WO2020024984A1 - 非接触式衬底操作设备和外延反应器 - Google Patents

非接触式衬底操作设备和外延反应器 Download PDF

Info

Publication number
WO2020024984A1
WO2020024984A1 PCT/CN2019/098611 CN2019098611W WO2020024984A1 WO 2020024984 A1 WO2020024984 A1 WO 2020024984A1 CN 2019098611 W CN2019098611 W CN 2019098611W WO 2020024984 A1 WO2020024984 A1 WO 2020024984A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
closed cavity
closed
contact substrate
suction
Prior art date
Application number
PCT/CN2019/098611
Other languages
English (en)
French (fr)
Inventor
弓利军
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810864892.8A external-priority patent/CN108987327A/zh
Priority claimed from CN201821230434.0U external-priority patent/CN208580730U/zh
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to JP2020572505A priority Critical patent/JP7144547B2/ja
Publication of WO2020024984A1 publication Critical patent/WO2020024984A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the invention relates to the technical field of semiconductor integrated manufacturing, in particular to a non-contact substrate operation equipment and an epitaxial reactor.
  • semiconductor wafers in an epitaxial reactor are usually used for epitaxial coating.
  • the deposition gas passes through the epitaxial reactor and can be deposited on the surface of the semiconductor wafer. Deposition of epitaxial material.
  • substrate (wafer) transfer is very important.
  • the wafer is generally circular and has a front side and a back side.
  • the front side of the wafer is the side of the wafer forming the integrated circuit structure. Therefore, it is very important to protect the front side of the wafer from damage during the wafer transfer process.
  • the substrate may not be able to It is adsorbed very horizontally, it can not guarantee the smooth adsorption, which will cause the failure of fetching or falling.
  • the orientation and layout of the tangential holes of the chucks are problematic, so that the size of the airflow and the swirling vortex of each chuck are different. , The phenomenon of unevenness, spin, and wandering will appear, which can not meet the needs of positioning, fixed-point pick-and-place, and transferring wafers. Therefore, there is a need for a new apparatus for transferring substrates.
  • embodiments of the present invention provide a non-contact substrate operation apparatus and an epitaxial reactor.
  • a non-contact substrate operation apparatus wherein the non-contact substrate operation apparatus includes a gripping disc device and a plurality of substrates disposed on a bottom surface of the gripping disc device. Suction unit;
  • a plurality of the suction plate units are symmetrically distributed in the center, and each of the suction plate units is provided with a cavity, and each of the suction plate units is provided with a plurality of tangents to an inner surface of a side wall of the cavity.
  • Ventilation channels are provided inside the grasping disk device, and the ventilation channels are in communication with all the tangential holes; wherein the ventilation channels are used to receive the gas received through the inlet of the ventilation channels. Input into the corresponding cavity through the tangential hole, so that the gas forms a swirling vortex in the corresponding cavity, and a pressure difference is formed at the opening of the corresponding cavity to adsorb the substrate.
  • the ventilation channel includes: a plurality of first closed channels; a plurality of the first closed channels are provided in a one-to-one correspondence with a plurality of the suction unit, and a plurality of the first closed channels
  • the first ends of the two are in communication with the tangential holes of the corresponding suction unit, the second ends of the plurality of the first closed chambers are in communication with each other, and the plurality of the first closed chambers are connected by the grasping disk device.
  • the center of the bottom surface is distributed radially as the center; wherein the compressed gas is input through the second ends of the plurality of first closed chambers, and is delivered to the corresponding suction unit through the plurality of the first closed chambers. Tangential hole.
  • the ventilation cavity further includes: a second closed cavity; the second closed cavity is located at the center of the grasping disc device, and an extension direction of the second closed cavity and the grasping The thickness direction of the disk body is the same; the second ends of the plurality of first closed cavities are all in communication with the second closed cavity, so that the compressed gas is distributed to the plurality of first through the second closed cavity.
  • a closed cavity is located at the center of the grasping disc device, and an extension direction of the second closed cavity and the grasping The thickness direction of the disk body.
  • the ventilation channel further includes a third closed channel; wherein one end of the third closed channel is formed as an inlet of the ventilation channel, and the other end of the third closed channel is connected to the third closed channel.
  • the second closed cavity communicates.
  • the grasping disk device includes: a chassis and an adapter plate:
  • the adapter plate includes a transfer chassis, an intermediate plate, and a top plate provided along a thickness direction of the grasping tray device, wherein a bottom surface of the transfer plate is connected to the chassis;
  • the third closed cavity includes a first groove formed on a bottom surface of the adapter chassis, a third closed cavity entrance penetrating the adapter chassis, and a third closed cavity penetrating the adapter chassis.
  • the intermediate disk is formed with a second closed cavity entrance at a position connected to the transfer chassis, the third closed cavity entrance is in communication with the second closed cavity entrance, and the second closed cavity entrance Formed in the intermediate plate, the top plate closes the second closed cavity.
  • the adapter disc further includes a radiation disc, and the radiation disc is located between the intermediate disc and the chassis; wherein,
  • a second groove is formed on the top surface of the chassis, a second closed cavity exit is formed at a position connected to the chassis, and the second recess is closed at a part of the radiation disc. Grooves to form the first closed cavity, and the second closed cavity exit connects the first closed cavity and the second closed cavity.
  • a bump is provided on the bottom surface of the chassis, and the bump is used for positioning and limiting the substrate.
  • the plurality of bumps are evenly distributed along a circumferential direction of a bottom surface of the chassis.
  • a plurality of closed cavities corresponding to the plurality of suction plate units are provided in the grasping tray device; the plurality of suction plate units are respectively disposed in the closed cavities corresponding thereto.
  • a plurality of annular closed cavities provided in one-to-one correspondence with the plurality of suction plate units; wherein the first end of the first closed cavity channel is in communication with the annular closed cavity channel, so that the compressed gas passes through The first closed cavity and the annular closed cavity are delivered to a tangential hole of a corresponding suction unit.
  • a through hole having an exhaust function is provided in the center of the gripping disk device.
  • the non-contact substrate operation apparatus further includes a gripping arm, one end of the gripping arm is connected to the gripping disc device, and a vent tube is provided inside the gripping arm, and the vent tube Communicating with the ventilation cavity to provide gas to the ventilation cavity.
  • the distance between the inlet of the ventilation cavity and each of the suction unit is equal, so that the gas is evenly delivered to the tangential holes of each suction unit.
  • the cavity in the suction unit is a cylindrical cavity.
  • a plurality of the tangential holes are on the top of the cavity and the cavity. And the plurality of tangential holes are located at the same height.
  • the number of the suction plate units is an even number, and the directions of the swirling vortices formed in the cavity by two adjacent suction plate units are opposite.
  • the openings of the cavities of the plurality of suction plate units are evenly distributed along the circumferential direction at the bottom of the gripping disk device.
  • an epitaxial reactor including a non-contact substrate operation equipment, characterized in that the non-contact substrate operation equipment is the above-mentioned non-contact substrate provided by the present invention. Operate the equipment.
  • a plurality of suction unit is uniformly distributed, and compressed gas is uniformly delivered to each suction unit, so that the lifting force formed by each suction unit is the same, and the rotating force is generated.
  • Can cancel each other eliminate the spin (or wafer) of the substrate (or wafer), improve the accuracy of the equipment; can achieve the suspension of the substrate, transfer the substrate, effectively avoid the substrate transfer tool to the substrate during the pick and place process
  • Surface pollution, crushing and other problems improve the quality of the product; it can effectively prevent high-temperature gas from causing damage to external gas paths and equipment. It can take high-temperature pick-and-place films, shorten equipment cooling and cooling time, and increase equipment productivity.
  • FIG. 1 is a schematic structural diagram of a venting channel according to an embodiment of a non-contact substrate operation apparatus according to the present invention
  • FIGS. 2 and 3 are schematic structural diagrams of a suction unit according to an embodiment of a non-contact substrate operation apparatus according to the present invention
  • FIG. 4 is a schematic diagram of the working principle of the suction unit
  • FIG. 5 is a schematic structural cross-sectional view of an embodiment of a non-contact substrate processing apparatus according to the present invention.
  • the present invention provides a non-contact substrate operation apparatus including a pick-up disc device and a Multiple suction units on the bottom surface (in the embodiment shown in FIG. 1, the multiple suction units include a suction unit 102 and a suction unit 103), the gripping tray device and the multiple suction units can be implemented as A variety of specific structures.
  • a plurality of sucker units (including the sucker unit 102 and the sucker unit 103) are symmetrically distributed at the center, and the plurality of sucker units are distributed on the same circumference.
  • the center of symmetry of the plurality of suction unit there is no special requirement for the center of symmetry of the plurality of suction unit, as long as the center of symmetry of the plurality of suction unit is located on the bottom surface of the gripping disk device.
  • the center of symmetry of the plurality of suction unit is the center of the bottom surface of the gripping disk device.
  • Each suction unit is provided with a cavity, and a plurality of tangential holes are provided on the side wall of the cavity of each suction unit. It should be noted that the tangential holes and the suction provided with the tangential holes are provided. The inner surface of the side wall of the cavity of the sheet unit is tangent.
  • the inside of the grasping disk device is provided with a ventilation channel, and a specific arrangement manner of the ventilation channel can be set according to design requirements.
  • the ventilation cavity is used to input the gas (optionally, the compressed gas) received through the inlet of the ventilation cavity into the corresponding cavity through the tangential hole, so that the gas is in the corresponding cavity.
  • a swirling vortex is formed in the cavity.
  • the openings of the cavities of the respective suction unit are oriented the same (that is, all face the substrate), and tangential to the respective suction unit Compressed gas is introduced into the hole, and the pressure difference (ie, negative pressure) generated between the tangential hole and the opening of the corresponding cavity is made by the swirling vortex to adsorb the substrate.
  • the openings of the cavities of the multiple suction unit are evenly distributed on the bottom of the gripping disk device along the circumferential direction, so that multiple suction units can be used to form a uniformly distributed suction point on the substrate to achieve a more stable suction liner. bottom.
  • the cavity of the suction plate unit 102 in FIG. 2 communicates with the tangential hole 102-1, and the cavity of the suction plate unit 103 and the tangential hole 103 in FIG. 3 -1 connectivity.
  • the compressed gas is input into the cavity of the suction unit 102 and the cavity of the suction unit 103 through the ventilation cavity and the tangential holes 102-1 and 103-1, respectively, and in the cavity of the suction unit 102,
  • a swirling vortex is formed in the cavity of the suction sheet unit 103, and the substrate is adsorbed by the pressure difference generated by the swirling vortex.
  • the substrate may be a variety of semiconductor wafer substrates and the like.
  • the suction sheet unit (including the suction sheet unit 102 and the suction sheet unit 103) is provided with a cylindrical cavity, and at least two cuts communicating with the cavity are provided on the top of the cavity and at the same height.
  • the tangential hole and the tangential hole are tangent to the inner wall of the corresponding cylindrical cavity.
  • the top of the cavity of the suction sheet unit 102 is provided with two tangential holes 102-1, and the tangential holes 102-1 and the cylindrical shape of the cavity of the suction sheet unit 102 are cylindrical.
  • the inner wall of the cavity is tangent.
  • the top of the cavity of the suction unit 103 is provided with two tangential holes 103-1.
  • the tangential hole 103-1 is tangent to the inner wall of the cylindrical cavity of the cavity of the suction unit 103.
  • a plurality of sucker units (including a plurality of sucker units 102 and a plurality of sucker units 103) are evenly distributed, and the total number of the sucker units is a double number, for example, 6, 8 or the like.
  • the tangential holes of two adjacent suction plate units may be arranged in a left-handed and right-handed manner. The directions of the swirling vortices formed in the cavity by the adjacent suction-plate units 102 and 103 are different, and they are left-handed. The swirling vortex and the right-handed swirling vortex or vice versa.
  • the compressed gas enters the cavity from the top of the suction unit along the tangential hole, and forms a swirling vortex under the constraint of the wall surface of the cylindrical cavity.
  • the high-speed rotating gas drives the gas in the central area of the cavity to rotate, and it is thrown to the wall surface by the centrifugal force, thereby generating a negative pressure area in the center of the cavity.
  • the silicon wafer placed under the suction unit is subjected to a vertical upward adsorption force due to the negative pressure, thereby realizing the adsorption process.
  • the suction unit uses Bernoulli's principle to achieve the lifting force by using a low pressure generated by the rotating vortex to generate a pressure difference. Because the vortex formed by a single suction unit will cause the wafer to rotate, the suction unit uses a center-rotational symmetrical distribution to Balance the rotation between each other.
  • the openings of the cavities of the plurality of suction unit are evenly distributed along the circumferential direction at the bottom of the gripping disk device.
  • the ventilation channel uniformly delivers compressed gas to the tangential holes of each suction unit, specifically, the compressed gas can be uniformly supplied to the tangential holes 102-1 of each suction unit 102 And a tangential hole 103-1 of each suction piece unit 103.
  • the distance between the inlet of the ventilation channel and each suction unit is equal to deliver compressed gas to the tangential holes of each suction unit (specifically, the tangential holes of compressed air to the suction unit 102). 102-1 and tangential holes 103-1 of the suction unit 103).
  • the ventilation channel can be realized in a variety of specific structures.
  • the ventilation channel includes a plurality of first closed channels 105, and the plurality of first closed channels 105 are arranged one-to-one corresponding to a plurality of suction unit (including the suction unit 102 and the suction unit 103).
  • the first ends of the plurality of first closed cavities 105 communicate with the tangential holes of the corresponding suction unit respectively, the second ends of the plurality of first closed cavities 105 communicate with each other, and the plurality of first closed cavities 105 communicate with
  • the center of the bottom surface of the gripping disk device is distributed radially as the center.
  • the compressed gas is input through the second end of the first closed cavity 105 and is uniformly delivered to the tangential holes of the suction unit corresponding to the compressed gas through the first closed cavity 105.
  • the lengths of the first closed chambers 105 are the same, so that the distance between the inlet of the ventilation chamber and each suction unit is equal.
  • the ventilation cavity further includes a second closed cavity 104.
  • the second closed cavity 104 is located at the center of the grasping disc device, and the extending direction (ie, the axial direction) of the second closed cavity 104 is consistent with the thickness direction of the grasping disc device. It should be explained that the outlet of the second closed cavity 104 is the entrance of the ventilation cavity, and the second ends of the plurality of first closed cavity 105 are all in communication with the second closed cavity 104 so that the compressed gas passes through the second The closed channels 104 are evenly distributed to the plurality of first closed channels 105.
  • the ventilation cavity further includes a third closed cavity 106, and one end of the third closed cavity 106 is formed as The entrance of the ventilating channel.
  • the third closed cavity 106 is located at the edge of the grasping disc device, and the other end of the third closed cavity 106 is in communication with the second closed cavity 104.
  • the number of the third closed cavity 106 may be plural.
  • a plurality of suction plates are provided in the gripping plate device.
  • the units including the suction unit 102 and the suction unit 103) correspond to a plurality of closed cavities.
  • a plurality of suction unit (including the suction unit 102 and the suction unit 103) are respectively arranged in the corresponding closed chambers, so as to form a one-to-one correspondence with a plurality of suction units (including the suction unit 102 and the suction unit 103).
  • annular closed chambers 130 Of a plurality of annular closed chambers 130.
  • the first end of the first closed cavity 105 is in communication with the annular closed cavity 130, so that the compressed gas is transmitted to the tangential holes of the corresponding suction unit through the first closed cavity 105 and the annular closed cavity 130.
  • the gripping tray device includes a chassis 101 and a transfer tray device 121.
  • the bottom surface of the chassis 101 is formed as the bottom face of the gripping tray device.
  • the transfer tray device 121 may adopt various structures.
  • the adapter plate device 121 is disposed on the surface of the chassis 101 facing away from the bottom surface of the chassis 101.
  • the adapter plate device 121 includes a transfer plate 110, an intermediate plate 111, and a top plate 109 provided along the thickness direction of the gripping plate device. .
  • the bottom surface of the transfer chassis 110 is connected to the chassis 101.
  • a third closed cavity 106 is formed between the transfer chassis 110, the intermediate tray 111, and the chassis 101, and a second closed cavity 104 is formed between the intermediate tray 111 and the top tray 109.
  • the third closed channel 106 includes a first groove formed on the bottom surface of the transfer chassis 110, a third closed channel entrance penetrating through the transfer chassis 110, and a third closed channel exit penetrating through the transfer chassis 110. .
  • the entrance of the third closed cavity communicates with the entrance of the first groove and the ventilation cavity, and a part of the chassis 101 is disposed opposite the first groove to close the first groove.
  • the intermediate tray 111 is formed with a second closed cavity entrance at a position connected to the transfer chassis 110.
  • the outlet of the third closed cavity is in communication with the inlet of the second closed cavity.
  • the second closed cavity 104 is formed in the middle plate 111, and the top plate 109 closes the second closed cavity 104.
  • the adapter plate 121 further includes a radiation plate 108, which is located between the intermediate plate 111 and the chassis 101.
  • the first closed cavity 105 is formed between the radiation disk 108, the intermediate disk 111, and the chassis 101.
  • a second groove is formed on the top surface of the chassis 101, a second closed channel exit is formed at the position where the intermediate disc 111 is connected to the chassis 101, and a part of the radiation disc 108 closes the second groove to form
  • the first closed cavity 105 and the second closed cavity outlet connect the first closed cavity 105 and the second closed cavity 104.
  • a bump 101-1 is provided at the bottom of the chassis, and the bump 101-1 is used for positioning and limiting the substrate.
  • the number of the bumps 101-1 is not particularly limited as long as the substrate can be positioned and limited.
  • the bottom of the chassis is provided with a plurality of bumps 101-1, and the plurality of bumps 101-1 are evenly distributed on the bottom surface of the chassis along its circumferential direction.
  • the plurality of bumps 101-1 are evenly distributed on the same circumference to better position and limit the substrate.
  • a through hole 107 with an exhaust function is provided in the center of the gripping disk device.
  • the non-contact substrate handling apparatus may further include a gripping arm 222, one end of which is connected to a gripping disc device.
  • a ventilation tube is provided inside the grasping arm 222, and the ventilation tube is in communication with the ventilation cavity to provide gas to the ventilation cavity (optionally, the gas is a compressed gas).
  • the outlet of the ventilation tube may directly communicate with the second closed cavity 104.
  • the compressed gas is connected through a vent pipe provided inside the gripping arm 222 Source, the compressed gas enters the second closed cavity 104 through the third closed cavity 106, and evenly enters the first closed cavity 105 through the central hole of the second closed cavity 104, and reaches the annular closed cavity 130 where the suction unit is located , So that the airflow entering the tangential holes of each suction unit is the same, and the final holding force is the same, so that the substrate will not be sucked up.
  • the multiple suction units 102 and 103 are evenly and symmetrically distributed in the center, the air inlets of the suction unit (that is, the tangential holes of the suction unit) are also symmetrically distributed, and the generated rotational forces cancel each other out. Rotation may occur, and to ensure the positioning of the substrate during transfer.
  • suction plate unit 102 and the suction plate unit 103 are embedded between the radiation disk 108 and the chassis 101 of the adapter plate 121, and form an annular closed cavity 130.
  • a plurality of first receiving holes are formed on the radiation disc 108, and a plurality of second receiving holes are provided on the chassis 101.
  • the first receiving hole, the second receiving hole, and the suction unit correspond to each other one by one.
  • the first accommodating hole communicates with the corresponding second accommodating hole to form a closed cavity, and the corresponding suction piece unit is accommodated in the closed cavity.
  • the ring-shaped closed cavity also corresponds to the suction unit one-to-one, and the ring-shaped closed cavity is located between the corresponding first receiving hole and the corresponding second receiving hole.
  • the top of the suction unit is disposed in the corresponding first receiving hole, the middle portion of the suction unit is located in the corresponding annular closed cavity 130, and the bottom of the suction unit is disposed in the corresponding second receiving hole.
  • an epitaxial reactor comprising: a non-contact substrate handling apparatus as in any of the above embodiments.
  • the non-contact substrate operation equipment provided by the above embodiments distributes the suction unit uniformly and compresses the gas uniformly to each suction unit, so that the lifting force formed by each suction unit is the same, and the generated rotating force can be Cancel each other, eliminate the spin and skew of the substrate, and improve the accuracy of the equipment; it can realize the suspended pick-up and transfer of the substrate and the transfer of the substrate, which can effectively prevent the substrate surface from contaminating the substrate during the pick-and-place process, Problems such as crush injury, improve product quality; can effectively prevent high-temperature gas from causing damage to external gas paths and equipment; high-temperature pick-and-place films can be used to shorten equipment cooling and cooling time and increase equipment productivity.
  • a fixed connection can be understood as: a detachably fixed connection (such as a bolt or screw connection), or It is understood as: non-removable fixed connection (such as riveting, welding), of course, the fixed connection to each other can also be replaced by an integrated structure (such as manufactured by integral molding using a casting process) (except that an integral molding process cannot obviously be used).
  • any component provided by the present invention may be assembled from multiple separate components, or may be a separate component manufactured by an integral molding process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

一种非接触式衬底操作设备,包括:抓取盘装置和设置在该抓取盘装置的底面上的多个吸片单元(102,103);多个吸片单元(102,103)呈中心对称分布,每个吸片单元(102,103)内部都设置有腔体,每个吸片单元(102,103)均设置有多个与该吸片单元(102,103)的侧壁内表面相切的切向孔(102-1,103-1);抓取盘装置的内部设置有通气腔道,该通气腔道与所有切向孔(102-1,103-1)连通;其中,通气腔道用于将通过通气腔道的入口接收到的气体通过切向孔(102-1,103-1)输入相应的腔体内,以使得气体在相应腔体中形成旋转涡流,并在相应腔体的开口处形成压力差以吸附衬底。还提供一种外延生长器。所述的非接触式衬底操作设备,可以消除晶片自旋、偏斜情况,提高设备精确性。

Description

非接触式衬底操作设备和外延反应器 技术领域
本发明涉及半导体集成制造技术领域,尤其涉及一种非接触式衬底操作设备和一种外延反应器。
背景技术
在半导体集成电路制造领域中,为了生成外延涂覆的半导体晶圆,通常采用对外延反应器中的半导体晶圆进行外延涂层,沉积气体穿过外延反应器,能在半导体晶圆的表面上沉积外延材料。在外延反应器中,衬底(晶片)传送属于非常重要的内容。晶片一般是圆形的,具有正面和背面,晶片正面是形成实现集成电路结构的晶片面。所以,在晶片传送过程中,保护晶片正面不受损坏是非常重要的。
目前,在现有的外延反应器中具有多种用于传送衬底(晶片)的设备,但都有不足之处。例如,对于一种外延反应器中的非接触式衬底操作设备,在取片过程中,在各抽气孔处形成的吸附力作用于衬底的正面中央,衬底中央作用的吸附力将使衬底变形过大,从而容易形成压伤;此外,在由工艺腔中取片时,衬底尚存有一定温度,与设备的抓取装置之间存在一定的粘附性,衬底可能不能被十分水平地吸附起来,无法保证平稳吸附,从而造成取片失败或掉落。再例如,对于另一种外延反应器中的非接触式衬底操作设备,吸盘的切向孔的朝向以及布局存在问题,使得各个吸盘的气流大小、旋转涡流均存在差异,晶片被吸起时,会出现不平稳、自旋、飘荡的现象,无法满足定位、定点取放、传送晶片的需求。因此,需要一种新的用于传送衬底的设备。
发明内容
有鉴于此,本发明实施例提供一种非接触式衬底操作设备和一种外延反应器。
根据本发明实施例的一个方面,提供一种非接触式衬底操作设备,其中,所述非接触式衬底操作设备包括抓取盘装置和设置在所述抓取盘装置的底面上的多个吸片单元;
多个所述吸片单元呈中心对称分布,每个所述吸片单元都设置有腔体,且每个所述吸片单元均设置有多个与所述腔体的侧壁内表面相切的切向孔;
所述抓取盘装置的内部设置有通气腔道,所述通气腔道与所有所述切向孔连通;其中,所述通气腔道用于将通过所述通气腔道的入口接收到的气体通过所述切向孔输入相应的腔体内,以使得气体在相应腔体中形成旋转涡流,并在相应腔体的开口处形成压力差,以吸附所述衬底。
可选地,所述通气腔道包括:多个第一密闭腔道;多个所述第一密闭腔道与多个所述吸片单元一一对应设置,多个所述第一密闭腔道的第一端分别与对应的吸片单元的切向孔连通,多个所述第一密闭腔道的第二端相互连通,并且多个所述第一密闭腔道以所述抓取盘装置的底面的中心为中心呈辐射状分布;其中,压缩气体经由多个所述第一密闭腔道的第二端输入,并通过多个所述第一密闭腔道输送给与其对应的吸片单元的切向孔。
可选地,所述通气腔道还包括:第二密闭腔道;所述第二密闭腔道位于所述抓取盘装置的中心,所述第二密闭腔道的延伸方向与所述抓取盘本体的厚度方向一致;多个所述第一密闭腔道的第二端均与所述第二密闭腔道连通,以使得压缩气体经由所述第二密闭腔道分配给多个所述第一密闭腔道。
可选地,所述通气腔道还包括第三密闭腔道;其中,所述第三密闭腔道的一端形成为所述通气腔道的入口,所述第三密闭腔道的另一端与所述第二密闭腔道连通。
可选地,所述抓取盘装置包括:底盘和转接盘:
所述转接盘包括沿所述抓取盘装置的厚度方向设置的转接底盘、中间盘 和顶盘,其中,所述转接底盘的底面与所述底盘相连;
所述第三密闭腔道包括形成在所述转接底盘的底面上的第一凹槽、贯穿所述转接底盘的第三密闭腔道入口和贯穿所述转接底盘的第三密闭腔道出口,所述第三密闭腔道入口连通所述第一凹槽和所述通气腔道的入口,所述底盘的一部分与所述第一凹槽相对设置,以封闭所述第一凹槽,所述中间盘在与所述转接底盘相连的位置处形成有第二密闭腔道入口,所述第三密闭腔道出口与所述第二密闭腔道入口连通,所述第二密闭腔道形成在所述中间盘中,所述顶盘封闭所述第二密闭腔道。
可选地,所述转接盘还包括辐射圆盘,所述辐射圆盘位于所述中间盘和所述底盘之间;其中,
所述底盘的顶面上形成有第二凹槽,所述中间盘在与所述底盘相连的位置处形成有第二密闭腔道出口,在所述辐射圆盘的一部分封闭所述第二凹槽,以形成所述第一密闭腔道,所述第二密闭腔道出口连通所述第一密闭腔道和所述第二密闭腔道。
可选地,在所述底盘的底面上设置有凸点,所述凸点用于对所述衬底进行定位和限位。
可选地,所述凸点为多个,且多个所述凸点在所述底盘的底面沿其周向上均匀分布。
可选地,在所述抓取盘装置内设置有与多个所述吸片单元一一对应的多个密闭腔体;多个所述吸片单元分别设置在与其对应的所述密闭腔体内,形成与多个所述吸片单元一一对应设置的多个环形密闭腔道;其中,所述第一密闭腔道的第一端与所述环形密闭腔道相连通,以使得压缩气体经由所述第一密闭腔道、所述环形密闭腔道输送给对应的吸片单元的切向孔。
可选地,所述抓取盘装置的中心设置具有排气功能的通孔。
可选地,所述非接触式衬底操作设备还包括抓取臂,所述抓取臂的一端与所述抓取盘装置连接,所述抓取臂内部设置有通气管,所述通气管与所述 通气腔道连通,以向所述通气腔道提供气体。
可选地,所述通气腔道的入口与各个所述吸片单元之间的距离相等,以将气体均匀地输送给每个吸片单元的切向孔。
可选地,所述吸片单元内的所述腔体为圆柱形腔体,在同一个所述吸片单元中,多个所述切向孔在所述腔体的顶部与所述腔体连通,且多个所述切向孔位于同一高度处。
可选地,所述吸片单元的数量为偶数,且相邻的两个所述吸片单元在所述腔体中形成的旋转涡流的方向相反。
可选地,多个所述吸片单元的腔体的开口沿圆周方向均匀地分布在所述抓取盘装置的底部。
作为本发明的第二个方面,提供一种外延反应器,包括非接触式衬底操作设备,其特征在于,所述非接触式衬底操作设备为本发明所提供的上述非接触式衬底操作设备。
本发明的非接触式衬底操作设备中,多个吸片单元均匀分布,并且压缩气体均匀地输送给每个吸片单元,使每个吸片单元形成的托举力相同,生成的旋转力可以互相抵消,消除衬底(或者晶片)自旋、偏斜情况,提高设备精确性;能够实现悬浮取放衬底、传送衬底,有效避免衬底在取放过程中传片工具对衬底表面造成的污染、压伤等问题,提高产品的质量;可以有效防止高温气体对外部气路及设备等造成损坏,可以进行高温取放片,缩短设备降温冷却时间,提高设备产能。
本发明实施例附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下 面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图:
图1为根据本发明的非接触式衬底操作设备的一个实施例的通气腔道的结构示意图;
图2和图3为根据本发明的非接触式衬底操作设备的一个实施例的吸片单元结构示意图;
图4为吸片单元的工作原理示意图;
图5为根据本发明的非接触式衬底操作设备的一个实施例的结构剖面示意图。
具体实施方式
下面参照附图对本发明进行更全面的描述,其中说明本发明的示例性实施例。下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。下面结合图和实施例对本发明的技术方案进行多方面的描述。
下文为了叙述方便,下文中所称的“左”、“右”、“上”、“下”与附图本身的左、右、上、下方向一致。
下文中的“第一”、“第二”等,仅用于描述上相区别,并没有其它特殊的含义。
作为本发明的一个方面,如图1至5所示,本发明提供一种非接触式衬底操作设备,该非接触式衬底操作设备包括抓取盘装置和设置在该抓取盘装置的底面上的多个吸片单元(在图1中所示的实施方式中,多个吸片单元包括吸片单元102和吸片单元103),抓取盘装置和多个吸片单元可以实现为多种具体的结构。
如图1所示,多个吸片单元(包括吸片单元102和吸片单元103)呈中心对称分布,且多个吸片单元分布在同一圆周上。在本发明中,对多个吸片单元的对称中心不做特殊的规定,只要多个吸片单元的对称中心位于抓取盘装置的底面上即可。在图1中所示的具体实施方式中,多个吸片单元的对称中心为抓取盘装置的底面的中心。
每个吸片单元都设置有腔体,并且每个吸片单元的腔体的侧壁上均设置有多个切向孔,需要指出的是,切向孔与和设置有切向孔的吸片单元的腔体的侧壁内表面相切。
抓取盘装置的内部设置有通气腔道,可以根据设计要求设置通气腔道的具体布置方式。其中,如图4所示,通气腔道用于将通过通气腔道的入口接收到的气体(可选地,该气体为压缩气体)通过切向孔输入相应的腔体内,以使得气体在相应的腔体中形成旋转涡流。在利用包括抓取盘装置的非接触式衬底操作设备转移衬底时,将各个吸片单元的腔体的开口朝向相同(即,均朝向衬底),并向各个吸片单元的切向孔通入压缩气体,利用旋转涡流在切向孔和相应的腔体的开口之间产生的压力差(即,负压),以吸附衬底。
多个吸片单元的腔体的开口沿圆周方向均匀地分布在抓取盘装置的底部,从而可以利用多个吸片单元在衬底上形成分布均匀的吸附点,以实现更稳定地吸附衬底。
以图2和图3中所示的具体实施方式为例,图2中吸片单元102的腔体与切向孔102-1相通,图3中吸片单元103的腔体与切向孔103-1连通。压缩气体通过通气腔道以及切向孔102-1和切向孔103-1分别输入吸片单元102的腔体内以及吸片单元103的腔体内,并分别在吸片单元102的腔体中、以及吸片单元103的腔体中形成旋转涡流,利用旋转涡流产生的压力差吸附衬底。衬底可以为多种半导体晶片衬底等。
作为一种具体实施方式,吸片单元(包括吸片单元102和吸片单元103)设置有圆柱形的腔体,在腔体的顶部并位于同一高度处设置与腔体相通的至 少两个切向孔,切向孔与相应的圆柱形腔体的内壁相切。具体地,在图2中所示的实施方式中,吸片单元102的腔体顶部设置有两个切向孔102-1,切向孔102-1与吸片单元102的腔体的圆柱形腔体的内壁相切,吸片单元103的腔体顶部设置有两个切向孔103-1,切向孔103-1与吸片单元103的腔体的圆柱形腔体的内壁相切。多个吸片单元(包括多个吸片单元102和多个吸片单元103)均匀分布,且吸片单元的总个数为双数,例如为6、8个等。相邻的两个吸片单元的切向孔可以是左旋与右旋间隔排布,相邻的吸片单元102和吸片单元103在腔体中形成的旋转涡流的方向不相同,分别为左旋旋转涡流和右左旋旋转涡流或者相反。
如图4所示,压缩气体从吸片单元的顶部沿切向孔进入腔体,在圆柱形腔体的壁面的束缚下形成旋转涡流。高速旋转的气体带动腔体中心区域的气体旋转,因离心力作用将其甩向壁面,从而在腔体中心产生负压区。置于吸片单元下方的硅片因负压的作用而受到垂直向上的吸附力,实现吸附过程。由于压力的作用,气体以螺旋状向下运动,在吸片单元底部呈散射状排出,从而在硅片的外围与吸盘之间形成气垫,最终实现非接触吸片。吸片单元利用伯努利原理,通过使用旋转涡流形成的低压产生压力差实现托举力,由于单一吸片单元形成的涡流会导致晶片发生旋转,所以吸片单元采用中心旋转对称分布,用以均衡彼此之间的旋转力。
为了更稳定地吸附衬底,可选地,多个吸片单元的腔体的开口沿圆周方向均匀地分布在抓取盘装置的底部。
在一个实施例中,通气腔道将压缩气体均匀地输送给每个吸片单元的切向孔,具体地,可以将压缩气体均匀地输送给每个吸片单元102的切向孔102-1和每个吸片单元103的切向孔103-1。
通气腔道的入口与各个吸片单元之间的距离相等,以将压缩气体均匀地输送给每个吸片单元的切向孔(具体地,将压缩空气输送给吸片单元102的切向孔102-1和吸片单元103的切向孔103-1)。
通气腔道可以实现为多种具体的结构。例如,通气腔道包括多个第一密闭腔道105,多个第一密闭腔道105与多个吸片单元(包括吸片单元102和吸片单元103)一一对应设置。多个第一密闭腔道105的第一端分别与对应的吸片单元的切向孔连通,多个第一密闭腔道105的第二端相连通,并且多个第一密闭腔道105以抓取盘装置的底面的中心为中心呈辐射状分布。压缩气体经由第一密闭腔道105的第二端输入,并通过第一密闭腔道105均匀地输送给与其对应的吸片单元的切向孔。各个第一密闭腔道105的长度相同,以实现通气腔道的入口与各个吸片单元之间的距离相等。
在本发明中,对如何向第一密闭腔道105提供气体并不做特殊的限定。可选地,通气腔道还包括第二密闭腔道104。第二密闭腔道104位于抓取盘装置的中心,第二密闭腔道104的延伸方向(即,轴线方向)与抓取盘装置的厚度方向一致。需要解释的是,第二密闭腔道104的出口即为通气腔道的入口,多个第一密闭腔道105的第二端均与第二密闭腔道104连通,以使得压缩气体经由第二密闭腔道104均匀分配给多个第一密闭腔道105。
在本发明中,对如何向第二密闭腔道104提供气体不做特殊的限定,可选地,通气腔道还包括第三密闭腔道106,该第三密闭腔道106的一端开口形成为通气腔道的入口。第三密闭腔道106位于抓取盘装置的边缘,第三密闭腔道106的另一端开口与第二密闭腔道104连通。第三密闭腔道106的数量可以为多个。
为了将多个吸片单元设置在抓取盘装置上、并通过抓取盘装置的通气腔道向各个吸片单元供气,可选地,在抓取盘装置内设置有与多个吸片单元(包括吸片单元102和吸片单元103)一一对应的多个密闭腔体。多个吸片单元(包括吸片单元102和吸片单元103)分别设置在与其对应的密闭腔体内,形成与多个吸片单元(包括吸片单元102和吸片单元103)一一对应设置的多个环形密闭腔道130。其中,第一密闭腔道105的第一端与环形密闭腔道130相连通,以使得压缩气体经由第一密闭腔道105、环形密闭腔道130输 送给对应的吸片单元的切向孔。
如图5所示,抓取盘装置包括:底盘101和转接盘装置121,底盘101的底面形成为抓取盘装置的底面,转接盘装置121可以采用多种结构。例如,转接盘装置121设置在底盘101的背离该底盘101的底面的表面上,转接盘装置121包括沿抓取盘装置的厚度方向设置的转接底盘110、中间盘111和顶盘109。转接底盘110的底面与底盘101相连。
在转接底盘110、中间盘111、底盘101之间形成第三密闭腔道106,在中间盘111、顶盘109之间形成第二密闭腔道104。具体地,第三密闭腔道106包括形成在转接底盘110的底面上的第一凹槽、贯穿转接底盘110的第三密闭腔道入口和贯穿转接底盘110的第三密闭腔道出口。第三密闭腔道入口连通第一凹槽和通气腔道的入口,底盘101的一部分与第一凹槽相对设置,以封闭第一凹槽。中间盘111在与转接底盘110相连的位置处形成有第二密闭腔道入口。第三密闭腔道出口与第二密闭腔道入口连通,第二密闭腔道104形成在中间盘111中,顶盘109封闭第二密闭腔道104。
可选地,转接盘121还包括辐射盘108,该辐射圆盘108位于中间盘111和底盘101之间。
在转接盘121包括辐射盘108的实施方式中,第一密闭腔道105形成在辐射圆盘108、中间盘111、底盘101之间。具体地,底盘101的顶面上形成有第二凹槽,中间盘111在与底盘101相连的位置处形成有第二密闭腔道出口,辐射圆盘108的一部分封闭第二凹槽,以形成第一密闭腔道105,第二密闭腔道出口连通第一密闭腔道105和第二密闭腔道104。
可选地,在底盘的底部设置有凸点101-1,凸点101-1用于对衬底进行定位和限位。
在本发明中,对凸点101-1的数量不做特殊限定,只要能够对衬底进行定位和限定即可。可选地,底盘的底部设置有多个凸点101-1,且多个凸点101-1在底盘的底面沿其周向上均匀分布。该多个凸点101-1均匀地分布在 同一个圆周上,以对衬底进行更好的定位和限位。
可选地,抓取盘装置的中心设置具有排气功能的通孔107。
在转移衬底时,需要移动抓取盘装置。在本发明中对如何移动抓取盘装置不做特殊的限定。可选地,非接触式衬底操作设备还可以包括抓取臂222,该抓取臂222的一端与抓取盘装置连接。抓取臂222内部设置有通气管,通气管与通气腔道连通,以向通气腔道提供气体(可选地,气体为压缩气体)。如上文所述,在抓取盘装置包括底盘101和转接盘装置121的具体实施方式中,通气管的出口可以直接与第二密闭腔道104连通。
下面描述如何通过抓取臂222向抓取盘装置吸片单元102、以及吸片单元103供气,以实现非接触式传送衬底:通过抓取臂222内部设置的通气管接通压缩气体气源,压缩气体通过第三密闭腔道106进入第二密闭腔道104中,经由第二密闭腔道104的中心孔均匀进入第一密闭腔道105,抵达吸片单元所在的环形密闭腔道130,使得进入每个吸片单元的切向孔的气流均相同,最后所形成的托举力大小相同,衬底不会出现偏斜被吸起的情况。同时,由于多个吸片单元102,103居中均匀对称分布,吸片单元的进气口(即,吸片单元的切向孔)也呈现对称分布,产生的旋转力均互相抵消,衬底不会出现旋转的情况,并且,为保证传送过程中衬底的定位。
在本发明中,对如何将多个吸片单元设置在具有底盘101和转接盘装置121的抓取盘装置上并不做特殊的限定。在图1中所示的具体实施方式中,吸片单元102、吸片单元103嵌入在转接盘121的辐射圆盘108与底盘101之间,并形成环形密闭腔道130。
下面简单介绍如何将吸片单元102以及吸片单元103嵌入在辐射圆盘108与底盘101之间。如图5所示,辐射圆盘108上形成有多个第一容纳孔,底盘101上设置有多个第二容纳孔,第一容纳孔、第二容纳孔以及吸片单元三者一一对应设置,且第一容纳孔与相应的第二容纳孔相通形成密闭腔体,对应的吸片单元容纳于密闭腔体内。环形密闭腔道也与吸片单元一一对应, 且环形密闭腔道到位于相应的第一容纳孔和相应的第二容纳孔之间。
吸片单元顶部设置在相应的第一容纳孔中,吸片单元的中间部分位于相应的环形密闭腔道130中,吸片单元的底部设置在相应的第二容纳孔中。
在一个实施例中,提供一种外延反应器,包括:如上任一实施例中的非接触式衬底操作设备。
上述实施例提供的非接触式衬底操作设备,将吸片单元均匀分布并且压缩气体均匀地输送给每个吸片单元,使每个吸片单元形成的托举力相同,生成的旋转力可以互相抵消,消除衬底自旋、偏斜情况,提高设备精确性;能够实现悬浮取放衬底、传送衬底,有效避免衬底在取放过程中传片工具对衬底表面造成的污染、压伤等问题,提高产品的质量;可以有效防止高温气体对外部气路及设备等造成损坏,可以进行高温取放片,缩短设备降温冷却时间,提高设备产能。
上述本发明所公开的任一技术方案除另有声明外,如果其公开了数值范围,那么公开的数值范围均为优选的数值范围,任何本领域的技术人员应该理解:优选的数值范围仅仅是诸多可实施的数值中技术效果比较明显或具有代表性的数值。由于数值较多,无法穷举,所以本发明才公开部分数值以举例说明本发明的技术方案,并且,上述列举的数值不应构成对本发明创造保护范围的限制。
同时,上述本发明如果公开或涉及了互相固定连接的零部件或结构件,那么,除另有声明外,固定连接可以理解为:能够拆卸地固定连接(例如使用螺栓或螺钉连接),也可以理解为:不可拆卸的固定连接(例如铆接、焊接),当然,互相固定连接也可以为一体式结构(例如使用铸造工艺一体成形制造出来)所取代(明显无法采用一体成形工艺除外)。
另外,上述本发明公开的任一技术方案中所应用的用于表示位置关系或形状的术语除另有声明外其含义包括与其近似、类似或接近的状态或形状。本发明提供的任一部件既可以是由多个单独的组成部分组装而成,也可以为 一体成形工艺制造出来的单独部件。
以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。
本发明的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims (16)

  1. 一种非接触式衬底操作设备,其特征在于,所述非接触式衬底操作设备包括抓取盘装置和设置在所述抓取盘装置的底面上的多个吸片单元(102,103);
    多个所述吸片单元(102,103)呈中心对称分布,每个所述吸片单元(102,103)都设置有腔体,且每个所述吸片单元(102,103)均设置有多个与所述腔体的侧壁内表面相切的切向孔(102-1,103-1);
    所述抓取盘装置的内部设置有通气腔道,所述通气腔道与所有所述切向孔(102-1,103-1)连通;其中,所述通气腔道用于将通过所述通气腔道的入口接收到的气体通过所述切向孔(102-1,103-1)输入相应的腔体内,以使得气体在相应腔体中形成旋转涡流,并在相应腔体的开口处形成压力差,以吸附所述衬底。
  2. 如权利要求1所述的非接触式衬底操作设备,其特征在于,
    所述通气腔道包括:多个第一密闭腔道(105);多个所述第一密闭腔道(105)与多个所述吸片单元(102,103)一一对应设置,多个所述第一密闭腔道(105)的第一端分别与对应的吸片单元的切向孔连通,多个所述第一密闭腔道(105)的第二端相互连通,并且多个所述第一密闭腔道(105)以所述抓取盘装置的底面的中心为中心呈辐射状分布;其中,压缩气体经由多个所述第一密闭腔道(105)的第二端输入,并通过多个所述第一密闭腔道(105)输送给与其对应的吸片单元的切向孔(102-1,103-1)。
  3. 如权利要求2所述的非接触式衬底操作设备,其特征在于,
    所述通气腔道还包括:第二密闭腔道(104);所述第二密闭腔道(104)位于所述抓取盘装置的中心,所述第二密闭腔道的延伸方向与所述抓取盘本体的厚度方向一致;多个所述第一密闭腔道(105)的第二端均与所述第二 密闭腔道(104)连通,以使得压缩气体经由所述第二密闭腔道(104)分配给多个所述第一密闭腔道(105)。
  4. 如权利要求3所述的非接触式衬底操作设备,其特征在于,
    所述通气腔道还包括第三密闭腔道(106);其中,所述第三密闭腔道(106)的一端形成为所述通气腔道的入口,所述第三密闭腔道(106)的另一端与所述第二密闭腔道(104)连通。
  5. 如权利要求4所述的非接触式衬底操作设备,其特征在于,
    所述抓取盘装置包括:底盘(101)和转接盘(121):
    所述转接盘(121)包括沿所述抓取盘装置的厚度方向设置的转接底盘(110)、中间盘(111)和顶盘(109),其中,所述转接底盘(110)的底面与所述底盘(101)相连;
    所述第三密闭腔道(106)包括形成在所述转接底盘(110)的底面上的第一凹槽、贯穿所述转接底盘(110)的第三密闭腔道入口和贯穿所述转接底盘(110)的第三密闭腔道出口,所述第三密闭腔道入口连通所述第一凹槽和所述通气腔道的入口,所述底盘(101)的一部分与所述第一凹槽相对设置,以封闭所述第一凹槽,所述中间盘(111)在与所述转接底盘(110)相连的位置处形成有第二密闭腔道入口,所述第三密闭腔道出口与所述第二密闭腔道入口连通,所述第二密闭腔道(104)形成在所述中间盘(111)中,所述顶盘(109)封闭所述第二密闭腔道(104)。
  6. 如权利要求5所述的非接触式衬底操作设备,其特征在于,所述转接盘(121)还包括辐射圆盘(108),所述辐射圆盘(108)位于所述中间盘(111)和所述底盘(101)之间;其中,
    所述底盘(101)的顶面上形成有第二凹槽,所述中间盘(111)在与所述底盘(101)相连的位置处形成有第二密闭腔道出口,在所述辐射圆盘(108) 的一部分封闭所述第二凹槽,以形成所述第一密闭腔道(105),所述第二密闭腔道出口连通所述第一密闭腔道(105)和所述第二密闭腔道(104)。
  7. 如权利要求5所述的非接触式衬底操作设备,其特征在于,
    在所述底盘的底面上设置有凸点(101-1),所述凸点(101-1)用于对所述衬底进行定位和限位。
  8. 根据权利要求7所述的非接触式衬底操作设备,其特征在于,
    所述凸点(101-1)为多个,且多个所述凸点(101-1)在所述底盘的底面沿其周向上均匀分布。
  9. 如权利要求2至8中任意一项所述的非接触式衬底操作设备,其特征在于,
    在所述抓取盘装置内设置有与多个所述吸片单元(102,103)一一对应的多个密闭腔体;多个所述吸片单元(102,103)分别设置在与其对应的所述密闭腔体内,形成与多个所述吸片单元(102,103)一一对应设置的多个环形密闭腔道(130);其中,所述第一密闭腔道(105)的第一端与所述环形密闭腔道(130)相连通,以使得压缩气体经由所述第一密闭腔道(105)、所述环形密闭腔道(130)输送给对应的吸片单元的切向孔。
  10. 如权利要求2至8中任意一项所述的非接触式衬底操作设备,其特征在于,所述抓取盘装置的中心设置具有排气功能的通孔(107)。
  11. 根据权利要求1至8中任意一项所述的非接触式衬底操作设备,其特征在于,所述非接触式衬底操作设备还包括抓取臂(222),所述抓取臂(222)的一端与所述抓取盘装置连接,所述抓取臂内部设置有通气管,所述通气管与所述通气腔道连通,以向所述通气腔道提供气体。
  12. 如权利要求1所述的非接触式衬底操作设备,其特征在于,
    所述通气腔道的入口与各个所述吸片单元(102,103)之间的距离相等,以将气体均匀地输送给每个吸片单元(102,103)的切向孔(102-1,103-1)。
  13. 如权利要求1至8中任意一项所述的非接触式衬底操作设备,其特征在于,
    所述吸片单元(102,103)内的所述腔体为圆柱形腔体,在同一个所述吸片单元中,多个所述切向孔(102-1,103-1)在所述腔体的顶部与所述腔体连通,且多个所述切向孔位于同一高度处。
  14. 如权利要求13所述的非接触式衬底操作设备,其特征在于,
    所述吸片单元的数量为偶数,且相邻的两个所述吸片单元(102,103)在所述腔体中形成的旋转涡流的方向相反。
  15. 如权利要求1至8中任意一项所述的非接触式衬底操作设备,其特征在于,多个所述吸片单元的腔体的开口沿圆周方向均匀地分布在所述抓取盘装置的底部。
  16. 一种外延反应器,包括非接触式衬底操作设备,其特征在于,所述非接触式衬底操作设备为权利要求1至15中任意一项所述的非接触式衬底操作设备。
PCT/CN2019/098611 2018-08-01 2019-07-31 非接触式衬底操作设备和外延反应器 WO2020024984A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020572505A JP7144547B2 (ja) 2018-08-01 2019-07-31 非接触式基板操作機器及びエピタキシャルリアクタ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810864892.8A CN108987327A (zh) 2018-08-01 2018-08-01 非接触式衬底操作设备
CN201821230434.0U CN208580730U (zh) 2018-08-01 2018-08-01 非接触式衬底操作设备
CN201821230434.0 2018-08-01
CN201810864892.8 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020024984A1 true WO2020024984A1 (zh) 2020-02-06

Family

ID=69231436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098611 WO2020024984A1 (zh) 2018-08-01 2019-07-31 非接触式衬底操作设备和外延反应器

Country Status (2)

Country Link
JP (1) JP7144547B2 (zh)
WO (1) WO2020024984A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093864A (ja) * 1999-09-24 2001-04-06 Toshiba Corp 半導体ウェーハ固定治具及び半導体装置の製造方法
CN203134768U (zh) * 2013-01-06 2013-08-14 武汉电信器件有限公司 半导体外延片真空夹持装置
CN204271064U (zh) * 2014-12-01 2015-04-15 上海技美电子科技有限公司 晶圆搬运机械手
CN204271057U (zh) * 2014-12-01 2015-04-15 上海技美电子科技有限公司 新型晶圆搬运机械手
CN108987327A (zh) * 2018-08-01 2018-12-11 北京北方华创微电子装备有限公司 非接触式衬底操作设备
CN208580730U (zh) * 2018-08-01 2019-03-05 北京北方华创微电子装备有限公司 非接触式衬底操作设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850117B2 (ja) * 2007-04-16 2012-01-11 有明マテリアル株式会社 真空吸着装置用吸着体及び真空吸着装置
CN201547334U (zh) * 2009-10-19 2010-08-11 丘玉辉 一种单向真空抽气阀结构
JP6468848B2 (ja) * 2015-01-13 2019-02-13 株式会社ディスコ 搬送装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093864A (ja) * 1999-09-24 2001-04-06 Toshiba Corp 半導体ウェーハ固定治具及び半導体装置の製造方法
CN203134768U (zh) * 2013-01-06 2013-08-14 武汉电信器件有限公司 半导体外延片真空夹持装置
CN204271064U (zh) * 2014-12-01 2015-04-15 上海技美电子科技有限公司 晶圆搬运机械手
CN204271057U (zh) * 2014-12-01 2015-04-15 上海技美电子科技有限公司 新型晶圆搬运机械手
CN108987327A (zh) * 2018-08-01 2018-12-11 北京北方华创微电子装备有限公司 非接触式衬底操作设备
CN208580730U (zh) * 2018-08-01 2019-03-05 北京北方华创微电子装备有限公司 非接触式衬底操作设备

Also Published As

Publication number Publication date
JP7144547B2 (ja) 2022-09-29
JP2021528862A (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
US5967578A (en) Tool for the contact-free support of plate-like substrates
WO2015096819A1 (zh) 工艺腔室以及半导体加工设备
JP4243766B2 (ja) 非接触搬送装置
WO2015083613A1 (ja) 保持装置
TWI678759B (zh) 非接觸式襯底操作設備
CN109890999A (zh) 用于等离子体处理系统的承载板
CN101228612A (zh) 用于在晶片处理设备的处理室内部支承和转动承受器的系统
KR101646946B1 (ko) 흡인 척 및 이송 장치
WO2020024984A1 (zh) 非接触式衬底操作设备和外延反应器
WO2018090591A1 (zh) 工艺腔室及半导体装置
TWI686114B (zh) 晶片吸附裝置及晶片鍵合系統
WO2015083609A1 (ja) 搬送装置
CN208580730U (zh) 非接触式衬底操作设备
TWI755439B (zh) 具有微通道區域之晶圓卡盤裝置
CN107974669A (zh) 真空卡盘及工艺腔室
JP2007176637A (ja) 非接触搬送装置
CN105964498B (zh) 一种专用于匀胶机托盘真空吸片口上的插条式端盖
TWI708872B (zh) 用於操作襯底的設備
JP7134267B2 (ja) 基板を操作するための機器
CN109536927B (zh) 一种适用于超大规模原子层沉积的给料系统
CN218769463U (zh) 一种伯努利吸盘
WO2019185012A1 (zh) 基底边缘保护装置、光刻设备及基底边缘保护方法
KR101223543B1 (ko) 비접촉식 이송장치
CN105921368A (zh) 一种专用于匀胶机托盘真空吸片口上的三层腔体型端盖
CN216413036U (zh) 一种伯努利吸盘及硅片移送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845082

Country of ref document: EP

Kind code of ref document: A1