WO2020026304A1 - 回転電機の制御装置 - Google Patents

回転電機の制御装置 Download PDF

Info

Publication number
WO2020026304A1
WO2020026304A1 PCT/JP2018/028466 JP2018028466W WO2020026304A1 WO 2020026304 A1 WO2020026304 A1 WO 2020026304A1 JP 2018028466 W JP2018028466 W JP 2018028466W WO 2020026304 A1 WO2020026304 A1 WO 2020026304A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
angle error
phase
electric machine
control device
Prior art date
Application number
PCT/JP2018/028466
Other languages
English (en)
French (fr)
Inventor
盛臣 見延
加藤 利明
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880095929.3A priority Critical patent/CN112470393B/zh
Priority to PCT/JP2018/028466 priority patent/WO2020026304A1/ja
Priority to DE112018007870.1T priority patent/DE112018007870T5/de
Priority to JP2020533904A priority patent/JP6989021B2/ja
Publication of WO2020026304A1 publication Critical patent/WO2020026304A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a control device for a rotating electric machine.
  • Patent Document 1 discloses a control device for a rotating electric machine. According to the control device, the angle error of the resolver can be corrected.
  • the phase of the angle error may not correspond one-to-one with the resolver electrical angle detected by the resolver depending on the order of the angle error to be corrected. That is, even if the resolver electrical angle is obtained, there is a possibility that the mechanical angle will be shifted by 360 ° ⁇ n / N, where N is an axial multiple and n is an integer from 0 to N ⁇ 1. In this case, if the power is turned on after the power is turned off, the correction of the angular error of the resolver may be shifted.
  • An object of the present invention is to provide a control device for a rotating electric machine that can easily correct an angular error of a resolver even when the power is turned on after being turned off.
  • a control device for a rotating electric machine includes: a frequency analyzing unit that performs frequency analysis on a signal used for controlling the rotating electric machine and calculates an amplitude analysis value and a phase analysis value of a preset component; An angle error estimator for estimating an angle error of the resolver of the rotary electric machine based on the calculated amplitude analysis value and the phase analysis value; and a detection position of the resolver based on the angle error estimated by the angle error estimator.
  • a detection position correction unit that corrects, a storage unit that stores a phase analysis value when the angle error estimating unit estimates the angle error of the resolver, and when it is determined that the correction phase needs to be updated, Based on the difference between the phase analysis value calculated by the frequency analysis unit and the phase analysis value corresponding to the information stored by the storage unit, the angle error estimated by the angle error estimation unit is calculated.
  • a correction phase calculating section for calculating a correction phase, with a.
  • the control device when it is determined that the correction phase needs to be updated, calculates the calculated phase analysis value and the phase analysis value corresponding to the information stored before the power is turned off. Is calculated based on the difference between the angles. Therefore, even when the power is turned on after the power is turned off, the angle error of the resolver can be easily corrected.
  • FIG. 1 is a configuration diagram of a system to which a control device for a rotating electric machine according to a first embodiment is applied.
  • 6 is a flowchart for describing a first example of an operation of the control device for the rotating electric machine according to the first embodiment.
  • 5 is a flowchart for describing a second example of the operation of the control device for the rotating electric machine according to the first embodiment.
  • 5 is a flowchart for describing a third example of the operation of the control device for the rotating electric machine according to the first embodiment.
  • FIG. 3 is a hardware configuration diagram of a control device for the rotating electric machine according to the first embodiment.
  • FIG. 13 is a configuration diagram of a system to which a control device for a rotating electric machine according to a second embodiment is applied.
  • FIG. 1 is a configuration diagram of a system to which the control device for a rotating electric machine according to the first embodiment is applied.
  • the rotating electric machine 1 is provided so as to be able to rotate by the supplied electric power.
  • Inverter 2 is provided so as to be able to supply electric power to rotating electric machine 1 based on voltage command value Vref .
  • Position detector 3 is provided so as to be able to detect the electrical angle measured value theta r of the rotary electric machine 1 resolver.
  • the current sensor 4 is provided so as to be able to detect a measured current value ifb flowing from the inverter 2 to the rotating electric machine 1.
  • the control device 5 includes a drive command generation unit 6, a speed calculation unit 7, a speed control unit 8, and a current control unit 9.
  • the drive command generator 6 generates a drive command for driving the rotating electric machine 1.
  • the drive command generator 6 generates a torque command.
  • the drive command generator 6 generates a speed command value ⁇ ref .
  • a position control system may be provided outside the speed control system.
  • Speed calculation unit 7 calculates the speed measurement omega r of the rotary electric machine 1 on the basis of changes in electrical angle measured value theta r of the resolver detected by the position detector 3.
  • the speed control unit 8 calculates a current command value i ref based on a difference between the speed command value ⁇ ref from the drive command generation unit 6 and the actually measured speed value ⁇ r from the speed calculation unit 7.
  • the current control unit 9 calculates the voltage command value Vref based on the difference between the current command value iref from the speed control unit 8 and the measured current value iffb from the current sensor 4.
  • the control device 5 includes a frequency analysis unit 10, an angle error estimation unit 11, a detection position correction unit 12, a storage unit 13, a correction phase calculation unit 14, and a drive condition determination unit 15.
  • the frequency analysis unit 10 analyzes the frequency of a signal used for controlling the rotating electric machine 1. For example, the frequency analysis unit 10 analyzes the frequency of the measured current value ifb detected by the current sensor 4. At this time, the frequency analysis result is expressed by the following equation (1).
  • Sx is an X-order component of the signal to be subjected to frequency analysis.
  • B x is an amplitude analysis value of S x .
  • ⁇ Bx0 is a phase analysis value of Sx.
  • Angle error estimator 11 estimates the angle error of the resolver based on at least one of the amplitude analysis value B x and phase analysis value phi BX0 calculated by the frequency analyzing unit 10. For example, the angle error estimator 11 calculates the estimated amplitude value A x and phase estimates phi Ax0 as the estimated value of the angle error of the resolver. At this time, the estimation method is appropriately set. For example, the angle error of the resolver is estimated by using the X-order amplitude analysis value of the measured current value ifb as an evaluation function and changing the correction value so as to minimize the evaluation function.
  • the detection position correction unit 12 corrects the resolver detection position based on the angle error estimated by the angle error estimation unit 11. For example, the detection position correcting unit 12, based on the electrical angle measured value of the resolver detected with the angle error estimator 11 estimated amplitude value A x and phase estimates phi Ax0 calculated by the position detector 3 theta r Correct the detection position of the resolver. Specifically, when the number of multiples of the axis of the resolver is N, the correction result of the detection position of the resolver is expressed by the following equation (2).
  • ⁇ est is an estimated angle error value when coordinates are set based on the mechanical angle ⁇ m when the measured electrical angle ⁇ r of the resolver is 0.
  • the angle error estimated value ⁇ est is represented by the following equation (3).
  • the electrical angle measured value theta r of the resolver is expressed as integrated angle in machine revolution, and smaller than the product of 0 or more and 360 degrees and the shaft angle multiplier N.
  • the storage unit 13 is a nonvolatile memory.
  • the angle error estimating unit 11 stores the information of the amplitude estimate A x and phase estimates phi Ax0 information angular error of the resolver.
  • Storage unit 13, the angle error estimator 11 is amplitude analysis value B x information and the phase analysis value phi BX0 information frequency analysis results for the current actual measurement values i fb when estimating angular error of the resolver, at that time And the information on the driving conditions of the above.
  • the rotary electric machine 1 is used for elevator hoisting machine, storage unit 13, and information of the angular error estimate when the information of the amplitude analysis value B x and phase analysis value phi BX0 information obtained .
  • Information on the traveling direction, information on the position of the car at the start of traveling, information on the load on the car, and information on the traveling speed of the car are stored.
  • the angle error estimate when the information of the amplitude analysis value B x information and phase analysis value phi BX0 obtained is represented by the amplitude estimate A x and phase estimate phi Ax0 angular error angle It does not necessarily have to match the error estimate.
  • the storage unit 13 stores information indicating that the angle error estimate as information of the angular error estimate when the information of the amplitude analysis value B x information and phase analysis value phi BX0 obtained is zero I do.
  • the storage unit 13 stores information indicating that the vehicle is traveling in the ascending direction as the information on the traveling direction.
  • the storage unit 13 stores information indicating that the stop floor of the car is the lowest floor as the information on the position of the car at the start of traveling.
  • the storage unit 13 stores information indicating a value detected by the load detector as information on the load on the car.
  • the storage unit 13 stores information indicating the value of the rotation speed V_0 (rad / s) of the rotary electric machine 1 as information on the traveling speed of the car.
  • the angle error estimator 11 toward the detection position correcting unit 12 outputs the information and the phase estimates phi Ax0 information of the amplitude estimate A x angular error of the resolver.
  • the correction phase calculator 14 calculates the correction phase ⁇ when the correction phase ⁇ needs to be updated.
  • the case where the correction phase ⁇ needs to be updated means that there is a possibility that the reference of the mechanical angle may be shifted due to a power off or the like after the estimation of the angle error estimator is completed, and the update of the correction phase ⁇ is unnecessary. No case means that the power is not turned off after the estimation by the angle error estimating unit is completed, or the correction phase ⁇ has already been updated.
  • the correction phase calculation unit 14 first newly analyzes the frequency of a signal used for controlling the rotating electric machine 1 by the frequency analysis unit 10.
  • the frequency result of the X-order signal is expressed by equation (4).
  • S ′ x is the X-order component of the signal to be subjected to frequency analysis.
  • B'x is the amplitude analysis value of S'x.
  • ⁇ Bx is a phase analysis value of S ′ x .
  • the correction phase calculation unit 14 uses the angle error estimation unit 11 based on the difference between the newly obtained phase analysis value ⁇ Bx and the phase analysis value ⁇ Bx0 stored by the storage unit 13 before the power is turned off.
  • the correction phase ⁇ of the estimated angle error is calculated.
  • the correction phase ⁇ is represented by the following equation (5).
  • the output of the detection position correction unit 12 is corrected to a value ⁇ ′ r represented by the following equation (6).
  • the drive condition determination unit 15 determines whether or not to operate the correction phase calculation unit 14. Specifically, the drive condition determination unit 15 determines whether the current drive condition matches the drive condition corresponding to the information stored in the storage unit 13. The drive condition determination unit 15 outputs the information of the condition determination trigger to the correction phase calculation unit 14 when the current drive condition matches the drive condition corresponding to the information stored in the storage unit 13 so as to correct the correction phase. The operation unit 14 is operated.
  • FIG. 2 is a flowchart for explaining a first example of the operation of the control device for the rotating electric machine according to the first embodiment.
  • step S1 the control device 5 determines whether or not the correction phase ⁇ needs to be updated. If in step S1 is updated correction phase [Delta] [phi is determined to be unnecessary, the control unit 5 does not update the correction phase [Delta] [phi, corrects the angle error based on the amplitude estimates A x and phase estimates phi Ax0, The control based on the drive command generator 6 is performed. If it is determined in step S1 that the correction phase ⁇ needs to be updated, the control device 5 performs the operation of step S2.
  • step S2 the control device 5 drives the rotating electric machine 1 and performs a frequency analysis. Thereafter, the control device 5 performs the operation of step S3.
  • step S3 the control device 5 stores information on the phase analysis value ⁇ Bx as the frequency analysis result. Thereafter, the control device 5 performs the operation of step S4.
  • step S4 the controller 5 estimates the angle error estimator 11 based on the difference between the newly calculated phase analysis value ⁇ Bx and the phase analysis value ⁇ Bx0 stored before the power is turned off. The correction phase ⁇ of the angle error is calculated. After that, the control device 5 corrects the angle error based on the equation (6) using the newly calculated correction phase ⁇ , and performs control based on the drive command generation unit 6.
  • FIG. 3 is a flowchart for explaining a second example of the operation of the control device for the rotating electric machine according to the first embodiment.
  • step S11 the control device 5 determines whether the correction phase ⁇ needs to be updated. If in step S11 to update the phase correction [Delta] [phi is determined to be unnecessary, the control unit 5 does not update the correction phase [Delta] [phi, corrects the angle error based on the amplitude estimates A x and phase estimates phi Ax0, The control based on the drive command generator 6 is performed. When it is determined in step S11 that the correction phase ⁇ needs to be updated, the control device 5 performs the operation of step S12.
  • step S12 the control device 5 determines whether or not the current driving condition matches the driving condition corresponding to the stored information. If the current driving condition does not match the driving condition corresponding to the stored information in step S12, the control device 5 continues the operation of step S12. If the current driving condition matches the driving condition corresponding to the stored information in step S12, the control device 5 performs the operation of step S13.
  • step S13 the control device 5 drives the rotating electric machine 1 and performs a frequency analysis. Thereafter, the control device 5 performs the operation of step S14.
  • step S14 the control device 5 stores information on the phase analysis value ⁇ Bx as the frequency analysis result. Thereafter, the control device 5 performs the operation of step S15.
  • step S15 the control unit 5, based on the difference between the phase analysis value phi BX0 stored before newly computed phase analysis value phi Bx and power is turned off, is estimated by the angle error estimator 11 The correction phase ⁇ of the angle error is calculated. After that, the control device 5 corrects the angle error based on Expression (6) using the newly calculated correction phase ⁇ , and performs control based on the drive command generation unit 6.
  • FIG. 4 is a flowchart illustrating a third example of the operation of the control device for the rotating electric machine according to the first embodiment.
  • step S21 control device 5 determines whether or not it is necessary to update correction phase ⁇ . If it is determined in step S21 that updating of the correction phase ⁇ is unnecessary, the control device 5 corrects the angle error without updating the correction phase ⁇ , and performs control based on the drive command generation unit 6. If it is determined in step S21 that the correction phase ⁇ needs to be updated, the control device 5 performs the operation of step S22. In step S22, the control device 5 determines whether or not the current driving condition matches the driving condition corresponding to the stored information.
  • step S23 the control device 5 changes the current driving condition to the stored driving condition. Thereafter, the control device 5 performs the operation of Step S24. If the current driving condition and the driving condition corresponding to the stored information match in step S22, the control device 5 performs the operation of step S24 without performing the operation of step S23.
  • step S24 the control device 5 drives the rotating electric machine 1 and performs a frequency analysis. Thereafter, the control device 5 performs the operation of step S25.
  • step S25 the control device 5 stores information on the phase analysis value ⁇ Bx as the frequency analysis result. Thereafter, the control device 5 performs the operation of step S26.
  • step S26 the control device 5 estimates by the angle error estimator 11 based on the difference between the newly calculated phase analysis value ⁇ Bx and the phase analysis value ⁇ Bx0 stored before the power is turned off. The correction phase ⁇ of the angle error is calculated. After that, the control device 5 corrects the angle error based on the equation (6) using the newly calculated correction phase ⁇ , and performs control based on the drive command generation unit.
  • the control device 5 when the control device 5 is turned on after the power is turned off, the control device 5 corresponds to the calculated phase analysis value and the information stored before the power is turned off.
  • the correction phase of the angle error of the resolver is calculated based on the difference from the phase analysis value. Therefore, even when the power is turned on after the power is turned off, the angle error of the resolver can be easily corrected.
  • the phase of the electrical angle of the resolver and the phase of the angular error do not correspond one-to-one in relation to the order of the slot, and when the power is turned off and then turned on, the reference angle becomes unclear. Even in this case, it is possible to specify an area where the resolver is arranged among a plurality of areas divided by the multiple of the axis. As a result, it is not necessary to repeat the estimation of the angle error of the resolver.
  • the correction phase calculation unit 14 may be provided with a discretizer.
  • the discretizer may calculate the angle error correction phase with a width corresponding to a value obtained by dividing 360 degrees by the axis multiple. In this case, even when the power is turned on after the power is turned off, the angle error of the resolver can be easily and accurately corrected.
  • the control device 5 may be applied to a position control system using a ball screw. At this time, the transfer function until the frequency analysis of the current is performed differs depending on the position of the table. Even in this case, the angle error of the resolver can be easily and accurately corrected.
  • the drive command generating unit 6 drives the rotating electric machine 1 to drive under the driving conditions corresponding to the information stored in the storage unit 13 before the power is turned off.
  • a command may be generated.
  • the angular error of the resolver can be easily corrected immediately after the power is turned on.
  • FIG. 5 is a hardware configuration diagram of the control device for the rotating electric machine according to the first embodiment.
  • Each function of the control device 5 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 16a and at least one memory 16b.
  • the processing circuit includes at least one dedicated hardware 17.
  • each function of the control device 5 is realized by software, firmware, or a combination of software and firmware. At least one of software and firmware is described as a program. At least one of software and firmware is stored in at least one memory 16b.
  • the at least one processor 16a realizes each function of the control device 5 by reading and executing a program stored in at least one memory 16b.
  • the at least one processor 16a is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a DSP.
  • the at least one memory 16b is a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, an EEPROM, or the like, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, and the like.
  • a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, an EEPROM, or the like, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, and the like.
  • the processing circuit comprises at least one dedicated hardware 17, the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor 16a, a parallel programmed processor 16a, an ASIC, an FPGA, or a combination thereof. Is achieved.
  • each function of the control device 5 is realized by a processing circuit.
  • each function of the control device 5 is realized by a processing circuit collectively.
  • a part may be realized by dedicated hardware 17, and the other part may be realized by software or firmware.
  • the functions of the frequency analysis unit 10 are realized by a processing circuit as dedicated hardware 17, and the functions other than the functions of the frequency analysis unit 10 are stored in at least one processor 16a in at least one memory 16b. May be implemented by reading out and executing.
  • the processing circuit realizes each function of the control device 5 by hardware, software, firmware, or a combination thereof.
  • FIG. FIG. 6 is a configuration diagram of a system to which the control device for a rotating electric machine according to the second embodiment is applied.
  • the same or corresponding parts as those of the first embodiment are denoted by the same reference numerals. The description of this part is omitted.
  • the control unit 5 the speed measurement omega r of the rotary electric machine 1 on the basis of the result of the frequency analysis, and calculates the angular error correction phase of the resolver. Therefore, even when the power is turned on after the power is turned off, the angle error of the resolver can be easily corrected.
  • control device for a rotating electric machine can be used for a system for correcting an angular error of a resolver.

Abstract

電源が遮断された後に投入された場合でも、レゾルバの角度誤差を容易に補正することができる回転電機の制御装置を提供する。回転電機の制御装置は、回転電機の制御に用いる信号を周波数解析し、予め設定された成分の振幅解析値と位相解析値とを演算する周波数解析部と、前記周波数解析部により演算された振幅解析値と位相解析値とに基づいて前記回転電機のレゾルバの角度誤差を推定する角度誤差推定部と、前記角度誤差推定部により推定された角度誤差に基づいて前記レゾルバの検出位置を補正する検出位置補正部と、前記角度誤差推定部が前記レゾルバの角度誤差を推定した際の位相解析値を記憶する記憶部と、補正位相の更新が必要であると判定された場合に、前記周波数解析部により演算された位相解析値と、前記記憶部により記憶された情報に対応した位相解析値との差分に基づいて、前記角度誤差推定部により推定される角度誤差の補正位相を演算する補正位相演算部と、を備えた。

Description

回転電機の制御装置
 この発明は、回転電機の制御装置に関する。
 特許文献1は、回転電機の制御装置を開示する。当該制御装置によれば、レゾルバの角度誤差を補正し得る。
国際公開第2015/029098号
 しかしながら、特許文献1に記載の回転電機において、補正対象となる角度誤差の次数によっては、角度誤差の位相がレゾルバの検出するレゾルバ電気角と1対1に対応していない場合がある。すなわち、レゾルバ電気角が得られても、Nを軸倍角、nを0からN-1の整数として、機械角では、360°×n/Nだけずれてしまう恐れがある。この場合、電源が遮断された後に投入されると、レゾルバの角度誤差の補正がずれることがある。
 この発明は、上述の課題を解決するためになされた。この発明の目的は、電源が遮断された後に投入された場合でも、レゾルバの角度誤差を容易に補正することができる回転電機の制御装置を提供することである。
 この発明に係る回転電機の制御装置は、回転電機の制御に用いる信号を周波数解析し、予め設定された成分の振幅解析値と位相解析値とを演算する周波数解析部と、前記周波数解析部により演算された振幅解析値と位相解析値とに基づいて前記回転電機のレゾルバの角度誤差を推定する角度誤差推定部と、前記角度誤差推定部により推定された角度誤差に基づいて前記レゾルバの検出位置を補正する検出位置補正部と、前記角度誤差推定部が前記レゾルバの角度誤差を推定した際の位相解析値を記憶する記憶部と、補正位相の更新が必要であると判定された場合に、前記周波数解析部により演算された位相解析値と、前記記憶部により記憶された情報に対応した位相解析値との差分に基づいて、前記角度誤差推定部により推定される角度誤差の補正位相を演算する補正位相演算部と、を備えた。
 この発明によれば、制御装置は、補正位相の更新が必要であると判定された場合に、演算された位相解析値と電源が遮断される前に記憶された情報に対応した位相解析値との差分に基づいて、レゾルバの角度誤差の補正位相を演算する。このため、電源が遮断された後に投入された場合でも、レゾルバの角度誤差を容易に補正することができる。
実施の形態1における回転電機の制御装置が適用されるシステムの構成図である。 実施の形態1における回転電機の制御装置の動作の第1例を説明するためのフローチャートである。 実施の形態1における回転電機の制御装置の動作の第2例を説明するためのフローチャートである。 実施の形態1における回転電機の制御装置の動作の第3例を説明するためのフローチャートである。 実施の形態1における回転電機の制御装置のハードウェア構成図である。 実施の形態2における回転電機の制御装置が適用されるシステムの構成図である。
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略する。
実施の形態1.
 図1は実施の形態1における回転電機の制御装置が適用されるシステムの構成図である。
 図1において、回転電機1は、供給された電力により回転し得るように設けられる。インバータ2は、電圧指令値Vrefに基づいて回転電機1に電力を供給し得るように設けられる。位置検出器3は、回転電機1のレゾルバの電気角実測値θを検出し得るように設けられる。電流センサ4は、インバータ2から回転電機1に流れる電流実測値ifbを検出し得るように設けられる。
 制御装置5は、駆動指令生成部6と速度演算部7と速度制御部8と電流制御部9とを備える。
 駆動指令生成部6は、回転電機1を駆動するための駆動指令を生成する。例えば、駆動指令生成部6は、トルク指令を生成する。例えば、駆動指令生成部6は、速度指令値ωrefを生成する。駆動指令生成部6において、速度制御系の外側に位置制御系があってもよい。
 速度演算部7は、位置検出器3により検出されたレゾルバの電気角実測値θの変化に基づいて回転電機1の速度実測値ωを演算する。速度制御部8は、駆動指令生成部6からの速度指令値ωrefと速度演算部7からの速度実測値ωとの差分に基づいて電流指令値irefを演算する。電流制御部9は、速度制御部8からの電流指令値irefと電流センサ4からの電流実測値ifbとの差分に基づいて電圧指令値Vrefを演算する。
 制御装置5は、周波数解析部10と角度誤差推定部11と検出位置補正部12と記憶部13と補正位相演算部14と駆動条件判定部15を備える。
 周波数解析部10は、回転電機1の制御に用いる信号を周波数解析する。例えば、周波数解析部10は、電流センサ4により検出された電流実測値ifbを周波数解析する。この際、周波数解析結果は、以下の(1)式で表される。
Figure JPOXMLDOC01-appb-M000001
 ただし、Sは、周波数解析する信号のX次数の成分である。Bは、Sの振幅解析値である。φBx0は、Sxの位相解析値である。
 角度誤差推定部11は、周波数解析部10により演算された振幅解析値Bと位相解析値φBx0との少なくともどちらか一方に基づいてレゾルバの角度誤差を推定する。例えば、角度誤差推定部11は、レゾルバの角度誤差の推定値として振幅推定値Aと位相推定値φAx0とを演算する。この際、推定方法は、適宜設定される。例えば、電流実測値ifbのX次の振幅解析値を評価関数として、評価関数を最小とするように補正値を変えて、レゾルバの角度誤差が推定される。
 検出位置補正部12は、角度誤差推定部11により推定された角度誤差に基づいてレゾルバの検出位置を補正する。例えば、検出位置補正部12は、角度誤差推定部11により演算された振幅推定値Aと位相推定値φAx0と位置検出器3により検出されたレゾルバの電気角実測値θとに基づいてレゾルバの検出位置を補正する。具体的には、レゾルバの軸倍角数がNである場合、レゾルバの検出位置の補正結果は、以下の(2)式で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、θestは、レゾルバの電気角実測値θが0である場合を機械角θの基準として座標が設定された際の角度誤差推定値である。具体的には、角度誤差推定値θestは、以下の(3)式で表される。
Figure JPOXMLDOC01-appb-M000003
 ただし、本説明においては、レゾルバの電気角実測値θは、機械一回転における積算角度として表しており、0以上かつ360度と軸倍角Nとの積よりも小さいとする。
 例えば、記憶部13は、不揮発性メモリである。記憶部13は、角度誤差推定部11がレゾルバの角度誤差の振幅推定値Aの情報と位相推定値φAx0の情報とを記憶する。記憶部13は、角度誤差推定部11がレゾルバの角度誤差を推定した際の電流実測値ifbの周波数解析結果である振幅解析値Bの情報と位相解析値φBx0の情報と、そのときの駆動条件の情報とを記憶する。例えば、回転電機1がエレベーターの巻上機に用いられる場合、記憶部13は、振幅解析値Bの情報と位相解析値φBx0の情報とが得られた際の角度誤差推定値の情報と、走行方向の情報と、走行開始時のかごの位置の情報と、かごの負荷の情報と、かごの走行速度の情報と、を記憶する。なお、振幅解析値Bの情報と位相解析値φBx0の情報とが得られた際の角度誤差推定値は、角度誤差の振幅推定値Aと位相推定値φAx0とで表される角度誤差推定値と必ずしも一致していなくても良い。
 例えば、記憶部13は、振幅解析値Bの情報と位相解析値φBx0の情報とが得られた際の角度誤差推定値の情報として角度誤差推定値がゼロであることを示す情報を記憶する。例えば、記憶部13は、走行方向の情報として上昇方向の運転であることを示す情報を記憶する。例えば、記憶部13は、走行開始時のかごの位置の情報として、かごの停止階が最下階であることを示す情報を記憶する。例えば、記憶部13は、かごの負荷の情報として荷重検出器により検出された値を示す情報を記憶する。例えば、記憶部13は、かごの走行速度の情報として回転電機1の回転速度V_0(rad/s)の値を示す情報を記憶する。
 記憶部13は、検出位置補正部12に向けて角度誤差推定部11がレゾルバの角度誤差の振幅推定値Aの情報と位相推定値φAx0の情報とを出力する。
 補正位相演算部14は、補正位相Δφの更新が必要な場合に、補正位相Δφの演算を行う。ここで言う補正位相Δφの更新が必要な場合とは、角度誤差推定部の推定完了後に、電源の遮断等によって機械角の基準がずれる可能性のある場合を言い、補正位相Δφの更新が不要な場合とは、角度誤差推定部の推定完了後に電源が遮断されていない、又は、補正位相Δφが既に更新された場合を言う。補正位相演算部14は、補正位相Δφの更新が必要な場合にまず周波数解析部10で回転電機1の制御に用いる信号を新たに周波数解析する。そのX次の信号の周波数結果は(4)式で表される。但し、S´は、周波数解析する信号のX次数の成分である。B´は、S´の振幅解析値である。φBxは、S´の位相解析値である。
Figure JPOXMLDOC01-appb-M000004
 補正位相演算部14は、新たに得られた位相解析値φBxと電源が遮断される前に記憶部13により記憶された位相解析値φBx0との差分に基づいて、角度誤差推定部11により推定される角度誤差の補正位相Δφを演算する。具体的には、補正位相Δφは、次の(5)式で表される。
Figure JPOXMLDOC01-appb-M000005
 その結果、検出位置補正部12の出力は、以下の(6)式で表される値θ´に補正される。
Figure JPOXMLDOC01-appb-M000006
 駆動条件判定部15は、補正位相演算部14を動作させるか否かを判定する。具体的には、駆動条件判定部15は、現時点の駆動条件が記憶部13に記憶された情報に対応した駆動条件と一致しているか否かを判定する。駆動条件判定部15は、現時点の駆動条件が記憶部13に記憶された情報に対応した駆動条件と一致している場合に条件判定トリガの情報を補正位相演算部14に出力することにより補正位相演算部14を動作させる。
 次に、図2を用いて、制御装置5の動作の第1例を説明する。
 図2は実施の形態1における回転電機の制御装置の動作の第1例を説明するためのフローチャートである。
 ステップS1では、制御装置5は、補正位相Δφの更新の要否を判定する。ステップS1で補正位相Δφの更新が不要であると判定された場合、制御装置5は、補正位相Δφを更新せず、振幅推定値Aと位相推定値φAx0に基づき角度誤差を補正し、駆動指令生成部6に基づいた制御を行う。ステップS1で補正位相Δφの更新が必要であると判定された場合、制御装置5は、ステップS2の動作を行う。
 ステップS2では、制御装置5は、回転電機1を駆動し、周波数解析を実施する。その後、制御装置5は、ステップS3の動作を行う。ステップS3では、制御装置5は、周波数解析結果の位相解析値φBxの情報を記憶する。その後、制御装置5は、ステップS4の動作を行う。ステップS4では、制御装置5は、新たに演算された位相解析値φBxと電源が遮断される前に記憶された位相解析値φBx0との差分に基づいて、角度誤差推定部11により推定される角度誤差の補正位相Δφを演算する。その後、制御装置5は、新たに演算された補正位相Δφを用いて(6)式に基づき、角度誤差を補正し、駆動指令生成部6に基づいた制御を行う。
 次に、図3を用いて、制御装置5の動作の第2例を説明する。
 図3は実施の形態1における回転電機の制御装置の動作の第2例を説明するためのフローチャートである。
 ステップS11では、制御装置5は、補正位相Δφの更新の要否を判定する。ステップS11で補正位相Δφの更新が不要であると判定された場合、制御装置5は、補正位相Δφを更新せず、振幅推定値Aと位相推定値φAx0に基づき角度誤差を補正し、駆動指令生成部6に基づいた制御を行う。ステップS11で補正位相Δφの更新が必要であると判定された場合、制御装置5は、ステップS12の動作を行う。
 ステップS12では、制御装置5は、現時点の駆動条件と記憶された情報に対応した駆動条件とが一致しているか否かを判定する。ステップS12で現時点の駆動条件と記憶された情報に対応した駆動条件とが一致していない場合、制御装置5は、ステップS12の動作を継続する。ステップS12で現時点の駆動条件と記憶された情報に対応した駆動条件とが一致している場合、制御装置5は、ステップS13の動作を行う。
 ステップS13では、制御装置5は、回転電機1を駆動し、周波数解析を実施する。その後、制御装置5は、ステップS14の動作を行う。ステップS14では、制御装置5は、周波数解析結果の位相解析値φBxの情報を記憶する。その後、制御装置5は、ステップS15の動作を行う。ステップS15では、制御装置5は、新たに演算された位相解析値φBxと電源が遮断される前に記憶された位相解析値φBx0との差分に基づいて、角度誤差推定部11により推定される角度誤差の補正位相Δφを演算する。その後、制御装置5は、新たに演算された補正位相Δφを用いて(6)式に基づき、角度誤差を補正し、駆動指令生成部6に基づいた制御を行う。
 次に、図4を用いて、制御装置5の動作の第3例を説明する。
 図4は実施の形態1における回転電機の制御装置の動作の第3例を説明するためのフローチャートである。
 ステップS21では、制御装置5は、補正位相Δφの更新の要否を判定する。ステップS21で補正位相Δφの更新が不要であると判定された場合、制御装置5は、補正位相Δφを更新せず、角度誤差を補正し、駆動指令生成部6に基づいた制御を行う。ステップS21で補正位相Δφの更新が必要であると判定された場合、制御装置5は、ステップS22の動作を行う。ステップS22では、制御装置5は、現時点の駆動条件と記憶された情報に対応した駆動条件とが一致しているか否かを判定する。
 ステップS22で現時点の駆動条件と記憶された情報に対応した駆動条件とが一致していない場合、制御装置5は、ステップS23の動作を行う。ステップS23では、制御装置5は、現時点の駆動条件を記憶された駆動条件に変更する。その後、制御装置5は、ステップS24の動作を行う。ステップS22で現時点の駆動条件と記憶された情報に対応した駆動条件とが一致している場合、制御装置5は、ステップS23の動作を行わずにステップS24の動作を行う。
 ステップS24では、制御装置5は、回転電機1を駆動し、周波数解析を実施する。その後、制御装置5は、ステップS25の動作を行う。ステップS25では、制御装置5は、周波数解析結果の位相解析値φBxの情報を記憶する。その後、制御装置5は、ステップS26の動作を行う。ステップS26では、制御装置5は、新たに演算された位相解析値φBxと電源が遮断される前に記憶された位相解析値φBx0との差分に基づいて、角度誤差推定部11により推定される角度誤差の補正位相Δφを演算する。その後、制御装置5は、新たに演算された補正位相Δφを用いて(6)式に基づき、角度誤差を補正し、駆動指令生成部に基づいた制御を行う。
 以上で説明した実施の形態1によれば、制御装置5は、電源が遮断された後に投入された場合に、演算された位相解析値と電源が遮断される前に記憶された情報に対応した位相解析値との差分に基づいて、レゾルバの角度誤差の補正位相を演算する。このため、電源が遮断された後に投入された場合でも、レゾルバの角度誤差を容易に補正することができる。
 例えば、スロットの次数との関係でレゾルバの電気角と角度誤差の位相が1対1に対応せず、電源が遮断された後に投入されることにより、基準となる角度が不明瞭となる。この場合でも、軸倍角で区切られた複数の領域のうちでレゾルバが配置されている領域を特定することできる。その結果、レゾルバの角度誤差の推定を繰り返す必要がない。
 この際、レゾルバの電気角の積算情報を常に更新し続ける必要はない。このため、記憶部13の書き換え動作を減らすことができる。その結果、記憶部13の寿命を延ばすことができる。
 なお、電源遮断による機械角のずれは、離散的にしか発生しない。また、周波数解析部10の出力にも検出誤差が含まれ得る。このため、補正位相演算部14に離散化器を設けもよい。この際、離散化器において、360度を軸倍角で除して得られる値に対応した幅で角度誤差の補正位相を演算すればよい。この場合、電源が遮断された後に投入された場合でも、レゾルバの角度誤差を容易かつ正確に補正することができる。
 また、レゾルバの角度誤差の補正は、駆動条件を揃えて行われる。このため、電流の周波数解析を行うまでの伝達関数がエレベーターのかごの位置により異なる場合でも、レゾルバの角度誤差を容易かつ正確に補正することができる。
 なお、ボールねじを用いた位置制御系に制御装置5を適用してもよい。この際、電流の周波数解析を行うまでの伝達関数はテーブルの位置により異なる。この場合でも、レゾルバの角度誤差を容易かつ正確に補正することができる。
 また、電源が遮断された後に投入された場合、駆動指令生成部6により、電源が遮断される前に記憶部13により記憶された情報に対応した駆動条件において回転電機1が駆動するように駆動指令を生成してもよい。この場合、電源が投入された直後に、レゾルバの角度誤差を容易に補正することができる。
 次に、図5を用いて、制御装置5の例を説明する。
 図5は実施の形態1における回転電機の制御装置のハードウェア構成図である。
 制御装置5の各機能は、処理回路により実現し得る。例えば、処理回路は、少なくとも1つのプロセッサ16aと少なくとも1つのメモリ16bとを備える。例えば、処理回路は、少なくとも1つの専用のハードウェア17を備える。
 処理回路が少なくとも1つのプロセッサ16aと少なくとも1つのメモリ16bとを備える場合、制御装置5の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ16bに格納される。少なくとも1つのプロセッサ16aは、少なくとも1つのメモリ16bに記憶されたプログラムを読み出して実行することにより、制御装置5の各機能を実現する。少なくとも1つのプロセッサ16aは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。例えば、少なくとも1つのメモリ16bは、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等である。
 処理回路が少なくとも1つの専用のハードウェア17を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ16a、並列プログラム化したプロセッサ16a、ASIC、FPGA、またはこれらの組み合わせで実現される。例えば、制御装置5の各機能は、それぞれ処理回路で実現される。例えば、制御装置5の各機能は、まとめて処理回路で実現される。
 制御装置5の各機能について、一部を専用のハードウェア17で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。例えば、周波数解析部10の機能については専用のハードウェア17としての処理回路で実現し、周波数解析部10の機能以外の機能については少なくとも1つのプロセッサ16aが少なくとも1つのメモリ16bに格納されたプログラムを読み出して実行することにより実現してもよい。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせで制御装置5の各機能を実現する。
実施の形態2.
 図6は実施の形態2における回転電機の制御装置が適用されるシステムの構成図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 実施の形態2の制御装置5において、周波数解析部10は、回転電機1の速度実測値ωを周波数解析する。
 以上で説明した実施の形態2によれば、制御装置5は、回転電機1の速度実測値ωを周波数解析の結果に基づいて、レゾルバの角度誤差の補正位相を演算する。このため、電源が遮断された後に投入された場合でも、レゾルバの角度誤差を容易に補正することができる。
 以上のように、この発明に係る回転電機の制御装置は、レゾルバの角度誤差を補正するシステムに利用できる。
 1 回転電機、 2 インバータ、 3 位置検出器、4 電流センサ、5 制御装置、 6 駆動指令生成部、 7 速度演算部、 8 速度制御部、 9 電流制御部、 10 周波数解析部、 11 角度誤差推定部、 12 検出位置補正部、 13 記憶部、 14 補正位相演算部、 15 駆動条件判定部、 16a プロセッサ、 16b メモリ、 17 ハードウェア

Claims (6)

  1.  回転電機の制御に用いる信号を周波数解析し、予め設定された成分の振幅解析値と位相解析値とを演算する周波数解析部と、
     前記周波数解析部により演算された振幅解析値と位相解析値とに基づいて前記回転電機のレゾルバの角度誤差を推定する角度誤差推定部と、
     前記角度誤差推定部により推定された角度誤差に基づいて前記レゾルバの検出位置を補正する検出位置補正部と、
     前記角度誤差推定部が前記レゾルバの角度誤差を推定した際の位相解析値を記憶する記憶部と、
     補正位相の更新が必要であると判定された場合に、前記周波数解析部により演算された位相解析値と、前記記憶部により記憶された情報に対応した位相解析値との差分に基づいて、前記角度誤差推定部により推定される角度誤差の補正位相を演算する補正位相演算部と、
    を備えた回転電機の制御装置。
  2.  前記補正位相演算部は、前記周波数解析部により演算された位相解析値と電源が遮断される前に前記記憶部により記憶された情報に対応した位相解析値との差分に基づいて360度を軸倍角で除して得られる値に対応した幅で前記角度誤差推定部により推定される角度誤差の補正位相を演算する請求項1に記載の回転電機の制御装置。
  3.  前記記憶部は、前記角度誤差推定部が前記レゾルバの角度誤差を推定した際の前記回転電機の駆動条件の情報を記憶し、
     前記補正位相演算部は、補正位相の更新が必要であると判定された場合に、前記記憶部により記憶された情報に対応した駆動条件において前記回転電機が駆動した際に、前記周波数解析部に得られた位相解析値と電源が遮断される前に前記記憶部により記憶された位相解析値との差分に基づいて、前記角度誤差推定部により推定される角度誤差の補正位相を演算する請求項1または請求項2に記載の回転電機の制御装置。
  4.  補正位相の更新が必要であると判定された場合に、前記記憶部により記憶された情報に対応した駆動条件において前記回転電機が駆動するように駆動指令を生成する駆動指令生成部、
    を備えた請求項3に記載の回転電機の制御装置。
  5.  前記周波数解析部は、前記回転電機に流れる電流の信号を前記回転電機の制御に用いる信号として周波数解析する請求項1から請求項4のいずれか一項に記載の回転電機の制御装置。
  6.  前記周波数解析部は、前記回転電機の速度の信号を前記回転電機の制御に用いる信号として周波数解析する請求項1から請求項4のいずれか一項に記載の回転電機の制御装置。
PCT/JP2018/028466 2018-07-30 2018-07-30 回転電機の制御装置 WO2020026304A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880095929.3A CN112470393B (zh) 2018-07-30 2018-07-30 旋转电机的控制装置
PCT/JP2018/028466 WO2020026304A1 (ja) 2018-07-30 2018-07-30 回転電機の制御装置
DE112018007870.1T DE112018007870T5 (de) 2018-07-30 2018-07-30 Steuervorrichtung einer rotierenden elektrischen Maschine
JP2020533904A JP6989021B2 (ja) 2018-07-30 2018-07-30 回転電機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028466 WO2020026304A1 (ja) 2018-07-30 2018-07-30 回転電機の制御装置

Publications (1)

Publication Number Publication Date
WO2020026304A1 true WO2020026304A1 (ja) 2020-02-06

Family

ID=69232406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028466 WO2020026304A1 (ja) 2018-07-30 2018-07-30 回転電機の制御装置

Country Status (4)

Country Link
JP (1) JP6989021B2 (ja)
CN (1) CN112470393B (ja)
DE (1) DE112018007870T5 (ja)
WO (1) WO2020026304A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325481A (ja) * 2001-04-26 2002-11-08 Honda Motor Co Ltd モータ制御装置
JP2007166735A (ja) * 2005-12-12 2007-06-28 Hitachi Ltd 位置検出装置及びこれを用いた同期モータ駆動装置
WO2015029098A1 (ja) * 2013-08-26 2015-03-05 三菱電機株式会社 位置検出器の角度誤差補正装置および角度誤差補正方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125100A (ja) * 2009-12-09 2011-06-23 Toyo Electric Mfg Co Ltd 永久磁石同期電動機の制御装置
WO2016117029A1 (ja) * 2015-01-20 2016-07-28 三菱電機株式会社 位置検出器の角度誤差補正装置および角度誤差補正方法
CN107078668B (zh) * 2015-04-03 2019-02-22 三菱电机株式会社 位置检测器的角度误差校正装置、角度误差校正方法、电梯控制装置及电梯系统
JP6165352B2 (ja) * 2015-04-30 2017-07-19 三菱電機株式会社 エレベーターの制御装置、エレベーター装置、エレベーター用電動機の回転検出部の回転角度誤差を求める方法
JP7435269B2 (ja) * 2020-06-01 2024-02-21 日本精工株式会社 回転角度演算装置の補正方法、回転角度演算装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325481A (ja) * 2001-04-26 2002-11-08 Honda Motor Co Ltd モータ制御装置
JP2007166735A (ja) * 2005-12-12 2007-06-28 Hitachi Ltd 位置検出装置及びこれを用いた同期モータ駆動装置
WO2015029098A1 (ja) * 2013-08-26 2015-03-05 三菱電機株式会社 位置検出器の角度誤差補正装置および角度誤差補正方法

Also Published As

Publication number Publication date
CN112470393B (zh) 2024-01-05
JP6989021B2 (ja) 2022-01-05
DE112018007870T5 (de) 2021-06-17
CN112470393A (zh) 2021-03-09
JPWO2020026304A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
JP5333863B2 (ja) 回転角検出装置
US9329062B2 (en) Method for calibrating a rotary encoder
KR101655537B1 (ko) 홀센서를 이용한 모터의 위치 검출 및 속도 계산 방법
JP5716954B2 (ja) 回転角検出装置
JP5725377B2 (ja) 回転角検出装置
JP5674053B2 (ja) 回転角検出装置
JP2012189377A (ja) 回転角検出装置
JP2010096708A (ja) モータの回転角検出装置
JP6669318B2 (ja) 電動パワーステアリング装置、及び電動パワーステアリング装置用モータの回転角検出方法
JP7151872B2 (ja) 永久磁石同期機の制御装置
WO2020026304A1 (ja) 回転電機の制御装置
JP4766530B2 (ja) 磁束角補正機能付きモータ制御装置
JP3675192B2 (ja) モータ制御装置および電気車用制御装置およびハイブリッド車用制御装置
JP2011217584A (ja) モータ駆動装置及びその制御方法
KR20190061714A (ko) 홀 센서를 이용한 모터 위치 계산 방법
WO2018154736A1 (ja) 電気車の電力変換装置
JP2013138559A (ja) 同期モータに取り付けられた角度センサを較正するための方法及び装置
JP2011117769A (ja) 回転角検出装置、モータ制御装置、および電動パワーステアリング装置
JP5141955B2 (ja) モータ制御装置
US20240106361A1 (en) Drive system and control method
JP2004180431A (ja) ステッピングモータ駆動装置
JP6033422B2 (ja) 電子転流式電気機械を有する位置検出システムのアクチュエータの位置を妥当性検査するための方法および装置
JP2022152603A (ja) 回転電機の制御装置
JP6510475B2 (ja) 電子制御装置及び方法
JP2014230411A (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533904

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18928751

Country of ref document: EP

Kind code of ref document: A1