of 40 ° C. and a relative humidity of 90% was measured by the cup method specified in JIS Z 0208.
  • the moisture permeability of the TAC film was 370 g / m 2/24 hours.
  • the total light transmittance was measured using a haze meter HM150 manufactured by Murakami Color Technology Research Institute Co., Ltd. in accordance with JIS K7361.
  • the total light transmittance of the TAC film was 93%.
  • phase difference value [Re (550) and Rth (550)] of the above-mentioned TAC film as a base material at a wavelength of 550 nm was measured, it was approximately 0.
  • the polymerizable liquid crystal composition (A1) containing the polymerizable liquid crystal compound prepared above was applied onto the photoalignment film with a bar coater, and dried at 120 ° C. for 1 minute. Then, using a high-pressure mercury lamp (Unicure VB-15201BY-A; manufactured by Ushio Denki Co., Ltd.), ultraviolet rays are irradiated from the surface side coated with the polymerizable liquid crystal composition (A1) (integrated light amount at a wavelength of 313 nm under a nitrogen atmosphere).
  • a high-pressure mercury lamp Unicure VB-15201BY-A; manufactured by Ushio Denki Co., Ltd.
  • a retardation film which is a laminate composed of a triacetyl cellulose film (base film) / photoalignment film / liquid crystal cured film.
  • the thickness of the obtained liquid crystal cured film was measured with a laser microscope (LEXT; manufactured by Olympus Corporation) and found to be 2.3 ⁇ m.
  • the above-mentioned water-based dry solidifying adhesive contains 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol (Kuraray Poval KL318; manufactured by Kuraray Co., Ltd.), and a water-soluble polyamide epoxy resin (Smiley's resin 650; Sumika Chemtex). Prepared by adding 1.5 parts (an aqueous solution having a solid content concentration of 30%) manufactured by Kuraray Co., Ltd.
  • the moisture permeability and the total light transmittance of the transparent protective film were measured in the same manner as the measurement method for the base film described above, the moisture permeability was 350 g / m 2/24 hours and the total light transmittance was 93%. ..
  • the 380 nm transmittance of the transparent protective film was measured by the double beam method using a device in which a folder with a polarizing element was set in a spectrophotometer (UV-3150 manufactured by Shimadzu Corporation).
  • the folder was provided with a mesh that cuts the amount of light by 50% on the reference side.
  • the 380 nm transmittance of the transparent protective film was 8%.
  • the oblique reflectance of the optical laminate was measured as follows. A measurement sample was prepared by laminating the side derived from the retardation film of the optical laminate (in the case of the optical laminate I, the liquid crystal cured film) and the reflector (mirror surface aluminum plate) using an acrylic pressure-sensitive adhesive. Using a spectrocolorimeter (CM3700A manufactured by Konica Minolta Co., Ltd.), the light of the D65 light source was incident on the measurement sample from the 8 ° direction, and the oblique reflectance (reflection Y value) was measured.
  • CM3700A manufactured by Konica Minolta Co., Ltd.
  • Example 2 When the retardation film and the splitter are bonded, the same as in Example 1 except that the liquid crystal cured film side is bonded to the polarizing element, the base film / optical alignment film / liquid crystal cured film / adhesive layer / An optical laminate composed of a splitter / adhesive layer / transparent protective film was manufactured and evaluated. The results are shown in Table 1.
  • Example 3 Implemented except that a polymethyl methacrylate resin film (manufactured by Sumitomo Chemical Co., Ltd., moisture permeability: 50 g / m 2/24 hours, total light transmission rate: 93%, 380 nm transmission rate: 6%) was used as the transparent protective film.
  • a polymethyl methacrylate resin film manufactured by Sumitomo Chemical Co., Ltd., moisture permeability: 50 g / m 2/24 hours, total light transmission rate: 93%, 380 nm transmission rate: 6%
  • Example 4 Cycloolefin polymer film (COP; ZF-14; manufactured by Nippon Zeon Co., Ltd., moisture permeability: 13 g / m 2/24 hours, total light transmittance: 92%, 380 nm transmittance:) to which an ultraviolet absorber is added as a transparent protective film.
  • An optical laminate composed of a base film / a photoalignment film / a liquid crystal curing film / an adhesive layer / a polarizing element / an adhesive layer / a transparent protective film was produced in the same manner as in Example 1 except that 8%) was used. And evaluated. The results are shown in Table 1.
  • Example 1 As the base film, the TAC film used as the transparent protective film of Example 1 was used, and in the process of producing the optical laminate, the transparent protective film and the polarizing element were dried in the same water-based manner as in Example 1. After bonding with a solidifying adhesive, use an acrylic pressure-sensitive adhesive with a thickness of 5 ⁇ m after curing to cover the surface on the side where the transparent protective film of the stator is not laminated and the liquid crystal cured film side of the retardation film.
  • optical laminates (Examples 1 to 4) having a layer structure according to the present invention were excellent in flexibility and low oblique reflectance.
  • Phase difference film 2 Adhesive layer 3: Polarizer 4: Adhesive layer 5: Transparent protective film 11: Base film 12: Alignment film 13: Liquid crystal cured film 100: Optical laminate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide an optical laminate in which strain does not readily occur when the laminate is bent, and which has high flexibility and exceptional oblique reflectance, and particularly to provide an optical laminate that is suitable for a flexible display. An optical laminate including a phase difference film, a polarizer, and a transparent protective film in the stated order, wherein: the phase difference film includes a base film having a moisture permeability of 100 g/m2/24 hours or greater, and a liquid crystal cured film that is formed on the base film, has a thickness of 0.5-3 µm (inclusive), and satisfies, as a single layer, formulas (1) and (2) (formula (1): Re(450)/Re(550)≤1.00, and formula (2): 1.00≤Re(650)/Re(550), where Re (λ) represents the in-plane phase difference value at the wavelength λ); the polarizer is configured from a polyvinyl alcohol resin film that contains a dichroic pigment; the transparent protective film has a total light transmittance of 90% or greater and a 380 nm transmittance of 30% or less; and the phase difference film, the polarizer, and the transparent protective film are adjacent with adhesive layers interposed therebetween.

Description

光学積層体およびこれを含む楕円偏光板Optical laminate and elliptical polarizing plate containing it
 本発明は、光学積層体、前記光学積層体のロール、並びに、前記光学積層体を含む楕円偏光板および有機EL表示装置に関する。 The present invention relates to an optical laminate, a roll of the optical laminate, an elliptical polarizing plate including the optical laminate, and an organic EL display device.
 楕円偏光板は、偏光板と位相差板とが積層された光学部材であり、例えば、有機EL画像表示装置等の平面状態で画像を表示する装置において、該装置を構成する電極での光反射を防止するために用いられている。この楕円偏光板を構成する位相差板としては、一般にいわゆるλ/4板が用いられる。そのような位相差板として、基材上に重合性液晶化合物を塗布し、硬化させることにより作製される液晶硬化膜を用いた位相差板が知られている(特許文献1)。 The elliptical polarizing plate is an optical member in which a polarizing plate and a retardation plate are laminated. For example, in a device such as an organic EL image display device that displays an image in a planar state, light reflection by the electrodes constituting the device is used. It is used to prevent. As the retardation plate constituting this elliptical polarizing plate, a so-called λ / 4 plate is generally used. As such a retardation plate, a retardation plate using a liquid crystal curing film produced by applying a polymerizable liquid crystal compound on a substrate and curing it is known (Patent Document 1).
特開2011-207765号公報Japanese Unexamined Patent Publication No. 2011-207765
 近年、ディスプレイのフレキシブル化に対する要求があり、薄型化するとともに高い屈曲性を有する楕円偏光板が必要とされている。引用文献1に記載されるような重合性液晶化合物を硬化させて得られる位相差膜は薄型化を実現する観点からは、フレキシブルディスプレイに好適であり、このような液晶硬化膜から形成される位相差板(膜)を偏光板に感圧式粘着剤を介して転写することにより楕円偏光板(膜)を作製することができる。
 しかしながら、本発明者等は、感圧式粘着剤を用いて液晶硬化膜から形成される位相差板を転写させると、これにより形成される楕円偏光板を屈曲した際に屈曲点において歪みが発生しやすく、これに起因してスジ状の欠陥や斜め方向からの光反射率(斜め反射率)の上昇が生じ得ることを見出した。
In recent years, there has been a demand for flexibility of a display, and an elliptical polarizing plate having a thinness and high flexibility is required. A retardation film obtained by curing a polymerizable liquid crystal compound as described in Reference 1 is suitable for a flexible display from the viewpoint of realizing thinning, and is formed from such a cured liquid crystal film. An elliptical polarizing plate (membrane) can be produced by transferring the phase difference plate (membrane) to the polarizing plate via a pressure-sensitive pressure-sensitive adhesive.
However, when the present inventors transfer the retardation plate formed from the liquid crystal cured film using a pressure-sensitive pressure-sensitive adhesive, distortion occurs at the bending point when the elliptical polarizing plate formed by the retardation plate is bent. It is easy to find that this can cause streak-like defects and an increase in light reflectance (diagonal reflectance) from an oblique direction.
 本発明は、屈曲した際に歪みを生じ難く、高い屈曲性および斜め反射率において優れる光学積層体、特に、フレキシブルディスプレイに好適な光学積層体を提供することを目的とする。 An object of the present invention is to provide an optical laminate that is less likely to be distorted when bent and is excellent in high flexibility and oblique reflectance, particularly an optical laminate suitable for a flexible display.
 本発明者等は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち、本発明は、以下の態様を包含する。
[1]位相差フィルムと偏光子と透明保護フィルムとをこの順に含む光学積層体であって、
 前記位相差フィルムが、100g/m/24時間以上の透湿度を有する基材フィルムと、該基材フィルム上に形成された、厚みが0.5μm以上3μm以下であり、かつ、下記式(1)および(2):
 Re(450)/Re(550)≦1.00  (1)
 1.00≦Re(650)/Re(550)  (2)
〔式中、Re(λ)は波長λにおける面内位相差値を示す〕
を単層で満たす液晶硬化膜と、を含んでなり、
 前記偏光子が、二色性色素を含むポリビニルアルコール系樹脂フィルムから構成され、 前記透明保護フィルムが、90%以上の全光線透過率、および、30%以下の380nm透過率を有し、
 前記位相差フィルムと前記偏光子と前記透明保護フィルムとが接着剤層を介して隣接してなる、光学積層体。
[2]前記基材フィルムは、全光線透過率が90%以上であり、かつ、550nmの光に対する厚み方向の位相差値Rth(550)の絶対値が5nm以下である、前記[1]に記載の光学積層体。
[3]前記位相差フィルムは、基材フィルムと液晶硬化膜との間に厚み10nm以上1000nm以下の光配向膜を有する、前記[1]または[2]に記載の光学積層体。
[4]前記液晶硬化膜は、波長300~400nmの間に少なくとも1つの極大吸収を有する少なくとも1種の化合物を硬化した膜である、前記[1]~[3]のいずれかに記載の光学積層体。
[5]前記液晶硬化膜は下記式(3):
 100nm≦Re(550)≦170nm  (3)
〔式中、Re(λ)は波長λにおける面内位相差値を示す〕
を満たす、前記[1]~[4]のいずれかに記載の光学積層体。
[6]前記透明保護フィルムは100g/m/24時間以上の透湿度を有する、前記[1]~[5]のいずれかに記載の光学積層体。
[7]前記接着剤層は乾燥固化型接着剤から形成される層である、前記[1]~[6]のいずれかに記載の光学積層体。
[8]前記乾燥固化型接着剤はポリビニルアルコールを含む、前記[7]に記載の光学積層体。
[9]位相差フィルムは、位相差フィルムと偏光子とを貼合する接着剤層と前記液晶硬化膜側で接する、前記[1]~[8]のいずれかに記載の光学積層体。
[10]前記[1]~[9]のいずれかに記載の光学積層体を巻き取ってなる光学積層体ロール。
[11]前記[1]~[9]のいずれかに記載の光学積層体を含む楕円偏光板。
[12]前記[11]に記載の楕円偏光板を含む、有機EL表示装置。
[13]前記[11]に記載の楕円偏光板を含む、フレキシブル画像表示装置。
[14]ウインドウとタッチセンサとをさらに含む、前記[13]に記載のフレキシブル画像表示装置。
As a result of diligent studies to solve the above problems, the present inventors have completed the present invention. That is, the present invention includes the following aspects.
[1] An optical laminate containing a retardation film, a splitter, and a transparent protective film in this order.
The retardation film has a base film having a moisture permeability of 100 g / m 2/24 hours or more, and a thickness of 0.5 μm or more and 3 μm or less formed on the base film, and the following formula ( 1) and (2):
Re (450) / Re (550) ≤ 1.00 (1)
1.00 ≤ Re (650) / Re (550) (2)
[In the equation, Re (λ) indicates the in-plane phase difference value at the wavelength λ]
Contains a liquid crystal cured film, which fills with a single layer,
The polarizing element is composed of a polyvinyl alcohol-based resin film containing a dichroic dye, and the transparent protective film has a total light transmittance of 90% or more and a 380 nm transmittance of 30% or less.
An optical laminate in which the retardation film, the polarizing element, and the transparent protective film are adjacent to each other via an adhesive layer.
[2] The base film has a total light transmittance of 90% or more, and the absolute value of the phase difference value Rth (550) in the thickness direction with respect to light of 550 nm is 5 nm or less. The optical laminate according to the description.
[3] The optical laminate according to the above [1] or [2], wherein the retardation film has a photoalignment film having a thickness of 10 nm or more and 1000 nm or less between a base film and a liquid crystal cured film.
[4] The optics according to any one of [1] to [3] above, wherein the liquid crystal cured film is a film obtained by curing at least one compound having at least one maximum absorption between wavelengths of 300 to 400 nm. Laminated body.
[5] The liquid crystal cured film has the following formula (3):
100 nm ≤ Re (550) ≤ 170 nm (3)
[In the equation, Re (λ) indicates the in-plane phase difference value at the wavelength λ]
The optical laminate according to any one of the above [1] to [4], which satisfies the above conditions.
[6] The optical laminate according to any one of [1] to [5] above, wherein the transparent protective film has a moisture permeability of 100 g / m 2/24 hours or more.
[7] The optical laminate according to any one of [1] to [6] above, wherein the adhesive layer is a layer formed from a dry solidified adhesive.
[8] The optical laminate according to the above [7], wherein the dry solidifying adhesive contains polyvinyl alcohol.
[9] The optical laminate according to any one of [1] to [8], wherein the retardation film is in contact with an adhesive layer for bonding the retardation film and a polarizing element on the liquid crystal curing film side.
[10] An optical laminate roll formed by winding the optical laminate according to any one of the above [1] to [9].
[11] An elliptical polarizing plate including the optical laminate according to any one of the above [1] to [9].
[12] An organic EL display device including the elliptical polarizing plate according to the above [11].
[13] A flexible image display device including the elliptical polarizing plate according to the above [11].
[14] The flexible image display device according to the above [13], further including a window and a touch sensor.
 本発明によれば、屈曲した際に歪みを生じ難く、高い屈曲性および斜め反射率において優れる光学積層体、特に、フレキシブルディスプレイに好適な光学積層体を提供することができる。 According to the present invention, it is possible to provide an optical laminate that is less likely to cause distortion when bent and is excellent in high flexibility and oblique reflectance, particularly an optical laminate suitable for a flexible display.
本発明の光学積層体の層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the layer structure of the optical laminated body of this invention. 本発明の光学積層体の層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the layer structure of the optical laminated body of this invention.
 以下、本発明の実施の形態について、詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を損なわない範囲で種々の変更をすることができる。 Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described here, and various modifications can be made without impairing the gist of the present invention.
 本発明の光学積層体は、位相差フィルムと偏光子と透明保護フィルムとをこの順に含み、位相差フィルムと偏光子と透明保護フィルムとが、それぞれ、接着剤層を介して隣接してなる。 The optical laminate of the present invention includes a retardation film, a splitter, and a transparent protective film in this order, and the retardation film, the splitter, and the transparent protective film are adjacent to each other via an adhesive layer.
 (接着剤層)
 本発明の光学積層体において、位相差フィルムと偏光子、および、偏光子と透明保護フィルムは、それぞれ接着剤層を介して積層されている。位相差フィルムと偏光子、および、偏光子と透明保護フィルムとを、それぞれ、接着剤層により貼合することにより、得られる光学積層体を繰り返し屈曲した場合に位相差フィルムを構成する液晶硬化膜における変形と光学積層体全体としての変形とが互いに追従しやすくなると考えられ、屈曲点に対する歪みが生じ難く、前記歪みに起因して生じるスジ状の欠陥や斜め反射率の上昇を抑制することができる。
(Adhesive layer)
In the optical laminate of the present invention, the retardation film and the polarizing element, and the polarizing element and the transparent protective film are laminated via an adhesive layer, respectively. A liquid crystal cured film that constitutes a retardation film when the obtained optical laminate is repeatedly bent by bonding the retardation film and the polarizing element, and the polarizing element and the transparent protective film, respectively, with an adhesive layer. It is considered that the deformation in the above and the deformation of the optical laminate as a whole can easily follow each other, distortion at the bending point is unlikely to occur, and streak-like defects and an increase in oblique reflectance caused by the distortion can be suppressed. can.
 位相差フィルムと偏光子、および、偏光子と透明保護フィルムとを接着する接着剤層は、接着剤により形成することができる。かかる接着剤層を形成し得る接着剤としては、例えば、水系接着剤などの乾燥固化型接着剤、および、活性エネルギー線硬化型接着剤などの化学反応型接着剤が挙げられる。位相差フィルムと偏光子、および、偏光子と透明保護フィルムとを接着する接着剤層は、互いに異なる接着剤から形成されていてもよいが、同じ接着剤から形成されることが好ましい。 The adhesive layer for adhering the retardation film and the polarizing element and the polarizing element and the transparent protective film can be formed by an adhesive. Examples of the adhesive capable of forming such an adhesive layer include a dry solidification type adhesive such as a water-based adhesive and a chemical reaction type adhesive such as an active energy ray-curable adhesive. The adhesive layer for adhering the retardation film and the polarizing element and the polarizing element and the transparent protective film may be formed of different adhesives, but is preferably formed of the same adhesive.
 乾燥固化型接着剤としては、例えば、水酸基、カルボキシル基またはアミノ基等のプロトン性官能基とエチレン性不飽和基とを有するモノマーの重合体、若しくはウレタン樹脂を主成分として含有し、さらに、多価アルデヒド、エポキシ化合物、エポキシ樹脂、メラミン化合物、ジルコニア化合物、および亜鉛化合物等の架橋剤または硬化性化合物を含有する組成物等が挙げられる。水酸基、カルボキシル基またはアミノ基等のプロトン性官能基とエチレン性不飽和基とを有するモノマーの重合体としては、エチレン-マレイン酸共重合体、イタコン酸共重合体、アクリル酸共重合体、アクリルアミド共重合体、ポリ酢酸ビニルのケン化物、および、ポリビニルアルコール系樹脂等が挙げられる。 As the dry solidification type adhesive, for example, a polymer of a monomer having a protonic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group, or a urethane resin is contained as a main component, and more. Examples thereof include compositions containing a cross-linking agent such as a valent aldehyde, an epoxy compound, an epoxy resin, a melamine compound, a zirconia compound, and a zinc compound, or a curable compound. Examples of the polymer of the monomer having a protonic functional group such as a hydroxyl group, a carboxyl group or an amino group and an ethylenically unsaturated group include ethylene-maleic acid copolymer, itaconic acid copolymer, acrylic acid copolymer and acrylamide. Examples thereof include a copolymer, a saponified product of polyvinyl acetate, and a polyvinyl alcohol-based resin.
 ポリビニルアルコール系樹脂としては、ポリビニルアルコール、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、カルボキシル基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコール、および、アミノ基変性ポリビニルアルコール等が挙げられる。水系の乾燥固化型接着剤におけるポリビニルアルコール系樹脂の含有量は、水100質量部に対して、通常、1~10質量部であり、好ましくは1~5質量部である。 Examples of the polyvinyl alcohol-based resin include polyvinyl alcohol, partially saponified polyvinyl alcohol, fully saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol. Can be mentioned. The content of the polyvinyl alcohol-based resin in the water-based dry solidifying adhesive is usually 1 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of water.
 ウレタン樹脂としては、ポリエステル系アイオノマー型ウレタン樹脂等が挙げられる。
ここでいうポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その中に少量のイオン性成分(親水成分)が導入された樹脂である。係るアイオノマー型ウレタン樹脂は、乳化剤を使用せずに、水中で乳化してエマルジョンとなるため、水系の乾燥固化型接着剤とすることができる。ポリエステル系アイオノマー型ウレタン樹脂を用いる場合は、架橋剤として水溶性のエポキシ化合物を配合することが有効である。
Examples of the urethane resin include polyester ionomer type urethane resin and the like.
The polyester-based ionomer type urethane resin referred to here is a urethane resin having a polyester skeleton, in which a small amount of an ionic component (hydrophilic component) is introduced. Since the ionomer type urethane resin is emulsified in water to form an emulsion without using an emulsifier, it can be used as a water-based dry solidifying adhesive. When a polyester ionomer type urethane resin is used, it is effective to add a water-soluble epoxy compound as a cross-linking agent.
 エポキシ樹脂としては、ジエチレントリアミンまたはトリエチレンテトラミン等のポリアルキレンポリアミンとアジピン酸等のジカルボン酸との反応で得られるポリアミドポリアミンに、エピクロロヒドリンを反応させて得られるポリアミドエポキシ樹脂等が挙げられる。かかるポリアミドエポキシ樹脂の市販品としては、“スミレーズレジン(登録商標)650”および“スミレーズレジン(登録商標)675”(以上、住化ケムテックス株式会社製)、“WS-525”(日本PMC株式会社製)等が挙げられる。エポキシ樹脂を配合する場合、その添加量は、ポリビニルアルコール系樹脂100質量部に対して、通常、1~100質量部であり、好ましくは1~50質量部である。 Examples of the epoxy resin include a polyamide epoxy resin obtained by reacting a polyamide polyamine obtained by reacting a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine with a dicarboxylic acid such as adipic acid with epichlorohydrin. Commercially available products of such polyamide epoxy resin include "Smiley's Resin (Registered Trademark) 650", "Smiley's Resin (Registered Trademark) 675" (all manufactured by Sumika Chemtex Co., Ltd.), and "WS-525" (Japan PMC). (Made by Co., Ltd.), etc. When the epoxy resin is blended, the amount added is usually 1 to 100 parts by mass, preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polyvinyl alcohol-based resin.
 中でも、乾燥固化型接着剤がポリビニルアルコール系樹脂を含む水系の乾燥固化型接着剤であることが好ましい。 Above all, it is preferable that the dry solidifying adhesive is a water-based dry solidifying adhesive containing a polyvinyl alcohol-based resin.
 乾燥固化型接着剤は、溶媒を含んでいてよい。溶媒としては、水、水と親水性有機溶媒(例えばアルコール溶媒、エーテル溶媒、エステル溶媒等)との混合溶媒、有機溶媒等が挙げられる。 The dry solidified adhesive may contain a solvent. Examples of the solvent include water, a mixed solvent of water and a hydrophilic organic solvent (for example, an alcohol solvent, an ether solvent, an ester solvent, etc.), an organic solvent, and the like.
 化学反応型接着剤である活性エネルギー線硬化型接着剤とは、活性エネルギー線の照射を受けて硬化する接着剤である。活性エネルギー線硬化型接着剤は溶媒を含んでいてもよい。
 活性エネルギー線硬化型接着剤としては、エポキシ化合物とカチオン重合開始剤とを含有するカチオン重合性の接着剤、アクリル系硬化成分とラジカル重合開始剤とを含有するラジカル重合性の接着剤、エポキシ化合物等のカチオン重合性の硬化成分およびアクリル系化合物等のラジカル重合性の硬化成分の両者を含有し、さらにカチオン重合開始剤およびラジカル重合開始剤を含有する接着剤、並びに、これら重合開始剤を含まずに電子ビームを照射することで硬化される接着剤等が挙げられる。
The active energy ray-curable adhesive, which is a chemical reaction type adhesive, is an adhesive that cures by being irradiated with active energy rays. The active energy ray-curable adhesive may contain a solvent.
Examples of the active energy ray-curable adhesive include a cationically polymerizable adhesive containing an epoxy compound and a cationic polymerization initiator, a radically polymerizable adhesive containing an acrylic curing component and a radical polymerization initiator, and an epoxy compound. It contains both a cationically polymerizable curing component such as, and a radically polymerizable curing component such as an acrylic compound, and further contains an adhesive containing a cationic polymerization initiator and a radical polymerization initiator, and these polymerization initiators. Examples thereof include an adhesive that is cured by irradiating it with an electron beam.
 中でも、活性エネルギー線硬化型接着剤としては、アクリル系硬化成分とラジカル重合開始剤とを含有するラジカル重合性の活性エネルギー線硬化型接着剤、エポキシ化合物とカチオン重合開始剤とを含有するカチオン重合性の活性エネルギー線硬化型接着剤が好ましい。アクリル系硬化成分としては、メチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリレートおよび(メタ)アクリル酸等が挙げられる。エポキシ化合物を含有する活性エネルギー線硬化型接着剤は、エポキシ化合物以外の化合物をさらに含有していてもよい。エポキシ化合物以外の化合物としては、オキセタン化合物やアクリル化合物等が挙げられる。 Among them, the active energy ray-curable adhesive includes a radically polymerizable active energy ray-curable adhesive containing an acrylic curing component and a radical polymerization initiator, and cationic polymerization containing an epoxy compound and a cationic polymerization initiator. Active energy ray-curable adhesives are preferred. Examples of the acrylic curing component include (meth) acrylates such as methyl (meth) acrylate and hydroxyethyl (meth) acrylate, and (meth) acrylic acid. The active energy ray-curable adhesive containing an epoxy compound may further contain a compound other than the epoxy compound. Examples of the compound other than the epoxy compound include an oxetane compound and an acrylic compound.
 ラジカル重合開始剤としては、液晶硬化膜を形成する重合性液晶組成物に配合し得るものとして後述する光重合開始剤が挙げられる。カチオン重合開始剤の市販品としては、“カヤラッド”(登録商標)シリーズ(日本化薬株式会社製)、“サイラキュア UVI”シリーズ(ダウケミカル社製)、“CPI”シリーズ(サンアプロ株式会社製)、“TAZ”、“BBI”および“DTS”(以上、みどり化学株式会社製)、“アデカオプトマー”シリーズ(株式会社ADEKA製)、“RHODORSIL”(登録商標)(ローディア株式会社製)等が挙げられる。ラジカル重合開始剤並びにカチオン重合開始剤の含有量は、活性エネルギー線硬化型接着剤100質量部に対して、通常、0.5~20質量部であり、好ましくは1~15質量部である。 Examples of the radical polymerization initiator include photopolymerization initiators, which will be described later, which can be blended in the polymerizable liquid crystal composition forming the liquid crystal cured film. Commercially available products of cationic polymerization initiators include "Kayarad" (registered trademark) series (manufactured by Nippon Kayaku Co., Ltd.), "Syracure UVI" series (manufactured by Dow Chemical Co., Ltd.), and "CPI" series (manufactured by Sun Appro Co., Ltd.). "TAZ", "BBI" and "DTS" (above, manufactured by Midori Chemical Co., Ltd.), "ADEKA PTOMER" series (manufactured by ADEKA Corporation), "RHODORSIL" (registered trademark) (manufactured by Rhodia Co., Ltd.), etc. Be done. The content of the radical polymerization initiator and the cationic polymerization initiator is usually 0.5 to 20 parts by mass, preferably 1 to 15 parts by mass with respect to 100 parts by mass of the active energy ray-curable adhesive.
 位相差フィルム、偏光子および透明保護フィルムをこの順に積層してなる光学積層体においては、積層体の薄型化や屈曲性の向上等の観点から、高粘性材料から形成される感圧式粘着剤と比較して、乾燥固化型接着剤や化学反応型接着剤等の接着剤を用いることが有利であると考えられる。一方、本発明の光学積層体は、式(1)および(2)で表される光学特性を単層で示す液晶硬化膜を含んでおり、このような液晶硬化膜を形成する重合性液晶化合物は、後述する通り、一般に波長300~400nmの間に極大吸収波長を有することが多い。また、画像表示装置に組み込んだ際に視認側に位置する透明保護フィルムは、光学積層体の内部構造を紫外線から保護するために紫外線吸収能を有していることから、かかる構成の光学積層体の製造においては、照射した紫外線が液晶硬化膜や透明保護フィルムによって吸収され、接着剤の硬化に十分な量の紫外線が積層体内部まで到達し難くい場合がある。したがって、紫外線吸収能を有する層(液晶硬化膜および透明保護フィルム)に挟まれる構成となり得る本発明の光学積層体においては、位相差フィルムと偏光子、および、偏光子と透明保護フィルムとを貼合するための接着剤として乾燥固化型接着剤を用いることが、薄型化や屈曲性の向上の観点に加えて、各層間の密着性がより優れる光学積層体を得られる観点から有利である。 In an optical laminate in which a retardation film, a stator and a transparent protective film are laminated in this order, a pressure-sensitive pressure-sensitive adhesive formed from a highly viscous material is used from the viewpoint of reducing the thickness of the laminate and improving the flexibility. In comparison, it is considered advantageous to use an adhesive such as a dry solidification type adhesive or a chemical reaction type adhesive. On the other hand, the optical laminate of the present invention contains a liquid crystal cured film exhibiting the optical properties represented by the formulas (1) and (2) as a single layer, and the polymerizable liquid crystal compound forming such a liquid crystal cured film. Will generally have a maximum absorption wavelength between the wavelengths of 300 and 400 nm, as will be described later. Further, since the transparent protective film located on the visual recognition side when incorporated in the image display device has an ultraviolet absorbing ability to protect the internal structure of the optical laminate from ultraviolet rays, the optical laminate having such a configuration In the production of the above, the irradiated ultraviolet rays are absorbed by the liquid crystal curing film or the transparent protective film, and it may be difficult for an amount of ultraviolet rays sufficient for curing the adhesive to reach the inside of the laminate. Therefore, in the optical laminate of the present invention, which may be sandwiched between layers having an ultraviolet absorbing ability (liquid crystal curing film and transparent protective film), a retardation film and a polarizing element, and a polarizing element and a transparent protective film are attached. It is advantageous to use a dry solidification type adhesive as the adhesive for bonding, from the viewpoint of thinning and improving the flexibility, and also from the viewpoint of obtaining an optical laminate having better adhesion between the layers.
 位相差フィルムと偏光子、および、偏光子と透明保護フィルムを貼合する接着剤層の厚みは、それぞれ、好ましくは10nm以上、より好ましくは30nm以上、さらに好ましくは50nm以上であり、好ましくは5μm以下、より好ましくは3μm以下、さらに好ましくは2μm以下である。接着剤層の厚みが上記範囲内であると、繰り返し屈曲させた場合に、屈曲点における歪みが生じ難く、これに起因するスジ状欠陥の発生や斜め反射率の上昇を抑制しやすい。位相差フィルムと偏光子、および、偏光子と透明保護フィルムを貼合する接着剤層の厚みは、同じであってもよく、互いに異なっていてもよい。
 接着剤層の厚みは、例えば、干渉膜厚計、レーザー顕微鏡または触針式膜厚計等を用いて測定することができる。
The thickness of the adhesive layer for laminating the retardation film and the polarizing element and the polarizing element and the transparent protective film is preferably 10 nm or more, more preferably 30 nm or more, still more preferably 50 nm or more, and preferably 5 μm. Below, it is more preferably 3 μm or less, still more preferably 2 μm or less. When the thickness of the adhesive layer is within the above range, distortion at the bending point is unlikely to occur when the adhesive layer is repeatedly bent, and it is easy to suppress the occurrence of streak-like defects and the increase in the oblique reflectance due to the distortion. The thicknesses of the adhesive layer for adhering the retardation film and the polarizing element and the polarizing element and the transparent protective film may be the same or different from each other.
The thickness of the adhesive layer can be measured using, for example, an interference film thickness meter, a laser microscope, a stylus type film thickness meter, or the like.
 (位相差フィルム)
 本発明の光学積層体を構成する位相差フィルムは、100g/m/24時間以上の透湿度を有する基材フィルムと、該基材フィルム上に形成される液晶硬化膜とを含んでなる。基材フィルムの透湿度は、好ましくは150g/m/24時間以上、より好ましくは200g/m/24時間以上である。位相差フィルムを構成する基材フィルムの透湿度が上記下限以上であると、位相差フィルムを偏光子と積層して形成される光学積層体中の水分を制御しやすい構成となり、特に、接着剤層を形成する接着剤として乾燥固化型接着剤を用いた場合に、接着剤中の溶媒を除去しやすく、基材フィルム上に形成される液晶硬化膜が有する弾性や屈曲性に近い物理的特性を有する接着剤層を調製しやすくなる。このため、光学積層体を屈曲した際に、各層を接着する接着剤層が液晶硬化膜における変形に影響を及ぼし難く、光学積層体全体の変形と各層における変形とが互いに追従しやすくなる。これにより、繰り返し屈曲させた場合にも屈曲点における歪みの発生が生じ難く、これに起因するスジ状の欠陥や斜め反射率の上昇を抑えることができる。基材フィルムの透湿度の上限は特に限定されるものではないが、通常、1000g/m/24時間以下、好ましくは500g/m/24時間以下である。
 なお、基材フィルムの透湿度は、例えば、JIS Z 0208(カップ法)により測定することができる。詳細には、後述する実施例に記載の方法に従い測定できる。
(Phase difference film)
The retardation film constituting the optical laminate of the present invention includes a base film having a moisture permeability of 100 g / m 2/24 hours or more and a liquid crystal cured film formed on the base film. The moisture permeability of the base film is preferably 150 g / m 2/24 hours or more, and more preferably 200 g / m 2/24 hours or more. When the moisture permeability of the base film constituting the retardation film is equal to or higher than the above lower limit, the moisture content in the optical laminate formed by laminating the retardation film with the polarizing element can be easily controlled, and in particular, an adhesive. When a dry-solidified adhesive is used as the adhesive to form the layer, the solvent in the adhesive can be easily removed, and the physical properties of the liquid crystal cured film formed on the base film are close to the elasticity and flexibility. It becomes easy to prepare the adhesive layer having. Therefore, when the optical laminate is bent, the adhesive layer that adheres each layer is unlikely to affect the deformation of the liquid crystal cured film, and the deformation of the entire optical laminate and the deformation of each layer are likely to follow each other. As a result, distortion is unlikely to occur at the bending point even when repeatedly bending, and it is possible to suppress streak-like defects and an increase in oblique reflectance due to this. The upper limit of the moisture permeability of the base film is not particularly limited, but is usually 1000 g / m 2/24 hours or less, preferably 500 g / m 2/24 hours or less.
The moisture permeability of the base film can be measured by, for example, JIS Z 0208 (cup method). In detail, it can be measured according to the method described in Examples described later.
 基材フィルムの透湿度は、フィルムを構成する樹脂の種類、フィルムの厚み、表面処理等により制御し得る。 The moisture permeability of the base film can be controlled by the type of resin constituting the film, the thickness of the film, the surface treatment, and the like.
 100g/m/24時間以上の透湿度を有する基材フィルムを構成する樹脂としては、例えば、トリアセチルセルロース、ポリビニルピロリドン系重合体、(メタ)アクリルアミド系重合体等が挙げられ、入手のしやすさ等の観点から、トリアセチルセルロースが好ましい。このような樹脂を、溶媒キャスト法、溶融押出法等の公知の手段により製膜して基材フィルムとすることができる。また、市販品を利用してもよい。 Examples of the resin constituting the base film having a moisture permeability of 100 g / m 2/24 hours or more include triacetyl cellulose, polyvinylpyrrolidone-based polymer, (meth) acrylamide-based polymer, and the like, which are available. Triacetyl cellulose is preferable from the viewpoint of ease of use and the like. Such a resin can be formed into a film by a known means such as a solvent casting method and a melt extrusion method to obtain a base film. Further, a commercially available product may be used.
 基材フィルムの厚みは、所望する光学積層体の構成にあわせて適宜決定することができるが、光学積層体の薄型化、加工性、屈曲性および強度等の観点から、通常、5μm~300μmであり、好ましくは15μm~200μm、より好ましくは20μm~150μmである。 The thickness of the base film can be appropriately determined according to the desired configuration of the optical laminate, but is usually 5 μm to 300 μm from the viewpoint of thinning, processability, flexibility, strength, etc. of the optical laminate. It is preferably 15 μm to 200 μm, and more preferably 20 μm to 150 μm.
 基材フィルムは、好ましくは90%以上、より好ましくは92%以上の全光線透過率を有する。全光線透過率が上記下限値以上であると、透明性が高く、光学特性に優れる光学積層体を構成できる。基材フィルムにおける全光線透過率の上限値は特に限定されず、100%以下であればよい。全光線透過率は、例えば、JIS K 7361に従い測定できる。 The base film has a total light transmittance of preferably 90% or more, more preferably 92% or more. When the total light transmittance is at least the above lower limit value, an optical laminate having high transparency and excellent optical characteristics can be formed. The upper limit of the total light transmittance of the base film is not particularly limited, and may be 100% or less. The total light transmittance can be measured according to, for example, JIS K7361.
 基材フィルムは、550nmの光に対する厚み方向の位相差値Rth(550)の絶対値が5nm以下であることが好ましく、3nm以下であることがより好ましい。基材フィルムの厚み方向の位相差値を制御することにより、液晶硬化膜により期待される光学特性に影響を及ぼし難く、得られる光学積層体の斜め反射率を低く抑えることができる。このような光学積層体は、表示装置等に組み込んだ際に黒表示時の光漏れや色相変化の抑制に優れるため、光学特性において有利な光学積層体となる。基材フィルムの前記位相差値Rth(550)は小さいほど好ましく、0nmであってもよい。基材フィルムの位相差値Rth(550)は、添加剤の配合により制御し得る他、流延方法等によっても制御し得る。 The base film preferably has an absolute value of the retardation value Rth (550) in the thickness direction with respect to light of 550 nm of 5 nm or less, and more preferably 3 nm or less. By controlling the phase difference value in the thickness direction of the base film, it is difficult to affect the optical characteristics expected by the liquid crystal cured film, and the oblique reflectance of the obtained optical laminate can be suppressed to a low level. Such an optical laminate is an advantageous optical laminate in terms of optical characteristics because it is excellent in suppressing light leakage and hue change during black display when incorporated into a display device or the like. The smaller the retardation value Rth (550) of the base film is, the more preferable it is, and it may be 0 nm. The retardation value Rth (550) of the base film can be controlled not only by blending an additive but also by a casting method or the like.
 基材フィルムの表面には、形成する液晶硬化膜や配向膜を構成する成分、基材フィルムと接し得る接着剤の成分などに応じて、これらとの密着性等を高めるために、コロナ処理やプラズマ処理等の表面処理が施されていてもよい。 The surface of the base film is treated with corona in order to improve the adhesion with the liquid crystal cured film to be formed, the components constituting the alignment film, the components of the adhesive that can come into contact with the base film, and the like. Surface treatment such as plasma treatment may be applied.
 本発明において、位相差フィルムを構成する液晶硬化膜は、下記式(1)および(2):
 Re(450)/Re(550)≦1.00  (1)
 1.00≦Re(650)/Re(550)  (2)
〔式中、Re(λ)は波長λにおける面内位相差値を示す〕
を単層で満たす液晶硬化膜である。「単層で満たす」とは、液晶化合物を含む重合性液晶化合物から得られる1層の硬化膜が単層で、上記式(1)および(2)で表される光学特性を示すことを意味する。
In the present invention, the liquid crystal cured film constituting the retardation film has the following formulas (1) and (2):
Re (450) / Re (550) ≤ 1.00 (1)
1.00 ≤ Re (650) / Re (550) (2)
[In the equation, Re (λ) indicates the in-plane phase difference value at the wavelength λ]
Is a liquid crystal curing film that fills with a single layer. "Filling with a single layer" means that the one-layer cured film obtained from the polymerizable liquid crystal compound containing the liquid crystal compound is a single layer and exhibits the optical characteristics represented by the above formulas (1) and (2). do.
 液晶硬化膜が式(1)および(2)を満たす場合、当該液晶硬化膜は、短波長での面内位相差値が長波長での面内位相差値よりも小さくなる、いわゆる逆波長分散性を示す。逆波長分散性を示す場合、可視光の広い波長範囲で一様の位相差性能を発揮しやすい傾向にあり、光学積層体の光学特性が向上しやすい。単層で上記式(1)および(2)を満たす光学特性を有する液晶硬化膜(以下、「液晶硬化膜(x)」ともいう)を用いることによって、光学特性に優れながらより薄型の位相差フィルムを得ることができる。 When the liquid crystal cured film satisfies the formulas (1) and (2), the liquid crystal cured film has a so-called inverse wavelength dispersion in which the in-plane retardation value at a short wavelength is smaller than the in-plane retardation value at a long wavelength. Show sex. When the inverse wavelength dispersibility is exhibited, uniform phase difference performance tends to be exhibited in a wide wavelength range of visible light, and the optical characteristics of the optical laminate tend to be improved. By using a liquid crystal cured film having optical characteristics satisfying the above formulas (1) and (2) with a single layer (hereinafter, also referred to as "liquid crystal cured film (x)"), a thinner phase difference while having excellent optical characteristics. You can get the film.
 逆波長分散性が向上し、液晶硬化膜の正面方向の反射色相の向上効果をより高めることができるため、Re(450)/Re(550)は、好ましくは0.70以上、より好ましくは0.78以上であり、また、好ましくは0.95以下、より好ましくは0.92以下である。また、Re(650)/Re(550)は、好ましくは1.0以上、より好ましくは1.01以上であり、さらに好ましくは1.02以上である。 Re (450) / Re (550) is preferably 0.70 or more, more preferably 0, because the reverse wavelength dispersibility is improved and the effect of improving the reflected hue in the front direction of the liquid crystal cured film can be further enhanced. It is .78 or more, preferably 0.95 or less, and more preferably 0.92 or less. Further, Re (650) / Re (550) is preferably 1.0 or more, more preferably 1.01 or more, and further preferably 1.02 or more.
 上記面内位相差値は、液晶硬化膜の厚みd1によって調整することができる。液晶硬化膜の面内位相差値は、Re=(nx(λ)-ny(λ))×d(式中、dは液晶硬化膜の厚みを表し、nxは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に平行な方向の波長λnmにおける主屈折率を表し、nyは、液晶硬化膜が形成する屈折率楕円体において、液晶硬化膜の平面に対して平行であり、且つ、前記nxの方向に対して直交する方向の波長λnmにおける屈折率を表す)によって決定されることから、所望の面内位相差値を得るには、3次元屈折率と膜厚dとを調整すればよい。 The in-plane retardation value can be adjusted by the thickness d1 of the liquid crystal cured film. The in-plane retardation value of the cured liquid crystal film is Re = (nx (λ) -ny (λ)) × d (in the formula, d represents the thickness of the cured liquid crystal film, and nx is the refractive index formed by the cured liquid crystal film. In the rate ellipse, it represents the main refractive index at a wavelength of λ nm in the direction parallel to the plane of the cured liquid crystal film, and ny is parallel to the plane of the cured liquid crystal film in the refractive index ellipse formed by the cured liquid crystal film. And, since it is determined by the refractive index at the wavelength λ nm in the direction orthogonal to the nx direction), the three-dimensional refractive index and the film thickness d are used to obtain a desired in-plane retardation value. Should be adjusted.
 さらに、液晶硬化膜(x)は下記式(3):
100nm≦Re(550)≦170nm  (3)
〔式中、Re(λ)は波長λにおける面内位相差値を示す〕
を満たすことが好ましい。液晶硬化膜(x)が式(3)を満たすと、該液晶硬化膜(x)を含む光学積層体(楕円偏光板)を有機EL表示装置に適用した場合の黒表示時の正面反射色相が向上しやすくなる。面内位相差値のさらに好ましい範囲は、130nm≦ReA(550)≦150nmである。
Further, the liquid crystal cured film (x) has the following formula (3):
100 nm ≤ Re (550) ≤ 170 nm (3)
[In the equation, Re (λ) indicates the in-plane phase difference value at the wavelength λ]
It is preferable to satisfy. When the liquid crystal cured film (x) satisfies the formula (3), the front reflection hue at the time of black display when the optical laminate (elliptic polarizing plate) containing the liquid crystal cured film (x) is applied to the organic EL display device becomes It will be easier to improve. A more preferable range of the in-plane retardation value is 130 nm ≦ ReA (550) ≦ 150 nm.
 本発明において液晶硬化膜(x)は、少なくとも1種の重合性液晶化合物を含む重合性液晶組成物の硬化物から形成できる。重合性液晶化合物としては、所望する光学特性を有する液晶硬化膜を形成し得るものであれば特に限定されず、位相差フィルムの分野において従来公知の重合性液晶化合物を用いることができる。 In the present invention, the liquid crystal cured film (x) can be formed from a cured product of a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound. The polymerizable liquid crystal compound is not particularly limited as long as it can form a liquid crystal cured film having desired optical properties, and conventionally known polymerizable liquid crystal compounds in the field of retardation film can be used.
 重合性液晶化合物は、重合性基を有する液晶化合物である。重合性液晶化合物としては、一般に、該重合性液晶化合物を単独で特定方向に配向した状態で重合することにより得られる重合体(硬化物)が、正波長分散性を示す重合性液晶化合物と逆波長分散性を示す重合性液晶化合物とが挙げられる。上記式(1)および(2)で表される光学特性を単独で満たす液晶硬化膜が得られやすい観点から、本発明において位相差フィルムを構成する液晶硬化膜(x)は、単独で特定方向に配向した状態で重合することにより得られる重合体(硬化物)が逆波長分散性を示す重合性液晶化合物を含む重合性液晶組成物の硬化物であることが好ましい。 The polymerizable liquid crystal compound is a liquid crystal compound having a polymerizable group. As the polymerizable liquid crystal compound, generally, the polymer (cured product) obtained by polymerizing the polymerizable liquid crystal compound alone in a state of being oriented in a specific direction is opposite to that of the polymerizable liquid crystal compound exhibiting positive wavelength dispersity. Examples thereof include polymerizable liquid crystal compounds exhibiting wavelength dispersibility. From the viewpoint that it is easy to obtain a liquid crystal cured film that independently satisfies the optical characteristics represented by the above formulas (1) and (2), the liquid crystal cured film (x) constituting the retardation film in the present invention is independently in a specific direction. It is preferable that the polymer (cured product) obtained by polymerizing in a state oriented in the above direction is a cured product of a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound exhibiting reverse wavelength dispersibility.
 重合性基とは、重合反応に関与し得る基をいう。本発明において液晶硬化膜を形成する重合性液晶化合物が有する重合性基は、好ましくは光重合性基である。光重合性基とは、重合性基であって、光重合開始剤から発生した反応活性種、例えば活性ラジカルや酸などによって重合反応に関与し得る基のことをいう。光重合性基としては、例えばビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基およびオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。 A polymerizable group is a group that can participate in a polymerization reaction. In the present invention, the polymerizable group contained in the polymerizable liquid crystal compound forming the liquid crystal cured film is preferably a photopolymerizable group. The photopolymerizable group is a polymerizable group and refers to a group that can participate in the polymerization reaction by a reactive active species generated from the photopolymerization initiator, for example, an active radical or an acid. Examples of the photopolymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group and an oxetanyl group. Of these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.
 重合性液晶化合物が示す液晶性はサーモトロピック性液晶であってもよいし、リオトロピック性液晶であってもよいが、緻密な膜厚制御が可能な点でサーモトロピック性液晶が好ましい。また、サーモトロピック性液晶における相秩序構造としてはネマチック液晶でもスメクチック液晶でもディスコチック液晶でもよい。重合性液晶化合物は単独または二種以上組み合わせて使用できる。 The liquid crystal property exhibited by the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, but the thermotropic liquid crystal is preferable in that precise film thickness control is possible. Further, the phase-ordered structure of the thermotropic liquid crystal may be a nematic liquid crystal, a smectic liquid crystal, or a discotic liquid crystal. The polymerizable liquid crystal compound can be used alone or in combination of two or more.
 いわゆるT字型またはH型の分子構造を有する重合性液晶化合物は逆波長分散性を発現しやすく、T字型の分子構造を有する重合性液晶化合物はより強い逆波長分散性を発現する傾向にある。 Polymerizable liquid crystal compounds having a so-called T-shaped or H-shaped molecular structure tend to exhibit reverse wavelength dispersibility, and polymerizable liquid crystal compounds having a T-shaped molecular structure tend to exhibit stronger reverse wavelength dispersibility. be.
 逆波長分散性を示す重合性液晶化合物としては、下記(A)~(D)の特徴を有する化合物であることが好ましい。
(A)ネマチック相またはスメクチック相を形成し得る化合物である。
(B)該重合性液晶化合物の長軸方向(a)上にπ電子を有する。
(C)長軸方向(a)に対して交差する方向〔交差方向(b)〕上にπ電子を有する。
(D)長軸方向(a)に存在するπ電子の合計をN(πa)、長軸方向に存在する分子量の合計をN(Aa)として下記式(i)で定義される重合性液晶化合物の長軸方向(a)のπ電子密度:
 D(πa)=N(πa)/N(Aa)  (i)
と、交差方向(b)に存在するπ電子の合計をN(πb)、交差方向(b)に存在する分子量の合計をN(Ab)として下記式(ii)で定義される重合性液晶化合物の交差方向(b)のπ電子密度:
 D(πb)=N(πb)/N(Ab)  (ii)
とが、式(iii)
 0≦〔D(πa)/D(πb)〕<1   (iii)
の関係にある〔すなわち、交差方向(b)のπ電子密度が、長軸方向(a)のπ電子密度よりも大きい〕。上記記載のように長軸およびそれに対して交差方向上にπ電子を有する重合性液晶化合物は、一般にT字構造となりやすい。
The polymerizable liquid crystal compound exhibiting reverse wavelength dispersibility is preferably a compound having the following characteristics (A) to (D).
(A) A compound capable of forming a nematic phase or a smectic phase.
(B) The polymerizable liquid crystal compound has π electrons in the long axis direction (a).
(C) It has π electrons in the direction [intersection direction (b)] intersecting with respect to the major axis direction (a).
(D) A polymerizable liquid crystal compound defined by the following formula (i), where the total number of π electrons existing in the long axis direction (a) is N (πa) and the total molecular weight existing in the long axis direction is N (Aa). Π electron density in the long axis direction (a) of
D (πa) = N (πa) / N (Aa) (i)
The polymerizable liquid crystal compound defined by the following formula (ii), where the total number of π electrons existing in the crossing direction (b) is N (πb) and the total molecular weight existing in the crossing direction (b) is N (Ab). Π electron density in the crossing direction (b) of
D (πb) = N (πb) / N (Ab) (ii)
And, the formula (iii)
0 ≦ [D (πa) / D (πb)] <1 (iii)
[That is, the π electron density in the crossing direction (b) is larger than the π electron density in the major axis direction (a)]. As described above, a polymerizable liquid crystal compound having a major axis and π electrons in the crossing direction with respect to the major axis tends to have a T-shaped structure in general.
 上記(A)~(D)の特徴において、長軸方向(a)およびπ電子数Nは以下のように定義される。
・長軸方向(a)は、例えば棒状構造を有する化合物であれば、その棒状の長軸方向である。
・長軸方向(a)上に存在するπ電子数N(πa)には、重合反応により消失するπ電子は含まない。
・長軸方向(a)上に存在するπ電子数N(πa)には、長軸上のπ電子およびこれと共役するπ電子の合計数であり、例えば長軸方向(a)上に存在する環であって、ヒュッケル則を満たす環に存在するπ電子の数が含まれる。
・交差方向(b)に存在するπ電子数N(πb)には、重合反応により消失するπ電子は含まない。
 上記を満たす重合性液晶化合物は、長軸方向にメソゲン構造を有している。このメソゲン構造によって、液晶相(ネマチック相、スメクチック相)を発現する。
In the above features (A) to (D), the long axis direction (a) and the number of π electrons N are defined as follows.
The major axis direction (a) is, for example, the rod-shaped major axis direction in the case of a compound having a rod-shaped structure.
The number of π electrons N (πa) existing in the long axis direction (a) does not include π electrons that disappear due to the polymerization reaction.
The number of π electrons N (πa) existing in the long axis direction (a) is the total number of π electrons on the long axis and π electrons coupled thereto, for example, existing in the long axis direction (a). The number of π electrons present in the ring that satisfies Hückel's law is included.
The number of π electrons N (πb) existing in the crossing direction (b) does not include π electrons that disappear due to the polymerization reaction.
The polymerizable liquid crystal compound satisfying the above has a mesogen structure in the long axis direction. The liquid crystal phase (nematic phase, smectic phase) is expressed by this mesogen structure.
 上記(A)~(D)を満たす重合性液晶化合物を、相転移温度以上に加熱することにより、ネマチック相やスメクチック相を形成することが可能である。この重合性液晶化合物が配向して形成されたネマチック相またはスメクチック相では通常、重合性液晶化合物の長軸方向が互いに平行になるように配向しており、この長軸方向がネマチック相またはスメクチック相の配向方向となる。このような重合性液晶化合物を膜状とし、ネマチック相またはスメクチック相の状態で重合させると、長軸方向(a)に配向した状態で重合した重合体からなる重合体膜を形成することができる。この重合体膜は、長軸方向(a)上のπ電子と交差方向(b)上のπ電子により紫外線を吸収する。ここで、交差方向(b)上のπ電子により吸収される紫外線の吸収極大波長をλbmaxとする。λbmaxは通常300nm~400nmである。π電子の密度は、上記式(iii)を満足していて、交差方向(b)のπ電子密度が長軸方向(a)のπ電子密度よりも大きいので、交差方向(b)に振動面を有する直線偏光紫外線(波長はλbmax)の吸収が、長軸方向(a)に振動面を有する直線偏光紫外線(波長はλbmax)の吸収よりも大きな重合体膜となる。その比(直線偏光紫外線の交差方向(b)の吸光度/長軸方向(a)の吸光度の比)は、例えば1.0超、好ましくは1.2以上、通常30以下であり、例えば10以下である。 It is possible to form a nematic phase or a smectic phase by heating the polymerizable liquid crystal compound satisfying the above (A) to (D) to a phase transition temperature or higher. In the nematic phase or smectic phase formed by orienting the polymerizable liquid crystal compound, the polymerizable liquid crystal compound is usually oriented so that the major axis directions are parallel to each other, and the major axis direction is the nematic phase or smectic phase. Is the orientation direction of. When such a polymerizable liquid crystal compound is formed into a film and polymerized in a nematic phase or a smectic phase, a polymer film composed of a polymer oriented in the long axis direction (a) can be formed. .. This polymer film absorbs ultraviolet rays by π electrons in the major axis direction (a) and π electrons in the crossing direction (b). Here, the absorption maximum wavelength of ultraviolet rays absorbed by π electrons in the crossing direction (b) is defined as λbmax. λbmax is usually 300 nm to 400 nm. The density of π electrons satisfies the above equation (iii), and since the π electron density in the crossing direction (b) is larger than the π electron density in the major axis direction (a), the vibration surface in the crossing direction (b). The absorption of linearly polarized ultraviolet rays (wavelength λbmax) having a vibration plane in the long axis direction (a) is larger than the absorption of linearly polarized ultraviolet rays (wavelength λbmax) having a vibration plane. The ratio (the ratio of the absorbance in the crossing direction (b) of the linearly polarized ultraviolet rays / the absorbance in the major axis direction (a)) is, for example, more than 1.0, preferably 1.2 or more, usually 30 or less, and for example, 10 or less. Is.
 上記特徴を有する重合性液晶化合物は、一般に、一方向に配向した状態で重合させたときにその重合体の複屈折率が逆波長分散性を示すものであることが多い。具体的には、例えば、下記式(X)で表される化合物(以下、「重合性液晶化合物(X)」ともいう)が挙げられる。
Figure JPOXMLDOC01-appb-C000001
In general, a polymerizable liquid crystal compound having the above characteristics often exhibits reverse wavelength dispersibility in the birefringence of the polymer when polymerized in a state of being oriented in one direction. Specifically, for example, a compound represented by the following formula (X) (hereinafter, also referred to as “polymerizable liquid crystal compound (X)”) can be mentioned.
Figure JPOXMLDOC01-appb-C000001
 式(X)中、Arは置換基を有していてもよい芳香族基を有する二価の基を表す。ここでいう芳香族基とは、例えば後述する(Ar-1)~(Ar-23)で例示される基が挙げられる。またArは芳香族基を2個以上有していてもよい。該芳香族基中には窒素原子、酸素原子、硫黄原子のうち少なくとも1つ以上が含まれていてもよい。Arに含まれる芳香族基が2つ以上である場合、2つ以上の芳香族基は互いに単結合、-CO-O-、-O-などの二価の結合基で結合していてもよい。
 GおよびGはそれぞれ独立に、二価の芳香族基または二価の脂環式炭化水素基を表す。ここで、該二価の芳香族基または二価の脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシ基、シアノ基またはニトロ基に置換されていてもよく、該二価の芳香族基または二価の脂環式炭化水素基を構成する炭素原子が、酸素原子、硫黄原子または窒素原子に置換されていてもよい。
 L、L、BおよびBはそれぞれ独立に、単結合または二価の連結基である。
 k、lは、それぞれ独立に0~3の整数を表し、1≦k+lの関係を満たす。ここで、2≦k+lである場合、BおよびB、GおよびGは、それぞれ互いに同一であってもよく、異なっていてもよい。
 EおよびEはそれぞれ独立に、炭素数1~17のアルカンジイル基を表し、炭素数4~12のアルカンジイル基がより好ましい。また、アルカンジイル基に含まれる水素原子は、ハロゲン原子で置換されていてもよく、該アルカンジイル基に含まれる-CH-は、-O-、-S-、-C(=O)-で置換されていてもよい。
 PおよびPは互いに独立に、重合性基または水素原子を表し、少なくとも1つは重合性基である。
In formula (X), Ar represents a divalent group having an aromatic group which may have a substituent. Examples of the aromatic group referred to here include the groups exemplified by (Ar-1) to (Ar-23) described later. Further, Ar may have two or more aromatic groups. The aromatic group may contain at least one or more of a nitrogen atom, an oxygen atom and a sulfur atom. When two or more aromatic groups are contained in Ar, the two or more aromatic groups may be bonded to each other by a single bond or a divalent bonding group such as -CO-O- or -O-. ..
G 1 and G 2 independently represent a divalent aromatic group or a divalent alicyclic hydrocarbon group, respectively. Here, the hydrogen atom contained in the divalent aromatic group or the divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, and carbon. The carbon atom constituting the divalent aromatic group or the divalent alicyclic hydrocarbon group may be substituted with an alkoxy group, a cyano group or a nitro group of the number 1 to 4, and is an oxygen atom or a sulfur atom. Alternatively, it may be substituted with a nitrogen atom.
L 1 , L 2 , B 1 and B 2 are independently single-bonded or divalent linking groups, respectively.
k and l each independently represent an integer of 0 to 3, and satisfy the relationship of 1 ≦ k + l. Here, when 2 ≦ k + l, B 1 and B 2 , G 1 and G 2 may be the same as each other or may be different from each other.
E 1 and E 2 each independently represent an alkanediyl group having 1 to 17 carbon atoms, and an alkanediyl group having 4 to 12 carbon atoms is more preferable. Further, the hydrogen atom contained in the alkanediyl group may be substituted with a halogen atom, and -CH 2- contained in the alkanediyl group is -O-, -S-, -C (= O)-. It may be replaced with.
P 1 and P 2 independently represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.
 GおよびGは、それぞれ独立に、好ましくは、ハロゲン原子および炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-フェニレンジイル基、ハロゲン原子および炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-シクロヘキサンジイル基であり、より好ましくはメチル基で置換された1,4-フェニレンジイル基、無置換の1,4-フェニレンジイル基、または無置換の1,4-trans-シクロヘキサンジイル基であり、特に好ましくは無置換の1,4-フェニレンジイル基、または無置換の1,4-trans-シクロへキサンジイル基である。
 また、複数存在するGおよびGのうち少なくとも1つは二価の脂環式炭化水素基であることが好ましく、また、LまたはLに結合するGおよびGのうち少なくとも1つは二価の脂環式炭化水素基であることがより好ましい。
G 1 and G 2 are each independently substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, preferably a 1,4-phenylenediyl group. , A 1,4-cyclohexanediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group substituted 1. , 4-phenylenediyl group, unsubstituted 1,4-phenylenediyl group, or unsubstituted 1,4-trans-cyclohexanediyl group, particularly preferably unsubstituted 1,4-phenylenediyl group, or no substituted It is a substituted 1,4-trans-cyclohexandiyl group.
Further, at least one of a plurality of G 1 and G 2 present is preferably a divalent alicyclic hydrocarbon group, and at least one of G 1 and G 2 bonded to L 1 or L 2 is preferable. More preferably, it is a divalent alicyclic hydrocarbon group.
 LおよびLはそれぞれ独立に、好ましくは、単結合、炭素数1~4のアルキレン基、-O-、-S-、-Ra1ORa2-、-Ra3COORa4-、-Ra5OCORa6-、-Ra7OC=OORa8-、-N=N-、-CR=CR-、または-C≡C-である。ここで、Ra1~Ra8はそれぞれ独立に単結合、または炭素数1~4のアルキレン基を表し、RおよびRは炭素数1~4のアルキル基または水素原子を表す。LおよびLはそれぞれ独立に、より好ましくは単結合、-ORa2-1-、-CH-、-CHCH-、-COORa4-1-、または-OCORa6-1-である。ここで、Ra2-1、Ra4-1、Ra6-1はそれぞれ独立に単結合、-CH-、-CHCH-のいずれかを表す。LおよびLはそれぞれ独立に、さらに好ましくは単結合、-O-、-CHCH-、-COO-、-COOCHCH-、または-OCO-である。 L 1 and L 2 are independent of each other, preferably single bond, alkylene group having 1 to 4 carbon atoms, -O-, -S-, -R a1 OR a2- , -R a3 COOR a4- , -R a5 . OCOR a6- , -R a7 OC = OOR a8- , -N = N-, -CR c = CR d- , or -C≡C-. Here, R a1 to R a8 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms, and R c and R d represent an alkyl group or a hydrogen atom having 1 to 4 carbon atoms. L 1 and L 2 are independent, more preferably single bonds, -OR a2-1- , -CH 2- , -CH 2 CH 2- , -COOR a4-1- , or -OCOR a6-1- . be. Here, R a2-1 , R a4-1 , and R a6-1 independently represent either single bond, -CH 2- , or -CH 2 CH 2- . L 1 and L 2 are independent, more preferably single bonds, -O-, -CH 2 CH 2- , -COO-, -COOCH 2 CH 2- , or -OCO-, respectively.
 BおよびBはそれぞれ独立に、好ましくは、単結合、炭素数1~4のアルキレン基、-O-、-S-、-Ra9ORa10-、-Ra11COORa12-、-Ra13OCORa14-、または-Ra15OC=OORa16-である。ここで、Ra9~Ra16はそれぞれ独立に単結合、または炭素数1~4のアルキレン基を表す。BおよびBはそれぞれ独立に、より好ましくは単結合、-ORa10-1-、-CH-、-CHCH-、-COORa12-1-、または-OCORa14-1-である。ここで、Ra10-1、Ra12-1、Ra14-1はそれぞれ独立に単結合、-CH-、-CHCH-のいずれかを表す。BおよびBはそれぞれ独立に、さらに好ましくは単結合、-O-、-CHCH-、-COO-、-COOCHCH-、-OCO-、または-OCOCHCH-である。 B 1 and B 2 are independent of each other, preferably single bond, alkylene group having 1 to 4 carbon atoms, -O-, -S-, -R a9 OR a10- , -R a11 COOR a12- , -R a13 . OCOR a14 -or-R a15 OC = OOR a16- . Here, R a9 to R a16 each independently represent a single bond or an alkylene group having 1 to 4 carbon atoms. B 1 and B 2 are independent, more preferably single-bonded, -OR a10-1- , -CH 2- , -CH 2 CH 2- , -COOR a12-1- , or -OCOR a14-1- . be. Here, R a10-1 , R a12-1 , and R a14-1 independently represent either single bond, -CH 2- , or -CH 2 CH 2- . B 1 and B 2 are independent, more preferably single-bonded, -O-, -CH 2 CH 2- , -COO-, -COOCH 2 CH 2-, -OCO-, or -OCOCH 2 CH 2- . be.
 kおよびlは、逆波長分散性発現の観点から2≦k+l≦6の範囲が好ましく、k+l=4であることが好ましく、k=2かつl=2であることがより好ましい。k=2かつl=2であると対称構造となるため好ましい。 K and l are preferably in the range of 2 ≦ k + l ≦ 6, preferably k + l = 4, and more preferably k = 2 and l = 2 from the viewpoint of expressing reverse wavelength dispersibility. When k = 2 and l = 2, it is preferable because it has a symmetrical structure.
 PまたはPで表される重合性基としては、エポキシ基、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、およびオキセタニル基等が挙げられる。
中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基およびビニルオキシ基が好ましく、アクリロイルオキシ基、メタクリロイルオキシ基がより好ましい。
The polymerizable group represented by P 1 or P 2 includes an epoxy group, a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, and an oxylanyl group. , And an oxetanyl group and the like.
Of these, acryloyloxy group, methacryloyloxy group, vinyl group and vinyloxy group are preferable, and acryloyloxy group and methacryloyloxy group are more preferable.
 Arは置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、および電子吸引性基から選ばれる少なくとも1つを有することが好ましい。当該芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環等が挙げられ、ベンゼン環、ナフタレン環が好ましい。当該芳香族複素環としては、フラン環、ベンゾフラン環、ピロール環、インドール環、チオフェン環、ベンゾチオフェン環、ピリジン環、ピラジン環、ピリミジン環、トリアゾール環、トリアジン環、ピロリン環、イミダゾール環、ピラゾール環、チアゾール環、ベンゾチアゾール環、チエノチアゾール環、オキサゾール環、ベンゾオキサゾール環、およびフェナンスロリン環等が挙げられる。なかでも、チアゾール環、ベンゾチアゾール環、またはベンゾフラン環を有することが好ましく、ベンゾチアゾール環を有することがさらに好ましい。また、Arに窒素原子が含まれる場合、当該窒素原子はπ電子を有することが好ましい。 Ar preferably has at least one selected from an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocycle which may have a substituent, and an electron-withdrawing group. Examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring and the like, and a benzene ring and a naphthalene ring are preferable. Examples of the aromatic heterocycle include a furan ring, a benzofuran ring, a pyrrole ring, an indole ring, a thiophene ring, a benzothiophene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazole ring, a triazine ring, a pyrrolin ring, an imidazole ring, and a pyrazole ring. , Thiazole ring, benzothiazole ring, thienothiazole ring, oxazole ring, benzoxazole ring, phenanthroline ring and the like. Among them, it is preferable to have a thiazole ring, a benzothiazole ring, or a benzofuran ring, and it is more preferable to have a benzothiazole ring. When Ar contains a nitrogen atom, the nitrogen atom preferably has π electrons.
 式(X)中、Arで表される基が有するπ電子の合計数Nπは、通常6以上であり、8以上が好ましく、より好ましくは10以上であり、さらに好ましくは14以上であり、特に好ましくは16以上である。また、好ましくは32以下であり、より好ましくは26以下であり、さらに好ましくは24以下である。 In the formula (X), the total number of π electrons N π of the group represented by Ar is usually 6 or more, preferably 8 or more, more preferably 10 or more, still more preferably 14 or more. Especially preferably, it is 16 or more. Further, it is preferably 32 or less, more preferably 26 or less, and further preferably 24 or less.
 Arに含まれる芳香族基としては、例えば以下の基が挙げられる。 Examples of the aromatic group contained in Ar include the following groups.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(Ar-1)~式(Ar-23)中、*印は連結部を表し、Z、ZおよびZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルキルスルフィニル基、炭素数1~12のアルキルスルホニル基、カルボキシル基、炭素数1~12のフルオロアルキル基、炭素数1~12のアルコキシ基、炭素数1~12のアルキルチオ基、炭素数1~12のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~12のN-アルキルスルファモイル基または炭素数2~12のN,N-ジアルキルスルファモイル基を表す。また、Z、ZおよびZは、重合性基を含んでいてもよい。 In the formulas (Ar-1) to (Ar-23), * indicates a connecting part, and Z 0 , Z 1 and Z 2 are independently hydrogen atoms, halogen atoms, and alkyl having 1 to 12 carbon atoms. Group, cyano group, nitro group, alkylsulfinyl group having 1 to 12 carbon atoms, alkylsulfonyl group having 1 to 12 carbon atoms, carboxyl group, fluoroalkyl group having 1 to 12 carbon atoms, alkoxy group having 1 to 12 carbon atoms, Alkylthio group with 1-12 carbon atoms, N-alkylamino group with 1-12 carbon atoms, N, N-dialkylamino group with 2-12 carbon atoms, N-alkylsulfamoyl group with 1-12 carbon atoms or carbon Represents an N, N-dialkylsulfamoyl group of number 2-12. Further, Z 0 , Z 1 and Z 2 may contain a polymerizable group.
 QおよびQは、それぞれ独立に、-CR2’3’-、-S-、-NH-、-NR2’-、-CO-または-O-を表し、R2’およびR3’は、それぞれ独立に、水素原子または炭素数1~4のアルキル基を表す。 Q 1 and Q 2 independently represent -CR 2'R 3'- , -S-, -NH-, -NR 2'- , -CO- or -O- , and R 2'and R 3 respectively . ' Independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 JおよびJは、それぞれ独立に、炭素原子、または窒素原子を表す。 J 1 and J 2 independently represent a carbon atom or a nitrogen atom, respectively.
 Y、YおよびYは、それぞれ独立に、置換されていてもよい芳香族炭化水素基または芳香族複素環基を表す。 Y 1 , Y 2 and Y 3 each independently represent an aromatic hydrocarbon group or an aromatic heterocyclic group which may be substituted.
 WおよびWは、それぞれ独立に、水素原子、シアノ基、メチル基またはハロゲン原子を表し、mは0~6の整数を表す。 W 1 and W 2 independently represent a hydrogen atom, a cyano group, a methyl group or a halogen atom, and m represents an integer of 0 to 6.
 Y、YおよびYにおける芳香族炭化水素基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等の炭素数6~20の芳香族炭化水素基が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。芳香族複素環基としては、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも1つ含む炭素数4~20の芳香族複素環基が挙げられ、フリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基が好ましい。 Examples of the aromatic hydrocarbon group in Y 1 , Y 2 and Y 3 include an aromatic hydrocarbon group having 6 to 20 carbon atoms such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group and a biphenyl group, and a phenyl group. , A naphthyl group is preferable, and a phenyl group is more preferable. The aromatic heterocyclic group has 4 to 20 carbon atoms including at least one heteroatom such as a nitrogen atom such as a frill group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group and a benzothiazolyl group, an oxygen atom and a sulfur atom. Examples thereof include an aromatic heterocyclic group, and a frill group, a thienyl group, a pyridinyl group, a thiazolyl group and a benzothiazolyl group are preferable.
 Y、YおよびYは、それぞれ独立に、置換されていてもよい多環系芳香族炭化水素基または多環系芳香族複素環基であってもよい。多環系芳香族炭化水素基は、縮合多環系芳香族炭化水素基、または芳香環集合に由来する基をいう。多環系芳香族複素環基は、縮合多環系芳香族複素環基、または芳香環集合に由来する基をいう。 Y 1 , Y 2 and Y 3 may be independently substituted polycyclic aromatic hydrocarbon groups or polycyclic aromatic heterocyclic groups, respectively. The polycyclic aromatic hydrocarbon group refers to a condensed polycyclic aromatic hydrocarbon group or a group derived from an aromatic ring assembly. The polycyclic aromatic heterocyclic group refers to a fused polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
 Z、ZおよびZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルコキシ基であることが好ましく、Zは、水素原子、炭素数1~12のアルキル基、シアノ基がさらに好ましく、ZおよびZは、水素原子、フッ素原子、塩素原子、メチル基、シアノ基がさらに好ましい。また、Z、ZおよびZは重合性基を含んでいてもよい。 It is preferable that Z 0 , Z 1 and Z 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 12 carbon atoms, cyano group, nitro group and alkoxy group having 1 to 12 carbon atoms, respectively. 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, and a cyano group, and Z 1 and Z 2 are further preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, and a cyano group. Further, Z 0 , Z 1 and Z 2 may contain a polymerizable group.
 QおよびQは、-NH-、-S-、-NR2’-、-O-が好ましく、R2’は水素原子が好ましい。中でも-S-、-O-、-NH-が特に好ましい。 Q 1 and Q 2 are preferably -NH-, -S-, -NR 2'-, and -O- , and R 2'is preferably a hydrogen atom. Of these, -S-, -O-, and -NH- are particularly preferable.
 式(Ar-1)~(Ar-23)の中でも、式(Ar-6)および式(Ar-7)が分子の安定性の観点から好ましい。 Among the formulas (Ar-1) to (Ar-23), the formula (Ar-6) and the formula (Ar-7) are preferable from the viewpoint of molecular stability.
 式(Ar-16)~(Ar-23)において、Yは、これが結合する窒素原子およびZと共に、芳香族複素環基を形成していてもよい。芳香族複素環基としては、Arが有していてもよい芳香族複素環として前記したものが挙げられるが、例えば、ピロール環、イミダゾール環、ピロリン環、ピリジン環、ピラジン環、ピリミジン環、インドール環、キノリン環、イソキノリン環、プリン環、ピロリジン環等が挙げられる。この芳香族複素環基は、置換基を有していてもよい。また、Yは、これが結合する窒素原子およびZと共に、前述した置換されていてもよい多環系芳香族炭化水素基または多環系芳香族複素環基であってもよい。例えば、ベンゾフラン環、ベンゾチアゾール環、ベンゾオキサゾール環等が挙げられる。 In formulas (Ar-16) to (Ar-23), Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is attached and Z 0 . Examples of the aromatic heterocyclic group include those described above as the aromatic heterocycle that Ar may have. For example, a pyrrole ring, an imidazole ring, a pyrroline ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, and an indole. Examples thereof include a ring, a quinoline ring, an isoquinoline ring, a purine ring, a pyrroline ring, and the like. This aromatic heterocyclic group may have a substituent. Further, Y 1 may be a polycyclic aromatic hydrocarbon group or a polycyclic aromatic heterocyclic group which may be substituted as described above, together with the nitrogen atom to which the Y 1 is bonded and Z 0 . For example, a benzofuran ring, a benzothiazole ring, a benzoxazole ring and the like can be mentioned.
 本発明において、位相差フィルムを構成する液晶硬化膜(x)は波長300~400nmの間に少なくとも1つの極大吸収を有することが好ましく、液晶硬化膜(x)を形成する重合性液晶化合物は、波長300~400nmの間に極大吸収波長を有する重合性液晶化合物であることが好ましい。重合性液晶組成物に光重合開始剤が含まれる場合、長期保管時に重合性液晶化合物の重合反応およびゲル化が進行するおそれがあるが、重合性液晶化合物の極大吸収波長が300~400nmであれば保管中に紫外光が曝露されても、光重合開始剤からの反応活性種の発生および該反応活性種による重合性液晶化合物の重合反応およびゲル化の進行を有効に抑制できる。従って、重合性液晶組成物の長期安定性の点で有利となり、得られる液晶硬化膜の配向性および膜厚の均一性を向上できる。なお、重合性液晶化合物の極大吸収波長は、溶媒中で紫外可視分光光度計を用いて測定できる。該溶媒は重合性液晶化合物を溶解し得る溶媒であり、例えばクロロホルムやテトラヒドロフラン等が挙げられる。 In the present invention, the liquid crystal cured film (x) constituting the retardation film preferably has at least one maximum absorption between wavelengths of 300 to 400 nm, and the polymerizable liquid crystal compound forming the liquid crystal cured film (x) is a polymerizable liquid crystal compound. It is preferably a polymerizable liquid crystal compound having a maximum absorption wavelength between the wavelengths of 300 and 400 nm. When the polymerizable liquid crystal composition contains a photopolymerization initiator, the polymerization reaction and gelation of the polymerizable liquid crystal compound may proceed during long-term storage, but the maximum absorption wavelength of the polymerizable liquid crystal compound should be 300 to 400 nm. For example, even if ultraviolet light is exposed during storage, the generation of reactively active species from the photopolymerization initiator and the progress of the polymerization reaction and gelation of the polymerizable liquid crystal compound by the reactively active species can be effectively suppressed. Therefore, it is advantageous in terms of long-term stability of the polymerizable liquid crystal composition, and the orientation and film thickness uniformity of the obtained liquid crystal cured film can be improved. The maximum absorption wavelength of the polymerizable liquid crystal compound can be measured in a solvent using an ultraviolet-visible spectrophotometer. The solvent is a solvent capable of dissolving a polymerizable liquid crystal compound, and examples thereof include chloroform and tetrahydrofuran.
 液晶硬化膜(x)を形成し得る重合性液晶化合物としては、具体的には、特開2011-207765号公報、特開2010-031223号公報等に記載されるような重合性液晶化合物が挙げられる。また、単層で上記式(1)および(2)を満たす液晶硬化膜(x)を形成し得る限り、その単独重合体が正波長分散性を示す重合性液晶化合物を適量で用いてもよい。 Specific examples of the polymerizable liquid crystal compound capable of forming the liquid crystal cured film (x) include polymerizable liquid crystal compounds as described in JP-A-2011-207765, JP-A-2010-031223 and the like. Be done. Further, as long as a single layer can form a liquid crystal cured film (x) satisfying the above formulas (1) and (2), a polymerizable liquid crystal compound whose homopolymer exhibits positive wavelength dispersibility may be used in an appropriate amount. ..
 液晶硬化膜(x)を形成するための重合性液晶組成物中の重合性液晶化合物の含有量は、重合性液晶組成物の固形分100質量部に対して、例えば70~99.5質量部であり、好ましくは80~99質量部であり、より好ましくは85~98質量部であり、さらに好ましくは90~95質量部である。重合性液晶化合物の含有量が上記範囲内であれば、得られる液晶硬化膜(x)の配向性の観点から有利である。なお、本明細書において、重合性液晶組成物の固形分とは、重合性液晶組成物から有機溶媒等の揮発性成分を除いた全ての成分を意味する。 The content of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition for forming the liquid crystal cured film (x) is, for example, 70 to 99.5 parts by mass with respect to 100 parts by mass of the solid content of the polymerizable liquid crystal composition. It is preferably 80 to 99 parts by mass, more preferably 85 to 98 parts by mass, and further preferably 90 to 95 parts by mass. When the content of the polymerizable liquid crystal compound is within the above range, it is advantageous from the viewpoint of the orientation of the obtained liquid crystal cured film (x). In addition, in this specification, the solid content of a polymerizable liquid crystal composition means all components except a volatile component such as an organic solvent from a polymerizable liquid crystal composition.
 液晶硬化膜(x)を形成するための重合性液晶組成物は、重合性液晶化合物に加えて、溶媒、重合開始剤、レベリング剤、酸化防止剤、光増感剤、反応性添加剤などの添加剤をさらに含んでいてもよい。これらの成分は、それぞれ、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 The polymerizable liquid crystal composition for forming the liquid crystal cured film (x) includes, in addition to the polymerizable liquid crystal compound, a solvent, a polymerization initiator, a leveling agent, an antioxidant, a photosensitizer, a reactive additive and the like. It may further contain an additive. As each of these components, only one kind may be used, or two or more kinds may be used in combination.
 重合性液晶組成物は、通常、溶媒に溶解した状態で基材フィルム等に塗布されるため、溶媒を含むことが好ましい。溶媒としては、重合性液晶化合物を溶解し得るが、重合性液晶化合物の重合反応に不活性な溶媒であることが好ましい。また、用いる基材フィルムを溶解しない溶媒であることが好ましい。溶媒としては、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノールおよびプロピレングリコールモノメチルエーテル等のアルコール溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテートおよび乳酸エチル等のエステル溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノンおよびメチルイソブチルケトン等のケトン溶媒;ペンタン、ヘキサンおよびヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレンおよびアニソール等の芳香族炭化水素溶媒;アセトニトリル等のニトリル溶媒;テトラヒドロフランおよびジメトキシエタン等のエーテル溶媒;クロロホルムおよびクロロベンゼン等の塩素含有溶媒;ジメチルアセトアミド、ジメチルホルミアミド、N-メチル-2-ピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒等が挙げられる。これらの溶媒は、単独または二種以上組み合わせて使用できる。中でも、フィルムコーティングの観点から、アルコール溶媒、エステル溶媒、ケトン溶媒、塩素含有溶媒、アミド系溶媒および芳香族炭化水素溶媒から選択される少なくとも1種を用いることが好ましく、重合性液晶化合物の溶解性の観点から、エステル溶媒、ケトン溶媒、アミド系溶媒および芳香族炭化水素溶媒から選択される少なくとも1種を用いることがより好ましい。 Since the polymerizable liquid crystal composition is usually applied to a base film or the like in a state of being dissolved in a solvent, it is preferable to contain a solvent. The solvent can dissolve the polymerizable liquid crystal compound, but is preferably a solvent that is inert to the polymerization reaction of the polymerizable liquid crystal compound. Further, it is preferable that the solvent is a solvent that does not dissolve the base film to be used. Examples of the solvent include water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, 2-butoxyethanol and propylene glycol monomethyl ether. Solvents; ester solvents such as ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, γ-butyrolactone, propylene glycol methyl ether acetate and ethyl lactate; acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone. Ketone solvent; aliphatic hydrocarbon solvent such as pentane, hexane and heptane; alicyclic hydrocarbon solvent such as ethylcyclohexane; aromatic hydrocarbon solvent such as toluene, xylene and anisole; nitrile solvent such as acetonitrile; tetrahydrofuran and dimethoxyethane Ether solvents such as; chlorine-containing solvents such as chloroform and chlorobenzene; amide-based solvents such as dimethylacetamide, dimethylformamide, N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone and the like. Can be mentioned. These solvents can be used alone or in combination of two or more. Above all, from the viewpoint of film coating, it is preferable to use at least one selected from an alcohol solvent, an ester solvent, a ketone solvent, a chlorine-containing solvent, an amide solvent and an aromatic hydrocarbon solvent, and the solubility of the polymerizable liquid crystal compound is preferable. From the viewpoint of the above, it is more preferable to use at least one selected from an ester solvent, a ketone solvent, an amide solvent and an aromatic hydrocarbon solvent.
 重合性液晶組成物中の溶媒の含有量は、重合性液晶組成物100質量部に対して、好ましくは50~98質量部、より好ましくは70~95重量部である。したがって、重合性液晶組成物100質量部に占める固形分は、2~50質量部が好ましい。固形分が50質量部以下であると、重合性液晶組成物の粘度が低くなることから、膜の厚みが略均一になり、ムラが生じ難くなる傾向がある。上記固形分は、製造しようとする重合性液晶硬化膜の厚みを考慮して適宜定めることができる。 The content of the solvent in the polymerizable liquid crystal composition is preferably 50 to 98 parts by mass, more preferably 70 to 95 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal composition. Therefore, the solid content in 100 parts by mass of the polymerizable liquid crystal composition is preferably 2 to 50 parts by mass. When the solid content is 50 parts by mass or less, the viscosity of the polymerizable liquid crystal composition is low, so that the thickness of the film becomes substantially uniform, and unevenness tends to be less likely to occur. The solid content can be appropriately determined in consideration of the thickness of the polymerizable liquid crystal cured film to be produced.
 重合開始剤は、熱または光の寄与によって反応活性種を生成し、重合性液晶化合物等の重合反応を開始し得る化合物である。反応活性種としては、ラジカルまたはカチオンまたはアニオン等の活性種が挙げられる。中でも反応制御が容易であるという観点から、光照射によってラジカルを発生する光重合開始剤が好ましい。 The polymerization initiator is a compound that can initiate a polymerization reaction such as a polymerizable liquid crystal compound by producing a reactive species by the contribution of heat or light. Examples of the reaction active species include active species such as radicals or cations or anions. Of these, a photopolymerization initiator that generates radicals by light irradiation is preferable from the viewpoint of easy reaction control.
 光重合開始剤としては、例えば、ベンゾイン化合物、ベンゾフェノン化合物、ベンジルケタール化合物、オキシム化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、トリアジン化合物、ヨードニウム塩およびスルホニウム塩が挙げられ、市販品を用いてもよい。具体的には、イルガキュア(Irgacure、登録商標)907、イルガキュア184、イルガキュア651、イルガキュア819、イルガキュア250、イルガキュア369、イルガキュア379、イルガキュア127、イルガキュア2959、イルガキュア754、イルガキュア379EG(以上、BASFジャパン株式会社製)、セイクオールBZ、セイクオールZ、セイクオールBEE(以上、精工化学株式会社製)、カヤキュアー(kayacure)BP100(日本化薬株式会社製)、カヤキュアーUVI-6992(ダウ社製)、アデカオプトマーSP-152、アデカオプトマーSP-170、アデカオプトマーN-1717、アデカオプトマーN-1919、アデカアークルズNCI-831、アデカアークルズNCI-930(以上、株式会社ADEKA製)、TAZ-A、TAZ-PP(以上、日本シイベルヘグナー社製)およびTAZ-104(三和ケミカル社製)等が挙げられる。
 重合性液晶組成物において含まれる光重合開始剤は、少なくとも1種類であり、複数種を組み合わせて用いてもよく、重合性液晶組成物に含まれる重合性液晶化合物との関係において適宜選択すればよい。
Examples of the photopolymerization initiator include benzoin compounds, benzophenone compounds, benzyl ketal compounds, oxime compounds, α-hydroxyketone compounds, α-aminoketone compounds, triazine compounds, iodonium salts and sulfonium salts, and commercially available products are used. May be good. Specifically, Irgacure (registered trademark) 907, Irgacure 184, Irgacure 651, Irgacure 819, Irgacure 250, Irgacure 369, Irgacure 379, Irgacure 127, Irgacure 2959, Irgacure 754, Irgacure 379EG (above, BASF Japan) , Sakeol BZ, Sakeol Z, Sakeol BEE (manufactured by Seiko Kagaku Co., Ltd.), Kayacure BP100 (manufactured by Nippon Kayaku Co., Ltd.), Kayacure UVI-6992 (manufactured by Dow), ADEKA PTOMER SP- 152, ADEKA CORPORATION SP-170, ADEKA CORPORATION N-1717, ADEKA CORPORATION N-1919, ADEKA ARCULDS NCI-831, ADEKA ARCULDS NCI-930 (all manufactured by ADEKA Corporation), TAZ-A, TAZ -PP (above, manufactured by Nippon Sibel Hegner), TAZ-104 (manufactured by Sanwa Chemical Co., Ltd.) and the like can be mentioned.
The photopolymerization initiator contained in the polymerizable liquid crystal composition is at least one type, and a plurality of types may be used in combination, and may be appropriately selected in relation to the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition. good.
 光重合開始剤は、光源から発せられるエネルギーを十分に活用でき、生産性に優れるため、極大吸収波長が300nm~400nmであると好ましく、300nm~380nmであるとより好ましく、中でも、α-アセトフェノン系重合開始剤、オキシム系光重合開始剤が好ましい。 Since the photopolymerization initiator can fully utilize the energy emitted from the light source and is excellent in productivity, the maximum absorption wavelength is preferably 300 nm to 400 nm, more preferably 300 nm to 380 nm, and above all, the α-acetophenone type. A polymerization initiator and an oxime-based photopolymerization initiator are preferable.
 α-アセトフェノン化合物としては、2-メチル-2-モルホリノ-1-(4-メチルスルファニルフェニル)プロパン-1-オン、2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-ベンジルブタン-1-オンおよび2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-(4-メチルフェニルメチル)ブタン-1-オン等が挙げられ、より好ましくは2-メチル-2-モルホリノ-1-(4-メチルスルファニルフェニル)プロパン-1-オンおよび2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-ベンジルブタン-1-オンが挙げられる。α-アセトフェノン化合物の市販品としては、イルガキュア369、379EG、907(以上、BASFジャパン(株)製)およびセイクオールBEE(精工化学社製)等が挙げられる。 Examples of the α-acetophenone compound include 2-methyl-2-morpholino-1- (4-methylsulfanylphenyl) propan-1-one and 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutane-1. -On and 2-dimethylamino-1- (4-morpholinophenyl) -2- (4-methylphenylmethyl) butane-1-one and the like, more preferably 2-methyl-2-morpholino-1- ( Examples thereof include 4-methylsulfanylphenyl) propan-1-one and 2-dimethylamino-1- (4-morpholinophenyl) -2-benzylbutane-1-one. Examples of commercially available α-acetophenone compounds include Irgacure 369, 379EG, 907 (all manufactured by BASF Japan Ltd.) and Sequol BEE (manufactured by Seiko Kagaku Co., Ltd.).
 オキシムエステル系光重合開始剤は、光が照射されることによってフェニルラジカルやメチルラジカル等のラジカルを生成させる。このラジカルにより重合性液晶化合物の重合が好適に進行するが、中でもメチルラジカルを発生させるオキシムエステル系光重合開始剤は重合反応の開始効率が高い点で好ましい。また、重合反応をより効率的に進行させるという観点から、波長350nm以上の紫外線を効率的に利用可能な光重合開始剤を使用することが好ましい。波長350nm以上の紫外線を効率的に利用可能な光重合開始剤としては、オキシムエステル構造を含むトリアジン化合物やカルバゾール化合物が好ましく、感度の観点からはオキシムエステル構造を含むカルバゾール化合物がより好ましい。オキシムエステル構造を含むカルバゾール化合物としては、1,2-オクタンジオン、1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等が挙げられる。オキシムエステル系光重合開始剤の市販品としては、イルガキュアOXE-01、イルガキュアOXE-02、イルガキュアOXE-03(以上、BASFジャパン株式会社製)、アデカオプトマーN-1919、アデカアークルズNCI-831(以上、株式会社ADEKA製)等が挙げられる。 The oxime ester-based photopolymerization initiator generates radicals such as phenyl radicals and methyl radicals when irradiated with light. The polymerization of the polymerizable liquid crystal compound proceeds preferably by this radical, and among them, the oxime ester-based photopolymerization initiator that generates a methyl radical is preferable because the polymerization reaction initiation efficiency is high. Further, from the viewpoint of more efficiently advancing the polymerization reaction, it is preferable to use a photopolymerization initiator capable of efficiently utilizing ultraviolet rays having a wavelength of 350 nm or more. As the photopolymerization initiator capable of efficiently utilizing ultraviolet rays having a wavelength of 350 nm or more, a triazine compound or a carbazole compound having an oxime ester structure is preferable, and a carbazole compound having an oxime ester structure is more preferable from the viewpoint of sensitivity. Examples of the carbazole compound containing an oxime ester structure include 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], etanone, 1- [9-ethyl-6- (2-). Methylbenzoyl) -9H-carbazole-3-yl] -1- (O-acetyloxime) and the like can be mentioned. Commercially available products of oxime ester-based photopolymerization initiators include Irgacure OXE-01, Irgacure OXE-02, Irgacure OXE-03 (above, manufactured by BASF Japan Ltd.), ADEKA PTOMER N-1919, and ADEKA ARCULDS NCI-831. (The above is manufactured by ADEKA CORPORATION) and the like.
 光重合開始剤の含有量は、重合性液晶化合物100質量部に対して、通常、0.1~30質量部であり、好ましくは1~20質量部であり、より好ましくは1~15質量部である。上記範囲内であれば、重合性基の反応が十分に進行し、かつ、重合性液晶化合物の配向を乱し難い。 The content of the photopolymerization initiator is usually 0.1 to 30 parts by mass, preferably 1 to 20 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Is. Within the above range, the reaction of the polymerizable group proceeds sufficiently, and the orientation of the polymerizable liquid crystal compound is not easily disturbed.
 レベリング剤は、重合性液晶組成物の流動性を調整し、組成物を塗布して得られる塗膜をより平坦にする機能を有する添加剤である。例えば、シリコーン系、ポリアクリレート系およびパーフルオロアルキル系のレベリング剤が挙げられる。レベリング剤として市販品を用いてもよく、具体的には、DC3PA、SH7PA、DC11PA、SH28PA、SH29PA、SH30PA、ST80PA、ST86PA、SH8400、SH8700、FZ2123(以上、全て東レ・ダウコーニング(株)製)、KP321、KP323、KP324、KP326、KP340、KP341、X22-161A、KF6001(以上、全て信越化学工業(株)製)、TSF400、TSF401、TSF410、TSF4300、TSF4440、TSF4445、TSF-4446、TSF4452、TSF4460(以上、全てモメンティブ パフォーマンス マテリアルズ ジャパン合同会社製)、フロリナート(fluorinert)(登録商標)FC-72、同FC-40、同FC-43、同FC-3283(以上、全て住友スリーエム(株)製)、メガファック(登録商標)R-08、同R-30、同R-90、同F-410、同F-411、同F-443、同F-445、同F-470、同F-477、同F-479、同F-482、同F-483、同F-556(以上、いずれもDIC(株)製)、エフトップ(商品名)EF301、同EF303、同EF351、同EF352(以上、全て三菱マテリアル電子化成(株)製)、サーフロン(登録商標)S-381、同S-382、同S-383、同S-393、同SC-101、同SC-105、KH-40、SA-100(以上、全てAGCセイミケミカル(株)製)、商品名E1830、同E5844((株)ダイキンファインケミカル研究所製)、BM-1000、BM-1100、BYK-352、BYK-353およびBYK-361N(いずれも商品名:BM Chemie社製)等が挙げられる。レベリング剤は単独または2種以上を組み合わせて使用できる。 The leveling agent is an additive having a function of adjusting the fluidity of the polymerizable liquid crystal composition and making the coating film obtained by applying the composition flatter. Examples thereof include silicone-based, polyacrylate-based and perfluoroalkyl-based leveling agents. Commercially available products may be used as the leveling agent, and specifically, DC3PA, SH7PA, DC11PA, SH28PA, SH29PA, SH30PA, ST80PA, ST86PA, SH8400, SH8700, FZ2123 (all manufactured by Toray Dow Corning Co., Ltd.). , KP321, KP323, KP324, KP326, KP340, KP341, X22-161A, KF6001 (all manufactured by Shin-Etsu Chemical Industry Co., Ltd.), TSF400, TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF-4446, TSF4452, TSF44 (All of them are made by Momentive Performance Materials Japan GK), Florinert (registered trademark) FC-72, FC-40, FC-43, FC-3283 (All of which are made by Sumitomo 3M Co., Ltd.) ), Megafuck (registered trademark) R-08, R-30, R-90, F-410, F-411, F-443, F-445, F-470, F- 477, F-479, F-482, F-483, F-556 (all manufactured by DIC Co., Ltd.), Ftop (trade name) EF301, EF303, EF351, EF352 (all of which are manufactured by DIC Co., Ltd.) All of the above are manufactured by Mitsubishi Materials Electronics Co., Ltd.), Surflon (registered trademark) S-381, S-382, S-383, S-393, SC-101, SC-105, KH-40. , SA-100 (all manufactured by AGC Seimi Chemical Co., Ltd.), trade name E1830, E5844 (manufactured by Daikin Fine Chemical Laboratory Co., Ltd.), BM-1000, BM-1100, BYK-352, BYK-353 and BYK-361N (trade name: manufactured by BM Chemie) and the like can be mentioned. The leveling agent can be used alone or in combination of two or more.
 レベリング剤の含有量は、重合性液晶化合物100質量部に対して、0.01~5質量部が好ましく、0.05~3質量部がさらに好ましい。レベリング剤の含有量が、上記範囲内であると、重合性液晶化合物を配向させることが容易であり、かつ得られる液晶硬化膜がより平滑となる傾向にあるため好ましい。 The content of the leveling agent is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. When the content of the leveling agent is within the above range, it is easy to orient the polymerizable liquid crystal compound, and the obtained liquid crystal cured film tends to be smoother, which is preferable.
 酸化防止剤を配合することにより、重合性液晶化合物の重合反応をコントロールすることができる。酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、キノン系酸化防止剤、ニトロソ系酸化防止剤から選ばれる一次酸化防止剤であってもよいし、リン系酸化防止剤および硫黄系酸化防止剤から選ばれる二次酸化防止剤であってもよい。
重合性液晶化合物の配向を乱すことなく、重合性液晶化合物を重合するためには、酸化防止剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01~10質量部であり、好ましくは0.1~5質量部であり、さらに好ましくは0.1~3質量部である。
酸化防止剤は単独または2種以上を組み合わせて使用できる。
By blending an antioxidant, the polymerization reaction of the polymerizable liquid crystal compound can be controlled. The antioxidant may be a primary antioxidant selected from phenol-based antioxidants, amine-based antioxidants, quinone-based antioxidants, and nitroso-based antioxidants, as well as phosphorus-based antioxidants and sulfur. It may be a secondary antioxidant selected from the system antioxidants.
In order to polymerize the polymerizable liquid crystal compound without disturbing the orientation of the polymerizable liquid crystal compound, the content of the antioxidant is usually 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. Yes, preferably 0.1 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass.
Antioxidants can be used alone or in combination of two or more.
 光増感剤を用いることにより、光重合開始剤を高感度化することができる。光増感剤としては、例えば、キサントン、チオキサントン等のキサントン類;アントラセンおよびアルキルエーテル等の置換基を有するアントラセン類;フェノチアジン;ルブレンが挙げられる。光増感剤は単独または2種以上を組み合わせて使用できる。光増感剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01~10質量部であり、好ましくは0.05~5質量部であり、さらに好ましくは0.1~3質量部である。 By using a photosensitizer, the photopolymerization initiator can be made highly sensitive. Examples of the photosensitizer include xanthones such as xanthones and thioxanthones; anthracenes having substituents such as anthracene and alkyl ethers; phenothiazines; rubrene. The photosensitizer can be used alone or in combination of two or more. The content of the photosensitizer is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. 3 parts by mass.
 反応添加剤を用いることにより、基材フィルムと液晶硬化膜との密着性や位相差フィルムと接着剤層との密着性を向上させ得る。反応性添加剤としては、その分子内に炭素-炭素不飽和結合と活性水素反応性基とを有するものが好ましい。なお、ここでいう「活性水素反応性基」とは、カルボキシル基(-COOH)、水酸基(-OH)、アミノ基(-NH)等の活性水素を有する基に対して反応性を有する基を意味し、グリシジル基、オキサゾリン基、カルボジイミド基、アジリジン基、イミド基、イソシアネート基、チオイソシアネート基、無水マレイン酸基等がその代表例である。反応性添加剤が有する、炭素-炭素不飽和結合または活性水素反応性基の個数は、通常、それぞれ1~20個であり、好ましくはそれぞれ1~10個である。 By using the reaction additive, the adhesion between the base film and the liquid crystal cured film and the adhesion between the retardation film and the adhesive layer can be improved. The reactive additive preferably has a carbon-carbon unsaturated bond and an active hydrogen reactive group in the molecule. The "active hydrogen reactive group" as used herein is a group having reactivity with a group having active hydrogen such as a carboxyl group (-COOH), a hydroxyl group (-OH) and an amino group (-NH 2 ). A typical example thereof is a glycidyl group, an oxazoline group, a carbodiimide group, an aziridine group, an imide group, an isocyanate group, a thioisocyanate group, a maleic anhydride group and the like. The number of carbon-carbon unsaturated bonds or active hydrogen reactive groups contained in the reactive additive is usually 1 to 20 each, and preferably 1 to 10 each.
 反応性添加剤において、活性水素反応性基が少なくとも2つ存在することが好ましく、この場合、複数存在する活性水素反応性基は同一でも、異なるものであってもよい。 It is preferable that at least two active hydrogen-reactive groups are present in the reactive additive, and in this case, the plurality of active hydrogen-reactive groups may be the same or different.
 反応性添加剤が有する炭素-炭素不飽和結合とは、炭素-炭素二重結合、炭素-炭素三重結合、またはそれらの組み合わせであってよいが、炭素-炭素二重結合であることが好ましい。中でも、反応性添加剤としては、ビニル基および/または(メタ)アクリル基として炭素-炭素不飽和結合を含むことが好ましい。さらに、活性水素反応性基が、エポキシ基、グリシジル基およびイソシアネート基からなる群から選ばれる少なくとも1種である反応性添加剤が好ましく、アクリル基とイソシアネート基とを有する反応性添加剤がより好ましい。 The carbon-carbon unsaturated bond contained in the reactive additive may be a carbon-carbon double bond, a carbon-carbon triple bond, or a combination thereof, but a carbon-carbon double bond is preferable. Among them, the reactive additive preferably contains a carbon-carbon unsaturated bond as a vinyl group and / or a (meth) acrylic group. Further, a reactive additive in which the active hydrogen reactive group is at least one selected from the group consisting of an epoxy group, a glycidyl group and an isocyanate group is preferable, and a reactive additive having an acrylic group and an isocyanate group is more preferable. ..
 反応性添加剤の具体例としては、メタクリロキシグリシジルエーテルやアクリロキシグリシジルエーテル等の、(メタ)アクリル基とエポキシ基とを有する化合物;オキセタンアクリレートやオキセタンメタクリレート等の、(メタ)アクリル基とオキセタン基とを有する化合物;ラクトンアクリレートやラクトンメタクリレート等の、(メタ)アクリル基とラクトン基とを有する化合物;ビニルオキサゾリンやイソプロペニルオキサゾリン等の、ビニル基とオキサゾリン基とを有する化合物;イソシアナトメチルアクリレート、イソシアナトメチルメタクリレート、2-イソシアナトエチルアクリレートまたは2-イソシアナトエチルメタクリレート等の、(メタ)アクリル基とイソシアネート基とを有する化合物のオリゴマー等が挙げられる。また、メタクリル酸無水物、アクリル酸無水物、無水マレイン酸またはビニル無水マレイン酸等の、ビニル基やビニレン基と酸無水物とを有する化合物等が挙げられる。中でも、メタクリロキシグリシジルエーテル、アクリロキシグリシジルエーテル、イソシアナトメチルアクリレート、イソシアナトメチルメタクリレート、ビニルオキサゾリン、2-イソシアナトエチルアクリレート、2-イソシアナトエチルメタクリレートまたは上記のオリゴマーが好ましく、イソシアナトメチルアクリレート、2-イソシアナトエチルアクリレートまたは上記のオリゴマーが特に好ましい。 Specific examples of the reactive additive include compounds having a (meth) acrylic group and an epoxy group, such as methacryloxyglycidyl ether and acryloxyglycidyl ether; (meth) acrylic groups and oxetane, such as oxetan acrylate and oxetane methacrylate. Compounds with groups; Compounds with (meth) acrylic groups and lactone groups such as lactone acrylates and lactone methacrylates; Compounds with vinyl and oxazoline groups such as vinyl oxazoline and isopropenyl oxazoline; isocyanatomethyl acrylates , Isocyanatomethylmethacrylate, 2-isocyanatoethyl acrylate, 2-isocyanatoethyl methacrylate and the like, oligomers of compounds having a (meth) acrylic group and an isocyanate group. Further, examples thereof include compounds having a vinyl group, a vinylene group and an acid anhydride, such as methacrylic anhydride, acrylic acid anhydride, maleic anhydride or vinyl maleic anhydride. Among them, methacryloxyglycidyl ether, acryloxyglycidyl ether, isocyanatomethyl acrylate, isocyanatomethyl methacrylate, vinyloxazoline, 2-isocyanatoethyl acrylate, 2-isocyanatoethyl methacrylate or the above-mentioned oligomer is preferable, and isocyanatomethyl acrylate, 2-Isocyanatoethyl acrylate or the above oligomers are particularly preferred.
 前記反応性添加剤として、市販品をそのまま、または必要に応じて精製して用いることができる。市販品としては、例えば、Laromer(登録商標)LR-9000(BASF社製)が挙げられる。 As the reactive additive, a commercially available product can be used as it is or after being purified as needed. Examples of commercially available products include Laromar (registered trademark) LR-9000 (manufactured by BASF).
 重合性液晶組成物が反応性添加剤を含む場合、反応性添加剤の含有量は、重合性液晶化合物100質量部に対して、通常0.01~10質量部であり、好ましくは0.1~7質量部である。 When the polymerizable liquid crystal composition contains a reactive additive, the content of the reactive additive is usually 0.01 to 10 parts by mass, preferably 0.1 part by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. ~ 7 parts by mass.
 液晶硬化膜(x)を形成するための重合性液晶組成物は、それぞれ、重合性液晶化合物と、溶媒や重合開始剤などの成分とを所定温度で撹拌等することにより得ることができる。 The polymerizable liquid crystal composition for forming the liquid crystal cured film (x) can be obtained by stirring the polymerizable liquid crystal compound and components such as a solvent and a polymerization initiator at a predetermined temperature, respectively.
 液晶硬化膜(x)は、例えば、
 基材フィルムまたは後述する配向膜などの上に、少なくとも1種の重合性液晶化合物を含む重合性液晶組成物の塗膜を形成し、該塗膜を乾燥し、かつ、該重合性液晶組成物中の重合性液晶化合物を配向させる工程、および、
 配向状態を保持したまま重合性液晶化合物を重合させ、液晶硬化膜を形成する工程
を含む方法により製造することができる。
The liquid crystal cured film (x) is, for example,
A coating film of a polymerizable liquid crystal composition containing at least one polymerizable liquid crystal compound is formed on a base film or an alignment film described later, the coating film is dried, and the polymerizable liquid crystal composition is formed. The process of orienting the polymerizable liquid crystal compound inside, and
It can be produced by a method including a step of polymerizing a polymerizable liquid crystal compound while maintaining an oriented state to form a liquid crystal cured film.
 重合性液晶組成物の塗膜は、基材フィルムまたは後述するような基材フィルム上に形成された配向膜などの上に重合性液晶組成物を塗布することにより形成することができる。 The coating film of the polymerizable liquid crystal composition can be formed by applying the polymerizable liquid crystal composition on a base film or an alignment film formed on a base film as described later.
 重合性液晶組成物を基材フィルム等に塗布する方法としては、スピンコーティング法、エクストルージョン法、グラビアコーティング法、ダイコーティング法、バーコーティング法、アプリケータ法などの塗布法、フレキソ法などの印刷法等の公知の方法が挙げられる。 As a method of applying the polymerizable liquid crystal composition to a base film or the like, a coating method such as a spin coating method, an extrusion method, a gravure coating method, a die coating method, a bar coating method, an applicator method, or a flexo method is used for printing. Known methods such as a method can be mentioned.
 次いで、溶媒を乾燥等により除去することにより、乾燥塗膜が形成される。乾燥方法としては、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられる。この際、重合性液晶組成物から得られた塗膜を加熱することにより、塗膜から溶媒を乾燥除去させるとともに、重合性液晶化合物を塗膜平面に対して水平方向などの所望の方向に配向させることができる。塗膜の加熱温度は、用いる重合性液晶化合物および塗膜を形成する基材フィルム等の材質などを考慮して適宜決定し得るが、重合性液晶化合物を液晶相状態へ相転移させるために、通常、液晶相転移温度以上の温度であることが必要である。重合性液晶組成物に含まれる溶媒を除去しながら、重合性液晶化合物を所望の配向状態とするため、例えば、前記重合性液晶組成物に含まれる重合性液晶化合物の液晶相転移温度(スメクチック相転移温度またはネマチック相転移温度)程度以上の温度まで加熱することができる。加熱温度は、好ましくは重合性液晶化合物の液晶相転移温度よりも3℃以上高い、より好ましくは5℃以上高い温度である。加熱温度の上限値は特に限定されないが、加熱による塗膜や基材フィルム等への損傷を避けるため、好ましくは180℃以下、より好ましくは150℃以下である。
 なお、液晶相転移温度は、例えば、温度調節ステージを備えた偏光顕微鏡や、示差走査熱量計(DSC)、熱重量示差熱分析装置(TG-DTA)等を用いて測定することができる。また、重合性液晶化合物として2種以上を組み合わせて用いる場合、上記相転移温度は、重合性液晶組成物を構成する全重合性液晶化合物を重合性液晶組成物における組成と同じ比率で混合した重合性液晶化合物の混合物を用いて、1種の重合性液晶化合物を用いる場合と同様にして測定される温度を意味する。また、一般に重合性液晶組成物中における重合性液晶化合物の液晶相転移温度は、重合性液晶化合物単体としての液晶相転移温度よりも下がる場合があることも知られている。
Then, the solvent is removed by drying or the like to form a dry coating film. Examples of the drying method include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method. At this time, by heating the coating film obtained from the polymerizable liquid crystal composition, the solvent is dried and removed from the coating film, and the polymerizable liquid crystal compound is oriented in a desired direction such as a horizontal direction with respect to the coating surface plane. Can be made to. The heating temperature of the coating film can be appropriately determined in consideration of the polymerizable liquid crystal compound to be used and the material of the base film or the like forming the coating film. Usually, it is necessary that the temperature is equal to or higher than the liquid crystal phase transition temperature. In order to bring the polymerizable liquid crystal compound into a desired orientation while removing the solvent contained in the polymerizable liquid crystal composition, for example, the liquid crystal phase transition temperature (smetic phase) of the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition. It can be heated to a temperature of about (transition temperature or nematic phase transition temperature) or higher. The heating temperature is preferably 3 ° C. or higher, more preferably 5 ° C. or higher, higher than the liquid crystal phase transition temperature of the polymerizable liquid crystal compound. The upper limit of the heating temperature is not particularly limited, but is preferably 180 ° C. or lower, more preferably 150 ° C. or lower in order to avoid damage to the coating film, the base film, or the like due to heating.
The liquid crystal phase transition temperature can be measured using, for example, a polarizing microscope equipped with a temperature control stage, a differential scanning calorimeter (DSC), a thermal weight differential thermal analyzer (TG-DTA), or the like. When two or more kinds of the polymerizable liquid crystal compound are used in combination, the phase transition temperature is a polymerization in which all the polymerizable liquid crystal compounds constituting the polymerizable liquid crystal composition are mixed at the same ratio as the composition in the polymerizable liquid crystal composition. It means a temperature measured in the same manner as when one kind of polymerizable liquid crystal compound is used by using a mixture of sex liquid crystal compounds. Further, it is generally known that the liquid crystal phase transition temperature of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition may be lower than the liquid crystal phase transition temperature of the polymerizable liquid crystal compound as a single substance.
 加熱時間は、加熱温度、用いる重合性液晶化合物の種類、溶媒の種類やその沸点およびその量等に応じて適宜決定し得るが、通常、0.5~10分であり、好ましくは0.5~5分である。 The heating time can be appropriately determined depending on the heating temperature, the type of the polymerizable liquid crystal compound used, the type of the solvent, its boiling point and its amount, etc., but is usually 0.5 to 10 minutes, preferably 0.5. ~ 5 minutes.
 塗膜からの溶媒の除去は、重合性液晶化合物の液晶相転移温度以上への加熱と同時に行ってもよいし、別途で行ってもよいが、生産性向上の観点から同時に行うことが好ましい。重合性液晶化合物の液晶相転移温度以上への加熱を行う前に、重合性液晶組成物から得られた塗膜中に含まれる重合性液晶化合物が重合しない条件で塗膜中の溶媒を適度に除去させるための予備乾燥工程を設けてもよい。かかる予備乾燥工程における乾燥方法としては、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられ、該乾燥工程における乾燥温度(加熱温度)は、用いる重合性液晶化合物の種類、溶媒の種類やその沸点およびその量等に応じて適宜決定し得る。 The solvent may be removed from the coating film at the same time as heating the polymerizable liquid crystal compound to the liquid crystal phase transition temperature or higher, or separately, but it is preferable to perform the removal at the same time from the viewpoint of improving productivity. Before heating the polymerizable liquid crystal compound to a temperature higher than the liquid crystal phase transition temperature, the solvent in the coating film should be appropriately added under the condition that the polymerizable liquid crystal compound contained in the coating film obtained from the polymerizable liquid crystal composition does not polymerize. A pre-drying step may be provided for removal. Examples of the drying method in the pre-drying step include a natural drying method, a ventilation drying method, a heating drying method and a vacuum drying method, and the drying temperature (heating temperature) in the drying step is the type of polymerizable liquid crystal compound to be used and the solvent. It can be appropriately determined according to the type of the above, its boiling point, its amount and the like.
 次いで、得られた乾燥塗膜において、重合性液晶化合物の配向状態を保持したまま、光照射により重合性液晶化合物を重合させることにより、所望の配向状態で存在する重合性液晶化合物の重合体である液晶硬化膜が形成される。重合方法としては、通常、光重合法が用いられる。光重合において、乾燥塗膜に照射する光としては、当該乾燥塗膜に含まれる光重合開始剤の種類、重合性液晶化合物の種類(特に、該重合性液晶化合物が有する重合性基の種類)およびその量に応じて適宜選択される。その具体例としては、可視光、紫外光、赤外光、X線、α線、β線およびγ線からなる群より選択される1種以上の光や活性電子線等の活性エネルギー線が挙げられる。中でも、重合反応の進行を制御し易い点や、光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって、光重合可能なように、重合性液晶組成物に含有される重合性液晶化合物や光重合開始剤の種類を選択しておくことが好ましい。また、重合時に、適切な冷却手段により乾燥塗膜を冷却しながら光照射することで、重合温度を制御することもできる。このような冷却手段の採用により、より低温で重合性液晶化合物の重合を実施すれば、基材が比較的耐熱性が低いものを用いたとしても、適切に液晶硬化膜を形成できる。また、光照射時の熱による不具合(基材フィルムの熱による変形等)が発生しない範囲で重合温度を高くすることにより重合反応を促進することも可能である。光重合の際、マスキングや現像を行うなどによって、パターニングされた硬化膜を得ることもできる。 Next, in the obtained dry coating film, the polymerizable liquid crystal compound is polymerized by light irradiation while maintaining the orientation state of the polymerizable liquid crystal compound, whereby the polymer of the polymerizable liquid crystal compound existing in the desired orientation state is used. A certain liquid crystal cured film is formed. As the polymerization method, a photopolymerization method is usually used. In photopolymerization, the light irradiating the dry coating film includes the type of the photopolymerization initiator contained in the dry coating film and the type of the polymerizable liquid crystal compound (particularly, the type of the polymerizable group of the polymerizable liquid crystal compound). And it is appropriately selected according to the amount. Specific examples thereof include one or more types of light selected from the group consisting of visible light, ultraviolet light, infrared light, X-rays, α-rays, β-rays and γ-rays, and active energy rays such as active electron beams. Will be. Among them, ultraviolet light is preferable because it is easy to control the progress of the polymerization reaction and it is possible to use a photopolymerization apparatus widely used in the art, so that photopolymerization can be performed by ultraviolet light. It is preferable to select the type of the polymerizable liquid crystal compound or the photopolymerization initiator contained in the polymerizable liquid crystal composition. Further, at the time of polymerization, the polymerization temperature can be controlled by irradiating light while cooling the dry coating film by an appropriate cooling means. By adopting such a cooling means, if the polymerizable liquid crystal compound is polymerized at a lower temperature, a liquid crystal cured film can be appropriately formed even if a substrate having a relatively low heat resistance is used. It is also possible to promote the polymerization reaction by raising the polymerization temperature within a range in which defects due to heat during light irradiation (deformation due to heat of the base film, etc.) do not occur. A patterned cured film can also be obtained by masking or developing during photopolymerization.
 前記活性エネルギー線の光源としては、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が挙げられる。 Examples of the light source of the active energy ray include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a halogen lamp, a carbon arc lamp, a tungsten lamp, a gallium lamp, an excima laser, and a wavelength range. Examples thereof include LED light sources that emit light of 380 to 440 nm, chemical lamps, black light lamps, microwave-excited mercury lamps, metal halide lamps, and the like.
 紫外線照射強度は、通常、10~3,000mW/cmである。紫外線照射強度は、好ましくは光重合開始剤の活性化に有効な波長領域における強度である。光を照射する時間は、通常0.1秒~10分であり、好ましくは0.1秒~5分、より好ましくは0.1秒~3分、さらに好ましくは0.1秒~1分である。このような紫外線照射強度で1回または複数回照射すると、その積算光量は、10~3,000mJ/cm、好ましくは50~2,000mJ/cm、より好ましくは100~1,000mJ/cmである。 The ultraviolet irradiation intensity is usually 10 to 3,000 mW / cm 2 . The ultraviolet irradiation intensity is preferably an intensity in a wavelength region effective for activating the photopolymerization initiator. The time for irradiating light is usually 0.1 seconds to 10 minutes, preferably 0.1 seconds to 5 minutes, more preferably 0.1 seconds to 3 minutes, still more preferably 0.1 seconds to 1 minute. be. When irradiated once or multiple times with such an ultraviolet irradiation intensity, the integrated light amount is 10 to 3,000 mJ / cm 2 , preferably 50 to 2,000 mJ / cm 2 , and more preferably 100 to 1,000 mJ / cm. It is 2 .
 液晶硬化膜(x)の厚みは、0.5μm以上3μm以下であり、より好ましくは1.0μm以上、さらに好ましくは1.5μm以上であり、また、より好ましくは2.5μm以下である。液晶硬化膜(x)の膜厚が上記範囲であると、所定の光学特性を出しやすい他、繰り返し屈曲させた際に屈曲点における歪みの発生を抑制しやすくなる。液晶硬化膜(x)の厚みは、干渉膜厚計、レーザー顕微鏡または触針式膜厚計等を用いて測定することができる。 The thickness of the liquid crystal cured film (x) is 0.5 μm or more and 3 μm or less, more preferably 1.0 μm or more, still more preferably 1.5 μm or more, and even more preferably 2.5 μm or less. When the film thickness of the liquid crystal cured film (x) is within the above range, it is easy to obtain predetermined optical characteristics and it is easy to suppress the occurrence of distortion at the bending point when repeatedly bending. The thickness of the liquid crystal cured film (x) can be measured using an interference film thickness meter, a laser microscope, a stylus type film thickness meter, or the like.
 液晶硬化膜(x)は配向膜上に形成してもよい。配向膜は、重合性液晶化合物を所望の方向に液晶配向させる、配向規制力を有するものである。重合性液晶化合物を水平方向に配向させる配向規制力を有する水平配向膜や、垂直方向に配向させる配向規制力を有する垂直配向膜を利用して液晶硬化膜を形成することにより、重合性液晶化合物を所望の方向により高い精度で配向させることができ、表示装置等に組み込んだ際に優れた光学特性を示す液晶硬化膜を得ることができる。配向規制力は、配向膜の種類、表面状態やラビング条件等によって任意に調整することが可能であり、配向膜が光配向性ポリマーから形成されている場合は、偏光照射条件等によって任意に調整することが可能である。 The liquid crystal cured film (x) may be formed on the alignment film. The alignment film has an orientation-regulating force that orients the polymerizable liquid crystal compound in a desired direction. A polymerizable liquid crystal compound is formed by forming a liquid crystal cured film using a horizontally oriented film having an orientation restricting force for orienting a polymerizable liquid crystal compound in the horizontal direction and a vertically oriented film having an orientation restricting force for orienting the polymerizable liquid crystal compound in the vertical direction. Can be oriented with higher accuracy in a desired direction, and a liquid crystal cured film showing excellent optical characteristics can be obtained when incorporated into a display device or the like. The alignment control force can be arbitrarily adjusted according to the type of alignment film, surface condition, rubbing conditions, etc., and when the alignment film is formed of a photo-alignable polymer, it can be arbitrarily adjusted according to the polarization irradiation conditions, etc. It is possible to do.
 配向膜としては、重合性液晶組成物の塗布等により溶解しない溶媒耐性を有し、また、溶媒の除去や重合性液晶化合物の配向のための加熱処理における耐熱性を有するものが好ましい。配向膜としては、配向性ポリマーを含む配向膜、光配向膜および表面に凹凸パターンや複数の溝を有するグルブ配向膜、配向方向に延伸してある延伸フィルム等が挙げられ、配向角の精度および品質の観点から光配向膜が好ましい。 The alignment film preferably has solvent resistance that does not dissolve when the polymerizable liquid crystal composition is applied, and also has heat resistance in heat treatment for removing the solvent and aligning the polymerizable liquid crystal compound. Examples of the alignment film include an alignment film containing an orientation polymer, a photoalignment film, a grub alignment film having an uneven pattern or a plurality of grooves on the surface, a stretched film stretched in the orientation direction, and the like, and the accuracy of the alignment angle and From the viewpoint of quality, a photoalignment film is preferable.
 配向性ポリマーとしては、例えば、分子内にアミド結合を有するポリアミドやゼラチン類、分子内にイミド結合を有するポリイミドおよびその加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸およびポリアクリル酸エステル類が挙げられる。中でも、ポリビニルアルコールが好ましい。配向性ポリマーは単独または2種以上を組み合わせて使用できる。 Examples of the oriented polymer include polyamides and gelatins having an amide bond in the molecule, polyimide having an imide bond in the molecule and its hydrolyzate polyamic acid, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, and poly. Examples thereof include oxazol, polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid and polyacrylic acid esters. Of these, polyvinyl alcohol is preferable. The oriented polymer can be used alone or in combination of two or more.
 配向性ポリマーを含む配向膜は、通常、配向性ポリマーが溶媒に溶解した組成物(以下、「配向性ポリマー組成物」ともいう)を基材フィルム等の配向膜を形成すべき表面に塗布し、溶媒を除去する、または、配向性ポリマー組成物を基材に塗布し、溶媒を除去し、ラビングする(ラビング法)ことで得られる。溶媒としては、重合性液晶組成物に用い得る溶媒として先に例示した溶媒と同様のものが挙げられる。 The alignment film containing the alignment polymer is usually formed by applying a composition in which the alignment polymer is dissolved in a solvent (hereinafter, also referred to as “orientation polymer composition”) to a surface such as a base film on which the alignment film should be formed. , The solvent is removed, or the oriented polymer composition is applied to the substrate, the solvent is removed, and rubbing is performed (rubbing method). Examples of the solvent include the same solvents as those exemplified above as the solvents that can be used in the polymerizable liquid crystal composition.
 配向性ポリマー組成物中の配向性ポリマーの濃度は、配向性ポリマー材料が、溶媒に完溶できる範囲であればよいが、溶液に対して固形分換算で0.1~20%が好ましく、0.1~10%程度がさらに好ましい。 The concentration of the oriented polymer in the oriented polymer composition may be in the range where the oriented polymer material can be completely dissolved in the solvent, but is preferably 0.1 to 20% in terms of solid content with respect to the solution, and is 0. .1 to 10% is more preferable.
 配向性ポリマー組成物として、市販の配向膜材料をそのまま使用してもよい。市販の配向膜材料としては、サンエバー(登録商標、日産化学工業(株)製)、オプトマー(登録商標、JSR(株)製)などが挙げられる。 As the orientation polymer composition, a commercially available alignment film material may be used as it is. Examples of commercially available alignment film materials include Sunever (registered trademark, manufactured by Nissan Chemical Industries, Ltd.) and Optomer (registered trademark, manufactured by JSR Corporation).
 配向性ポリマー組成物を基材フィルム等の配向膜を形成すべき表面に塗布する方法としては、重合性液晶組成物を基材フィルムへ塗布する方法として例示したものと同様のものが挙げられる。 Examples of the method of applying the oriented polymer composition to the surface of the base film or the like on which the oriented film should be formed include the same methods as those exemplified as the method of applying the polymerizable liquid crystal composition to the base film.
 配向性ポリマー組成物に含まれる溶媒を除去する方法としては、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法等が挙げられる。 Examples of the method for removing the solvent contained in the oriented polymer composition include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method.
 配向膜に配向規制力を付与するために、必要に応じてラビング処理を行うことができる(ラビング法)。ラビング法により配向規制力を付与する方法としては、ラビング布が巻きつけられ、回転しているラビングロールに、配向性ポリマー組成物を基材に塗布しアニールすることで基材表面に形成された配向性ポリマーの膜を接触させる方法が挙げられる。ラビング処理を行う時に、マスキングを行えば、配向の方向が異なる複数の領域(パターン)を配向膜に形成することもできる。 A rubbing process can be performed as needed to impart an orientation regulating force to the alignment film (rubbing method). As a method of imparting an orientation restricting force by the rubbing method, a rubbing cloth is wound and formed on the surface of a base material by applying an orientation polymer composition to a base material and annealing it on a rotating rubbing roll. Examples thereof include a method of contacting a film of an oriented polymer. If masking is performed during the rubbing process, it is possible to form a plurality of regions (patterns) having different orientation directions on the alignment film.
 光配向膜は、通常、光反応性基を有するポリマーおよび/またはモノマーと溶媒とを含む組成物(以下、「光配向膜形成用組成物」ともいう)を、配向膜を形成すべき基材フィルム表面に塗布し、溶媒を除去後に偏光(好ましくは、偏光UV)を照射することで得られる。光配向膜は、照射する偏光の偏光方向を選択することにより、配向規制力の方向を任意に制御することができる点でも有利である。 The photo-alignment film is usually a composition containing a polymer having a photoreactive group and / or a monomer and a solvent (hereinafter, also referred to as "composition for forming a photo-alignment film"), and a substrate on which the alignment film is to be formed. It is obtained by applying it to the surface of a film, removing the solvent, and then irradiating it with polarized light (preferably polarized UV). The photoalignment film is also advantageous in that the direction of the orientation regulating force can be arbitrarily controlled by selecting the polarization direction of the polarized light to be irradiated.
 光反応性基とは、光照射することにより液晶配向能を生じる基をいう。具体的には、光照射により生じる分子の配向誘起または異性化反応、二量化反応、光架橋反応もしくは光分解反応等の液晶配向能の起源となる光反応に関与する基が挙げられる。中でも、二量化反応または光架橋反応に関与する基が、配向性に優れる点で好ましい。光反応性基として、不飽和結合、特に二重結合を有する基が好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)および炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも1つを有する基が特に好ましい。 A photoreactive group is a group that produces a liquid crystal alignment ability when irradiated with light. Specific examples thereof include groups involved in photoreactions that are the origin of liquid crystal alignment ability such as molecular orientation induction or isomerization reaction, dimerization reaction, photocrosslinking reaction or photodecomposition reaction generated by light irradiation. Of these, groups involved in the dimerization reaction or the photocrosslinking reaction are preferable because they have excellent orientation. As the photoreactive group, an unsaturated bond, particularly a group having a double bond is preferable, and a carbon-carbon double bond (C = C bond), a carbon-nitrogen double bond (C = N bond), and a nitrogen-nitrogen double bond are preferable. Groups having at least one selected from the group consisting of double bonds (N = N bonds) and carbon-oxygen double bonds (C = O bonds) are particularly preferred.
 C=C結合を有する光反応性基としては、ビニル基、ポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、カルコン基およびシンナモイル基等が挙げられる。
C=N結合を有する光反応性基としては、芳香族シッフ塩基、芳香族ヒドラゾンなどの構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基、および、アゾキシベンゼン構造を有する基等が挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基およびマレイミド基等が挙げられる。これらの基は、アルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基などの置換基を有していてもよい。
Examples of the photoreactive group having a C = C bond include a vinyl group, a polyene group, a stilbene group, a stilbazole group, a stilbazollium group, a chalcone group, a cinnamoyl group and the like.
Examples of the photoreactive group having a C = N bond include a group having a structure such as an aromatic Schiff base and an aromatic hydrazone. Examples of the photoreactive group having an N = N bond include an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group, a formazan group, and a group having an azoxybenzene structure. Examples of the photoreactive group having a C = O bond include a benzophenone group, a coumarin group, an anthraquinone group, a maleimide group and the like. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group and an alkyl halide group.
 中でも、光二量化反応に関与する光反応性基が好ましく、光配向に必要な偏光照射量が比較的少なく、かつ、熱安定性や経時安定性に優れる光配向膜が得られやすいという点で、光反応性基はシンナモイル基およびカルコン基が好ましい。特に、液晶硬化膜が重合性基として(メタ)アクリロイルオキシ基を有する重合性液晶化合物から形成される場合、配向膜を形成する光反応性基を有するポリマーとしてポリマー側鎖の末端部が桂皮酸構造となるようなシンナモイル基を有するものを用いると液晶硬化膜との密着性を向上させることができる。 Above all, a photoreactive group involved in the photodimerization reaction is preferable, and a photoalignment film having a relatively small amount of polarization irradiation required for photoalignment and excellent thermal stability and temporal stability can be easily obtained. The photoreactive group is preferably a cinnamoyl group or a chalcone group. In particular, when the liquid crystal cured film is formed from a polymerizable liquid crystal compound having a (meth) acryloyloxy group as a polymerizable group, the end of the polymer side chain is cinnamic acid as a polymer having a photoreactive group forming an alignment film. Adhesion to the liquid crystal cured film can be improved by using a polymer having a cinnamoyl group having a structure.
 光配向膜形成用組成物に含まれる溶媒としては、重合性液晶組成物に用い得る溶媒として先に例示した溶媒と同様のものが挙げられ、光反応性基を有するポリマーあるいはモノマーの溶解性に応じて適宜選択することができる。 Examples of the solvent contained in the composition for forming a photoalignment film include the same solvents as those exemplified above as the solvents that can be used in the polymerizable liquid crystal composition, and the solubility of the polymer or the monomer having a photoreactive group can be mentioned. It can be appropriately selected accordingly.
 光配向膜形成用組成物中の光反応性基を有するポリマーまたはモノマーの含有量は、ポリマーまたはモノマーの種類や目的とする光配向膜の厚みによって適宜調節できるが、光配向膜形成用組成物の質量に対して、少なくとも0.2質量%とすることが好ましく、0.3~10質量%の範囲がより好ましい。光配向膜の特性が著しく損なわれない範囲で、光配向膜形成用組成物は、ポリビニルアルコールやポリイミドなどの高分子材料や光増感剤を含んでいてもよい。 The content of the polymer or monomer having a photoreactive group in the composition for forming a photo-alignment film can be appropriately adjusted depending on the type of the polymer or monomer and the thickness of the target photo-alignment film, but the composition for forming a photo-alignment film. It is preferably at least 0.2% by mass, more preferably in the range of 0.3 to 10% by mass, based on the mass of the above. The composition for forming a photoalignment film may contain a polymer material such as polyvinyl alcohol or polyimide or a photosensitizer as long as the characteristics of the photoalignment film are not significantly impaired.
 配向膜を形成すべき表面に光配向膜形成用組成物を塗布する方法としては、配向性ポリマー組成物を塗布する方法と同様の方法が挙げられる。塗布された光配向膜形成用組成物から、溶媒を除去する方法としては例えば、自然乾燥法、通風乾燥法、加熱乾燥及び減圧乾燥法等が挙げられる。 As a method of applying the composition for forming a photoalignment film to the surface on which the alignment film should be formed, the same method as the method of applying the alignment polymer composition can be mentioned. Examples of the method for removing the solvent from the applied composition for forming a photoalignment film include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method.
 偏光を照射するには、基板フィルム上に塗布された光配向膜形成用組成物から、溶媒を除去したものに直接、偏光UVを照射する形式でも、基材フィルム側から偏光を照射し、偏光を透過させて照射する形式でもよい。また、当該偏光は、実質的に平行光であると特に好ましい。照射する偏光の波長は、光反応性基を有するポリマーまたはモノマーの光反応性基が、光エネルギーを吸収し得る波長領域のものがよい。具体的には、波長250~400nmの範囲のUV(紫外線)が特に好ましい。当該偏光照射に用いる光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArFなどの紫外光レーザーなどが挙げられ、高圧水銀ランプ、超高圧水銀ランプおよびメタルハライドランプがより好ましい。これらの中でも、高圧水銀ランプ、超高圧水銀ランプおよびメタルハライドランプが、波長313nmの紫外線の発光強度が大きいため好ましい。前記光源からの光を、適当な偏光子を通過して照射することにより、偏光UVを照射することができる。かかる偏光子としては、偏光フィルターやグラントムソン、グランテーラーなどの偏光プリズムやワイヤーグリッドタイプの偏光子を用いることができる。 In order to irradiate the polarized light, even in the form of directly irradiating the light-aligned film-forming composition coated on the substrate film with the polarized UV removed from the composition, the substrate film side is irradiated with the polarized light to obtain the polarized light. It may be in the form of transmitting and irradiating. Further, it is particularly preferable that the polarized light is substantially parallel light. The wavelength of the polarized light to be irradiated is preferably in the wavelength range in which the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet rays) having a wavelength in the range of 250 to 400 nm is particularly preferable. Examples of the light source used for the polarized light irradiation include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, ultraviolet light lasers such as KrF and ArF, and high-pressure mercury lamps, ultra-high pressure mercury lamps and metal halide lamps. preferable. Among these, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, and a metal halide lamp are preferable because they have a high emission intensity of ultraviolet rays having a wavelength of 313 nm. Polarized UV can be irradiated by irradiating the light from the light source through an appropriate polarizing element. As such a polarizing element, a polarizing filter, a polarizing prism such as Gran Thomson or Gran Tailor, or a wire grid type polarizing element can be used.
 なお、ラビングまたは偏光照射を行う時に、マスキングを行えば、液晶配向の方向が異なる複数の領域(パターン)を形成することもできる。 If masking is performed when rubbing or irradiating with polarized light, it is possible to form a plurality of regions (patterns) in which the directions of liquid crystal orientation are different.
 グルブ(groove)配向膜は、膜表面に凹凸パターンまたは複数のグルブ(溝)を有する膜である。等間隔に並んだ複数の直線状のグルブを有する膜に重合性液晶化合物を塗布した場合、その溝に沿った方向に液晶分子が配向する。 The groove alignment film is a film having an uneven pattern or a plurality of grooves on the film surface. When the polymerizable liquid crystal compound is applied to a film having a plurality of linear grubs arranged at equal intervals, the liquid crystal molecules are oriented in the direction along the groove.
 グルブ配向膜を得る方法としては、感光性ポリイミド膜表面にパターン形状のスリットを有する露光用マスクを介して露光後、現像およびリンス処理を行って凹凸パターンを形成する方法、表面に溝を有する板状の原盤に、硬化前のUV硬化樹脂の層を形成し、形成された樹脂層を基材等へ移してから硬化する方法、および、配向膜を形成すべき表面に形成した硬化前のUV硬化樹脂の膜に、複数の溝を有するロール状の原盤を押し当てて凹凸を形成し、その後硬化する方法等が挙げられる。 As a method of obtaining a grub alignment film, a method of forming an uneven pattern by performing exposure and rinsing treatment after exposure through an exposure mask having a pattern-shaped slit on the surface of the photosensitive polyimide film, and a plate having a groove on the surface. A method in which a layer of UV-curable resin before curing is formed on a master, and the formed resin layer is transferred to a substrate or the like and then cured, and UV before curing formed on the surface on which an alignment film should be formed. Examples thereof include a method in which a roll-shaped master having a plurality of grooves is pressed against a film of a cured resin to form irregularities, and then the film is cured.
 配向膜(配向性ポリマーを含む配向膜または光配向膜)の厚みは、通常10nm以上10000nm以下の範囲であり、好ましくは10nm以上2500nm以下の範囲であり、より好ましくは10nm以上1000nm以下の範囲であり、さらに好ましくは10nm以上500nm以下、特に好ましい50nm以上250nm以下の範囲である。 The thickness of the alignment film (alignment film containing an alignment polymer or photoalignment film) is usually in the range of 10 nm or more and 10,000 nm or less, preferably in the range of 10 nm or more and 2500 nm or less, and more preferably in the range of 10 nm or more and 1000 nm or less. It is more preferably 10 nm or more and 500 nm or less, and particularly preferably 50 nm or more and 250 nm or less.
 (偏光子)
 本発明の光学積層体を構成する偏光子は、入射する自然光から直線偏光を取り出す機能を有するフィルムであり、二色性色素を含むポリビニルアルコール系樹脂フィルムである。ポリビニルアルコール系樹脂フィルムを構成するポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂のケン化物を用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルとこれに共重合可能な他の単量体との共重合体(例えば、エチレン-酢酸ビニル共重合体等)が挙げられる。
酢酸ビニルと共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類等が挙げられる。
(Polarizer)
The polarizing element constituting the optical laminate of the present invention is a film having a function of extracting linearly polarized light from incident natural light, and is a polyvinyl alcohol-based resin film containing a dichroic dye. As the polyvinyl alcohol-based resin constituting the polyvinyl alcohol-based resin film, a saponified product of the polyvinyl acetate-based resin can be used. Examples of the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and a copolymer of vinyl acetate and another monomer copolymerizable therewith (for example, ethylene-vinyl acetate copolymer weight). Coalescence, etc.).
Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールも使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000の範囲である。 The saponification degree of the polyvinyl alcohol-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more. The polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used. The degree of polymerization of the polyvinyl alcohol-based resin is usually about 1,000 to 10,000, preferably in the range of 1,500 to 5,000.
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光フィルムの原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系原反フィルムの膜厚は、例えば、10~150μm程度とすることができる。 A film made of such a polyvinyl alcohol-based resin is used as a raw film for a polarizing film. The method for forming the film of the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method. The film thickness of the polyvinyl alcohol-based raw film can be, for example, about 10 to 150 μm.
 偏光子は、通常、このようなポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、およびホウ酸水溶液による処理後に水洗処理を行う工程を経て製造される。なお、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、二色性色素がポリビニルアルコール系樹脂フィルムに含まれることとなる。かかる製造方法にて偏光子を製造する場合、偏光子は二色性色素を含む延伸ポリビニルアルコール系樹脂フィルムとなる。 The modulator is usually a step of uniaxially stretching such a polyvinyl alcohol-based resin film, a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol-based resin film with a dichroic dye, and a dichroic dye. It is produced through a step of treating the adsorbed polyvinyl alcohol-based resin film with an aqueous boric acid solution and a step of washing with water after the treatment with the aqueous boric acid solution. By dyeing the polyvinyl alcohol-based resin film with the dichroic dye, the dichroic dye is contained in the polyvinyl alcohol-based resin film. When the polarizing element is produced by such a production method, the polarizing element becomes a stretched polyvinyl alcohol-based resin film containing a dichroic dye.
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素の染色前に行なってもよく、染色と同時に行なってもよく、または染色の後に行なってもよい。一軸延伸を染色の後で行なう場合には、この一軸延伸は、ホウ酸処理の前に行なってもよく、ホウ酸処理中に行なってもよい。これらの複数の段階で一軸延伸を行なうことも可能である。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよく、熱ロールを用いて一軸に延伸してもよい。また、一軸延伸は、大気中で延伸を行なう乾式延伸であってもよく、溶剤を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行なう湿式延伸であってもよい。延伸倍率は、偏光子の変形を抑制する観点から、好ましくは8倍以下、より好ましくは7.5倍以下、さらに好ましくは7倍以下である。また、延伸倍率は、偏光子としての機能を発現させる観点からは、通常4.5倍以上である。延伸倍率を前記範囲とすることにより、偏光子の経時的な変形を抑制することができる。 The uniaxial stretching of the polyvinyl alcohol-based resin film may be performed before dyeing the dichroic dye, at the same time as dyeing, or after dyeing. If the uniaxial stretching is performed after staining, the uniaxial stretching may be performed before the boric acid treatment or during the boric acid treatment. It is also possible to perform uniaxial stretching at these multiple stages. In uniaxial stretching, rolls having different peripheral speeds may be uniaxially stretched, or may be uniaxially stretched using a thermal roll. Further, the uniaxial stretching may be a dry stretching performed in the atmosphere, or may be a wet stretching performed in a state where the polyvinyl alcohol-based resin film is swollen using a solvent. The draw ratio is preferably 8 times or less, more preferably 7.5 times or less, still more preferably 7 times or less, from the viewpoint of suppressing deformation of the stator. Further, the draw ratio is usually 4.5 times or more from the viewpoint of expressing the function as a polarizing element. By setting the draw ratio within the above range, it is possible to suppress the deformation of the polarizing element over time.
 ポリビニルアルコール系樹脂フィルムを二色性色素で染色する方法としては、例えば、ポリビニルアルコール系樹脂フィルムを、二色性色素を含有する水溶液に浸漬する方法を挙げることができる。二色性色素としては、例えば、ヨウ素または二色性染料が用いられる。二色性染料には、例えば、C.I.DIRECT RED 39などのジスアゾ化合物からなる二色性直接染料、トリスアゾ、テトラキスアゾ化合物などからなる二色性直接染料が包含される。なお、ポリビニルアルコール系樹脂フィルムは、染色処理の前に、水への浸漬処理を施しておくことが好ましい。 As a method of dyeing a polyvinyl alcohol-based resin film with a dichroic dye, for example, a method of immersing the polyvinyl alcohol-based resin film in an aqueous solution containing a dichroic dye can be mentioned. As the dichroic dye, for example, iodine or a dichroic dye is used. For dichroic dyes, for example, C.I. I. A dichroic direct dye composed of a disazo compound such as DIRECT RED 39 and a dichroic direct dye composed of a trisazo or a tetrakisazo compound are included. The polyvinyl alcohol-based resin film is preferably immersed in water before the dyeing treatment.
 二色性色素としてヨウ素を用いる場合は通常、ヨウ素およびヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。
この水溶液におけるヨウ素の含有量は、水100質量部あたり、通常、0.01~1質量部程度である。またヨウ化カリウムの含有量は、水100質量部あたり、通常、0.5~20質量部程度である。染色に用いる水溶液の温度は、通常20~40℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常20~1,800秒程度である。
 なお、ヨウ素およびヨウ化カリウムを含有する水溶液にポリビニルアルコール系樹脂フィルムを浸漬する前に、膨潤させて染色を容易にするために、該フィルムを水に浸漬してもよい。かかる浸漬処理の温度は通常20~80℃、好ましくは30~60℃であり、浸漬時間(染色時間)は通常20~1800秒である。
When iodine is used as the dichroic dye, a method of immersing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide for dyeing is usually adopted.
The iodine content in this aqueous solution is usually about 0.01 to 1 part by mass per 100 parts by mass of water. The content of potassium iodide is usually about 0.5 to 20 parts by mass per 100 parts by mass of water. The temperature of the aqueous solution used for dyeing is usually about 20 to 40 ° C. The immersion time (staining time) in this aqueous solution is usually about 20 to 1,800 seconds.
Before immersing the polyvinyl alcohol-based resin film in the aqueous solution containing iodine and potassium iodide, the film may be immersed in water in order to swell and facilitate dyeing. The temperature of the dipping treatment is usually 20 to 80 ° C., preferably 30 to 60 ° C., and the dipping time (staining time) is usually 20 to 1800 seconds.
 一方、二色性色素として二色性の有機染料を用いる場合は通常、水溶性二色性染料を含む水溶液にポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。
この水溶液における二色性有機染料の含有量は、水100質量部あたり、通常、1×10-4~10質量部程度であり、好ましくは1×10-3~1質量部であり、さらに好ましくは1×10-3~1×10-2質量部である。この水溶液は、硫酸ナトリウム等の無機塩を染色助剤として含んでいてもよい。染色に用いる二色性染料水溶液の温度は、通常、20~80℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常、10~1,800秒程度である。
On the other hand, when a dichroic organic dye is used as the dichroic dye, a method of immersing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic dye and dyeing is usually adopted.
The content of the dichroic organic dye in this aqueous solution is usually about 1 × 10 -4 to 10 parts by mass, preferably 1 × 10 -3 to 1 part by mass, more preferably 1 part by mass, per 100 parts by mass of water. Is 1 × 10 -3 to 1 × 10 -2 parts by mass. This aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing aid. The temperature of the dichroic dye aqueous solution used for dyeing is usually about 20 to 80 ° C. The immersion time (staining time) in this aqueous solution is usually about 10 to 1,800 seconds.
 二色性色素による染色後のホウ酸処理は通常、染色されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液に浸漬する方法により行うことができる。このホウ酸水溶液におけるホウ酸の含有量は、水100質量部あたり、通常2~15質量部程度であり、好ましくは5~12質量部である。二色性色素としてヨウ素を用いた場合には、このホウ酸水溶液はヨウ化カリウムを含有することが好ましく、その場合のヨウ化カリウムの含有量は、水100質量部あたり、通常0.1~15質量部程度であり、好ましくは5~12質量部である。ホウ酸水溶液への浸漬時間は、通常60~1,200秒程度であり、好ましくは150~600秒、さらに好ましくは200~400秒である。ホウ酸処理の温度は、通常50℃以上であり、好ましくは50~85℃、さらに好ましくは60~80℃である。 The boric acid treatment after dyeing with a dichroic dye can usually be performed by immersing the dyed polyvinyl alcohol-based resin film in a boric acid aqueous solution. The content of boric acid in this aqueous boric acid solution is usually about 2 to 15 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of water. When iodine is used as the dichroic dye, this aqueous boric acid solution preferably contains potassium iodide, and the content of potassium iodide in that case is usually 0.1 to 100 parts by mass per 100 parts by mass of water. It is about 15 parts by mass, preferably 5 to 12 parts by mass. The immersion time in the boric acid aqueous solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds. The temperature of the boric acid treatment is usually 50 ° C. or higher, preferably 50 to 85 ° C., and more preferably 60 to 80 ° C.
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムは通常、水洗処理される。水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬する方法により行うことができる。水洗処理における水の温度は、通常5~40℃程度である。
また浸漬時間は、通常1~120秒程度である。
The polyvinyl alcohol-based resin film after the boric acid treatment is usually washed with water. The water washing treatment can be performed, for example, by immersing the boric acid-treated polyvinyl alcohol-based resin film in water. The temperature of water in the washing treatment is usually about 5 to 40 ° C.
The immersion time is usually about 1 to 120 seconds.
 水洗後に乾燥処理が施されて、偏光子が得られる。乾燥処理は例えば、熱風乾燥機や遠赤外線ヒーターを用いて行うことができる。乾燥処理の温度は、通常30~100℃程度であり、好ましくは50~80℃である。乾燥処理の時間は、通常60~600秒程度であり、好ましくは120~600秒である。乾燥処理により、偏光子の水分率は実用程度にまで低減される。その水分率は、通常5~20質量%程度であり、好ましくは8~15質量%である。水分率が上記範囲内であると、適度な可撓性を有し、かつ、熱安定性に優れる偏光子を得られる。 After washing with water, it is dried to obtain a polarizing element. The drying process can be performed using, for example, a hot air dryer or a far-infrared heater. The temperature of the drying treatment is usually about 30 to 100 ° C, preferably 50 to 80 ° C. The drying treatment time is usually about 60 to 600 seconds, preferably 120 to 600 seconds. By the drying treatment, the moisture content of the stator is reduced to a practical level. The water content is usually about 5 to 20% by mass, preferably 8 to 15% by mass. When the water content is within the above range, a polarizing element having appropriate flexibility and excellent thermal stability can be obtained.
 こうしてポリビニルアルコール系樹脂フィルムに、一軸延伸、二色性色素による染色、ホウ酸処理、水洗および乾燥をして得られる。 Thus, the polyvinyl alcohol-based resin film is obtained by uniaxial stretching, dyeing with a dichroic dye, boric acid treatment, washing with water and drying.
 偏光子の厚さは、好ましくは5~40μm、より好ましくは5~20μmである。 The thickness of the splitter is preferably 5 to 40 μm, more preferably 5 to 20 μm.
 (透明保護フィルム)
 本発明の光学積層体は、偏光子の位相差フィルムとは反対側の面に接着剤層を介して貼合された透明保護フィルムを含む。偏光子は膜厚が薄く、その表面が損傷しやすいことから、通常、外部からの損傷や汚れを防止するために偏光子の両面に保護フィルムを備えていることが多いが、本発明の光学積層体において、偏光子の位相差フィルム側の面には保護フィルムは積層されない。これによって、より薄型で、斜め反射率の低い光学積層体となり得る。
(Transparent protective film)
The optical laminate of the present invention includes a transparent protective film bonded to the surface of the stator opposite to the retardation film via an adhesive layer. Since the polarizing element has a thin film thickness and its surface is easily damaged, it is usually provided with protective films on both sides of the polarizing element in order to prevent external damage and stains. However, the optics of the present invention are provided. In the laminated body, the protective film is not laminated on the surface of the polarizing element on the retardation film side. This can result in an optical laminate that is thinner and has lower oblique reflectance.
 本発明において該透明保護フィルムは、90%以上、より好ましくは92%以上の全光線透過率を有する。全光線透過率が上記下限値以上であると、透明性が高く、光学特性に優れる光学積層体を構成できる。基材フィルムにおける全光線透過率の上限値は特に限定されず、100%以下であればよい。全光線透過率は、例えば、JIS K 7361に従い測定できる。 In the present invention, the transparent protective film has a total light transmittance of 90% or more, more preferably 92% or more. When the total light transmittance is at least the above lower limit value, an optical laminate having high transparency and excellent optical characteristics can be formed. The upper limit of the total light transmittance of the base film is not particularly limited, and may be 100% or less. The total light transmittance can be measured according to, for example, JIS K7361.
 また、前記透明保護フィルムにおける380nm透過率は30%以下であり、好ましくは25%以下、より好ましくは20%以下である。透明保護フィルムの380nm透過率が上記上限以下であると、該透明保護フィルムを含む光学積層体を画像表示装置に組み込んだ場合に、視認側において曝される紫外線から光学積層体の内部を構成する層(偏光子や液晶硬化膜など)を保護することができる。透明保護フィルムの380nm透過率の下限値は特に限定されるものではなく、0%であってもよい。透明保護フィルムにおける380nm透過率を30%以下にするために、透明保護フィルムは紫外線吸収剤等を含んでいてもよい。380nm透過率は、例えば、分光光度計に従い測定できる。 Further, the 380 nm transmittance of the transparent protective film is 30% or less, preferably 25% or less, and more preferably 20% or less. When the 380 nm transmittance of the transparent protective film is not more than the above upper limit, the inside of the optical laminate is formed from the ultraviolet rays exposed on the visual recognition side when the optical laminate containing the transparent protective film is incorporated into the image display device. The layer (polarizer, cured liquid crystal film, etc.) can be protected. The lower limit of the 380 nm transmittance of the transparent protective film is not particularly limited and may be 0%. In order to reduce the 380 nm transmittance of the transparent protective film to 30% or less, the transparent protective film may contain an ultraviolet absorber or the like. The 380 nm transmittance can be measured, for example, according to a spectrophotometer.
 接着剤層を介して偏光子と貼合される透明保護フィルムとしては、上記の全光線透過率および380nm透過率を満たすものであれば、公知の樹脂フィルムを用いることができる。透明保護フィルムを構成し得る樹脂としては、例えば、ポリエチレン、ポリプロピレン、およびノルボルネン系ポリマーのようなポリオレフィン;環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース、およびセルロースアセテートプロピオネートのようなセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィドおよびポリフェニレンオキシドなどが挙げられる。このような樹脂を、溶媒キャスト法、溶融押出法等の公知の手段により製膜してフィルム状にすることができる。透明保護フィルムの表面には、シリコーン処理のような離型処理、コロナ処理、プラズマ処理等の表面処理が施されていてもよい。 As the transparent protective film bonded to the polarizing element via the adhesive layer, a known resin film can be used as long as it satisfies the above-mentioned total light transmittance and 380 nm transmittance. Resins that can constitute the transparent protective film include, for example, polyolefins such as polyethylene, polypropylene, and norbornene-based polymers; cyclic olefin-based resins; polyvinyl alcohol; polyethylene terephthalates; polymethacrylic acid esters; polyacrylic acid esters; triacetyl cellulose. , Diacetyl cellulose, and cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; polyphenylene sulfide and polyphenylene oxide and the like. Such a resin can be formed into a film by a known means such as a solvent casting method and a melt extrusion method. The surface of the transparent protective film may be subjected to surface treatment such as mold release treatment such as silicone treatment, corona treatment, and plasma treatment.
 本発明の一実施態様において透明保護フィルムは、好ましくは100g/m/24時間以上、より好ましくは150g/m/24時間以上、さらに好ましくは200g/m/24時間以上の透湿度を有する。透明保護フィルムの透湿度が上記下限値以上であると、乾燥固化型接着剤を用いて位相差フィルムと偏光子とを積層して光学積層体を形成する際に、位相差フィルムを構成する基材フィルムに加えて透明保護フィルムからも乾燥固化型接着剤中の溶媒を効率よく除去することができる。これにより、屈曲した際に基材フィルム上に形成される液晶硬化膜における変形と光学積層体としての変形とが互いに追従しやすくなり、繰り返し屈曲させた場合にも屈曲点における歪みの発生が生じ難い光学積層体を得ることができる。また、基材フィルムのみが高い透湿度を有する場合と比較して、接着剤中の溶媒を除去する時間を短くし得るため、生産性の点においても有利であり得る。透明保護フィルムの透湿度の上限は特に限定されるものではないが、通常、1000g/m/24時間以下、好ましくは500g/m/24時間以下である。透明保護フィルムの透湿度は、基材フィルムの透湿度と同様の方法により測定できる。 In one embodiment of the present invention, the transparent protective film preferably has a moisture permeability of 100 g / m 2/24 hours or more, more preferably 150 g / m 2/24 hours or more, and further preferably 200 g / m 2/24 hours or more. Have. When the moisture permeability of the transparent protective film is equal to or higher than the above lower limit, a group constituting the retardation film is formed when the retardation film and the polarizing element are laminated by using a dry solidifying adhesive to form an optical laminate. The solvent in the dry solidified adhesive can be efficiently removed from the transparent protective film in addition to the material film. As a result, the deformation of the liquid crystal cured film formed on the base film when bent and the deformation of the optical laminate easily follow each other, and even when repeatedly bent, distortion occurs at the bending point. A difficult optical laminate can be obtained. In addition, the time for removing the solvent in the adhesive can be shortened as compared with the case where only the base film has a high moisture permeability, which may be advantageous in terms of productivity. The upper limit of the moisture permeability of the transparent protective film is not particularly limited, but is usually 1000 g / m 2/24 hours or less, preferably 500 g / m 2/24 hours or less. The moisture permeability of the transparent protective film can be measured by the same method as that of the base film.
 100g/m/24時間以上の透湿度を有する透明保護フィルムを用いる場合、透明保護フィルムは、基材フィルムと同じであっても異なっていてもよい。 When a transparent protective film having a moisture permeability of 100 g / m 2/24 hours or more is used, the transparent protective film may be the same as or different from the base film.
 透明保護フィルムの厚みは、所望する光学積層体の構成にあわせて適宜決定することができるが、光学積層体の薄型化、加工性、屈曲性および強度等の観点から、通常、5μm~300μmであり、好ましくは20μm~200μm、より好ましくは20μm~150μmである。 The thickness of the transparent protective film can be appropriately determined according to the desired configuration of the optical laminate, but is usually 5 μm to 300 μm from the viewpoint of thinning, processability, flexibility, strength, etc. of the optical laminate. It is preferably 20 μm to 200 μm, and more preferably 20 μm to 150 μm.
 以下、本発明の光学積層体の層構成の一例を図1および図2に基づいて説明するが、本発明の光学積層体はこれらの態様に限定されるものではない。
 図1に示す光学積層体100は、位相差フィルム1と、前記位相差フィルムの一方の面に接着剤層2を介して積層された偏光子3と、さらに、偏光子3の位相差フィルム1とは反対側の面に接着剤層4を介して積層された透明保護フィルム5とからなっている。図1に示す光学積層体100において、位相差フィルム1は、基材フィルム11上に配向膜12を介して形成された液晶硬化膜13からなる。
Hereinafter, an example of the layer structure of the optical laminate of the present invention will be described with reference to FIGS. 1 and 2, but the optical laminate of the present invention is not limited to these aspects.
The optical laminate 100 shown in FIG. 1 includes a retardation film 1, a polarizing element 3 laminated on one surface of the retardation film via an adhesive layer 2, and a retardation film 1 of the substituent 3. It is composed of a transparent protective film 5 laminated on the surface opposite to the above with an adhesive layer 4 interposed therebetween. In the optical laminate 100 shown in FIG. 1, the retardation film 1 is composed of a liquid crystal curing film 13 formed on a base film 11 via an alignment film 12.
 本発明の光学積層体は、位相差フィルムと偏光子と透明保護フィルム、および、これらをそれぞれ互いに接着させる接着剤層に加えて、画像表示装置等に組み込まれ得る各種機能を有する他の層を含んで構成されていてもよいが、互いに隣接してなる、位相差フィルム/接着剤層/偏光子/接着剤層/透明保護フィルムの層構成中に他の層が組み込まれることはない。他の層としては、例えば、光学積層体を画像表示装置に組み込むための粘接着剤層、例えば、フィルム面に対して液晶化合物が垂直方向に配向するような、液晶硬化膜(x)とは異なる光学特性を有する液晶硬化膜を含む第2の位相差フィルムなどが挙げられる。 The optical laminate of the present invention includes a retardation film, a polarizing element, a transparent protective film, and an adhesive layer for adhering them to each other, as well as other layers having various functions that can be incorporated into an image display device or the like. Although it may be included, no other layer is incorporated into the layer structure of the retardation film / adhesive layer / polarizing element / adhesive layer / transparent protective film which is adjacent to each other. Other layers include, for example, an adhesive layer for incorporating an optical laminate into an image display device, for example, a liquid crystal cured film (x) such that the liquid crystal compound is oriented in a direction perpendicular to the film surface. Examples thereof include a second retardation film containing a liquid crystal cured film having different optical characteristics.
 本発明において、位相差フィルムは、位相差フィルムを構成する基材フィルムおよび液晶硬化膜のいずれの側で偏光子と、接着剤層を介して積層されていてもよい。例えば、図1に示す光学積層体100においては、位相差フィルム1を構成する基材フィルム11が接着剤層2を介して偏光子3と積層されている。一方、図2に示す光学積層体100においては、位相差フィルム1を構成する液晶硬化膜13が接着剤層2を介して偏光子3と積層されている。 In the present invention, the retardation film may be laminated on either side of the base film or the liquid crystal cured film constituting the retardation film via a polarizing element and an adhesive layer. For example, in the optical laminate 100 shown in FIG. 1, the base film 11 constituting the retardation film 1 is laminated with the polarizing element 3 via the adhesive layer 2. On the other hand, in the optical laminate 100 shown in FIG. 2, the liquid crystal cured film 13 constituting the retardation film 1 is laminated with the polarizing element 3 via the adhesive layer 2.
 本発明の光学積層体を画像表示装置等に組み込む際に、位相差フィルムを構成する液晶硬化膜(x)が光学積層体と画像表示セル等の画像表示装置を構成する部材と接着するための粘着剤層と接していない場合、光学積層体の耐熱性が向上しやすい。したがって、本発明の一実施態様において、位相差フィルムが該位相差フィルムを構成する液晶硬化膜側で、位相差フィルムと偏光子とを接着させる接着剤層と接していることが好ましい。 When the optical laminate of the present invention is incorporated into an image display device or the like, the liquid crystal cured film (x) constituting the retardation film adheres to the optical laminate and a member constituting the image display device such as an image display cell. When it is not in contact with the pressure-sensitive adhesive layer, the heat resistance of the optical laminate tends to be improved. Therefore, in one embodiment of the present invention, it is preferable that the retardation film is in contact with the adhesive layer that adheres the retardation film and the polarizing element on the liquid crystal cured film side constituting the retardation film.
 本発明の光学積層体は、位相差フィルムと偏光子と透明保護フィルムとを、それぞれ、接着剤を介して貼合させることにより製造することができる。接着剤として、乾燥固化型接着剤を用いる場合、位相差フィルム、偏光子および/または透明保護フィルムの貼合面に乾燥固化型接着剤を塗布/注入して、位相差フィルム/接着剤層/偏光子/接着剤層/透明保護フィルムの積層体を形成した後、該積層体から接着剤中の溶媒を乾燥、除去し、硬化させることにより、各層を貼合することができる。 The optical laminate of the present invention can be manufactured by laminating a retardation film, a polarizing element, and a transparent protective film, respectively, via an adhesive. When a dry-solidified adhesive is used as the adhesive, the dry-solidified adhesive is applied / injected onto the bonded surface of the retardation film, the stator and / or the transparent protective film, and the retardation film / adhesive layer / After forming a laminate of a decoder / adhesive layer / transparent protective film, each layer can be bonded by drying, removing, and curing the solvent in the adhesive from the laminate.
 この乾燥処理および/または溶媒の除去は、例えば熱風を吹き付けることにより行うことができ、その温度は、溶媒の種類にもよるが、通常30~200℃、好ましくは35~150℃、より好ましくは40~100℃、さらに好ましくは50~100℃の範囲内である。また、乾燥時間は通常10秒~30分程度である。 This drying treatment and / or removal of the solvent can be performed, for example, by blowing hot air, and the temperature thereof is usually 30 to 200 ° C., preferably 35 to 150 ° C., more preferably 35 to 150 ° C., depending on the type of solvent. It is in the range of 40 to 100 ° C, more preferably 50 to 100 ° C. The drying time is usually about 10 seconds to 30 minutes.
 また、活性エネルギー線硬化型接着剤を用いる場合には、活性エネルギー線を照射することによって活性エネルギー線硬化型接着剤を硬化させることにより接着剤層が得られる。活性エネルギー線の光源は特に限定されないが、波長400nm以下に発光分布を有する活性エネルギー線が好ましく、紫外線がより好ましい。光源としては、具体的に、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、およびメタルハライドランプなどが挙げられる。 When an active energy ray-curable adhesive is used, an adhesive layer can be obtained by curing the active energy ray-curable adhesive by irradiating it with active energy rays. The light source of the active energy ray is not particularly limited, but the active energy ray having an emission distribution having a wavelength of 400 nm or less is preferable, and ultraviolet rays are more preferable. Specific examples of the light source include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, and a metal halide lamp.
 活性エネルギー線硬化型接着剤への光照射強度は、活性エネルギー線硬化型接着剤の組成によって適宜決定され、特に限定されないが、重合開始剤の活性化に有効な波長領域の照射強度は、通常、10~3,000mW/cmである。活性エネルギー線硬化型接着剤への光照射時間は、硬化させる活性エネルギー線硬化型接着剤によって適宜選択すればよく、特に制限されるものではないが、通常0.1秒~10分であり、好ましくは1秒~5分、より好ましくは5秒~3分、さらに好ましくは10秒~1分である。このような紫外線照射強度で1回または複数回照射すると、その積算光量は、通常10~3,000mJ/cm、好ましくは50~2,000mJ/cm、より好ましくは100~1,000mJ/cmである。 The light irradiation intensity to the active energy ray-curable adhesive is appropriately determined by the composition of the active energy ray-curable adhesive and is not particularly limited, but the irradiation intensity in the wavelength region effective for activating the polymerization initiator is usually set. It is 10 to 3,000 mW / cm 2 . The light irradiation time of the active energy ray-curable adhesive may be appropriately selected depending on the active energy ray-curable adhesive to be cured, and is not particularly limited, but is usually 0.1 seconds to 10 minutes. It is preferably 1 second to 5 minutes, more preferably 5 seconds to 3 minutes, and even more preferably 10 seconds to 1 minute. When irradiated once or multiple times with such an ultraviolet irradiation intensity, the integrated light amount is usually 10 to 3,000 mJ / cm 2 , preferably 50 to 2,000 mJ / cm 2 , and more preferably 100 to 1,000 mJ /. It is cm 2 .
 本発明の光学積層体は、Roll to Roll方式により連続的に製造することができる。例えば、ロール状に巻回された基材フィルムと液晶硬化膜(x)とを含む位相差フィルムを作製し、この位相差フィルムを巻出しながら搬送して、各層を接着するための接着剤を用いて、該位相差フィルム上に別途作製した偏光子および透明保護フィルムを順に積層した後、接着剤を乾燥または光硬化等によって硬化させることにより、連続的に製造し得る。
 したがって、本発明の一実施態様において、本発明の光学積層体は、ロール状に巻回された光学積層体ロールの形態であり得る。
The optical laminate of the present invention can be continuously manufactured by the Roll to Roll method. For example, a retardation film containing a base film wound in a roll shape and a liquid crystal cured film (x) is produced, and the retardation film is unwound and conveyed to provide an adhesive for adhering each layer. It can be continuously produced by laminating a separately prepared polarizing element and a transparent protective film on the retardation film in order and then curing the adhesive by drying, photocuring or the like.
Therefore, in one embodiment of the present invention, the optical laminate of the present invention may be in the form of an optical laminate roll wound in a roll shape.
 位相差フィルムと偏光子とを含んでなる本発明の光学積層体は楕円偏光板でもあり得るため、本発明は、本発明の光学積層体を含む楕円偏光板を包含する。 Since the optical laminate of the present invention including the retardation film and the polarizing element can also be an elliptical polarizing plate, the present invention includes an elliptical polarizing plate including the optical laminate of the present invention.
 本発明の一実施態様においては、本発明の光学積層体および楕円偏光板を構成する液晶硬化膜の遅相軸(光軸)と偏光子の吸収軸との成す角が45±5°となるように積層することが好ましい。 In one embodiment of the present invention, the angle formed by the slow axis (optical axis) of the liquid crystal cured film constituting the optical laminate and the elliptical polarizing plate of the present invention and the absorption axis of the substituent is 45 ± 5 °. It is preferable to stack them in such a manner.
 本発明の楕円偏光板は、さまざまな表示装置に用いることができる。
 表示装置とは、表示素子を有する装置であり、発光源として発光素子または発光装置を含む。表示装置としては、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、タッチパネル表示装置、電子放出表示装置(例えば電場放出表示装置(FED)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置、プラズマ表示装置、投射型表示装置(例えばグレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置)および圧電セラミックディスプレイなどが挙げられる。液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置および投写型液晶表示装置などのいずれをも含む。これらの表示装置は、2次元画像を表示する表示装置であってもよいし、3次元画像を表示する立体表示装置であってもよい。特に本発明の楕円偏光板は有機エレクトロルミネッセンス(EL)表示装置および無機エレクトロルミネッセンス(EL)表示装置に好適に用いることができ、本発明の積層体は液晶表示装置およびタッチパネル表示装置に好適に用いることができる。これらの表示装置は、干渉ムラの生じ難い本発明の積層体を備えることにより、良好な画像表示特性を発現することができる。
The elliptical polarizing plate of the present invention can be used in various display devices.
The display device is a device having a display element, and includes a light emitting element or a light emitting device as a light emitting source. Display devices include a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, a touch panel display device, an electron emission display device (for example, an electric field emission display device (FED), a surface electric field emission display device). (SED)), electronic paper (display device using electronic ink or electrophoretic element, plasma display device, projection type display device (for example, grating light valve (GLV) display device, display device having a digital micromirror device (DMD)). ) And piezoelectric ceramic displays. The liquid crystal display device includes any of a transmissive liquid crystal display device, a semi-transmissive liquid crystal display device, a reflective liquid crystal display device, a direct-view type liquid crystal display device, a projection type liquid crystal display device, and the like. These display devices may be display devices for displaying two-dimensional images or three-dimensional display devices for displaying three-dimensional images. In particular, the elliptical polarizing plate of the present invention may be an organic electroluminescence (organic electroluminescence). It can be suitably used for an EL) display device and an inorganic electroluminescence (EL) display device, and the laminate of the present invention can be suitably used for a liquid crystal display device and a touch panel display device. These display devices have interference unevenness. By providing the laminated body of the present invention in which the above is unlikely to occur, good image display characteristics can be exhibited.
 本発明の一実施態様において、上記表示装置は、フレキシブル画像表示装置であることが好ましく、本発明は、本発明の楕円偏光板を含むフレキシブル画像表示装置も包含する。 In one embodiment of the present invention, the display device is preferably a flexible image display device, and the present invention also includes a flexible image display device including the elliptical polarizing plate of the present invention.
 本発明の楕円偏光板を有するフレキシブル画像表示装置は、ウインドウとタッチセンサとをさらに有することが好ましい。
 フレキシブル画像表示装置は、例えば、フレキシブル画像表示装置用積層体と、有機EL表示パネルとからなり、有機EL表示パネルに対して視認側にフレキシブル画像表示装置用積層体が配置され、折り曲げ可能に構成されている。フレキシブル画像表示装置用積層体としては、上述の本発明の楕円偏光板に加え、ウインドウ、(タッチパネル)タッチセンサ等が含まれ得る。それらの積層順は任意であるが、視認側からウインドウ、楕円偏光板、タッチセンサの順、または、ウインドウ、タッチセンサ、楕円偏光板の順に積層されていることが好ましい。
The flexible image display device having the elliptical polarizing plate of the present invention preferably further has a window and a touch sensor.
The flexible image display device is composed of, for example, a laminated body for a flexible image display device and an organic EL display panel, and the laminated body for the flexible image display device is arranged on the visual side with respect to the organic EL display panel and is configured to be bendable. Has been done. The laminated body for a flexible image display device may include a window, a (touch panel) touch sensor, and the like, in addition to the above-mentioned elliptical polarizing plate of the present invention. The stacking order thereof is arbitrary, but it is preferable that the windows, the elliptical polarizing plate, and the touch sensor are laminated in this order from the visual side, or the window, the touch sensor, and the elliptical polarizing plate are stacked in this order.
 タッチセンサの視認側に楕円偏光板が存在すると、タッチセンサのパターンが視認されにくくなり表示画像の視認性がよくなるので好ましい。それぞれの部材は接着剤、粘着剤等を用いて積層することができる。また、フレキシブル画像表示装置用積層体は、前記ウインドウ、楕円偏光板、タッチセンサのいずれかの層の少なくとも一面に形成された遮光パターンを具備することができる。 It is preferable that the elliptical polarizing plate is present on the visual side of the touch sensor because the pattern of the touch sensor is difficult to be visually recognized and the visibility of the displayed image is improved. Each member can be laminated using an adhesive, an adhesive, or the like. Further, the laminated body for a flexible image display device can be provided with a light-shielding pattern formed on at least one surface of any one of the windows, the elliptical polarizing plate, and the touch sensor.
 ウインドウは、フレキシブル画像表示装置の視認側に配置され、その他の構成要素を外部からの衝撃または温湿度等の環境変化から保護する役割を担っている。従来、このような保護層としてはガラスが使用されてきたが、フレキシブル画像表示装置におけるウインドウはガラスのようにリジッドで堅いものではなく、フレキシブルな特性を有する。前記ウインドウは、フレキシブルな透明基材からなり、少なくとも一面にハードコート層を含んでいてもよい。 The window is placed on the visual side of the flexible image display device and plays a role of protecting other components from external impacts or environmental changes such as temperature and humidity. Conventionally, glass has been used as such a protective layer, but a window in a flexible image display device is not rigid and rigid like glass, but has flexible characteristics. The window is made of a flexible transparent substrate and may include a hardcourt layer on at least one surface.
 フレキシブル画像表示装置用積層体を構成するウインドウ、タッチセンサ等としては、特に限定されず、従来公知のものを採用し得る。 The window, touch sensor, etc. constituting the laminated body for the flexible image display device are not particularly limited, and conventionally known ones can be adopted.
 以下、実施例により本発明をより具体的に説明する。なお、例中の「%」および「部」は、特記ない限り、それぞれ質量%および質量部を意味する。 Hereinafter, the present invention will be described more specifically by way of examples. In addition, "%" and "part" in an example mean mass% and mass part, respectively, unless otherwise specified.
〔実施例1〕
(1)光配向膜形成用組成物の作製
 下記化学式で表される数平均分子量28000のポリマー(1)2部とo-キシレン 98部とを混合し、得られた混合物を80℃で1時間攪拌することにより、光配向膜形成用組成物を得た。
[Example 1]
(1) Preparation of composition for forming a photoalignment film A polymer (1) having a number average molecular weight of 28,000 represented by the following chemical formula was mixed with 98 parts of o-xylene, and the obtained mixture was mixed at 80 ° C. for 1 hour. By stirring, a composition for forming a photoalignment film was obtained.
 ポリマー(1)
Figure JPOXMLDOC01-appb-C000003
 〔式中、Meはメチル基を表す。〕
Polymer (1)
Figure JPOXMLDOC01-appb-C000003
[In the formula, Me represents a methyl group. ]
(2)液晶硬化膜形成用の重合性液晶組成物の調製
 下記構造の重合性液晶化合物A-1(86.0部)と、重合性液晶化合物A-2(14.0部)と、ポリアクリレート化合物(レベリング剤/BYK-361N;BYK-Chemie社製)(0.12部)と、2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(光重合開始剤/イルガキュア369;チバ スペシャルティケミカルズ社製)(3.0部)と、LALOMER LR9000(BASFジャパン社製)(2.0部)とを混合した。さらに、固形分濃度が9%となるようにアニソールを添加した。重合性液晶化合物A-1および重合性液晶化合物A-2を含む重合性液晶組成物(A1)を得た。
 なお、重合性液晶化合物A-1は、特開2010-31223号公報に記載の方法で合成した。クロロホルム中で測定した重合性液晶化合物A-1の極大吸収波長λmax(LC)は350nmであった。
(2) Preparation of polymerizable liquid crystal composition for forming a liquid crystal cured film A polymerizable liquid crystal compound A-1 (86.0 parts) having the following structure, a polymerizable liquid crystal compound A-2 (14.0 parts), and poly Acrylate compound (leveling agent / BYK-361N; manufactured by BYK-Chemie) (0.12 part) and 2-dimethylamino-2-benzyl-1- (4-morpholinophenyl) butane-1-one (photopolymerization started) Agent / Irgacure 369; Ciba Specialty Chemicals (manufactured by 3.0 parts) and LALOMER LR9000 (manufactured by BASF Japan) (2.0 parts) were mixed. Further, anisole was added so that the solid content concentration was 9%. A polymerizable liquid crystal composition (A1) containing the polymerizable liquid crystal compound A-1 and the polymerizable liquid crystal compound A-2 was obtained.
The polymerizable liquid crystal compound A-1 was synthesized by the method described in JP-A-2010-31223. The maximum absorption wavelength λmax (LC) of the polymerizable liquid crystal compound A-1 measured in chloroform was 350 nm.
 重合性液晶化合物A-1:
Figure JPOXMLDOC01-appb-C000004
Polymerizable liquid crystal compound A-1:
Figure JPOXMLDOC01-appb-C000004
 重合性液晶化合物A-2:
Figure JPOXMLDOC01-appb-C000005
Polymerizable liquid crystal compound A-2:
Figure JPOXMLDOC01-appb-C000005
(3)位相差フィルムの作製
 トリアセチルセルロースフィルム(コニカミノルタ社製KC4CZ-TAC、厚さ40μm)を、コロナ処理装置(AGF-B10;春日電機株式会社製)を用いて出力0.3kW、処理速度3m/分の条件で1回処理した。コロナ処理を施した表面に、前記光配向膜形成用組成物をバーコーター塗布し、80℃で1分間乾燥し、偏光UV照射装置(偏光子ユニット付SPOT CURE SP-7;ウシオ電機株式会社製)を用いて、100mJ/cmの積算光量で偏光UV露光を実施し、光配向膜を形成した。得られた光配向膜の厚みをエリプソメータ M-220(日本分光株式会社製)で測定したところ、100nmであった。
(3) Preparation of retardation film A triacetyl cellulose film (KC4CZ-TAC manufactured by Konica Minolta Co., Ltd., thickness 40 μm) is treated with a corona treatment device (AGF-B10; manufactured by Kasuga Electric Works Ltd.) at an output of 0.3 kW. The treatment was performed once under the condition of a speed of 3 m / min. The composition for forming a photoalignment film was coated on the corona-treated surface with a bar coater, dried at 80 ° C. for 1 minute, and then subjected to a polarized UV irradiation device (SPOT CURE SP-7 with a polarizing element unit; manufactured by Ushio Denki Co., Ltd.). ) Was used to perform polarized UV exposure with an integrated light amount of 100 mJ / cm 2 , and a photoalignment film was formed. The thickness of the obtained photoalignment film was measured with an ellipsometer M-220 (manufactured by JASCO Corporation) and found to be 100 nm.
 以下の方法に従い、位相差フィルムの基材フィルムとして用いた前記トリアセチルセルロースフィルム(KC4CZ-TAC)の透湿度および全光線透過率を測定した。
 (透湿度の測定)
 JIS Z 0208に規定されるカップ法により、温度40℃、相対湿度90%におけるプロテクトフィルムの透湿度〔g/(m2・24hr)〕を測定した。上記TACフィルムの透湿度は、370g/m/24時間であった。
According to the following method, the moisture permeability and the total light transmittance of the triacetyl cellulose film (KC4CZ-TAC) used as the base film of the retardation film were measured.
(Measurement of moisture permeability)
The moisture permeability [g / (m2, 24 hr)] of the protect film at a temperature of 40 ° C. and a relative humidity of 90% was measured by the cup method specified in JIS Z 0208. The moisture permeability of the TAC film was 370 g / m 2/24 hours.
 (全光線透過率の測定)
 JIS K7361に準拠して、(株)村上色彩技術研究所製のヘイズメータHM150を用いて全光線透過率を測定した。上記TACフィルムの全光線透過率は93%であった。
(Measurement of total light transmittance)
The total light transmittance was measured using a haze meter HM150 manufactured by Murakami Color Technology Research Institute Co., Ltd. in accordance with JIS K7361. The total light transmittance of the TAC film was 93%.
 また、基材である上記TACフィルムの波長550nmにおける位相差値〔Re(550)およびRth(550)〕を測定したところ、略0であった。 Further, when the phase difference value [Re (550) and Rth (550)] of the above-mentioned TAC film as a base material at a wavelength of 550 nm was measured, it was approximately 0.
 続いて、前記光配向膜上に、先に調製した重合性液晶化合物を含む重合性液晶組成物(A1)を、バーコーターで塗布し、120℃で1分間乾燥した。その後、高圧水銀ランプ(ユニキュアVB-15201BY-A;ウシオ電機株式会社製)を用いて、重合性液晶組成物(A1)を塗布した面側から紫外線を照射(窒素雰囲気下、波長313nmにおける積算光量:500mJ/cm)することにより、トリアセチルセルロースフィルム(基材フィルム)/光配向膜/液晶硬化膜からなる積層体である位相差フィルムを形成した。得られた液晶硬化膜の厚みをレーザー顕微鏡(LEXT;オリンパス株式会社製)で測定したところ、2.3μmであった。 Subsequently, the polymerizable liquid crystal composition (A1) containing the polymerizable liquid crystal compound prepared above was applied onto the photoalignment film with a bar coater, and dried at 120 ° C. for 1 minute. Then, using a high-pressure mercury lamp (Unicure VB-15201BY-A; manufactured by Ushio Denki Co., Ltd.), ultraviolet rays are irradiated from the surface side coated with the polymerizable liquid crystal composition (A1) (integrated light amount at a wavelength of 313 nm under a nitrogen atmosphere). : 500 mJ / cm 2 ) to form a retardation film which is a laminate composed of a triacetyl cellulose film (base film) / photoalignment film / liquid crystal cured film. The thickness of the obtained liquid crystal cured film was measured with a laser microscope (LEXT; manufactured by Olympus Corporation) and found to be 2.3 μm.
 得られた位相差フィルムの波長550nmにおける位相差値を測定したところ、Re(550)=140nmであった。また、得られた位相差フィルムの波長450nmおよび波長650nmにおける位相差値を測定したところ、Re(450)/Re(550)=0.85、Re(650)/Re(550)=1.05であった。 When the retardation value of the obtained retardation film at a wavelength of 550 nm was measured, it was Re (550) = 140 nm. Further, when the retardation values of the obtained retardation film at a wavelength of 450 nm and a wavelength of 650 nm were measured, Re (450) / Re (550) = 0.85 and Re (650) / Re (550) = 1.05. Met.
(4)偏光子の作製(ヨウ素PVA型偏光子)
 厚さ30μmのポリビニルアルコールフィルム(PVA:平均重合度約2400、ケン化度99.9モル%以上)を、乾式延伸により約5倍に一軸延伸し、さらに緊張状態を保ったまま、40℃の純水に40秒間浸漬した。その後、ヨウ素/ヨウ化カリウム/水の質量比が0.044/5.7/100の染色水溶液に28℃で30秒間浸漬して染色処理を行った。次に、ヨウ化カリウム/ホウ酸/水の質量比が11.0/6.2/100のホウ酸水溶液に70℃で120秒間浸漬した。引き続き、8℃の純水で15秒間洗浄した後、300Nの張力で保持した状態で、60℃で50秒間、次いで75℃で20秒間乾燥して、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚さ12μmの偏光子を得た。
(4) Fabrication of modulator (iodine PVA type deflector)
A 30 μm-thick polyvinyl alcohol film (PVA: average degree of polymerization of about 2400, saponification degree of 99.9 mol% or more) was uniaxially stretched about 5 times by dry stretching, and further uniaxially stretched at 40 ° C. while maintaining a tense state. Soaked in pure water for 40 seconds. Then, the dyeing treatment was carried out by immersing the dyeing solution in a dyeing aqueous solution having an iodine / potassium iodide / water mass ratio of 0.044 / 5.7 / 100 at 28 ° C. for 30 seconds. Next, it was immersed in a boric acid aqueous solution having a mass ratio of potassium iodide / boric acid / water of 11.0 / 6.2 / 100 at 70 ° C. for 120 seconds. Subsequently, after washing with pure water at 8 ° C. for 15 seconds, while holding at a tension of 300 N, the iodine was adsorbed and oriented on the polyvinyl alcohol film by drying at 60 ° C. for 50 seconds and then at 75 ° C. for 20 seconds. A polarizing element having a thickness of 12 μm was obtained.
(5)光学積層体の作製
 上記で作製した位相差フィルムおよび偏光子、並びに、透明保護フィルムとしてトリアセチルセルロースフィルム(TAC:コニカミノルタオプト(株)製「KC4UY」)をこの順に積層させ、前記位相差フィルムのトリアセチルセルロース側と偏光子が、並びに該偏光子の位相差フィルムとは反対側に前記透明保護フィルムのトリアセチルセルロースが接するように水系の乾燥固化型接着剤を注入し、偏光子の吸収軸と位相差フィルムにおける液晶硬化膜の遅相軸が45°となるようニップロールで貼り合わせた。得られた貼合物の張力を430N/mに保ちながら、60℃で2分間乾燥して、液晶硬化膜/光配向膜/基材フィルム/接着剤層/偏光子/接着剤層/透明保護フィルムからなる光学積層体I(楕円偏光板)を得た。
 なお、上記水系の乾燥固化型接着剤は、水100部に、カルボキシル基変性ポリビニルアルコール(クラレポバールKL318;株式会社クラレ製)3部と、水溶性ポリアミドエポキシ樹脂(スミレーズレジン650;住化ケムテックス株式会社製、固形分濃度30%の水溶液)1.5部とを添加して調製した。
(5) Preparation of Optical Laminate A retardation film and a polarizing element produced above, and a triacetyl cellulose film (TAC: "KC4UY" manufactured by Konica Minolta Opto Co., Ltd.) as a transparent protective film are laminated in this order, and described above. A water-based dry solidifying adhesive is injected so that the triacetyl cellulose side of the retardation film and the polarizing element are in contact with the triacetyl cellulose side of the transparent protective film and the triacetyl cellulose side of the transparent protective film is in contact with the retarder on the opposite side of the retarder film. It was bonded with a nip roll so that the absorption axis of the child and the slow axis of the liquid crystal cured film in the retardation film were 45 °. While maintaining the tension of the obtained laminate at 430 N / m, it is dried at 60 ° C. for 2 minutes to protect the liquid crystal cured film / optical alignment film / base film / adhesive layer / polarizing element / adhesive layer / transparent protection. An optical laminate I (elliptic polarizing plate) made of a film was obtained.
The above-mentioned water-based dry solidifying adhesive contains 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol (Kuraray Poval KL318; manufactured by Kuraray Co., Ltd.), and a water-soluble polyamide epoxy resin (Smiley's resin 650; Sumika Chemtex). Prepared by adding 1.5 parts (an aqueous solution having a solid content concentration of 30%) manufactured by Kuraray Co., Ltd.
 透明保護フィルムの透湿度および全光線透過率を、前述した基材フィルムにおける測定方法と同様にして測定したところ、透湿度は350g/m/24時間、全光線透過率は93%であった。 When the moisture permeability and the total light transmittance of the transparent protective film were measured in the same manner as the measurement method for the base film described above, the moisture permeability was 350 g / m 2/24 hours and the total light transmittance was 93%. ..
 また、透明保護フィルムの380nm透過率を、分光光度計(島津製作所株式会社製 UV-3150)に偏光子付フォルダーをセットした装置を用いてダブルビーム法により測定した。該フォルダーは、リファレンス側は光量を50%カットするメッシュを設置した。透明保護フィルムの380nm透過率は8%であった。 Further, the 380 nm transmittance of the transparent protective film was measured by the double beam method using a device in which a folder with a polarizing element was set in a spectrophotometer (UV-3150 manufactured by Shimadzu Corporation). The folder was provided with a mesh that cuts the amount of light by 50% on the reference side. The 380 nm transmittance of the transparent protective film was 8%.
(6)光学積層体の評価
 (i)屈曲性の評価
 屈曲性の評価は、JIS-K-5600-5-1に記載の塗料一般試験方法―耐屈曲性(円筒形マンドレル法)の方法を用いて、以下のように行った。
 光学積層体を25mm×200mm角に切り取り、円筒型マンドレル法耐屈曲性試験機タイプII型(TP技研株式会社製)を用いて、温度25℃、相対湿度55%RHの条件下で、直径が6mm(屈曲半径R=3mm)のマンドレル棒に、位相差フィルムの液晶硬化層を外側にして巻きつけて屈曲性試験を行った。試験後の光学積層体を用いて、暗室環境下にて照明透過光で目視確認し、クラックの発生状況を観察したところ、割れが視認できたものを「×」とし、割れが視認できなかったものを「○」と判定した。結果を表1に示す。
(6) Evaluation of optical laminate (i) Evaluation of flexibility For evaluation of flexibility, the general coating test method described in JIS-K-5600-5-1-flexibility (cylindrical mandrel method) method is used. Using, it was done as follows.
The optical laminate is cut into 25 mm × 200 mm squares, and the diameter is increased under the conditions of a temperature of 25 ° C and a relative humidity of 55% RH using a cylindrical mandrel method bending resistance tester type II (manufactured by TP Giken Co., Ltd.). A bending test was performed by winding a mandrel rod having a bending radius of 6 mm (bending radius R = 3 mm) with the liquid crystal cured layer of the retardation film on the outside. Using the optical laminate after the test, the cracks were visually confirmed by illuminated transmitted light in a dark room environment, and when the cracks were observed, the cracks were marked as "x" and the cracks could not be seen. The thing was judged as "○". The results are shown in Table 1.
 (ii)斜め反射率の評価
 光学積層体の斜め反射率を、以下のようにして測定した。光学積層体の位相差フィルムに由来する側(光学積層体Iの場合、液晶硬化膜)と反射板(鏡面アルミニウム板)とをアクリル粘着剤を用いて貼合して測定サンプルを作製した。
 分光測色計(コニカミノルタ(株)製CM3700A)を用いて、測定サンプルに8°方向からD65光源の光を入射して斜め反射率(反射Y値)を測定した。斜め反射率が1%以上6%未満であれば○、6%以上8%未満であれば△、8%以上であれば×とした。結果を表1に示す。
(Ii) Evaluation of oblique reflectance The oblique reflectance of the optical laminate was measured as follows. A measurement sample was prepared by laminating the side derived from the retardation film of the optical laminate (in the case of the optical laminate I, the liquid crystal cured film) and the reflector (mirror surface aluminum plate) using an acrylic pressure-sensitive adhesive.
Using a spectrocolorimeter (CM3700A manufactured by Konica Minolta Co., Ltd.), the light of the D65 light source was incident on the measurement sample from the 8 ° direction, and the oblique reflectance (reflection Y value) was measured. When the oblique reflectance was 1% or more and less than 6%, it was evaluated as ◯, when it was 6% or more and less than 8%, it was evaluated as Δ, and when it was 8% or more, it was evaluated as ×. The results are shown in Table 1.
 (iii)耐熱試験の評価
 光学積層体の位相差フィルムに由来する側とガラス板とをアクリル粘着剤を用いて貼合して測定サンプルを作製した。
 得られた測定サンプルを85℃のオーブンに投入して500時間経過後、面内位相差値を測定して耐熱試験前後での550nmにおける面内位相差値の変化量を王子計測機器株式会社製のKOBRA-WRを用いて測定した。変化量が1nm以上3nm未満であれば○、3nm以上5nm未満であれば△、5nm以上であれば×とした。結果を表1に示す。
(Iii) Evaluation of heat resistance test A measurement sample was prepared by laminating the side derived from the retardation film of the optical laminate and the glass plate using an acrylic adhesive.
After 500 hours have passed since the obtained measurement sample was placed in an oven at 85 ° C., the in-plane retardation value was measured and the amount of change in the in-plane retardation value at 550 nm before and after the heat resistance test was measured by Oji Measuring Instruments Co., Ltd. It was measured using KOBRA-WR of. When the amount of change was 1 nm or more and less than 3 nm, it was evaluated as ◯, when it was 3 nm or more and less than 5 nm, it was evaluated as Δ, and when it was 5 nm or more, it was evaluated as ×. The results are shown in Table 1.
〔実施例2〕
 位相差フィルムと偏光子を貼合する際、液晶硬化膜側を偏光子と貼合したこと以外は実施例1と同様にして、基材フィルム/光配向膜/液晶硬化膜/接着剤層/偏光子/接着剤層/透明保護フィルムからなる光学積層体を製造し、評価を行った。結果を表1に示す。
[Example 2]
When the retardation film and the splitter are bonded, the same as in Example 1 except that the liquid crystal cured film side is bonded to the polarizing element, the base film / optical alignment film / liquid crystal cured film / adhesive layer / An optical laminate composed of a splitter / adhesive layer / transparent protective film was manufactured and evaluated. The results are shown in Table 1.
〔実施例3〕
 透明保護フィルムとしてポリメタクリル酸メチル樹脂フィルム(住友化学株式会社製、透湿度:50g/m/24時間、全光線透過率:93%、380nm透過率:6%)を用いたこと以外は実施例1と同様にして、基材フィルム/光配向膜/液晶硬化膜/接着剤層/偏光子/接着剤層/透明保護フィルムからなる光学積層体を製造し、評価を行った。
結果を表1に示す。
[Example 3]
Implemented except that a polymethyl methacrylate resin film (manufactured by Sumitomo Chemical Co., Ltd., moisture permeability: 50 g / m 2/24 hours, total light transmission rate: 93%, 380 nm transmission rate: 6%) was used as the transparent protective film. In the same manner as in Example 1, an optical laminate composed of a base film / photoalignment film / liquid crystal curing film / adhesive layer / polarizing element / adhesive layer / transparent protective film was produced and evaluated.
The results are shown in Table 1.
〔実施例4〕
 透明保護フィルムとして紫外線吸収剤を加えたシクロオレフィンポリマーフィルム(COP;ZF-14;日本ゼオン株式会社製、透湿度:13g/m/24時間、全光線透過率:92%、380nm透過率:8%)を用いたこと以外は実施例1と同様にして、基材フィルム/光配向膜/液晶硬化膜/接着剤層/偏光子/接着剤層/透明保護フィルムからなる光学積層体を製造し、評価を行った。結果を表1に示す。
[Example 4]
Cycloolefin polymer film (COP; ZF-14; manufactured by Nippon Zeon Co., Ltd., moisture permeability: 13 g / m 2/24 hours, total light transmittance: 92%, 380 nm transmittance:) to which an ultraviolet absorber is added as a transparent protective film. An optical laminate composed of a base film / a photoalignment film / a liquid crystal curing film / an adhesive layer / a polarizing element / an adhesive layer / a transparent protective film was produced in the same manner as in Example 1 except that 8%) was used. And evaluated. The results are shown in Table 1.
〔比較例1〕
 基材フィルムとして、実施例1の透明保護フィルムとして用いたTACフィルムを用い、光学積層体の作製工程にて、透明保護フィルムと偏光子とを実施例1で用いたのと同様の水系の乾燥固化型接着剤にて貼合した後、硬化後の厚みが5μmのアクリル系粘着剤を用いて、偏光子の透明保護フィルムが積層されていない側の面と位相差フィルムの液晶硬化膜側を貼合し、基材フィルムであるトリアセチルセルロースフィルムを剥離したこと以外は実施例1と同様にして、光配向膜/液晶硬化膜/粘着剤層/偏光子/接着剤層/透明保護フィルムからなる光学積層体を製造し、評価を行った。結果を表1に示す。
[Comparative Example 1]
As the base film, the TAC film used as the transparent protective film of Example 1 was used, and in the process of producing the optical laminate, the transparent protective film and the polarizing element were dried in the same water-based manner as in Example 1. After bonding with a solidifying adhesive, use an acrylic pressure-sensitive adhesive with a thickness of 5 μm after curing to cover the surface on the side where the transparent protective film of the stator is not laminated and the liquid crystal cured film side of the retardation film. From the photoalignment film / liquid crystal curing film / pressure-sensitive adhesive layer / polarizing element / adhesive layer / transparent protective film in the same manner as in Example 1 except that the triacetyl cellulose film which is the base film was peeled off by bonding. The optical laminate was manufactured and evaluated. The results are shown in Table 1.
〔比較例2〕
 基材フィルムであるトリアセチルセルロースを剥離しなかったこと以外は比較例1と同様にして、基材フィルム/光配向膜/液晶硬化膜/粘着剤層/偏光子/接着剤層/透明保護フィルムからなる光学積層体を製造し、評価を行った。結果を表1に示す。
[Comparative Example 2]
Substrate film / optical alignment film / liquid crystal curing film / pressure-sensitive adhesive layer / polarizing element / adhesive layer / transparent protective film in the same manner as in Comparative Example 1 except that the base film triacetyl cellulose was not peeled off. An optical laminate made of the above was manufactured and evaluated. The results are shown in Table 1.
〔参考例1〕
 基材フィルムとしてシクロオレフィンポリマーフィルム(COP;ZF-14;日本ゼオン株式会社製、透湿度:13g/m/24時間、全光線透過率:92%、380nm透過率:90%)を用いたこと以外は実施例4と同様にして、基材フィルム/光配向膜/液晶硬化膜/接着剤層/偏光子/接着剤層/透明保護フィルムからなる光学積層体を製造し、評価を行った。結果を表1に示す。
[Reference Example 1]
A cycloolefin polymer film (COP; ZF-14; manufactured by Nippon Zeon Co., Ltd., moisture permeability: 13 g / m 2/24 hours, total light transmittance: 92%, 380 nm transmittance: 90%) was used as the base film. An optical laminate composed of a base film / a photoalignment film / a liquid crystal curing film / an adhesive layer / a polarizing element / an adhesive layer / a transparent protective film was produced and evaluated in the same manner as in Example 4 except for the above. .. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明に従う層構成を有する光学積層体(実施例1~4)は、屈曲性に優れ、斜め反射率が低いことが確認された。 It was confirmed that the optical laminates (Examples 1 to 4) having a layer structure according to the present invention were excellent in flexibility and low oblique reflectance.
1:位相差フィルム
2:接着剤層
3:偏光子
4:接着剤層
5:透明保護フィルム
11:基材フィルム
12:配向膜
13:液晶硬化膜
100:光学積層体
1: Phase difference film 2: Adhesive layer 3: Polarizer 4: Adhesive layer 5: Transparent protective film 11: Base film 12: Alignment film 13: Liquid crystal cured film 100: Optical laminate

Claims (14)

  1.  位相差フィルムと偏光子と透明保護フィルムとをこの順に含む光学積層体であって、
     前記位相差フィルムが、100g/m/24時間以上の透湿度を有する基材フィルムと、該基材フィルム上に形成された、厚みが0.5μm以上3μm以下であり、かつ、下記式(1)および(2):
     Re(450)/Re(550)≦1.00  (1)
     1.00≦Re(650)/Re(550)  (2)
    〔式中、Re(λ)は波長λにおける面内位相差値を示す〕
    を単層で満たす液晶硬化膜と、を含んでなり、
     前記偏光子が、二色性色素を含むポリビニルアルコール系樹脂フィルムから構成され、 前記透明保護フィルムが、90%以上の全光線透過率、および、30%以下の380nm透過率を有し、
     前記位相差フィルムと前記偏光子と前記透明保護フィルムとが接着剤層を介して隣接してなる、光学積層体。
    An optical laminate containing a retardation film, a splitter, and a transparent protective film in this order.
    The retardation film has a base film having a moisture permeability of 100 g / m 2/24 hours or more, and a thickness of 0.5 μm or more and 3 μm or less formed on the base film, and the following formula ( 1) and (2):
    Re (450) / Re (550) ≤ 1.00 (1)
    1.00 ≤ Re (650) / Re (550) (2)
    [In the equation, Re (λ) indicates the in-plane phase difference value at the wavelength λ]
    Contains a liquid crystal cured film, which fills with a single layer,
    The polarizing element is composed of a polyvinyl alcohol-based resin film containing a dichroic dye, and the transparent protective film has a total light transmittance of 90% or more and a 380 nm transmittance of 30% or less.
    An optical laminate in which the retardation film, the polarizing element, and the transparent protective film are adjacent to each other via an adhesive layer.
  2.  前記基材フィルムは、全光線透過率が90%以上であり、かつ、550nmの光に対する厚み方向の位相差値Rth(550)の絶対値が5nm以下である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the base film has a total light transmittance of 90% or more and an absolute value of the retardation value Rth (550) in the thickness direction with respect to light of 550 nm is 5 nm or less. body.
  3.  前記位相差フィルムは、基材フィルムと液晶硬化膜との間に厚み10nm以上1000nm以下の光配向膜を有する、請求項1または2に記載の光学積層体。 The optical laminate according to claim 1 or 2, wherein the retardation film has a photoalignment film having a thickness of 10 nm or more and 1000 nm or less between a base film and a liquid crystal cured film.
  4.  前記液晶硬化膜は、波長300~400nmの間に少なくとも1つの極大吸収を有する少なくとも1種の化合物を硬化した膜である、請求項1~3のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, wherein the liquid crystal cured film is a film obtained by curing at least one compound having at least one maximum absorption between wavelengths of 300 to 400 nm.
  5.  前記液晶硬化膜は下記式(3):
     100nm≦Re(550)≦170nm  (3)
    〔式中、Re(λ)は波長λにおける面内位相差値を示す〕
    を満たす、請求項1~4のいずれかに記載の光学積層体。
    The liquid crystal cured film has the following formula (3):
    100 nm ≤ Re (550) ≤ 170 nm (3)
    [In the equation, Re (λ) indicates the in-plane phase difference value at the wavelength λ]
    The optical laminate according to any one of claims 1 to 4, which satisfies the above conditions.
  6.  前記透明保護フィルムは100g/m/24時間以上の透湿度を有する、請求項1~5のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 5, wherein the transparent protective film has a moisture permeability of 100 g / m 2/24 hours or more.
  7.  前記接着剤層は乾燥固化型接着剤から形成される層である、請求項1~6のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 6, wherein the adhesive layer is a layer formed from a dry solidified adhesive.
  8.  前記乾燥固化型接着剤はポリビニルアルコールを含む、請求項7に記載の光学積層体。 The optical laminate according to claim 7, wherein the dry solidified adhesive contains polyvinyl alcohol.
  9.  位相差フィルムは、位相差フィルムと偏光子とを貼合する接着剤層と前記液晶硬化膜側で接する、請求項1~8のいずれかに記載の光学積層体。 The optical laminate according to any one of claims 1 to 8, wherein the retardation film is in contact with an adhesive layer for bonding the retardation film and a polarizing element on the liquid crystal curing film side.
  10.  請求項1~9のいずれかに記載の光学積層体を巻き取ってなる光学積層体ロール。 An optical laminate roll formed by winding the optical laminate according to any one of claims 1 to 9.
  11.  請求項1~9のいずれかに記載の光学積層体を含む楕円偏光板。 An elliptical polarizing plate including the optical laminate according to any one of claims 1 to 9.
  12.  請求項11に記載の楕円偏光板を含む、有機EL表示装置。 An organic EL display device including the elliptical polarizing plate according to claim 11.
  13.  請求項11に記載の楕円偏光板を含む、フレキシブル画像表示装置。 A flexible image display device including the elliptical polarizing plate according to claim 11.
  14.  ウインドウとタッチセンサとをさらに含む、請求項13に記載のフレキシブル画像表示装置。 The flexible image display device according to claim 13, further including a window and a touch sensor.
PCT/JP2021/029483 2020-09-07 2021-08-10 Optical laminate, and ellipsoidally polarizing plate including same WO2022050003A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180056410.6A CN116057430A (en) 2020-09-07 2021-08-10 Optical laminate and elliptical polarizing plate comprising same
KR1020237004603A KR20230062548A (en) 2020-09-07 2021-08-10 Optical laminate and elliptically polarizing plate including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-149847 2020-09-07
JP2020149847A JP2022044293A (en) 2020-09-07 2020-09-07 Optical laminate and elliptically polarizing plate including the same

Publications (1)

Publication Number Publication Date
WO2022050003A1 true WO2022050003A1 (en) 2022-03-10

Family

ID=80491999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029483 WO2022050003A1 (en) 2020-09-07 2021-08-10 Optical laminate, and ellipsoidally polarizing plate including same

Country Status (5)

Country Link
JP (1) JP2022044293A (en)
KR (1) KR20230062548A (en)
CN (1) CN116057430A (en)
TW (1) TW202214429A (en)
WO (1) WO2022050003A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024890A1 (en) * 2022-07-29 2024-02-01 住友化学株式会社 Optical laminate

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049698A (en) * 2003-07-30 2005-02-24 Fuji Photo Film Co Ltd Polarizing plate
JP2005309382A (en) * 2004-02-16 2005-11-04 Fuji Photo Film Co Ltd Liquid crystal display device
JP2006195363A (en) * 2005-01-17 2006-07-27 Fuji Photo Film Co Ltd Liquid crystal display device, optical compensation sheet used therefor, and polarizing plate
JP2006308954A (en) * 2005-04-28 2006-11-09 Fuji Photo Film Co Ltd Cellulose acylate film, optical compensation film using the same, polarizing plate and liquid crystal display device
JP2007171815A (en) * 2005-12-26 2007-07-05 Fujifilm Corp Liquid crystal display device
JP2007279083A (en) * 2006-04-03 2007-10-25 Fujifilm Corp Optical compensation film, polarization plate and liquid crystal display device
JP2007310128A (en) * 2006-05-18 2007-11-29 Fujifilm Corp Optical film, method for producing the same, optical compensation film, polarizing plate, and liquid crystal display device
JP2008503763A (en) * 2004-06-25 2008-02-07 富士フイルム株式会社 Optical compensation sheet, manufacturing method thereof, polarizing plate and liquid crystal display device using the same
JP2009009079A (en) * 2007-05-30 2009-01-15 Nippon Zeon Co Ltd Polarizing plate and liquid crystal display device
WO2009016888A1 (en) * 2007-07-30 2009-02-05 Konica Minolta Opto, Inc. Circularly polarizing element, and electroluminescence element
JP2010262098A (en) * 2009-05-01 2010-11-18 Fujifilm Corp Crystal display apparatus
WO2019103143A1 (en) * 2017-11-27 2019-05-31 富士フイルム株式会社 Long liquid crystal film, long polarizing plate, image display device, and method for producing long liquid crystal film
JP2020056988A (en) * 2018-09-28 2020-04-09 住友化学株式会社 Optical laminate, polarizing plate composite, and image display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5899607B2 (en) 2009-03-16 2016-04-06 住友化学株式会社 Compound, optical film and method for producing optical film

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049698A (en) * 2003-07-30 2005-02-24 Fuji Photo Film Co Ltd Polarizing plate
JP2005309382A (en) * 2004-02-16 2005-11-04 Fuji Photo Film Co Ltd Liquid crystal display device
JP2008503763A (en) * 2004-06-25 2008-02-07 富士フイルム株式会社 Optical compensation sheet, manufacturing method thereof, polarizing plate and liquid crystal display device using the same
JP2006195363A (en) * 2005-01-17 2006-07-27 Fuji Photo Film Co Ltd Liquid crystal display device, optical compensation sheet used therefor, and polarizing plate
JP2006308954A (en) * 2005-04-28 2006-11-09 Fuji Photo Film Co Ltd Cellulose acylate film, optical compensation film using the same, polarizing plate and liquid crystal display device
JP2007171815A (en) * 2005-12-26 2007-07-05 Fujifilm Corp Liquid crystal display device
JP2007279083A (en) * 2006-04-03 2007-10-25 Fujifilm Corp Optical compensation film, polarization plate and liquid crystal display device
JP2007310128A (en) * 2006-05-18 2007-11-29 Fujifilm Corp Optical film, method for producing the same, optical compensation film, polarizing plate, and liquid crystal display device
JP2009009079A (en) * 2007-05-30 2009-01-15 Nippon Zeon Co Ltd Polarizing plate and liquid crystal display device
WO2009016888A1 (en) * 2007-07-30 2009-02-05 Konica Minolta Opto, Inc. Circularly polarizing element, and electroluminescence element
JP2010262098A (en) * 2009-05-01 2010-11-18 Fujifilm Corp Crystal display apparatus
WO2019103143A1 (en) * 2017-11-27 2019-05-31 富士フイルム株式会社 Long liquid crystal film, long polarizing plate, image display device, and method for producing long liquid crystal film
JP2020056988A (en) * 2018-09-28 2020-04-09 住友化学株式会社 Optical laminate, polarizing plate composite, and image display device

Also Published As

Publication number Publication date
TW202214429A (en) 2022-04-16
CN116057430A (en) 2023-05-02
JP2022044293A (en) 2022-03-17
KR20230062548A (en) 2023-05-09

Similar Documents

Publication Publication Date Title
JP7356480B2 (en) Optical film and its manufacturing method
JP6876638B2 (en) Elliptical polarizing plate
JP6763916B2 (en) Elliptical polarizing plate
JP7491660B2 (en) Retardation plate with optical compensation function
JP7398868B2 (en) Composition
JP2024045211A (en) Polymerizable liquid crystal mixed composition, retardation plate, elliptically polarizing plate, and organic EL display device
JP7443413B2 (en) Vertical alignment liquid crystal cured film
WO2021054031A1 (en) Laminate and elliptical polarizer containing same
WO2021006068A1 (en) Long film
WO2022050003A1 (en) Optical laminate, and ellipsoidally polarizing plate including same
JP2019035952A (en) Phase difference plate with optical compensation function for flexible display
WO2021193131A1 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, phase difference film, elliptically polarizing plate and organic el display device
JP7302954B2 (en) Laminate containing horizontal alignment liquid crystal cured film
US11971566B2 (en) Horizontally oriented liquid crystal cured film and laminate including the same
WO2021205726A1 (en) Optical layered body
JP2022017912A (en) Polymerizable liquid crystal composition, liquid crystal cured film, and method of manufacturing the same
JP2021175785A (en) Polymerizable liquid crystal composition, liquid crystal cured film, elliptical polarization plate and organic el display device
JP2021081651A (en) Optical anisotropic film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864061

Country of ref document: EP

Kind code of ref document: A1