WO2020022629A1 - 원전 방사화 구조물 제거 방법 - Google Patents

원전 방사화 구조물 제거 방법 Download PDF

Info

Publication number
WO2020022629A1
WO2020022629A1 PCT/KR2019/006131 KR2019006131W WO2020022629A1 WO 2020022629 A1 WO2020022629 A1 WO 2020022629A1 KR 2019006131 W KR2019006131 W KR 2019006131W WO 2020022629 A1 WO2020022629 A1 WO 2020022629A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling medium
drilling operation
drilling
nuclear power
radioactive
Prior art date
Application number
PCT/KR2019/006131
Other languages
English (en)
French (fr)
Inventor
정관성
박승국
함인혜
하재현
홍상범
서범경
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to US17/262,394 priority Critical patent/US11862355B2/en
Publication of WO2020022629A1 publication Critical patent/WO2020022629A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/32Apparatus for removing radioactive objects or materials from the reactor discharge area, e.g. to a storage place; Apparatus for handling radioactive objects or materials within a storage place or removing them therefrom
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/003Nuclear facilities decommissioning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention is directed to a method for removing a nuclear plant radioactive structure.
  • nuclear power abolition measures are taken.
  • the abolition measures for nuclear power plants should be carried out to reduce the risk of nuclear fuel material by exporting nuclear fuel, to perform decontamination work to reduce the radioactive contamination of the equipment system, and then to measure the exposure of workers and the amount of radioactive waste generated during full decommissioning work. After the safe storage period to reduce, it proceeds to the internal dismantling, nuclear dismantling and demolition work.
  • the nuclear reactor is equipped with a variety of nuclear plant radiation structure.
  • the nuclear plant radioactive structure refers to a structure that is radiated, that is, radioactive by absorbing neutrons in the structure of the waste structure generated during the dismantling of the nuclear reactor after the operation is completed.
  • nuclear radiation structures such as neutron induction tubes, or beam ports that allow other types of devices to be connected to the reactor for measurement or testing, are embedded in the horizontal direction of the reactor.
  • the dismantling period is prolonged and the dismantling cost is high.
  • Embodiments of the present invention are to provide a method for removing a nuclear radiation structure to reduce the dismantling period and the dismantling cost by easily dismantling the nuclear plant radioactive structure from the reactor.
  • FIG. 1 is a flow chart showing a method for removing a nuclear plant radioactive structure according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a step of performing a second drilling operation in the method for removing a nuclear plant radioactive structure of FIG. 1.
  • FIG. 3 is a diagram schematically illustrating a state in which a first drilling device is installed in a nuclear reactor in which a nuclear power radioactive structure is embedded.
  • FIG. 4 is a diagram schematically illustrating a state in which a second drilling device is installed in a nuclear reactor in which a nuclear power radioactive structure is embedded.
  • the nuclear power plant radioactive structure 2 embedded in the reactor 1 is first removed before disassembly of the reactor 1.
  • a method provided for this purpose the periphery of the wall surface of the reactor (1) comprising a buried portion (1a) in which the nuclear power radioactive structure (2) is embedded and a peripheral portion (1b) provided on the outer side of the buried portion (1a) Step (S100) of making at least a portion of (1b) flat, installing the punching device (3, 4) for the flattened peripheral portion (1b) to perform a drilling operation (S200), nuclear power plant from the buried portion (1a) Withdrawing the radioactive structure 2 (S300) and cutting the drawn nuclear power plant radioactive structure 2 may be stored in a shielded container (S400).
  • At least a part of the periphery 1b of the wall of the reactor 1 is mortar so that the drilling devices 3 and 4 which perform the drilling operation on the wall of the reactor 1 can be stably installed on the wall of the reactor 1. It is filled with (mortar).
  • the outer surface of the periphery 1b is flattened, so that the perforation devices 3 and 4 can be firmly installed on the outer surface of the flattened periphery 1b, and the perforation work is performed on the periphery 1b without shaking. Can be performed.
  • scattering prevention means for example, a temporary storage tent, is closely attached to the outer surface of the peripheral portion 1b so as to surround the drilling apparatuses 3 and 4 on the outside of the drilling apparatuses 3 and 4.
  • scattering prevention means for example, a temporary storage tent
  • the step of performing the first drilling operation using the first drilling device 3 is performed (S210). And performing a second drilling operation using the second drilling device 4 (S220).
  • the peripheral portion (1) in order to withdraw the nuclear power plant radioactive structure 2 from the buried portion (1a)
  • the initial drilling position at which 1b) should be drilled is set.
  • the periphery 1b is drilled through the first drilling device 3 and the second drilling device 4 so as to smoothly withdraw the nuclear power plant radioactive structure 2 from the buried portion 1a. It is to weaken the structural strength of.
  • the first drilling device 3 has a state in which the first drilling device 3 has a horizontal state with respect to the nuclear power radiation structure 2 based on the angle at which the nuclear power plant radioactive structure 2 is embedded in the buried portion 1a. 3) is installed in the peripheral portion 1b.
  • the primary drilling operation includes a dry drilling operation
  • the first drilling apparatus 3 may be a dry drilling apparatus, for example, a dry core drill.
  • the reason why the first drilling operation is first performed by the dry drilling operation will be described briefly.
  • frictional heat generated between the first core bit 3a and the peripheral portion 1b mounted on the first drilling apparatus 3 is described.
  • the primary drilling work on the periphery 1b is carried out by a wet drilling operation using a cooling medium to cool down, since the periphery 1b is made of concrete, dust generated during the drilling process and a cooling medium, for example, This is because the surroundings are contaminated by sludge generated by mixing cooling water and concrete.
  • the first drilling device 3 equipped with the first core bit 3a is driven until the peripheral portion 1b is drilled to a predetermined thickness, for example, about 50 mm deep.
  • the end surface adjacent to the outer surface of the peripheral portion 1b of both ends of the first core bit 3a has the first protrusion 3a 'protruding along the circumferential direction of the first core bit 3a.
  • the peripheral portion 1b corresponding to the radially outer side of the nuclear power radioactive structure 2 may be perforated in a donut shape.
  • the case where the first punching thickness of the first punching device 3 with respect to the peripheral portion 1b is set to about 50 mm has been described as an example, but this is merely an example, and thus the spirit of the present invention. This is not a limitation. If necessary, the primary drilling thickness of the first drilling device 3 with respect to the peripheral portion 1b is not set in advance, but the degree to which the nuclear power plant radioactive structure 2 is embedded in the embedding portion 1a, the primary Depending on the drilling operation situation or the like, the primary drilling thickness of the first drilling device 3 with respect to the peripheral portion 1b may be flexibly changed.
  • the secondary drilling operation is performed on the first perforated peripheral portion 1b by using the second drilling device (4).
  • the second drilling device 4 so that the second drilling device 4 has a horizontal state with respect to the nuclear power radiation structure 2 on the basis of the angle of the nuclear power plant radioactive structure 2 embedded in the embedding portion (1a). ) Is installed in the peripheral portion 1b.
  • the secondary drilling operation is a substantial drilling operation in which the periphery 1b corresponding to the radially outer side of the nuclear power plant radioactive structure 2 is drilled in order to smoothly withdraw the nuclear power plant radioactive structure 2 from the buried portion 1a.
  • the depth at which the peripheral portion 1b is drilled through the secondary drilling operation may be greater than the depth at which the peripheral portion 1b is drilled through the primary drilling operation.
  • the second core bit 4a is mounted on the second drilling device 4.
  • the length b of the second core bit 4a mounted on the second boring device 4 is equal to the length of the first core bit 3a mounted on the first boring device 3 in the second step S200. It may be longer than length a.
  • the second core bit 4a mounted on the second drilling device 4 may have a length b corresponding to the length of the nuclear power radiating structure 2 embedded in the embedding portion 1a. .
  • the second drilling device 4 equipped with the second core bit 4a is driven until the peripheral portion 1b is drilled to a predetermined thickness.
  • the end surface adjacent to the outer surface of the peripheral portion 1b of both ends of the second core bit 4a has a second protrusion 4a 'protruding along the circumferential direction of the second core bit 4a.
  • the peripheral portion 1b corresponding to the radially outer side of the nuclear power radioactive structure 2 may be perforated in a donut shape.
  • the operator checks in real time the horizontal state of the second core bit (4a) inserted into the peripheral portion (1b) in real time, and then the expected buried structure according to the depth drilled through the second core bit (4a), for example, rebar, It predicts the position of the pipe, the H beam support, etc. in real time, and performs the second drilling work while checking the jamming of the second core bit 4a, the loosening and jamming of the sludge, and the smoothness of supply of the cooling medium. do.
  • the secondary drilling operation includes a wet drilling operation, and the second drilling apparatus 4 may be a wet drilling apparatus using a cooling medium, for example, a wet core drill.
  • a cooling medium for example, a wet core drill.
  • the secondary drilling operation by the second drilling device 4 is provided to cool the frictional heat generated by the friction between the second core bit 4a and the peripheral portion 1b of the second drilling device 4. It may cause a problem that the surroundings are contaminated by sludge or dust generated by mixing the cooling medium, for example, cooling water and concrete.
  • a cooling medium used for the secondary drilling operation for example, cooling water is recovered, dust or sludge is separated from the recovered cooling medium, and a cooling medium from which dust or sludge is separated It is purified and can be re-supplied to the cooling medium recovery means 5 to be reused as the cooling medium of the second drilling device 4.
  • the secondary drilling operation is performed by the cooling medium recovery means 5 provided in close contact with the peripheral portion 1b so as to surround the second core bit 4a of the second drilling apparatus 4 from the outside.
  • the cooling medium used for is recovered (S221).
  • the cooling medium recovered through the drainage hole (not shown) provided at the lower end of the cooling medium recovery means 5 is drained from the cooling medium recovery means 5 and transferred to the first water collecting tank 6 (S222).
  • dust or sludge contained in the cooling medium is deposited in the lower portion of the first water collecting tank 6 while the cooling medium transferred to the first water collecting tank 6 stays in the first water collecting tank 6 for a predetermined time. At least a part of the dust or sludge included in the cooling medium may be separated from the cooling medium (S223), and the cooling medium from which at least a part of the dust or sludge included in the cooling medium is removed is transferred to the second water collecting tank (S224). .
  • the cooling medium transferred to the second water collecting tank 7 may remain in the second water collecting tank 7 for a predetermined time, and dust or sludge remaining in the cooling medium may be separated from the cooling medium (S225).
  • the cooling medium in which the dust or sludge is separated is purified (S226), and the purified cooling medium is pumped by the pump 8 to be transferred to the cooling medium storage tank 9, and then the cooling medium recovery means (if necessary) 5) can be re-supplied and used again as a cooling medium of the second drilling device 4 (S227).
  • the flow rate of the cooling medium storage tank 9 in which the cooling medium to be supplied to the second drilling device 4 is stored is checked in real time so that the cooling medium is smoothly supplied to the peripheral portion 1b during the second drilling operation.
  • the color, temperature, and the like of the cooling medium collected in the first and second collection tanks 6 and 7 can be checked in real time, so that the drilling operation can be performed well by the second drilling device 4 without problems. It may be determined whether or not it is being performed.
  • shielding equipment such as lead glass is installed in the direction in which the nuclear power plant radioactive structure 2 is drawn out from the reactor 1, and cutting devices such as a band saw and a band saw equipment are installed.
  • a shielding container for accommodating the cut nuclear power plant radioactive structure 2 is located inside the shielding facility.
  • the nuclear power radioactive structure 2 When the shielding container for receiving the nuclear power radioactive structure 2 is positioned inside the shielding facility, the nuclear power radioactive structure 2 is buried through the hole formed in the peripheral portion 1b through the primary and secondary drilling. May be withdrawn from 1a). When the withdrawal of the nuclear power plant radioactive structure 2 from the buried portion 1a is completed, the nuclear power plant radioactive structure 2 withdrawn from the embedded portion 1a is seated on the work bench and fixed to the work bench. Next, the concrete remaining around the nuclear power plant radioactive structure 2 is broken and removed by a breaker or the like before the nuclear power plant radioactive structure 2 is cut.
  • One of the ends of the extracted nuclear power plant radioactive structure 2 having a relatively high degree of radiation i.e., an end embedded in the reactor 1, is cut using a cutting device.
  • the cut nuclear power plant radioactive structure 2 is remotely controlled to be received in the shield container and the shield container is closed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

본 발명은 원전 방사화 구조물 제거 방법에 관한 것이다. 구체적으로 본 발명의 일 실시예에 따르면, 원전 방사화 구조물이 매설된 매설부 및 매설부의 둘레방향 외측에 구비되는 주변부를 포함하는 원자로의 벽면 중 주변부의 적어도 일부를 평평하게 만드는 단계; 평평해진 주변부에 천공 장치를 설치하여 천공 작업을 수행하는 단계; 매설부로부터 원전 방사화 구조물을 인출하는 단계; 및 인출된 원전 방사화 구조물을 절단한 후 차폐 용기에 보관하는 단계를 포함하는, 원전 방사화 구조물 제거 방법이 제공될 수 있다.

Description

원전 방사화 구조물 제거 방법
본 발명은 원전 방사화 구조물 제거 방법에 대한 발명이다.
일반적으로, 원자력 발전소 등의 원자로에서는 운전이 종료되면 원전 폐지 조치가 취해진다.
이때, 원전 폐지 조치는 핵연료를 반출하여 핵연료물질에 의한 위험성을 저감시킨 후, 기기계통의 방사능 오염도를 낮추기 위한 제염 작업을 수행한 다음, 본격적인 해체 작업 실시 시의 작업원 피폭량 및 방사성 폐기물의 발생량을 저감시키기 위한 안전 저장 기간을 거친 후, 원전 내부 해체 작업, 원전 외부 해체 작업 및 철거 작업으로 진행된다.
한편, 원자로에는 다양한 원전 방사화 구조물이 구비된다. 여기서, 원전 방사화 구조물이란 운전이 종료된 원자로의 해체 시 발생하는 폐기 구조물 중 구조물에 중성자가 흡수됨으로써 방사화된, 즉, 방사능을 띄는 구조물을 의미한다.
특히, 중성자 유도관이나 측정 또는 시험 등을 위하여 다른 여러 종류의 장치가 원자로와 연결되도록 하는 빔포트(beam port)와 같은 원전 방사화 구조물은 원자로의 수평방향으로 매설되어 있기 때문에, 원자로로부터 빔포트를 해체하기 위해서는 고난이도의 기술이 요구됨에 따라, 해체 기간이 장기화되고 해체 비용이 높아지는 문제점이 있다.
본 발명의 실시예들은 원자로로부터 원전 방사화 구조물을 용이하게 해체하여 해체 기간 및 해체 비용을 줄일 수 있는 원전 방사화 구조물 제거 방법을 제공하고자 한다.
본 발명의 일 측면에 따르면, 원전 방사화 구조물이 매설된 매설부 및 상기 매설부의 둘레방향 외측에 구비되는 주변부를 포함하는 원자로의 벽면 중 상기 주변부의 적어도 일부를 평평하게 만드는 단계; 평평해진 상기 주변부에 천공 장치를 설치하여 천공 작업을 수행하는 단계; 상기 매설부로부터 상기 원전 방사화 구조물을 인출하는 단계; 및 인출된 상기 원전 방사화 구조물을 절단한 후 차폐 용기에 보관하는 단계를 포함하는, 원전 방사화 구조물 제거 방법이 제공될 수 있다.
본 발명의 실시예들에 따르면, 원자로로부터 원전 방사화 구조물을 용이하게 해체하여 해체 기간 및 해체 비용을 줄일 수 있다는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 원전 방사화 구조물 제거 방법을 나타내는 순서도이다.
도 2는 도 1의 원전 방사화 구조물 제거 방법에서 2차 천공 작업을 수행하는 단계를 나타내는 순서도이다.
도 3은 원전 방사화 구조물이 매립된 원자로에 제 1 천공 장치가 설치된 상태를 개략적으로 나타내는 도면이다.
도 4는 원전 방사화 구조물이 매립된 원자로에 제 2 천공 장치가 설치된 상태를 개략적으로 나타내는 도면이다.
이하에서는 본 발명의 사상을 구현하기 위한 구체적인 실시예에 대하여 도면을 참조하여 상세히 설명하도록 한다.
아울러 본 발명을 설명함에 있어서 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
본 명세서에서 사용된 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로 본 발명을 한정하려는 의도로 사용된 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다.
이하에서는, 도면을 참조하여 본 발명의 일 실시예에 따른 원전 방사화 구조물 제거 방법에 대하여 설명하겠다.
도 1 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 원전 방사화 구조물 제거 방법은, 원자로(1)의 해체 이전에 원자로(1)에 매설된 원전 방사화 구조물(2)을 먼저 제거하기 위해 제공되는 방법으로서, 원전 방사화 구조물(2)이 매설된 매설부(1a) 및 매설부(1a)의 둘레방향 외측에 구비되는 주변부(1b)를 포함하는 원자로(1)의 벽면 중 주변부(1b)의 적어도 일부를 평평하게 만드는 단계(S100), 평평해진 주변부(1b)에 대하여 천공 장치(3, 4)를 설치하여 천공 작업을 수행하는 단계(S200), 매설부(1a)로부터 원전 방사화 구조물(2)을 인출하는 단계(S300) 및 인출된 원전 방사화 구조물(2)을 절단한 후 차폐 용기에 보관하는 단계(S400)를 포함할 수 있다.
이하에서는, 본 발명의 일 실시예에 따른 원전 방사화 구조물(2) 제거 방법을 각 단계별로 구분하여 설명하겠다.
주변부(1b)의 적어도 일부를 평평하게 만드는 단계(S100)
원자로(1)의 벽면에 대하여 천공 작업을 수행하는 천공 장치(3, 4)가 원자로(1)의 벽면에 안정적으로 설치될 수 있도록 원자로(1)의 벽면 중 주변부(1b)의 적어도 일부가 모르타르(mortar)로 메워진다. 이 과정에서 주변부(1b)의 외측면이 평평해짐으로써, 천공 장치(3, 4)가 평평해진 주변부(1b)의 외측면에 견고하게 설치될 수 있고, 흔들림 없이 주변부(1b)에 대하여 천공 작업을 수행할 수 있다.
평평해진 주변부(1b)에 대하여 천공 장치(3, 4)를 설치하여 천공 작업을 수행하는 단계(S200)
먼저, 천공 장치(3, 4)의 외측에서 천공 장치(3, 4)를 둘러싸도록 주변부(1b)의 외측면에 비산 방지 수단, 예컨대, 임시 격납 텐트가 밀착 설치된다. 이에, 후속 진행되는 천공 작업에서 발생하는 분진, 슬러지 등이 비산되는 것이 비산 방지 수단에 의해 방지된다.
한편, 평평해진 주변부(1b)에 대하여 천공 장치(3, 4)를 설치하여 천공 작업을 수행하는 단계(S200)는, 제 1 천공 장치(3)를 이용하는 1차 천공 작업을 수행하는 단계(S210) 및 제 2 천공 장치(4)를 이용하는 2차 천공 작업을 수행하는 단계(S220)를 포함한다.
1차 천공 작업을 수행하는 단계(S210)에 대하여 설명하면, 주변부(1b)에 대한 비산 방지 수단의 설치가 완료되면, 매설부(1a)로부터 원전 방사화 구조물(2)이 인출되기 위해 주변부(1b)가 천공되어야 하는 초기 천공 위치가 설정된다. 다시 말해, 매설부(1a)로부터 원전 방사화 구조물(2)이 원활하게 인출되기 위해 제 1 천공 장치(3) 및 제 2 천공 장치(4)를 통해 주변부(1b)를 천공하여 주변부(1b)의 구조적 강도를 약화시키는 것이다.
이를 위해, 원전 방사화 구조물(2)이 매설부(1a)에 매설된 각도에 기초하여 제 1 천공 장치(3)가 원전 방사화 구조물(2)에 대하여 수평한 상태를 갖도록 제 1 천공 장치(3)가 주변부(1b)에 설치된다.
이때, 1차 천공 작업은 건식 천공 작업을 포함하고, 제 1 천공 장치(3)는 건식 천공 장치, 예컨대, 건식 코어 드릴일 수 있다. 1차 천공 작업을 건식 천공 작업으로 먼저 진행하는 이유에 대하여 간략히 설명하면, 천공 작업에서 제 1 천공 장치(3)에 장착된 제 1 코어 비트(3a)와 주변부(1b) 사이에 발생되는 마찰열을 냉각시키는 냉각 매체를 사용하는 습식 천공 작업으로 주변부(1b)에 대한 1차 천공 작업이 진행되는 경우, 주변부(1b)가 콘크리트로 이루어지기 때문에, 천공 과정에서 발생되는 분진과, 냉각 매체, 예컨대, 냉각수, 콘크리트 등이 혼합되어 생성되는 슬러지에 의해 주변이 오염되는 문제가 있기 때문이다.
한편, 제 1 코어 비트(3a)가 장착된 제 1 천공 장치(3)는 주변부(1b)가 기 설정된 두께, 예컨대, 약 50mm 깊이로 천공될 때까지 구동된다. 이때, 제 1 코어 비트(3a)의 양 단부 중 주변부(1b)의 외측면과 인접하는 단부면은 제 1 코어 비트(3a)의 둘레방향을 따라 돌출된 제 1 돌출부(3a')를 가지므로, 원전 방사화 구조물(2)의 반경 방향 외측에 해당하는 주변부(1b)가 일 예로 도넛 형상으로 천공될 수 있다.
본 실시예에서는 주변부(1b)에 대한 제 1 천공 장치(3)의 1차 천공 두께가 약 50mm로 기 설정되는 경우를 일 예로 들어 설명하였으나, 이는 일 예에 불과하고, 이로 인해 본 발명의 사상이 제한되는 것은 아니다. 필요에 따라서는, 주변부(1b)에 대한 제 1 천공 장치(3)의 1차 천공 두께가 기 설정되는 것이 아니라, 원전 방사화 구조물(2)이 매설부(1a)에 매설된 정도, 1차 천공 작업 상황 등에 따라 주변부(1b)에 대한 제 1 천공 장치(3)의 1차 천공 두께는 유연하게 변경될 수도 있다.
2차 천공 작업을 수행하는 단계(S220)에 대하여 설명하면, 1차 천공된 주변부(1b)에 대하여 제 2 천공 장치(4)를 이용하여 2차 천공 작업을 수행한다. 이때, 원전 방사화 구조물(2)이 매설부(1a)에 매설된 각도에 기초하여 제 2 천공 장치(4)가 원전 방사화 구조물(2)에 대하여 수평한 상태를 갖도록 제 2 천공 장치(4)가 주변부(1b)에 설치된다.
이때, 2차 천공 작업은 매설부(1a)로부터 원전 방사화 구조물(2)이 원활하게 인출되기 위해 원전 방사화 구조물(2)의 반경 방향 외측에 해당하는 주변부(1b)가 천공되는 실질적인 천공 작업으로서, 2차 천공 작업을 통해 주변부(1b)가 천공되는 깊이는 1차 천공 작업을 통해 주변부(1b)가 천공되는 깊이보다 클 수 있다.
2차 천공 작업에 대하여 살펴보면, 제 2 코어 비트(4a)가 제 2 천공 장치(4)에 장착된다. 이때, 제 2 천공 장치(4)에 장착되는 제 2 코어 비트(4a)의 길이(b)는 제 2 단계(S200)에서 제 1 천공 장치(3)에 장착되는 제 1 코어 비트(3a)의 길이(a)보다 길 수 있다. 예를 들어, 제 2 천공 장치(4)에 장착되는 제 2 코어 비트(4a)는 매설부(1a)에 매설된 원전 방사화 구조물(2)의 길이에 대응되는 길이(b)를 가질 수 있다.
이때, 제 2 코어 비트(4a)가 장착된 제 2 천공 장치(4)는 주변부(1b)가 기 설정된 두께로 천공될 때까지 구동된다. 이때, 제 2 코어 비트(4a)의 양 단부 중 주변부(1b)의 외측면과 인접하는 단부면은 제 2 코어 비트(4a)의 둘레방향을 따라 돌출된 제 2 돌출부(4a')를 가지므로, 원전 방사화 구조물(2)의 반경 방향 외측에 해당하는 주변부(1b)가 일 예로 도넛 형상으로 천공될 수 있다.
한편, 작업자는 주변부(1b)에 삽입된 제 2 코어 비트(4a)의 수평 상태 등을 실시간으로 확인한 다음, 제 2 코어 비트(4a)를 통해 천공된 깊이에 따른 예상 매립 구조물, 예컨대, 철근, 파이프, H빔 서포트 등의 위치를 실시간으로 예상하고, 제 2 코어 비트(4a)의 걸림 현상, 슬러지의 이완 및 걸림 현상, 냉각 매체의 공급 원활성 등을 실시간으로 확인하면서 2차 천공 작업을 진행한다.
2차 천공 작업은 습식 천공 작업을 포함하고, 제 2 천공 장치(4)는 냉각 매체를 이용하는 습식 천공 장치, 예컨대, 습식 코어 드릴일 수 있다. 그런데, 제 2 천공 장치(4)에 의한 2차 천공 작업은 제 2 천공 장치(4)의 제 2 코어 비트(4a)와 주변부(1b) 사이의 마찰에 의해 발생되는 마찰열을 냉각시키기 위해 제공되는 냉각 매체, 예컨대, 냉각수와 콘크리트 등이 혼합되어 생성되는 슬러지 또는 분진에 의해 주변이 오염되는 문제를 유발할 수 있다.
이에 따라, 본 발명의 일 실시예에 따르면, 2차 천공 작업에 사용되는 냉각 매체, 예컨대, 냉각수가 회수되고, 회수된 냉각 매체로부터 분진 또는 슬러지가 분리되며, 분진 또는 슬러지가 분리된 냉각 매체가 정수되어 냉각 매체 회수 수단(5)으로 재 공급됨으로써 제 2 천공 장치(4)의 냉각 매체로서 재 사용될 수 있다.
이러한 과정에 대하여 구체적으로 설명하면, 제 2 천공 장치(4)의 제 2 코어 비트(4a)를 외측에서 둘러싸도록 주변부(1b)에 밀착 설치되는 냉각 매체 회수 수단(5)에 의해 2차 천공 작업에 사용된 냉각 매체가 회수된다(S221). 이어서, 냉각 매체 회수 수단(5)의 하단에 구비된 배수홀(미도시)을 통해 회수된 냉각 매체가 냉각 매체 회수 수단(5)으로부터 배수되어 제 1 집수조(6)로 이송된다(S222).
다음으로, 제 1 집수조(6)로 이송된 냉각 매체가 제 1 집수조(6)에 소정 시간 동안 머무르는 과정에서 냉각 매체에 포함된 분진 또는 슬러지가 제 1 집수조(6)의 하부에 침전되어 냉각 매체에 포함된 분진 또는 슬러지의 적어도 일부가 냉각 매체로부터 분리될 수 있고(S223), 냉각 매체에 포함된 분진 또는 슬러지의 적어도 일부가 제거된 냉각 매체가 제 2 집수조(7)로 이송된다(S224).
제 2 집수조(7)로 이송된 냉각 매체는 제 2 집수조(7)에 소정 시간 동안 머무르면서 냉각 매체에 잔존된 분진 또는 슬러지가 냉각 매체로부터 분리될 수 있다(S225). 다음으로, 분진 또는 슬러지가 분리된 냉각 매체를 정수한 다음(S226), 정수된 냉각 매체가 펌프(8)에 의해 펌핑되어 냉각 매체 저장 탱크(9)로 이송되었다가 필요 시 냉각 매체 회수 수단(5)으로 재 공급되어 제 2 천공 장치(4)의 냉각 매체로서 재 사용될 수 있다(S227).
이때, 제 2 천공 장치(4)로 공급되기 위한 냉각 매체가 저장되는 냉각 매체 저장 탱크(9)의 유량이 실시간으로 체크되어 2차 천공 작업 과정에서 냉각 매체가 주변부(1b)에 원활하게 공급되는지 여부가 파악될 수 있으며, 제 1 집수조(6) 및 제 2 집수조(7)에 집수된 냉각 매체의 색, 온도 등이 실시간으로 체크되어 제 2 천공 장치(4)에 의해 천공 작업이 문제 없이 잘 수행되고 있는지 여부가 파악될 수 있다.
한편, 2차 천공 작업 도중 원자로(1) 라이너 내부에 있는 콜타르가 인출되면 즉시 천공 작업이 중단되고, 후속하여 매설부(1a)로부터 인출될 원전 방사화 구조물(2)을 안착시키기 위한 작업대가 설치된다.
이때, 원전 방사화 구조물(2)이 원자로(1)로부터 인출되는 방향에는 납 유리와 같은 차폐 설비가 설치되고, 띠 톱, 밴드 톱 장비 등의 절단 장치가 설치된다. 또한, 절단된 원전 방사화 구조물(2)이 수용되기 위한 차폐 용기가 차폐 설비 내부에 위치된다.
매설부(1a)로부터 원전 방사화 구조물(2)을 인출하는 단계(S300)
원전 방사화 구조물(2)이 수용되기 위한 차폐 용기가 차폐 설비의 내부에 위치되면, 1차 및 2차 천공을 통해 주변부(1b)에 형성된 구멍을 통해 원전 방사화 구조물(2)이 매설부(1a)로부터 인출될 수 있다. 매설부(1a)로부터 원전 방사화 구조물(2)의 인출이 완료되면, 매설부(1a)로부터 인출된 원전 방사화 구조물(2)이 작업대 상에 안착되고, 작업대에 고정된다. 다음으로, 원전 방사화 구조물(2)이 절단되기 이전에 원전 방사화 구조물(2)의 둘레에 잔존하는 콘크리트가 브레이커 등에 의해 깨어져 제거된다.
인출된 원전 방사화 구조물(2)을 절단한 후 차폐 용기에 보관하는 단계(S400)
인출된 원전 방사화 구조물(2)의 양 단부 중 방사화된 정도가 상대적으로 큰 단부, 즉, 원자로(1) 내측에 매립되어 있던 단부를 절단 장치를 이용하여 절단한다.
원전 방사화 구조물(2)의 절단이 완료되면, 절단된 원전 방사화 구조물(2)이 원격 조정되어 차폐 용기에 수용되고 차폐 용기가 폐쇄된다.
상술한 바와 같은 본 실시예에 따른 원전 방사화 구조물 제거 방법에 따르면, 원자로로부터 원전 방사화 구조물을 용이하게 해체하여 해체 기간 및 해체 비용을 줄일 수 있다는 효과가 있다.
이상 본 발명의 실시예들을 구체적인 실시 형태로서 설명하였으나, 이는 예시에 불과한 것으로서, 본 발명은 이에 한정되지 않는 것이며, 본 명세서에 개시된 기초 사상에 따르는 최광의 범위를 갖는 것으로 해석되어야 한다. 당업자는 개시된 실시형태들을 조합/치환하여 적시되지 않은 형상의 패턴을 실시할 수 있으나, 이 역시 본 발명의 범위를 벗어나지 않는 것이다. 이외에도 당업자는 본 명세서에 기초하여 개시된 실시형태를 용이하게 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 권리범위에 속함은 명백하다.

Claims (9)

  1. 원전 방사화 구조물이 매설된 매설부 및 상기 매설부의 둘레방향 외측에 구비되는 주변부를 포함하는 원자로의 벽면 중 상기 주변부의 적어도 일부를 평평하게 만드는 단계;
    평평해진 상기 주변부에 천공 장치를 설치하여 천공 작업을 수행하는 단계;
    상기 매설부로부터 상기 원전 방사화 구조물을 인출하는 단계; 및
    인출된 상기 원전 방사화 구조물을 절단한 후 차폐 용기에 보관하는 단계를 포함하고,
    상기 천공 작업을 수행하는 단계는,
    제 1 천공 장치를 이용하여, 건식 천공 작업을 포함하는 1차 천공 작업을 수행하는 단계; 및
    제 2 천공 장치를 이용하여, 습식 천공 작업을 포함하는 2차 천공 작업을 수행하는 단계를 포함하고,
    상기 2차 천공 작업을 수행하는 단계는,
    상기 습식 천공 작업에 사용된 냉각 매체가 냉각 매체 회수 수단에 의해 회수되는 단계;
    상기 냉각 매체 회수 수단에 회수된 상기 냉각 매체가 상기 냉각 매체 회수 수단으로부터 제 1 집수조로 이송되는 단계;
    상기 냉각 매체에 포함된 분진 또는 슬러지가 상기 제 1 집수조의 하부에 침전되어 상기 냉각 매체에 포함된 상기 분진 또는 상기 슬러지의 적어도 일부가 상기 냉각 매체로부터 분리되는 단계;
    상기 분진 또는 상기 슬러지가 분리된 상기 냉각 매체를 정수하는 단계; 및
    정수된 상기 냉각 매체를 상기 냉각 매체 회수 수단에 재 공급하여 상기 제 2 천공 장치의 상기 냉각 매체로서 재 사용하는 단계를 포함하는,
    원전 방사화 구조물 제거 방법.
  2. 제 1 항에 있어서,
    상기 2차 천공 작업을 수행하는 단계는,
    상기 제 1 집수조에 집수된 상기 냉각 매체가 제 2 집수조로 이송되는 단계; 및
    상기 냉각 매체에 포함된 분진 또는 슬러지가 상기 제 2 집수조의 하부에 침전되어 상기 냉각 매체에 잔존하는 상기 분진 또는 상기 슬러지가 상기 냉각 매체로부터 분리되는 단계를 포함하는,
    원전 방사화 구조물 제거 방법.
  3. 제 2 항에 있어서,
    상기 2차 천공 작업을 수행하는 단계에서,
    상기 냉각 매체는, 상기 제 2 천공 장치의 제 2 코어 비트의 외측에서 상기 제 2 코어 비트의 둘레를 둘러싸도록 상기 주변부에 밀착 설치된 상기 냉각 매체 회수 수단에 회수되어 상기 2차 천공 작업에서 발생하는 마찰열을 냉각시키는,
    원전 방사화 구조물 제거 방법.
  4. 제 1 항에 있어서,
    상기 주변부의 적어도 일부를 평평하게 만드는 단계는,
    상기 천공 장치의 외측에서 상기 천공 장치를 둘러싸도록 상기 주변부에 비산 방지 수단을 밀착 설치하는 단계를 포함하는,
    원전 방사화 구조물 제거 방법.
  5. 제 1 항에 있어서,
    상기 천공 작업을 수행하는 단계는,
    상기 원전 방사화 구조물이 상기 매설부에 매설된 각도에 기초하여 상기 천공 장치의 코어 비트가 상기 원전 방사화 구조물에 대하여 수평한 상태를 갖도록 상기 천공 장치를 상기 주변부에 설치하는 단계; 및
    상기 주변부가 기 설정된 깊이로 천공되도록 상기 천공 장치를 구동시키는 단계를 포함하는,
    원전 방사화 구조물 제거 방법.
  6. 제 1 항에 있어서,
    상기 2차 천공 작업에 의해 상기 주변부가 천공되는 깊이는 상기 1차 천공 작업에 의해 상기 주변부가 천공되는 깊이보다 큰,
    원전 방사화 구조물 제거 방법.
  7. 제 1 항에 있어서,
    상기 2차 천공 작업에서 상기 제 2 천공 장치에 장착되는 제 2 코어 비트의 길이는 상기 1차 천공 작업에서 상기 제 1 천공 장치에 장착되는 제 1 코어 비트의 길이보다 긴,
    원전 방사화 구조물 제거 방법.
  8. 제 7 항에 있어서,
    상기 2차 천공 작업에서 상기 제 2 천공 장치에 장착되는 상기 제 2 코어 비트는 상기 매설부에 매설된 상기 원전 방사화 구조물의 길이에 대응되는 길이를 갖는,
    원전 방사화 구조물 제거 방법.
  9. 제 1 항에 있어서,
    상기 천공 작업을 수행하는 단계에서,
    상기 천공 장치에 장착되는 코어 비트의 양 단부 중 상기 주변부의 외측면과 인접하는 단부면은 상기 코어 비트의 둘레방향을 따라 돌출된 돌출부를 가지고,
    상기 코어 비트에 의해 상기 원전 방사화 구조물의 반경 방향 외측에 해당하는 상기 주변부가 도넛 형상으로 천공되는,
    원전 방사화 구조물 제거 방법.
PCT/KR2019/006131 2018-07-27 2019-05-22 원전 방사화 구조물 제거 방법 WO2020022629A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/262,394 US11862355B2 (en) 2018-07-27 2019-05-22 Method of removing radioactive structure from a wall in a nuclear power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0088023 2018-07-27
KR1020180088023A KR101942997B1 (ko) 2018-07-27 2018-07-27 원전 방사화 구조물 제거 방법

Publications (1)

Publication Number Publication Date
WO2020022629A1 true WO2020022629A1 (ko) 2020-01-30

Family

ID=65269690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006131 WO2020022629A1 (ko) 2018-07-27 2019-05-22 원전 방사화 구조물 제거 방법

Country Status (3)

Country Link
US (1) US11862355B2 (ko)
KR (1) KR101942997B1 (ko)
WO (1) WO2020022629A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230109858A (ko) * 2022-01-14 2023-07-21 한국수력원자력 주식회사 중수로 원자로구조물의 살수탱크 철거방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144400A (ja) * 1984-08-07 1986-03-04 科学技術庁原子力局長 コンクリ−ト構造物の解体方法
KR20060058778A (ko) * 2006-02-23 2006-05-30 전영철 건식/습식 겸용 드릴용 분진포집장치
KR20070077824A (ko) * 2006-01-25 2007-07-30 두우균 볼트 체결 구조를 갖는 프리캐스트 콘크리트 박스 암거의시공 방법
KR20090069954A (ko) * 2007-12-26 2009-07-01 한국원자력연구원 콘크리트 해체장치의 냉각수 재활용장치 및 그 재활용방법
JP2014102110A (ja) * 2012-11-19 2014-06-05 Consec Corp コアビット

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2599770A (en) * 1947-05-12 1952-06-10 Sonapar Soc De Participation S Tool for drilling rocks and the like and drilling device comprising such tools
US3331455A (en) * 1964-01-29 1967-07-18 Pratt & Whitney Inc Core bit
WO1987002302A1 (en) * 1985-10-18 1987-04-23 Longyear Deutschland Gmbh Process and device for making deep cuts in concrete or similar material
EP0247205B1 (en) * 1985-11-25 1991-10-16 Kabushiki Kaisha Kobe Seiko Sho Reactor shielding wall dismantling apparatus
JP2969222B2 (ja) * 1990-06-07 1999-11-02 清水建設株式会社 原子炉の生体遮蔽コンクリート壁の解体装置および原子炉の生体遮蔽コンクリート壁の解体工法
FR2673033B1 (fr) * 1991-02-19 1994-07-22 Framatome Sa Procede et dispositif de demantelement des equipements internes d'un reacteur nucleaire refroidi par de l'eau.
EP0529886B1 (en) * 1991-08-26 1996-02-07 Kabushiki Kaisha Dymosha Method of dismanteling a nuclear reactor
DE19906722A1 (de) * 1999-02-18 2000-08-24 Geraetebau Wiedtal Schuetzeich Verfahren zum Zerkleinern von Betonbauteilen sowie Kernbohrwerkzeug zur Verwendung bei dem Verfahren
JP4053297B2 (ja) * 2001-04-11 2008-02-27 三菱マテリアル株式会社 研削材及びそれを用いた穿孔工法
US7381010B2 (en) * 2005-08-29 2008-06-03 Worth Wind, Inc. (Assignee Of The Interest Of Grams, Crass, And Riess) System and method for removal of buried objects
US7484578B2 (en) * 2006-01-17 2009-02-03 U.S. Saws, Inc. Hole coring system
FR2939705B1 (fr) * 2008-12-17 2012-12-07 Forbeton Sud Percement par carottage d'une structure depuis sa face superieure
US8993827B2 (en) * 2012-11-16 2015-03-31 VJ Technologies Method for stabilization and removal of radioactive waste and non hazardous waste contained in buried objects
FR3017485B1 (fr) * 2014-02-13 2019-04-19 Soletanche Freyssinet Procede et installation de decoupage d'un massif en beton renforce
WO2018208175A2 (en) * 2017-05-10 2018-11-15 STRONGE, Nathan Samuel Core drill guide apparatus and method
KR102061287B1 (ko) * 2018-04-17 2019-12-31 한국수력원자력 주식회사 가압 경수로형 원자력 발전소의 생체 보호 콘크리트의 해체 및 제염 시스템및 방법
KR102061286B1 (ko) * 2018-04-17 2019-12-31 한국수력원자력 주식회사 가압 경수로형 원자력 발전소의 생체 보호 콘크리트의 해체 방법
FR3108864B1 (fr) * 2020-04-01 2022-03-11 Framatome Sa Méthode et ensemble de découpe d'une partie d'une pièce d'un réacteur nucléaire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144400A (ja) * 1984-08-07 1986-03-04 科学技術庁原子力局長 コンクリ−ト構造物の解体方法
KR20070077824A (ko) * 2006-01-25 2007-07-30 두우균 볼트 체결 구조를 갖는 프리캐스트 콘크리트 박스 암거의시공 방법
KR20060058778A (ko) * 2006-02-23 2006-05-30 전영철 건식/습식 겸용 드릴용 분진포집장치
KR20090069954A (ko) * 2007-12-26 2009-07-01 한국원자력연구원 콘크리트 해체장치의 냉각수 재활용장치 및 그 재활용방법
JP2014102110A (ja) * 2012-11-19 2014-06-05 Consec Corp コアビット

Also Published As

Publication number Publication date
KR101942997B1 (ko) 2019-01-28
US11862355B2 (en) 2024-01-02
US20210296017A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2020166945A1 (ko) 중수로 시설의 방사화 구조물 해체 방법
CN104831947B (zh) 一种游泳池堆退役的池内物项拆除工艺
WO2020022629A1 (ko) 원전 방사화 구조물 제거 방법
WO2020013518A1 (ko) 중수로 시설의 해체 방법
JP6129656B2 (ja) 沸騰水型原子力プラントにおける燃料デブリの搬出方法及び作業ハウスシステム
JP4276808B2 (ja) 原子力プラントの機器搬出方法
Nakamura et al. Cutting technique and system for biological shield
JPH0192697A (ja) 円筒状構造物の切削解体工法
KR102116379B1 (ko) 방사능 시설물 처리 방법
KR20230145660A (ko) 중수로형 원전의 수중 해체방법
JP5787174B2 (ja) 放射能汚染施設の解体方法
JP2006313134A (ja) ドラム缶収納型イオン交換樹脂塔
CN110685461B (zh) 一种热室拆除工艺
JP6975384B2 (ja) 原子炉ウェルの遮蔽方法及び燃料デブリの回収方法
WO2013024993A2 (ko) 용융된 원자로 연료봉을 처리하는 원자로의 개선 방법
WO2020180018A1 (ko) 중수로 시설의 해체용 피폭 방지 장치 및 이를 이용한 중수로 시설의 해체 방법
Moore Decontamination of a highly radioactive chemical processing facility
JPS62291600A (ja) 原子炉設備の湿式解体方法
JPS60157095A (ja) 原子炉圧力容器の解体工法
JPS61116698A (ja) 原子炉の放射化コンクリ−トの解体撤去工法
JP6230964B2 (ja) 燃料デブリ取出し装置と燃料デブリ取出し方法
Tachibana Experiences on Research Reactors Decommissioning in the NSRI of the JAEA
Kittinger et al. Decommissioning the Sodium Reactor Experiment, a Status Report
DesCamp et al. Vitrification Facility at the West Valley Demonstration Project
Guenther et al. Design concepts for facilitating the dismantling of PWR power plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19842108

Country of ref document: EP

Kind code of ref document: A1