WO2019196399A1 - 目镜 - Google Patents

目镜 Download PDF

Info

Publication number
WO2019196399A1
WO2019196399A1 PCT/CN2018/114514 CN2018114514W WO2019196399A1 WO 2019196399 A1 WO2019196399 A1 WO 2019196399A1 CN 2018114514 W CN2018114514 W CN 2018114514W WO 2019196399 A1 WO2019196399 A1 WO 2019196399A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
eyepiece
image source
human eye
source side
Prior art date
Application number
PCT/CN2018/114514
Other languages
English (en)
French (fr)
Inventor
宋立通
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019196399A1 publication Critical patent/WO2019196399A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising

Definitions

  • the present application relates to an eyepiece, and in particular to a folded-back eyepiece for imaging a virtual reality (VR) visual optical system.
  • VR virtual reality
  • VR virtual reality
  • HMD virtual reality head mounted display
  • the present application provides an eyepiece that is adaptable to at least one of the above-described disadvantages of the prior art, such as a foldback eyepiece, that is applicable to a VR device.
  • the present application provides an eyepiece that includes, in order from the human eye side to the image source side along the optical axis, a reflective polarizer; a quarter wave plate; and a lens group having positive power.
  • the lens group comprises one or more lenses
  • a semi-transparent optical film is plated on the aspherical mirror surface of any one of the one or more lenses.
  • the distance Lm of the reflective polarizer to the semi-transparent optical film on the optical axis and the distance Ld of the reflective polarizer to the image source surface of the eyepiece on the optical axis can satisfy 0.25 ⁇ Lm/Ld ⁇ 0.75.
  • the one or more lenses described above may comprise a first lens.
  • the near-eye side and the near-image source side of the first lens may be convex, and the near-source side of the first lens is aspherical, and is coated with a transflective optical film.
  • the one or more lenses may include a first lens and a second lens sequentially along the optical axis from the human eye side to the image source side.
  • the near-human eye side of the first lens may be a convex surface
  • the near-image source side of the second lens may be a convex surface
  • the near-human eye side of the second lens may be an aspherical surface coated with a transflective optical film.
  • the one or more lenses may include a first lens, a second lens, and a third lens sequentially along the optical axis from the human eye side to the image source side.
  • the near-human eye side of the first lens may be a convex surface
  • the near-image source side of the third lens may be a convex surface
  • the near-image source side of the first lens may be aspherical, and a transflective optical film is plated thereon.
  • the lens coated with the transflective optical film is a plastic lens having a dispersion coefficient Vm of 45 ⁇ Vm ⁇ 60.
  • the radius of curvature Rm of the surface on which the transflective optical film is located and the total effective focal length f of the eyepiece may satisfy -5.5 ⁇ Rm / f ⁇ -3.
  • the long half IH can meet TTL/IH ⁇ 1.5.
  • half of the maximum field of view of the eyepiece HFOV may satisfy 0.8 ⁇ tan (HFOV) ⁇ 2.
  • the total effective focal length f of the eyepiece and the entrance pupil diameter of the eyepiece may be EPD to satisfy f/EPD > 2.5.
  • the present application provides an eyepiece that includes, in order from the human eye side to the image source side along the optical axis, a reflective polarizer; a quarter wave plate; and a lens having positive power. group.
  • the lens group comprises one or more lenses, and a semi-transparent optical film is plated on the aspherical mirror surface of any one of the one or more lenses.
  • the near-human eye side of the lens closest to the human eye side may be a convex surface
  • the near-image source side of the lens closest to the image source side may be a convex surface.
  • the present application proposes a folded-back eyepiece by reasonably selecting the position of the transflective film in the lens, and rationally distributing the power of each lens in the lens group, the center thickness of each lens, and the axis between the lenses.
  • the upper spacing or the like makes the eyepiece at least one beneficial effect such as thinning, short working distance, high image quality, and the like.
  • FIG. 1 is a schematic structural view of an eyepiece according to Embodiment 1 of the present application.
  • FIG. 3 is a schematic structural view of an eyepiece according to Embodiment 2 of the present application.
  • FIG. 5 is a schematic structural view of an eyepiece according to Embodiment 3 of the present application.
  • Figure 6 shows a distortion curve of the eyepiece of Embodiment 3.
  • FIG. 7 is a schematic structural view of an eyepiece according to Embodiment 4 of the present application.
  • Figure 8 shows a distortion curve of the eyepiece of Embodiment 4.
  • FIG. 9 is a schematic structural view of an eyepiece according to Embodiment 5 of the present application.
  • Figure 10 is a view showing a distortion curve of the eyepiece of Embodiment 5.
  • Figure 11 is a block diagram showing the structure of an eyepiece according to Embodiment 6 of the present application.
  • Fig. 12 shows a distortion curve of the eyepiece of Embodiment 6.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave. The surface of each lens near the side of the human eye becomes the near-human side of the lens, and the surface of each lens close to the source side becomes the near-image source side of the lens.
  • the eyepiece according to an exemplary embodiment of the present application may sequentially include a reflective polarizing plate, a quarter wave plate, and a lens group having positive power along the optical axis from the human eye side to the image source side.
  • the lens group having positive power may include one or more lenses, and a semi-transparent optical film is plated on any one of the aspheric surfaces included in the one or more lenses.
  • the transflective optical film has such a characteristic that light propagating from the source side to the human eye side can pass through the transflective optical film, and light propagating from the human eye side to the image source side is in the transflective half. Reflection occurs on the reflective optical film.
  • the light emitted from the source side can be reflected at least twice from the source side to the human eye side, and the shape of the path can be substantially "N" shaped.
  • the light emitted from the source side sequentially passes through the lens group and the 1/4 wave plate, and the first reflection occurs on the reflective polarizing plate, and then the light is folded back and sequentially passes through the 1/4 wave plate and the partial lens group.
  • a second reflection occurs on the mirror surface coated with the transflective optical film, so that the light is again folded back and sequentially passes through the partial lens group, the quarter wave plate, and the reflective polarizer, and finally to the human eye side.
  • the lens group having positive power may include only the first lens, and both the near human eye side and the near image source side of the first lens may be aspherical.
  • the transflective optical film can be plated on the near image source side of the first lens. Light from the source surface sequentially passes through the first lens and the 1/4 wave plate, producing a first reflection on the reflective polarizer, and the light is folded back on the reflective polarizer to sequentially pass through the 1/4 wave plate and a first lens, which then produces a second reflection on the near-source side of the first lens coated with the transflective optical film, the light being folded back on the near-source side of the first lens and sequentially passing through A lens, a quarter wave plate, and a reflective polarizer are finally incident on the human eye side.
  • the lens group having positive power may include a first lens and a second lens, and both the near-eye side and the near-image source side of the first lens and the second lens may be aspherical.
  • the transflective optical film can be plated on the side of the second lens adjacent to the human eye. After the light from the source surface passes through the second lens, the first lens, the 1/4 wave plate and the reflective polarizer in sequence, a first reflection is generated on the reflective polarizer, and the light is folded back on the reflective polarizer.
  • the lens group having positive power may include a first lens, a second lens, and a third lens, and the near-eye side and the near-image source side of any one of the first to third lenses may be Aspherical.
  • the transflective optical film can be plated on the near image source side of the first lens.
  • the third lens After the light from the source surface passes through the third lens, the second lens, the first lens, the 1/4 wave plate and the reflective polarizer in sequence, a first reflection is generated on the reflective polarizer, and the light is reflected
  • the polarizing plate is folded back and sequentially passes through the 1/4 wave plate and the first lens, and then the light produces a second reflection on the near image source side of the first lens coated with the transflective optical film, and the light is first
  • the near-source side of the lens is folded back and sequentially passes through the first lens, the quarter-wave plate, and the reflective polarizer, and finally to the human eye side.
  • the near-human side of the lens closest to the human eye side may be convex
  • the near-image source side of the lens closest to the source side may be Convex.
  • the lens coated with the transflective optical film may be a plastic material lens having a dispersion coefficient Vm of 45 ⁇ Vm ⁇ 60. More specifically, Vm can further satisfy 45.53 ⁇ Vm ⁇ 57.44. Satisfying the conditional expression 45 ⁇ Vm ⁇ 60, it is advantageous to correct the aberration of the off-axis field of view and improve the image quality of the edge region; it is beneficial to reduce the weight of the eyepiece and meet the requirements of thinness and thinning.
  • the eyepiece of the present application can satisfy the conditional formula 0.25 ⁇ Lm / Ld ⁇ 0.75, wherein Lm is the distance of the surface of the reflective polarizer to the semi-transparent optical film on the optical axis, Ld is The distance from the reflective polarizer to the image source side of the eyepiece on the optical axis. More specifically, Lm and Ld may further satisfy 0.29 ⁇ Lm / Ld ⁇ 0.69. Properly setting the position of the transflective film in the lens can effectively balance the aberration correction of the optical system and the total length of the eyepiece, so that an excellent imaging effect can be obtained while ensuring a short eyepiece length.
  • the eyepiece of the present application may satisfy the conditional expression -5.5 ⁇ Rm / f ⁇ -3, where Rm is the radius of curvature of the surface on which the transflective optical film is located, and f is the total effective focal length of the eyepiece. More specifically, Rm and f can further satisfy -4.96 ⁇ Rm / f ⁇ -3.66.
  • the radius of curvature of the surface on which the transflective optical film is located satisfies the above relationship, the spherical aberration and field curvature aberration of the lens can be better corrected, the sharpness and uniformity of imaging can be improved, and visual fatigue and vertigo can be alleviated. Wait for the problem to get a better visual experience.
  • the eyepiece of the present application can satisfy the conditional TTL/IH ⁇ 1.5, wherein the TTL is the near-human side of the lens closest to the human eye side of the one or more lenses to the image source surface of the eyepiece
  • the distance on the optical axis, IH is half the length of the diagonal of the image source region on the source surface. More specifically, TTL and IH can further satisfy 0.69 ⁇ TTL / IH ⁇ 1.47.
  • the conditional TTL/IH ⁇ 1.5 is satisfied, so that the eyepiece has a short working distance matching the display element to meet the demand for thinning.
  • the eyepiece of the present application may satisfy the conditional formula 0.8 ⁇ tan(HFOV) ⁇ 2, where HFOV is half of the maximum field of view of the eyepiece. More specifically, HFOV can further satisfy 0.84 ⁇ tan (HFOV) ⁇ 1.68. Satisfying the conditional formula 0.8 ⁇ tan(HFOV) ⁇ 2 is beneficial to the user to obtain a better immersion in the visual experience.
  • the eyepiece of the present application may satisfy the conditional expression f/EPD > 2.5, where f is the total effective focal length of the eyepiece and EPD is the entrance pupil diameter of the eyepiece. More specifically, f and EPD can further satisfy 3.27 ⁇ f / EPD ⁇ 5.50. Satisfying the conditional expression f/EPD>2.5 can effectively improve the image surface energy density and improve the signal-to-noise ratio of the image sensor output signal.
  • the eyepiece described above may further include an aperture to enhance the imaging quality of the lens.
  • the diaphragm may be disposed between the human eye side and the reflective polarizer.
  • the eyepiece described above may further include a filter for correcting color deviation.
  • the present application proposes a folded-back eyepiece, by properly arranging the position of the reflective polarizer and the transflective film in the lens, and rationally distributing the power of each lens in the lens group, the center thickness of each lens, and each The on-axis spacing between the lenses, etc., effectively reduces the volume of the eyepiece and improves the processability of the eyepiece, making the eyepiece more advantageous for production processing and applicable to VR equipment.
  • the mirror surface of each lens in the lens group is mostly an aspherical mirror surface.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • the lens group includes one to three lenses in the embodiment, the eyepiece is not limited thereto, and the lens group of the eyepiece may include other numbers of lenses, if necessary.
  • FIG. 1 is a view showing the structure of an eyepiece according to Embodiment 1 of the present application.
  • an eyepiece sequentially includes an aperture STO, a reflective polarizer RL, a quarter-wave plate L, and a first lens along the optical axis from the human eye side to the image source side.
  • E1 the filter E2 and the image source surface S15.
  • the first lens E1 has positive refractive power, the side surface of the human eye is convex, the side surface of the near image source is convex, and the side of the first lens E1 is a Fresnel surface, and the side of the near image source is aspherical.
  • a side of the near-image source of the first lens E1 is plated with a transflective optical film that transmits light from the source side to the human eye side and is reflected by the human eye side.
  • the first lens E1 is a lens made of plastic material.
  • the first reflection is generated on the reflective polarizer RL.
  • the near image source side of E1 is folded back and sequentially passes through the first lens E1, the quarter wave plate L and the reflective polarizing plate RL, and finally hits the human eye side.
  • the respective surfaces are sequentially expressed as S14 to S1 in accordance with the order in which the light passes through the surface of each optical element from the source side to the human eye side.
  • the light from the image source surface S15 sequentially passes through the near image source side surface S14 of the filter light sheet E2, the near human eye side surface S13 of the filter sheet E2, the near image source side surface S12 of the first lens E1, and the first The near-human side S11 of the lens E1, the surface S10 where the quarter-wave plate L is located, and the surface S9 where the reflective polarizer RL is located, the light is first folded back on the reflective polarizer RL, and again passes through the reflective polarization.
  • the surface S8 where the sheet RL is located, the surface S7 where the quarter wave plate L is located, the near-human side surface S6 of the first lens E1, and the near image source side surface S5 of the first lens E1 are plated with a transflective optical film.
  • the first lens E1 is folded back a second time on the side of the near image source, and passes again through the near image source side S4 of the first lens E1, the near human side S3 of the first lens E1, and the quarter wave plate L.
  • the surface S1 where the surface S2 and the reflective polarizer RL are located is finally incident on the human eye side.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each element of the eyepiece of Example 1, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • Embodiment 1 The eyepiece in Embodiment 1 satisfies:
  • Lm / Ld 0.52, wherein Lm is the distance of the reflective polarizer RL to the near-source side of the first lens E1 on the optical axis, and Ld is the distance of the reflective polarizer RL to the image source surface S15 on the optical axis ;
  • Rm/f -4.96, where Rm is the radius of curvature of the near image source side of the first lens E1, and f is the total effective focal length of the eyepiece;
  • TTL / IH 0.69, wherein TTL is the distance from the near side of the first lens E1 to the image source surface S15 of the eyepiece on the optical axis, and IH is half the diagonal length of the image source region on the source surface S15;
  • Tan(HFOV) 1.43, where HFOV is half of the maximum field of view of the eyepiece
  • f / EPD 3.27, where f is the total effective focal length of the eyepiece and EPD is the entrance pupil diameter of the eyepiece.
  • the distortion curve of the eyepiece of Embodiment 1 is shown in Fig. 2, which shows the magnitude of the distortion in the case of different angles of view. As can be seen from Fig. 2, the eyepiece given in Example 1 can achieve good image quality.
  • FIG. 3 is a schematic view showing the structure of an eyepiece according to Embodiment 2 of the present application.
  • the eyepiece sequentially includes, along the optical axis, from the human eye side to the image source side: a stop STO, a reflective polarizer RL, a quarter wave plate L, and a first lens. E1, the filter E2 and the image source surface S15.
  • the first lens E1 has a positive power, a side surface of the human eye is a convex surface, and a side surface of the near image source is a convex surface, and the near human eye side and the near image source side surface of the first lens E1 are aspherical surfaces.
  • a side of the near-image source of the first lens E1 is plated with a transflective optical film that transmits light from the source side to the human eye side and is reflected by the human eye side.
  • the first lens E1 is a lens made of plastic material.
  • the first reflection is generated on the reflective polarizer RL.
  • the near image source side of E1 is folded back and sequentially passes through the first lens E1, the quarter wave plate L and the reflective polarizing plate RL, and finally hits the human eye side.
  • the respective surfaces are sequentially expressed as S14 to S1 in accordance with the order in which the light passes through the surface of each optical element from the source side to the human eye side.
  • Table 2 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each element of the eyepiece of Example 2, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the distortion curve of the eyepiece of Embodiment 2 is shown in Fig. 4, which shows the magnitude of the distortion magnitude in the case of different angles of view. As can be seen from Fig. 4, the eyepiece given in Example 2 can achieve good image quality.
  • FIG. 3 is a schematic view showing the structure of an eyepiece according to Embodiment 3 of the present application.
  • the eyepiece sequentially includes, along the optical axis, from the human eye side to the image source side: a stop STO, a reflective polarizer RL, a quarter wave plate L, and a first lens. E1, the filter E2 and the image source surface S15.
  • the first lens E1 has a positive power, a side surface of the human eye is a convex surface, and a side surface of the near image source is a convex surface, and the near human eye side and the near image source side surface of the first lens E1 are aspherical surfaces.
  • a side of the near-image source of the first lens E1 is plated with a transflective optical film that transmits light from the source side to the human eye side and is reflected by the human eye side.
  • the first lens E1 is a lens made of plastic material.
  • the first reflection is generated on the reflective polarizer RL.
  • the near image source side of E1 is folded back and sequentially passes through the first lens E1, the quarter wave plate L and the reflective polarizing plate RL, and finally hits the human eye side.
  • the respective surfaces are sequentially expressed as S14 to S1 in accordance with the order in which the light passes through the surface of each optical element from the source side to the human eye side.
  • Table 3 shows the surface type, radius of curvature, thickness, material, and conical coefficient of the respective elements of the eyepiece of Example 3, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • the distortion curve of the eyepiece of Embodiment 3 is shown in Fig. 6, which shows the distortion magnitude value in the case of different angles of view. As can be seen from Fig. 6, the eyepiece given in Example 3 can achieve good image quality.
  • FIG. 7 is a view showing the structure of an eyepiece according to Embodiment 4 of the present application.
  • the eyepiece sequentially includes, along the optical axis, from the human eye side to the image source side: a stop STO, a reflective polarizer RL, a quarter wave plate L, and a first lens. E1, the filter E2 and the image source surface S15.
  • the first lens E1 has a positive power, a side surface of the human eye is a convex surface, and a side surface of the near image source is a convex surface, and the near human eye side and the near image source side surface of the first lens E1 are aspherical surfaces.
  • a side of the near-image source of the first lens E1 is plated with a transflective optical film that transmits light from the source side to the human eye side and is reflected by the human eye side.
  • the first lens E1 is a lens made of plastic material.
  • the first reflection is generated on the reflective polarizer RL.
  • the near image source side of E1 is folded back and sequentially passes through the first lens E1, the quarter wave plate L and the reflective polarizing plate RL, and finally hits the human eye side.
  • the respective surfaces are sequentially expressed as S14 to S1 in accordance with the order in which the light passes through the surface of each optical element from the source side to the human eye side.
  • Table 4 shows the surface type, radius of curvature, thickness, material, and conical coefficient of the respective elements of the eyepiece of Example 4, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • a distortion curve of the eyepiece of Embodiment 4 is shown in Fig. 8, which shows the magnitude of the distortion in the case of different angles of view. As can be seen from Fig. 8, the eyepiece given in Example 4 can achieve good image quality.
  • FIG. 9 is a view showing the structure of an eyepiece according to Embodiment 5 of the present application.
  • the eyepiece sequentially includes, along the optical axis, from the human eye side to the image source side: a stop STO, a reflective polarizer RL, a quarter wave plate L, and a first lens. E1, second lens E2, filter E3, and image source surface S19.
  • the combined power of the first lens E1 and the second lens E2 is positive power.
  • the side surface of the first lens E1 near the human eye is a convex surface, and the side surface of the near image source is a convex surface; the side surface of the second lens E2 near the human eye is a concave surface, and the side surface of the near image source is a convex surface.
  • the near-eye side and the near-image source side of the first lens E1 and the second lens E2 are both aspherical.
  • a semi-transparent and semi-reflective optical film is plated on the side of the second lens E2 near the human eye, and the transflective optical film can transmit light from the source side to the human eye side and is reflected by the human eye side.
  • the second lens E2 is a lens made of plastic material.
  • the light from the source surface S19 sequentially passes through the filter sheet E3, the second lens E2, the first lens E1, the 1/4 wavelength plate L, and the reflective polarizer RL, and then generates the first on the reflective polarizer RL.
  • the light is folded back on the reflective polarizer RL to sequentially pass through the quarter wave plate L and the first lens E1, and then the light produces a second reflection on the side of the second lens E2 near the human eye.
  • the light is folded back on the side of the second lens E2 near the human eye to sequentially pass through the first lens E1, the quarter wave plate L and the reflective polarizing plate RL, and finally to the human eye side.
  • the respective surfaces are sequentially expressed as S18 to S1 in accordance with the order in which the light passes through the surface of each optical element from the source side to the human eye side.
  • the light from the source surface S19 sequentially passes through the near-image source side surface S18 of the filter sheet E3, the near-human side surface S17 of the filter E3, the near-image source side surface S16 of the second lens E2, and the second.
  • Table 5 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each element of the eyepiece of Example 5, wherein the unit of curvature radius and thickness are both millimeters (mm).
  • the distortion curve of the eyepiece of Embodiment 5 is shown in Fig. 10, which shows the magnitude of the distortion magnitude in the case of different angles of view. As can be seen from Fig. 10, the eyepiece given in Example 5 can achieve good image quality.
  • FIG. 11 is a view showing the structure of an eyepiece according to Embodiment 6 of the present application.
  • the eyepiece sequentially includes, along the optical axis, from the human eye side to the image source side: a stop STO, a reflective polarizer RL, a quarter wave plate L, and a first lens.
  • E1 second lens E2, third lens E3, and image source surface S17.
  • the combined power of the first lens E1, the second lens E2, and the third lens E3 is positive power.
  • the side surface of the first lens E1 is a convex surface, the side surface of the near image source is a convex surface;
  • the side surface of the second lens E2 is a convex surface, the side surface of the near image source is a convex surface;
  • the side surface of the third lens E3 is a concave surface.
  • the side of the near image source is convex.
  • the near-human eye side and the near-image source side of any one of the first lens E1 to the third lens E3 are aspherical.
  • a side of the near-image source of the first lens E1 is plated with a transflective optical film that transmits light from the source side to the human eye side and is reflected by the human eye side.
  • the first lens E1 is a lens made of plastic material.
  • the light from the image source surface S17 sequentially passes through the third lens E3, the second lens E2, the first lens E1, the 1/4 wavelength plate L, and the reflective polarizer RL, and the first generation of the reflective polarizer RL After one reflection, the light is folded back on the reflective polarizer RL and sequentially passes through the quarter-wave plate L and the first lens E1, and then the light produces a second reflection on the near-source side of the first lens E1. The light is folded back on the near-source side of the first lens E1 to sequentially pass through the first lens E1, the quarter-wave plate L, and the reflective polarizer RL, and finally to the human eye side.
  • the respective surfaces are sequentially expressed as S16 to S1 in accordance with the order in which the light passes through the surface of each optical element from the source side to the human eye side.
  • the light from the image source surface S17 sequentially passes through the near image source side surface S16 of the third lens E3, the near human eye side surface S15 of the third lens E3, the near image source side surface S14 of the second lens E2, and the second The near-human side S13 of the lens E2, the near-source side S12 of the first lens E1, the near-human side S11 of the first lens E1, the surface S10 where the quarter-wave plate L is located, and the surface on which the reflective polarizer RL is located S9, the light is first folded back on the reflective polarizer RL, and then passes through the surface S8 where the reflective polarizer RL is located, the surface S7 where the quarter wave plate L is located, and the near eye of the first lens E1.
  • the side S6 and the near image source side S5 of the first lens E1 are lightly folded back a second time on the near image source side of the first lens E1 plated with the transflective optical film, and are again passed through the first lens E1 after being folded back.
  • the near-source side S4, the near-human side S3 of the first lens E1, the surface S2 where the quarter-wave plate L is located, and the surface S1 where the reflective polarizer RL is located are finally incident on the human eye side.
  • Table 6 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each element of the eyepiece of Example 6, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • the distortion curve of the eyepiece of Embodiment 6 is shown in Fig. 12, which shows the distortion magnitude value in the case of different angles of view. As can be seen from Fig. 12, the eyepiece given in Example 6 can achieve good image quality.
  • Embodiments 1 to 6 satisfy the relationship shown in Table 7, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种目镜,该目镜沿着光轴由人眼侧至像源侧依序包括:反射式偏振片(RL);1/4波片(L);以及具有正光焦度的透镜组。其中,透镜组包括一个或多个透镜,在一个或多个透镜中的任意一个透镜的非球面镜面上,镀有半透半反射光学薄膜。其中,反射式偏振片至半透半反射光学薄膜在光轴上的距离Lm与反射式偏振片至目镜的像源面在光轴上的距离Ld满足0.25<Lm/Ld<0.75。

Description

目镜
相关申请的交叉引用
本申请要求于2018年4月9日提交于中国国家知识产权局(CNIPA)的、专利申请号为201810311292.9的中国专利申请的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种目镜,具体地,涉及一种用于虚拟现实(VR)目视光学系统成像的折返式目镜。
背景技术
近年来,随着技术的进步和社会经济发展的需要,虚拟现实(VR)技术发展迅速。一方面,常规的VR目镜由于受到放大倍率的限制,通常具有较长的工作距离,不利于目镜整体的小型化,不适用于小型化的VR设备。另一方面,VR目镜作为虚拟现实头戴式显示器(HMD)设备的核心元件,其成像质量直接影响HMD设备的用户体验性。
因此,需要一种能够适用于HMD设备的,具有轻薄化、高成像质量的VR目镜。
发明内容
本申请提供了可适用于VR设备的、可至少解决或部分解决现有技术中的上述至少一个缺点的目镜,例如,折返式目镜。
一方面,本申请提供了这样一种目镜,该目镜沿着光轴由人眼侧至像源侧依序可包括:反射式偏振片;1/4波片;以及具有正光焦度的透镜组。其中,透镜组包括一个或多个透镜,在一个或多个透镜中的任意一个透镜的非球面镜面上,镀有半透半反射光学薄膜。其中,反射式偏振片至半透半反射光学薄膜在光轴上的距离Lm与反射式偏振片至目镜的像源面在光轴上的距离Ld可满足0.25<Lm/Ld<0.75。
在一个实施方式中,上述一个或多个透镜可包括第一透镜。第一 透镜的近人眼侧面和近像源侧面均可为凸面,以及第一透镜的近像源侧面为非球面,其上镀有半透半反射光学薄膜。
在一个实施方式中,上述一个或多个透镜沿着光轴由人眼侧至像源侧依序可包括第一透镜和第二透镜。第一透镜的近人眼侧面可为凸面,第二透镜的近像源侧面可为凸面;以及第二透镜的近人眼侧面为非球面,其上镀有半透半反射光学薄膜。
在一个实施方式中,上述一个或多个透镜沿着光轴由人眼侧至像源侧依序可包括第一透镜、第二透镜和第三透镜。第一透镜的近人眼侧面可为凸面,第三透镜的近像源侧面可为凸面;以及第一透镜的近像源侧面为非球面,其上镀有半透半反射光学薄膜。
在一个实施方式中,镀有所述半透半反射光学薄膜的透镜为塑料材质的透镜,其色散系数Vm可满足45<Vm<60。
在一个实施方式中,半透半反射光学薄膜所在的表面的曲率半径Rm与目镜的总有效焦距f可满足-5.5<Rm/f<-3。
在一个实施方式中,一个或多个透镜中最靠近人眼侧的透镜的近人眼侧面至目镜的像源面在光轴上的距离TTL与目镜的像源面上像源区域对角线长的一半IH可满足TTL/IH<1.5。
在一个实施方式中,目镜的最大视场角的一半HFOV可满足0.8<tan(HFOV)<2。
在一个实施方式中,目镜的总有效焦距f与目镜的入瞳直径可EPD满足f/EPD>2.5。
另一方面,本申请提供了这样一种目镜,该目镜沿着光轴由人眼侧至像源侧依序可包括:反射式偏振片;1/4波片;以及具有正光焦度的透镜组。其中,透镜组包括一个或多个透镜,在一个或多个透镜中的任意一个透镜的非球面镜面上,镀有半透半反射光学薄膜。其中,在一个或多个透镜中,最靠近人眼侧的透镜的近人眼侧面可为凸面,最靠近像源侧的透镜的近像源侧可为凸面。
本申请提出了一种折返式目镜,通过合理选取半透半反光学薄膜在镜头中的位置,并合理分配透镜组中各透镜的光焦度、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述目镜具有轻薄化、短 工作距离、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的目镜的结构示意图;
图2示出了实施例1的目镜的畸变曲线;
图3示出了根据本申请实施例2的目镜的结构示意图;
图4示出了实施例2的目镜的畸变曲线;
图5示出了根据本申请实施例3的目镜的结构示意图;
图6示出了实施例3的目镜的畸变曲线;
图7示出了根据本申请实施例4的目镜的结构示意图;
图8示出了实施例4的目镜的畸变曲线;
图9示出了根据本申请实施例5的目镜的结构示意图;
图10示出了实施例5的目镜的畸变曲线;
图11示出了根据本申请实施例6的目镜的结构示意图;
图12示出了实施例6的目镜的畸变曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示 出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中靠近人眼侧的表面成为该透镜的近人眼侧面,每个透镜中靠近像源侧的表面成为该透镜的近像源侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的目镜,沿着光轴由人眼侧至像源侧依序可包括:反射式偏振片、1/4波片、以及具有正光焦度的透镜组。其中,具有正光焦度的透镜组可包括一个或多个透镜,在一个或多个透镜所包括的任意一个非球面上,镀有一层半透半反射光学薄膜。半透半反射光学薄膜具有这样的特性:由像源侧至人眼侧传播的光可透 过该半透半反射光学薄膜,而由人眼侧至像源侧传播的光在该半透半反射光学薄膜上发生反射。
通过上述组合布置,像源侧发出的光从像源面至人眼侧至少可完成两次反射,所经路径的形状可大致呈“N”形。具体地,像源侧发出的光依序经过透镜组和1/4波片,并在反射式偏振片上发生第一次反射,而后光折返并依序经过1/4波片和部分透镜组,在镀有半透半反射光学薄膜的镜面上发生第二次反射,使得光再次折返而依序经过部分透镜组、1/4波片和反射式偏振片,并最终射至人眼侧。通过光的两次折返,可在保证镜头高成像品质的同时,缩短了人眼至像源面在光轴方向上的物理距离,实现了缩短镜头总长的目的。
可选地,具有正光焦度的透镜组可仅包括第一透镜,第一透镜的近人眼侧面和近像源侧面均可为非球面。半透半反射光学薄膜可镀在第一透镜的近像源侧面上。来自像源面的光在依序穿过第一透镜和1/4波片,在反射式偏振片上产生第一次反射,光在反射式偏振片上折返而依序穿过1/4波片和第一透镜,随后,光在镀有半透半反射光学薄膜的第一透镜的近像源侧面上产生第二次反射,光在第一透镜的近像源侧面上折返而依序穿过第一透镜、1/4波片和反射式偏振片,并最终射至人眼侧。
可选地,具有正光焦度的透镜组可包括第一透镜和第二透镜,第一透镜和第二透镜的近人眼侧面和近像源侧面均可为非球面。半透半反射光学薄膜可镀在第二透镜的近人眼侧面上。来自像源面的光在依序穿过第二透镜、第一透镜、1/4波片和反射式偏振片之后,在反射式偏振片上产生第一次反射,光在反射式偏振片上折返而依序穿过1/4波片和第一透镜,随后,光在镀有半透半反射光学薄膜的第二透镜的近人眼侧面上产生第二次反射,光在第二透镜的近人眼侧面上折返而依序穿过第一透镜、1/4波片和反射式偏振片,并最终射至人眼侧。
可选地,具有正光焦度的透镜组可包括第一透镜、第二透镜和第三透镜,第一透镜至第三透镜中的任意一个透镜的近人眼侧面和近像源侧面均可为非球面。半透半反射光学薄膜可镀在第一透镜的近像源侧面上。来自像源面的光在依序穿过第三透镜、第二透镜、第一透镜、 1/4波片和反射式偏振片之后,在反射式偏振片上产生第一次反射,光在反射式偏振片上折返并依序穿过1/4波片和第一透镜,随后,光在镀有半透半反射光学薄膜的第一透镜的近像源侧面上产生第二次反射,光在第一透镜的近像源侧面上折返而依序穿过第一透镜、1/4波片和反射式偏振片,并最终射至人眼侧。
在示例性实施方式中,在透镜组所包括的一个或多个透镜中,最靠近人眼侧的透镜的近人眼侧面可为凸面,最靠近像源侧的透镜的近像源侧面可为凸面。这样的设置有利于矫正系统球差,并使得透镜具有较好的加工性。
在示例性实施方式中,镀有半透半反射光学薄膜的透镜可为塑料材质的透镜,其色散系数Vm可满足45<Vm<60。更具体地,Vm进一步可满足45.53≤Vm≤57.44。满足条件式45<Vm<60,有利于矫正轴外视场的像差,提升边缘区域的成像像质;有利于减小目镜重量,满足轻薄化要求。
在示例性实施方式中,本申请的目镜可满足条件式0.25<Lm/Ld<0.75,其中,Lm为反射式偏振片至半透半反射光学薄膜所在的表面在光轴上的距离,Ld为反射式偏振片至目镜的像源面在光轴上的距离。更具体地,Lm和Ld进一步可满足0.29≤Lm/Ld≤0.69。合理设置半透半反光学薄膜在镜头中的位置,可有效兼顾光学系统的像差矫正和目镜总长压缩,从而可以在保证较短的目镜长度的前提下获得优良的成像效果。
在示例性实施方式中,本申请的目镜可满足条件式-5.5<Rm/f<-3,其中,Rm为半透半反射光学薄膜所在的表面的曲率半径,f为目镜的总有效焦距。更具体地,Rm和f进一步可满足-4.96≤Rm/f≤-3.66。当半透半反射光学薄膜所在的表面的曲率半径满足上述关系式时,可以较好的矫正镜头的球差和场曲像差,提高成像的清晰度和均匀性;可以减缓目视疲劳、眩晕等问题,以获得较好的目视体验效果。
在示例性实施方式中,本申请的目镜可满足条件式TTL/IH<1.5,其中,TTL为一个或多个透镜中最靠近人眼侧的透镜的近人眼侧面至目镜的像源面在光轴上的距离,IH为像源面上像源区域对角线长的一 半。更具体地,TTL和IH进一步可满足0.69≤TTL/IH≤1.47。满足条件式TTL/IH<1.5,可使得目镜具有与显示元件相匹配的短工作距离,以满足轻薄化需求。
在示例性实施方式中,本申请的目镜可满足条件式0.8<tan(HFOV)<2,其中,HFOV为目镜的最大视场角的一半。更具体地,HFOV进一步可满足0.84≤tan(HFOV)≤1.68。满足条件式0.8<tan(HFOV)<2,有利于用户在目视体验中获得较好的沉浸感。
在示例性实施方式中,本申请的目镜可满足条件式f/EPD>2.5,其中,f为目镜的总有效焦距,EPD为目镜的入瞳直径。更具体地,f和EPD进一步可满足3.27≤f/EPD≤5.50。满足条件式f/EPD>2.5,可有效地提高像面能量密度,有利于提高像方传感器输出信号信噪比。
在示例性实施方式中,上述目镜还可包括一个光阑,以提升镜头的成像质量。可选地,光阑可设置在人眼侧与反射式偏振片之间。
在示例性实施方式中,上述目镜还可包括用于校正色彩偏差的滤光片。
本申请提出了一种折返式目镜,通过合理布置反射式偏振片与半透半反光学薄膜在镜头中的位置,以及合理分配透镜组中各透镜的光焦度、各透镜的中心厚度以及各透镜之间的轴上间距等,有效地缩小目镜的体积,提高目镜的可加工性,使得该目镜更有利于生产加工并且可适用于VR设备。
在本申请的实施方式中,透镜组中的各透镜的镜面多为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变透镜组中的透镜个数、半透半反光学薄膜的设置位置等,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中透镜组包括一至三个透镜,但是该目镜不限于此,如 果需要,该目镜的透镜组还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的目镜的具体实施例。
实施例1
以下参照图1和图2描述根据本申请实施例1的目镜。图1示出了根据本申请实施例1的目镜的结构示意图。
如图1所示,根据本申请示例性实施方式的目镜沿光轴由人眼侧至像源侧依序包括:光阑STO、反射式偏振片RL、1/4波片L、第一透镜E1、滤光片E2和像源面S15。
第一透镜E1具有正光焦度,其近人眼侧面为凸面,近像源侧面为凸面,且第一透镜E1的近人眼侧面为菲涅尔面,近像源侧面为非球面。其中,在第一透镜E1的近像源侧面上镀有一层半透半反射光学薄膜,该半透半反射光学薄膜可透过由像源侧至人眼侧的光,并反射由人眼侧至像源侧的光。可选地,第一透镜E1为塑料材质的透镜。
来自像源面S15的光在依序穿过滤光片E2、第一透镜E1、1/4波片L和反射式偏振片RL之后,在反射式偏振片RL上产生第一次反射,光在反射式偏振片RL上折返而依序穿过1/4波片L和第一透镜E1,随后,光在第一透镜E1的近像源侧面上产生第二次反射,光在第一透镜E1的近像源侧面上折返而依序穿过第一透镜E1、1/4波片L和反射式偏振片RL,并最终射至人眼侧。
为了便于描述,在本实施例中,依照光线由像源侧至人眼侧传播而经过各光学元件的表面的先后次序,将各表面依序表示为S14至S1。具体而言,来自像源面S15的光依序穿过滤光片E2的近像源侧面S14、滤光片E2的近人眼侧面S13、第一透镜E1的近像源侧面S12、第一透镜E1的近人眼侧面S11、1/4波片L所在的表面S10和反射式偏振片RL所在的表面S9,光在反射式偏振片RL上产生第一次折返,再次穿过反射式偏振片RL所在的表面S8、1/4波片L所在的表面S7、第一透镜E1的近人眼侧面S6和第一透镜E1的近像源侧面S5,光在镀有半透半反射光学薄膜的第一透镜E1的近像源侧面上第二次折返, 并再次穿过第一透镜E1的近像源侧面S4、第一透镜E1的近人眼侧面S3、1/4波片L所在的表面S2和反射式偏振片RL所在的表面S1,最终射入人眼侧。
表1示出了实施例1的目镜的各元件的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114514-appb-000001
表1
在本实施例中,目镜的总有效焦距f=26.17mm,第一透镜E1的近人眼侧面的中心至目镜的像源面S15在光轴上的距离TTL=14.70mm。
实施例1中的目镜满足:
Lm/Ld=0.52,其中,Lm为反射式偏振片RL至第一透镜E1的近像源侧面在光轴上的距离,Ld为反射式偏振片RL至像源面S15在光轴上的距离;
Rm/f=-4.96,其中,Rm为第一透镜E1的近像源侧面的曲率半径,f为目镜的总有效焦距;
TTL/IH=0.69,其中,TTL为第一透镜E1的近人眼侧面至目镜的像源面S15在光轴上的距离,IH为像源面S15上像源区域对角线长的一半;
tan(HFOV)=1.43,其中,HFOV为目镜的最大视场角的一半;
f/EPD=3.27,其中,f为目镜的总有效焦距,EPD为目镜的入瞳直径。
图2中示出了实施例1的目镜的畸变曲线,其表示不同视场角情况下的畸变大小值。根据图2可知,实施例1所给出的目镜能够实现良好的成像品质。
实施例2
以下参照图3至图4描述根据本申请实施例2的目镜。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的目镜的结构示意图。
如图3所示,根据本申请示例性实施方式的目镜沿光轴由人眼侧至像源侧依序包括:光阑STO、反射式偏振片RL、1/4波片L、第一透镜E1、滤光片E2和像源面S15。
第一透镜E1具有正光焦度,其近人眼侧面为凸面,近像源侧面为凸面,且第一透镜E1的近人眼侧面和近像源侧面均为非球面。其中,在第一透镜E1的近像源侧面上镀有一层半透半反射光学薄膜,该半透半反射光学薄膜可透过由像源侧至人眼侧的光,并反射由人眼侧至像源侧的光。可选地,第一透镜E1为塑料材质的透镜。
来自像源面S15的光在依序穿过滤光片E2、第一透镜E1、1/4波片L和反射式偏振片RL之后,在反射式偏振片RL上产生第一次反射,光在反射式偏振片RL上折返而依序穿过1/4波片L和第一透镜E1,随后,光在第一透镜E1的近像源侧面上产生第二次反射,光在第一透镜E1的近像源侧面上折返而依序穿过第一透镜E1、1/4波片L和反射式偏振片RL,并最终射至人眼侧。
为了便于描述,在本实施例中,依照光线由像源侧至人眼侧传播而经过各光学元件的表面的先后次序,将各表面依序表示为S14至S1。
表2示出了实施例2的目镜的各元件的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114514-appb-000002
Figure PCTCN2018114514-appb-000003
表2
在本实施例中,目镜的总有效焦距f=28.37mm,第一透镜E1的近人眼侧面的中心至目镜的像源面S15在光轴上的距离TTL=16.89mm。
图4中示出了实施例2的目镜的畸变曲线,其表示不同视场角情况下的畸变大小值。根据图4可知,实施例2所给出的目镜能够实现良好的成像品质。
实施例3
以下参照图5和图6描述根据本申请实施例3的目镜。图3示出了根据本申请实施例3的目镜的结构示意图。
如图5所示,根据本申请示例性实施方式的目镜沿光轴由人眼侧至像源侧依序包括:光阑STO、反射式偏振片RL、1/4波片L、第一透镜E1、滤光片E2和像源面S15。
第一透镜E1具有正光焦度,其近人眼侧面为凸面,近像源侧面为凸面,且第一透镜E1的近人眼侧面和近像源侧面均为非球面。其中,在第一透镜E1的近像源侧面上镀有一层半透半反射光学薄膜,该半透半反射光学薄膜可透过由像源侧至人眼侧的光,并反射由人眼侧至像源侧的光。可选地,第一透镜E1为塑料材质的透镜。
来自像源面S15的光在依序穿过滤光片E2、第一透镜E1、1/4波片L和反射式偏振片RL之后,在反射式偏振片RL上产生第一次反 射,光在反射式偏振片RL上折返而依序穿过1/4波片L和第一透镜E1,随后,光在第一透镜E1的近像源侧面上产生第二次反射,光在第一透镜E1的近像源侧面上折返而依序穿过第一透镜E1、1/4波片L和反射式偏振片RL,并最终射至人眼侧。
为了便于描述,在本实施例中,依照光线由像源侧至人眼侧传播而经过各光学元件的表面的先后次序,将各表面依序表示为S14至S1。
表3示出了实施例3的目镜的各元件的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114514-appb-000004
表3
在本实施例中,目镜的总有效焦距f=28.36mm,第一透镜E1的近人眼侧面的中心至目镜的像源面S15在光轴上的距离TTL=17.47mm。
图6中示出了实施例3的目镜的畸变曲线,其表示不同视场角情况下的畸变大小值。根据图6可知,实施例3所给出的目镜能够实现良好的成像品质。
实施例4
以下参照图7和图8描述根据本申请实施例4的目镜。图7示出了根据本申请实施例4的目镜的结构示意图。
如图7所示,根据本申请示例性实施方式的目镜沿光轴由人眼侧至像源侧依序包括:光阑STO、反射式偏振片RL、1/4波片L、第一透镜E1、滤光片E2和像源面S15。
第一透镜E1具有正光焦度,其近人眼侧面为凸面,近像源侧面为凸面,且第一透镜E1的近人眼侧面和近像源侧面均为非球面。其中,在第一透镜E1的近像源侧面上镀有一层半透半反射光学薄膜,该半透半反射光学薄膜可透过由像源侧至人眼侧的光,并反射由人眼侧至像源侧的光。可选地,第一透镜E1为塑料材质的透镜。
来自像源面S15的光在依序穿过滤光片E2、第一透镜E1、1/4波片L和反射式偏振片RL之后,在反射式偏振片RL上产生第一次反射,光在反射式偏振片RL上折返而依序穿过1/4波片L和第一透镜E1,随后,光在第一透镜E1的近像源侧面上产生第二次反射,光在第一透镜E1的近像源侧面上折返而依序穿过第一透镜E1、1/4波片L和反射式偏振片RL,并最终射至人眼侧。
为了便于描述,在本实施例中,依照光线由像源侧至人眼侧传播而经过各光学元件的表面的先后次序,将各表面依序表示为S14至S1。
表4示出了实施例4的目镜的各元件的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114514-appb-000005
表4
在本实施例中,目镜的总有效焦距f=28.38mm,第一透镜E1的近人眼侧面的中心至目镜的像源面S15在光轴上的距离TTL=24.26mm。
图8中示出了实施例4的目镜的畸变曲线,其表示不同视场角情况下的畸变大小值。根据图8可知,实施例4所给出的目镜能够实现良好的成像品质。
实施例5
以下参照图9和图10描述根据本申请实施例5的目镜。图9示出了根据本申请实施例5的目镜的结构示意图。
如图9所示,根据本申请示例性实施方式的目镜沿光轴由人眼侧至像源侧依序包括:光阑STO、反射式偏振片RL、1/4波片L、第一透镜E1、第二透镜E2、滤光片E3和像源面S19。
第一透镜E1和第二透镜E2的组合光焦度为正光焦度。第一透镜E1的近人眼侧面为凸面,近像源侧面为凸面;第二透镜E2的近人眼侧面为凹面,近像源侧面为凸面。第一透镜E1和第二透镜E2的近人眼侧面和近像源侧面均为非球面。其中,在第二透镜E2的近人眼侧面上镀有一层半透半反射光学薄膜,该半透半反射光学薄膜可透过由像源侧至人眼侧的光,并反射由人眼侧至像源侧的光。可选地,第二透镜E2为塑料材质的透镜。
来自像源面S19的光在依序穿过滤光片E3、第二透镜E2、第一透镜E1、1/4波片L和反射式偏振片RL之后,在反射式偏振片RL上产生第一次反射,光在反射式偏振片RL上折返而依序穿过1/4波片L和第一透镜E1,随后,光在第二透镜E2的近人眼侧面上产生第二次反射,光在第二透镜E2的近人眼侧面上折返而依序穿过第一透镜E1、1/4波片L和反射式偏振片RL,并最终射至人眼侧。
为了便于描述,在本实施例中,依照光线由像源侧至人眼侧传播而经过各光学元件的表面的先后次序,将各表面依序表示为S18至S1。具体而言,来自像源面S19的光依序穿过滤光片E3的近像源侧面S18、滤光片E3的近人眼侧面S17、第二透镜E2的近像源侧面S16、第二 透镜E2的近人眼侧面S15、第一透镜E1的近像源侧面S14、第一透镜E1的近人眼侧面S13、1/4波片L所在的表面S12和反射式偏振片RL所在的表面S11,光在反射式偏振片RL上产生第一次折返,折返后再次穿过反射式偏振片RL所在的表面S10、1/4波片L所在的表面S9、第一透镜E1的近人眼侧面S8、第一透镜E1的近像源侧面S7和第二透镜E2的近人眼侧面S6,光在镀有半透半反射光学薄膜的第二透镜E2的近人眼侧面上第二次折返,折返后再次穿过第二透镜E2的近人眼侧面S5、第一透镜E1的近像源侧面S4、第一透镜E1的近人眼侧面S3、1/4波片L所在的表面S2和反射式偏振片RL所在的表面S1,最终射入人眼侧。
表5示出了实施例5的目镜的各元件的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114514-appb-000006
表5
在本实施例中,目镜的总有效焦距f=24.50mm,第一透镜E1的近人眼侧面的中心至目镜的像源面S19在光轴上的距离TTL=22.58mm。
图10中示出了实施例5的目镜的畸变曲线,其表示不同视场角情况下的畸变大小值。根据图10可知,实施例5所给出的目镜能够实现良好的成像品质。
实施例6
以下参照图11和图12描述根据本申请实施例6的目镜。图11示出了根据本申请实施例6的目镜的结构示意图。
如图11所示,根据本申请示例性实施方式的目镜沿光轴由人眼侧至像源侧依序包括:光阑STO、反射式偏振片RL、1/4波片L、第一透镜E1、第二透镜E2、第三透镜E3和像源面S17。
第一透镜E1、第二透镜E2和第三透镜E3的组合光焦度为正光焦度。第一透镜E1的近人眼侧面为凸面,近像源侧面为凸面;第二透镜E2的近人眼侧面为凸面,近像源侧面为凸面;第三透镜E3的近人眼侧面为凹面,近像源侧面为凸面。第一透镜E1至第三透镜E3中的任意一个透镜的近人眼侧面和近像源侧面均为非球面。其中,在第一透镜E1的近像源侧面上镀有一层半透半反射光学薄膜,该半透半反射光学薄膜可透过由像源侧至人眼侧的光,并反射由人眼侧至像源侧的光。可选地,第一透镜E1为塑料材质的透镜。
来自像源面S17的光在依序穿过第三透镜E3、第二透镜E2、第一透镜E1、1/4波片L和反射式偏振片RL之后,在反射式偏振片RL上产生第一次反射,光在反射式偏振片RL上折返并依序穿过1/4波片L和第一透镜E1,随后,光在第一透镜E1的近像源侧面上产生第二次反射,光在第一透镜E1的近像源侧面上折返而依序穿过第一透镜E1、1/4波片L和反射式偏振片RL,并最终射至人眼侧。
为了便于描述,在本实施例中,依照光线由像源侧至人眼侧传播而经过各光学元件的表面的先后次序,将各表面依序表示为S16至S1。具体而言,来自像源面S17的光依序穿过第三透镜E3的近像源侧面S16、第三透镜E3的近人眼侧面S15、第二透镜E2的近像源侧面S14、 第二透镜E2的近人眼侧面S13、第一透镜E1的近像源侧面S12、第一透镜E1的近人眼侧面S11、1/4波片L所在的表面S10和反射式偏振片RL所在的表面S9,光在反射式偏振片RL上产生第一次折返,折返后再次穿过反射式偏振片RL所在的表面S8、1/4波片L所在的表面S7、第一透镜E1的近人眼侧面S6和第一透镜E1的近像源侧面S5,光在镀有半透半反射光学薄膜的第一透镜E1的近像源侧面上第二次折返,折返后再次穿过第一透镜E1的近像源侧面S4、第一透镜E1的近人眼侧面S3、1/4波片L所在的表面S2和反射式偏振片RL所在的表面S1,并最终射入人眼侧。
表6示出了实施例6的目镜的各元件的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018114514-appb-000007
表6
在本实施例中,目镜的总有效焦距f=32.99mm,第一透镜E1的近人眼侧面的中心至目镜的像源面S17在光轴上的距离TTL=33.57mm。
图12中示出了实施例6的目镜的畸变曲线,其表示不同视场角情况下的畸变大小值。根据图12可知,实施例6所给出的目镜能够实现良好的成像品质。
综上,实施例1至实施例6分别满足表7中所示的关系。
Figure PCTCN2018114514-appb-000008
表7
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (19)

  1. 目镜,其特征在于,所述目镜沿着光轴由人眼侧至像源侧依序包括:
    反射式偏振片;
    1/4波片;
    具有正光焦度的透镜组,其包括一个或多个透镜;
    在所述一个或多个透镜中的任意一个透镜的非球面镜面上,镀有半透半反射光学薄膜;以及
    所述反射式偏振片至所述半透半反射光学薄膜在所述光轴上的距离Lm与所述反射式偏振片至所述目镜的像源面在所述光轴上的距离Ld满足0.25<Lm/Ld<0.75。
  2. 根据权利要求1所述的目镜,其特征在于,所述一个或多个透镜包括第一透镜,
    所述第一透镜的近人眼侧面和近像源侧面均为凸面,以及
    所述第一透镜的近像源侧面为非球面,其上镀有半透半反射光学薄膜。
  3. 根据权利要求1所述的目镜,其特征在于,所述一个或多个透镜沿着光轴由人眼侧至像源侧依序包括第一透镜和第二透镜,
    所述第一透镜的近人眼侧面为凸面,所述第二透镜的近像源侧面为凸面;以及
    所述第二透镜的近人眼侧面为非球面,其上镀有半透半反射光学薄膜。
  4. 根据权利要求1所述的目镜,其特征在于,所述一个或多个透镜沿着光轴由人眼侧至像源侧依序包括第一透镜、第二透镜和第三透镜,
    所述第一透镜的近人眼侧面为凸面,所述第三透镜的近像源侧面 为凸面;以及
    所述第一透镜的近像源侧面为非球面,其上镀有半透半反射光学薄膜。
  5. 根据权利要求1至4中任一项所述的目镜,其特征在于,镀有所述半透半反射光学薄膜的透镜为塑料材质的透镜,其色散系数Vm满足45<Vm<60。
  6. 根据权利要求1至4中任一项所述的目镜,其特征在于,所述半透半反射光学薄膜所在的表面的曲率半径Rm与所述目镜的总有效焦距f满足-5.5<Rm/f<-3。
  7. 根据权利要求1至4中任一项所述的目镜,其特征在于,所述一个或多个透镜中最靠近所述人眼侧的透镜的近人眼侧面至所述目镜的像源面在光轴上的距离TTL与所述目镜的像源面上像源区域对角线长的一半IH满足TTL/IH<1.5。
  8. 根据权利要求1至4中任一项所述的目镜,其特征在于,所述目镜的最大视场角的一半HFOV满足0.8<tan(HFOV)<2。
  9. 根据权利要求1至4中任一项所述的目镜,其特征在于,所述目镜的总有效焦距f与所述目镜的入瞳直径EPD满足f/EPD>2.5。
  10. 目镜,其特征在于,所述目镜沿着光轴由人眼侧至像源侧依序包括:
    反射式偏振片;
    1/4波片;
    具有正光焦度的透镜组,其包括一个或多个透镜;
    在所述一个或多个透镜中的任意一个透镜的非球面镜面上,镀有半透半反射光学薄膜;以及
    在所述一个或多个透镜中,最靠近所述人眼侧的透镜的近人眼侧面为凸面,最靠近所述像源侧的透镜的近像源侧为凸面。
  11. 根据权利要求10所述的目镜,其特征在于,所述目镜的总有效焦距f与所述目镜的入瞳直径EPD满足f/EPD>2.5。
  12. 根据权利要求11所述的目镜,其特征在于,所述目镜的最大视场角的一半HFOV满足0.8<tan(HFOV)<2。
  13. 根据权利要求11所述的目镜,其特征在于,所述一个或多个透镜中最靠近所述人眼侧的透镜的近人眼侧面至所述目镜的像源面在光轴上的距离TTL与所述目镜的像源面上像源区域对角线长的一半IH满足TTL/IH<1.5。
  14. 根据权利要求11所述的目镜,其特征在于,所述半透半反射光学薄膜所在的表面的曲率半径Rm与所述目镜的总有效焦距f满足-5.5<Rm/f<-3。
  15. 根据权利要求11所述的目镜,其特征在于,镀有所述半透半反射光学薄膜的透镜为塑料材质的透镜,其色散系数Vm满足45<Vm<60。
  16. 根据权利要求13所述的目镜,其特征在于,所述反射式偏振片至所述半透半反射光学薄膜在所述光轴上的距离Lm与所述反射式偏振片至所述目镜的像源面在所述光轴上的距离Ld满足0.25<Lm/Ld<0.75。
  17. 根据权利要求10至16中任一项所述的目镜,其特征在于,所述一个或多个透镜包括第一透镜,
    所述第一透镜的近人眼侧面和近像源侧面均为凸面,以及
    所述第一透镜的近像源侧面为非球面,其上镀有半透半反射光学薄膜。
  18. 根据权利要求10至16中任一项所述的目镜,其特征在于,所述一个或多个透镜沿着光轴由人眼侧至像源侧依序包括第一透镜和第二透镜,
    所述第一透镜的近人眼侧面为凸面,所述第二透镜的近像源侧面为凸面;以及
    所述第二透镜的近人眼侧面为非球面,其上镀有半透半反射光学薄膜。
  19. 根据权利要求10至16中任一项所述的目镜,其特征在于,所述一个或多个透镜沿着光轴由人眼侧至像源侧依序包括第一透镜、第二透镜和第三透镜,
    所述第一透镜的近人眼侧面为凸面,所述第三透镜的近像源侧面为凸面;以及
    所述第一透镜的近像源侧面为非球面,其上镀有半透半反射光学薄膜。
PCT/CN2018/114514 2018-04-09 2018-11-08 目镜 WO2019196399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810311292.9 2018-04-09
CN201810311292.9A CN108303796B (zh) 2018-04-09 2018-04-09 目镜

Publications (1)

Publication Number Publication Date
WO2019196399A1 true WO2019196399A1 (zh) 2019-10-17

Family

ID=62847133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114514 WO2019196399A1 (zh) 2018-04-09 2018-11-08 目镜

Country Status (2)

Country Link
CN (1) CN108303796B (zh)
WO (1) WO2019196399A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108303796B (zh) * 2018-04-09 2020-07-28 浙江舜宇光学有限公司 目镜
CN108957732A (zh) * 2018-08-02 2018-12-07 浙江舜宇光学有限公司 目镜与显示装置
CN111694157A (zh) * 2018-08-31 2020-09-22 华为技术有限公司 一种光学成像系统
CN111929906B (zh) * 2020-09-25 2021-01-22 歌尔光学科技有限公司 图像显示结构和头戴显示设备
CN112198665B (zh) * 2020-10-27 2022-10-18 北京耐德佳显示技术有限公司 一种阵列波导近眼显示装置
CN114942489A (zh) * 2022-07-26 2022-08-26 歌尔光学科技有限公司 一种光学模组以及头戴显示设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966242A (en) * 1996-04-24 1999-10-12 Sharp Kabushiki Kaisha Optical device and HMD using said optical device
US6853491B1 (en) * 2003-11-26 2005-02-08 Frank Ruhle Collimating optical member for real world simulation
CN105929537A (zh) * 2016-04-08 2016-09-07 北京骁龙科技有限公司 一种头戴式显示器及其目镜系统
CN205562979U (zh) * 2016-03-21 2016-09-07 深圳多哚新技术有限责任公司 短距离光学放大模组、眼镜、头盔及vr系统
CN205562976U (zh) * 2016-03-21 2016-09-07 深圳多哚新技术有限责任公司 一种短距离光学放大模组、眼镜、头盔以及vr系统
CN107024773A (zh) * 2017-06-02 2017-08-08 北京耐德佳显示技术有限公司 一种轻薄型虚像成像装置
CN108303796A (zh) * 2018-04-09 2018-07-20 浙江舜宇光学有限公司 目镜
CN207946592U (zh) * 2018-04-09 2018-10-09 浙江舜宇光学有限公司 目镜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988185B (zh) * 2015-04-10 2018-11-30 浙江舜宇光学有限公司 摄像镜头
CN105093555B (zh) * 2015-07-13 2018-08-14 深圳多新哆技术有限责任公司 短距离光学放大模组及使用其的近眼显示光学模组
CN107045196B (zh) * 2017-02-08 2019-07-05 浙江舜宇光学有限公司 目镜以及包括该目镜的显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966242A (en) * 1996-04-24 1999-10-12 Sharp Kabushiki Kaisha Optical device and HMD using said optical device
US6853491B1 (en) * 2003-11-26 2005-02-08 Frank Ruhle Collimating optical member for real world simulation
CN205562979U (zh) * 2016-03-21 2016-09-07 深圳多哚新技术有限责任公司 短距离光学放大模组、眼镜、头盔及vr系统
CN205562976U (zh) * 2016-03-21 2016-09-07 深圳多哚新技术有限责任公司 一种短距离光学放大模组、眼镜、头盔以及vr系统
CN105929537A (zh) * 2016-04-08 2016-09-07 北京骁龙科技有限公司 一种头戴式显示器及其目镜系统
CN107024773A (zh) * 2017-06-02 2017-08-08 北京耐德佳显示技术有限公司 一种轻薄型虚像成像装置
CN108303796A (zh) * 2018-04-09 2018-07-20 浙江舜宇光学有限公司 目镜
CN207946592U (zh) * 2018-04-09 2018-10-09 浙江舜宇光学有限公司 目镜

Also Published As

Publication number Publication date
CN108303796B (zh) 2020-07-28
CN108303796A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
WO2019196399A1 (zh) 目镜
WO2023143235A1 (zh) 光学镜头
WO2020024630A1 (zh) 目镜与显示装置
WO2019137055A1 (zh) 摄像透镜系统
CN106443972B (zh) 虹膜识别光学成像透镜组及其成像方法
CN115079408B (zh) 光学系统及vr设备
CN113341558B (zh) 一种反射式目镜光学系统及头戴近眼显示装置
CN116626896A (zh) 光学系统和虚拟现实设备
CN115097614B (zh) 光学系统及vr设备
CN116338959A (zh) 光学系统
CN116466488A (zh) 光学系统及包括该光学系统的光学设备
CN116400485A (zh) 光学系统及包括该光学系统的光学设备
CN115933203A (zh) 光学系统及包括该光学系统的vr设备
CN116300084A (zh) 光学系统及虚拟现实设备
CN116125668A (zh) 光学系统
CN114236830A (zh) 一种光学系统以及头戴显示设备
CN207946592U (zh) 目镜
CN220709459U (zh) 目视系统及包括该目视系统的vr设备
CN220626779U (zh) 虚拟现实系统
CN220438639U (zh) 光学系统及包括该光学系统的光学设备
CN219978615U (zh) 光学系统
CN113341556B (zh) 一种反射式目镜光学系统及头戴近眼显示装置
CN113325566B (zh) 一种反射式目镜光学系统及头戴近眼显示装置
CN220305566U (zh) 光学系统及头戴式设备
CN118112763B (zh) 一种投影镜头、投影模组及近眼显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914637

Country of ref document: EP

Kind code of ref document: A1