WO2020025298A1 - Verfahren zum temperieren elektrischer komponenten eines fahrzeugs sowie fahrzeug - Google Patents

Verfahren zum temperieren elektrischer komponenten eines fahrzeugs sowie fahrzeug Download PDF

Info

Publication number
WO2020025298A1
WO2020025298A1 PCT/EP2019/068928 EP2019068928W WO2020025298A1 WO 2020025298 A1 WO2020025298 A1 WO 2020025298A1 EP 2019068928 W EP2019068928 W EP 2019068928W WO 2020025298 A1 WO2020025298 A1 WO 2020025298A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
cooled
storage cells
electrical component
voltage
Prior art date
Application number
PCT/EP2019/068928
Other languages
English (en)
French (fr)
Inventor
Andreas Rucker
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Publication of WO2020025298A1 publication Critical patent/WO2020025298A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/008Arrangement or mounting of electrical propulsion units with means for heating the electrical propulsion units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for tempering electrical components of a vehicle according to the features of patent claim 1 and a vehicle according to the features of patent claim 5.
  • Electric or hybrid vehicles have a high-voltage storage device with a high-voltage storage device housing, in which a plurality of electrical storage cells are arranged.
  • the memory cells heat up during the operation of such a vehicle and when the memory cells are being charged.
  • the temperature of the storage cells must be kept at a temperature level of less than approx. 50 ° degrees. H. the storage cells must be cooled.
  • the storage cells should reach their "ideal operating temperature level" as quickly as possible.
  • the object of the invention is to provide a method for tempering electrical components of a vehicle and a vehicle which is energetically favorable or which enables a compact design. This object is solved by the features of claims 1 and 5, respectively. Advantageous refinements and developments of the invention can be found in the subclaims.
  • the starting point of the method according to the invention for tempering electrical components of a vehicle is a high-voltage storage device with a high-voltage storage housing, in which a plurality of electrical, heated or cooled storage cells are arranged.
  • Storage cells to be heated or cooled should be understood to mean that the storage cells have to be heated in some operating states, namely when they are still relatively cold, ie. H. have not yet reached their ideal operating temperature level and need to be cooled in some operating states in order not to overheat.
  • At least one electrical component to be cooled is arranged in the high-voltage storage housing in addition to the electrical storage cells.
  • the component to be cooled at least, it can be, for. B. a charger, a DC converter (DC / DC converter), an electronic control unit, a contactor arrangement or the like. act.
  • a coolant channel system through which a liquid coolant flows is provided, which has a coolant pump, which is also arranged in the high-voltage storage housing.
  • the coolant channel system or liquid coolant flowing therein is thermally coupled directly or indirectly to the storage cells and to the at least one electrical component to be cooled.
  • the liquid coolant is a coolant that is liquid in all operating states that occur. It is not a refrigerant (as used in air conditioning systems, for example), which is partly gaseous and liquid or purely gaseous is.
  • the coolant according to the invention can, for example, be water which is mixed with an antifreeze.
  • a central idea of the method according to the invention is that in a first operating state, in which the storage cells have a temperature which is lower than a predetermined first temperature, the heat emitted by the at least one electrical component to be cooled is released to the storage cells via the coolant , If the vehicle or the high-voltage battery or the electrical storage cells arranged in it are in a “cold state”, the storage cells must be heated to an ideal operating temperature level as quickly as possible to ensure that the vehicle or the electric drive is optimally efficient.
  • the basic idea of the invention is to use heat, which is emitted by the at least one electrical component to be cooled immediately after the "start", to warm up the storage cells in order to heat the storage cells as quickly as possible, i.e. to bring them to their ideal operating temperature level as quickly as possible.
  • the thermal energy is transferred from the at least one electrical component to the storage cells via the liquid coolant.
  • Such an electrical component in which z. B. a charger, a DC converter, an electronic control unit, a protective arrangement or the like. can act, relatively high temperature levels, e.g. B. up to 90 ° C or more. This can result in considerable heat outputs that can be used to heat the storage cells.
  • coolant in the first operating state, which can also be referred to as the “heating state” of the storage cells, coolant is pumped exclusively within the coolant channel system provided in the high-voltage storage housing or is circulated.
  • the cooling medium volume flow required for this is generated by the coolant pump arranged inside the high-voltage storage housing.
  • a second operating state in which the storage cells have a temperature that is greater than a predetermined second temperature, heat is emitted by the at least one electrical component to be cooled and by the storage cells to the coolant of the coolant is transported out of the high-voltage storage housing and released there via a heat exchanger.
  • the second operating state is therefore an operating state in which both the at least one electrical component and the memory cells have to be cooled.
  • the storage cells therefore have a temperature which is in the upper range of the ideal operating temperature range or which corresponds exactly to the upper ideal operating temperature.
  • heat which is released from the at least one electrical component and the storage cells to the coolant, is transported out of the high-voltage storage housing by means of the coolant and there either to the environment or via a heat exchanger is given to another “heat cycle of the vehicle or directly to another component of the vehicle.
  • the coolant volume flow required for this into the coolant channel system located inside the high-voltage storage housing and out of the coolant channel system is generated by a further coolant pump, which is arranged outside the high-voltage storage housing.
  • Figure 1 shows the basic principle of the invention in a schematic representation.
  • Figure 1 shows a high-voltage storage housing 1 of an electric or hybrid vehicle not shown here.
  • a large number of electrical storage cells are arranged in the high-voltage storage housing 1, which are indicated here overall by a rectangle 2, ie the individual storage cells are not shown in detail here.
  • the memory cells can be arranged “in packets”, i. h They can be combined into so-called cell modules, which each consist of a plurality of memory cells which are electrically connected to one another.
  • At least one electrical component 3 to be cooled is additionally arranged in the high-voltage storage housing 1.
  • the electrical component 3 to be cooled can either be flowed through directly by a cooling fluid or can be arranged on a cooling body or on a cooling body through which a cooling fluid flows.
  • a coolant pump 4 which pumps liquid coolant via a cooling channel 5 to the electrical component 3 or through the electrical component 3 or through a heat sink assigned to the electrical component 3, is likewise arranged within the high-voltage storage housing 1.
  • a first operating state in which the electrical storage cells 2 are still “cold”, heat is emitted from the at least one electrical component 3 to the coolant circulated or pumped around by the coolant pump 4.
  • the heated coolant is pumped through coolant lines 6, 7 to the memory cells 2 or through heat sinks which are thermally coupled to the memory cells 2.
  • the coolant emits heat to the storage cells 2 so that they are heated to an ideal operating temperature level as quickly as possible.
  • the coolant cooled by the storage cells 2 then flows back to the coolant pump 4 via cooling channels 8, 9. If the memory cells 2 a certain operating temperature of z. B. 40 ° C, 45 ° C, 50 ° C or similar have reached, the memory cells 2 and the at least one electrical component 3 must be cooled.
  • This operating state is referred to as the "second" operating state.
  • coolant is pumped via the cooling channels 9, 5 to the electrical component 3 and via the cooling channel 8 to the storage cells by means of a further coolant pump 10, which is arranged outside the high-voltage storage housing 1.
  • Coolant heated by the storage cells 2 or the electrical component 3 to be cooled is pumped via the cooling channel 6 to a heat exchanger 11, which is arranged outside the high-voltage storage housing.
  • the coolant can give off heat to the ambient air, to another fluid circuit of the vehicle or directly to another component of the vehicle.
  • the coolant flows back from the heat exchanger 11 to the further coolant pump 10.
  • the “cooling circuit” formed by the cooling channels 8, 9, the memory cell cooler (s) and the cooling channels 6, 7 and the heat exchanger 11 and the pump 10 can be referred to as the main cooling circuit.
  • the cooling system branch formed by the coolant pump 4 and the at least one electrical component to be cooled is connected in parallel with the main cooling circuit. If the main cooling circuit is still out of operation because the storage cells 2 are “still cold” (first operating state), the coolant is therefore only circulated within the high-voltage storage 1.
  • the setpoint temperature of the at least one electrical component 3 can be determined via the flow rate, i. H. can be set by timing the coolant pump 4.
  • An essential advantage of the invention is that the invention can be used to integrate one or more electrical components to be cooled into the high-voltage storage housing 1 without having to do so separate coolant inlet and / or a separate coolant outlet must be provided on the high-voltage storage housing, which is useful from both weight and cost aspects. No additional “cooling tubing” is therefore required for the at least one electrical component arranged in the high-voltage storage housing, even outside the high-voltage storage housing. In addition, when the storage cells are cold, the waste heat from the at least one electrical component can be used for faster heating of the storage cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

Verfahren zum Temperieren elektrischer Komponenten eines Fahrzeugs, welches einen Hochvoltspeicher mit einem Hochvoltspeichergehäuse (1) aufweist, in dem - mehrere elektrische, zu beheizende oder zu kühlende Speicherzellen (2), - mindestens eine zu kühlende elektrische Komponente (3) und - ein von einem flüssigen Kühlmittel durchströmtes Kühlmittelkanalsystem (5 - 9) vorgesehen ist, das eine ebenfalls in dem Hochvoltspeichergehäuse (1) angeordnete Kühlmittelpumpe (4) aufweist und das thermisch direkt oder indirekt mit den Speicherzellen (2) und der mindestens einen zu kühlenden elektrischen Komponente (3) gekoppelt ist, wobei - in einem ersten Betriebszustand, in dem die Speicherzellen (2) eine Temperatur haben, die kleiner als eine vorgegebene erste Temperatur ist, von der mindestens einen zu kühlenden elektrischen Komponente (3) abgegebene Wärme über das Kühlmittel an die Speicherzellen (2) abgegeben wird.

Description

Verfahren zum Temperieren elektrischer Komponenten eines Fahrzeugs sowie Fahrzeug
Die vorliegende Erfindung betrifft ein Verfahren zum Temperieren elektrischer Komponenten eines Fahrzeugs gemäß den Merkmalen des Patentanspruches 1 sowie ein Fahrzeug gemäß den Merkmalen des Patentanspruches 5.
Elektro- bzw. Hybridfahrzeuge weisen einen Hochvoltspeicher mit einem Hochvoltspeichergehäuse auf, in dem mehrere elektrische Speicherzellen angeordnet sind. Während des Betriebs eines solchen Fahrzeugs sowie beim Laden der Speicherzellen erwärmen sich die Speicherzellen. Aus Sicherheitsgründen und um eine möglichst lange „Lebensdauer“ der Speicherzellen zu erreichen, muss die Temperatur der Speicherzellen auf einem Temperaturniveau von weniger als ca. 50° Grad gehalten werden, d. h. die Speicherzellen müssen gekühlt werden. Umgekehrt, wenn das Fahrzeug bei winterlichen Bedingungen relativ lange abgestellt wurde und die Speicherzellen kalt sind, sollten die Speicherzellen möglichst schnell ihr „Idealbetriebstemperaturniveau“ erreichen.
Aufgabe der Erfindung ist es, ein Verfahren zum Temperieren elektrischer Komponenten eines Fahrzeugs sowie ein Fahrzeug zu schaffen, das energetisch günstig ist bzw. das eine kompakte Bauweise ermöglicht. Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 bzw 5 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.
Ausgangspunkt des erfindungsgemäßen Verfahrens zum Temperieren elektrischer Komponenten eines Fahrzeugs ist ein Hochvoltspeicher mit einem Hochvoltspeichergehäuse, in dem mehrere elektrische, zu beheizende oder zu kühlende Speicherzellen angeordnet sind. „Zu beheizende oder zu kühlende Speicherzellen“ ist so zu verstehen, dass die Speicherzellen in manchen Betriebszuständen beheizt werden müssen, nämlich dann, wenn diese noch relativ kalt sind, d. h. ihr Idealbetriebstemperaturniveau noch nicht erreicht haben, und in machen Betriebszuständen gekühlt werden müssen, um nicht zu überhitzen.
Ein wesentlicher Gedanke der Erfindung besteht darin, dass innerhalb des Hochvoltspeichergehäuses zusätzlich zu den elektrischen Speicherzellen mindestens eine zu kühlende elektrische Komponente angeordnet ist. Bei der mindestens zu kühlenden Komponente kann es sich z. B. um ein Ladegerät, einen Gleichspannungswandler (DC/DC-Wandler), ein elektronisches Steuergerät, eine Schützanordnung o.ä. handeln.
Ferner ist ein von einem flüssigen Kühlmittel durchströmtes Kühlmittelkanalsystem vorgesehen, das eine Kühlmittelpumpe aufweist, die ebenfalls in dem Hochvoltspeichergehäuse angeordnet ist. Das Kühlmittelkanalsystem bzw. darin strömende flüssige Kühlmittel ist thermisch direkt oder indirekt mit den Speicherzellen und mit der mindestens einen zu kühlenden elektrischen Komponente gekoppelt.
Klarstellend sei erwähnt, dass es sich bei dem flüssigen Kühlmittel um ein Kühlmittel handelt, das in allen auftretenden Betriebszuständen flüssig ist. Es handelt sich also nicht etwa um ein Kältemittel (wie es z.B. bei Klimaanlagen zum Einsatz kommt), das teilweise gasförmig und flüssig oder rein gasförmig ist. Bei dem erfindungsgemäßen Kühlmittel kann es sich beispielsweise um Wasser handeln, welches mit einem Frostschutzmittel versetzt ist.
Ein zentraler Gedanke des erfindungsgemäßen Verfahrens besteht darin, dass in einem ersten Betriebszustand, in dem die Speicherzellen eine Temperatur haben, die kleiner als eine vorgegebene erste Temperatur ist, von der mindestens einen zu kühlenden elektrischen Komponente abgegebene Wärme über das Kühlmittel an die Speicherzellen abgegeben wird. Wenn sich also das Fahrzeug bzw. der Hochvoltspeicher bzw. die darin angeordneten elektrischen Speicherzellen in einem„kalten Zustand“ befinden, müssen die Speicherzellen möglichst schnell auf ein Idealbetriebstemperaturniveau erwärmt werden, um sicherzustellen, dass das Fahrzeug bzw. der elektrische Antrieb optimal leistungsfähig ist.
Der Grundgedanke der Erfindung besteht darin, zum Aufwärmen der Speicherzellen Wärme, die von der mindestens einen zu kühlenden elektrischen Komponente bereits unmittelbar nach dem „Starten“ abgegeben wird, zu nutzen, um damit die Speicherzellen möglichst schnell aufzuheizen, d.h. möglichst schnell auf ihr Idealbetriebstemperaturniveau zu bringen. Die Wärmeenergie wird dabei über das flüssige Kühlmittel von der mindestens einen elektrischen Komponente zu den Speicherzellen übertragen. Eine derartige elektrische Komponente, bei der sich z. B. um ein Ladegerät, einen Gleichspannungswandler, um ein elektronisches Steuergerät, eine Schutzanordnung o.ä. handeln kann, können relativ hohe Temperaturniveaus, z. B. bis zu 90°C oder mehr, erreichen. Dadurch können beträchtliche Wärmeleistungen entstehen, die zum Aufheizen der Speicherzellen verwendet können.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass in dem ersten Betriebszustand, der auch als„Aufheizzustand“ der Speicherzellen bezeichnet werden kann, Kühlmittel ausschließlich innerhalb des im Hochvoltspeichergehäuse vorgesehenen Kühlmittelkanalsystems umgepumpt bzw. umgewälzt wird. Der hierfür erforderliche Kühlmittevolumenstrom wird durch die innerhalb des Hochvoltspeichergehäuses angeordnete Kühlmittelpumpe erzeugt.
Nach einer Weiterbildung der Erfindung wird in einem zweiten Betriebszustand, in dem die Speicherzellen eine Temperatur haben, die größer als eine vorgegebene zweite Temperatur ist, Wärme, die von der mindestens einen zu kühlenden elektrischen Komponente und von den Speicherzellen an das Kühlmittel abgegeben wird, mittels des Kühlmittels aus dem Hochvoltspeichergehäuse heraus transportiert und dort über einen Wärmetaucher abgegeben. Der zweite Betriebszustand ist also ein Betriebszustand, in dem sowohl die mindestens eine elektrische Komponente als auch die Speicherzellen gekühlt werden müssen. Im zweiten Betriebszustand haben die Speicherzellen also eine Temperatur, die im oberen Bereich des Idealbetriebstemperaturbereichs liegt oder die genau der oberen Idealbetriebstemperatur entspricht.
Nach einer Weiterbildung der Erfindung ist vorgesehen, dass in dem zweiten Betriebszustand Wärme, die von der mindestens einen elektrischen Komponente und den Speicherzellen an das Kühlmittel abgegeben wird, mittels des Kühlmittels aus dem Hochvoltspeichergehäuse heraus transportiert wird und dort über einen Wärmetauscher entweder an die Umgebung oder an einen anderen „Wärmekreislauf des Fahrzeugs oder unmittelbar an eine andere Komponente des Fahrzeugs abgegeben wird. Der hierfür erforderliche Kühlmittelvolumenstrom in das im Inneren des Hochvoltspeichergehäuses befindliche Kühlmittelkanalsystem hinein und aus dem Kühlmittelkanalsystem heraus wird durch eine weitere Kühlmittelpumpe erzeugt, die außerhalb des Hochvoltspeichergehäuses angeordnet ist.
Im Folgenden wird die Erfindung im Zusammenhang mit der Zeichnung näher erläutert. Die einzige Figur 1 zeigt das Grundprinzip der Erfindung in schematischer Darstellung. Figur 1 zeigt ein Hochvoltspeichergehäuse 1 eines hier nicht näher dargestellten Elektro- bzw. Hybridfahrzeugs. In dem Hochvoltspeichergehäuse 1 sind eine Vielzahl elektrischer Speicherzellen angeordnet, die hier gesamthaft durch ein Rechteck 2 angedeutet sind, d. h. die einzelnen Speicherzellen sind hier nicht näher dargestellt. Die Speicherzellen können „paketweise“ angeordnet sein, d. h sie können zu sogenannten Zellmodulen, die jeweils aus mehreren elektrisch miteinander verschalteten Speicherzellen bestehen, zusammengefasst sein.
In dem Hochvoltspeichergehäuse 1 ist zusätzlich mindestens eine zu kühlende elektrische Komponente 3 angeordnet. Die zu kühlende elektrische Komponente 3 kann entweder unmittelbar von einem Kühlfluid durchströmt werden oder auf einem Kühlkörper oder an einem Kühlkörper angeordnet sein, der von einem Kühlfluid durchströmt ist.
Ebenfalls innerhalb des Hochvoltspeichergehäuses 1 ist eine Kühlmittelpumpe 4 angeordnet, die flüssiges Kühlmittel über einen Kühlkanal 5 zu der elektrischen Komponente 3 pumpt bzw. durch die elektrische Komponente 3 oder durch einen der elektrischen Komponente 3 zugeordneten Kühlkörper hindurch.
In einem ersten Betriebszustand, in dem die elektrischen Speicherzellen 2 noch „kalt“ sind, wird Wärme von der mindestens einen elektrischen Komponente 3 an das von der Kühlmittelpumpe 4 umgewälzte bzw. umgepumpte Kühlmittel abgegeben. Das erwärmte Kühlmittel wird über Kühlmittelleitungen 6, 7 zu den Speicherzellen 2 bzw. durch Kühlkörper hindurchgepumpt, die thermisch mit den Speicherzellen 2 gekoppelt sind. Das Kühlmittel gibt dabei Wärme an die Speicherzellen 2 ab, so dass diese möglichst schnell auf ein Idealbetriebstemperaturniveau erwärmt werden. Das von den Speicherzellen 2 abgekühlte Kühlmittel strömt dann über Kühlkanäle 8, 9 zurück zur Kühlmittelpumpe 4. Wenn die Speicherzellen 2 eine bestimmte Betriebstemperatur von z. B. 40°C, 45°C, 50°C o.ä. erreicht haben, müssen die Speicherzellen 2 und die mindestens eine elektrische Komponente 3 gekühlt werden. Dieser Betriebszustand wird als „zweiter“ Betriebszustand bezeichnet. Im zweiten Betriebszustand wird mittels einer weiteren Kühlmittelpumpe 10, die außerhalb des Hochvoltspeichergehäuses 1 angeordnet ist, Kühlmittel über die Kühlkanäle 9, 5 zu der elektrischen Komponente 3 und über den Kühlkanal 8 zu den Speicherzellen gepumpt. Von den Speicherzellen 2 bzw. der zu kühlenden elektrischen Komponente 3 erhitztes Kühlmittel wird über den Kühlkanal 6 zu einem Wärmetauscher 1 1 gepumpt, der außerhalb des Hochvoltspeichergehäuses angeordnet ist. Dort kann das Kühlmittel Wärme an die Umgebungsluft, an einen anderen Fluidkreislauf des Fahrzeugs oder unmittelbar an eine andere Komponente des Fahrzeugs abgeben. Vom Wärmetauscher 1 1 strömt das Kühlmittel zurück zu der weiteren Kühlmittelpumpe 10.
Den durch die Kühlkanäle 8, 9, den bzw. die Speicherzellenkühler und die Kühlkanäle 6, 7 sowie den Wärmetauscher 1 1 und die Pumpe 10 gebildeten „Kühlkreis“ kann man als Hauptkühlkreis bezeichnen. Parallel zu dem Hauptkühlkreis geschaltet ist der durch die Kühlmittelpumpe 4 und die mindestens eine zu kühlende elektrische Komponente gebildete Kühlsystemast. Wenn der Hauptkühlkreis noch außer Betrieb ist, weil die Speicherzellen 2 „noch kalt“ sind (erster Betriebszustand), wird das Kühlmittel also lediglich innerhalb des Hochvoltspeichers 1 umgewälzt. Die Soll-Temperatur der mindestens einen elektrischen Komponente 3 kann dabei über die Durchflussrate, d. h. durch eine zeitliche Taktung der Kühlmittelpumpe 4, eingestellt werden.
Ein wesentlicher Vorteil der Erfindung besteht darin, dass mit der Erfindung eine oder mehrere zu kühlende elektrische Komponenten in das Hochvoltspeichergehäuse 1 integriert werden können, ohne dass hierfür ein separater Kühlmitteleingang und/oder ein separater Kühlmittelausgang am Hochvoltspeichergehäuse vorgesehen werden muss, was sowohl unter Gewichts- als auch unter Kostenaspekten sinnvoll ist. Für die mindestens eine im Hochvoltspeichergehäuse angeordnete elektrische Komponente ist somit auch außerhalb des Hochvoltspeichergehäuses keine zusätzliche „Kühlungsverschlauchung“ erforderlich. Zu dem kann, wenn die Speicherzellen kalt sind, die Abwärme der mindestens einen elektrischen Komponente zur schnelleren Aufheizung der Speicherzellen verwendet werden.

Claims

Patentansprüche
1. Verfahren zum Temperieren elektrischer Komponenten eines Fahrzeugs, welches einen Hochvoltspeicher mit einem Hochvoltspeichergehäuse (1 ) aufweist, in dem
- mehrere elektrische, zu beheizende oder zu kühlende Speicherzellen (2),
- mindestens eine zu kühlende elektrische Komponente (3) und
- ein von einem flüssigen Kühlmittel durchströmtes Kühlmittelkanalsystem
(5 - 9) vorgesehen ist, das eine ebenfalls in dem
Hochvoltspeichergehäuse (1 ) angeordnete Kühlmittelpumpe (4) aufweist und das thermisch direkt oder indirekt mit den Speicherzellen (2) und der mindestens einen zu kühlenden elektrischen Komponente (3) gekoppelt ist,
wobei
- in einem ersten Betriebszustand, in dem die Speicherzellen (2) eine Temperatur haben, die kleiner als eine vorgegebene erste Temperatur ist, von der mindestens einen zu kühlenden elektrischen Komponente (3) abgegebene Wärme über das Kühlmittel an die Speicherzellen (2) abgegeben wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in dem ersten Betriebszustand Kühlmittel ausschließlich in dem innerhalb des Hochvoltspeichergehäuses (1 ) vorgesehenen Kühlmittelkanalsystem (5 -9) umgepumpt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass in einem zweiten Betriebszustand, in dem die Speicherzellen (2) eine Temperatur haben, die größer als eine vorgegebene zweite Temperatur ist, Wärme, die von der mindestens einen zu kühlenden elektrischen Komponente (3) und von den Speicherzellen (2) an das Kühlmittel abgegeben wird, mittels des Kühlmittels aus dem Hochvoltspeichergehäuse (1 ) heraus transportiert und dort über einen Wärmetauscher (1 1 ) abgegeben wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in dem zweiten Betriebszustand mittels einer außerhalb des Hochvoltspeichergehäuses (1 ) angeordneten weiteren Kühlmittelpumpe (10) von dem außerhalb des Hochvoltspeichergehäuses (1 ) angeordneten Wärmetauscher (1 1 ) kommendes, kühles Kühlmittel zu den Speicherzellen (2) und zu der mindestens einen zu kühlenden elektrischen Komponente (3) und zurück zu dem außerhalb des Hochvoltspeichergehäuses (1 ) angeordneten Wärmetauscher (11 ) gepumpt wird.
5. Fahrzeug mit einen Hochvoltspeicher, welcher ein Hochvoltspeichergehäuse (1 ) aufweist, in dem
- mehrere elektrische, zu beheizende oder zu kühlende Speicherzellen (2),
- mindestens eine zu kühlende elektrische Komponente (3) und
- ein von einem flüssigen Kühlmittel durchströmtes Kühlmittelkanalsystem
(5 - 9) vorgesehen ist, das eine ebenfalls in dem
Hochvoltspeichergehäuse (1 ) angeordnete Kühlmittelpumpe (4) aufweist und das thermisch direkt oder indirekt mit den Speicherzellen und der mindestens einen zu kühlenden elektrischen Komponente (3) gekoppelt ist,
wobei
außerhalb des Hochvoltspeichergehäuses (1 ) eine weitere
Kühlmittelpumpe und ein Wärmetauscher (11 ) angeordnet ist, wobei die weitere Kühlmittelpumpe (10) und der Wärmetauscher (1 1 ) in
Fluidverbindung mit dem Kühlmittelkanalsystem (5 - 9) stehen.
PCT/EP2019/068928 2018-07-30 2019-07-15 Verfahren zum temperieren elektrischer komponenten eines fahrzeugs sowie fahrzeug WO2020025298A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018212641.0A DE102018212641A1 (de) 2018-07-30 2018-07-30 Verfahren zum Temperieren elektrischer Komponenten eines Fahrzeugs sowie Fahrzeug
DE102018212641.0 2018-07-30

Publications (1)

Publication Number Publication Date
WO2020025298A1 true WO2020025298A1 (de) 2020-02-06

Family

ID=67482923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/068928 WO2020025298A1 (de) 2018-07-30 2019-07-15 Verfahren zum temperieren elektrischer komponenten eines fahrzeugs sowie fahrzeug

Country Status (2)

Country Link
DE (1) DE102018212641A1 (de)
WO (1) WO2020025298A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010014752A1 (de) * 2010-04-13 2010-11-11 Daimler Ag Kühlanordnung für ein Fahrzeug mit elektrischem Antrieb und Verfahren zum Betreiben eines solchen Fahrzeugs
DE102010013033A1 (de) * 2010-03-26 2011-09-29 Daimler Ag Vorrichtung zur Kühlung einer Energiespeichereinrichtung
DE102013100208A1 (de) * 2012-12-20 2014-04-03 Linde Material Handling Gmbh Steuerungsverfahren für Kühlsystem einer mobilen Arbeitsmaschine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE535060C2 (sv) * 2010-08-12 2012-04-03 Scania Cv Ab Arrangemang för att upprätthålla en önskad driftstemperatur hos ett batteri i ett fordon
DE102013017342A1 (de) * 2013-10-18 2014-07-24 Daimler Ag Kühleinrichtung für einen Energiespeicher in einem Kraftwagen sowie Verfahren zum Betreiben einer solchen Kühleinrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010013033A1 (de) * 2010-03-26 2011-09-29 Daimler Ag Vorrichtung zur Kühlung einer Energiespeichereinrichtung
DE102010014752A1 (de) * 2010-04-13 2010-11-11 Daimler Ag Kühlanordnung für ein Fahrzeug mit elektrischem Antrieb und Verfahren zum Betreiben eines solchen Fahrzeugs
DE102013100208A1 (de) * 2012-12-20 2014-04-03 Linde Material Handling Gmbh Steuerungsverfahren für Kühlsystem einer mobilen Arbeitsmaschine

Also Published As

Publication number Publication date
DE102018212641A1 (de) 2020-01-30

Similar Documents

Publication Publication Date Title
EP3444135B1 (de) Kreislaufsystem für ein brennstoffzellen-fahrzeug
EP3454401B1 (de) Kraftfahrzeug mit einem kühlsystem
DE102017220376A1 (de) Kühlsystem für ein Kraftfahrzeug und Kraftfahrzeug mit einem solchen Kühlsystem
DE102019132688A1 (de) Wärmemanagementsystem für ein Kraftfahrzeug und Verfahren zum Wärmemanagement eines Kraftfahrzeugs
DE102017011428B4 (de) Kühlsystem und Fahrzeug mit einem solchen Kühlsystem
DE102013209045A1 (de) Kühlsystem für ein Hybridfahrzeug sowie Verfahren zum Betrieb eines derartigen Kühlsystems
DE102017104730A1 (de) Ladestation
DE102018219203A1 (de) Brennstoffzellenvorrichtung und Verfahren zum Kühlen eines Brennstoffzellensystems
DE102016215851A1 (de) Kühlvorrichtung für eine Batteriebaugruppe sowie Einheit aus einer Batteriebaugruppe und einer Kühlvorrichtung
WO2014037216A1 (de) Verfahren zum thermischen konditionieren eines verbrennungsmotors und/oder eines fahrgastraums eines fahrzeugs sowie fahrzeug
DE102012012820A1 (de) Batterieanordnung und Verfahren zum Betreiben einer Batterieanordnung für ein Kraftfahrzeug mit einer elektrischen Speichereinheit
DE102021204380B4 (de) Thermomanagementsystem für eine Batterie eines Kraftfahrzeuges sowie Kraftfahrzeug mit einem Thermomanagementsystem
DE102010002018A1 (de) Heizsystem für ein elektrisch antreibbares Fahrzeug und Betriebsverfahren
DE102018214211A1 (de) Einrichtung und Verfahren zum Temperieren eines elektrischen Energiespeichers für ein Kraftfahrzeug
WO2021018501A1 (de) Wärmemanagementsystem für ein kraftfahrzeug, verfahren zum wärmemanagement eines kraftfahrzeugs und kraftfahrzeug mit einem wärmemanagementsystem
DE102019132816A1 (de) Wärmemanagementsystem für ein Kraftfahrzeug und Kraftfahrzeug mit einem solchen
EP3427326A1 (de) Batteriesystem, verfahren zum betrieb eines batteriesystems und kraftfahrzeug
DE102013208181B4 (de) Kühlsystem für Komponenten in einem Kraftfahrzeug sowie Kraftfahrzeug
DE102021132036B4 (de) Kühlanordnung zum Kühlen einer Batterie eines Kraftfahrzeugs, Kraftfahrzeug und Verfahren zum Betreiben einer Kühlanordnung
WO2020025298A1 (de) Verfahren zum temperieren elektrischer komponenten eines fahrzeugs sowie fahrzeug
DE102009000066A1 (de) Kühlung von Batteriezellen
DE102020132886A1 (de) Bidirektionaler schaltbarer kühlstrom für traktionsbatterie
DE102020109853A1 (de) Kühlmittelkreislauf sowie zugehöriges Verfahren und Kraftfahrzeug
DE102020204697A1 (de) Verfahren zum Steuern des Ladevorgangs eines elektrischen Energiespeichers und Ladevorrichtung sowie System aus elektrifiziertem Fahrzeug und Ladevorrichtung
DE102014215677A1 (de) Batteriesystem für ein Kraftfahrzeug und Verfahren zur Kühlung des Batteriesystems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746445

Country of ref document: EP

Kind code of ref document: A1