WO2020024177A1 - 放射治疗机防撞检测方法、装置及放射治疗机 - Google Patents
放射治疗机防撞检测方法、装置及放射治疗机 Download PDFInfo
- Publication number
- WO2020024177A1 WO2020024177A1 PCT/CN2018/098117 CN2018098117W WO2020024177A1 WO 2020024177 A1 WO2020024177 A1 WO 2020024177A1 CN 2018098117 W CN2018098117 W CN 2018098117W WO 2020024177 A1 WO2020024177 A1 WO 2020024177A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- contour
- patient
- treatment space
- distance
- radiation therapy
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
Definitions
- the present application relates to the field of medical equipment, and in particular, to an anti-collision detection method and device for a radiation therapy machine, and a radiation therapy machine.
- Radiation therapy machine is a medical device that uses radiation to eliminate tumor lesions.
- the medical staff Before treatment, the medical staff usually needs to position the patient's body so that after the patient enters the treatment space of the radiotherapy machine, the tumor lesion can coincide with the center point of the treatment. Then, the medical staff can start the radiotherapy machine to make the radiotherapy
- the radiation produced by the machine acts on the patient's tumor lesion to treat the patient.
- some objects in the treatment space will move relative to the patient. For example, for a drum-type radiation therapy machine, during the treatment, the inner wall of the drum will move relative to the patient, and it will be set inside the treatment space. The treatment head will also move relative to the patient. Therefore, without protection measures, there may be a situation where a moving object in the treatment space collides with the patient, posing a threat to the patient's safety.
- a contact switch may be provided on a moving object in the treatment space.
- the contact switch When the contact switch is triggered, it can be determined that the patient has collided with the moving object. At this time, the medical staff can respond in time to Reduce the threat to patient safety caused by collisions between moving objects and patients.
- the embodiments of the present application provide a collision avoidance detection method and device of a radiation therapy machine and a radiation therapy machine, which can reduce the threat to the patient's safety caused by a collision between a patient and a moving object in a treatment space.
- the technical solution is as follows:
- an anti-collision detection method for a radiation therapy machine has a treatment space for accommodating a patient, and the method includes:
- an anti-collision detection device for a radiation therapy machine has a treatment space for accommodating a patient, and the device includes:
- a determining component configured to determine whether a target contour point exists on the contour, and a distance between the target contour point and a moving object in the treatment space is less than a preset distance threshold;
- a triggering component is configured to trigger an anti-collision interlock when the target contour point exists on the contour.
- the acquisition component includes a distance sensor and a first processor connected to each other, and the distance sensor is disposed on a boundary of the treatment space;
- the distance sensor is configured to measure a distance between the distance sensor and a plurality of points on an outer surface of the patient;
- the first processor is configured to obtain a contour of the patient according to a distance measured by the distance sensor.
- the distance sensor is a laser distance sensor.
- the distance sensor includes a laser transmitter, a laser receiver, and a rotating base, and the laser transmitter and the laser receiver are disposed on the rotating base.
- the trigger component is specifically used for:
- the moving object is kept still, and / or the radiotherapy machine is controlled to issue an alarm.
- a radiation therapy machine which includes the anti-collision detection device of the radiation therapy machine according to any one of the above-mentioned second aspects.
- an anti-collision interlock is triggered, wherein the distance between the target contour point and a moving object in the treatment space is less than a preset The distance threshold.
- the technical solution provided in the embodiment of the present application can reduce the distance between any point on the outline of the patient and the moving object in the treatment space to be less than a preset distance.
- An anti-collision interlock is performed at the threshold, so that the patient can respond before the patient collides with a moving object in the treatment space. Therefore, the threat to the patient's safety caused by the collision between the patient and the object in the treatment space can be reduced.
- FIG. 1 is a schematic structural diagram of a radiation therapy machine.
- FIG. 2 is a flowchart of a collision avoidance detection method for a radiation therapy machine according to an embodiment of the present application.
- FIG. 3 is a flowchart of a method for collision avoidance detection of a radiation therapy machine according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of an imaginary connection set provided by an embodiment of the present application.
- FIG. 5 is a block diagram of an anti-collision detection device for a radiation therapy machine according to an embodiment of the present application.
- FIG. 6 is a block diagram of an obtaining component according to an embodiment of the present application.
- FIG. 7 is a longitudinal sectional view of a roller provided with an anti-collision detection device for a radiation therapy machine according to an embodiment of the present application.
- FIG. 8 is a cross-sectional view of a roller provided with an anti-collision detection device for a radiation therapy machine according to an embodiment of the present application.
- FIG. 9 is a schematic cross-sectional view of an outline of an object in a treatment space provided by an embodiment of the present application.
- FIG. 10 is a longitudinal sectional view of a roller provided with an anti-collision detection device for a radiation therapy machine according to an embodiment of the present application.
- FIG. 11 is a cross-sectional view of a roller provided with an anti-collision detection device for a radiation therapy machine according to an embodiment of the present application.
- FIG. 12 is a schematic diagram of distance measurement by a distance sensor according to an embodiment of the present application.
- FIG. 13 is a schematic diagram of distance measurement by a distance sensor according to an embodiment of the present application.
- FIG. 14 is a schematic diagram of distance measurement by a distance sensor according to an embodiment of the present application.
- FIG. 15 is a schematic diagram of distance measurement by a distance sensor according to an embodiment of the present application.
- FIG. 16 is a schematic structural diagram of a laser distance sensor according to an embodiment of the present application.
- FIG. 17 is a block diagram of a trigger component according to an embodiment of the present application.
- FIG. 18 is a block diagram of a trigger component according to an embodiment of the present application.
- Radiation therapy technology is a local treatment technology that uses radiation to treat tumors.
- the radiation can include alpha rays, beta rays, and gamma rays produced by radioactive isotopes, and x-rays, electron rays, and protons produced by various types of x-ray therapy machines or accelerators. Beams and other particle beams.
- the role and status of radiotherapy in the field of tumor treatment is becoming increasingly prominent, and it has become one of the main methods for treating malignant tumors.
- Radiation therapy machine is an important medical equipment to implement radiation therapy technology. In practical applications, there are many types of radiation therapy machines.
- Figure 1 is a schematic diagram of a common radiation therapy machine.
- the radiation therapy machine may include a roller 110, a treatment bed 120, a motor, and a treatment head. (The motor and the treatment head are not shown in FIG. 1).
- the cylindrical space formed by the drum 110 is the treatment space of the radiotherapy machine.
- the treatment head may be provided inside the drum 110 for generating radiation.
- the drum 110 may Rotated by the motor, the treatment head can rotate around the axis of the drum 110 as the drum 110 rotates, and the treatment table 120 can perform translational movement relative to the drum 110 along the axis of the drum 110.
- the medical staff can position the patient's body on the treatment bed 120. After the positioning is completed, the medical staff can control the translation of the treatment bed 120 to the inside of the drum 110 (that is, the treatment of the radiation therapy machine). Space), then, the drum 110 can be rotated by the motor, so that the treatment head rotates around the axis of the drum 110 as the drum 110 rotates, so that the radiation generated by the treatment head can act on the patient's tumor lesion To kill the tumor.
- the radiation therapy machine shown in FIG. 1 is a moving object in the treatment space, that is, the inner wall of the treatment space and the components disposed on the inner wall of the treatment space, such as a treatment head, an image
- the system (including the tube and the detector) moves relative to the patient. Therefore, without protection measures, there may be a collision between a moving object in the treatment space and the patient, which will threaten the safety of the patient.
- a moving switch in the treatment space can be provided with a contact switch.
- the contact switch When the contact switch is triggered, the patient is explained When the body touches the contact switch, it can be determined that the patient has collided with the moving object in the treatment space. In this case, the medical staff can respond in time to avoid the patient and the moving object in the treatment space. The accident caused further injury to the patient.
- the related technology can only respond after an accident in which a patient collides with a moving object in a treatment space, and therefore, it still brings certain hidden dangers to the safety of the patient.
- Embodiments of the present application provide a collision avoidance detection method and device for a radiation therapy machine, which can further reduce the threat to the patient's safety caused by a collision between a patient and a moving object in a treatment space.
- embodiments of the present application will describe a method and device for collision avoidance detection of the radiation therapy machine.
- FIG. 2 is a flowchart of a collision avoidance detection method for a radiation therapy machine according to an embodiment of the present application.
- the collision avoidance detection method for a radiation therapy machine can be applied to a radiation therapy machine.
- the collision detection method may include the following steps:
- Step 201 Obtain a contour of a patient in a treatment space.
- the treatment space refers to a treatment space in a radiation therapy machine, and the treatment space can accommodate a patient.
- Step 202 Determine whether a target contour point exists on the contour of the patient in the treatment space; the distance between the target contour point and a moving object in the treatment space is less than a preset distance threshold.
- the actual positional relationship between the moving object in the treatment space and the patient is obtained, and then it is determined whether there is a target contour point.
- Step 203 When the patient has a target contour point on the contour in the treatment space, an anti-collision interlock is triggered.
- the anti-collision detection method for a radiation therapy machine obtains a contour of a patient in a treatment space of the radiation therapy machine and triggers an anti-collision interlock when it is determined that a target contour point exists on the contour.
- the distance between the target contour point and the moving object in the treatment space is less than a preset distance threshold.
- Anti-collision interlocking is performed when the distance between any point on the point and the moving object in the treatment space is less than a preset distance threshold, so that the patient can respond before the collision with the moving object in the treatment space. Therefore, the patient can be reduced Threats to patient safety caused by collisions with objects in the treatment space.
- FIG. 3 is a flowchart of a collision avoidance detection method for a radiation therapy machine according to an embodiment of the present application.
- the collision avoidance detection method for a radiation therapy machine can be applied to a radiation treatment machine. As shown in FIG. 3, the radiation treatment machine
- the collision detection method may include the following steps:
- Step 301 Obtain a distance between a plurality of points on an outer surface of a patient and a boundary of a treatment space.
- the boundary of the treatment space may be the inner surface of the drum.
- a distance sensor may be provided on the boundary of the treatment space, and the distance sensor may measure the distance between multiple points on the outer surface of the patient and the distance sensor, where the distance measured by the distance sensor is The distance between multiple points on the patient's outer surface and the boundary of the treatment space.
- a treatment bed for carrying a patient can also be accommodated in the treatment space, and the treatment bed may also collide with a moving object in the treatment space, thereby causing damage to the moving object in the treatment space, such as If the treatment bed collides with the treatment head in the treatment space, the treatment head is likely to be damaged.
- a plurality of points on the outer surface of the patient and the boundary of the treatment space can be obtained.
- the distance between multiple points on the treatment bed and the boundary of the treatment space can also be obtained.
- the radiotherapy machine can perform patient contouring based on the distance between multiple points on the patient's outer surface and the boundary of the treatment space, and the distance between multiple points on the treatment bed and the boundary of the treatment space. And / or fit the contour of the treatment table, and then find the target contour point by calculating the contour of the patient and / or the contour of the treatment table, and trigger the anti-collision interlock. On the other hand, it can also avoid the damage to the moving object caused by the collision between the treatment bed and the moving object in the treatment space.
- the radiotherapy machine may perform the technical process of step 301 before performing radiotherapy, and may also perform the technical process of step 301 during radiotherapy.
- the radiotherapy machine may obtain the distance between multiple points on the outer surface of the patient and the boundary of the treatment space before the moving object in the treatment space moves, and Fit the patient's contour according to the obtained distance, and then find the target contour point through the calculation of the patient's contour, and perform anti-collision interlocking. In this way, you can prevent problems before they occur, and avoid moving objects in the treatment space and patients Collision.
- the radiotherapy machine can acquire the distance between multiple points on the outer surface of the patient and the boundary of the treatment space during the movement of the moving object in the treatment space. Distance, and fit the patient's contour according to the obtained distance, and then find the target contour point by calculating the patient's contour, and perform anti-collision interlock, so that the moving object in the treatment space may collide with the patient. In case, respond in time to ensure the safety of patients.
- Step 302 Fit the contour of the patient in the treatment space according to the obtained distance fitting.
- the radiotherapy machine can obtain an imaginary connection between each of the multiple points and the boundary of the treatment space according to the distances between the multiple points on the outer surface of the patient and the boundary of the treatment space, thereby obtaining Imaginary wiring collection.
- FIG. 4 is a schematic diagram of an imaginary connection set.
- the radiotherapy machine can fit the envelope (English: envelope) of the imaginary connection set, which is the contour of the patient in the treatment space.
- the treatment space can also contain a treatment bed, and the radiation therapy machine can also obtain the distance between multiple points on the treatment bed and the boundary of the treatment space. Therefore, in step 302, the radiation treatment machine can also obtain the patient at the same time. And the contour of the treatment bed in the treatment space.
- the profile in step 302 refers to a cross-sectional profile
- the so-called cross-section refers to a cross section perpendicular to the ground.
- Step 303 Determine whether a target contour point exists on the contour of the patient in the treatment space.
- the distance between the target contour point and the moving object in the treatment space is less than a preset distance threshold.
- the preset distance threshold can be set in advance by a technician, or can be set by a medical staff as needed. In other words, the preset distance threshold is adjustable in real time.
- the radiation therapy machine can calculate the contour to obtain the actual position relationship between the moving object and the patient in the treatment space, and then traverse the points on the contour (also known as the contour points) In order to detect whether the above-mentioned target contour point exists on the contour, during the traversal process, if the radiotherapy machine detects that the above-mentioned target contour point exists on the contour, the radiotherapy machine may stop the traversal.
- step 303 only uses the contour obtained by the radiation therapy machine as the patient's contour in the treatment space as an example.
- the contour obtained by the radiation therapy machine may also be that the patient and the treatment bed are in the treatment space. The outline of this embodiment will not be repeated here.
- Step 304 When the patient has a target contour point on the contour in the treatment space, an anti-collision interlock is triggered.
- the radiation therapy machine can trigger an anti-collision interlock to ensure that the patient Security.
- the contour obtained by the radiotherapy machine is the contour of the patient and the treatment table in the treatment space
- the radiation therapy machine can trigger an anti-collision interlock to ensure the safety of the patient and moving objects in the treatment space.
- the so-called anti-collision interlock refers to at least one of the following methods: 1.
- the radiotherapy machine controls a moving object in the treatment space to remain stationary; 2.
- the radiotherapy machine issues an alarm.
- the radiotherapy machine controlling the moving object in the treatment space to remain stationary means that before the radiotherapy, that is, when the moving object is stationary, the radiotherapy machine prohibits the moving object from entering the motion state; during radiotherapy, During the process, that is, when the moving object is in a moving state, the radiation therapy machine controls the moving object to stop moving.
- the radiotherapy machine alarm means that the radiotherapy machine emits a warning sound, the radiotherapy machine emits a warning light, or the radiotherapy machine sends an alarm message to a terminal connected to the radiotherapy machine.
- the anti-collision detection method for a radiation therapy machine obtains a contour of a patient in a treatment space of the radiation therapy machine and triggers an anti-collision interlock when it is determined that a target contour point exists on the contour.
- the distance between the target contour point and the moving object in the treatment space is less than a preset distance threshold.
- Anti-collision interlocking is performed when the distance between any point on the point and the moving object in the treatment space is less than a preset distance threshold, so that the patient can respond before the collision with the moving object in the treatment space. Therefore, the patient can be reduced Threats to patient safety caused by collisions with objects in the treatment space.
- FIG. 5 is a schematic diagram of an anti-collision detection device 500 for a radiation therapy machine according to an embodiment of the present application.
- the anti-collision detection device 500 for a radiation therapy machine may be provided in the radiation therapy machine.
- the radiation therapy The aircraft collision detection device 500 may include an acquisition component 501, a determination component 502, and a trigger component 503.
- the obtaining component 501 is configured to obtain a contour of a patient in the treatment space.
- a determining component 502 is configured to determine whether a target contour point exists on the contour, and a distance between the target contour point and a moving object in the treatment space is less than a preset distance threshold.
- the determination component 502 calculates the contour of the patient in the treatment space to obtain the actual positional relationship between the moving object in the treatment space and the patient, and then determines whether a target contour point exists.
- a trigger component 503 is configured to trigger an anti-collision interlock when the target contour point exists on the contour.
- the obtaining component 501 is specifically configured to: obtain distances between a plurality of points on an outer surface of the patient and a boundary of the treatment space; and obtain the contour by fitting according to the obtained distances .
- the acquisition component 501 is configured to obtain the contours of the patient and the treatment bed in the treatment space.
- the acquisition component 501 includes a distance sensor 5011 and a first processor 5012 connected to each other.
- the distance sensor 5011 is disposed on a boundary of a treatment space.
- the boundary of the treatment space refers to the inner wall of the drum.
- the distance sensor 5011 can measure the distance between the distance sensor 5011 and a plurality of points on the outer surface of an object in the treatment space, where the object in the treatment space can be a patient or the Objects can be patients and treatment beds.
- the first processor 5012 can obtain the contour of the object in the treatment space according to the distance measured by the distance sensor 5011.
- the longitudinal sectional view is parallel to the axis of the drum.
- the patient H can lie on the radiation therapy machine.
- the treatment bed C may be located inside the drum G, and the distance sensor 5011 provided on the inner wall of the drum G can measure objects in the treatment space when the drum G is stationary (the objects in the treatment space in FIG. 7 include only the patient H
- the distance between multiple points on the outer surface (points d1 to d10 in FIG. 7 are taken as an example) and the distance sensor 5011, and the distance sensor 5011 can transmit the measured distance to the first processor 5012.
- the radiation therapy machine is a drum-type radiation therapy machine
- the cross-sectional view is perpendicular to the axis of the drum
- the distance sensor 5011 provided on the inner wall of the drum G can also rotate on the drum G Measure the distance between at least one point on the outer surface of the object in the treatment space (the object in the treatment space only includes the body of the patient H in FIG. 8) and the distance sensor 5011, wherein FIG. 8 only shows the distance sensor 5011
- FIG. 8 only shows the distance sensor 5011
- FIG. 8 only shows the distance sensor 5011
- FIG. 8 only shows the distance sensor 5011
- the distance sensor 5011 can measure at least one point on the outer surface of the object in the treatment space and the distance sensor 5011 in real time.
- the distance between the at least one point on the outer surface of the object in the treatment space and the distance sensor 5011 can also be measured every preset time.
- the preset time can be the time required for the drum to rotate a preset angle.
- the preset angle may be 90 ° or 120 °.
- the distance sensor 5011 measures the distance between a plurality of points on the outer surface of the object in the treatment space and the distance sensor 5011 to fit the patient contour when the roller is stationary, and then finds the target contour point by calculating the patient contour.
- the anti-collision detection device 500 of the radiotherapy machine can be made to determine whether the patient may collide with a moving object in the drum before the drum rotates, so that the patient's position can be adjusted in the case that the patient may collide with a moving object in the drum. In this way, an accident that the patient collides with a moving object in the drum when the drum is rotated can be avoided, and the hidden safety hazard of the patient can be eliminated.
- the distance sensor 5011 measures the distance between at least one point on the outer surface of the object in the treatment space and the distance sensor 5011 during the rotation of the drum to fit the contour of the patient, and then finds the target contour point by calculating the contour of the patient.
- the anti-collision detection device 500 of the radiotherapy machine can determine whether a patient may collide with a moving object in the drum during the rotation of the drum, so that the drum can be stopped in time if the patient may collide with a moving object in the drum. In this way, an accident that the patient collides with a moving object in the drum when the drum is rotated can also be avoided, and the hidden safety hazard of the patient can be eliminated.
- the first processor 5012 can obtain the positions of multiple points on the outer surface of the object in the treatment space in the roller according to the distance measured by the distance sensor 5011, and according to the multiple The position of the point in the drum is fitted to obtain the contour of the object in the treatment space. For example, after receiving the distance value transmitted by the distance sensor 5011, the first processor 5012 may obtain each distance between the multiple points on the outer surface of the object in the treatment space and the distance sensor 5011 according to the distance value. Of imaginary connections to obtain a set of imaginary connections. Then, the first processor 5012 can fit and obtain an envelope of an imaginary line set, and the envelope is an outline of an object in the treatment space in the treatment space.
- the contour of the object in the treatment space in the treatment space can be the cross-sectional contour of the object in the treatment space, that is, the contour of the object in the treatment space in the treatment space can be the cross-section of the patient
- the contour, or the contour of the object in the treatment space in the treatment space may be the cross-sectional profile of the patient and the treatment bed.
- the first processor 5012 may perform an anti-collision interlock to avoid a collision accident.
- FIG. 9 is a schematic cross-sectional view of the outline L of the object in the treatment space.
- a point dn on the outline L of the object in the treatment space and the roller G (in the roller type radiotherapy machine, the roller G) The distance between the inner wall and the moving object in the treatment space is S, and the distance S is less than a preset distance threshold.
- the first processor 5012 may perform anti-collision interlocking.
- the first processor 5012 may be provided in the radiation therapy machine or outside the radiation therapy machine (for example, the first processor 5012 may be located in a computer external to the radiation therapy machine).
- a communication connection may be established between the processor 5012 and the distance sensor 5011 in a wired or wireless manner.
- the preset distance threshold can be set in advance by a technician, or can be set by a medical staff who operates the radiation therapy machine according to the actual situation. In other words, the preset distance threshold can be adjusted in real time. In an embodiment of the present application, the preset distance threshold may be located in a range of [1 cm, 5 cm].
- the radiation therapy machine collision detection device 500 may include at least One distance sensor group ZZ (3 distance sensor groups ZZ are exemplarily shown in FIG. 10), each distance sensor group ZZ includes at least one distance sensor 5011 (each distance sensor group ZZ shown in FIG. 10 includes two Distance sensors 5011).
- the at least one distance sensor group ZZ may be sequentially arranged along the axial direction of the drum G (that is, the direction in which the axis m of the drum G is located).
- the at least one distance sensor group ZZ may be arranged along The cylinders G are arranged at equal distances in the axial direction, and may also be arranged at non-equidistances along the axis of the rollers G, which is not specifically limited in the embodiment of the present application.
- the distance sensor group ZZ may be disposed at a position where the inner side of the drum G is more likely to collide with the patient ’s body.
- the distance sensor group ZZ may be disposed between the inner side of the drum G and the crotch of the patient during tumor treatment.
- the setting position of the distance sensor ZZ is not specifically limited in this embodiment of the present application. .
- each distance sensor group ZZ may be located on the same cross section of the drum G, where the cross section is perpendicular to the axis m of the drum G.
- the distance sensor group ZZ includes three distance sensors 5011. The three distance sensors 5011 are all located on the same cross section J of the drum G, and the cross section J is perpendicular to the axis m of the drum G. .
- the distance sensors 5011 included in each distance sensor group ZZ may be along the circumferential direction of the cross section of the distance sensor group ZZ Isometric arrangement.
- the distance is R.
- setting at least three distance sensors 5011 per distance sensor group ZZ can enable the distance sensor group ZZ to perform distance measurement on points on the outer surface of the object in the treatment space in various directions when the drum is stationary, so that the first A processor 5012 can obtain the overall contour of the object in the treatment space when the drum is stationary, thereby improving the reliability of the collision avoidance detection device 500 of the radiation therapy machine.
- each distance sensor group ZZ may be provided with at least three distance sensors 5011. Among them, in order to save deployment costs, Alternatively, three distance sensors 5011 can be set for each distance sensor group ZZ.
- this cross-sectional view is perpendicular to the axis of the drum.
- each distance sensor 5011 can be stationary on the drum. At this time, distance measurements are performed on multiple points on the outer surface of the object in the treatment space from different directions.
- FIG. 15 As shown in the cross-sectional view of FIG. 15, which is perpendicular to the axis of the drum, combining the distances measured by the three distance sensors 5011 in FIG. 12, FIG. 13, and FIG. 14 can obtain the outer surface of the object in the treatment space.
- the first processor 5012 can obtain the positions of the points on the outer surface of the object in the treatment space in various directions, and then can fit in the treatment space.
- the overall outline of the object As shown in the cross-sectional view of FIG. 15, which is perpendicular to the axis of the drum, combining the distances measured by the three distance sensors 5011 in FIG. 12, FIG. 13, and FIG. 14 can obtain the outer surface of the object in the treatment space.
- the first processor 5012 can obtain the positions of the points on the outer surface of the object in the treatment space in various directions, and then can fit in the treatment space.
- the distance sensor 5011 in the embodiment of the present application may be a laser distance sensor.
- the laser distance sensor may include a rotating base 2011 and a laser transmitter 2012 and a laser receiver 2013 provided on the rotating base 2011.
- the laser transmitter 2012 is used to emit laser light
- the laser receiver 2013 is used to receive the laser light emitted by the laser transmitter 2012 after the laser light emitted by the laser transmitter 2012 is reflected by a point on the outer surface of the object in the treatment space.
- the sensor can obtain the distance between the laser distance sensor and a point on the outer surface of the object in the treatment space according to the time difference between the laser receiver 2013 receiving the laser and the laser transmitter 2012 emitting the laser.
- the rotating base 2011 can drive the laser transmitter 2012 and The laser receiver 2013 rotates, so that the laser transmitter 2012 can emit laser light in different directions, so that the laser distance sensor can measure the distance between a point on the outer surface of the object in the treatment space and the laser distance sensor in different directions.
- the triggering component 503 is specifically configured to: when a target contour point exists on the contour of an object in the treatment space, keep a moving object in the treatment space stationary, and / or control the radiotherapy machine to issue an alarm.
- the trigger component 503 may include a second processor 5031 and a motor 5032 connected to each other, where the motor 5032 is configured to drive a moving object in the treatment space to move.
- the second processor 504 and the first processor 5012 may be the same processor or different processors, which are not specifically limited in this embodiment of the present application.
- the triggering component 503 for anti-collision interlocking may include the following two possible implementation manners:
- the first and second processors 5031 have target contour points on the contours of the objects in the treatment space, and when the motor 5032 is in the working state, the motor 5032 is switched to the non-working state, thereby controlling the moving objects in the treatment space from the motion state. Go to standstill.
- the second and second processors 5031 have target contour points on the contour in the treatment space, and when the motor 5032 is in a non-working state, the motor 5032 is prohibited from entering the working state, that is, the moving objects in the treatment space are prohibited from entering the movement. State to keep moving objects in the treatment space stationary.
- the radiation therapy machine is a drum-type radiation therapy machine
- the second processor 5031 may control the drum to stop Rotation; when the roller is in a stationary state, if there is a target contour point on the contour of the object in the treatment space, at this time, the second processor 5031 may prohibit the roller from entering the rotating state.
- the trigger component 503 may include a second processor 5031 and a communication module 5033 connected to each other.
- the communication module 5033 may establish a communication connection with the second processor 5031 in a wired or wireless manner. .
- the manner in which the triggering component 503 performs anti-collision interlocking may be:
- the preset terminal may be a computer external to the radiation therapy machine, and the communication module 5033 may provide the preset terminal based on a Bluetooth signal, a WIFI (Wireless-Fidelity) signal, an infrared signal, or a Zigbee signal. Send an alert so that medical personnel can respond in time after seeing the alert, so as to avoid the accident of the patient's body colliding with a moving object in the treatment space.
- a Bluetooth signal a Bluetooth signal
- WIFI Wireless-Fidelity
- infrared signal or a Zigbee signal.
- the anti-collision detection device for a radiation therapy machine obtains a contour of a patient in a treatment space of the radiation therapy machine, and triggers an anti-collision interlock when it is determined that a target contour point exists on the contour.
- the distance between the target contour point and the moving object in the treatment space is less than a preset distance threshold.
- Anti-collision interlocking is performed when the distance between any point on the point and the moving object in the treatment space is less than a preset distance threshold, so that the patient can respond before the collision with the moving object in the treatment space. Threats to patient safety caused by collisions with objects in the treatment space.
- the embodiment of the present application further provides a radiation therapy machine, which may include the anti-collision detection device 500 of the radiation therapy machine provided in the foregoing embodiment.
- the radiation therapy machine may further include a roller, a treatment head, a treatment bed, a motor, and the like, which are not described in detail in the embodiment of the present application.
- a radiation therapy machine is used as a drum-type radiation therapy machine as an example, and a method for using the collision avoidance detection device of the radiation therapy machine provided in the embodiment of the application will be briefly described. Method and how to use when the drum rotates:
- the medical staff can activate the anti-collision detection device of the radiotherapy machine.
- the medical staff can activate the radiotherapy machine's anti-collision detection by triggering a button set on the radiotherapy machine Device, or the anti-collision detection device of the radiotherapy machine may be automatically activated when the drum enters a rotating state from a stationary state, and after the anti-collision detection device of the radiotherapy machine is started, the distance sensor in the anti-collision detection device of the radiotherapy machine may be Measure the distance between multiple points on the outer surface of the object (can be the patient, or the patient and the treatment bed) and the distance sensor, and then the distance sensor can transmit the measured distance to the radiation therapy machine
- the first processor of the anti-collision detection device the first processor can obtain the contour of the object in the drum according to the distance measured by the distance sensor. When a target contour point exists on the contour, the anti-collision detection device of the radiotherapy machine can perform Anti-collision inter
- the medical staff can start the anti-collision detection device of the radiotherapy machine.
- the medical staff can start the anti-collision detection of the radiotherapy machine by triggering a button set on the radiotherapy machine.
- the anti-collision detection device of the radiotherapy machine can be automatically started when the drum is in a rotating state, and after the anti-collision detection device of the radiotherapy machine is started, the distance sensor in the anti-collision detection device of the radiotherapy machine can measure the inside of the drum The distance between multiple points on the outer surface of the object (which can be the patient, or the patient and the treatment bed) and the distance sensor, and then the distance sensor can transmit the measured distance to the radiation therapy machine's collision detection
- the first processor of the device the first processor can obtain the contour of the object in the drum according to the distance measured by the distance sensor.
- the anti-collision detection device of the radiotherapy machine can perform collision prevention Locking, that is, performing the technical process of controlling the motor from working state to non-working state
- the program may be stored in a computer-readable storage medium.
- the storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
一种放射治疗机防撞检测方法,包括:获取患者在所述治疗空间内的轮廓(201);确定所述轮廓上是否存在目标轮廓点,所述目标轮廓点与所述治疗空间内的运动物体的距离小于预设距离阈值(202);当所述轮廓上存在所述目标轮廓点时,触发防撞联锁(203)。该技术方案能够减小患者与治疗空间内的运动物体相撞给患者的安全带来的威胁。还公开了一种放射治疗机防撞检测装置及放射治疗机。
Description
本申请涉及医疗设备领域,特别涉及一种放射治疗机防撞检测方法、装置及放射治疗机。
放射治疗机是一种利用放射线对肿瘤病灶进行消除性治疗的医疗设备。在治疗前,医护人员通常需要对患者的身体进行摆位,使得患者进入放射治疗机的治疗空间后,肿瘤病灶能够与治疗等中心点重合,而后,医护人员可以启动放射治疗机,使放射治疗机产生的放射线作用于患者的肿瘤病灶上,以对患者进行治疗。由于治疗过程中,治疗空间内的某些物体会相对于患者运动,例如,对于滚筒式放射治疗机而言,在治疗过程中,滚筒的内壁会相对于患者运动,设置于该治疗空间内侧的治疗头也会相对于患者运动,因此,在没有保护措施的情况下,将可能出现治疗空间内的运动物体与患者碰撞的情况,对患者的安全造成威胁。
相关技术中,可以在治疗空间内的运动物体上设置接触式开关,当该接触式开关被触发时,即可确定患者与该运动物体产生了碰撞,此时,医护人员可以及时进行响应,以减轻运动物体与患者相撞对患者安全造成的威胁。
然而,相关技术只能在患者与治疗空间内的运动物体相撞后进行响应,仍然会给患者带来一定的安全隐患。
发明内容
本申请实施例提供了一种放射治疗机防撞检测方法、装置及放射治疗机, 可以减小患者与治疗空间内的运动物体相撞给患者的安全带来的威胁。所述技术方案如下:
第一方面,提供了一种放射治疗机防撞检测方法,所述放射治疗机具有容纳患者的治疗空间,所述方法包括:
获取患者在所述治疗空间内的轮廓;
确定所述轮廓上是否存在目标轮廓点,所述目标轮廓点与所述治疗空间内的运动物体的距离小于预设距离阈值;
当所述轮廓上存在所述目标轮廓点时,触发防撞联锁。
第二方面,提供了一种放射治疗机防撞检测装置,所述放射治疗机具有容纳患者的治疗空间,所述装置包括:
获取组件,用于获取患者在所述治疗空间内的轮廓;
确定组件,用于确定所述轮廓上是否存在目标轮廓点,所述目标轮廓点与所述治疗空间内的运动物体的距离小于预设距离阈值;
触发组件,用于在所述轮廓上存在所述目标轮廓点时,触发防撞联锁。
可选的,所述获取组件包括相互连接的距离传感器和第一处理器,所述距离传感器设置于所述治疗空间的边界上;
所述距离传感器用于测量所述距离传感器与所述患者的外表面上的多个点之间的距离;
所述第一处理器用于根据所述距离传感器测量到的距离获取所述患者的轮廓。
可选的,所述距离传感器为激光距离传感器。
可选的,所述距离传感器包括激光发射器、激光接收器和旋转底座,所述激光发射器和所述激光接收器设置于所述旋转底座上。
可选的,所述触发组件,具体用于:
当所述轮廓上存在所述目标轮廓点时,使所述运动物体保持静止,和/或,控制所述放射治疗机发出警报。
第三方面,提供了一种放射治疗机,所述放射治疗机包括如上述第二方面任一所述的放射治疗机防撞检测装置。
本申请实施例提供的技术方案的有益效果至少包括:
通过获取患者在放射治疗机的治疗空间内的轮廓,并在确定该轮廓上存在目标轮廓点时,触发防撞联锁,其中,该目标轮廓点与治疗空间内的运动物体的距离小于预设距离阈值,这样,在患者处于放射治疗机的治疗空间内时,本申请实施例提供的技术方案可以在该患者的轮廓上的任一点与治疗空间内的运动物体之间的距离小于预设距离阈值时进行防撞联锁,从而能够在患者与治疗空间内的运动物体相撞之前进行响应,因此,可以减小患者与治疗空间内的物体相撞给患者的安全带来的威胁。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种放射治疗机的结构示意图。
图2是本申请实施例提供的一种放射治疗机防撞检测方法的流程图。
图3是本申请实施例提供的一种放射治疗机防撞检测方法的流程图。
图4是本申请实施例提供的一种假想连线集合的一个示意图。
图5是本申请实施例提供的一种放射治疗机防撞检测装置的框图。
图6是本申请实施例提供的一种获取组件的框图。
图7是本申请实施例提供的一种设置有放射治疗机防撞检测装置的滚筒的纵截面图。
图8是本申请实施例提供的一种设置有放射治疗机防撞检测装置的滚筒的横截面图。
图9是本申请实施例提供的治疗空间内的物体的轮廓的截面示意图。
图10是本申请实施例提供的一种设置有放射治疗机防撞检测装置的滚筒的纵截面图。
图11是本申请实施例提供的一种设置有放射治疗机防撞检测装置的滚筒的横截面图。
图12是本申请实施例提供的一种距离传感器测量距离的示意图。
图13是本申请实施例提供的一种距离传感器测量距离的示意图。
图14是本申请实施例提供的一种距离传感器测量距离的示意图。
图15是本申请实施例提供的一种距离传感器测量距离的示意图。
图16是本申请实施例提供的一种激光距离传感器的结构示意图。
图17是本申请实施例提供的一种触发组件的框图。
图18是本申请实施例提供的一种触发组件的框图。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
放射治疗技术是一种利用放射线治疗肿瘤的局部治疗技术,其中,放射线可以包括放射性同位素产生的α射线、β射线、γ射线以及各类x射线治疗机或加速器产生的x射线、电子线、质子束和其他粒子束等。目前,放射治疗技术在肿瘤治疗领域中的作用和地位日益突出,已经成为治疗恶性肿瘤的主要手段之一。
放射治疗机是实施放射治疗技术的一种重要的医疗设备。实际应用中,放射治疗机的结构有许多种,图1为一种常见的放射治疗机的结构示意图,如图1所示,该放射治疗机可以包括滚筒110、治疗床120、电机和治疗头(电机和治疗头图1中未示出),其中,滚筒110形成的筒形空间即为该放射治疗机的治疗空间,治疗头可以设置于滚筒110的内侧,用于产生放射线,滚筒110可 以在电机的带动下旋转,治疗头能够随着滚筒110的旋转而绕滚筒110的轴线转动,治疗床120能够沿滚筒110的轴线相对于滚筒110做平移运动。
在进行肿瘤治疗时,医护人员可以在治疗床120上对患者的身体进行摆位,在摆位完成后,医护人员可以控制该治疗床120平移至滚筒110内部(也即是放射治疗机的治疗空间内),接着,滚筒110可以在电机的带动下旋转,从而使治疗头随着滚筒110的旋转而绕滚筒110的轴线转动,这样,治疗头产生的放射线就可以作用于患者的肿瘤病灶上,以对该肿瘤病灶进行杀灭性地治疗。
由上述说明可知,图1所示的放射治疗机,在肿瘤治疗的过程中,治疗空间内的运动物体,也即是治疗空间内壁和设置在治疗空间内壁上的部件,例如:治疗头、影像系统(包括球管和探测器),会相对于患者运动,因此,在没有保护措施的情况下,将可能出现治疗空间内的运动物体与患者碰撞的情况,这会对患者的安全造成威胁。
相关技术中,为了减轻治疗空间内的运动物体与患者相撞给患者的安全带来的威胁,治疗空间内的运动物体上可以设置有接触式开关,当该接触式开关被触发时,说明患者的身体接触到了该接触式开关,此时即可确定患者与治疗空间内的运动物体产生了碰撞,在这种情况下,医护人员可以及时进行响应,从而避免患者与治疗空间内的运动物体相撞的事故给患者带来进一步的伤害。
然而,相关技术只能在发生患者与治疗空间内的运动物体相撞的事故后进行响应,因此,其仍然会给患者的安全带来一定隐患。
本申请实施例提供了一种放射治疗机防撞检测方法及装置,可以进一步减小患者与治疗空间内的运动物体相撞给患者的安全带来的威胁。下面,本申请实施例将对该放射治疗机防撞检测方法及装置进行说明。
图2所示为本申请实施例提供的一种放射治疗机防撞检测方法的流程图,该放射治疗机防撞检测方法可以应用于放射治疗机中,如图2所示,该放射治疗机防撞检测方法可以包括以下步骤:
步骤201、获取患者在治疗空间内的轮廓。
其中,该治疗空间指的是放射治疗机中的治疗空间,该治疗空间可以容纳患者。
步骤202、确定患者在治疗空间内的轮廓上是否存在目标轮廓点;该目标轮廓点与治疗空间内的运动物体的距离小于预设距离阈值。
通过对患者在治疗空间内的轮廓进行计算,得到治疗空间内的运动物体与患者的实际位置关系,进而确定是否存在目标轮廓点。
步骤203、当患者在治疗空间内的轮廓上存在目标轮廓点时,触发防撞联锁。
综上所述,本申请实施例提供的放射治疗机防撞检测方法,通过获取患者在放射治疗机的治疗空间内的轮廓,并在确定该轮廓上存在目标轮廓点时,触发防撞联锁,其中,该目标轮廓点与治疗空间内的运动物体的距离小于预设距离阈值,这样,在患者处于放射治疗机的治疗空间内时,本申请实施例提供的技术方案可以在该患者的轮廓上的任一点与治疗空间内的运动物体之间的距离小于预设距离阈值时进行防撞联锁,从而能够在患者与治疗空间内的运动物体相撞之前进行响应,因此,可以减小患者与治疗空间内的物体相撞给患者的安全带来的威胁。
图3所示为本申请实施例提供的一种放射治疗机防撞检测方法的流程图,该放射治疗机防撞检测方法可以应用于放射治疗机中,如图3所示,该放射治疗机防撞检测方法可以包括以下步骤:
步骤301、获取患者的外表面上的多个点与治疗空间的边界之间的距离。
可选的,对于滚筒式放射治疗机而言,治疗空间的边界可以为滚筒的内表面。
在本申请实施例中,可以在治疗空间的边界上设置距离传感器,该距离传感器可以测量患者外表面上的多个点与该距离传感器之间的距离,其中,距离传感器测量得到的距离即为患者的外表面上的多个点与治疗空间的边界之间的距离。
需要指出的是,通常情况下,治疗空间内还可以容纳有用于承载患者的治疗床,该治疗床也有可能与治疗空间内的运动物体发生碰撞,从而对治疗空间内的运动物体造成损坏,例如,治疗床与治疗空间内的治疗头发生碰撞,就很可能会损坏治疗头。
为了避免治疗床与治疗空间内的运动物体发生碰撞而损坏该运动物体,在本申请的实施例中,放射治疗机除了可以获取患者的外表面上的多个点与治疗空间的边界之间的距离之外,还可以获取治疗床上的多个点与治疗空间的边界之间的距离。
这样,在后续步骤中,放射治疗机就可以根据患者的外表面上的多个点与治疗空间的边界之间的距离以及治疗床上的多个点与治疗空间的边界之间的距离进行患者轮廓和/或治疗床轮廓的拟合,进而通过对患者轮廓和/或治疗床轮廓的计算查找目标轮廓点,触发防撞联锁,一方面可以减小患者与治疗空间内的物体相撞给患者的安全带来的威胁,另一方面也可以避免治疗床与治疗空间内的运动物体相撞给该运动物体造成的损坏。
还需要指出的是,放射治疗机可以在进行放射治疗之前执行步骤301的技术过程,也可以在放射治疗的过程中执行步骤301的技术过程。
在放射治疗之前执行步骤301的技术过程的情况下,放射治疗机可以在治疗空间内的运动物体进行运动之前,获取患者的外表面上的多个点与治疗空间的边界之间的距离,并根据获得的距离进行患者轮廓的拟合,进而通过对患者轮廓的计算查找目标轮廓点,进行防撞联锁,这样,就可以防患于未然,避免治疗空间内的运动物体在运动后与患者发生碰撞。
在放射治疗过程中执行步骤301的技术过程的情况下,放射治疗机可以在治疗空间内的运动物体进行运动的过程中,获取患者的外表面上的多个点与治疗空间的边界之间的距离,并根据获得的距离进行患者轮廓的拟合,进而通过对患者轮廓的计算查找目标轮廓点,进行防撞联锁,这样,就可以在治疗空间内的运动物体有可能与患者相撞的情况下,及时进行响应,从而保障患者的安 全。
步骤302、根据获取到的距离拟合得到患者在治疗空间内的轮廓。
放射治疗机可以根据获取到的患者外表面上的多个点与治疗空间的边界之间的距离,获取该多个点中的每个点与治疗空间的边界之间的假想连线,从而得到假想连线集合。请参考图4,图4即为假想连线集合的一个示意图。
而后,放射治疗机可以拟合得到假想连线集合的包络(英文:envelope),该包络即为患者在治疗空间内的轮廓。
如上所述,治疗空间还可以容纳有治疗床,放射治疗机还可以获取治疗床上的多个点与治疗空间的边界之间的距离,因此,在步骤302中,放射治疗机也可以同时获取患者和该治疗床在治疗空间内的轮廓。
在本申请的一个实施例中,步骤302中的轮廓指的是横截面轮廓,所谓横截面指的是垂直于地面的截面。
步骤303、确定患者在治疗空间内的轮廓上是否存在目标轮廓点。
其中,目标轮廓点与治疗空间内的运动物体的距离小于预设距离阈值,在本申请实施例中,该预设距离阈值可以由技术人员预先进行设定,也可以由医护人员根据需要进行设定,换句话说,该预设距离阈值实时可调。
在获取了患者在治疗空间内的轮廓后,放射治疗机可以对该轮廓进行计算,得到治疗空间内运动物体与患者的实际位置关系,之后遍历该轮廓上的点(也可称为轮廓点),以检测该轮廓上是否存在上述目标轮廓点,在遍历的过程中,如果放射治疗机检测到该轮廓上存在上述目标轮廓点,则放射治疗机可以停止遍历。
需要说明的是,步骤303仅以放射治疗机获取的轮廓为患者在治疗空间内的轮廓为例进行说明,实际实现时,放射治疗机获取的轮廓还有可能是患者和治疗床在治疗空间内的轮廓,本申请实施例在此就不再赘述了。
步骤304、当患者在治疗空间内的轮廓上存在目标轮廓点时,触发防撞联锁。
当患者在治疗空间内的轮廓上存在目标轮廓点时,说明患者有与治疗空间内的运动物体发生碰撞的可能性,在这种情况下,放射治疗机可以触发防撞联锁,以保证患者的安全。
当然,在放射治疗机获取到的轮廓为患者和治疗床在治疗空间内的轮廓时,若该轮廓上存在目标轮廓点,说明患者或治疗床有与治疗空间内的运动物体发生碰撞的可能性,在这种情况下,放射治疗机可以触发防撞联锁,以保证患者和治疗空间内运动物体的安全。
在本申请实施例中,所谓防撞联锁指的是以下方式中的至少一种:1、放射治疗机控制治疗空间内的运动物体保持静止,2、放射治疗机发出警报。
其中,放射治疗机控制治疗空间内的运动物体保持静止指的是:在放射治疗之前,也即是,在该运动物体处于静止状态时,放射治疗机禁止该运动物体进入运动状态;在放射治疗的过程中,也即是,在该运动物体处于运动状态时,放射治疗机控制该运动物体停止运动。
放射治疗机发出警报指的是:放射治疗机发出提示音,放射治疗机发出提示光,或者,放射治疗机向与该放射治疗机连接的终端发出警报信息等。
综上所述,本申请实施例提供的放射治疗机防撞检测方法,通过获取患者在放射治疗机的治疗空间内的轮廓,并在确定该轮廓上存在目标轮廓点时,触发防撞联锁,其中,该目标轮廓点与治疗空间内的运动物体的距离小于预设距离阈值,这样,在患者处于放射治疗机的治疗空间内时,本申请实施例提供的技术方案可以在该患者的轮廓上的任一点与治疗空间内的运动物体之间的距离小于预设距离阈值时进行防撞联锁,从而能够在患者与治疗空间内的运动物体相撞之前进行响应,因此,可以减小患者与治疗空间内的物体相撞给患者的安全带来的威胁。
图5所示为本申请实施例提供的一种放射治疗机防撞检测装置500的示意图,该放射治疗机防撞检测装置500可以设置于放射治疗机中,如图5所示,该放射治疗机防撞检测装置500可以包括获取组件501、确定组件502和触发 组件503。
其中,该获取组件501,用于获取患者在该治疗空间内的轮廓。
确定组件502,用于确定该轮廓上是否存在目标轮廓点,该目标轮廓点与该治疗空间内的运动物体的距离小于预设距离阈值。
确定组件502通过对患者在治疗空间内的轮廓进行计算,得到治疗空间内的运动物体与患者的实际位置关系,进而确定是否存在目标轮廓点。
触发组件503,用于在该轮廓上存在该目标轮廓点时,触发防撞联锁。
在本申请的一个实施例中,该获取组件501,具体用于:获取该患者的外表面上的多个点与该治疗空间的边界之间的距离;根据获取到的距离拟合得到该轮廓。此外,在治疗空间容纳有治疗床的情况下,该获取组件501,用于获取该患者和该治疗床在该治疗空间内的轮廓。
可选的,如图6所示,获取组件501包括相互连接的距离传感器5011和第一处理器5012,其中,该距离传感器5011设置于治疗空间的边界上,对于滚筒式放射治疗机而言,该治疗空间的边界指的是滚筒的内壁。
在工作时,距离传感器5011可以测量该距离传感器5011与治疗空间内的物体外表面上的多个点之间的距离,其中,该治疗空间内的物体可以是患者,或者,该治疗空间内的物体可以是患者和治疗床。
该第一处理器5012可以根据距离传感器5011测量到的距离获取治疗空间内的物体的轮廓。
在放射治疗机为滚筒式放射治疗机的情况下,如图7的纵截面图所示,该纵截面图与滚筒的轴线平行,在进行肿瘤治疗时,患者H可以躺卧于放射治疗机的治疗床C上,该治疗床C可以位于滚筒G内部,设置于滚筒G内壁上的距离传感器5011可以在滚筒G静止时测量治疗空间内的物体(图7中治疗空间内的物体仅包括患者H的身体)外表面上的多个点(图7中以d1至d10点为例示出)与该距离传感器5011之间的距离,距离传感器5011可以将测得的距离传递至第一处理器5012。
在放射治疗机为滚筒式放射治疗机的情况下,如图8的横截面图所示,该横截面图与滚筒的轴线垂直,设置于滚筒G内壁上的距离传感器5011还可以在滚筒G旋转时测量治疗空间内的物体(图8中治疗空间内的物体仅包括患者H的身体)外表面上的至少一个点与该距离传感器5011之间的距离,其中,图8仅示出了距离传感器5011在滚筒G旋转0°、90°、180°和270°时测量治疗空间内的物体外表面上的至少一个点与该距离传感器5011之间的距离的示意图,在滚筒G旋转一周后,距离传感器5011可以将测得的距离传递至第一处理器5012。
需要指出的是,在放射治疗机为滚筒式放射治疗机的情况下,滚筒旋转的过程中,距离传感器5011可以实时测量治疗空间内的物体外表面上的至少一个点与该距离传感器5011之间的距离,也可以每隔预设时长测量治疗空间内的物体外表面上的至少一个点与该距离传感器5011之间的距离,其中,该预设时长可以为滚筒旋转预设角度所需的时长,例如,该预设角度可以为90°或120°等。
其中,距离传感器5011在滚筒静止时测量治疗空间内的物体外表面上的多个点与该距离传感器5011之间的距离进行患者轮廓的拟合,进而通过对患者轮廓的计算查找目标轮廓点,可以使放射治疗机防撞检测装置500能够在滚筒旋转之前确定患者是否可能与滚筒内的运动物体相撞,从而可以在患者可能与滚筒内的运动物体相撞的情况下,调整患者的位置,这样,就可以避免滚筒旋转时出现患者与滚筒内的运动物体相撞的事故,从而可以消除患者的安全隐患。
距离传感器5011在滚筒旋转时测量治疗空间内的物体外表面上的至少一个点与该距离传感器5011之间的距离进行患者轮廓的拟合,进而通过对患者轮廓的计算查找目标轮廓点,可以使放射治疗机防撞检测装置500能够在滚筒旋转的过程中确定患者是否可能与滚筒内的运动物体相撞,从而可以在患者可能与滚筒内的运动物体相撞的情况下,及时使滚筒停机,这样,也可以避免滚 筒旋转时出现患者与滚筒内的运动物体相撞的事故,从而可以消除患者的安全隐患。
第一处理器5012在接收到距离传感器5011传递的距离值后,可以根据距离传感器5011测得的距离获取治疗空间内的物体外表面上的多个点在滚筒中的位置,并根据该多个点在滚筒中的位置拟合得到治疗空间内的物体的轮廓。例如,第一处理器5012在接收到距离传感器5011传递的距离值后,可以根据该距离值,获取该治疗空间内的物体外表面上的多个点中的每个点与距离传感器5011之间的假想连线,从而得到假想连线集合。而后,第一处理器5012可以拟合得到假想连线集合的包络,该包络即为治疗空间内的物体在治疗空间内的轮廓。
需要指出的是,治疗空间内的物体在治疗空间内的轮廓可以是治疗空间内的物体的横截面轮廓,也即是,该治疗空间内的物体在治疗空间内的轮廓可以是患者的横截面轮廓,或者,该治疗空间内的物体在治疗空间内的轮廓可以是患者与治疗床的横截面轮廓。
在治疗空间内的物体的轮廓上的任一点与治疗空间内的运动物体之间的距离小于预设距离阈值时,患者或者治疗床很可能会与治疗空间内的运动物体相撞,此时,第一处理器5012可以进行防撞联锁,以避免相撞事故的发生。
图9为治疗空间内的物体的轮廓L的一个截面示意图,如图9所示,该治疗空间内的物体的轮廓L上的一个点dn与滚筒G(在滚筒式放射治疗机中,滚筒G的内壁可以是治疗空间内的运动物体)之间的距离为S,该距离S小于预设距离阈值,此时,第一处理器5012可以进行防撞联锁。
可选的,该第一处理器5012可以设置于放射治疗机中,也可以设置于放射治疗机外(例如,该第一处理器5012可以设置于放射治疗机外接的计算机中),该第一处理器5012和该距离传感器5011之间可以通过有线或无线的方式建立通信连接。该预设距离阈值可以由技术人员预先进行设定,也可以由操作放射治疗机的医护人员根据实际情况进行设定,换句话说,该预设距离阈值 实时可调。在本申请的一个实施例中,该预设距离阈值可以位于[1cm,5cm]的范围内。
可选的,在放射治疗机为滚筒式放射治疗机的情况下,如图10的纵截面图所示,该纵截面图与滚筒的轴线平行,该放射治疗机防撞检测装置500可以包括至少一个距离传感器组ZZ(图10中示例性地示出了3个距离传感器组ZZ),每个距离传感器组ZZ包括至少一个距离传感器5011(图10中示出的每个距离传感器组ZZ包括两个距离传感器5011)。
如图10所示,该至少一个距离传感器组ZZ可以沿滚筒G的轴向(也即是滚筒G的轴线m所在的方向)依次排布,实际实现时,该至少一个距离传感器组ZZ可以沿滚筒G的轴向等距排布,也可以沿滚筒G的轴向非等距地排布,本申请实施例对其不做具体限定。
可选的,该距离传感器组ZZ可以设置于滚筒G内侧较易与患者的身体相撞的位置上,例如,距离传感器组ZZ可以设置于在肿瘤治疗的过程中滚筒G内侧与患者的胯部相邻的位置上,或者,距离传感器组ZZ可以设置于在肿瘤治疗的过程中滚筒G内侧与患者的头部相邻的位置上,本申请实施例对距离传感器ZZ的设置位置不做具体限定。
可选的,每个距离传感器组ZZ包括的距离传感器5011可以均位于滚筒G的同一个横截面上,其中,该横截面与滚筒G的轴线m垂直。例如,如图11截面图所示,距离传感器组ZZ包括3个距离传感器5011,该3个距离传感器5011均位于滚筒G的同一个横截面J上,该横截面J与滚筒G的轴线m垂直。
可选的,在每个距离传感器组ZZ包括的距离传感器5011的数量为至少两个时,该每个距离传感器组ZZ包括的距离传感器5011可以沿该距离传感器组ZZ所在的横截面的周向等距排布。例如,请继续参考图11,如图11所示,该3个距离传感器5011中任意相邻的两个距离传感器5011在横截面J周向上的距离均相等,该距离为R。
通常情况下,每个距离传感器组ZZ设置至少3个距离传感器5011可以使 该距离传感器组ZZ能够在滚筒静止时对治疗空间内物体外表面上的各个方向上的点进行距离测量,从而使第一处理器5012能够在滚筒静止时获取治疗空间内物体的整体轮廓,从而提高放射治疗机防撞检测装置500防撞的可靠性。
因此,为了保证放射治疗机防撞检测装置500防撞的可靠性,在本申请实施例中,每个距离传感器组ZZ均可以设置有至少3个距离传感器5011,其中,为了节约部署成本,可选的,每个距离传感器组ZZ可以设置3个距离传感器5011。
如图12、图13和图14的横截面图所示,该横截面图与滚筒的轴线垂直,在距离传感器组ZZ设置3个距离传感器5011的情况下,每个距离传感器5011可以在滚筒静止时,从不同方向对治疗空间内物体的外表面上的多个点进行距离测量。
如图15的横截面图所示,该横截面图与滚筒的轴线垂直,将图12、图13和图14中该3个距离传感器5011测量的距离合并起来可以得到治疗空间内物体的外表面上的各个方向上的点与距离传感器5011之间的距离,这样,第一处理器5012就可以获取治疗空间内物体的外表面上各个方向的点的位置,继而就可以拟合得到治疗空间内物体的整体轮廓。
可选的,本申请实施例中的距离传感器5011可以为激光距离传感器。如图16的示意图所示,该激光距离传感器可以包括旋转底座2011以及设置在该旋转底座2011上的激光发射器2012和激光接收器2013。其中,激光发射器2012用于发射激光,激光接收器2013用于在激光发射器2012发射的激光经治疗空间内的物体外表面上的一点反射后接收该激光发射器2012发射的激光,激光距离传感器能够根据激光接收器2013接收激光和激光发射器2012发射激光之间的时间差获取该激光距离传感器与该治疗空间内的物体外表面上的一点的距离,旋转底座2011能够带动激光发射器2012和激光接收器2013旋转,从而使激光发射器2012能够向不同方向发射激光,使激光距离传感器能够在不同方向上测量治疗空间内的物体外表面上的点与该激光距离传感器之间的 距离。
可选的,触发组件503,具体用于:在治疗空间内的物体的轮廓上存在目标轮廓点时,使治疗空间内的运动物体保持静止,和/或,控制放射治疗机发出警报。
可选的,如图17所示,触发组件503可以包括相互连接的第二处理器5031和电机5032,其中,电机5032被配置为带动治疗空间内的运动物体进行运动。
需要指出的是,该第二处理器504和该第一处理器5012可以是相同的处理器,也可以是不同的处理器,本申请实施例对此不作具体限定。
在本申请实施例中,触发组件503进行防撞联锁可以包括以下两种可能的实现方式:
第一种、第二处理器5031在治疗空间内的物体轮廓上存在目标轮廓点,且电机5032处于工作状态时,将电机5032切换至非工作状态,从而控制治疗空间内的运动物体由运动状态进入静止状态。
第二种、第二处理器5031在治疗空间内的轮廓上存在目标轮廓点,且电机5032处于非工作状态时,禁止电机5032进入工作状态,也即是,禁止治疗空间内的运动物体进入运动状态,使治疗空间内的运动物体保持静止。
换句话说,在放射治疗机为滚筒式放射治疗机的情况下,当滚筒处于旋转状态时,若治疗空间内的物体轮廓上存在目标轮廓点,此时,第二处理器5031可以控制滚筒停止旋转;当滚筒处于静止状态时,若治疗空间内的物体轮廓上存在目标轮廓点,此时,第二处理器5031可以禁止滚筒进入旋转状态。
可选的,如图18的示意图所示,触发组件503可以包括相互连接的第二处理器5031和通信模块5033,该通信模块5033可以与第二处理器5031通过有线或无线的方式建立通信连接。
在这种情况下,触发组件503进行防撞联锁的方式可以为:
在治疗空间内的物体轮廓上存在目标轮廓点时,通过通信模块5033向预设终端发送警报。
其中,预设终端可以为放射治疗机外接的计算机,该通信模块5033可以基于蓝牙信号、WIFI(Wireless-Fidelity,无线保真)信号、红外信号或Zigbee(紫蜂)信号等向该预设终端发送警报,以使医护人员在观看到该警报后能够及时进行响应,从而避免出现患者的身体与治疗空间内的运动物体相撞的事故发生。
综上所述,本申请实施例提供的放射治疗机防撞检测装置,通过获取患者在放射治疗机的治疗空间内的轮廓,并在确定该轮廓上存在目标轮廓点时,触发防撞联锁,其中,该目标轮廓点与治疗空间内的运动物体的距离小于预设距离阈值,这样,在患者处于放射治疗机的治疗空间内时,本申请实施例提供的技术方案可以在该患者的轮廓上的任一点与治疗空间内的运动物体之间的距离小于预设距离阈值时进行防撞联锁,从而能够在患者与治疗空间内的运动物体相撞之前进行响应,因此,可以减小患者与治疗空间内的物体相撞给患者的安全带来的威胁。
本申请实施例还提供了一种放射治疗机,该放射治疗机可以包括上述实施例所提供的放射治疗机防撞检测装置500,可选的,在放射治疗机为滚筒式放射治疗机的情况下,该放射治疗机还可以包括滚筒、治疗头、治疗床和电机等,本申请实施例对其不再赘述。
下面,本申请实施例将以放射治疗机为滚筒式放射治疗机为例,对本申请实施例提供的放射治疗机防撞检测装置的使用方法进行简要说明,该使用方法可以包括滚筒静止时的使用方法和滚筒旋转时的使用方法:
滚筒静止时的使用方法:在滚筒静止时,医护人员可以启动该放射治疗机防撞检测装置,例如,医护人员可以通过触发放射治疗机上设置的某一按键的方式启动该放射治疗机防撞检测装置,或者,该放射治疗机防撞检测装置可以在滚筒由静止状态进入旋转状态时自动进行启动,在该放射治疗机防撞检测装置启动后,放射治疗机防撞检测装置中的距离传感器可以测量滚筒内的物体(可以为患者,或者,可以为患者和治疗床)外表面上的多个点与该距离传感 器之间的距离,而后,距离传感器可以将测得的距离传递至放射治疗机防撞检测装置的第一处理器中,第一处理器可以根据距离传感器测得的距离获取滚筒内的物体的轮廓,在该轮廓上存在目标轮廓点时,放射治疗机防撞检测装置可以进行防撞联锁,也即是,执行禁止电机进入工作状态的技术过程。
滚筒旋转时的使用方法:在滚筒旋转时,医护人员可以启动该放射治疗机防撞检测装置,例如,医护人员可以通过触发放射治疗机上设置的某一按键的方式启动该放射治疗机防撞检测装置,或者,该放射治疗机防撞检测装置可以在滚筒处于旋转状态时自动进行启动,在该放射治疗机防撞检测装置启动后,放射治疗机防撞检测装置中的距离传感器可以测量滚筒内的物体(可以为患者,或者,可以为患者和治疗床)外表面上的多个点与该距离传感器之间的距离,而后,距离传感器可以将测得的距离传递至放射治疗机防撞检测装置的第一处理器中,第一处理器可以根据距离传感器测得的距离获取滚筒内的物体的轮廓,在该轮廓上存在目标轮廓点时,放射治疗机防撞检测装置可以进行防撞联锁,也即是,执行控制电机由工作状态切换至非工作状态的技术过程。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (20)
- 一种放射治疗机防撞检测方法,其特征在于,所述放射治疗机具有容纳患者的治疗空间,所述方法包括:获取患者在所述治疗空间内的轮廓;确定所述轮廓上是否存在目标轮廓点,所述目标轮廓点与所述治疗空间内的运动物体的距离小于预设距离阈值;当所述轮廓上存在所述目标轮廓点时,触发防撞联锁。
- 根据权利要求1所述的方法,其特征在于,所述获取患者在所述治疗空间内的轮廓,包括:获取所述患者的外表面上的多个点与所述治疗空间的边界之间的距离;根据获取到的距离拟合得到所述轮廓。
- 根据权利要求1所述的方法,其特征在于,所述治疗空间还能够容纳治疗床,所述获取患者在所述治疗空间内的轮廓,包括:获取所述患者和所述治疗床在所述治疗空间内的轮廓。
- 根据权利要求1所述的方法,其特征在于,所述轮廓为所述患者的横截面轮廓。
- 根据权利要求1所述的方法,其特征在于,所述当所述轮廓上存在所述目标轮廓点时,触发防撞联锁,包括:当所述轮廓上存在所述目标轮廓点时,所述运动物体保持静止,和/或,所述放射治疗机发出警报。
- 根据权利要求1所述的方法,其特征在于,所述预设距离阈值实时可调。
- 一种放射治疗机防撞检测装置,其特征在于,所述放射治疗机具有容纳患者的治疗空间,所述装置包括:获取组件,用于获取患者在所述治疗空间内的轮廓;确定组件,用于确定所述轮廓上是否存在目标轮廓点,所述目标轮廓点与 所述治疗空间内的运动物体的距离小于预设距离阈值;触发组件,用于在所述轮廓上存在所述目标轮廓点时,触发防撞联锁。
- 根据权利要求7所述的装置,其特征在于,所述获取组件,具体用于:获取所述患者的外表面上的多个点与所述治疗空间的边界之间的距离;根据获取到的距离拟合得到所述轮廓。
- 根据权利要求7所述的装置,其特征在于,所述治疗空间还能够容纳治疗床,所述获取组件,具体用于:获取所述患者和所述治疗床在所述治疗空间内的轮廓。
- 根据权利要求7至9任一所述的装置,其特征在于,所述获取组件包括相互连接的距离传感器和第一处理器,所述距离传感器设置于所述治疗空间的边界上;所述距离传感器用于测量所述距离传感器与所述患者的外表面上的多个点之间的距离;所述第一处理器用于根据所述距离传感器测量到的距离获取所述患者的轮廓。
- 根据权利要求10所述的装置,其特征在于,所述放射治疗机包括滚筒;所述获取组件包括沿所述滚筒的轴向依次排布的至少一个距离传感器组,每个所述距离传感器组包括至少一个所述距离传感器。
- 根据权利要求11所述的装置,其特征在于,每个所述距离传感器组包括的距离传感器均位于所述滚筒的同一个横截面上,所述横截面垂直于所述滚筒的轴线。
- 根据权利要求12所述的装置,其特征在于,每个所述距离传感器组包括至少两个距离传感器,其中,所述至少两个距离传感器沿所述横截面的周向等距排布。
- 根据权利要求13所述的装置,其特征在于,每个所述距离传感器组包括3个所述距离传感器。
- 根据权利要求10至14任一所述的装置,其特征在于,所述距离传感器为激光距离传感器。
- 根据权利要求15所述的装置,其特征在于,所述距离传感器包括激光发射器、激光接收器和旋转底座,所述激光发射器和所述激光接收器设置于所述旋转底座上。
- 根据权利要求7所述的装置,其特征在于,所述触发组件,具体用于:当所述轮廓上存在所述目标轮廓点时,使所述运动物体保持静止,和/或,控制所述放射治疗机发出警报。
- 根据权利要求17所述的装置,其特征在于,所述触发组件包括相互连接的电机和第二处理器,所述电机被配置为带动所述运动物体进行运动;当所述轮廓上存在所述目标轮廓点,且所述电机处于工作状态时,所述第二处理器将所述电机切换至非工作状态,使所述运动物体保持静止;当所述轮廓上存在所述目标轮廓点,且所述电机处于非工作状态时,所述第二处理器禁止所述电机进入工作状态,使所述运动物体保持静止。
- 根据权利要求17所述的装置,其特征在于,所述触发组件包括相互连接的通信模块和第二处理器;当所述轮廓上存在所述目标轮廓点,所述第二处理器控制所述通信组件向预设终端发送警报。
- 一种放射治疗机,其特征在于,所述放射治疗机包括如权利要求7至19任一所述的放射治疗机防撞检测装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880058825.5A CN111065436A (zh) | 2018-08-01 | 2018-08-01 | 放射治疗机防撞检测方法、装置及放射治疗机 |
PCT/CN2018/098117 WO2020024177A1 (zh) | 2018-08-01 | 2018-08-01 | 放射治疗机防撞检测方法、装置及放射治疗机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/098117 WO2020024177A1 (zh) | 2018-08-01 | 2018-08-01 | 放射治疗机防撞检测方法、装置及放射治疗机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020024177A1 true WO2020024177A1 (zh) | 2020-02-06 |
Family
ID=69232290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/098117 WO2020024177A1 (zh) | 2018-08-01 | 2018-08-01 | 放射治疗机防撞检测方法、装置及放射治疗机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111065436A (zh) |
WO (1) | WO2020024177A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111529969A (zh) * | 2020-05-28 | 2020-08-14 | 西安大医集团股份有限公司 | 一种放疗设备的碰撞检测方法和装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114028737A (zh) * | 2021-10-29 | 2022-02-11 | 翰斯泰医疗科技(苏州)有限公司 | 一种放射治疗设备的防碰撞方法、装置、设备及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08332235A (ja) * | 1995-06-09 | 1996-12-17 | Mitsubishi Electric Corp | 放射線治療装置 |
CN1522667A (zh) * | 2003-09-04 | 2004-08-25 | 高春平 | 可重复定位脑立体定位系统 |
CN101947360A (zh) * | 2009-07-09 | 2011-01-19 | 西门子公司 | 具有防碰撞装置的医疗设备 |
CN102551888A (zh) * | 2010-12-09 | 2012-07-11 | 苏州生物医学工程技术研究所 | 一种用于医疗设备的两级防碰撞装置及其防碰撞方法 |
CN205055213U (zh) * | 2015-09-25 | 2016-03-02 | 上海联影医疗科技有限公司 | 一种防碰撞装置 |
CN108379750A (zh) * | 2018-04-13 | 2018-08-10 | 深圳市奥沃医学新技术发展有限公司 | 联锁控制方法、装置、系统及放射治疗设备 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004037859B4 (de) * | 2004-08-04 | 2007-05-16 | Siemens Ag | Medizinisches Gerät mit Einrichtung zur Kollisionvermeidung |
CN202143634U (zh) * | 2011-05-20 | 2012-02-15 | 上海西门子医疗器械有限公司 | 一种碰撞检测装置以及c形臂x射线机 |
CN202263308U (zh) * | 2011-09-21 | 2012-06-06 | 成都利尼科医学技术发展有限公司 | 医用直线加速器防碰撞装置 |
WO2015089699A1 (zh) * | 2013-12-16 | 2015-06-25 | Ge医疗系统环球技术有限公司 | 检测床防撞系统及防撞方法 |
US10299740B2 (en) * | 2015-09-29 | 2019-05-28 | General Electric Company | Methods and systems for cone-beam computed tomography |
CN205235194U (zh) * | 2015-11-25 | 2016-05-18 | 沈阳东软医疗系统有限公司 | 医用直线加速器 |
US9886534B2 (en) * | 2016-02-03 | 2018-02-06 | Varian Medical Systems, Inc. | System and method for collision avoidance in medical systems |
CN107469238B (zh) * | 2017-07-20 | 2019-11-22 | 山东新华医疗器械股份有限公司 | 医用电子直线加速器防碰系统及控制方法 |
CN107802966B (zh) * | 2017-11-20 | 2020-08-18 | 上海联影医疗科技有限公司 | 防碰撞检测方法及装置、放射治疗设备的防碰撞检测方法 |
-
2018
- 2018-08-01 CN CN201880058825.5A patent/CN111065436A/zh active Pending
- 2018-08-01 WO PCT/CN2018/098117 patent/WO2020024177A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08332235A (ja) * | 1995-06-09 | 1996-12-17 | Mitsubishi Electric Corp | 放射線治療装置 |
CN1522667A (zh) * | 2003-09-04 | 2004-08-25 | 高春平 | 可重复定位脑立体定位系统 |
CN101947360A (zh) * | 2009-07-09 | 2011-01-19 | 西门子公司 | 具有防碰撞装置的医疗设备 |
CN102551888A (zh) * | 2010-12-09 | 2012-07-11 | 苏州生物医学工程技术研究所 | 一种用于医疗设备的两级防碰撞装置及其防碰撞方法 |
CN205055213U (zh) * | 2015-09-25 | 2016-03-02 | 上海联影医疗科技有限公司 | 一种防碰撞装置 |
CN108379750A (zh) * | 2018-04-13 | 2018-08-10 | 深圳市奥沃医学新技术发展有限公司 | 联锁控制方法、装置、系统及放射治疗设备 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111529969A (zh) * | 2020-05-28 | 2020-08-14 | 西安大医集团股份有限公司 | 一种放疗设备的碰撞检测方法和装置 |
US20210369216A1 (en) * | 2020-05-28 | 2021-12-02 | Our United Corporation | Method and device for collision detection of radiotherapy equipment |
CN111529969B (zh) * | 2020-05-28 | 2022-07-29 | 西安大医集团股份有限公司 | 一种放疗设备的碰撞检测方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111065436A (zh) | 2020-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10806409B2 (en) | Medical systems with patient supports | |
US11179129B2 (en) | Systems and methods for planning and executing automated multi-axis motion in treatment | |
EP1683545B1 (en) | Ion beam therapy system and couch positioning method | |
EP2155039B1 (en) | Marker systems | |
US9557158B2 (en) | System and method for determining the position of objects in a radiation room for radiation therapy | |
JP2016528952A (ja) | 医療処置における物体と患者との衝突の可能性を検出するシステムおよび方法 | |
WO2020024177A1 (zh) | 放射治疗机防撞检测方法、装置及放射治疗机 | |
EP2821099B1 (en) | X-ray therapy system | |
EP1993668A2 (en) | Adaptive x-ray control | |
US11439848B2 (en) | Radiation irradiating system and moving object tracking system | |
KR101844515B1 (ko) | 이동형 의료기기 및 이동형 의료기기를 제어하기 위한 방법 | |
WO2014149478A1 (en) | Image processing of images that include marker images | |
US10463327B2 (en) | X-ray diagnostic apparatus, medical image diagnostic system and control method | |
KR101656488B1 (ko) | 정위적 방사선 치료장치의 충돌방지 시스템 | |
JP6043516B2 (ja) | X線装置及びx線撮像装置 | |
CN117396250A (zh) | 放射疗法系统中的患者标记和定位 | |
CN114616030B (zh) | 包括成像环的放射治疗设备 | |
US20230031538A1 (en) | Radiotherapy apparatus for delivering radiation to a subject | |
JP2010094421A (ja) | 粒子線治療装置、及び粒子線治療装置制御方法 | |
US11684804B2 (en) | Patient supports for medical treatments | |
CN221535472U (zh) | 一种直线加速器的碰撞检测装置 | |
CN114423495A (zh) | 放射疗法中的碰撞避免 | |
KR101675775B1 (ko) | 정위적 방사선 치료장치의 충돌방지 시스템 | |
EP4321210A1 (en) | Methods, systems and computer readable mediums for light field verification on a patient surface | |
CN118369139A (zh) | 使用非正交机载成像进行放射治疗的位置验证和校正 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18928717 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18928717 Country of ref document: EP Kind code of ref document: A1 |