WO2020026058A1 - 蓄電システムおよび蓄電システムの動作方法 - Google Patents

蓄電システムおよび蓄電システムの動作方法 Download PDF

Info

Publication number
WO2020026058A1
WO2020026058A1 PCT/IB2019/056089 IB2019056089W WO2020026058A1 WO 2020026058 A1 WO2020026058 A1 WO 2020026058A1 IB 2019056089 W IB2019056089 W IB 2019056089W WO 2020026058 A1 WO2020026058 A1 WO 2020026058A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
positive electrode
power storage
storage system
active material
Prior art date
Application number
PCT/IB2019/056089
Other languages
English (en)
French (fr)
Inventor
三上真弓
栗城和貴
田島亮太
落合輝明
成田和平
高橋実
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2020026058A1 publication Critical patent/WO2020026058A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present invention relates to a storage battery and a power storage system using the storage battery.
  • One embodiment of the present invention relates to a vehicle using a storage battery.
  • One embodiment of the present invention relates to an electronic device using a storage battery.
  • one embodiment of the present invention relates to a semiconductor device.
  • a semiconductor device in this specification and the like refers to any device that can function by utilizing semiconductor characteristics.
  • a display device, a light-emitting device, a storage device, an electro-optical device, a power storage device, a semiconductor circuit, and an electronic device sometimes include a semiconductor device.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, a machine, a manufacturer, or a composition (composition of matter).
  • the storage battery is mounted on various mobile devices such as electronic devices such as information terminals, vehicles, and the like.
  • the operating conditions of these devices are diverse, and the load on the storage battery is also diverse.
  • demands for performance enhancement such as high energy density and long life of storage batteries are increasing year by year.
  • Patent Literature 1 discloses an olivine structure using iron and a metal atom having a higher oxidation-reduction potential than iron.
  • Patent Literature 2 describes calculation of a charge depth in a secondary battery having a positive electrode including an olivine-based positive electrode active material.
  • One object of one embodiment of the present invention is to provide a power storage system having excellent characteristics. Another object of one embodiment of the present invention is to provide a power storage system with high safety. Another object of one embodiment of the present invention is to provide a power storage system with low deterioration.
  • Another object of one embodiment of the present invention is to determine a state of a storage battery. Another object of one embodiment of the present invention is to predict the performance of a storage battery. Another object of one embodiment of the present invention is to provide a storage battery having excellent characteristics. Another object of one embodiment of the present invention is to provide a storage battery with high safety. Another object of one embodiment of the present invention is to provide a storage battery with low deterioration. Another object of one embodiment of the present invention is to provide an electronic device provided with a power storage system having excellent characteristics. Another object of one embodiment of the present invention is to provide a vehicle provided with a power storage system having excellent characteristics. Another object of one embodiment of the present invention is to provide a novel semiconductor device.
  • One embodiment of the present invention includes a secondary battery and a first circuit
  • the secondary battery includes a polyanion-based positive electrode active material
  • the positive electrode active material is selected from iron, manganese, nickel, and cobalt.
  • a potential curve at the time of discharge of the secondary battery has two or more flat portions
  • a first circuit has a function of detecting a voltage of the secondary battery
  • a first circuit Has a function of charging a secondary battery, a first step in which the secondary battery is discharged, a second step in which a decrease in the capacity of the secondary battery is detected, and a charge of the secondary battery.
  • the method includes a third step to be started and a fourth step to end charging of the secondary battery, and a decrease in capacity in the second step is detected by detecting an inflection point of the potential curve,
  • the inflection point is the power storage system located between the first flat portion and the second flat portion of the potential curve.
  • the potential curve is preferably an open circuit potential curve.
  • the positive electrode active material preferably has an olivine-type crystal structure.
  • the discharge rate in the first step is preferably 0.7 C or more.
  • the positive electrode active material has iron and manganese, and the number of manganese atoms in the positive electrode active material is 0.5 when the sum of the number of iron atoms and the number of manganese atoms is 1. It is preferable to have a region of not less than 0.9 and not more than 0.9.
  • one embodiment of the present invention includes a secondary battery and a first circuit, the secondary battery including a first positive electrode active material and a second positive electrode active material,
  • the first positive electrode active material has iron
  • the second positive electrode active material has an element M
  • the element M is one or more elements selected from manganese, nickel, manganese, nickel, and cobalt.
  • the potential curve at the time of discharging the battery has two or more flat portions
  • the first circuit has a function of detecting the voltage of the secondary battery
  • the first circuit has a function of charging the secondary battery.
  • the decrease in the capacity in the second step is determined by detecting an inflection point of the potential curve. Is detected, the inflection point is a power storage system located between the first flat portion and a second flat portion having the potential curve.
  • the potential curve is preferably an open circuit potential curve.
  • the first positive electrode active material preferably has an olivine-type crystal structure.
  • the discharge rate in the first step is preferably 0.7 C or more.
  • the second positive electrode active material it is preferable that the second positive electrode active material have a region in which the number of atoms of the element M is 0.5 or more and 0.9 or less of the number of atoms of iron in the first positive electrode active material. .
  • a power storage system having excellent characteristics can be provided. Further, according to one embodiment of the present invention, a power storage system with high security can be provided. Further, according to one embodiment of the present invention, a power storage system with low deterioration can be provided.
  • the state of a storage battery can be determined. According to one embodiment of the present invention, performance of a storage battery can be predicted. According to one embodiment of the present invention, a storage battery having excellent characteristics can be provided. According to one embodiment of the present invention, a storage battery with high safety can be provided. Further, according to one embodiment of the present invention, a storage battery with low deterioration can be provided. Further, according to one embodiment of the present invention, an electronic device provided with a power storage system having excellent characteristics can be provided. According to one embodiment of the present invention, a vehicle provided with a power storage system having excellent characteristics can be provided. Further, according to one embodiment of the present invention, a novel semiconductor device can be provided.
  • FIG. 1 illustrates an example of a power storage system.
  • FIG. 2A is an example of a discharge curve and a charge curve.
  • FIG. 2B is an example of a discharge curve and a charge curve.
  • FIG. 3 is an example of a discharge curve.
  • FIG. 4 is a flowchart showing the operation of the power storage system.
  • FIG. 5 is a flowchart showing the operation of the power storage system.
  • FIG. 6A illustrates an example of a power storage system.
  • FIG. 6B illustrates an example of a power storage system.
  • FIG. 7A is a circuit diagram illustrating a method for charging a secondary battery.
  • FIG. 7B is a circuit diagram illustrating a method for charging a secondary battery.
  • FIG. 7C is a diagram illustrating a method for charging a secondary battery.
  • FIG. 7A is a circuit diagram illustrating a method for charging a secondary battery.
  • FIG. 8A is a circuit diagram illustrating a method for charging a secondary battery.
  • FIG. 8B is a circuit diagram illustrating a method for charging a secondary battery.
  • FIG. 8C is a circuit diagram illustrating a method for charging a secondary battery.
  • FIG. 8D is a diagram illustrating a method for charging a secondary battery.
  • FIG. 9 is a diagram illustrating a method of discharging a secondary battery.
  • FIG. 10A illustrates an example of a structure of a storage battery.
  • FIG. 10B illustrates an example of a structure using a plurality of storage batteries.
  • FIG. 10C illustrates an example of a structure using a plurality of storage batteries.
  • FIG. 11A illustrates an example of a structure using a storage battery.
  • FIG. 11B illustrates an example of a structure using a storage battery.
  • FIG. 11C illustrates an example of a structure using a storage battery.
  • FIG. 12A illustrates an example of a vehicle.
  • FIG. 12B illustrates an example of a vehicle.
  • FIG. 12C illustrates an example of a vehicle.
  • FIG. 13A illustrates an example of a vehicle.
  • FIG. 13B illustrates an example of an electronic device.
  • FIG. 14A illustrates an example of a vehicle.
  • FIG. 14B illustrates an example of the interior of a vehicle.
  • FIG. 14C illustrates an example of the interior of a vehicle.
  • FIG. 14D is an enlarged view of a display portion of the mobile phone.
  • FIG. 15A illustrates an example of an electronic device.
  • FIG. 15B illustrates an example of an electronic device.
  • FIG. 15B illustrates an example of an electronic device.
  • FIG. 15A illustrates an example of an electronic device.
  • FIG. 15B illustrates an
  • FIG. 15C is a block diagram illustrating an example of a system configuration.
  • FIG. 16 illustrates an application example of a power storage system.
  • FIG. 17A illustrates an example of an electronic device.
  • FIG. 17B illustrates an example of an electronic device.
  • FIG. 17C illustrates an example of a secondary battery and a control system.
  • FIG. 17D illustrates an example of an electronic device.
  • FIG. 17E illustrates an example of an electronic device.
  • FIG. 18A shows a discharge curve.
  • FIG. 18B is a first derivative of the discharge curve.
  • neural network refers to any model that imitates a neural network of an organism, determines the strength of connection between neurons by learning, and has problem solving ability.
  • a neural network has an input layer, a hidden layer (also called a hidden layer), and an output layer.
  • determining the connection strength (also referred to as a weight coefficient) between neurons from existing information may be referred to as “learning”.
  • the formation of a neural network using the connection strength obtained by learning and deriving a new conclusion therefrom may be referred to as “inference”.
  • a transistor including an oxide semiconductor or a metal oxide for a channel formation region is referred to as an oxide semiconductor transistor or an OS transistor.
  • the power storage system 120 illustrated in FIG. 1 includes a secondary battery 135 and a control circuit 182.
  • the power storage system 120 may include a thermistor 174, a fuse 176, a transistor 147, and a transistor 148.
  • the control circuit 182 is electrically connected to the positive and negative electrodes of the secondary battery 135.
  • the control circuit 182 has a function of measuring the voltage and current of the secondary battery 135.
  • control circuit 182 has a function of measuring an open circuit voltage (Open ⁇ Circuit ⁇ Voltage: OCV) of the secondary battery 135.
  • the OCV is obtained by, for example, stopping charging or discharging, measuring a voltage after a predetermined time has elapsed, and after a reaction of the battery has stabilized. Since the charging or discharging is stopped for a predetermined period of time until the reaction of the battery is stabilized, the OCV measurement may take a long time in some cases.
  • the predetermined time is, for example, 2 minutes or more and 5 hours or less, or 5 minutes or more and 2 hours or less.
  • the measurement may be performed with a shorter standby time after stopping charging or discharging (hereinafter referred to as a pause time).
  • a change in voltage may be measured by changing the current value of charging or discharging, and the OCV may be estimated.
  • control circuit 182 preferably has a coulomb counter CC.
  • the coulomb counter CC has a function of calculating the integrated amount of electricity using the time characteristic of the current of the secondary battery 135.
  • the control circuit 182 has a function of charging the secondary battery 135.
  • the control circuit 182 may include a neural network.
  • the power storage system 120 includes a protection circuit 137. It is preferable that the protection circuit 137 be electrically connected to the control circuit 182 and exchange signals with the control circuit 182. Note that the protection circuit 137 may be included in the control circuit 182.
  • the protection circuit 137 has a function of stopping the operation of the secondary battery 135 when the secondary battery 135 satisfies certain conditions. For example, when the current of the secondary battery 135 exceeds a certain value, the operation is stopped. For example, when the voltage of the secondary battery becomes equal to or more than a certain value or equal to or less than a certain value, the operation is stopped.
  • the protection circuit 137 may have a path for connecting to both poles of the secondary battery 135 and short-circuiting both poles when the operation of the secondary battery 135 is stopped.
  • a resistor or a capacitor may be provided in the path.
  • the power storage system 120 may include a transistor 147 and a transistor 148.
  • the transistor 147 and the transistor 148 function as switches for interrupting current, and operate when the protection circuit 137 determines to stop the secondary battery 135.
  • a MOSFET including a parasitic diode is illustrated as the transistor 147 and the transistor 148; however, an OS transistor may be used as the transistor 147 and the transistor 148. Details of the OS transistor will be described later.
  • the power storage system 120 may have a structure without any of the transistors 147 and 148.
  • the power storage system of one embodiment of the present invention has a function of detecting a slope of a cumulative electric quantity-voltage curve: QVC (also referred to as a capacity-voltage curve) of a secondary battery in discharging or charging the secondary battery.
  • QVC cumulative electric quantity-voltage curve
  • the QVC during charging may be referred to as a charging curve
  • the QVC during discharging may be referred to as a discharging curve.
  • the power storage system of one embodiment of the present invention has a function of measuring a change in the inclination and estimating an SOC (State of Charge) of the secondary battery by detecting, for example, an inflection point.
  • SOC State of Charge
  • OCV can also be used as the voltage of the integrated electricity-voltage curve.
  • the SOC is, for example, a value that indicates a full charge capacity (Full Charge Capacity) (FCC) as 100% and the capacity of the secondary battery as a percentage. SOC may be called a charging rate.
  • the FCC is, for example, the discharge capacity of a secondary battery when discharging after full charge. Full charge refers to, for example, charging being performed until charging is completed under charging conditions defined for the secondary battery.
  • the FCC is a value that changes depending on the charge end voltage (charge upper limit voltage), the charge end current, and the like. A value obtained by multiplying the FCC by the SOC may be referred to as a remaining capacity (RC) of the secondary battery.
  • RC remaining capacity
  • SOH State @ Of ⁇ Health: also referred to as soundness
  • the SOH is expressed as a value smaller than 100 as the secondary battery is degraded with the new state of the secondary battery as 100. For example, the SOC when the secondary battery is in a new state may be set to 100.
  • the QVC of the secondary battery included in the power storage system of one embodiment of the present invention preferably has two or more plateaus (flat portions). There is an inflection point Q between two or more plateaus of QVC.
  • FIGS. 2A and 2B show an example of QVC of a secondary battery.
  • 2A shows a discharge curve
  • FIG. 2B shows a charge curve.
  • a plateau Pd1, a plateau Pd2, and an inflection point Qd1 located between the plateaus Pd1 and Pd2 are observed.
  • the two plateaus observed in the discharge curve are due to, for example, a discharge potential corresponding to a reaction of two different metals included in the positive electrode active material, as described in an embodiment below.
  • the inflection point Qd1 is a point where, for example, the discharge of the metal corresponding to the plateau Pd1 is switched to the discharge of the metal corresponding to the plateau Pd2.
  • plateau Pc1 corresponds to a reaction relating to the same type of metal as the plateau Pd1
  • plateau Pc2 corresponds to a reaction relating to the same type of metal as the plateau Pd2.
  • the capacity from the start of discharge to the inflection point Qd1 is defined as a capacity Cd1
  • the capacity from the inflection point Qd1 to the end of discharge is defined as a capacity Cd2.
  • the SOC at the inflection point Qd1 can be calculated as 100- ⁇ Cd1 ⁇ FCC ⁇ 100 ⁇ [%]. That is, the SOC of the secondary battery can be estimated by observing the inflection point Qd1.
  • the inflection point Qd1 is caused, for example, by the physical properties of two different metals, it is considered that even if the secondary battery is deteriorated, the potential difference of a plurality of plateaus is essentially continuously observed.
  • the discharge capacity of the secondary battery may decrease. Even after the discharge capacity is reduced, it is preferable that the change in the ratio between the capacity Cd1 and the capacity Cd2 is small, for example, the difference between the reduction rates of the capacities is small.
  • the rate of decrease in the capacitance of each of the capacitors Cd1 and Cd2 may be different.
  • the SOH may be able to be estimated using the capacity with the smaller rate of decrease as a reference value.
  • a table is created based on the data and stored in the memory unit of the control circuit 182.
  • the information of the table may be stored.
  • the information in the table can be used.
  • FIG. 3 shows an example of a discharge curve having a plateau of 3.
  • the capacity from the start of discharge to the inflection point Qd1 is defined as the capacity Cd1
  • the capacity from the inflection point Qd1 to the inflection point Qd2 is defined as the capacity Cd2
  • the capacity from the inflection point Qd2 to the end of discharge is defined as the capacity Cd3. I do.
  • the SOC at the inflection point Qd1 can be calculated as 100 ⁇ ⁇ Cd1 ⁇ FCC ⁇ 100 ⁇ [%], and at the inflection point Qd2.
  • the SOC can be calculated as 100 ⁇ ⁇ (Cd1 + Cd2) ⁇ FCC ⁇ 100 ⁇ [%].
  • the slope S of QVC increases 1.5 times or more, 2 times or more, 3 times or more, or 4 times or more.
  • the inflection point Q may be, for example, in QVC, the charge amount is in a range of 1 mAh to 30 mAh, or 2 mAh to 10 mAh, or 2 mAh to 5 mAh.
  • the change in the slope S is divided into, for example, a range of a certain amount of electric charge, for example, a range of 1 mAh or more and 30 mAh or less, an average value of the slope S in the range is calculated, and the average value of the slope S in the adjacent range is compared. Is also good.
  • analysis may be performed for each of the ranges of the first derivative and the second derivative described below.
  • a region having a local maximum value in the waveform of the first derivative of QVC may be regarded as an inflection point Q of QVC.
  • a positive maximum value may be used, and in the case of charging, for example, a negative maximum value may be used.
  • a region crossing zero in the waveform of the second derivative of QVC may be regarded as an inflection point Q of QVC.
  • the difference between the average potentials of the plateaus is preferably 0.2 V or more, more preferably 0.35 V or more.
  • the calculation may be performed by averaging the measurement point and a range near the measurement point. In this case, for example, a range of 1 mAh to 10 mAh may be calculated as the vicinity range.
  • the position of the inflection point Q in QVC depends on the composition and composition of the positive electrode active material of the secondary battery, the material of the negative electrode active material, and the like.
  • the position of the inflection point Q in QVC may change depending on the SOH of the secondary battery. Therefore, for example, the SOH of the secondary battery can be estimated by detecting the position of the inflection point Q in QVC.
  • the SOC when the change in the voltage with respect to the integrated amount of electricity is large, for example, the SOC can be estimated by measuring the voltage of the secondary battery. However, if the QVC characteristic changes due to an increase in the impedance of the secondary battery or the like, there is a concern that the accuracy of the SOC estimation may decrease. Further, when measuring the absolute value of the voltage, a reference voltage may be required.
  • the SOC is estimated by detecting the inflection point Q.
  • the reference voltage is not always necessary for the voltage of QVC. What is necessary is just to calculate inclination by using the data of the time before and after, and to analyze. A difference value, a differential value, or the like can be used to calculate the slope.
  • the circuit configuration may be simplified.
  • a small change in the relative position of the inflection point Q in QVC means, for example, a small change in the ratio between the full charge capacity and the integrated amount of electricity at which the inflection point Q is observed.
  • the voltage of QVC may change. This is because a voltage rise or a voltage drop occurs due to the resistance of the secondary battery.
  • the control circuit that detects the inflection point Q has information on a change in the voltage according to the current density in advance, the obtained QVC is corrected so as to cancel the influence of the current density. Is also good.
  • the influence of voltage rise or voltage drop due to resistance can be reduced.
  • a pause may be provided, so that feedback may be delayed.
  • an inflection point is used instead of an absolute value of a voltage.
  • the inflection point can be characterized by conditions such as the type of active material of the secondary battery and the composition of the active material. It is considered that by extracting the characteristic amount according to the secondary battery, the influence of resistance and the like is reduced, and even when the OCV is not used, it is possible to estimate the SOC with higher accuracy. That is, a system with fast feedback can be constructed.
  • the inflection point Q is detected at the time of discharging, but may be detected at the time of charging.
  • step S200 the process starts.
  • step S201 the secondary battery 135 is discharged.
  • step S202 the control circuit 182 measures the current and voltage of the secondary battery 135.
  • the voltage measured here may be OCV.
  • step S203 the control circuit 182 calculates the slope S of QVC using the value measured in step S202.
  • the slope S is calculated using data obtained by measuring several points of the voltage value associated with the change in the accumulated electric quantity.
  • the measurement data may be averaged in order to further reduce the influence of noise or the like.
  • step S204 it is determined whether the slope S is larger than A.
  • A is an arbitrary value. If the slope S is larger than A, the process proceeds to step S205; otherwise, the process returns to step S202.
  • the absolute value of A is, for example, an amount determined by the material of the positive electrode active material or the negative electrode active material of the secondary battery, the composition of the electrode material, and the like, and may be different depending on the rate of the storage battery. Alternatively, the absolute value of A is an amount determined by, for example, the combination of the positive electrode active material and the negative electrode active material included in the secondary battery.
  • step S204 the determination whether the slope S is larger than A may be repeated several times, for example, two times or more and five times or less. In such a case, for example, when the same determination result is repeatedly obtained, the next step may be performed.
  • step S205 the control circuit 182 detects the inflection point Q of the QVC of the secondary battery 135.
  • the control circuit 182 detects an inflection point Q by performing analysis using, for example, the value of the slope S.
  • step S206 the control circuit 182 estimates the SOC of the secondary battery 135 using the inflection point Q detected in step S205.
  • the SOC of the secondary battery is corrected based on the obtained estimated value of the SOC. For example, the SOC obtained by the coulomb counter CC is corrected.
  • step S207 when the estimated value of the SOC obtained in step S206 is smaller than B1, the process proceeds to step S208 in FIG. 5 via step S281, and when it is equal to or larger than B1, the process returns to step S202.
  • B1 is an arbitrary value. B1 is preferably, for example, 10% or more and 30% or less.
  • Step S281 is a connector a to be connected from step S207 to step S208.
  • the power storage system 120 displays a warning.
  • the display of the warning is displayed on, for example, a display unit included in the power storage system 120.
  • the display unit may include an indicator such as an LED lamp.
  • a warning sound is emitted from a speaker included in the power storage system 120.
  • the user of the power storage system 120 receive, for example, the warning to stop or restrict the use of the power storage system 120.
  • the operation of the device on which the power storage system 120 is mounted cannot be stopped immediately. In such a case, it is preferable that there is a preparation time until the use of the power storage system 120 is stopped or limited.
  • B1 is preferably larger than the capacity required before the operation of the device on which the power storage system 120 is mounted is stopped.
  • the power storage system 120 it is preferable to stop the power storage system 120 after moving the vehicle to a safe place in response to a warning. It is preferable that the power storage system 120 have the amount of energy required for the movement.
  • step S209 if the secondary battery 135 is charged, the process proceeds to step S210. If the secondary battery is not charged, the process proceeds to step S211.
  • step S208 when the power storage system 120 is electrically connected to a device that performs charging, it is preferable that the charging operation of step S209 be performed in parallel with the operation of displaying a warning.
  • step S210 when the SOC of the secondary battery is smaller than B2, the process returns to step S209, and when it is equal to or more than B2, the process proceeds to step S299 to end the process.
  • B2 is, for example, preferably 80% or more, more preferably 90% or more and 100% or less.
  • step S211 a warning is displayed, asking whether the user permits the power storage system 120 to perform an operation of limiting the discharge amount of the secondary battery 135.
  • step S212 the process proceeds to step S212, and when the user selects a response to be rejected, the process returns to step S209.
  • step S212 the discharge amount of the secondary battery 135 is limited by the control circuit 182. After step S212 is performed, the process returns to step S209.
  • FIGS. 6A and 6B illustrate an example in which the power storage system 120 includes a plurality of secondary batteries 135.
  • the power storage system 120 illustrated in FIG. 6A includes n sets of m secondary batteries 135 (hereinafter, referred to as secondary batteries 135S) electrically connected in series.
  • m and n are integers of 1 or more.
  • the k-th secondary battery 135S is referred to as 135S_k (k is an integer of 1 or more and n or less).
  • the power storage system 120 illustrated in FIG. 6B includes m sets of n secondary batteries 135 (hereinafter, referred to as secondary batteries 135P) electrically connected in parallel.
  • the g-th secondary battery 135P is referred to as 135P_g (g is an integer from 1 to m).
  • the control circuit 182 measures the voltage of each secondary battery 135P.
  • the slope of QVC may be calculated with respect to the voltage of each secondary battery 135P, or the sum of the voltages of m sets of secondary batteries 135P may be used. .
  • the positive electrode preferably has a positive electrode active material layer and a positive electrode current collector.
  • the positive electrode active material of one embodiment of the present invention preferably has a plateau whose charge curve and discharge curve are 2 or more.
  • the positive electrode active material for example, a composite oxide having a layered rock-salt crystal structure or a spinel crystal structure can be used. Further, for example, a polyanion-based positive electrode material can be used as the positive electrode active material. Examples of the polyanion-based positive electrode material include a material having an olivine-type crystal structure and a NASICON-type material. Further, for example, a positive electrode material having sulfur can be used as the positive electrode active material.
  • a polyanion-based positive electrode material for example, a composite oxide containing oxygen, an element X, a metal A, and a metal M can be used.
  • the metal M is one or more of Fe, Mn, Co, Ni, Ti, V, and Nb
  • the metal A is one or more of Li, Na, and Mg
  • the element X is S, P, Mo, W, As, Si One or more.
  • the metal M preferably contains Fe.
  • a polyanion-based positive electrode material particularly a material having an olivine-type crystal structure, is excellent in safety and stability and is preferable.
  • the polyanion-based positive electrode material may be represented by, for example, a space group Pnma.
  • a polyanion-based positive electrode material that is a composite oxide containing oxygen, an element X, a metal A, and a metal M, two or more selected from Fe, Mn, Co, Ni, Ti, V, and Nb as the metal M
  • two or more plateaus are provided in the discharge curve or charge curve of the secondary battery. This is probably because respective potentials corresponding to oxidation-reduction reactions of two or more different metals are observed.
  • a material having an olivine-type crystal structure including two or more selected from the group consisting of Fe, Mn, Co, Ni, Ti, V, and Nb as the metal M can be used. More specifically, for example, it is preferable to use LiFeMnPO 4 .
  • the space group of LiFeMnPO 4 is represented by, for example, Pnma.
  • a plateau with higher flatness may be obtained.
  • a plateau with higher flatness can be realized as compared with other crystal structures, for example, the material having the layered rock salt type structure.
  • the material having the layered rock salt type structure There are cases.
  • a material having low flatness in QVC such as a layered rock salt type structure, it may be difficult to separately observe potentials corresponding to oxidation-reduction reactions of two or more different metals.
  • QVC has a plateau of 2 or more, and the SOC can be estimated using the inflection point Q.
  • the positive electrode active material of one embodiment of the present invention includes two or more selected from metals M
  • a plateau suggested as a potential caused by each metal is observed.
  • the inflection point Q can be adjusted to a position where the discharge capacity is larger in the discharge curve by increasing the composition of the metal that causes the higher potential among the plurality of metals M. Further, by increasing the composition of the metal that causes the lower potential, the inflection point Q can be adjusted to a position where the capacity is smaller in the discharge curve.
  • the higher the discharge potential the higher the energy density can be. Therefore, the energy density of the secondary battery can be increased by increasing the composition of the metal that is the source of the higher potential among the plurality of metals M.
  • the composition of Mn be higher than the composition of Fe.
  • the value of B1 described in the above embodiment can be increased by increasing the Fe composition. It is preferable to determine the composition of Fe so that the value of B1 necessary for the power storage system 120 is obtained.
  • the SOH can be estimated using the capacity of the SOH as a reference value. It is known that in the olivine-type crystal structure, the value of the capacitance considered to be caused by Fe is stable. Therefore, for example, in the power storage system of one embodiment of the present invention, the SOH may be estimated based on a capacitance value caused by Fe.
  • the positive electrode active material layer has at least a positive electrode active material.
  • the positive electrode active material layer may include, in addition to the positive electrode active material, another material such as a film on the surface of the active material, a conductive additive, or a binder.
  • the positive electrode active material layer has one or more positive electrode active materials described above.
  • the positive electrode active material layer has two or more positive electrode active materials and the discharge potentials of the two or more positive electrode active materials are different from each other, the discharge characteristics due to each positive electrode active material in the discharge curve of the secondary battery are different. Observed. Therefore, for example, two or more plateaus may be provided in the discharge curve.
  • a polyanionic positive electrode material particularly a material having an olivine type crystal structure, as the first positive electrode active material.
  • a composite oxide having a layered rock salt type crystal structure or a spinel type crystal structure can be used as the second positive electrode active material.
  • a polyanion-based positive electrode material can be used as the second positive electrode active material.
  • the positive electrode of one embodiment of the present invention includes the first positive electrode active material and the second positive electrode active material
  • a discharge curve corresponding to each positive electrode active material is observed in a discharge curve of the secondary battery.
  • the discharge potential corresponding to each positive electrode active material is separately observed.
  • Such a case is preferable because the inflection point Q described in the above embodiment is remarkably observed.
  • the position where the inflection point Q is observed in QVC may change due to the deterioration of the secondary battery.
  • the rate of decrease in the discharge capacity can be made extremely small.
  • the reduction rate of the discharge capacity due to the deterioration of the first positive electrode active material may be different from the reduction rate of the discharge capacity due to the deterioration of the second positive electrode active material.
  • the SOH of the secondary battery can be estimated based on the difference between the respective reduction rates of the discharge capacity.
  • first positive electrode active material and the second positive electrode active material are materials having similar rate characteristics.
  • each of the first positive electrode active material and the second positive electrode active material may be a polyanion-based material. Further, by reducing the particle size of the active material having the slower rate, the rate characteristics of the respective active materials that are developed when the active material is incorporated into the electrode can be made closer.
  • a change in the relative position of the inflection point Q in QVC be small with respect to a change in the charge rate and a change in the discharge rate. Accordingly, in the secondary battery using the positive electrode active material of one embodiment of the present invention, even when the battery is charged at a high rate or discharged at a high rate, the accuracy of the SOC estimated using the inflection point Q is improved. Can be enhanced.
  • the charge rate or the discharge rate of the secondary battery when detecting the inflection point Q is, for example, 0.1 C or more and 2 C or less, or 0.3 C or more and 2 C or less, or 0.1. 5C or more and 1.5C or less, or 0.7C or more, or 0.7 or more and 1.2C or less.
  • a composite oxide represented by LiMO 2 can be used as a material having a layered rock salt type crystal structure.
  • the element M is preferably one or more selected from Co and Ni. LiCoO 2 is preferable because it has advantages such as a large capacity, stability in the atmosphere, and thermal stability. Further, as the element M, in addition to one or more selected from Co and Ni, one or more selected from Al and Mn may be included.
  • a solid solution in which a plurality of composite oxides are combined can be used as the positive electrode active material.
  • the positive electrode active material preferably has an average primary particle diameter of 1 nm or more and 100 ⁇ m or less, more preferably 50 nm or more and 50 ⁇ m or less, and still more preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the specific surface area is preferably from 1 m 2 / g to 20 m 2 / g.
  • the average particle size of the secondary particles is preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the average particle diameter can be measured by observation with a SEM (scanning electron microscope) or TEM (transmission electron microscope), or by a particle size distribution meter using a laser diffraction / scattering method.
  • the specific surface area can be measured by a gas adsorption method.
  • a conductive material such as a carbon layer may be provided on the surface of the positive electrode active material.
  • a conductive material such as a carbon layer By providing a conductive material such as a carbon layer, the conductivity of the electrode can be improved.
  • the coating of the positive electrode active material with the carbon layer can be formed by mixing a carbohydrate such as glucose at the time of firing the positive electrode active material.
  • a layer containing one or more oxides or fluorides may be provided on the surface of the positive electrode active material.
  • the oxide may have a composition different from that of the positive electrode active material. Further, the oxide may have the same composition as the positive electrode active material.
  • a polyanion-based positive electrode material for example, a composite oxide containing oxygen, an element X, a metal A, and a metal M can be used.
  • the metal M is one or more of Fe, Mn, Co, Ni, Ti, V, and Nb
  • the metal A is one or more of Li, Na, and Mg
  • the element X is S, P, Mo, W, As, Si One or more.
  • a material having an olivine-type crystal structure for example, a composite material (general formula LiMPO 4 (M is at least one of Fe (II), Mn (II), Co (II), and Ni (II))) can be used. it can.
  • LiFePO 4 is preferable because it satisfies the requirements for a positive electrode active material in a well-balanced manner, such as safety, stability, high capacity density, and the presence of lithium ions extracted during initial oxidation (charging).
  • the positive electrode active material having an olivine-type crystal structure has, for example, an average particle diameter of primary particles of preferably 1 nm or more and 20 ⁇ m or less, more preferably 10 nm or more and 5 ⁇ m or less, and 50 nm or more and 2 ⁇ m or less. More preferred. Further, the specific surface area is preferably from 1 m 2 / g to 20 m 2 / g. The average particle size of the secondary particles is preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • a composite material such as a general formula Li (2-j) MSiO 4 (M is at least one of Fe (II), Mn (II), Co (II), and Ni (II), 0 ⁇ j ⁇ 2) is used.
  • M is at least one of Fe (II), Mn (II), Co (II), and Ni (II), 0 ⁇ j ⁇ 2)
  • Representative examples of the general formula Li (2-j) MSiO 4 include Li (2-j) FeSiO 4 , Li (2-j) NiSiO 4 , Li (2-j) CoSiO 4 , and Li (2-j) MnSiO.
  • the NASICON-type compounds represented can be used.
  • Examples of the NASICON-type compound include Fe 2 (MnO 4 ) 3 , Fe 2 (SO 4 ) 3 , and Li 3 Fe 2 (PO 4 ) 3 .
  • a polyanionic positive electrode material having V can be used.
  • Representative examples include ⁇ -LiVOPO 4 , ⁇ -LiVOPO 4 , ⁇ 1-LiVOPO 4 , LiVPO 4 F, LiVPO 4 O, LiVP 2 O 7 , LiVOSO 4 , Li 2 VOSiO 4 , LiVMoO 6 , and the like.
  • a perovskite-type fluoride such as NaFeF 3 or FeF 3
  • a metal chalcogenide a sulfide, a selenide, a telluride
  • TiS 2 or MoS 2 a reverse spinel-type crystal structure
  • LiMVO 4 a reverse spinel-type crystal structure
  • Materials such as oxides, vanadium oxides (eg, V 2 O 5 , V 6 O 13 , and LiV 3 O 8 ), manganese oxides, and organic sulfur compounds can be used.
  • a borate-based positive electrode material represented by a general formula LiMBO 3 (M is Fe (II), Mn (II), Co (II)) can be used.
  • the carrier ion is an alkali metal ion other than lithium ion or an alkaline earth metal ion
  • an alkali metal eg, sodium or potassium
  • an alkaline earth metal eg, , Calcium, strontium, barium, beryllium, magnesium, etc.
  • a sodium-containing layered oxide can be used.
  • NaFeO 2 Na 2/3 [Fe 1/2 Mn 1/2 ] O 2 , Na 2/3 [Ni 1/3 Mn 2/3 ] O 2 , Na 2 Fe 2 ( SO 4 ) 3 , Na 3 V 2 (PO 4 ) 3 , Na 2 FePO 4 F, NaVPO 4 F, NaMPO 4 (M is Fe (II), Mn (II), Co (II), Ni (II) ), Na 2 FePO 4 F, Na 4 Co 3 (PO 4 ) 2 P 2 O 7 , and other sodium-containing oxides can be used as the positive electrode active material.
  • a lithium-containing metal sulfide can be used as the positive electrode active material.
  • Li 2 TiS 3 , Li 3 NbS 4 and the like can be mentioned.
  • a carbon material, a metal material, a conductive ceramic material, or the like can be used as the conductive additive. Further, a fibrous material may be used as the conductive additive.
  • the content of the conductive additive with respect to the total amount of the active material layer is preferably 1 wt% or more and 10 wt% or less, more preferably 1 wt% or more and 5 wt% or less.
  • an electric conduction network can be formed in the active material layer.
  • a path of electric conduction between the positive electrode active materials can be maintained.
  • the conductive aid for example, natural graphite, artificial graphite such as mesocarbon microbeads, and carbon fiber can be used.
  • carbon fibers for example, carbon fibers such as mesophase pitch-based carbon fibers and isotropic pitch-based carbon fibers can be used.
  • carbon nanofibers, carbon nanotubes, and the like can be used as carbon fibers.
  • Carbon nanotubes can be produced by, for example, a vapor phase growth method.
  • a carbon material such as carbon black (acetylene black (AB) or the like) or graphite (graphite) particles can be used.
  • metal powders such as copper, nickel, aluminum, silver, and gold, metal fibers, conductive ceramic materials, and the like can be used.
  • the binder for example, it is preferable to use a rubber material such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene-propylene-diene copolymer.
  • SBR styrene-butadiene rubber
  • Fluororubber can be used as the binder.
  • a water-soluble polymer is preferably used.
  • the water-soluble polymer for example, polysaccharides and the like can be used.
  • the polysaccharide include carboxymethylcellulose (CMC), methylcellulose, ethylcellulose, hydroxypropylcellulose, diacetylcellulose, cellulose derivatives such as regenerated cellulose, and starch. Further, it is more preferable to use these water-soluble polymers in combination with the aforementioned rubber material.
  • polystyrene polymethyl acrylate, polymethyl methacrylate (polymethyl methacrylate, PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide, polyimide, polyvinyl chloride
  • PVA polyvinyl alcohol
  • PEO polyethylene oxide
  • PEO polypropylene oxide
  • polyimide polyvinyl chloride
  • materials such as polytetrafluoroethylene, polyethylene, polypropylene, polyisobutylene, polyethylene terephthalate, nylon, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), ethylene propylene diene polymer, polyvinyl acetate, and nitrocellulose.
  • the binder may be used in combination of two or more of the above.
  • a material having a particularly excellent viscosity adjusting effect may be used in combination with another material.
  • a rubber material or the like is excellent in adhesive strength and elasticity, but sometimes difficult to adjust the viscosity when mixed with a solvent. In such a case, for example, it is preferable to mix with a material having a particularly excellent viscosity adjusting effect.
  • a material having a particularly excellent viscosity adjusting effect for example, a water-soluble polymer may be used.
  • water-soluble polymer having particularly excellent viscosity adjusting effect examples include the above-mentioned polysaccharides, for example, cellulose derivatives such as carboxymethylcellulose (CMC), methylcellulose, ethylcellulose, hydroxypropylcellulose, diacetylcellulose, and regenerated cellulose, and starch. be able to.
  • CMC carboxymethylcellulose
  • methylcellulose methylcellulose
  • ethylcellulose methylcellulose
  • hydroxypropylcellulose ethylcellulose
  • diacetylcellulose diacetylcellulose
  • regenerated cellulose starch.
  • the solubility of a cellulose derivative such as carboxymethylcellulose is increased by, for example, forming a salt such as a sodium salt or an ammonium salt of carboxymethylcellulose, and the effect as a viscosity modifier is easily exhibited.
  • the solubility is increased, the dispersibility of the electrode material with the active material and other components can be increased when preparing the electrode slurry.
  • the cellulose and the cellulose derivative used as the binder of the electrode include salts thereof.
  • the water-soluble polymer stabilizes the viscosity by dissolving in water, and can stably disperse the active material and other materials combined as a binder, for example, styrene-butadiene rubber, in an aqueous solution.
  • a binder for example, styrene-butadiene rubber
  • cellulose derivatives such as carboxymethylcellulose often have a material having a functional group such as a hydroxyl group or a carboxyl group, and have a functional group. There is expected.
  • the binder When a binder is formed on the surface of the active material or covers the surface of the active material, the binder functions as a passivation film and is expected to have an effect of suppressing the decomposition of the electrolytic solution.
  • the passivation film is a film having no electric conductivity or a film having extremely low electric conductivity.
  • the passivation film when a passivation film is formed on the surface of an active material, at a battery reaction potential, The decomposition of the electrolytic solution can be suppressed. Further, it is more desirable that the passivation film suppresses the conductivity of electricity and conducts lithium ions.
  • a highly conductive material such as a metal such as stainless steel, gold, platinum, aluminum, and titanium, and an alloy thereof can be used.
  • the material used for the positive electrode current collector preferably does not elute at the potential of the positive electrode.
  • the gate electrode may be formed using a metal element which forms silicide by reacting with silicon.
  • Examples of a metal element which forms silicide by reacting with silicon include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel, and the like.
  • a shape such as a foil shape, a plate shape (sheet shape), a net shape, a punching metal shape, an expanded metal shape, or the like can be used as appropriate. It is preferable to use a current collector having a thickness of 5 ⁇ m or more and 30 ⁇ m or less.
  • the positive electrode As the positive electrode, the positive electrode described in the above embodiment can be used.
  • the negative electrode has a negative electrode active material layer and a negative electrode current collector. Further, the negative electrode active material layer may have a conductive additive and a binder.
  • Niobium electrode active material for example, an alloy-based material, a carbon-based material, or the like can be used.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium can be used.
  • a material containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium, and the like can be used.
  • Such an element has a higher capacity than carbon, and in particular, silicon has a high theoretical capacity of 4200 mAh / g. Therefore, it is preferable to use silicon as the negative electrode active material. Further, compounds having these elements may be used.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium, a compound containing the element, and the like may be referred to as an alloy-based material.
  • SiO refers to, for example, silicon monoxide.
  • SiO can also be expressed as SiO x.
  • x has a value of 1 and its vicinity.
  • x is preferably from 0.2 to 1.5, more preferably from 0.3 to 1.2.
  • carbon-based material graphite, graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), carbon nanotube, carbon black, or the like may be used.
  • Examples of the graphite include artificial graphite and natural graphite.
  • Examples of the artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, pitch-based artificial graphite, and the like.
  • MCMB mesocarbon microbeads
  • spherical graphite having a spherical shape can be used as artificial graphite.
  • MCMB may have a spherical shape, which is preferable.
  • MCMB is relatively easy to reduce its surface area, and may be preferable in some cases.
  • Examples of the natural graphite include flaky graphite and spheroidized natural graphite.
  • Graphite exhibits a potential as low as lithium metal (0.05 V or more and 0.3 V or less vs. Li / Li + ) when lithium ions are inserted into graphite (at the time of formation of a lithium-graphite intercalation compound). Thereby, the lithium ion secondary battery can exhibit a high operating voltage. Further, graphite is preferable because it has advantages such as relatively high capacity per unit volume, relatively small volume expansion, low cost, and higher safety than lithium metal.
  • titanium dioxide TiO 2
  • lithium titanium oxide Li 4 Ti 5 O 12
  • lithium-graphite intercalation compound Li x C 6
  • niobium pentoxide Nb 2 O 5
  • oxidation An oxide such as tungsten (WO 2 ) or molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 is preferable because it shows a large charge / discharge capacity (900 mAh / g, 1890 mAh / cm 3 ).
  • lithium ions are contained in the negative electrode active material, it can be combined with a material such as V 2 O 5 or Cr 3 O 8 which does not contain lithium ions as the positive electrode active material, which is preferable. . Note that, even when a material containing lithium ions is used as the positive electrode active material, a double nitride of lithium and a transition metal can be used as the negative electrode active material by previously removing lithium ions contained in the positive electrode active material.
  • a material that causes a conversion reaction can be used as the negative electrode active material.
  • a transition metal oxide that does not form an alloy with lithium such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO)
  • Materials that cause the conversion reaction include oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 , and Cr 2 O 3 , sulfides such as CoS 0.89 , NiS, and CuS, and Zn 3 N 2 , Cu 3 N, Ge 3 N 4 and other nitrides, NiP 2 , FeP 2 , CoP 3 and other phosphides, and FeF 3 and BiF 3 and other fluorides.
  • the same materials as the conductive auxiliary and the binder that can be included in the positive electrode active material layer can be used.
  • ⁇ Negative electrode current collector> The same material as the positive electrode current collector can be used for the negative electrode current collector. Note that a material which does not alloy with carrier ions such as lithium is preferably used for the negative electrode current collector.
  • the electrolyte has a solvent and an electrolyte.
  • an aprotic organic solvent is preferable.
  • dioxane, dimethoxyethane (DME) dimethyl sulfoxide, diethyl ether, methyl diglyme, acetonitrile, benzonitrile, tetrahydrofuran, sulfo
  • the ionic liquid is composed of a cation and an anion, and includes an organic cation and an anion.
  • organic cation used in the electrolyte examples include an aliphatic onium cation such as a quaternary ammonium cation, a tertiary sulfonium cation, and a quaternary phosphonium cation, and an aromatic cation such as an imidazolium cation and a pyridinium cation.
  • an aliphatic onium cation such as a quaternary ammonium cation, a tertiary sulfonium cation, and a quaternary phosphonium cation
  • aromatic cation such as an imidazolium cation and a pyridinium cation.
  • a monovalent amide-based anion a monovalent methide-based anion, a fluorosulfonic acid anion, a perfluoroalkylsulfonic acid anion, a tetrafluoroborate anion, a perfluoroalkylborate anion, and a hexafluorophosphate anion Or a perfluoroalkyl phosphate anion.
  • LiPF 6 LiClO 4, LiAsF 6 , LiBF 4, LiAlCl 4, LiSCN, LiBr, LiI, Li 2 SO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiN (CF 3 SO 2) 2, LiN (C 4 F 9
  • LiPF 6 LiClO 4, LiAsF 6 , LiBF 4, LiAlCl 4, LiSCN, LiBr, LiI, Li 2 SO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiN (CF 3 SO 2) 2, LiN (C 4 F 9
  • One kind of lithium salt such as SO 2 ) (CF 3 SO 2 ) and LiN (C 2 F 5 SO 2 ) 2 , or two or more kinds thereof can be used in any combination and ratio.
  • the electrolytic solution used for the secondary battery it is preferable to use a highly purified electrolytic solution having a small content of elements other than particulate dust and constituent elements of the electrolytic solution (hereinafter, also simply referred to as “impurities”).
  • the weight ratio of the impurity to the electrolyte is preferably 1% or less, preferably 0.1% or less, and more preferably 0.01% or less.
  • vinylene carbonate, propane sultone (PS), tert-butylbenzene (TBB), fluoroethylene carbonate (FEC), lithium bis (oxalate) borate (LiBOB), and dinitrile compounds such as succinonitrile and adiponitrile are used for the electrolyte. May be added.
  • concentration of the material to be added may be, for example, 0.1 wt% or more and 5 wt% or less based on the entire solvent.
  • a polymer gel electrolyte obtained by swelling a polymer with an electrolytic solution may be used.
  • silicone gel acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, fluorine polymer gel, or the like can be used.
  • polymer for example, a polymer having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, and a copolymer containing them can be used.
  • PEO polyethylene oxide
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP) can be used.
  • the formed polymer may have a porous shape.
  • a solid electrolyte having an inorganic material such as a sulfide or an oxide or a solid electrolyte having a polymer material such as a PEO (polyethylene oxide) can be used.
  • a solid electrolyte it is not necessary to provide a separator or a spacer. Further, since the entire battery can be solidified, there is no possibility of liquid leakage, and safety is dramatically improved.
  • the secondary battery preferably has a separator.
  • the separator for example, one formed of paper, nonwoven fabric, glass fiber, ceramics, or synthetic fiber using nylon (polyamide), vinylon (polyvinyl alcohol-based fiber), polyester, acryl, polyolefin, or polyurethane is used. Can be.
  • the separator is preferably processed into an envelope shape and arranged so as to surround either the positive electrode or the negative electrode.
  • the separator may have a multilayer structure.
  • an organic material film such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide particles, silicon oxide particles, and the like can be used.
  • the fluorine-based material for example, PVDF, polytetrafluoroethylene, or the like can be used.
  • the polyamide-based material for example, nylon, aramid (meta-aramid, para-aramid) and the like can be used.
  • Oxidation resistance is improved by coating with a ceramic material, so that deterioration of the separator during high-voltage charging and discharging can be suppressed, and the reliability of the secondary battery can be improved. Further, when a fluorine-based material is coated, the separator and the electrode are easily brought into close contact with each other, and output characteristics can be improved. When a polyamide-based material, particularly aramid, is coated, heat resistance is improved, so that safety of the secondary battery can be improved.
  • both surfaces of a polypropylene film may be coated with a mixed material of aluminum oxide and aramid.
  • a surface of the polypropylene film which contacts the positive electrode may be coated with a mixed material of aluminum oxide and aramid, and a surface which contacts the negative electrode may be coated with a fluorine-based material.
  • the safety of the secondary battery can be maintained even when the thickness of the entire separator is small, so that the capacity per volume of the secondary battery can be increased.
  • a metal material such as aluminum or a resin material can be used, for example.
  • a film-like exterior body can be used.
  • the film for example, a highly flexible metal thin film of aluminum, stainless steel, copper, nickel, etc. is provided on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, polyamide, and the like.
  • a film having a three-layer structure provided with an insulating synthetic resin film such as a polyamide resin or a polyester resin as an outer surface of the body can be used.
  • the charging and discharging of the secondary battery can be performed, for example, as follows.
  • CC charging will be described as one of charging methods.
  • CC (constant current) charging is a charging method in which a constant current is supplied to a secondary battery during the entire charging period, and charging is stopped when a predetermined voltage is reached. It is assumed that the secondary battery is an equivalent circuit of the internal resistance R and the secondary battery capacity C as shown in FIG. In this case, the secondary battery voltage V B is the sum of the voltage V C applied to the voltage V R and the secondary battery capacity C according to the internal resistance R.
  • the switch is turned on, and a constant current I flows to the secondary battery.
  • the voltage V C applied to the secondary battery capacity C increases with time. Therefore, the secondary battery voltage V B increases with time.
  • CCCV charging is a charging method in which charging is first performed to a predetermined voltage by CC charging, and then charging is performed until the current flowing in CV (constant voltage) charging decreases, specifically until the terminal current value is reached. .
  • the switch of the constant current power supply is turned on, the switch of the constant voltage power supply is turned off, and a constant current I flows to the secondary battery.
  • the voltage V C applied to the secondary battery capacity C increases with time. Therefore, the secondary battery voltage V B increases with time.
  • CC discharge which is one of the discharge methods will be described.
  • CC discharge constant current in all the discharge period flowed from the secondary battery, a discharge process for stopping the discharge when the secondary battery voltage V B is has reached a predetermined voltage, for example 2.5V.
  • the discharge rate is a relative ratio of a current at the time of discharge to a battery capacity, and is expressed in a unit C.
  • a current corresponding to 1 C is X (A).
  • X (A) When discharged at a current of 2X (A), it is said to have been discharged at 2C, and when discharged at a current of X / 5 (A), it was said to have been discharged at 0.2C.
  • charging is performed at a current of 2X (A)
  • charging at a current of X / 5 (A) charging is performed at 0.2C. It was said.
  • a cylindrical secondary battery 400 has a positive electrode cap (battery lid) 401 on the upper surface and a battery can (exterior can) 402 on the side and bottom surfaces.
  • the positive electrode cap 401 and the battery can (exterior can) 402 are insulated by a gasket (insulating packing) 410.
  • a positive electrode terminal (a positive electrode current collecting lead) is connected to the positive electrode, and a negative electrode terminal (a negative electrode current collecting lead) is connected to the negative electrode.
  • a metal material such as aluminum can be used.
  • the negative electrode terminal is, for example, welded to the bottom of the battery can.
  • the positive electrode terminal is electrically connected to the positive electrode cap 401 via a positive temperature coefficient (PTC) element.
  • the PTC element is a thermal resistance element whose resistance increases when the temperature rises, and limits the amount of current by increasing the resistance to prevent abnormal heat generation.
  • barium titanate (BaTiO 3 ) -based semiconductor ceramics or the like can be used.
  • FIG. 10B illustrates an example of a power storage system 415.
  • the power storage system 415 has a plurality of secondary batteries 400.
  • the positive electrode of each secondary battery contacts and is electrically connected to the conductor 424 separated by the insulator 425.
  • the conductor 424 is electrically connected to the control system 420 via the wiring 423.
  • the negative electrode of each secondary battery is electrically connected to the control system 420 via the wiring 426.
  • the control system 420 the control system described in the above embodiment can be used.
  • FIG. 10C illustrates an example of a power storage system 415.
  • the power storage system 415 includes a plurality of secondary batteries 400, and the plurality of secondary batteries 400 are sandwiched between the conductive plates 413 and 414.
  • the plurality of secondary batteries 400 are electrically connected to the conductive plates 413 and 414 by the wiring 416.
  • the plurality of secondary batteries 400 may be connected in parallel, may be connected in series, or may be connected in series after being connected in parallel.
  • a temperature control device may be provided between the plurality of secondary batteries 400.
  • the secondary battery 400 When the secondary battery 400 is overheated, it can be cooled by the temperature controller, and when the secondary battery 400 is too cold, it can be heated by the temperature controller. Therefore, the performance of the power storage system 415 is less likely to be affected by the outside air temperature.
  • the power storage system 415 is electrically connected to the control system 420 via the wiring 421 and the wiring 422.
  • the control system 420 the control system described in the above embodiment can be used.
  • the wiring 421 is electrically connected to the positive electrodes of the plurality of secondary batteries 400 through the conductive plate 413
  • the wiring 422 is electrically connected to the negative electrodes of the plurality of secondary batteries 400 through the conductive plate 414.
  • FIG. 11A is a diagram showing an appearance of the secondary battery pack 530.
  • FIG. 11B illustrates a structure of the secondary battery pack 530.
  • the secondary battery pack 530 has a circuit board 500 and a secondary battery 513.
  • a label 510 is attached to the secondary battery 513.
  • the circuit board 500 is fixed by a seal 515.
  • the secondary battery pack 530 has an antenna 514.
  • the circuit board 500 has a control system 590.
  • the control system 590 the control system described in the above embodiment can be used.
  • a control system 590 is provided over a circuit board 500.
  • the circuit board 500 is electrically connected to the terminal 511.
  • the circuit board 500 is electrically connected to the antenna 514, the leads 551 and 552 of the secondary battery 513 (one is a positive lead, and the other is a negative lead).
  • a circuit system 590a provided over the circuit board 500 and a circuit system 590b electrically connected to the circuit board 500 via the terminal 511 may be provided.
  • a part of the control system of one embodiment of the present invention is provided in the circuit system 590a, and another part is provided in the circuit system 590b.
  • the protection circuit 137 described in the above embodiment is provided in the circuit system 590a, and the control circuit 182 described in the above embodiment is provided in the circuit system 590b.
  • the antenna 514 is not limited to the coil shape, and may be, for example, a linear shape or a plate shape. Further, an antenna such as a planar antenna, an aperture antenna, a traveling wave antenna, an EH antenna, a magnetic field antenna, or a dielectric antenna may be used. Alternatively, the antenna 514 may be a flat conductor. This flat conductor can function as one of the electric field coupling conductors. That is, the antenna 514 may function as one of the two conductors of the capacitor. Thus, power can be exchanged not only by an electromagnetic field and a magnetic field but also by an electric field.
  • the secondary battery pack 530 has a layer 516 between the antenna 514 and the secondary battery 513.
  • the layer 516 has a function of shielding an electromagnetic field generated by the secondary battery 513, for example.
  • a magnetic substance can be used as the layer 516.
  • the secondary battery 513 for example, a wound body obtained by stacking a negative electrode and a positive electrode with a separator interposed therebetween and winding the laminated sheet can be used.
  • a next-generation clean energy vehicle such as a hybrid vehicle (HEV), an electric vehicle (EV), or a plug-in hybrid vehicle (PHEV) can be realized.
  • HEV hybrid vehicle
  • EV electric vehicle
  • PHEV plug-in hybrid vehicle
  • FIGS. 12A, 12B, and 12C illustrate a vehicle using the power storage system of one embodiment of the present invention.
  • An automobile 8400 illustrated in FIG. 12A is an electric vehicle using an electric motor as a power source for traveling. Alternatively, it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as power sources for traveling. By using one embodiment of the present invention, a vehicle with a long cruising distance can be realized.
  • the car 8400 has a power storage system.
  • the power storage system can supply electric power to a light-emitting device such as a headlight 8401 or a room light (not illustrated), in addition to driving the electric motor 8406.
  • the power storage system can supply power to a display device such as a speedometer or a tachometer of the vehicle 8400. Further, the power storage system can supply power to a navigation system or the like included in the car 8400.
  • FIG. 12B can charge the power storage system 8024 included in the vehicle 8500 by receiving power supply from an external charging facility by a plug-in method, a contactless power supply method, or the like.
  • FIG. 12B illustrates a state where charging is performed from a ground-based charging device 8021 to a power storage system 8024 mounted on a car 8500 via a cable 8022.
  • the charging method, the standard of the connector, and the like may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or a combo.
  • Charging device 8021 may be a charging station provided in a commercial facility or a home power supply.
  • the power storage system 8024 mounted on the automobile 8500 can be charged by external power supply using the plug-in technology. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • a power receiving device can be mounted on a vehicle, and power can be supplied from a ground power transmitting device in a non-contact manner and charged.
  • charging can be performed not only when the vehicle is stopped but also when the vehicle is traveling by incorporating a power transmission device on a road or an outer wall.
  • electric power may be transmitted and received between vehicles by using the non-contact power supply method.
  • a solar battery may be provided on the exterior of the vehicle to charge the power storage system when the vehicle stops or travels.
  • an electromagnetic induction system or a magnetic field resonance system can be used.
  • FIG. 12C illustrates an example of a two-wheeled vehicle using the power storage system of one embodiment of the present invention.
  • a scooter 8600 illustrated in FIG. 12C includes a power storage system 8602, a side mirror 8601, and a direction indicator 8603.
  • the power storage system 8602 can supply electricity to the direction indicator 8603.
  • the scooter 8600 illustrated in FIG. 12C can store the power storage system 8602 in the storage 8604 under the seat.
  • the power storage system 8602 can be stored in the under-seat storage 8604 even when the under-seat storage 8604 is small.
  • FIG. 13A illustrates an example of an electric bicycle including the power storage system of one embodiment of the present invention.
  • the power storage system of one embodiment of the present invention can be applied to the electric bicycle 8700 illustrated in FIG.
  • the power storage system of one embodiment of the present invention includes, for example, a plurality of secondary batteries, a protection circuit, and a neural network.
  • the electric bicycle 8700 includes a power storage system 8702.
  • the power storage system 8702 can supply electricity to a motor that assists the driver. Further, the power storage system 8702 is portable, and FIG. 13B illustrates a state where the power storage system 8702 is detached from a bicycle.
  • the power storage system 8702 includes a plurality of rechargeable batteries 8701 included in the power storage system of one embodiment of the present invention, and the display portion 8703 can display the remaining battery power and the like.
  • the power storage system 8702 includes a control system 8704 of one embodiment of the present invention.
  • the control system 8704 is electrically connected to the positive and negative electrodes of the secondary battery 8701. As the control system 8704, the control system described in the above embodiment can be used.
  • the vehicle 8400 has a plurality of secondary batteries. If an IC incorporating a life estimation unit is mounted as a secondary battery protection circuit, neural network processing for secondary battery control can be performed. Even in the case of an automobile 8400 using 1000 or more secondary batteries, neural network processing for controlling the secondary batteries can be performed efficiently.
  • the secondary battery may be used by arranging many small cylindrical secondary batteries on the floor in the vehicle. Further, a battery pack in which a plurality of laminated secondary batteries are combined may be installed on the floor portion in the vehicle. Further, a photoelectric conversion element 8405 may be provided in a ceiling portion of the car 8400.
  • the car 8400 has a sensor 8407.
  • the sensor 8407 has a function of measuring the temperature of air outside the automobile 8400.
  • the temperature of the air outside the automobile 8400 may be referred to as an outside air temperature in this specification and the like.
  • the sensor 8407 may be called an outside air temperature sensor.
  • FIGS. 12A, 12B, 12C, 13A and 14A can be equipped with a navigation system.
  • the navigation system preferably has the control system described in the above embodiment.
  • FIG. 14B illustrates the interior of a car 8400.
  • the navigation system has a display portion 8411 and a microphone.
  • the display portion 8411 preferably includes a touch sensor.
  • a user of the navigation can input information using an input to the touch sensor of the display portion 8411 and a voice input to a microphone.
  • Each of the windshield 8404 and the side mirror 8403 may have a display unit.
  • the navigation system can display information on one or more of the display portion 8411, the display portion of the windshield 8404, and the display portion of the side mirror 8403.
  • FIG. 14C illustrates an example in which the mobile phone 8412 is used as a navigation system.
  • An enlarged view of the display portion 8413 of the mobile phone 8412 is shown in FIG.
  • the display portion 8413 displays map information, information indicating the traveling direction (left), and the like.
  • FIGS. 15A and 15B illustrate an example of a tablet terminal that can be folded.
  • a tablet terminal 9600 illustrated in FIGS. 15A and 15B includes a housing 9630a, a housing 9630b, a movable portion 9640 connecting the housing 9630a to the housing 9630b, a display portion 9631, and a display mode switch 9626.
  • FIG. 15A illustrates a state in which the tablet terminal 9600 is open
  • FIG. 15B illustrates a state in which the tablet terminal 9600 is closed.
  • the tablet terminal 9600 includes a power storage body 9635 in the housings 9630a and 9630b.
  • the power storage unit 9635 is provided over the housing 9630a and the housing 9630b through the movable portion 9640.
  • the display portion 9631 can be part of a touch panel region, and can input data by touching a displayed operation key.
  • a keyboard button can be displayed on the display portion 9631 by touching a position on the touch panel where a keyboard display switching button is displayed with a finger, a stylus, or the like.
  • the display mode changeover switch 9626 can change the display direction such as portrait display or landscape display, and can switch between monochrome display and color display.
  • the power saving mode changeover switch 9625 can optimize display brightness in accordance with the amount of external light during use detected by an optical sensor built in the tablet terminal 9600.
  • the tablet terminal may include not only an optical sensor but also other detection devices such as a sensor for detecting a tilt such as a gyro or an acceleration sensor.
  • FIG. 15B illustrates a closed state, in which the tablet terminal includes a housing 9630, a solar battery 9633, and a power storage system of one embodiment of the present invention.
  • the power storage system includes a control system 9634 and a power storage unit 9635.
  • the control system 9634 includes a protection circuit 9639 and a charge / discharge control circuit 9638 including a DCDC converter 9636.
  • the control system 9634 the control system described in the above embodiment can be used.
  • the charge and discharge control circuit 9638 includes the control circuit 182 described in the above embodiment, for example.
  • the housing 9630a and the housing 9630b can be folded so as to overlap each other when not in use.
  • the display portion 9631 can be protected by folding, so that the durability of the tablet terminal 9600 can be increased.
  • the tablet terminal illustrated in FIGS. 15A and 15B has a function of displaying various information (such as a still image, a moving image, and a text image), a calendar, a date or time, and the like. It can have a function of displaying on the display portion, a touch input function of performing a touch input operation or editing of information displayed on the display portion, a function of controlling processing by various software (programs), and the like.
  • ⁇ Power can be supplied to a touch panel, a display portion, a video signal processing portion, or the like with the solar cell 9633 attached to the surface of the tablet terminal.
  • the solar cell 9633 can be provided on one or both surfaces of the housing 9630, so that the power storage unit 9635 can be charged efficiently.
  • FIG. 15C illustrates a solar battery 9633, a power storage unit 9635, a DCDC converter 9636, a converter 9637, switches SW1 to SW3, and a display portion 9631.
  • the DCDC converter 9636, the converter 9637, and the switches SW1 to SW3 are illustrated in FIG. 15B, the charge / discharge control circuit 9638 and the protection circuit 9639 correspond to the control system 9634.
  • the power generated by the solar cell is boosted or stepped down by the DCDC converter 9636 so as to have a voltage for charging the power storage unit 9635.
  • the switch SW1 is turned on, and the converter 9637 steps up or down to a voltage required for the display portion 9631.
  • the power storage 9635 may be charged by turning off the switch SW1 and turning on the switch SW2.
  • the solar cell 9633 is described as an example of a power generation unit; however, there is no particular limitation, and the power storage unit 9635 is charged by another power generation unit such as a piezoelectric element (piezo element) or a thermoelectric conversion element (Peltier element). It may be.
  • a non-contact power transmission module that transmits and receives power wirelessly (contactlessly) and charges the battery, or a configuration in which another charging unit is combined and used.
  • FIG. 16 shows an example of another electronic device.
  • a display device 8000 is an example of an electronic device in which the power storage system of one embodiment of the present invention is mounted.
  • the display device 8000 corresponds to a display device for receiving a TV broadcast, and includes a housing 8001, a display portion 8002, a speaker portion 8003, a secondary battery 8004, and the like.
  • the detection system according to one embodiment of the present invention is provided inside the housing 8001.
  • the display device 8000 can receive power from a commercial power supply or use power stored in the secondary battery 8004.
  • a display portion 8002 includes a liquid crystal display device, a light-emitting device including a light-emitting element such as an organic EL element in each pixel, an electrophoretic display device, a digital micromirror device, a PDP (Plasma Display Panel), and a FED (Field Emission Display). ) Can be used.
  • the voice input device 8005 also uses a secondary battery.
  • the voice input device 8005 includes the power storage system described in any of the above embodiments.
  • the voice input device 8005 has a plurality of sensors including a microphone (optical sensor, temperature sensor, humidity sensor, barometric pressure sensor, illuminance sensor, motion sensor, and the like) in addition to the wireless communication element, and uses a command from the user to perform other functions.
  • a power supply operation of a device for example, the display device 8000, a light amount adjustment of the lighting device 8100, and the like can be performed.
  • the voice input device 8005 can operate peripheral devices by voice and can be used instead of a manual remote controller.
  • the voice input device 8005 has wheels and mechanical moving means, moves in a direction in which the user's voice can be heard, accurately receives instructions with a built-in microphone, and displays the contents thereof on a display unit 8008. Or a touch input operation of the display portion 8008 can be performed.
  • the voice input device 8005 can also function as a charging dock for a portable information terminal 8009 such as a smartphone.
  • the portable information terminal 8009 and the voice input device 8005 can transmit and receive power by wire or wirelessly.
  • the portable information terminal 8009 does not need to be carried indoors, and it is necessary to secure the necessary capacity and avoid the load on the secondary battery from being deteriorated. It is desirable to be able to perform maintenance and the like.
  • the voice input device 8005 since the voice input device 8005 includes the speaker 8007 and the microphone, it is possible to have a hands-free conversation even when the portable information terminal 8009 is being charged. Further, when the capacity of the secondary battery of the voice input device 8005 is reduced, it is only necessary to move in the direction of the arrow and perform wireless charging from the charging module 8010 connected to the external power supply.
  • the voice input device 8005 may be mounted on a table. Further, the voice input device 8005 may be moved to a desired position by providing wheels or mechanical moving means, or the voice input device 8005 may be fixed at a desired position, for example, on the floor without providing a table or wheels. May be.
  • the display devices include all information display devices, such as those for personal computer and advertisement display, in addition to TV broadcast reception.
  • a stationary lighting device 8100 is an example of an electronic device using a secondary battery 8103 controlled by a microprocessor that controls charging.
  • the lighting device 8100 includes a housing 8101, a light source 8102, a secondary battery 8103, and the like.
  • FIG. 16 illustrates the case where the secondary battery 8103 is provided in the ceiling 8104 in which the housing 8101 and the light source 8102 are installed.
  • the secondary battery 8103 is provided in the housing 8101. It may be.
  • the lighting device 8100 can receive power from a commercial power supply or can use power stored in the secondary battery 8103.
  • FIG. 16 illustrates an installation-type lighting device 8100 provided in a ceiling 8104; however, the secondary battery 8103 is not provided in the ceiling 8104, for example, an installation-type lighting device provided in a side wall 8105, a floor 8106, a window 8107, and the like.
  • the lighting device can also be used for a desktop lighting device or the like.
  • an artificial light source that artificially obtains light using electric power can be used.
  • discharge lamps such as incandescent lamps and fluorescent lamps
  • light emitting elements such as LEDs and organic EL elements are examples of the artificial light source.
  • an air conditioner including an indoor unit 8200 and an outdoor unit 8204 is an example of an electronic device using a secondary battery 8203.
  • the indoor unit 8200 includes a housing 8201, an air outlet 8202, a secondary battery 8203, and the like.
  • FIG. 16 illustrates the case where the secondary battery 8203 is provided in the indoor unit 8200; however, the secondary battery 8203 may be provided in the outdoor unit 8204. Alternatively, the secondary battery 8203 may be provided in both the indoor unit 8200 and the outdoor unit 8204.
  • the air conditioner can receive power from a commercial power supply or use power stored in the secondary battery 8203.
  • an electric refrigerator-freezer 8300 is an example of an electronic device using a secondary battery 8304.
  • the electric refrigerator-freezer 8300 includes a housing 8301, a refrigerator door 8302, a refrigerator door 8303, a secondary battery 8304, and the like.
  • a secondary battery 8304 is provided inside a housing 8301.
  • the electric refrigerator-freezer 8300 can receive power from a commercial power supply or can use power stored in the secondary battery 8304.
  • the power usage rate the ratio of the actually used power amount (referred to as the power usage rate) to the total power amount that can be supplied by the commercial power supply source is low.
  • the power usage rate the ratio of the actually used power amount (referred to as the power usage rate) to the total power amount that can be supplied by the commercial power supply source is low.
  • the secondary battery can be mounted on any electronic device. According to one embodiment of the present invention, cycle characteristics of a secondary battery are improved. Therefore, by mounting a microprocessor (including an APS) that controls charging, which is one embodiment of the present invention, in the electronic device described in this embodiment, a longer-life electronic device can be provided.
  • a microprocessor including an APS
  • FIGS. 17A to 17E illustrate an example in which the power storage system of one embodiment of the present invention is mounted on an electronic device.
  • electronic devices to which the power storage system of one embodiment of the present invention is applied include a television device (also referred to as a television or a television receiver), a monitor for a computer, a digital camera, a digital video camera, a digital photo frame, and a mobile phone.
  • Examples include a telephone (also referred to as a mobile phone and a mobile phone device), a portable game machine, a portable information terminal, a sound reproducing device, and a large game machine such as a pachinko machine.
  • FIG. 17A illustrates an example of a mobile phone.
  • the mobile phone 7400 is provided with a display portion 7402 incorporated in a housing 7401, operation buttons 7403, an external connection port 7404, a speaker 7405, a microphone 7406, and the like.
  • the mobile phone 7400 includes the power storage system of one embodiment of the present invention.
  • the power storage system of one embodiment of the present invention includes, for example, the secondary battery 7407 and the control system described in the above embodiment; the control system includes, for example, a protection circuit, a control circuit, a neural network, and the like. Is preferred.
  • FIG. 17B illustrates a state where the mobile phone 7400 is curved.
  • the secondary battery 7407 provided therein may also be bent.
  • FIG. 17C illustrates a bent state of the flexible secondary battery.
  • a control system 7408 is electrically connected to the secondary battery. As the control system 7408, the control system described in the above embodiment can be used.
  • a secondary battery having a flexible shape can be incorporated along the inner or outer wall of a house or building, or along the curved surface of the interior or exterior of an automobile.
  • FIG. 17D illustrates an example of a bangle-type display device.
  • the portable display device 7100 includes a housing 7101, a display portion 7102, operation buttons 7103, and a power storage system of one embodiment of the present invention.
  • the power storage system of one embodiment of the present invention includes, for example, the secondary battery 7104 and the control system described in the above embodiment; the control system includes, for example, a protection circuit, a control circuit, a neural network, and the like. Is preferred.
  • FIG. 17E illustrates an example of a wristwatch-type portable information terminal.
  • the portable information terminal 7200 includes a housing 7201, a display portion 7202, a band 7203, a buckle 7204, operation buttons 7205, an input / output terminal 7206, and the like.
  • the portable information terminal 7200 can execute various applications such as mobile phone, e-mail, text browsing and creation, music playback, Internet communication, and computer games.
  • the display portion 7202 is provided with a curved display surface, and can perform display along the curved display surface.
  • the display portion 7202 includes a touch sensor and can be operated by touching the screen with a finger, a stylus, or the like.
  • an application can be activated by touching an icon 7207 displayed on the display portion 7202.
  • the operation button 7205 can have various functions such as power ON / OFF operation, wireless communication ON / OFF operation, execution and release of a manner mode, and execution and release of a power saving mode, in addition to time setting.
  • the functions of the operation buttons 7205 can be freely set by an operating system incorporated in the portable information terminal 7200.
  • the portable information terminal 7200 is capable of executing short-range wireless communication specified by a communication standard. For example, by communicating with a headset capable of wireless communication, it is possible to make a hands-free call.
  • the portable information terminal 7200 has an input / output terminal 7206, and can directly exchange data with another information terminal via a connector. Charging can also be performed through the input / output terminal 7206. Note that the charging operation may be performed by wireless power feeding without using the input / output terminal 7206.
  • the portable information terminal 7200 includes the power storage system of one embodiment of the present invention.
  • the power storage system includes a secondary battery and the control system described in the above embodiment; it is preferable that the control system include, for example, a protection circuit, a control circuit, a neural network, and the like.
  • Personal digital assistant 7200 preferably has a sensor.
  • a human body sensor such as a fingerprint sensor, a pulse sensor, and a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, and the like be mounted as the sensor.
  • a secondary battery was manufactured using a positive electrode active material having manganese and iron, a discharge curve was measured, and an inflection point was observed.
  • Lithium manganese iron phosphate having an olivine structure was produced as a positive electrode active material.
  • raw materials LiCO 3 , FeC 2 O 4 .2H 2 O, MnCO 3 and NH 4 H 2 PO 4 were used.
  • firing was performed at 350 ° C. for 10 hours to obtain a first mixture. Thereafter, 10% by weight of glucose was added to the obtained first mixture, mixed, and then calcined at a temperature of 600 ° C. for 10 hours. Thereafter, crushing was performed to obtain lithium iron manganese phosphate.
  • a positive electrode was produced using the produced positive electrode active material.
  • a secondary battery was manufactured using lithium metal as a counter electrode.
  • FIG. 18A shows a discharge curve of the secondary battery.
  • the results when the discharge rate was 0.2 C, 0.5 C, and 1 C are shown, respectively.
  • the first plateau suggesting the involvement of manganese is observed from the start of discharge to the inflection point around the point where the capacity value is about 30 mAh / g and the voltage is about 4 V.
  • a second plateau suggesting the involvement of iron was observed from the inflection point to the end of discharge, centering on a point where the capacity value was about 100 mAh / g and the voltage was about 3.5 V.
  • FIG. 18B shows the result of one-time differentiation after averaging the discharge curve of FIG. 18A.
  • the average value of the measurement points in the range of 3.5 mAh / g centered on each measurement point was used at each measurement point.
  • the maximum point was observed when the capacitance value was about 71 mAh / g.
  • the peak centered on the local maximum point had a positive convex shape (convex on the plus side).
  • the capacitance value at which the maximum point is observed in the first differentiation shown in FIG. The point of the capacity value X in the discharge curve can be regarded as an inflection point.
  • the SOC of the secondary battery can be estimated using the inflection point.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

要約書 優れた特性を有する蓄電システムを提供する。 安全性の高い蓄電システムを提供する。 劣化の小さい 蓄電システムを提供する。優れた特性を有する蓄電池を提供する。 二次電池と二次電池の電圧を検出する機能および二次電池の充電を行う機能を有する第1の回路を 有し、 二次電池の放電時の電位曲線は2以上の平坦部を有し、 二次電池の放電が行われる第1のステ ップと二次電池の容量の低下が検出される第2のステップと二次電池の充電が開始される第3のス テップと二次電池の充電が終了される第4のステップを有し、第2のステップにおける容量の低下は、 電位曲線の変曲点の検知により検出され、変曲点は電位曲線が有する第1の平坦部と第2の平坦部と の間に位置する蓄電システムである。

Description

蓄電システムおよび蓄電システムの動作方法
 本発明の一形態は、蓄電池、及びそれを用いた蓄電システムに関する。また、本発明の一態様は、蓄電池を用いた車両に関する。また、本発明の一態様は、蓄電池を用いた電子機器に関する。
 また、本発明の一形態は半導体装置に関する。
 なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。表示装置、発光装置、記憶装置、電気光学装置、蓄電装置、半導体回路及び電子機器は、半導体装置を有する場合がある。
 なお、本発明の一形態は上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一形態は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
 蓄電池は、情報端末等の電子機器、車両、等、移動可能な様々な機器に搭載される。これらの機器の動作条件は多様であり、蓄電池への負荷も多様となっている。また、蓄電池の高エネルギー密度、長寿命、等の性能向上に対する要求は年々、高まっている。
リチウムイオン二次電池の正極材料として用いられるオリビン型の材料は、安全性が高いことが知られている。特許文献1には、鉄および鉄よりも酸化還元電位が大きい金属原子を用いたオリビン構造が示されている。
蓄電池を搭載した様々な機器において、電池残量の推定が課題となっている。特許文献2には、オリビン系正極活物質を含む正極を有する二次電池における充電深度の算出について述べられている。
特開2015−178451号公報 特開2013−140734号公報
 本発明の一態様は、優れた特性を有する蓄電システムを提供することを課題の一とする。または、本発明の一態様は、安全性の高い蓄電システムを提供することを課題の一とする。または、本発明の一態様は、劣化の小さい蓄電システムを提供することを課題の一とする。
 または、本発明の一態様は、蓄電池の状態を判定することを課題の一とする。または、本発明の一態様は、蓄電池の性能の予測を行うことを課題の一とする。または、本発明の一態様は、優れた特性を有する蓄電池を提供することを課題の一とする。または、本発明の一態様は、安全性の高い蓄電池を提供することを課題の一とする。または、本発明の一態様は、劣化の小さい蓄電池を提供することを課題の一とする。または、本発明の一態様は、優れた特性を有する蓄電システムが搭載された電子機器を提供することを課題の一とする。または、本発明の一態様は、優れた特性を有する蓄電システムが搭載された車両を提供することを課題の一とする。または、本発明の一態様は、新規な半導体装置を提供することを課題の一とする。
 なお、複数の課題の記載は、互いの課題の存在を妨げるものではない。なお、本発明の一形態は、これらの課題の全て解決する必要はない。また、列記した以外の課題が、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、これらの課題も、本発明の一形態の課題となり得る。
 本発明の一態様は、二次電池と、第1の回路と、を有し、二次電池はポリアニオン系の正極活物質を有し、正極活物質は、鉄、マンガン、ニッケル、コバルトから選ばれる2以上の金属を有し、二次電池の放電時の電位曲線は2以上の平坦部を有し、第1の回路は二次電池の電圧を検出する機能を有し、第1の回路は二次電池の充電を行う機能を有し、二次電池の放電が行われる第1のステップと、二次電池の容量の低下が検出される第2のステップと、二次電池の充電が開始される第3のステップと、二次電池の充電が終了される第4のステップと、を有し、第2のステップにおける容量の低下は、電位曲線の変曲点の検知により検出され、変曲点は、電位曲線が有する第1の平坦部と第2の平坦部との間に位置する蓄電システムである。
 また、上記構成において、電位曲線は開回路電位曲線であることが好ましい。また、上記構成において、正極活物質はオリビン型の結晶構造を有することが好ましい。また、上記構成において、第1のステップにおける放電レートは、0.7C以上であることが好ましい。また、上記構成において、正極活物質は、鉄、およびマンガンを有し、正極活物質は、マンガンの原子数は、鉄の原子数とマンガンの原子数の和を1としたとき、0.5以上0.9以下である領域を有することが好ましい。
 または、本発明の一態様は、二次電池と、第1の回路と、を有し、二次電池は、第1の正極活物質と、第2の正極活物質と、を有し、第1の正極活物質は、鉄を有し、第2の正極活物質は、元素Mを有し、元素Mはマンガン、ニッケル、マンガン、ニッケル、コバルトから選ばれる一以上の元素であり、二次電池の放電時の電位曲線は2以上の平坦部を有し、第1の回路は二次電池の電圧を検出する機能を有し、第1の回路は二次電池の充電を行う機能を有し、二次電池の放電が行われる第1のステップと、二次電池の容量の低下が検出される第2のステップと、二次電池の充電が開始される第3のステップと、二次電池の充電が終了される第4のステップと、を有し、第2のステップにおける容量の低下は、電位曲線の変曲点の検知により検出され、変曲点は、電位曲線が有する第1の平坦部と第2の平坦部との間に位置する蓄電システムである。
 また、上記構成において、電位曲線は開回路電位曲線であることが好ましい。また、上記構成において、第1の正極活物質はオリビン型の結晶構造を有することが好ましい。また、上記構成において、第1のステップにおける放電レートは、0.7C以上であることが好ましい。また、上記構成において、第2の正極活物質が有する元素Mの原子数が、第1の正極活物質が有する鉄の原子数の0.5以上0.9以下である領域を有することが好ましい。
 本発明の一態様により、優れた特性を有する蓄電システムを提供することができる。また、本発明の一態様により、安全性の高い蓄電システムを提供することができる。また、本発明の一態様により、劣化の小さい蓄電システムを提供することができる。
 また、本発明の一態様により、蓄電池の状態を判定することができる。また、本発明の一態様により、蓄電池の性能の予測を行うことができる。また、本発明の一態様により、優れた特性を有する蓄電池を提供することができる。また、本発明の一態様により、安全性の高い蓄電池を提供することができる。また、本発明の一態様により、劣化の小さい蓄電池を提供することができる。また、本発明の一態様により、優れた特性を有する蓄電システムが搭載された電子機器を提供することができる。また、本発明の一態様により、優れた特性を有する蓄電システムが搭載された車両を提供するができる。また、本発明の一態様により、新規な半導体装置を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一形態は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1は、蓄電システムの一例である。 図2(A)は、放電曲線および充電曲線の一例である。図2(B)は、放電曲線および充電曲線の一例である。 図3は、放電曲線の一例である。 図4は、蓄電システムの動作を示すフロー図である。 図5は、蓄電システムの動作を示すフロー図である。 図6(A)は、蓄電システムの一例である。図6(B)は、蓄電システムの一例である。 図7(A)は、二次電池の充電方法を説明する回路図である。図7(B)は、二次電池の充電方法を説明する回路図である。図7(C)は、二次電池の充電方法を説明する図である。 図8(A)は、二次電池の充電方法を説明する回路図である。図8(B)は、二次電池の充電方法を説明する回路図である。図8(C)は、二次電池の充電方法を説明する回路図である。図8(D)は、二次電池の充電方法を説明する図である。 図9は、二次電池の放電方法を説明する図である。 図10(A)は、蓄電池の構成の一例である。図10(B)は、複数の蓄電池を用いた構成の例である。図10(C)は、複数の蓄電池を用いた構成の例である。 図11(A)は、蓄電池を用いた構成の一例である。図11(B)は、蓄電池を用いた構成の一例である。図11(C)は、蓄電池を用いた構成の一例である。 図12(A)は、車両の一例である。図12(B)は、車両の一例である。図12(C)は、車両の一例である。 図13(A)は、車両の一例である。図13(B)は、電子機器の一例である。 図14(A)は、車両の一例である。図14(B)は、車両の内装の一例である。図14(C)は、車両の内装の一例である。図14(D)は、携帯電話機の表示部の拡大図である。 図15(A)は電子機器の一例である。図15(B)は電子機器の一例である。図15(C)はシステムの構成の一例を示すブロック図である。 図16は蓄電システムの適用例である。 図17(A)は電子機器の一例である。図17(B)は電子機器の一例である。図17(C)は二次電池および制御システムの一例である。図17(D)は電子機器の一例である。図17(E)は電子機器の一例である。 図18(A)は放電曲線である。図18(B)は放電曲線の一回微分である。
 以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる形態で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。
 また、本明細書は、以下の実施の形態を適宜組み合わせることが可能である。また、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
 なお、本明細書においてニューラルネットワークとは、生物の神経回路網を模し、学習によってニューロン同士の結合強度を決定し、問題解決能力を持たせるモデル全般を指す。ニューラルネットワークは入力層、中間層(隠れ層ともいう)、出力層を有する。
 また、本明細書において、ニューラルネットワークについて述べる際に、既にある情報からニューロンとニューロンの結合強度(重み係数とも言う)を決定することを「学習」と呼ぶ場合がある。
 また、本明細書において、学習によって得られた結合強度を用いてニューラルネットワークを構成し、そこから新たな結論を導くことを「推論」と呼ぶ場合がある。
 また本明細書等において、チャネル形成領域に酸化物半導体または金属酸化物を用いたトランジスタをOxide Semiconductorトランジスタ、あるいはOSトランジスタと呼ぶ。
(実施の形態1)
 本実施の形態は、本発明の一態様の蓄電システムの構成例、及び動作例について説明する。
図1に示す蓄電システム120は、二次電池135と、制御回路182と、を有する。
また、蓄電システム120は、サーミスタ174と、ヒューズ176と、トランジスタ147と、トランジスタ148と、を有してもよい。
制御回路182は、二次電池135の正極および負極と電気的に接続される。制御回路182は、二次電池135の電圧および電流を測定する機能を有する。
また制御回路182は、二次電池135の開回路電圧(Open Circuit Voltage:OCV)を測定する機能を有することが好ましい。
 OCVは例えば、充電、または放電を停止し、所定の時間が経過後、電池の反応が安定した後の電圧を測定することにより求められる。電池の反応が安定するまで、所定の時間、充電または放電を停止して待機するため、OCVの測定には長い時間を要する場合がある。ここで所定の時間、とは例えば2分以上5時間以下、あるいは5分以上2時間以下、である。
 OCVの測定に長い時間を要する場合があるため、その代替測定として例えば、充電または放電を停止して待機する時間(以下、休止時間と呼ぶ)を、より短くして測定を行ってもよい。あるいは、OCVの測定の代替として例えば、充電、または放電の電流値を変化させて電圧の変化を測定し、OCVを推定してもよい。
また制御回路182は、クーロンカウンタCCを有することが好ましい。クーロンカウンタCCは、二次電池135の電流の時間特性を用いて積算電気量を算出する機能を有する。
制御回路182は、二次電池135の充電を行う機能を有する。
制御回路182はニューラルネットワークを有してもよい。
蓄電システム120は、保護回路137を有する。保護回路137は制御回路182と電気的に接続され、制御回路182との信号の授受を行うことが好ましい。なお、保護回路137は制御回路182に含まれていてもよい。
保護回路137は、二次電池135がある定められた条件を満たす場合に、二次電池の動作を停止する機能を有する。例えば、二次電池135の電流がある値を超える場合に、その動作を停止する。また例えば、二次電池の電圧がある値以上、あるいはある値以下となる場合に、その動作を停止する。
 保護回路137は、二次電池135の動作を停止する場合に、二次電池135の両極と接続し、該両極を短絡させる経路を有してもよい。該経路に、抵抗素子または容量素子を設けてもよい。
 図1に示すように、蓄電システム120は、トランジスタ147及びトランジスタ148を有してもよい。トランジスタ147及びトランジスタ148は、電流を遮断するスイッチとして機能し、保護回路137が二次電池135を停止させると判断した場合に、スイッチを作動させる。図1に示す例では、トランジスタ147及びトランジスタ148として寄生ダイオードを有するMOSFETを示すが、トランジスタ147及びトランジスタ148として、OSトランジスタを用いてもよい。OSトランジスタの詳細については後述する。また蓄電システム120は、トランジスタ147及びトランジスタ148のいずれかを有さない構成としてもよい。
本発明の一態様の蓄電システムは、二次電池の放電、または充電において、二次電池の積算電気量−電圧曲線:QVC(容量−電圧曲線とも言う)の傾きを検知する機能を有する。ここで、本明細書等で、充電時のQVCを充電曲線、放電時のQVCを放電曲線、と呼ぶ場合がある。また、本発明の一態様の蓄電システムは、該傾きの変化を測定し、例えば変曲点を検知することにより二次電池のSOC(State of Charge)を推定する機能を有する。ここで積算電気量−電圧曲線の電圧として、OCVを用いることもできる。
ここでSOCは例えば、満充電容量(Full Charge Capacity:FCC)を100%とし、二次電池の容量を割合で示す値である。SOCは充電率と呼ばれる場合がある。FCCとは例えば、満充電を行った後に放電を行う場合の、二次電池の放電容量である。満充電とは例えば、二次電池において定められた充電条件により、充電終了に至るまで充電が行うことを指す。FCCは充電終止電圧(充電上限電圧)、充電終止電流、等により変化する値である。また、FCCにSOCを掛け合わせた値を二次電池の残容量(RC)と呼ぶ場合がある。
二次電池において、充放電の繰り返しによる劣化や、運用時間が経過するに従って生じる劣化、等が生じる場合がある。二次電池の健康状態や劣化状態を数値化した指標としてSOH(State Of Health:健全度とも呼ぶ)が知られている。SOHは二次電池が新品の状態を100として、その二次電池の劣化が進行するにつれて100よりも小さな値として表している。例えば、二次電池が新品の状態のSOCを100とすればよい。
本発明の一態様の蓄電システムが有する二次電池のQVCは、2以上のプラトー(平坦部)を有することが好ましい。QVCが有する2以上のプラトーの間には、変曲点Qがある。
図2(A)および(B)には、二次電池のQVCの一例を示す。図2(A)は放電曲線、図2(B)は充電曲線をそれぞれ示す。図2(A)において、プラトーPd1と、プラトーPd2と、プラトーPd1とプラトーPd2の間に位置する変曲点Qd1と、が観測される。放電曲線において観測される2つのプラトーは、後の実施の形態に示すように例えば、正極活物質が有する2種の異なる金属に関する反応に対応した放電電位に起因する。変曲点Qd1は例えば、プラトーPd1に対応する金属の放電からプラトーPd2に対応する金属の放電へと切り替わる点である。図2(B)において、プラトーPc1、プラトーPc2および変曲点Qc1が観測される。プラトーPc1はプラトーPd1と同じ種類の金属に関する反応に、プラトーPc2はプラトーPd2と同じ種類の金属に関する反応に、それぞれ対応するといえる。
図2(A)において、放電開始から変曲点Qd1までの容量を容量Cd1とし、変曲点Qd1から放電終了までの容量を容量Cd2とする。2つのプラトーが正極活物質が有する2種の異なる金属にそれぞれ対応する場合には、容量Cd1と容量Cd2の比は例えば、2種の金属の組成に関連して変化する。
容量Cd1と容量Cd2の和がFCCと一致する場合には、変曲点Qd1におけるSOCは100−{Cd1÷FCC×100}[%]として算出することができる。すなわち、変曲点Qd1を観測することにより、二次電池のSOCを推測することができる。
変曲点Qd1は例えば、2種の異なる金属の物性に起因するため、二次電池の劣化が生じても本質的に、複数のプラトーの電位の差が観測され続けると考えられる。
二次電池の劣化が生じる場合には、二次電池の放電容量が減少する場合がある。放電容量が減少した後も、容量Cd1と容量Cd2の比の変化が小さい、例えばそれぞれの容量の減少率の差が小さいことが好ましい。
あるいは、容量Cd1または容量Cd2のそれぞれの容量の減少率が異なる場合もあり得る。このような場合に、いずれか一方の容量の減少率が極めて小さい場合には、減少率が小さい方の容量を基準値としてSOHを推定できる場合がある。
また、二次電池の放電容量の減少に伴う容量Cd1と容量Cd2の比の変化に関するデータが蓄積されている場合には、該データに基づき、テーブルを作成し、制御回路182が有するメモリ部に該テーブルの情報が保存されてもよい。SOCの推定を行う際に、該テーブルの情報を用いることができる。
図3には、3のプラトーを有する放電曲線の一例を示す。図3に示す放電曲線において、プラトーPd1と、プラトーPd2と、プラトーPd3と、プラトーPd1とプラトーPd2の間に位置する変曲点Qd1と、プラトーPd2とプラトーPd3の間に位置する変曲点Qd2と、が観測される。図3において、放電開始から変曲点Qd1までの容量を容量Cd1とし、変曲点Qd1から変曲点Qd2までの容量を容量Cd2とし、変曲点Qd2から放電終了までの容量を容量Cd3とする。容量Cd1、容量Cd2および容量Cd3の和がFCCと一致する場合には、変曲点Qd1におけるSOCは100−{Cd1÷FCC×100}[%]として算出することができ、変曲点Qd2におけるSOCは100−{(Cd1+Cd2)÷FCC×100}[%]として算出することができる。
変曲点Qにおいて例えば、QVCの傾きSが1.5倍以上、あるいは2倍以上、あるいは3倍以上、あるいは4倍以上増加する。また変曲点Qは例えばQVCにおいて、電荷量が1mAh以上30mAh以下、あるいは2mAh以上10mAh以下、あるいは2mAh以上5mAh以下の範囲であってもよい。傾きSの変化は例えば、ある電荷量の範囲毎、例えば1mAh以上30mAh以下の範囲ごとに区切り、範囲内の傾きSの平均値を算出し、隣接する範囲の傾きSの平均値を比較してもよい。同様に、以下に述べる一回微分および二回微分の波形などにおいても、範囲ごとに区切って解析を行ってもよい。
またQVCの一回微分の波形において極大値を有する領域を、QVCの変曲点Qとみなしてもよい。放電の場合には例えば正の極大値、充電の場合には例えば負の極大値とすればよい。
またQVCの二回微分の波形においてゼロを横切る領域を、QVCの変曲点Qとみなしてもよい。
間に変曲点Qが存在する2のプラトーにおいて、それぞれのプラトーの平均電位の差は好ましくは0.2V以上、より好ましくは0.35V以上である。
傾きSの算出を行う場合には、測定点、および測定点の近傍の範囲について平均化を行い、算出してもよい。その場合は例えば、近傍の範囲として、1mAh以上10mAh以下の範囲を算出すればよい。
QVCにおける変曲点Qの位置は、二次電池が有する正極活物質の組成、配合、負極活物質の材料、等に依存する。二次電池の変曲点QとSOCとの関係をあらかじめ調べることにより、二次電池の放電時、あるいは充電時において、変曲点Qを用いて二次電池のSOCを推定することができる。
また、QVCにおける変曲点Qの位置は、二次電池のSOHにより変化する場合がある。よって例えば、QVCにおける変曲点Qの位置を検知することにより、二次電池のSOHを推定することができる。
QVCにおいて、積算電気量に対する電圧の変化が大きい場合には例えば、二次電池の電圧を測定することにより、SOCを推定することができる。但し、二次電池のインピーダンスの増加等によりQVC特性が変化してしまうと、SOCの推定の精度が低下する懸念がある。また、電圧の絶対値を測定する場合には、基準電圧が必要となる場合がある。
本発明の一態様の二次電池では、変曲点Qの検知によりSOCを推定する。変曲点Qの検知を行う場合には、QVCの電圧に対して基準電圧は必ずしも必要ではない。前後の時間のデータを用いて傾きを算出し、解析を行えばよい。傾きの算出には差分値、あるいは微分値等を用いることができる。基準電圧を設ける必要がない場合には、回路構成を簡略化できる場合がある。
また二次電池の劣化に伴うQVCにおける変曲点Qの相対的な位置の変化を小さくすることにより、SOCの推定の精度を高めることができる。SOCの精度が高ければマージンを小さくすることができるため、二次電池のエネルギーをより効率的に使えるようになる。QVCにおける変曲点Qの相対的な位置の変化が小さいとは例えば、満充電容量と、変曲点Qが観測される積算電気量と、の比の変化が小さいことをいう。
二次電池の電流密度を高くすることにより、QVCの電圧が変化することがある。二次電池の抵抗により電圧上昇または電圧降下が生じるためである。変曲点Qの検知を行う制御回路が、電流密度に応じた電圧の変化の情報をあらかじめ有する場合には、得られたQVCに対して、電流密度の影響を相殺するような補正を行ってもよい。
また、QVCの電圧としてOCVを用いることにより、抵抗による電圧上昇または電圧降下の影響を小さくすることができる。一方、OCVを用いた検知方式は、休止時間を設けるため、フィードバックが遅くなる場合がある。本発明の一態様の蓄電システムにおいては、電圧の絶対値ではなく変曲点を用いる。変曲点は二次電池の活物質の種類、活物質の配合、等の条件により特徴づけることができる。二次電池に合わせた特徴量を抽出することにより、抵抗等の影響を小さくし、OCVを用いない場合でも、より精度の高いSOCの推定が可能と考えられる。すなわちフィードバックの速いシステムを構築することができる。
蓄電システム120の動作例を図4および図5に示すフロー図を用いて説明する。なお、以下に示すフロー図においては放電の際に変曲点Qの検知を行っているが、充電の際に検知を行ってもよい。
ステップS200において、処理を開始する。
次にステップS201において、二次電池135の放電が行われる。
次にステップS202において、制御回路182により二次電池135の電流および電圧が測定される。ここで測定される電圧は、OCVであってもよい。
次にステップS203において、制御回路182は、ステップS202において測定した値を用いて、QVCの傾きSを算出する。例えば、積算電気量の変化に伴う電圧の値を何点か測定したデータを用いて傾きSを算出する。
QVCにおいて傾きSを算出する際に、ノイズ等の影響をより小さくするために、測定データの平均化を行ってもよい。
次にステップS204において、傾きSがAより大きいか、判定する。Aは任意の値である。傾きSがAより大きい場合にはステップS205へ進み、A以下の場合にはステップS202へ戻る。Aの絶対値は例えば二次電池が有する正極活物質または負極活物質の材料、電極の材料の配合、等で決まる量であり、加えて、蓄電池のレートにより異なる値とすればよい。または、Aの絶対値は例えば二次電池が有する正極活物質と負極活物質の配合で決まる量である。ここで、判定の精度を高めるため、ステップS204において、傾きSがAより大きいか、の判定を数回、例えば2回以上5回以下繰り返し行ってもよい。そのような場合には例えば繰り返し同じ判定結果が得られた場合に次のステップに進めばよい。
次にステップS205において、制御回路182により、二次電池135のQVCの変曲点Qが検知される。制御回路182は例えば傾きSの値を用いた解析を行って変曲点Qを検知する。
次にステップS206において、制御回路182は、ステップS205で検知された変曲点Qを用いて、二次電池135のSOCを推定する。得られたSOCの推定値に基づき、二次電池のSOCを補正する。例えば、クーロンカウンタCCにより得られたSOCを補正する。
次にステップS207において、ステップS206で得られたSOCの推定値がB1より小さい場合にはステップS281を介して図5のステップS208へ進み、B1以上の場合にはステップS202へ戻る。B1は任意の値である。B1は例えば10%以上30%以下であることが好ましい。ステップS281はステップS207からステップS208へ結合する結合子aである。
次にステップS208において、蓄電システム120は警告を表示する。警告の表示は例えば、蓄電システム120が有する表示部に表示される。表示部にはLEDランプなどのインジケータが含まれてもよい。あるいは例えば、蓄電システム120が有するスピーカーより警報音が発せられる。蓄電システム120の使用者は、警告を受けて例えば、蓄電システム120の使用を停止、あるいは制限することが好ましい。しかしながら蓄電システム120が搭載される機器の動作をすぐに停止できない場合がある。そのような場合には、蓄電システム120の使用を停止、あるいは制限するまでの準備時間があることが好ましい。よってB1は、蓄電システム120が搭載される機器の動作を停止するまでに必要な容量より大きいことが好ましい。例えば、蓄電システム120を搭載した車両において、警告を受けて安全な場所に車両を移動した後、蓄電システム120を停止することが好ましい。該移動に要するエネルギーの分を蓄電システム120が有することが好ましい。QVCにおいて変曲点Qを所望の位置に調整することにより、B1を所望の値に調整することができる。
次にステップS209において、二次電池135の充電が行われる場合にはステップS210へ進み、二次電池の充電が行われない場合にはステップS211へ進む。ステップS208において、蓄電システム120が充電を行う装置と電気的に接続されている場合には、警告を表示する動作と並行して、ステップS209の充電の動作が行われることが好ましい。
次にステップS210において、二次電池のSOCがB2より小さい場合にはステップS209へ戻り、B2以上の場合にはステップS299へ進み、処理を終了する。B2は例えば好ましくは80%以上、より好ましくは90%以上100%以下である。
ステップS211において、使用者は蓄電システム120が二次電池135の放電量を制限する動作を行うことを許可するか、を問う警告が表示される。使用者が、該警告を許可する応答を選択する場合にはステップS212へ進み、却下する応答を選択する場合にはステップS209へ戻る。
ステップS212において、制御回路182により二次電池135の放電量が制限される。ステップS212が実行された後、ステップS209へ戻る。
図6(A)および(B)には、蓄電システム120が複数の二次電池135を有する一例を示す。
図6(A)に示す蓄電システム120は、電気的に直列に接続されたm個の二次電池135(以下、二次電池135Sと呼ぶ)をn組有する。mおよびnは1以上の整数である。k番目の二次電池135Sを135S_k(kは1以上n以下の整数)と呼ぶ。
図6(B)に示す蓄電システム120は、電気的に並列に接続されたn個の二次電池135(以下、二次電池135Pと呼ぶ)をm組有する。g番目の二次電池135Pを135P_g(gは1以上m以下の整数)と呼ぶ。図6(B)に示す例においては、制御回路182によりそれぞれの二次電池135Pの電圧が測定される。ステップS203において傾きSを算出する際に、それぞれの二次電池135Pの電圧に対して、QVCの傾きを算出してもよいし、m組の二次電池135Pの電圧の和を用いてもよい。
 本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態2)
本実施の形態では、本発明の一態様の蓄電システムに適用できる正極について説明する。
[正極]
正極は、正極活物質層および正極集電体を有することが好ましい。
<正極活物質>
本発明の一態様の正極活物質は、充電曲線および放電曲線が2以上のプラトーを有することが好ましい。
正極活物質として例えば、層状岩塩型の結晶構造、またはスピネル型の結晶構造を有する複合酸化物等を用いることができる。また、正極活物質として例えば、ポリアニオン系の正極材料を用いることができる。ポリアニオン系の正極材料として例えば、オリビン型の結晶構造を有する材料、ナシコン型の材料、等が挙げられる。また、正極活物質として例えば、硫黄を有する正極材料を用いることができる。
ポリアニオン系の正極材料として例えば、酸素と、元素Xと、金属Aと、金属Mと、を有する複合酸化物を用いることができる。金属MはFe、Mn、Co、Ni、Ti、V、Nbの一以上であり、金属AはLi、Na、Mgの一以上であり、元素XはS、P、Mo、W、As、Siの一以上である。金属MはFeを含むことが好ましい。
ポリアニオン系の正極材料、特にオリビン型の結晶構造を有する材料は、安全性および安定性に優れ、好ましい。ポリアニオン系の正極材料は例えば、空間群Pnma等で表される場合がある。
酸素と、元素Xと、金属Aと、金属Mと、を有する複合酸化物であるポリアニオン系の正極材料において、金属MとしてFe、Mn、Co、Ni、Ti、V、Nbより選ばれる2以上を用いることにより、二次電池の放電曲線、あるいは充電曲線において、2以上のプラトーが設けられる場合がある。2以上の異なる金属の酸化還元反応に対応するそれぞれの電位が観測されるためと考えられる。
本発明の一態様の正極活物質として例えば、金属MとしてFe、Mn、Co、Ni、Ti、V、Nbより選ばれる2以上を含む、オリビン型の結晶構造を有する材料を用いることができる。より具体的には例えば、LiFeMnPOを用いる事が好ましい。またLiFeMnPOの空間群は例えば、Pnmaで表される。
正極活物質としてポリアニオン系の正極材料を用いることにより、平坦性のより高いプラトーを有する場合がある。特にオリビン型の結晶構造を有する材料に起因することが示唆される放電曲線の領域は、他の結晶構造、例えば層状岩塩型構造を有する材料と比較して、平坦性のより高いプラトーが実現できる場合がある。一方、例えば層状岩塩型構造のようにQVCにおける平坦性が低い材料においては、2以上の異なる金属の酸化還元反応に対応するそれぞれの電位を分離して観測することが難しい場合がある。
QVCにおいて、プラトーの平坦性が高い場合には、容量の変化に対する電圧の変化が小さい。そのため、QVCにおいて、プラトーが一つの場合には、電圧の値によりSOCを推定することが難しい場合がある。
本発明の一態様の蓄電システムにおいては、QVCが2以上のプラトーを有し、変曲点Qを用いてSOCを推定することができる。
本発明の一態様の正極活物質が金属Mより選ばれる2以上を含む場合、正極活物質を有する二次電池の放電曲線において例えば、それぞれの金属に起因する電位と示唆されるプラトーが観測される。複数の金属Mのうち、より高い電位の起源となる金属の組成を高くすることにより、放電曲線において、放電容量がより大きい位置に変曲点Qを調整することができる。また、より低い電位の起源となる金属の組成を高くすることにより、放電曲線において、容量がより小さい位置に変曲点Qを調整することができる。
二次電池においては、放電電位が高いほど、エネルギー密度を高くすることができる。よって、複数の金属Mのうち、より高い電位の起源となる金属の組成を高くすることにより、二次電池のエネルギー密度を高くすることができる。
LiMPOにおいて、金属MとしてFeとMnが選ばれる場合には例えば、Mnの組成をFeの組成よりも高くすることが好ましい。
また、Feの組成を高くすることにより、先の実施の形態で述べたB1の値を高めることができる。蓄電システム120として必要なB1の値が得られるように、Feの組成を決定することが好ましい。
以上より、MnとFeの組成はMn:Fe=x:(1−x)とし、xは好ましくは0.5以上0.9以下、より好ましくは0.6以上0.8以下である。
先の実施の形態に述べた通り、複数のプラトーのそれぞれに起因する容量(例えば前述の容量Cd1および容量Cd2)のいずれか一方の容量の減少率が極めて小さい場合には、減少率が小さい方の容量を基準値としてSOHを推定できる場合がある。オリビン型の結晶構造において、Feに起因して発現すると考えられている容量の値は安定であることが知られている。よって例えば、本発明の一態様の蓄電システムにおいて、Feに起因する容量値を基準とし、SOHを推定すればよい。
<正極活物質層>
正極活物質層は、少なくとも正極活物質を有する。また、正極活物質層は、正極活物質に加えて、活物質表面の被膜、導電助剤またはバインダなどの他の物質を含んでもよい。
正極活物質層は上記で示す一以上の正極活物質を有する。
正極活物質層が2以上の正極活物質を有し、該2以上の正極活物質の放電電位がそれぞれ異なる場合には、二次電池の放電曲線においてそれぞれの正極活物質に起因する放電特性が観測される。このため例えば、放電曲線において、2以上のプラトーが設けられる場合がある。
2以上の正極活物質のうち、第1の正極活物質として、ポリアニオン系の正極材料、特にオリビン型の結晶構造を有する材料を用いることが好ましい。
2以上の正極活物質のうち、第2の正極活物質として例えば、層状岩塩型の結晶構造、またはスピネル型の結晶構造を有する複合酸化物等を用いることができる。また第2の正極活物質として例えば、ポリアニオン系の正極材料を用いることができる。
本発明の一態様の正極が第1の正極活物質および第2の正極活物質を有する場合には、二次電池の放電曲線には、それぞれの正極活物質に対応する放電特性が観測される。特に、正極活物質として、平坦性のより高いプラトーを有する材料を用いることにより、それぞれの正極活物質に対応する放電電位が区別して観測される。このような場合には、先の実施の形態で述べた変曲点Qが顕著に観測されるため、好ましい。
二次電池の劣化により、QVCにおいて変曲点Qが観測される位置が変化する場合がある。また、例えば一方の正極活物質として、二次電池の充放電に伴う劣化が極めて小さい材料を用いることにより、その放電容量の減少率を極めて小さくすることができる。このような場合には、第1の正極活物質の劣化に起因する放電容量の減少率と第2の正極活物質の劣化に起因する放電容量の減少率は異なる場合がある。それぞれの放電容量の減少率の違いに基づき、二次電池のSOHを推定できる場合がある。
ここで、QVCにおける2以上のプラトーが、2以上の正極活物質材料にそれぞれ起因する場合、それぞれの正極活物質材料のレート特性、例えばレートに対する放電容量依存性、が著しく異なる場合には、レートの変化に対して、変曲点Qの相対的な位置も顕著に変化してしまう。
第1の正極活物質および第2の正極活物質はレート特性が近い材料であることが好ましい。例えば、第1の正極活物質および第2正極活物質をそれぞれ、ポリアニオン系の材料とすればよい。また、レートが遅い方の活物質の粒径をより小さくすることにより、該活物質を電極に組み込んだ場合に発現するそれぞれの活物質のレート特性を近くすることができる。
本発明の一態様の正極活物質は例えば、充電レートおよび放電レートの変化に対して、QVCにおける変曲点Qの相対的な位置の変化が小さいことが好ましい。これにより、本発明の一態様の正極活物質を用いた二次電池において、高いレートで充電する、あるいは高いレートで放電する場合にも、変曲点Qを用いて推定されるSOCの精度を高めることができる。
本発明の一態様の蓄電システムにおいて、変曲点Qの検知を行う際の二次電池の充電レートまたは放電レートは例えば、0.1C以上2C以下、あるいは0.3C以上2C以下、あるいは0.5C以上1.5C以下、あるいは0.7C以上、あるいは0.7以上1.2C以下である。
以下に、正極活物質のより具体的な材料の一例を示す。
層状岩塩型の結晶構造を有する材料として例えば、LiMOで表される複合酸化物を用いることができる。元素Mは、CoおよびNiより選ばれる一以上であることが好ましい。LiCoOは、容量が大きいこと、大気中で安定であること、熱的に比較的安定であること等の利点があるため、好ましい。また、元素Mとして、CoおよびNiより選ばれる一以上に加えて、AlおよびMnより選ばれる一以上を有してもよい。
正極活物質が有する遷移金属やリチウムの一部をFe、Co、Ni、Cr、Al、Mgなどから選ばれる一以上の元素で置換した材料や、正極活物質にFe、Co、Ni、Cr、Al、Mgなどから選ばれる一以上の元素をドープした材料を正極活物質として使用してもよい。
また、例えば、複合酸化物を複数組み合わせた固溶体を正極活物質として用いることができる。例えば、LiNiMnCo(x、y、z>0、x+y+z=1)とLiMnOの固溶体を正極活物質として用いることができる。
スピネル型の結晶構造を有する材料として例えば、LiMで表される複合酸化物を用いることができる。元素MとしてMnを有することが好ましい。例えば、LiMnを用いることができる。また元素Mとして、Mnに加えてNiを有することにより、二次電池の放電電圧が向上し、エネルギー密度が向上する場合があり、好ましい。また、LiMn等のマンガンを含むスピネル型の結晶構造を有するリチウム含有材料に、少量のニッケル酸リチウム(LiNiOやLiNi1−x(M=Co、Al等))を混合することにより、二次電池の特性を向上させることができ好ましい。
正極活物質は例えば、一次粒子の平均粒子径が、1nm以上100μm以下であることが好ましく、50nm以上50μm以下であることがより好ましく、1μm以上30μm以下であることがより好ましい。また比表面積が1m/g以上20m/g以下であることが好ましい。また、二次粒子の平均粒子径は、5μm以上50μm以下であることが好ましい。なお平均粒子径は、SEM(走査型電子顕微鏡)またはTEM(透過型電子顕微鏡)による観察、またはレーザ回折・散乱法を用いた粒度分布計等によって測定することができる。また比表面積は、ガス吸着法により測定することができる。
正極活物質の表面に炭素層などの導電性材料を設けてもよい。炭素層などの導電性材料を設けることで、電極の導電性を向上させることができる。例えば、正極活物質への炭素層の被覆は、正極活物質の焼成時にグルコース等の炭水化物を混合することで形成することができる。
正極活物質の表面に酸化物又はフッ化物の一以上を有する層を設けてもよい。酸化物は、正極活物質と異なる組成を有してもよい。また、酸化物は、正極活物質と同じ組成を有してもよい。
ポリアニオン系の正極材料として例えば、酸素と、元素Xと、金属Aと、金属Mと、を有する複合酸化物を用いることができる。金属MはFe、Mn、Co、Ni、Ti、V、Nbの一以上であり、金属AはLi、Na、Mgの一以上であり、元素XはS、P、Mo、W、As、Siの一以上である。
オリビン型の結晶構造を有する材料として例えば、複合材料(一般式LiMPO(Mは、Fe(II)、Mn(II)、Co(II)、Ni(II)の一以上))を用いることができる。一般式LiMPOの代表例としては、LiFePO、LiNiPO、LiCoPO、LiMnPO、LiFeNiPO、LiFeCoPO、LiFeMnPO、LiNiCoPO、LiNiMnPO(a+bは1以下、0<a<1、0<b<1)、LiFeNiCoPO、LiFeNiMnPO、LiNiCoMnPO(c+d+eは1以下、0<c<1、0<d<1、0<e<1)、LiFeNiCoMnPO(f+g+h+iは1以下、0<f<1、0<g<1、0<h<1、0<i<1)等のリチウム化合物を用いることができる。
特にLiFePOは、安全性、安定性、高容量密度、初期酸化(充電)時に引き抜けるリチウムイオンの存在等、正極活物質に求められる事項をバランスよく満たしているため、好ましい。
オリビン型の結晶構造を有する正極活物質は例えば、一次粒子の平均粒子径が、1nm以上20μm以下であることが好ましく、10nm以上5μm以下であることがより好ましく、50nm以上2μm以下であることがより好ましい。また比表面積が1m/g以上20m/g以下であることが好ましい。また、二次粒子の平均粒子径は、5μm以上50μm以下であることが好ましい。
また、一般式Li(2−j)MSiO(Mは、Fe(II)、Mn(II)、Co(II)、Ni(II)の一以上、0≦j≦2)等の複合材料を用いることができる。一般式Li(2−j)MSiOの代表例としては、Li(2−j)FeSiO、Li(2−j)NiSiO、Li(2−j)CoSiO、Li(2−j)MnSiO、Li(2−j)FeNiSiO、Li(2−j)FeCoSiO、Li(2−j)FeMnSiO、Li(2−j)NiCoSiO、Li(2−j)NiMnSiO(k+lは1以下、0<k<1、0<l<1)、Li(2−j)FeNiCoSiO、Li(2−j)FeNiMnSiO、Li(2−j)NiCoMnSiO(m+n+qは1以下、0<m<1、0<n<1、0<q<1)、Li(2−j)FeNiCoMnSiO(r+s+t+uは1以下、0<r<1、0<s<1、0<t<1、0<u<1)等のリチウム化合物を材料として用いることができる。
また、A(XO(A=Li、Na、Mg、M=Fe、Mn、Ti、V、Nb、X=S、P、Mo、W、As、Si)の一般式で表されるナシコン型化合物を用いることができる。ナシコン型化合物としては、Fe(MnO、Fe(SO、LiFe(PO等がある。また、正極活物質として、LiMPOF、LiMP、LiMO(M=Fe、Mn)の一般式で表される化合物を用いることができる。
また、Vを有するポリアニオン系正極材料を用いることができる。代表例として、α−LiVOPO、β−LiVOPO、α1−LiVOPO、LiVPOF、LiVPOO、LiVP、LiVOSO、LiVOSiO、LiVMoO、等が挙げられる。
また、正極活物質として、NaFeF、FeF等のペロブスカイト型フッ化物、TiS、MoS等の金属カルコゲナイド(硫化物、セレン化物、テルル化物)、LiMVO等の逆スピネル型の結晶構造を有する酸化物、バナジウム酸化物系(V、V13、LiV等)、マンガン酸化物、有機硫黄化合物等の材料を用いることができる。
また、正極活物質として、一般式LiMBO(Mは、Fe(II)、Mn(II)、Co(II))で表されるホウ酸塩系正極材料を用いることができる。
なお、キャリアイオンが、リチウムイオン以外のアルカリ金属イオンや、アルカリ土類金属イオンの場合、正極活物質として、リチウムの代わりに、アルカリ金属(例えば、ナトリウムやカリウム等)、アルカリ土類金属(例えば、カルシウム、ストロンチウム、バリウム、ベリリウム、マグネシウム等)を用いてもよい。例えばナトリウム含有層状酸化物を用いることができる。
ナトリウムを有する材料として例えば、NaFeOや、Na2/3[Fe1/2Mn1/2]O、Na2/3[Ni1/3Mn2/3]O、NaFe(SO、Na(PO、NaFePOF、NaVPOF、NaMPO(Mは、Fe(II)、Mn(II)、Co(II)、Ni(II))、NaFePOF、NaCo(PO、などのナトリウム含有酸化物を正極活物質として用いることができる。
また、正極活物質として、リチウム含有金属硫化物を用いることができる。例えば、LiTiS、LiNbSなどが挙げられる。
導電助剤としては、炭素材料、金属材料、又は導電性セラミックス材料等を用いることができる。また、導電助剤として繊維状の材料を用いてもよい。活物質層の総量に対する導電助剤の含有量は、1wt%以上10wt%以下が好ましく、1wt%以上5wt%以下がより好ましい。
導電助剤により、活物質層中に電気伝導のネットワークを形成することができる。導電助剤により、正極活物質同士の電気伝導の経路を維持することができる。活物質層中に導電助剤を添加することにより、高い電気伝導性を有する活物質層を実現することができる。
導電助剤としては、例えば天然黒鉛、メソカーボンマイクロビーズ等の人造黒鉛、炭素繊維などを用いることができる。炭素繊維としては、例えばメソフェーズピッチ系炭素繊維、等方性ピッチ系炭素繊維等の炭素繊維を用いることができる。また炭素繊維として、カーボンナノファイバーやカーボンナノチューブなどを用いることができる。カーボンナノチューブは、例えば気相成長法などで作製することができる。また、導電助剤として、例えばカーボンブラック(アセチレンブラック(AB)など)、グラファイト(黒鉛)粒子などの炭素材料を用いることができる。また、例えば、銅、ニッケル、アルミニウム、銀、金などの金属粉末や金属繊維、導電性セラミックス材料等を用いることができる。
バインダとしては、例えば、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
また、バインダとしては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体や、澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
または、バインダとしては、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
バインダは上記のうち複数を組み合わせて使用してもよい。
例えば粘度調整効果の特に優れた材料と、他の材料とを組み合わせて使用してもよい。例えばゴム材料等は接着力や弾性力に優れる反面、溶媒に混合した場合に粘度調整が難しい場合がある。このような場合には例えば、粘度調整効果の特に優れた材料と混合することが好ましい。粘度調整効果の特に優れた材料としては、例えば水溶性高分子を用いるとよい。また、粘度調整効果に特に優れた水溶性高分子としては、前述の多糖類、例えばカルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロースおよびジアセチルセルロース、再生セルロースなどのセルロース誘導体や、澱粉を用いることができる。
なお、カルボキシメチルセルロースなどのセルロース誘導体は、例えばカルボキシメチルセルロースのナトリウム塩やアンモニウム塩などの塩とすることにより溶解度が上がり、粘度調整剤としての効果を発揮しやすくなる。溶解度が高くなることにより電極のスラリーを作製する際に活物質や他の構成要素との分散性を高めることもできる。本明細書においては、電極のバインダとして使用するセルロースおよびセルロース誘導体としては、それらの塩も含むものとする。
水溶性高分子は水に溶解することにより粘度を安定化させ、また活物質や、バインダとして組み合わせる他の材料、例えばスチレンブタジエンゴムなどを、水溶液中に安定して分散させることができる。また、官能基を有するために活物質表面に安定に吸着しやすいことが期待される。また、例えばカルボキシメチルセルロースなどのセルロース誘導体は、例えば水酸基やカルボキシル基などの官能基を有する材料が多く、官能基を有するために高分子同士が相互作用し、活物質表面を広く覆って存在することが期待される。
活物質表面を覆う、または表面に接するバインダが膜を形成する場合には、不動態膜としての役割を果たして電解液の分解を抑える効果も期待される。ここで、不動態膜とは、電気の伝導性のない膜、または電気伝導性の極めて低い膜であり、例えば活物質の表面に不動態膜が形成された場合には、電池反応電位において、電解液の分解を抑制することができる。また、不動態膜は、電気の伝導性を抑えるとともに、リチウムイオンは伝導できるとさらに望ましい。
<正極集電体>
正極集電体としては、ステンレス、金、白金、アルミニウム、チタン等の金属、及びこれらの合金など、導電性が高い材料を用いることができる。また正極集電体に用いる材料は、正極の電位で溶出しないことが好ましい。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。集電体は、箔状、板状(シート状)、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。集電体は、厚みが5μm以上30μm以下のものを用いるとよい。
 本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、先の実施の形態で説明した正極活物質を有する二次電池に用いることのできる材料の例について説明する。本実施の形態では、正極、負極および電解液が、外装体に包まれている二次電池を例にとって説明する。
正極は、先の実施の形態で述べた正極を用いることができる。
[負極]
負極は、負極活物質層および負極集電体を有する。また、負極活物質層は、導電助剤およびバインダを有していてもよい。
<負極活物質>
負極活物質としては、例えば合金系材料や炭素系材料等を用いることができる。
負極活物質として、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。例えば、SiO、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、および該元素を有する化合物等を合金系材料と呼ぶ場合がある。
本明細書等において、SiOは例えば一酸化シリコンを指す。あるいはSiOは、SiOと表すこともできる。ここでxは1、およびその近傍の値を有することが好ましい。例えばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下がより好ましい。
炭素系材料としては、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチューブ、カーボンブラック等を用いればよい。
黒鉛としては、人造黒鉛や、天然黒鉛等が挙げられる。人造黒鉛としては例えば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。例えば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としては例えば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
黒鉛は、リチウムイオンが黒鉛に挿入されたとき(リチウム−黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li)。これにより、リチウムイオン二次電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな充放電容量(900mAh/g、1890mAh/cm)を示し好ましい。
リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。
また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。
負極活物質層が有することのできる導電助剤およびバインダとしては、正極活物質層が有することのできる導電助剤およびバインダと同様の材料を用いることができる。
<負極集電体>
負極集電体には、正極集電体と同様の材料を用いることができる。なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
[電解液]
電解液は、溶媒と電解質を有する。電解液の溶媒としては、非プロトン性有機溶媒が好ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等の1種、又はこれらのうちの2種以上を任意の組み合わせおよび比率で用いることができる。
また、電解液の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を一つ又は複数用いることで、二次電池の内部短絡や、過充電等によって内部温度が上昇しても、二次電池の破裂や発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。電解液に用いる有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン等の脂肪族オニウムカチオンや、イミダゾリウムカチオンおよびピリジニウムカチオン等の芳香族カチオンが挙げられる。また、電解液に用いるアニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
また、上記の溶媒に溶解させる電解質としては、例えばLiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO等のリチウム塩を一種、又はこれらのうちの二種以上を任意の組み合わせおよび比率で用いることができる。
二次電池に用いる電解液は、粒状のごみや電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0.01%以下とすることが好ましい。
また、電解液にビニレンカーボネート、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、リチウムビス(オキサレート)ボレート(LiBOB)、またスクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加する材料の濃度は、例えば溶媒全体に対して0.1wt%以上5wt%以下とすればよい。
また、ポリマーを電解液で膨潤させたポリマーゲル電解質を用いてもよい。
ポリマーゲル電解質を用いることで、漏液性等に対する安全性が高まる。また、二次電池の薄型化および軽量化が可能である。
ゲル化されるポリマーとして、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等を用いることができる。
ポリマーとしては、例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマーや、PVDF、およびポリアクリロニトリル等、およびそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
また、電解液の代わりに、硫化物系や酸化物系等の無機物材料を有する固体電解質や、PEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質を用いることができる。固体電解質を用いる場合には、セパレータやスペーサの設置が不要となる。また、電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
[セパレータ]
また二次電池は、セパレータを有することが好ましい。セパレータとしては、例えば、紙、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータはエンベロープ状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミック系材料としては、例えば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
例えばポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの容量を大きくすることができる。
[外装体]
二次電池が有する外装体としては、例えばアルミニウムなどの金属材料や樹脂材料を用いることができる。また、フィルム状の外装体を用いることもできる。フィルムとしては、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のフィルムを用いることができる。
[充放電方法]
二次電池の充放電は、例えば下記のように行うことができる。
<CC充電>
まず、充電方法の1つとしてCC充電について説明する。CC(定電流)充電は、充電期間のすべてで一定の電流を二次電池に流し、所定の電圧になったときに充電を停止する充電方法である。二次電池を、図7(A)に示すように内部抵抗Rと二次電池容量Cの等価回路と仮定する。この場合、二次電池電圧Vは、内部抵抗Rにかかる電圧Vと二次電池容量Cにかかる電圧Vの和である。
CC充電を行っている間は、図7(A)に示すように、スイッチがオンになり、一定の電流Iが二次電池に流れる。この間、電流Iが一定であるため、V=R×Iのオームの法則により、内部抵抗Rにかかる電圧Vも一定である。一方、二次電池容量Cにかかる電圧Vは、時間の経過とともに上昇する。そのため、二次電池電圧Vは、時間の経過とともに上昇する。
そして二次電池電圧Vが所定の電圧、例えば4.3Vになったときに、充電を停止する。CC充電を停止すると、図7(B)に示すように、スイッチがオフになり、電流I=0となる。そのため、内部抵抗Rにかかる電圧Vが0Vとなる。そのため、二次電池電圧Vが下降する。
CC充電を行っている間と、CC充電を停止してからの、二次電池電圧Vと充電電流の例を図7(C)に示す。CC充電を行っている間は上昇していた二次電池電圧Vが、CC充電を停止してから若干低下する様子が示されている。
<CCCV充電>
次に、上記と異なる充電方法であるCCCV充電について説明する。CCCV充電は、まずCC充電にて所定の電圧まで充電を行い、その後CV(定電圧)充電にて流れる電流が少なくなるまで、具体的には終止電流値になるまで充電を行う充電方法である。
CC充電を行っている間は、図8(A)に示すように、定電流電源のスイッチがオン、定電圧電源のスイッチがオフになり、一定の電流Iが二次電池に流れる。この間、電流Iが一定であるため、V=R×Iのオームの法則により、内部抵抗Rにかかる電圧Vも一定である。一方、二次電池容量Cにかかる電圧Vは、時間の経過とともに上昇する。そのため、二次電池電圧Vは、時間の経過とともに上昇する。
そして二次電池電圧Vが所定の電圧、例えば4.3Vになったときに、CC充電からCV充電に切り替える。CV充電を行っている間は、図8(B)に示すように、定電圧電源のスイッチがオン、定電流電源のスイッチがオフになり、二次電池電圧Vが一定となる。一方、二次電池容量Cにかかる電圧Vは、時間の経過とともに上昇する。V=V+Vであるため、内部抵抗Rにかかる電圧Vは、時間の経過とともに小さくなる。内部抵抗Rにかかる電圧Vが小さくなるに従い、V=R×Iのオームの法則により、二次電池に流れる電流Iも小さくなる。
そして二次電池に流れる電流Iが所定の電流、例えば0.01C相当の電流となったとき、充電を停止する。CCCV充電を停止すると、図8(C)に示すように、全てのスイッチがオフになり、電流I=0となる。そのため、内部抵抗Rにかかる電圧Vが0Vとなる。しかし、CV充電により内部抵抗Rにかかる電圧Vが十分に小さくなっているため、内部抵抗Rでの電圧降下がなくなっても、二次電池電圧Vはほとんど降下しない。
CCCV充電を行っている間と、CCCV充電を停止してからの、二次電池電圧Vと充電電流の例を図8(D)に示す。CCCV充電を停止しても、二次電池電圧Vがほとんど降下しない様子が示されている。
<CC放電>
次に、放電方法の1つであるCC放電について説明する。CC放電は、放電期間のすべてで一定の電流を二次電池から流し、二次電池電圧Vが所定の電圧、例えば2.5Vになったときに放電を停止する放電方法である。
CC放電を行っている間の二次電池電圧Vと放電電流の例を図9に示す。放電が進むに従い、二次電池電圧Vが降下していく様子が示されている。
次に、放電レート及び充電レートについて説明する。放電レートとは、電池容量に対する放電時の電流の相対的な比率であり、単位Cで表される。定格容量X(Ah)の電池において、1C相当の電流は、X(A)である。2X(A)の電流で放電させた場合は、2Cで放電させたといい、X/5(A)の電流で放電させた場合は、0.2Cで放電させたという。また、充電レートも同様であり、2X(A)の電流で充電させた場合は、2Cで充電させたといい、X/5(A)の電流で充電させた場合は、0.2Cで充電させたという。
 本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態4)
 本実施の形態には、本発明の一態様の蓄電システムに適用できる構成の一例を示す。
[円筒型二次電池]
 円筒型の二次電池の例について図10(A)を参照して説明する。円筒型の二次電池400は、図10(A)に示すように、上面に正極キャップ(電池蓋)401を有し、側面及び底面に電池缶(外装缶)402を有している。これら正極キャップ401と電池缶(外装缶)402とは、ガスケット(絶縁パッキン)410によって絶縁されている。
 円筒型の二次電池に用いる正極及び負極は捲回するため、集電体の両面に活物質を形成することが好ましい。正極には正極端子(正極集電リード)が接続され、負極には負極端子(負極集電リード)が接続される。正極端子及び負極端子は、ともにアルミニウムなどの金属材料を用いることができる。負極端子は例えば、電池缶の底に溶接される。正極端子はPTC(Positive Temperature Coefficient)素子を介して正極キャップ401と電気的に接続されることが好ましい。PTC素子は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
 図10(B)は蓄電システム415の一例を示す。蓄電システム415は複数の二次電池400を有する。それぞれの二次電池の正極は、絶縁体425で分離された導電体424に接触し、電気的に接続されている。導電体424は配線423を介して、制御システム420に電気的に接続されている。また、それぞれの二次電池の負極は、配線426を介して制御システム420に電気的に接続されている。制御システム420として、先の実施の形態にて述べた制御システムを用いることができる。
 図10(C)は、蓄電システム415の一例を示す。蓄電システム415は複数の二次電池400を有し、複数の二次電池400は、導電板413及び導電板414の間に挟まれている。複数の二次電池400は、配線416により導電板413及び導電板414と電気的に接続される。複数の二次電池400は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池400を有する蓄電システム415を構成することで、大きな電力を取り出すことができる。
 複数の二次電池400の間に温度制御装置を有していてもよい。二次電池400が過熱されたときは、温度制御装置により冷却し、二次電池400が冷えすぎているときは温度制御装置により加熱することができる。そのため蓄電システム415の性能が外気温に影響されにくくなる。
 また、図10(C)において、蓄電システム415は制御システム420に配線421及び配線422を介して電気的に接続されている。制御システム420として、先の実施の形態にて述べた制御システムを用いることができる。配線421は導電板413を介して複数の二次電池400の正極に、配線422は導電板414を介して複数の二次電池400の負極に、それぞれ電気的に接続される。
[二次電池パック]
 次に本発明の一態様の蓄電システムの例について、図11(A)、(B)および(C)を用いて説明する。
 図11(A)は、二次電池パック530の外観を示す図である。図11(B)は二次電池パック530の構成を説明する図である。二次電池パック530は、回路基板500と、二次電池513と、を有する。二次電池513には、ラベル510が貼られている。回路基板500は、シール515により固定されている。また、二次電池パック530は、アンテナ514を有する。
 回路基板500は制御システム590を有する。制御システム590は、先の実施の形態に示す制御システムを用いることができる。例えば、図11(B)に示すように、回路基板500上に、制御システム590を有する。また回路基板500は、端子511と電気的に接続されている。また回路基板500は、アンテナ514、二次電池513のリード551、リード552(一方が正極リード、他方が負極リード)と電気的に接続される。
 あるいは、図11(C)に示すように、回路基板500上に設けられる回路システム590aと、端子511を介して回路基板500に電気的に接続される回路システム590bと、を有してもよい。例えば、本発明の一態様の制御システムの一部分が回路システム590aに、他の一部分が回路システム590bに、それぞれ設けられる。より具体的には例えば、先の実施の形態に示す保護回路137が回路システム590aに、先の実施の形態に示す制御回路182が回路システム590bに、それぞれ設けられる。
 なお、アンテナ514はコイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。又は、アンテナ514は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、アンテナ514を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。
 二次電池パック530は、アンテナ514と、二次電池513との間に層516を有する。層516は、例えば二次電池513による電磁界を遮蔽することができる機能を有する。層516としては、例えば磁性体を用いることができる。
 二次電池513として例えば、セパレータを挟んで負極と、正極とが重なり合って積層され、該積層シートを捲回した捲回体を用いることができる。
 本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態5)
 本実施の形態では、車両に本発明の一態様である蓄電システムを搭載する例を示す。車両として例えば自動車、二輪車、自転車、等が挙げられる。
 蓄電システムを車両に搭載すると、ハイブリッド車(HEV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEV)等の次世代クリーンエネルギー自動車を実現できる。
 図12(A)、(B)および(C)において、本発明の一態様である蓄電システムを用いた車両を例示する。図12(A)に示す自動車8400は、走行のための動力源として電気モーターを用いる電気自動車である。または、走行のための動力源として電気モーターとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。本発明の一態様を用いることで、航続距離の長い車両を実現することができる。自動車8400は蓄電システムを有する。蓄電システムは電気モーター8406を駆動するだけでなく、ヘッドライト8401やルームライト(図示せず)などの発光装置に電力を供給することができる。
 また、蓄電システムは、自動車8400が有するスピードメーター、タコメーターなどの表示装置に電力を供給することができる。また、蓄電システムは、自動車8400が有するナビゲーションシステムなどに電力を供給することができる。
 図12(B)に示す自動車8500は、自動車8500が有する蓄電システム8024にプラグイン方式や非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。図12(B)に、地上設置型の充電装置8021から自動車8500に搭載された蓄電システム8024に、ケーブル8022を介して充電を行っている状態を示す。充電に際しては、充電方法やコネクターの規格等はCHAdeMO(登録商標)やコンボ等の所定の方式で適宜行えばよい。充電装置8021は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車8500に搭載された蓄電システム8024を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
 また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、車両同士で電力の送受信を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時や走行時に蓄電システムの充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式や磁界共鳴方式を用いることができる。
 また、図12(C)は、本発明の一態様の蓄電システムを用いた二輪車の一例である。図12(C)に示すスクータ8600は、蓄電システム8602、サイドミラー8601、方向指示灯8603を備える。蓄電システム8602は、方向指示灯8603に電気を供給することができる。
 また、図12(C)に示すスクータ8600は、座席下収納8604に、蓄電システム8602を収納することができる。蓄電システム8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。
 また、図13(A)は、本発明の一態様の蓄電システムを用いた電動自転車の一例である。図13(A)に示す電動自転車8700に、本発明の一態様の蓄電システムを適用することができる。本発明の一態様の蓄電システムは例えば、複数の二次電池と、保護回路と、ニューラルネットワークと、を有する。
 電動自転車8700は、蓄電システム8702を備える。蓄電システム8702は、運転者をアシストするモーターに電気を供給することができる。また、蓄電システム8702は、持ち運びができ、図13(B)に自転車から取り外した状態を示している。また、蓄電システム8702は、本発明の一態様の蓄電システムが有する二次電池8701が複数内蔵されており、そのバッテリー残量などを表示部8703で表示できるようにしている。また蓄電システム8702は、本発明の一態様の制御システム8704を有する。制御システム8704は、二次電池8701の正極及び負極と電気的に接続されている。制御システム8704として、先の実施の形態に示す制御システムを用いることができる。
 図12(A)に示す自動車8400に搭載される蓄電システムが有する二次電池について、図14(A)を用いて、より詳細に説明する。自動車8400は複数の二次電池を有することが好ましい。二次電池の保護回路として、寿命推定部を組み込んだICを実装させれば、二次電池の制御のためのニューラルネットワーク処理を行うことができる。1000個以上の二次電池を用いる自動車8400であっても二次電池の制御のためのニューラルネットワーク処理を効率よく行うことができる。二次電池は、車内の床部分に対して、小型の円筒型の二次電池を多く並べて使用すればよい。また、ラミネート型の二次電池を複数組み合わせた電池パックを車内の床部分に対して設置してもよい。また、自動車8400の天井部分に光電変換素子8405を有してもよい。光電変換素子8405に照射された光を光電変換して、電池パック8402に貯蔵できる。また自動車8400はセンサ8407を有する。センサ8407は自動車8400の外部の空気の温度を測定する機能を有する。自動車8400の外部の空気の温度を本明細書等では、外気温と呼ぶ場合がある。またセンサ8407は外気温センサと呼ばれる場合がある。
 図12(A)、(B)、(C)、図13(A)及び図14(A)に示す車両はナビゲーションシステムを搭載することができる。該ナビゲーションシステムは、先の実施の形態に述べた制御システムを有することが好ましい。図14(B)は、自動車8400の内装を示す。ナビゲーションシステムは表示部8411及びマイクを有する。また表示部8411はタッチセンサを有することが好ましい。ナビゲーションの使用者は、表示部8411のタッチセンサへの入力、及びマイクへの音声入力を用いて、情報を入力することができる。フロントガラス8404及びサイドミラー8403はそれぞれ、表示部を有してもよい。ナビゲーションシステムは、表示部8411、フロントガラス8404の表示部、及びサイドミラー8403の表示部のうち、一以上に情報を表示することができる。ナビゲーションシステムとして携帯電話機8412を用いる例を図14(C)に示す。携帯電話機8412の表示部8413の拡大図を図14(D)に示す。表示部8413は地図情報や進行方向を示す情報(left)などを表示している。
 本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態6)
 本実施の形態では、先の実施の形態で示した蓄電システムを電子機器に実装する例を説明する。
 次に、図15(A)及び図15(B)に、2つ折り可能なタブレット型端末の一例を示す。図15(A)及び図15(B)に示すタブレット型端末9600は、筐体9630a、筐体9630b、筐体9630aと筐体9630bを接続する可動部9640、表示部9631、表示モード切り替えスイッチ9626、電源スイッチ9627、省電力モード切り替えスイッチ9625、留め具9629、操作スイッチ9628、を有する。表示部9631には、可撓性を有するパネルを用いることで、より広い表示部を有するタブレット端末とすることができる。図15(A)は、タブレット型端末9600を開いた状態を示し、図15(B)は、タブレット型端末9600を閉じた状態を示している。
 また、タブレット型端末9600は、筐体9630a及び筐体9630bの内部に蓄電体9635を有する。蓄電体9635は、可動部9640を通り、筐体9630aと筐体9630bに渡って設けられている。
 表示部9631は、一部をタッチパネルの領域とすることができ、表示された操作キーにふれることでデータ入力をすることができる。また、タッチパネルのキーボード表示切り替えボタンが表示されている位置に指やスタイラスなどでふれることで表示部9631にキーボードボタン表示することができる。
 また、表示モード切り替えスイッチ9626は、縦表示又は横表示などの表示の向きを切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替えスイッチ9625は、タブレット型端末9600に内蔵している光センサで検出される使用時の外光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を内蔵させてもよい。
 図15(B)は、閉じた状態であり、タブレット型端末は、筐体9630、太陽電池9633、及び本発明の一態様の蓄電システムを有する。蓄電システムは、制御システム9634と、蓄電体9635と、を有する。制御システム9634は、保護回路9639と、DCDCコンバータ9636を含む充放電制御回路9638と、を有する。制御システム9634については、先の実施の形態に示す制御システムを用いることができる。充放電制御回路9638は例えば、先の実施の形態に示す制御回路182を有する。
 なお、タブレット型端末9600は2つ折り可能なため、未使用時に筐体9630a及び筐体9630bを重ね合せるように折りたたむことができる。折りたたむことにより、表示部9631を保護できるため、タブレット型端末9600の耐久性を高めることができる。
 また、この他にも図15(A)及び図15(B)に示したタブレット型端末は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。
 タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル、表示部、又は映像信号処理部等に供給することができる。なお、太陽電池9633は、筐体9630の片面又は両面に設けることができ、蓄電体9635の充電を効率的に行う構成とすることができる。
 また、図15(B)に示す制御システム9634の構成、及び動作について図15(C)にブロック図を示し説明する。図15(C)には、太陽電池9633、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3、表示部9631について示しており、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3が、図15(B)に示す充放電制御回路9638に対応し、充放電制御回路9638及び保護回路9639が制御システム9634に対応する箇所となる。
 まず外光により太陽電池9633により発電がされる場合の動作の例について説明する。太陽電池で発電した電力は、蓄電体9635を充電するための電圧となるようDCDCコンバータ9636で昇圧又は降圧がなされる。そして、表示部9631の動作に太陽電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ9637で表示部9631に必要な電圧に昇圧又は降圧をすることとなる。また、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにして蓄電体9635の充電を行う構成とすればよい。
 なお太陽電池9633については、発電手段の一例として示したが、特に限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段による蓄電体9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力を送受信して充電する無接点電力伝送モジュールや、また、他の充電手段を組み合わせて行う構成としてもよい。
 図16に、他の電子機器の例を示す。図16において、表示装置8000は、本発明の一態様の蓄電システムを実装する電子機器の一例である。具体的に、表示装置8000は、TV放送受信用の表示装置に相当し、筐体8001、表示部8002、スピーカ部8003、二次電池8004等を有する。本発明の一態様に係る検出システムは、筐体8001の内部に設けられている。表示装置8000は、商用電源から電力の供給を受けることもできるし、二次電池8004に蓄積された電力を用いることもできる。
 表示部8002には、液晶表示装置、有機EL素子などの発光素子を各画素に備えた発光装置、電気泳動表示装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)などの、半導体表示装置を用いることができる。
 また、音声入力デバイス8005も二次電池を用いる。音声入力デバイス8005は、先の実施の形態に示す蓄電システムを有する。音声入力デバイス8005は、無線通信素子の他、マイクを含むセンサ(光学センサ、温度センサ、湿度センサ、気圧センサ、照度センサ、モーションセンサなど)を複数有し、使用者の命令する言葉によって他のデバイス、例えば表示装置8000の電源操作、照明装置8100の光量調節などを行うことができる。音声入力デバイス8005は音声で周辺機器の操作が行え、手動リモコンの代わりとなる。
 また、音声入力デバイス8005は、車輪や機械式移動手段を有しており、使用者の発声が聞こえる方向に移動し、内蔵されているマイクで正確に命令を聞き取るとともに、その内容を表示部8008に表示する、または表示部8008のタッチ入力操作が行える構成としている。
 また、音声入力デバイス8005は、スマートフォンなどの携帯情報端末8009の充電ドックとしても機能させることができる。携帯情報端末8009と音声入力デバイス8005は、有線または無線で電力の授受を可能としている。携帯情報端末8009は、室内においては、特に持ち運ぶ必要がなく、必要な容量を確保しつつ、二次電池に負荷がかかり劣化することを回避したいため、音声入力デバイス8005によって二次電池の管理、メンテナンスなどを行えることが望ましい。また、音声入力デバイス8005はスピーカ8007及びマイクを有しているため、携帯情報端末8009が充電中であってもハンズフリーで会話することもできる。また、音声入力デバイス8005の二次電池の容量が低下すれば、矢印の方向に移動し、外部電源と接続された充電モジュール8010から無線充電によって充電を行えばよい。
 また、音声入力デバイス8005を台に載せてもよい。また、音声入力デバイス8005を車輪や機械式移動手段を設けて所望の位置に移動させてもよく、或いは台や車輪を設けず、音声入力デバイス8005を所望の位置、例えば床の上などに固定してもよい。
 なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用など、全ての情報表示用表示装置が含まれる。
 図16において、据え付け型の照明装置8100は、充電を制御するマイクロプロセッサで制御される二次電池8103を用いた電子機器の一例である。具体的に、照明装置8100は、筐体8101、光源8102、二次電池8103等を有する。図16では、二次電池8103が、筐体8101及び光源8102が据え付けられた天井8104の内部に設けられている場合を例示しているが、二次電池8103は、筐体8101の内部に設けられていても良い。照明装置8100は、商用電源から電力の供給を受けることもできるし、二次電池8103に蓄積された電力を用いることもできる。
 なお、図16では天井8104に設けられた据え付け型の照明装置8100を例示しているが、二次電池8103は、天井8104以外、例えば側壁8105、床8106、窓8107等に設けられた据え付け型の照明装置に用いることもできるし、卓上型の照明装置などに用いることもできる。
 また、光源8102には、電力を利用して人工的に光を得る人工光源を用いることができる。具体的には、白熱電球、蛍光灯などの放電ランプ、LEDや有機EL素子などの発光素子が、上記人工光源の一例として挙げられる。
 図16において、室内機8200及び室外機8204を有するエアコンディショナーは、二次電池8203を用いた電子機器の一例である。具体的に、室内機8200は、筐体8201、送風口8202、二次電池8203等を有する。図16では、二次電池8203が、室内機8200に設けられている場合を例示しているが、二次電池8203は室外機8204に設けられていても良い。或いは、室内機8200と室外機8204の両方に、二次電池8203が設けられていても良い。エアコンディショナーは、商用電源から電力の供給を受けることもできるし、二次電池8203に蓄積された電力を用いることもできる。
 図16において、電気冷凍冷蔵庫8300は、二次電池8304を用いた電子機器の一例である。具体的に、電気冷凍冷蔵庫8300は、筐体8301、冷蔵室用扉8302、冷凍室用扉8303、二次電池8304等を有する。図16では、二次電池8304が、筐体8301の内部に設けられている。電気冷凍冷蔵庫8300は、商用電源から電力の供給を受けることもできるし、二次電池8304に蓄積された電力を用いることもできる。
 また、電子機器が使用されない時間帯、特に、商用電源の供給元が供給可能な総電力量のうち、実際に使用される電力量の割合(電力使用率と呼ぶ)が低い時間帯において、二次電池に電力を蓄えておくことで、上記時間帯以外において電力使用率が高まるのを抑えることができる。例えば、電気冷凍冷蔵庫8300の場合、気温が低く、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われない夜間において、二次電池8304に電力を蓄える。そして、気温が高くなり、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われる昼間において、二次電池8304を補助電源として用いることで、昼間の電力使用率を低く抑えることができる。
 上述の電子機器の他、二次電池はあらゆる電子機器に搭載することができる。本発明の一態様により、二次電池のサイクル特性が良好となる。そのため本発明の一態様である充電を制御するマイクロプロセッサ(APSを含む)を本実施の形態で説明した電子機器に搭載することで、より長寿命の電子機器とすることができる。
 本発明の一態様の蓄電システムを電子機器に実装する例を図17(A)乃至(E)に示す。本発明の一態様の蓄電システムを適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
 図17(A)は、携帯電話機の一例を示している。携帯電話機7400は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、本発明の一態様の蓄電システムを有する。本発明の一態様の蓄電システムは例えば、二次電池7407と、先の実施の形態に示す制御システムと、を有し、該制御システムは例えば保護回路、制御回路、ニューラルネットワーク、等を有することが好ましい。
 図17(B)は、携帯電話機7400を湾曲させた状態を示している。携帯電話機7400を外部の力により変形させて全体を湾曲させると、その内部に設けられている二次電池7407も湾曲される場合がある。このような場合には、二次電池7407として、可撓性を有する二次電池を用いることが好ましい。可撓性を有する二次電池の曲げられた状態を図17(C)に示す。二次電池には制御システム7408が電気的に接続されている。制御システム7408として、先の実施の形態に示す制御システムを用いることができる。
 また、フレキシブルな形状を備える二次電池を、家屋やビルの内壁または外壁や、自動車の内装または外装の曲面に沿って組み込むことも可能である。
 図17(D)は、バングル型の表示装置の一例を示している。携帯表示装置7100は、筐体7101、表示部7102、操作ボタン7103、及び本発明の一態様の蓄電システムを有する。本発明の一態様の蓄電システムは例えば、二次電池7104と、先の実施の形態に示す制御システムと、を有し、該制御システムは例えば保護回路、制御回路、ニューラルネットワーク、等を有することが好ましい。
 図17(E)は、腕時計型の携帯情報端末の一例を示している。携帯情報端末7200は、筐体7201、表示部7202、バンド7203、バックル7204、操作ボタン7205、入出力端子7206などを備える。
 携帯情報端末7200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
 表示部7202はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、表示部7202はタッチセンサを備え、指やスタイラスなどで画面に触れることで操作することができる。例えば、表示部7202に表示されたアイコン7207に触れることで、アプリケーションを起動することができる。
 操作ボタン7205は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯情報端末7200に組み込まれたオペレーティングシステムにより、操作ボタン7205の機能を自由に設定することもできる。
 また、携帯情報端末7200は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
 また、携帯情報端末7200は入出力端子7206を備え、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また入出力端子7206を介して充電を行うこともできる。なお、充電動作は入出力端子7206を介さずに無線給電により行ってもよい。
 携帯情報端末7200は、本発明の一態様の蓄電システムを有する。該蓄電システムは、二次電池と、先の実施の形態に示す制御システムと、を有し、該制御システムは例えば保護回路、制御回路、ニューラルネットワーク、等を有することが好ましい。
 携帯情報端末7200はセンサを有することが好ましい。センサとして例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサや、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
 本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
本実施例では、マンガンおよび鉄を有する正極活物質を用いて二次電池を作製し、放電曲線の測定を行い、変曲点の観測を行った。
正極活物質として、オリビン構造を有するリン酸鉄マンガンリチウムを作製した。原料として、LiCO、FeC・2HO、MnCOおよびNHPOを用いた。原料の配合はリチウム:マンガン:鉄=1.0:0.6:0.4(原子数比)とした。原料を混合した後、350℃の温度で10時間の焼成を行い、第1の混合物を得た。その後、得られた第1の混合物に対して10重量%のグルコースを加え、混合した後、600℃の温度で10時間の焼成を行った。その後、解砕を行い、リン酸鉄マンガンリチウムを得た。
作製した正極活物質を用いて正極を作製した。対極をリチウム金属として二次電池を作製した。
図18(A)に二次電池の放電曲線を示す。放電レートを0.2C、0.5Cおよび1Cとした場合の結果をそれぞれ示す。例えば0.2Cの放電曲線においては、マンガンの関与が示唆される第1のプラトーが、容量値がおよそ30mAh/g、電圧がおよそ4Vの地点を中心に、放電開始から変曲点までにわたって観測された。また、鉄の関与が示唆される第2のプラトーが、容量値がおよそ100mAh/g、電圧がおよそ3.5Vの地点を中心に、変曲点から放電終了までにわたり観測された。
図18(B)には、図18(A)の放電曲線について平均化を行った後、一回微分を行った結果を示す。放電曲線の平均化は、各測定点において、各測定点を中心とした3.5mAh/gの範囲の測定点の平均値を用いた。
図18(B)に示すように、0.2Cのデータでは、容量値がおよそ71mAh/gにおいて極大点が観測された。極大点を中心としたピークは正に凸(プラス側に凸)の形状となった。図18(B)に示す一回微分において極大点が観測された容量値を容量値Xとする。放電曲線における容量値Xの点を変曲点とみなすことができる。
このように、本発明の一態様の正極を用いた二次電池において、変曲点が観測され、該変曲点と容量値との関係が得られた。よって、本発明の一態様の蓄電システムにより、この変曲点を用いて二次電池のSOCの推定を行うことができる。
120:蓄電システム、135:二次電池、135P:二次電池、135S:二次電池、137:保護回路、147:トランジスタ、148:トランジスタ、174:サーミスタ、176:ヒューズ、182:制御回路、400:二次電池、401:正極キャップ、402:電池缶、413:導電板、414:導電板、415:蓄電システム、416:配線、420:制御システム、421:配線、422:配線、423:配線、424:導電体、425:絶縁体、426:配線、500:回路基板、510:ラベル、511:端子、513:二次電池、514:アンテナ、515:シール、516:層、530:二次電池パック、551:リード、552:リード、590:制御システム、590a:回路システム、590b:回路システム、7100:携帯表示装置、7101:筐体、7102:表示部、7103:操作ボタン、7104:二次電池、7200:携帯情報端末、7201:筐体、7202:表示部、7203:バンド、7204:バックル、7205:操作ボタン、7206:入出力端子、7207:アイコン、7400:携帯電話機、7401:筐体、7402:表示部、7403:操作ボタン、7404:外部接続ポート、7405:スピーカ、7406:マイク、7407:二次電池、7408:制御システム、8000:表示装置、8001:筐体、8002:表示部、8003:スピーカ部、8004:二次電池、8005:音声入力デバイス、8007:スピーカ、8008:表示部、8009:携帯情報端末、8010:充電モジュール、8021:充電装置、8022:ケーブル、8024:蓄電システム、8100:照明装置、8101:筐体、8102:光源、8103:二次電池、8104:天井、8105:側壁、8106:床、8107:窓、8200:室内機、8201:筐体、8202:送風口、8203:二次電池、8204:室外機、8300:電気冷凍冷蔵庫、8301:筐体、8302:冷蔵室用扉、8303:冷凍室用扉、8304:二次電池、8400:自動車、8401:ヘッドライト、8402:電池パック、8403:サイドミラー、8404:フロントガラス、8405:光電変換素子、8406:電気モーター、8407:センサ、8411:表示部、8412:携帯電話機、8413:表示部、8500:自動車、8600:スクータ、8601:サイドミラー、8602:蓄電システム、8603:方向指示灯、8604:座席下収納、8700:電動自転車、8701:二次電池、8702:蓄電システム、8703:表示部、8704:制御システム、9600:タブレット型端末、9625:省電力モード切り替えスイッチ、9626:表示モード切り替えスイッチ、9627:電源スイッチ、9628:操作スイッチ、9629:留め具、9630:筐体、9630a:筐体、9630b:筐体、9631:表示部、9633:太陽電池、9634:制御システム、9635:蓄電体、9636:DCDCコンバータ、9637:コンバータ、9638:充放電制御回路、9639:保護回路、9640:可動部

Claims (13)

  1.  二次電池と、第1の回路と、を有し、
     前記二次電池の放電時の電位曲線は2以上の平坦部を有し、
     前記第1の回路は前記二次電池の電圧を検出する機能を有し、
     前記第1の回路は前記二次電池の充電を行う機能を有し、
     前記二次電池の放電が行われる第1のステップと、
     前記二次電池の容量の低下が検出される第2のステップと、
     前記二次電池の充電が開始される第3のステップと、
     前記二次電池の充電が終了される第4のステップと、を有し、
     前記第2のステップにおける前記容量の低下は、前記電位曲線の変曲点の検知により検出され、
     前記変曲点は、前記電位曲線が有する第1の平坦部と第2の平坦部との間に位置する蓄電システム。
  2.  請求項1において、
     前記電位曲線は開回路電位曲線である蓄電システム。
  3.  請求項1または請求項2において、
     前記第1のステップにおける放電レートは、0.7C以上である蓄電システム。
  4. 請求項1乃至請求項3のいずれか一において、
     前記二次電池はポリアニオン系の正極活物質を有し、
     前記正極活物質は、鉄、マンガン、ニッケル、コバルトから選ばれる2以上の金属を有する蓄電システム。
  5.  請求項4において、
     前記正極活物質はオリビン型の結晶構造を有する蓄電システム。
  6.  請求項4または請求項5において、
     前記正極活物質は、鉄、およびマンガンを有し、
     前記正極活物質は、前記マンガンの原子数が、鉄の原子数とマンガンの原子数の和を1としたとき、0.5以上0.9以下である領域を有する蓄電システム。
  7.  二次電池と、第1の回路と、を有し、
     前記二次電池は、第1の正極活物質と、第2の正極活物質と、を有し、
     前記第1の正極活物質は、鉄を有し、
     前記第2の正極活物質は、元素Mを有し、
     前記元素Mはマンガン、ニッケル、マンガン、ニッケル、コバルトから選ばれる一以上の元素であり、
     前記二次電池の放電時の電位曲線は2以上の平坦部を有し、
     前記第1の回路は前記二次電池の電圧を検出する機能を有し、
     前記第1の回路は前記二次電池の充電を行う機能を有し、
     前記二次電池の放電が行われる第1のステップと、
     前記二次電池の容量の低下が検出される第2のステップと、
     前記二次電池の充電が開始される第3のステップと、
     前記二次電池の充電が終了される第4のステップと、を有し、
     前記第2のステップにおける前記容量の低下は、前記電位曲線の変曲点の検知により検出され、
     前記変曲点は、前記電位曲線が有する第1の平坦部と第2の平坦部との間に位置する蓄電システム。
  8.  請求項7において、
     前記電位曲線は開回路電位曲線である蓄電システム。
  9.  請求項7または請求項8において、
     前記第1の正極活物質はオリビン型の結晶構造を有する蓄電システム。
  10.  請求項7乃至請求項9のいずれか一において、
     前記第1のステップにおける放電レートは、0.7C以上である蓄電システム。
  11.  請求項7乃至請求項10のいずれか一において、
     前記第2の正極活物質が有する前記元素Mの原子数が、前記第1の正極活物質が有する前記鉄の原子数の0.5以上0.9以下である領域を有する蓄電システム。
  12.  二次電池と、第1の回路と、を有し、
     前記第1の回路は前記二次電池の電圧を検出する機能を有し、
     前記第1の回路は前記二次電池の充電を行う機能を有し、
     前記二次電池の放電が行われ、
     前記二次電池の容量の低下が検出され、
     前記二次電池の充電が開始され、
     前記二次電池の充電が終了され、
     前記二次電池の放電時の電位曲線は2以上の平坦部を有し、
     前記容量の低下は、前記電位曲線の変曲点の検知により検出され、
     前記変曲点は、前記電位曲線が有する第1の平坦部と第2の平坦部との間に位置する蓄電システムの動作方法。
  13.  請求項12において、
     前記二次電池はポリアニオン系の正極活物質を有し、
     前記正極活物質は、鉄、マンガン、ニッケル、コバルトから選ばれる2以上の金属を有する蓄電システムの動作方法。
PCT/IB2019/056089 2018-07-31 2019-07-17 蓄電システムおよび蓄電システムの動作方法 WO2020026058A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-143439 2018-07-31
JP2018143439 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020026058A1 true WO2020026058A1 (ja) 2020-02-06

Family

ID=69231315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/056089 WO2020026058A1 (ja) 2018-07-31 2019-07-17 蓄電システムおよび蓄電システムの動作方法

Country Status (1)

Country Link
WO (1) WO2020026058A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022001977A1 (zh) * 2020-06-30 2022-01-06 比亚迪股份有限公司 电池状态的计算方法和计算装置以及存储介质
FR3118311A1 (fr) * 2020-12-23 2022-06-24 Verkor Unité de stockage d’énergie comprenant un module de batterie et procédé de gestion d’une telle unité de stockage d’énergie
WO2023093225A1 (zh) * 2021-11-26 2023-06-01 比亚迪股份有限公司 电池容量的估计方法、装置和计算机存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250299A (ja) * 2006-03-15 2007-09-27 Hitachi Vehicle Energy Ltd 非水電解液二次電池
JP2011018547A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp リチウムイオン二次電池、及び、電池システム
JP2011517361A (ja) * 2007-07-12 2011-06-02 エイ 123 システムズ,インク. リチウムイオンバッテリー用の多機能合金オリビン
JP2012256550A (ja) * 2011-06-10 2012-12-27 Hitachi Ltd リチウムイオン二次電池用正極材料
KR20130136796A (ko) * 2012-06-05 2013-12-13 주식회사 엘지화학 이차 전지의 상태 추정 방법 및 장치
WO2014122776A1 (ja) * 2013-02-08 2014-08-14 株式会社日立製作所 リチウムイオン二次電池の制御装置及び制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250299A (ja) * 2006-03-15 2007-09-27 Hitachi Vehicle Energy Ltd 非水電解液二次電池
JP2011517361A (ja) * 2007-07-12 2011-06-02 エイ 123 システムズ,インク. リチウムイオンバッテリー用の多機能合金オリビン
JP2011018547A (ja) * 2009-07-08 2011-01-27 Toyota Motor Corp リチウムイオン二次電池、及び、電池システム
JP2012256550A (ja) * 2011-06-10 2012-12-27 Hitachi Ltd リチウムイオン二次電池用正極材料
KR20130136796A (ko) * 2012-06-05 2013-12-13 주식회사 엘지화학 이차 전지의 상태 추정 방법 및 장치
WO2014122776A1 (ja) * 2013-02-08 2014-08-14 株式会社日立製作所 リチウムイオン二次電池の制御装置及び制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PADHI, A. K. ET AL.: "Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries", JOURNAL OF ELECTROCHEMICAL SOCIETY, vol. 144, no. 4, April 1997 (1997-04-01), pages 1188 - 1194, XP002412711, DOI: 10.1149/1.1837571 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022001977A1 (zh) * 2020-06-30 2022-01-06 比亚迪股份有限公司 电池状态的计算方法和计算装置以及存储介质
JP7505049B2 (ja) 2020-06-30 2024-06-24 ビーワイディー カンパニー リミテッド 電池状態の計算方法及び計算装置並びに記憶媒体
FR3118311A1 (fr) * 2020-12-23 2022-06-24 Verkor Unité de stockage d’énergie comprenant un module de batterie et procédé de gestion d’une telle unité de stockage d’énergie
WO2022136770A1 (fr) * 2020-12-23 2022-06-30 Verkor Unité de stockage d'énergie comprenant un module de batterie et procédé de gestion d'une telle unité de stockage d'énergie
CN117015869A (zh) * 2020-12-23 2023-11-07 沃科尔公司 包括电池模块的能量存储单元与用于管理这种能量存储单元的方法
WO2023093225A1 (zh) * 2021-11-26 2023-06-01 比亚迪股份有限公司 电池容量的估计方法、装置和计算机存储介质

Similar Documents

Publication Publication Date Title
US20230361290A1 (en) Particle, electrode, power storage device, electronic device, and method for manufacturing electrode
US20220302433A1 (en) Electrode, storage battery, power storage device, and electronic device
KR20200096475A (ko) 양극 활물질, 및 양극 활물질의 제작 방법, 그리고 이차 전지
US20170062819A1 (en) Electrode, manufacturing method thereof, storage battery, and electronic device
JP7284215B2 (ja) 蓄電池、電池制御ユニットおよび電子機器
US11677073B2 (en) Power storage device comprising a negative electrode comprising a first active material and a second active material
US20180076489A1 (en) Electrode and power storage device
US20160343999A1 (en) Power storage unit and electronic device
US11258142B2 (en) Secondary battery and electronic device
US20150099161A1 (en) Power storage unit
JP2015118926A (ja) 蓄電体および電子機器
US20170338470A1 (en) Negative electrode active material, secondary battery, manufacturing method of negative electrode, and processing device of negative electrode
JP2020107617A (ja) リチウムイオン二次電池
JP2017152377A (ja) 蓄電装置、蓄電システム
US20210391575A1 (en) Positive electrode active material, secondary battery, electronic device, and vehicle
JP2018092934A (ja) 電極、電極の製造方法および蓄電装置
US20230253574A1 (en) Positive electrode active material, power storage device, electronic device, and method for manufacturing positive electrode, active material
CN112292776A (zh) 正极活性物质、正极、二次电池以及正极的制造方法
WO2020026058A1 (ja) 蓄電システムおよび蓄電システムの動作方法
US20220371906A1 (en) Positive electrode active material, positive electrode, secondary battery, and manufacturing method thereof
US20220181619A1 (en) Method for manufacturing positive electrode active material
US20230216051A1 (en) Electrode, negative electrode active material, vehicle, electronic device, and method for manufacturing negative electrode active material
CN112997340A (zh) 正极活性物质、二次电池、电子设备及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP