WO2020024630A1 - 目镜与显示装置 - Google Patents

目镜与显示装置 Download PDF

Info

Publication number
WO2020024630A1
WO2020024630A1 PCT/CN2019/084346 CN2019084346W WO2020024630A1 WO 2020024630 A1 WO2020024630 A1 WO 2020024630A1 CN 2019084346 W CN2019084346 W CN 2019084346W WO 2020024630 A1 WO2020024630 A1 WO 2020024630A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
eyepiece
reflective
image source
polarizer
Prior art date
Application number
PCT/CN2019/084346
Other languages
English (en)
French (fr)
Inventor
娄琪琪
宋立通
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/962,856 priority Critical patent/US20210141211A1/en
Priority to JP2020540465A priority patent/JP2021512356A/ja
Publication of WO2020024630A1 publication Critical patent/WO2020024630A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • G02B9/10Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only one + and one - component
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0116Head-up displays characterised by optical features comprising device for genereting colour display comprising devices for correcting chromatic aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • G02B9/16Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - + all the components being simple

Definitions

  • the present application relates to the field of optics, and in particular, to an eyepiece and a display device.
  • VR virtual reality
  • the VR eyepiece directly affects the application and experience of the device, and therefore has high requirements for the imaging quality and appearance quality of the eyepiece.
  • VR wearable devices need to achieve better viewing angles, eye movement ranges, high-quality imaging effects, and small-sized ultra-thin structures.
  • the lens group is optimized for design.
  • VR imaging eyepieces In order to achieve higher magnification, VR imaging eyepieces generally need to have a longer working distance, and have larger chromatic aberrations and distortions. However, this cannot meet people's requirements for thinning and high-performance headsets.
  • the main purpose of the present application is to provide an eyepiece and a display device, so as to at least solve the problem of long working distance of the eyepiece in the prior art.
  • an eyepiece includes: a lens component having a positive power or a negative power.
  • the lens component includes at least two lenses. In the direction, they are a first lens and a second lens; a reflective linear polarizer is disposed on a surface of the first lens near the image source or on a surface of the second lens; a reflective circular polarizer, It is disposed on the surface of the first lens, and the reflective circular polarizer is located on the side of the reflective linear polarizer away from the image source; a 1 / 4 ⁇ wave plate is disposed on the reflective linear polarizer and the reflective Between the circular polarizers, wherein the first lens has positive or negative power, the second lens has negative power, the Abbe number of the first lens is Vd1> 50, and the second lens Abd number Vd2 ⁇ 30 for the material.
  • the maximum vertical axis chromatic aberration of the eyepiece is LACL, and LACL ⁇ 60 ⁇ m.
  • a surface of the first lens near the image source is a second surface
  • a second surface of the first lens is a convex surface
  • the curvature radius of the second surface of the first lens is R2
  • the effective focal length of the eyepiece is f, -3 ⁇ R2 / f ⁇ 0.
  • the distance between the center of the object side of the first lens and the surface of the image source on the optical axis is TTL, and the half of the diagonal length of the effective pixel area on the surface of the image source is ImgH, TTL / ImgH ⁇ 1.3.
  • the maximum field angle of the eyepiece is HFOV, and tan (HFOV)> 1.
  • the lens assembly further includes a third lens, and the third lens is located on a side of the second lens far from the first lens.
  • an eyepiece includes: a lens component having a positive power or a negative power, and the lens component includes at least two lenses in a direction close to an image source, respectively.
  • a first lens and a second lens are a first lens and a second lens; a reflective linear polarizer is disposed on the surface of the first lens near the image source or on the surface of the second lens; a reflective circular polarizer is disposed on the first lens On any surface of a lens, the reflective circular polarizer is located on the side of the reflective linear polarizer away from the image source; a 1 / 4 ⁇ wave plate is provided on the reflective linear polarizer and the reflective circular polarizer between.
  • the first lens has a positive power or a negative power
  • the second lens has a negative power
  • the Abbe number Vd1 of the material of the first lens is greater than 50, and the Abbe number of the material of the second lens is Vd2 ⁇ 30.
  • the maximum vertical axis chromatic aberration of the eyepiece is LACL, and LACL ⁇ 60 ⁇ m.
  • a surface of the first lens near the image source is a second surface
  • a second surface of the first lens is a convex surface
  • the curvature radius of the second surface of the first lens is R2
  • the effective focal length of the eyepiece is f, -3 ⁇ R2 / f ⁇ 0.
  • the distance between the center of the object side of the first lens and the surface of the image source on the optical axis is TTL, and the half of the diagonal length of the effective pixel area on the surface of the image source is ImgH, TTL / ImgH ⁇ 1.3.
  • the maximum field angle of the eyepiece is HFOV, and tan (HFOV)> 1.
  • the lens assembly further includes a third lens, and the third lens is located on a side of the second lens far from the first lens.
  • a display device including an eyepiece, and the eyepiece is any of the foregoing eyepieces.
  • the display device is a head-mounted virtual reality display device.
  • the power of the first lens is set to positive power or negative power
  • the power of the second lens is set to negative power
  • the Abbe number of the material of the first lens is selected.
  • Vd1> 50 select the Abbe number of the second lens material Vd2 ⁇ 30, which can reduce the size of the lens and further reduce the weight of the lens; at the same time, it can also reduce the chromatic aberration of the imaging, thereby improving the lens's Imaging quality.
  • FIG. 1 is a schematic structural diagram of an eyepiece of Embodiment 1.
  • FIG. 1 is a schematic structural diagram of an eyepiece of Embodiment 1.
  • FIG. 3 is a schematic structural diagram of an eyepiece of Embodiment 2;
  • FIG. 5 is a schematic structural diagram of an eyepiece of Embodiment 3.
  • FIG. 6 shows a magnification chromatic aberration curve of the eyepiece of Example 3.
  • FIG. 7 is a schematic structural diagram of an eyepiece of Embodiment 4.
  • FIG. 9 is a schematic structural diagram of an eyepiece of Embodiment 5.
  • FIG. 11 is a schematic structural diagram of an eyepiece of Embodiment 6;
  • FIG. 12 shows a magnification chromatic aberration curve of the eyepiece of Example 6.
  • this application proposes an eyepiece and a display device.
  • an eyepiece is provided.
  • the eyepiece includes a lens assembly, a reflective linear polarizer, Reflective circular polarizer and 1 / 4 ⁇ wave plate, wherein the lens assembly includes at least two lenses, namely a first lens 10 and a second lens 20, and the first lens 10 and the second lens 20 are close to the image source along the
  • the reflective linear polarizer is disposed on the surface of the first lens 10 near the image source or on the surface of the second lens 20; the reflective circular polarizer is disposed on the surface of the first lens 10.
  • the reflective circular polarizer is located on a side of the reflective linear polarizer away from the image source; a 1 / 4 ⁇ wave plate is disposed between the reflective linear polarizer and the reflective circular polarizer, wherein,
  • the first lens 10 has a positive or negative power
  • the second lens 20 has a negative power
  • the Abbe number Vd1 of the material of the first lens 10 is greater than 50
  • the material of the second lens 20 is Vd2 ⁇ 30.
  • the surface of the first lens near the human eye is defined as its first surface
  • the surface near the image source is defined as its second surface
  • the second lens is defined near the human
  • the surface of the eye ie, away from the image source
  • the surface of the eye is its second surface
  • each structure in the eyepiece described above includes a variety of arrangements.
  • Embodiment 1 shown in FIG. 1 although the reflective circular polarizer and the reflective linear polarizer are not shown in the figure, it can be seen from the optical path diagram that the reflective circular polarizer is disposed on the first lens 10.
  • a reflective linear polarizer is disposed on the second surface of the first lens 10.
  • Embodiment 2 of FIG. 3 according to the optical path diagram, it can be seen that a reflective circular polarizer is disposed on the first surface of the first lens 10, and a reflective linear polarizer is disposed on the second surface of the second lens 20. .
  • a reflective circular polarizer is disposed on the first surface of the first lens 10
  • a reflective linear polarizer is disposed on the first surface of the second lens 20.
  • a reflective circular polarizer is disposed on the second surface of the first lens 10
  • a reflective linear polarizer is disposed on the second surface of the second lens 20.
  • a reflective circular polarizer is disposed on the first surface of the first lens 10
  • a reflective linear polarizer is disposed on the first surface of the second lens 20.
  • a reflective circular polarizer is disposed on the first surface of the first lens 10
  • a reflective linear polarizer is disposed on the first surface of the second lens 20.
  • the arrangement and arrangement of the various structures in the eyepieces of the present application is not limited to the manners in the above six embodiments, and may also be other arrangement manners, such as a reflective circular polarizer disposed on the second surface of the first lens.
  • the reflective linear polarizer is also disposed on the surface of the reflective circular polarizer away from the first lens, in fact, the reflective linear polarizer is also disposed on the second surface of the first lens.
  • a person skilled in the art may select an appropriate arrangement and arrangement method to form the eyepieces of the present application according to actual conditions, as long as the above arrangement and arrangement requirements are met.
  • the light emitted from the image source passes through the reflective linear polarizer, the second lens 20, the 1/4 wave plate, and the first lens 10 in order. After reaching the reflective circular polarizer, it passes through the first lens 10, the 1/4 wave plate and the second lens 20 after reflection, and then is reflected by the reflective linear polarizer, so as to pass through the second lens 20 and the 1/4 wave plate in turn.
  • the first lens 10 and the reflective circular polarizer enter the human eye.
  • the optical power of the first lens is set to positive or negative power
  • the optical power of the second lens is set to negative power
  • Abbe the material of the first lens
  • the maximum vertical axis chromatic aberration of the eyepiece is LACL, and LACL ⁇ 60 ⁇ m.
  • the LACL is small, which can effectively improve the imaging quality of the eyepiece, thereby making the color difference of the image seen by the human eye smaller and the color more uniform, thereby improving the visual comfort of the human eye.
  • a surface of the first lens 10 near the image source is a second surface, and a second surface of the first lens 10 is a convex surface.
  • the curvature radius of the second surface of the first lens is R2
  • the effective focal length of the eyepiece is f, -3 ⁇ R2 / f ⁇ 0, so that the eyepiece can be further effectively reduced.
  • Field curvature and distortion while further reducing the size of the eyepiece, thereby improving the imaging quality of the eyepiece, and further reducing the thickness of the eyepiece.
  • the distance between the center of the object side of the first lens and the surface of the image source on the optical axis is TTL.
  • Half of the diagonal length of the effective pixel area of the surface is ImgH and TTL / ImgH ⁇ 1.3.
  • the maximum field angle of the eyepiece is HFOV, and tan (HFOV)> 1, so that the eyepiece can achieve a better immersion.
  • the lens assembly further includes a third lens 30, and the third lens 30 is located on the second lens 20. Away from the first lens 10.
  • the number of lenses in the present application is not limited to two or three, but may be more. Those skilled in the art may choose to set an appropriate number of lenses according to actual conditions, and details are not described herein again.
  • an eyepiece is provided, as shown in FIGS. 1, 3, 5, 7, 9, and 11.
  • the eyepiece includes a lens assembly and a reflective linear polarizer And reflective circular polarizer and 1 / 4 ⁇ wave plate, wherein the lens assembly includes at least two lenses, namely a first lens 10 and a second lens 20, and the first lens 10 and the second lens 20 are close to the image source along the edge
  • the reflective linear polarizer is disposed on the surface of the first lens 10 near the image source or on the surface of the second lens 20; the reflective circular polarizer is disposed on the first lens 10.
  • the reflective circular polarizer is located on a side of the reflective linear polarizer away from the image source; a 1 / 4 ⁇ wave plate is disposed between the reflective linear polarizer and the reflective circular polarizer.
  • each structure in the above-mentioned eyepiece includes a plurality of arrangements.
  • Example 1 shown in FIG. 1 although the reflective circular polarizer and the reflective linear polarizer are not shown in the figure, it can be seen from the optical path diagram that the reflective circular polarizer is disposed at the first of the first lens 10. On the surface, a reflective linear polarizer is disposed on the second surface of the first lens 10.
  • Example 2 of FIG. 3 according to the optical path diagram, it can be seen that a reflective circular polarizer is disposed on the first surface of the first lens 10, and a reflective linear polarizer is disposed on the second surface of the second lens 20.
  • a reflective circular polarizer is disposed on the first surface of the first lens 10, and a reflective linear polarizer is disposed on the first surface of the second lens 20.
  • a reflective circular polarizer is disposed on the second surface of the first lens 10, and a reflective linear polarizer is disposed on the second surface of the second lens 20.
  • a reflective circular polarizer is disposed on the first surface of the first lens 10, and a reflective linear polarizer is disposed on the first surface of the second lens 20.
  • a reflective circular polarizer is disposed on the first surface of the first lens 10, and a reflective linear polarizer is disposed on the first surface of the second lens 20.
  • the arrangement and arrangement of the various structures in the eyepieces of the present application is not limited to the manners in the above six embodiments, and may also be other arrangement manners, such as a reflective circular polarizer disposed on the second surface of the first lens.
  • the reflective linear polarizer is also disposed on the surface of the reflective circular polarizer away from the first lens, in fact, the reflective linear polarizer is also disposed on the second surface of the first lens.
  • a person skilled in the art may select an appropriate arrangement and arrangement method to form the eyepieces of the present application according to actual conditions, as long as the above arrangement and arrangement requirements are met.
  • the eyepiece of Example 2 is used as an example to describe the working process of the eyepiece.
  • the light emitted from the image source passes through the reflective linear polarizer, the second lens 20, the 1/4 wave plate, and the first lens 10 in order to reach the reflection.
  • the circular polarizer passes through the first lens 10, the 1/4 wave plate and the second lens 20, and is then reflected by the reflective linear polarizer, so that it passes through the second lens 20, the 1/4 wave plate, and the first lens in order.
  • a lens 10 and a reflective circular polarizer enter the human eye.
  • the physical distance from the human eye to the image source in the direction of the optical axis is reduced, and the lens is thinned.
  • the second lens has a negative power.
  • the maximum vertical axis chromatic aberration of the eyepiece is LACL, and LACL ⁇ 60 ⁇ m.
  • the LACL is small, which can effectively improve the imaging quality of the eyepiece and improve the visual comfort of the human eye.
  • a surface of the first lens 10 near the image source is a second surface, and a second surface of the first lens 10 is a convex surface.
  • the curvature radius of the second surface of the first lens is R2
  • the effective focal length of the eyepiece is f, -3 ⁇ R2 / f ⁇ 0, so that the eyepiece can be further effectively reduced.
  • Field curvature and distortion while further reducing the size of the eyepiece, thereby improving the imaging quality of the eyepiece, and further reducing the thickness of the eyepiece.
  • the distance between the center of the object side of the first lens and the surface of the image source on the optical axis is TTL.
  • Half of the diagonal length of the effective pixel area of the surface is ImgH and TTL / ImgH ⁇ 1.3.
  • the maximum field angle of the eyepiece is HFOV, and tan (HFOV)> 1, so that the eyepiece can achieve a better immersion.
  • the lens assembly further includes a third lens 30, and the third lens 30 is located on the second lens 20. Away from the first lens 10.
  • a display device in another exemplary embodiment of the present application, includes an eyepiece, and the eyepiece is any of the foregoing eyepieces.
  • the above display device includes the above-mentioned eyepiece, so that the eyepiece can meet the requirements of thinning and lightening, and the displayed image quality is better.
  • the display device is a head-mounted virtual reality display device.
  • the eyepiece is in the direction close to the image source.
  • the eyepiece consists of a reflective circular polarizer, a first lens 10, a 1 / 4 ⁇ wave plate, a reflective linear polarizer, and a second lens 20 arranged in order.
  • a reflective circular polarizer for details, refer to FIG. 1, The figure does not show an emission linear polarizer, a reflective circular polarizer, and a 1 / 4 ⁇ wave plate.
  • S1 is the first surface of the first lens 10
  • S2 is the reflective surface of the reflective linear polarizer
  • S3 is the reflective surface of the reflective circular polarizer
  • S4 is the first
  • S5 represents the first surface of the second lens 20
  • S6 represents the second surface of the second lens 20
  • S7 represents the surface of the image source.
  • the focal length f of the eyepiece f 32.41mm
  • the focal length f1 of the first lens 10 9.04mm
  • the focal length f2 of the second lens 20 -169.53.
  • magnification chromatic aberration curve of the eyepiece of this embodiment is shown in FIG. 2. As can be seen from the figure, the magnification chromatic aberration of the eyepiece is small and the imaging quality is good.
  • the eyepiece is in the direction close to the image source.
  • the eyepiece consists of a reflective circular polarizer, a first lens 10, a 1 / 4 ⁇ wave plate, a second lens 20, and a reflective linear polarizer, which are sequentially arranged.
  • a reflective circular polarizer for details, refer to FIG. 3, The figure does not show an emission linear polarizer, a reflective circular polarizer, and a 1 / 4 ⁇ wave plate.
  • S1 represents the first surface of the first lens
  • S2 represents the second surface of the first lens
  • S3 represents the first surface of the second lens
  • S4 represents the reflection type.
  • S5 indicates the first surface of the second lens
  • S6 indicates the second surface of the first lens
  • S7 indicates the reflective surface of the reflective circular polarizer
  • S8 indicates the second surface of the first lens 10.
  • S9 represents the first surface of the second lens 20
  • S10 represents the second surface of the second lens 20
  • S11 represents the surface of the image source.
  • magnification chromatic aberration curve of the eyepiece of this embodiment is shown in FIG. 4. It can be seen from the figure that the magnification chromatic aberration of the eyepiece is small and the imaging quality is good.
  • the eyepiece is in the direction close to the image source.
  • the eyepiece consists of a reflective circular polarizer, a first lens 10, a 1 / 4 ⁇ wave plate, a reflective linear polarizer, and a second lens 20 arranged in this order.
  • the figure does not show an emission linear polarizer, a reflective circular polarizer, and a 1 / 4 ⁇ wave plate.
  • the optical path of this embodiment can be referred to FIG. 5. From the side of the human eye 01, the light passes through S1 in sequence, and is reflected twice in the middle until reaching the imaging surface S9.
  • the parameters of each optical surface are shown in Table 3. Among them, S1 represents the first surface of the first lens 10, S2 represents the second surface of the first lens 10, S3 represents the reflective surface of the reflective linear polarizer, and S4 represents the first The second surface of the lens 10, S5 represents the reflective surface of the reflective circular polarizer, S6 represents the second surface of the first lens 10, S7 represents the first surface of the second lens 20, and S8 represents the second surface of the second lens 20 , S9 represents the surface of the image source.
  • magnification chromatic aberration curve of the eyepiece of this embodiment is shown in FIG. 6. It can be seen from the figure that the magnification chromatic aberration of the eyepiece is small and the imaging quality is good.
  • the eyepiece is in a direction close to the image source.
  • the eyepiece includes a first lens 10, a reflective circular polarizer, a 1 / 4 ⁇ wave plate, a second lens 20, and a reflective linear polarizer, which are arranged in this order.
  • a first lens 10 a reflective circular polarizer, a 1 / 4 ⁇ wave plate, a second lens 20, and a reflective linear polarizer, which are arranged in this order.
  • FIG. 7 The figure does not show an emission linear polarizer, a reflective circular polarizer, and a 1 / 4 ⁇ wave plate.
  • the light passes through S1 in sequence, and is reflected twice in the middle until reaching the imaging surface S9.
  • the parameters of each optical surface are shown in Table 4, where S1 represents the first surface of the first lens 10, S2 represents the second surface of the first lens 10, S3 represents the first surface of the second lens 20, and S4 represents a reflection type
  • S5 indicates the first surface of the second lens 20
  • S6 indicates the reflective surface of the reflective circular polarizer
  • S7 indicates the first surface of the second lens
  • S8 indicates the second surface of the second lens 20
  • S9 represents the surface of the image source.
  • the focal length f of the eyepiece f 31.23mm
  • the focal length f1 of the first lens 10 -310.96mm
  • the focal length f2 of the second lens 20 -816.29
  • magnification chromatic aberration curve of the eyepiece of this embodiment is shown in FIG. 8. As can be seen from the figure, the magnification chromatic aberration of the eyepiece is small and the imaging quality is good.
  • the eyepiece is in the direction close to the image source.
  • the eyepiece consists of a reflective circular polarizer, a first lens 10, a 1 / 4 ⁇ wave plate, a reflective linear polarizer, and a second lens 20 arranged in order.
  • a reflective circular polarizer for details, refer to FIG. 9, The figure does not show an emission linear polarizer, a reflective circular polarizer, and a 1 / 4 ⁇ wave plate.
  • S1 represents the first surface of the first lens
  • S2 represents the second surface of the first lens
  • S3 represents the reflective surface of the reflective linear polarizer
  • S4 represents the first
  • the second surface of the lens 10 represents the reflective surface of the reflective circular polarizer
  • S6 represents the second surface of the first lens
  • S7 represents the first surface of the second lens 20
  • S8 represents the second surface of the second lens 20
  • S9 represents the surface of the image source.
  • the focal length of the eyepiece f 36.65mm
  • the focal length of the first lens f1 113.53mm
  • the focal length of the second lens f2 -84.21.
  • magnification chromatic aberration curve of the eyepiece of this embodiment is shown in FIG. 10. It can be seen from the figure that the magnification chromatic aberration of the eyepiece is small and the imaging quality is good.
  • the eyepiece is in the direction close to the image source.
  • the eyepiece consists of a reflective circular polarizer, a first lens 10, a 1 / 4 ⁇ wave plate, a reflective linear polarizer, a second lens 20, and a third lens 30, which are arranged in this order.
  • the optical path of this embodiment can be referred to FIG. 11. From the side of the human eye 01, the light passes through S1 in sequence, and is reflected twice in the middle until reaching the imaging surface 11.
  • the parameters of each optical surface are shown in Table 3. Among them, S1 represents the first surface of the first lens 10, S2 represents the second surface of the first lens 10, S3 represents the reflective surface of the reflective linear polarizer, and S4 represents the first The second surface of the lens 10, S5 represents the reflective surface of the reflective circular polarizer, S6 represents the second surface of the first lens 10, S7 represents the first surface of the second lens 20, and S8 represents the second surface of the second lens 20 S9 represents the first surface of the third lens 30, S10 represents the second surface of the third lens 30, and S11 represents the surface of the image source.
  • the focal length of the eyepiece f 36.78mm
  • the focal length of the first lens f1 145.32mm
  • the focal length of the second lens f2 -82.65
  • the focal length of the third lens f3 123.72.
  • half of the diagonal length of the effective pixel area on the surface of the image source, ImgH 32.00mm
  • magnification chromatic aberration curve of the eyepiece of this embodiment is shown in FIG. 12. It can be seen from the figure that the magnification chromatic aberration of the eyepiece is small and the imaging quality is good.
  • OBJ represents an object in the optical system
  • EYE represents human eyes
  • the thickness represents the distance from the Si plane to the S (i + 1) plane, and, Define the direction from the human eye to the image source as positive.
  • the same Si in each embodiment may indicate different optical surfaces, and specifically which optical surface needs to be determined according to the optical path in each embodiment.
  • the two polarizers are attached to the first lens or On the second lens, in each structural diagram, the surface of the lens to which the polarizer is attached indicates both the surface of the corresponding polarizer and the surface of the lens.
  • the "refractive index / dispersion coefficient of the material or material" of each optical surface Si in Tables 1 to 6 indicates the refractive index / dispersion of the material or material between the optical surface and the optical surface of the next row coefficient.
  • the "-" accompanying S5 in Table 2 indicates that the material between S5 and S6 is air; for another example, because the material between S6 and S7 is the material of the first lens, the same as S6 in Table 2 "1.49 / 57.4" is the corresponding parameter of the material of the first lens.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 R2 / f -0.76 -1.02 -1.44 -1.02 -2.25 -1.49
  • the power of the first lens is set to positive power or negative power
  • the power of the second lens is set to negative power
  • the Abbe number of the material of the first lens is selected.
  • Vd1> 50 select the Abbe number of the second lens material Vd2 ⁇ 30, which can reduce the size of the lens and further reduce the thickness of the lens; at the same time, it can also reduce the chromatic aberration of the imaging, thereby improving the Imaging quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种目镜和显示装置。目镜包括:具有正光焦度或者负光焦度的透镜组件,透镜组件包括至少两个透镜,在沿靠近像源的方向上,分别为第一透镜(10)和第二透镜(20);反射式线偏振片,设置在第一透镜的靠近像源的表面上或者设置在第二透镜的表面上;反射式圆偏振片,设置在第一透镜的表面上,反射式圆偏振片位于反射式线偏振片的远离像源的一侧;1/4λ波片,设置在反射式线偏振片和反射式圆偏振片之间,其中,第一透镜具有正光焦度或者负光焦度,第二透镜具有负光焦度,第一透镜的材料的阿贝数Vd1>50,第二透镜的材料的阿贝数Vd2<30。目镜的工作距离较短,镜片尺寸较小,实现了镜头的轻薄化,成像的品质较高。

Description

目镜与显示装置 技术领域
本申请涉及光学领域,具体而言,涉及一种目镜和显示装置。
背景技术
近年来随着计算机技术的快速发展,虚拟现实(VR)日趋成熟完善,在专业及消费领域的应用也越来越多。VR目镜作为头戴式显示装置的核心光学元件,直接影响到设备的应用和体验效果,因此对目镜成像质量和外形质量均具有很高要求。
VR穿戴设备为了提供良好的用户体验感,需要实现较佳的视场角、眼动范围、高质量的成像效果以及小尺寸超薄结构等,为了达到上述目的,需要对光学放大模组结构的透镜组进行优化设计。
为了实现较高的放大倍率,一般需要VR成像的目镜具有较长的工作距离,且具有较大的色差和畸变,但是,这样无法满足人们对于头戴设备轻薄化、高性能的需求。
发明内容
本申请的主要目的在于提供一种目镜和显示装置,以至少解决现有技术中的目镜的工作距离较长的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种目镜,该目镜包括:具有正光焦度或者负光焦度的透镜组件,上述透镜组件包括至少两个透镜,在沿靠近像源的方向上,分别为第一透镜和第二透镜;反射式线偏振片,设置在上述第一透镜的靠近上述像源的表面上或者设置在上述第二透镜的表面上;反射式圆偏振片,设置在上述第一透镜的表面上,上述反射式圆偏振片位于上述反射式线偏振片的远离上述像源的一侧;1/4λ波片,设置在上述反射式线偏振片和上述反射式圆偏振片之间,其中,上述第一透镜具有正光焦度或者负光焦度,上述第二透镜具有负光焦度,上述第一透镜的材料的阿贝数Vd1>50,上述第二透镜的材料的阿贝数Vd2<30。
进一步地,上述目镜的最大垂轴色差为LACL,LACL<60μm。
进一步地,上述第一透镜靠近上述像源的表面为第二表面,上述第一透镜的第二表面为凸面。
进一步地,上述第一透镜的第二表面的曲率半径为R2,上述目镜的有效焦距为f,-3<R2/f<0。
进一步地,上述第一透镜的物侧面的中心与上述像源的表面在光轴上的距离为TTL,上述像源的表面的有效像素区域的对角线长度的一半为ImgH,TTL/ImgH<1.3。
进一步地,上述目镜的最大视场角为HFOV,tan(HFOV)>1。
进一步地,上述透镜组件还包括第三透镜,上述第三透镜位于上述第二透镜的远离上述第一透镜的一侧。
根据本申请的另一方面,提供了一种目镜,该目镜包括:具有正光焦度或者负光焦度的透镜组件,上述透镜组件包括至少两个透镜,在沿靠近像源的方向上,分别为第一透镜和第二透镜;反射式线偏振片,设置在上述第一透镜的靠近上述像源的表面上或者设置在上述第二透镜的表面上;反射式圆偏振片,设置在上述第一透镜的任意表面上,上述反射式圆偏振片位于上述反射式线偏振片的远离上述像源的一侧;1/4λ波片,设置在上述反射式线偏振片和上述反射式圆偏振片之间。
进一步地,上述第一透镜具有正光焦度或者负光焦度,上述第二透镜具有负光焦度。
进一步地,上述第一透镜的材料的阿贝数Vd1>50,上述第二透镜的材料的阿贝数Vd2<30。
进一步地,上述目镜的最大垂轴色差为LACL,LACL<60μm。
进一步地,上述第一透镜靠近上述像源的表面为第二表面,上述第一透镜的第二表面为凸面。
进一步地,上述第一透镜的第二表面的曲率半径为R2,上述目镜的有效焦距为f,-3<R2/f<0。
进一步地,上述第一透镜的物侧面的中心与上述像源的表面在光轴上的距离为TTL,上述像源的表面的有效像素区域的对角线长度的一半为ImgH,TTL/ImgH<1.3。
进一步地,上述目镜的最大视场角为HFOV,tan(HFOV)>1。
进一步地,上述透镜组件还包括第三透镜,上述第三透镜位于上述第二透镜的远离上述第一透镜的一侧。
根据本申请的再一方面,提供了一种显示装置,包括目镜,该目镜为任一种上述的目镜。
进一步地,上述显示装置为头戴式虚拟现实显示装置。
应用本申请的技术方案,上述的目镜在进入人眼之前,通过两次反射,减小了人眼至像源在光轴方向的物理距离,实现了镜头的轻薄化。并且,本申请的目镜中,设置第一透镜的光焦度为正光焦度或负光焦度,设置第二透镜的光焦度为负光焦度,选择第一透镜的材料的阿贝数Vd1>50,选择上述第二透镜的材料的阿贝数Vd2<30,这样可以减小镜片的尺寸,进一步实现镜头的轻薄化;与此同时,还可以减小成像的色差,进而提高镜头的成像品质。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了实施例1的目镜的结构示意图;
图2示出了实施例1的目镜的倍率色差曲线;
图3示出了实施例2的目镜的结构示意图;
图4示出了实施例2的目镜的倍率色差曲线;
图5示出了实施例3的目镜的结构示意图;
图6示出了实施例3的目镜的倍率色差曲线;
图7示出了实施例4的目镜的结构示意图;
图8示出了实施例4的目镜的倍率色差曲线;
图9示出了实施例5的目镜的结构示意图;
图10示出了实施例5的目镜的倍率色差曲线;
图11示出了实施例6的目镜的结构示意图;
图12示出了实施例6的目镜的倍率色差曲线。
其中,上述附图包括以下附图标记:
10、第一透镜;20、第二透镜;30、第三透镜;01、人眼。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
应该理解的是,当元件(诸如层、膜、区域、或衬底)描述为在另一元件“上”时,该元件可直接在该另一元件上,或者也可存在中间元件。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申 请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
正如背景技术所介绍的,现有技术中的VR中的目镜的工作距离较长,为了解决如上的技术问题,本申请提出了一种目镜和显示装置。
本申请的一种典型的实施方式中,提供了一种目镜,如图1、图3、图5、图7、图9以及图11所示,该目镜包括透镜组件、反射式线偏振片、反射式圆偏振片与1/4λ波片,其中,透镜组件包括至少两个透镜,分别为第一透镜10和第二透镜20,且第一透镜10和第二透镜20在沿靠近像源的方向上依次设置;反射式线偏振片设置在上述第一透镜10的靠近上述像源的表面上或者设置在上述第二透镜20的表面上;反射式圆偏振片设置在上述第一透镜10的表面上,上述反射式圆偏振片位于上述反射式线偏振片的远离上述像源的一侧;1/4λ波片设置在上述反射式线偏振片和上述反射式圆偏振片之间,其中,上述第一透镜10具有正光焦度或者负光焦度,上述第二透镜20具有负光焦度,上述第一透镜10的材料的阿贝数Vd1>50,上述第二透镜20的材料的阿贝数Vd2<30。
为了方便描述,定义第一透镜的靠近人眼(即远离像源)的表面为其第一表面,靠近像源(即远离人眼)的表面为其第二表面,定义第二透镜的靠近人眼(即远离像源)的表面为其第一表面,靠近像源(即远离人眼)的表面为其第二表面。
上述的目镜中的各个结构包括多种排列方式。比如,在图1所示的实施例1中,虽然图中未示出反射式圆偏振片和反射式线偏振片,但是,根据光路图可知,反射式圆偏振片设置在第一透镜10的第一表面的上,反射式线偏振片设置在第一透镜10的第二表面上。
比如,在图3的实施例2中,根据光路图可知,反射式圆偏振片设置在第一透镜10的第一表面的上,反射式线偏振片设置在第二透镜20的第二表面上。
比如,在图5所示的实施例3中,反射式圆偏振片设置在第一透镜10的第一表面的上,反射式线偏振片设置在第二透镜20的第一表面上。
比如,在图7所示的实施例4中,反射式圆偏振片设置在第一透镜10的第二表面的上,反射式线偏振片设置在第二透镜20的第二表面上。
比如,在图9所示的实施例5中,反射式圆偏振片设置在第一透镜10的第一表面的上,反射式线偏振片设置在第二透镜20的第一表面上。
比如,在图11所示的实施例6中,反射式圆偏振片设置在第一透镜10的第一表面的上,反射式线偏振片设置在第二透镜20的第一表面上。
当然,本申请的上述目镜中的各个结构的排列设置方式并不限于上述六个实施例中的方式,还可以是其他的设置方式,比如反射式圆偏振片设置在第一透镜的第二表面上,反射式线偏振片也设置在反射式圆偏振片的远离第一透镜的表面上,即实际上反射式线偏振片也设置在第一透镜的第二表面上。本领域技术人员可以根据实际情况选择合适的排列设置方式形成本申请的目镜,只要满足上述的排列设置要求即可。
以实施例2的目镜为例,说明本申请中的目镜的工作过程,从像源测发出的光依次通过反射式线偏振片、第二透镜20、1/4波片和第一透镜10,到达反射式圆偏振片,经过反射后通过第一透镜10、1/4波片和第二透镜20,然后由反射式线偏振片反射,从而再次依次通过第二透镜20、1/4波片、第一透镜10和反射式圆偏振片,进入人眼。
上述的目镜在进入人眼之前,通过两次反射,减小了人眼至像源在光轴方向的物理距离,实现了镜头的轻薄化。并且,本申请的目镜中,设置第一透镜的光焦度为正光焦度或负光焦度,设置第二透镜的光焦度为负光焦度,且选择第一透镜的材料的阿贝数Vd1>50,选择上述第二透镜的材料的阿贝数Vd2<30,这样可以减小镜片的尺寸,进一步实现镜头的轻薄化;与此同时,还可以减小成像的色差,进而提高镜头的成像品质。
本申请的一种实施例中,上述目镜的最大垂轴色差为LACL,LACL<60μm。该实施例中,LACL较小,这样能够有效地改善目镜的成像品质,进而使得人眼看到的图像的色差较小,颜色较均匀,从而提高了人眼的视觉舒适感。
为了有效地减小目镜的场曲和球差,获得较好的成像性能,本申请的一种实施例中,如图1、图3、图5、图7、图9以及图11所示,上述第一透镜10靠近上述像源的表面为第二表面,上述第一透镜10的第二表面为凸面。
本申请的另一种实施例中,上述第一透镜的第二表面的曲率半径为R2,上述目镜的有效焦距为f,-3<R2/f<0,这样可以进一步有效地减小目镜的场曲和畸变,同时进一步减小目镜的尺寸,进而提高目镜的成像品质,且能够进一步实现目镜的轻薄化。
为了进一步缩短目镜的总长度,满足轻薄化的需求,本申请的一种实施例中,上述第一透镜的物侧面的中心与上述像源的表面在光轴上的距离为TTL,上述像源的表面的有效像素区域的对角线长度的一半为ImgH,TTL/ImgH<1.3。
本申请的再一种实施例中,上述目镜的最大视场角为HFOV,tan(HFOV)>1,这样可以使得目镜能够实现较好的沉浸感。
为了进一步保证提升目镜的成像品质,本申请的一种实施例中,如图11所示的实施例6中,上述透镜组件还包括第三透镜30,上述第三透镜30位于上述第二透镜20的远离上述第一透镜10的一侧。
当然,本申请中的透镜的个数并不限于两个或者三个,还可以是更多个,本领域技术人员可以根据实际情况选择设置合适个数的透镜,此处就不再赘述了。
本申请的另一种典型的实施方式中,提供了一种目镜,如图1、图3、图5、图7、图9以及图11所示,该目镜包括透镜组件、反射式线偏振片、反射式圆偏振片与1/4λ波片,其中,透镜组件包括至少两个透镜,分别为第一透镜10和第二透镜20,且第一透镜10和第二透镜20在沿靠近像源的方向上依次设置;反射式线偏振片设置在上述第一透镜10的靠近上述像源的表面上或者设置在上述第二透镜20的表面上;反射式圆偏振片设置在上述第一透镜10的表面上,上述反射式圆偏振片位于上述反射式线偏振片的远离上述像源的一侧;1/4λ波片设置在上述反射式线偏振片和上述反射式圆偏振片之间。
同样地,上述的目镜中的各个结构包括多种排列方式。在图1所示的实施例1中,虽然图中未示出反射式圆偏振片和反射式线偏振片,但是,根据光路图可知,反射式圆偏振片设置在第一透镜10的第一表面的上,反射式线偏振片设置在第一透镜10的第二表面上。在图3的实施例2中,根据光路图可知,反射式圆偏振片设置在第一透镜10的第一表面的上,反射式线偏振片设置在第二透镜20的第二表面上。在图5所示的实施例3中,反射式圆偏振片设置在第一透镜10的第一表面的上,反射式线偏振片设置在第二透镜20的第一表面上。在图7所示的实施例4中,反射式圆偏振片设置在第一透镜10的第二表面的上,反射式线偏振片设置在第二透镜20的第二表面上。在图9所示的实施例5中,反射式圆偏振片设置在第一透镜10的第一表面的上,反射式线偏振片设置在第二透镜20的第一表面上。在图11所示的实施例6中,反射式圆偏振片设置在第一透镜10的第一表面的上,反射式线偏振片设置在第二透镜20的第一表面上。
当然,本申请的上述目镜中的各个结构的排列设置方式并不限于上述六个实施例中的方式,还可以是其他的设置方式,比如反射式圆偏振片设置在第一透镜的第二表面上,反射式线偏振片也设置在反射式圆偏振片的远离第一透镜的表面上,即实际上反射式线偏振片也设置在第一透镜的第二表面上。本领域技术人员可以根据实际情况选择合适的排列设置方式形成本申请的目镜,只要满足上述的排列设置要求即可。
同样以实施例2的目镜为例,说明该目镜的工作过程,从像源测发出的光依次通过反射式线偏振片、第二透镜20、1/4波片和第一透镜10,到达反射式圆偏振片,经过反射后通过第一透镜10、1/4波片和第二透镜20,然后由反射式线偏振片反射,从而再次依次通过第二透镜20、1/4波片、第一透镜10和反射式圆偏振片后,进入人眼。
上述的目镜在进入人眼之前,通过两次反射,减小了人眼至像源在光轴方向的物理距离,实现了镜头的轻薄化。
为了减小镜片的尺寸,进一步实现目镜的轻薄化,且同时减小目镜成像的色差,提升目镜的成像品质,本申请的一种实施例中,其中,上述第一透镜具有正光焦度或者负光焦度,上述第二透镜具有负光焦度。
为了进一步减小镜片的尺寸且同时进一步减小目镜成像的色差,本申请的一种实施例中,上述第一透镜的材料的阿贝数Vd1>50,上述第二透镜的材料的阿贝数Vd2<30。
本申请的一种实施例中,上述目镜的最大垂轴色差为LACL,LACL<60μm。该实施例中,LACL较小,这样能够有效地改善目镜的成像品质,提高人眼的视觉舒适感。
为了有效地减小目镜的场曲和球差,获得较好的成像性能,本申请的一种实施例中,如图1、图3、图5、图7、图9以及图11所示,上述第一透镜10靠近上述像源的表面为第二表面,上述第一透镜10的第二表面为凸面。
本申请的另一种实施例中,上述第一透镜的第二表面的曲率半径为R2,上述目镜的有效焦距为f,-3<R2/f<0,这样可以进一步有效地减小目镜的场曲和畸变,同时进一步减小目镜的尺寸,进而提高目镜的成像品质,且能够进一步实现目镜的轻薄化。
为了进一步缩短目镜的总长度,满足轻薄化的需求,本申请的一种实施例中,上述第一透镜的物侧面的中心与上述像源的表面在光轴上的距离为TTL,上述像源的表面的有效像素区域的对角线长度的一半为ImgH,TTL/ImgH<1.3。
本申请的再一种实施例中,上述目镜的最大视场角为HFOV,tan(HFOV)>1,这样可以使得目镜能够实现较好的沉浸感。
为了进一步保证提升目镜的成像品质,本申请的一种实施例中,如图11所示的实施例6中,上述透镜组件还包括第三透镜30,上述第三透镜30位于上述第二透镜20的远离上述第一透镜10的一侧。
本申请的再一种典型的实施方式中,提供了一种显示装置,该显示装置包括目镜,该目镜为上述任意一种目镜。
上述的显示装置由于包括上述的目镜,使得该目镜能够满足轻薄化的需求,且显示的图像品质较好。
一种具体的实施例中,上述显示装置为头戴式虚拟现实显示装置。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案以及技术效果,以下将结合具体的实施例来说明。
实施例1
目镜在沿靠近像源的方向上,该目镜由依次设置的反射式圆偏振片、第一透镜10、1/4λ波片、反射式线偏振片和第二透镜20,具体可以参照图1,该图中未示出射式线偏振片、反射式圆偏振片与1/4λ波片。
该实施例的光路可以参照图1所示,从人眼01侧,光线依次经过S1,经过中间的两次反射,直到成像面S7。各个光学面的参数见表1所示,其中,S1表示第一透镜10的第一表面,S2表示反射式线偏振片的反射面,S3表示反射式圆偏振片的反射面,S4表示第一透镜10的第二表面,S5表示第二透镜20的第一表面,S6表示第二透镜20的第二表面,S7表示像源的表面。
表1
Figure PCTCN2019084346-appb-000001
该实施例中,目镜的焦距f=32.41mm,第一透镜10的焦距f1=9.04mm,第二透镜20的焦距f2=-169.53,该目镜的最大视场角为HFOV=50°,上述像源的表面的有效像素区域的对角线长度的一半ImgH=32.00mm,目镜的最大垂轴色差为LACL=19.51μm。具体见表7所示。
由上述数据计算可知,该实施例中,R2/f=-0.76,TTL/ImgH=0.78,tan(HFOV)=1.19。具体见表8所示。
由上述数据可知,该实施例的目镜的工作距离较短,满足了小型化且轻薄化的需求。该实施例的目镜的倍率色差曲线如图2所示,由该图可知,该目镜的倍率色差较小,成像质量较好。
实施例2
目镜在沿靠近像源的方向上,该目镜由依次设置的反射式圆偏振片、第一透镜10、1/4λ波片、第二透镜20和反射式线偏振片,具体可以参照图3,该图中未示出射式线偏振片、反射式圆偏振片与1/4λ波片。
该实施例的光路可以参照图3所示,从人眼01侧,光线依次经过S1,经过中间的两次反射,直到成像面S11。各个光学面的参数见表2所示,其中,S1表示第一透镜10的第一表面,S2表示第一透镜10的第二表面,S3表示第二透镜20的第一表面,S4表示反射式线偏振片的反射面,S5表示第二透镜20的第一表面,S6表示第一透镜10的第二表面,S7表示反射式圆偏振片的反射面,S8表示第一透镜10的第二表面,S9表示第二透镜20的第一表面,S10表示第二透镜20的第二表面,S11表示像源的表面。
表2
Figure PCTCN2019084346-appb-000002
Figure PCTCN2019084346-appb-000003
该实施例中,目镜的焦距f=30.74mm,第一透镜的焦距f1=145.70mm,第二透镜的焦距f2=-306.72,该目镜的最大视场角为HFOV=50°,上述像源的表面的有效像素区域的对角线长度的一半ImgH=32.00mm,目镜的最大垂轴色差为LACL=11.62μm。具体见表7所示。
由上述数据计算可知,该实施例中,R2/f=-1.02,TTL/ImgH=0.55,tan(HFOV)=1.19。具体见表8所示。
由上述数据可知,该实施例的目镜的工作距离较短,满足了小型化且轻薄化的需求。该实施例的目镜的倍率色差曲线如图4所示,由该图可知,该目镜的倍率色差较小,成像质量较好。
实施例3
目镜在沿靠近像源的方向上,该目镜由依次设置的反射式圆偏振片、第一透镜10、1/4λ波片、反射式线偏振片和第二透镜20,具体可以参照图5,该图中未示出射式线偏振片、反射式圆偏振片与1/4λ波片。
该实施例的光路可以参照图5所示,从人眼01侧,光线依次经过S1,经过中间的两次反射,直到成像面S9。各个光学面的参数见表3所示,其中,S1表示第一透镜10的第一表面,S2表示第一透镜10的第二表面,S3表示反射式线偏振片的反射面,S4表示第一透镜10的第二表面,S5表示反射式圆偏振片的反射面,S6表示第一透镜10的第二表面,S7表示第二透镜20的第一表面,S8表示第二透镜20的第二表面,S9表示像源的表面。
表3
Figure PCTCN2019084346-appb-000004
Figure PCTCN2019084346-appb-000005
该实施例中,目镜的焦距f=37.37mm,第一透镜的焦距f1=119.79mm,第二透镜的焦距f2=-104.30,该目镜的最大视场角为HFOV=50°,上述像源的表面的有效像素区域的对角线长度的一半ImgH=32.00mm,目镜的最大垂轴色差为LACL=55.73μm。具体见表7所示。
由上述数据计算可知,该实施例中,R2/f=-1.44,TTL/ImgH=1.06,tan(HFOV)=1.19。具体见表8所示。
由上述数据可知,该实施例的目镜的工作距离较短,满足了小型化且轻薄化的需求。该实施例的目镜的倍率色差曲线如图6所示,由该图可知,该目镜的倍率色差较小,成像质量较好。
实施例4
目镜在沿靠近像源的方向上,该目镜由依次设置的第一透镜10、反射式圆偏振片、1/4λ波片、第二透镜20和反射式线偏振片,具体可以参照图7,该图中未示出射式线偏振片、反射式圆偏振片与1/4λ波片。
该实施例的光路可以参照图7所示,从人眼01侧,光线依次经过S1,经过中间的两次反射,直到成像面S9。各个光学面的参数见表4所示,其中,S1表示第一透镜10的第一表面,S2表示第一透镜10的第二表面,S3表示第二透镜20的第一表面,S4表示反射式线偏振片的反射面,S5表示第二透镜20的第一表面,S6表示反射式圆偏振片的反射面,S7表示第二透镜20的第一表面,S8表示第二透镜20的第二表面,S9表示像源的表面。
表4
Figure PCTCN2019084346-appb-000006
该实施例中,目镜的焦距f=31.23mm,第一透镜10的焦距f1=-310.96mm,第二透镜20的焦距f2=-816.29,该目镜的最大视场角为HFOV=50°,上述像源的表面的有效像素区域的对角线长度的一半ImgH=32.00mm,目镜的最大垂轴色差为LACL=5.89μm。具体见表7所示。
由上述数据计算可知,该实施例中,R2/f=-1.02,TTL/ImgH=0.98,tan(HFOV)=1.19。具体见表8所示。
由上述数据可知,该实施例的目镜的工作距离较短,满足了小型化且轻薄化的需求。该实施例的目镜的倍率色差曲线如图8所示,由该图可知,该目镜的倍率色差较小,成像质量较好。
实施例5
目镜在沿靠近像源的方向上,该目镜由依次设置的反射式圆偏振片、第一透镜10、1/4λ波片、反射式线偏振片和第二透镜20,具体可以参照图9,该图中未示出射式线偏振片、反射式圆偏振片与1/4λ波片。
该实施例的光路可以参照图9所示,从人眼01侧,光线依次经过S1,经过中间的两次反射,直到成像面S9。各个光学面的参数见表3所示,其中,S1表示第一透镜10的第一表面,S2表示第一透镜10的第二表面,S3表示反射式线偏振片的反射面,S4表示第一透镜10的第二表面,S5表示反射式圆偏振片的反射面,S6表示第一透镜10的第二表面,S7表示第二透镜20的第一表面,S8表示第二透镜20的第二表面,S9表示像源的表面。
表5
Figure PCTCN2019084346-appb-000007
该实施例中,目镜的焦距f=36.65mm,第一透镜的焦距f1=113.53mm,第二透镜的焦距f2=-84.21,该目镜的最大视场角为HFOV=50°,上述像源的表面的有效像素区域的对角线长度的一半ImgH=32.00mm,目镜的最大垂轴色差为LACL=22.15μm。具体见表7所示。
由上述数据计算可知,该实施例中,R2/f=-2.25,TTL/ImgH=1.09,tan(HFOV)=1.19。具体见表8所示。
由上述数据可知,该实施例的目镜的工作距离较短,满足了小型化且轻薄化的需求。该实施例的目镜的倍率色差曲线如图10所示,由该图可知,该目镜的倍率色差较小,成像质量较好。
实施例6
目镜在沿靠近像源的方向上,该目镜由依次设置的反射式圆偏振片、第一透镜10、1/4λ波片、反射式线偏振片、第二透镜20和第三透镜30,具体可以参照图11,该图中未示出射式线偏振片、反射式圆偏振片与1/4λ波片。
该实施例的光路可以参照11所示,从人眼01侧,光线依次经过S1,经过中间的两次反射,直到成像面11。各个光学面的参数见表3所示,其中,S1表示第一透镜10的第一表面,S2表示第一透镜10的第二表面,S3表示反射式线偏振片的反射面,S4表示第一透镜10的第二表面,S5表示反射式圆偏振片的反射面,S6表示第一透镜10的第二表面,S7表示第二透镜20的第一表面,S8表示第二透镜20的第二表面,S9表示第三透镜30的第一表面,S10表示第三透镜30的第二表面,S11表示像源的表面。
表6
Figure PCTCN2019084346-appb-000008
该实施例中,目镜的焦距f=36.78mm,第一透镜的焦距f1=145.32mm,第二透镜的焦距f2=-82.65,第三透镜的焦距f3=123.72,该目镜的最大视场角为HFOV=50°,上述像源的表面的有效像素区域的对角线长度的一半ImgH=32.00mm,目镜的最大垂轴色差为LACL=30.86μm。具体见表7所示。
由上述数据计算可知,该实施例中,R2/f=-1.49,TTL/ImgH=1.15,tan(HFOV)=1.19。具体见表8所示。
由上述数据可知,该实施例的目镜的工作距离较短,满足了小型化且轻薄化的需求。该实施例的目镜的倍率色差曲线如图12所示,由该图可知,该目镜的倍率色差较小,成像质量较好。
需要说明的是,每个实施例对应的具体设计参数表内,OBJ表示光学系统中的物,EYE表示人眼,厚度代表从Si面到S(i+1)面之间的间距,并且,定义从人眼向像源的方向为正。光线遇到材料列为MIRROR即反射往相反方向走,反射到第二个MIRROR再次反向,再从左向右走,最终达到像源的表面。
需要说明的是,各实施例中i相同的Si表示的可能是不同的光学面,具体为哪一个光学面还需要根据各个实施例中的光路确定。
需要说明的是,各个实施例对应的目镜的结构图中,虽然未示出反射式圆偏振片和反射式线偏振片,但是,根据光路可知这两个偏振片贴附在第一透镜上或第二透镜上,在各结构图中,贴附有偏振片的透镜的表面同时表示对应偏振片的表面和透镜的表面。
需要说明的是,表1至表6中每个光学面Si同行的“材料或材料的折射率/色散系数”表示该光学表面和下一行的光学表面之间的材料或材料的折射率/色散系数。例如,表2中的与S5同行的“—”表示S5和S6之间的材料为空气;再例如,由于S6和S7之间的材料为第一透镜的材料,所以表2中的与S6同行的“1.49/57.4”为第一透镜的材料的对应参数。
表7
Figure PCTCN2019084346-appb-000009
表8
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
R2/f -0.76 -1.02 -1.44 -1.02 -2.25 -1.49
TTL/ImgH 0.78 0.55 1.06 0.98 1.09 1.15
tan(HFOV) 1.19 1.19 1.19 1.19 1.19 1.19
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
1)、本申请的目镜在进入人眼之前,通过两次反射,减小了人眼至像源在光轴方向的物理距离,实现了镜头的轻薄化。并且,本申请的目镜中,设置第一透镜的光焦度为正光焦度或负光焦度,设置第二透镜的光焦度为负光焦度,选择第一透镜的材料的阿贝数Vd1>50,选 择上述第二透镜的材料的阿贝数Vd2<30,这样可以减小镜片的尺寸,进一步实现镜头的轻薄化;与此同时,还可以减小成像的色差,进而提高镜头的成像品质。
2)、本申请的目镜在进入人眼之前,通过两次反射,减小了人眼至像源在光轴方向的物理距离,实现了镜头的轻薄化。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种目镜,其特征在于,所述目镜包括:
    具有正光焦度或者负光焦度的透镜组件,所述透镜组件包括至少两个透镜,在沿靠近像源的方向上,分别为第一透镜和第二透镜;
    反射式线偏振片,设置在所述第一透镜的靠近所述像源的表面上或者设置在所述第二透镜的表面上;
    反射式圆偏振片,设置在所述第一透镜的表面上,所述反射式圆偏振片位于所述反射式线偏振片的远离所述像源的一侧;
    1/4λ波片,设置在所述反射式线偏振片和所述反射式圆偏振片之间,
    其中,所述第一透镜具有正光焦度或者负光焦度,所述第二透镜具有负光焦度,所述第一透镜的材料的阿贝数Vd1>50,所述第二透镜的材料的阿贝数Vd2<30。
  2. 根据权利要求1所述的目镜,其特征在于,所述目镜的最大垂轴色差为LACL,LACL<60μm。
  3. 根据权利要求1所述的目镜,其特征在于,所述第一透镜靠近所述像源的表面为第二表面,所述第一透镜的第二表面为凸面。
  4. 根据权利要求3所述的目镜,其特征在于,所述第一透镜的第二表面的曲率半径为R2,所述目镜的有效焦距为f,-3<R2/f<0。
  5. 根据权利要求1至4中任一项所述的目镜,其特征在于,所述第一透镜的物侧面的中心与所述像源的表面在光轴上的距离为TTL,所述像源的表面的有效像素区域的对角线长度的一半为ImgH,TTL/ImgH<1.3。
  6. 根据权利要求1至4中任一项所述的目镜,其特征在于,所述目镜的最大视场角为HFOV,tan(HFOV)>1。
  7. 根据权利要求1至4中任一项所述的目镜,其特征在于,所述透镜组件还包括第三透镜,所述第三透镜位于所述第二透镜的远离所述第一透镜的一侧。
  8. 一种目镜,其特征在于,所述目镜包括:
    具有正光焦度或者负光焦度的透镜组件,所述透镜组件包括至少两个透镜,在沿靠近像源的方向上,分别为第一透镜和第二透镜;
    反射式线偏振片,设置在所述第一透镜的靠近所述像源的表面上或者设置在所述第二透镜的表面上;
    反射式圆偏振片,设置在所述第一透镜的任意表面上,所述反射式圆偏振片位于所述反射式线偏振片的远离所述像源的一侧;
    1/4λ波片,设置在所述反射式线偏振片和所述反射式圆偏振片之间。
  9. 根据权利要求8所述的目镜,其特征在于,所述第一透镜具有正光焦度或者负光焦度,所述第二透镜具有负光焦度。
  10. 根据权利要求8所述的目镜,其特征在于,所述第一透镜的材料的阿贝数Vd1>50,所述第二透镜的材料的阿贝数Vd2<30。
  11. 根据权利要求8至10中任一项所述的目镜,其特征在于,所述目镜的最大垂轴色差为LACL,LACL<60μm。
  12. 根据权利要求8至10中任一项所述的目镜,其特征在于,所述第一透镜靠近所述像源的表面为第二表面,所述第一透镜的第二表面为凸面。
  13. 根据权利要求12所述的目镜,其特征在于,所述第一透镜的第二表面的曲率半径为R2,所述目镜的有效焦距为f,-3<R2/f<0。
  14. 根据权利要求8至10中任一项所述的目镜,其特征在于,所述第一透镜的物侧面的中心与所述像源的表面在光轴上的距离为TTL,所述像源的表面的有效像素区域的对角线长度的一半为ImgH,TTL/ImgH<1.3。
  15. 根据权利要求8至10中任一项所述的目镜,其特征在于,所述目镜的最大视场角为HFOV,tan(HFOV)>1。
  16. 根据权利要求8至10中任一项所述的目镜,其特征在于,所述透镜组件还包括第三透镜,所述第三透镜位于所述第二透镜的远离所述第一透镜的一侧。
  17. 一种显示装置,包括目镜,其特征在于,所述目镜为权利要求1至7中任一项所述的目镜或者权利要求8至16中任一项所述的目镜。
  18. 根据权利要求17所述的显示装置,其特征在于,所述显示装置为头戴式虚拟现实显示装置。
PCT/CN2019/084346 2018-08-02 2019-04-25 目镜与显示装置 WO2020024630A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/962,856 US20210141211A1 (en) 2018-08-02 2019-04-25 Eyepiece and Display Device
JP2020540465A JP2021512356A (ja) 2018-08-02 2019-04-25 接眼レンズおよび表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810873331.4A CN108957732A (zh) 2018-08-02 2018-08-02 目镜与显示装置
CN201810873331.4 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020024630A1 true WO2020024630A1 (zh) 2020-02-06

Family

ID=64467087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084346 WO2020024630A1 (zh) 2018-08-02 2019-04-25 目镜与显示装置

Country Status (4)

Country Link
US (1) US20210141211A1 (zh)
JP (1) JP2021512356A (zh)
CN (1) CN108957732A (zh)
WO (1) WO2020024630A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957732A (zh) * 2018-08-02 2018-12-07 浙江舜宇光学有限公司 目镜与显示装置
CN110308559A (zh) * 2019-06-28 2019-10-08 上海视涯信息科技有限公司 一种虚拟现实光学模组及虚拟现实设备
US11592670B2 (en) * 2019-08-02 2023-02-28 Sharp Kabushiki Kaisha Compact high field of view display
CN110764266B (zh) * 2019-11-13 2022-07-22 歌尔光学科技有限公司 光学系统及虚拟现实设备
JP7427430B2 (ja) * 2019-11-18 2024-02-05 キヤノン株式会社 観察光学系および光学機器
CN116027551A (zh) * 2021-10-26 2023-04-28 广州视源电子科技股份有限公司 一种短焦折叠光学系统以及虚拟现实显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887166A (zh) * 2010-07-15 2010-11-17 深圳航天科技创新研究院 目镜
CN105572894A (zh) * 2016-01-28 2016-05-11 深圳多哚新技术有限责任公司 一种短距离光学放大模组、放大方法及放大系统
CN106526851A (zh) * 2016-09-29 2017-03-22 玉晶光电(厦门)有限公司 目镜光学系统
CN108227209A (zh) * 2017-09-30 2018-06-29 北京蚁视科技有限公司 一种近眼双通道光学系统
CN108957732A (zh) * 2018-08-02 2018-12-07 浙江舜宇光学有限公司 目镜与显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3716625B2 (ja) * 1997-09-18 2005-11-16 コニカミノルタホールディングス株式会社 映像観察装置及びカメラ及び映像観察システム
JP2001142006A (ja) * 1999-11-16 2001-05-25 Minolta Co Ltd 接眼光学系と映像表示装置
JP6350512B2 (ja) * 2013-02-25 2018-07-04 株式会社ニコン 表示装置、撮像装置および光学系
US9507066B2 (en) * 2014-06-30 2016-11-29 Microsoft Technology Licensing, Llc Eyepiece for near eye display system
WO2017039715A1 (en) * 2015-09-03 2017-03-09 3M Innovative Properties Company Optical stack and optical system
CN108303796B (zh) * 2018-04-09 2020-07-28 浙江舜宇光学有限公司 目镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887166A (zh) * 2010-07-15 2010-11-17 深圳航天科技创新研究院 目镜
CN105572894A (zh) * 2016-01-28 2016-05-11 深圳多哚新技术有限责任公司 一种短距离光学放大模组、放大方法及放大系统
CN106526851A (zh) * 2016-09-29 2017-03-22 玉晶光电(厦门)有限公司 目镜光学系统
CN108227209A (zh) * 2017-09-30 2018-06-29 北京蚁视科技有限公司 一种近眼双通道光学系统
CN108957732A (zh) * 2018-08-02 2018-12-07 浙江舜宇光学有限公司 目镜与显示装置

Also Published As

Publication number Publication date
CN108957732A (zh) 2018-12-07
US20210141211A1 (en) 2021-05-13
JP2021512356A (ja) 2021-05-13

Similar Documents

Publication Publication Date Title
WO2020024630A1 (zh) 目镜与显示装置
CN108474946B (zh) 用于近眼显示的目镜光学系统及头戴显示装置
CN108604007B (zh) 用于近眼显示的目镜光学系统及头戴显示装置
WO2019196399A1 (zh) 目镜
TWI692650B (zh) 目鏡光學系統
WO2021016810A1 (zh) 一种目镜光学系统及头戴显示器
JP6340085B2 (ja) 短距離光拡大モジュール、眼鏡、ヘルメット及びvrシステム
JP2020013106A (ja) 接眼レンズおよび表示装置
CN110426838A (zh) 一种目镜光学系统及头戴显示器
WO2020168817A1 (zh) 光学系统以及近眼显示装置
TWI707171B (zh) 目鏡光學系統
WO2022141385A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN113341558A (zh) 一种反射式目镜光学系统及头戴近眼显示装置
TW201901217A (zh) 目鏡光學系統
WO2017181361A1 (zh) 用于近眼显示的目镜光学系统及头戴显示装置
EP3929649A1 (en) Large-field-of-view high-image-quality eyepiece optical system and device
TWI630435B (zh) 目鏡光學系統
CN108463761B (zh) 用于近眼显示的目镜光学系统及头戴显示装置
CN208902977U (zh) 目镜和显示装置
TWI798853B (zh) 擴增實境顯示裝置
CN113341556B (zh) 一种反射式目镜光学系统及头戴近眼显示装置
WO2022141389A1 (zh) 一种大视场角的目镜光学系统及头戴显示装置
CN113341555B (zh) 一种反射式目镜光学系统及头戴近眼显示装置
TWI813395B (zh) 光學透鏡組和頭戴式電子裝置
WO2023097813A1 (zh) 光学系统以及头戴显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845196

Country of ref document: EP

Kind code of ref document: A1