WO2020013518A1 - 중수로 시설의 해체 방법 - Google Patents

중수로 시설의 해체 방법 Download PDF

Info

Publication number
WO2020013518A1
WO2020013518A1 PCT/KR2019/008158 KR2019008158W WO2020013518A1 WO 2020013518 A1 WO2020013518 A1 WO 2020013518A1 KR 2019008158 W KR2019008158 W KR 2019008158W WO 2020013518 A1 WO2020013518 A1 WO 2020013518A1
Authority
WO
WIPO (PCT)
Prior art keywords
calandria
deck
bolt
cutting
reactive
Prior art date
Application number
PCT/KR2019/008158
Other languages
English (en)
French (fr)
Inventor
황석주
황영환
조항래
김천우
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to US17/259,691 priority Critical patent/US11984233B2/en
Priority to CA3106387A priority patent/CA3106387C/en
Publication of WO2020013518A1 publication Critical patent/WO2020013518A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/06Sealing-plugs
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/003Nuclear facilities decommissioning arrangements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/14Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel characterised by their adaptation for use with horizontal channels in the reactor core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/008Apparatus specially adapted for mixing or disposing radioactively contamined material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/14Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being substantially not pressurised, e.g. swimming-pool reactor
    • G21C1/16Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being substantially not pressurised, e.g. swimming-pool reactor moderator and coolant being different or separated, e.g. sodium-graphite reactor, sodium-heavy water reactor or organic coolant-heavy water reactor
    • G21C1/18Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being substantially not pressurised, e.g. swimming-pool reactor moderator and coolant being different or separated, e.g. sodium-graphite reactor, sodium-heavy water reactor or organic coolant-heavy water reactor coolant being pressurised
    • G21C1/20Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being substantially not pressurised, e.g. swimming-pool reactor moderator and coolant being different or separated, e.g. sodium-graphite reactor, sodium-heavy water reactor or organic coolant-heavy water reactor coolant being pressurised moderator being liquid, e.g. pressure-tube reactor

Definitions

  • This description relates to a decommissioning method of a heavy water reactor facility.
  • calandria vault In general, heavy water facilities including calandria among nuclear facilities used for nuclear power generation are supported by calandria vault and calandria bolts for storing calandria. (reactivity mechanism deck) is further included.
  • One embodiment seeks to provide a method of dismantling a heavy water reactor facility that facilitates detachment of the reactive equipment deck from calandria bolts.
  • One side is a calandria, a calandria vault for receiving the calandria, a reactivity mechanism supported by the calandria bolt and positioned above the calandria and including a plurality of through holes. and a plurality of guide tubes connected to the callandia through the plurality of through holes, the method comprising: removing the plurality of guide tubes from the plurality of through holes.
  • Cutting the connecting portion between the reactive device deck and the calandria bolt using the cutting device may include installing a shielding ring between the one through hole and the cutting device.
  • Cutting the connecting portion between the reactive device deck and the calandria bolt using the cutting device may include a sealer plate welded between a liner plate located on an inner wall of the calandria bolt and the reactive device deck ( This can be done by cutting the seal plate.
  • the water reactor facility further comprises a seismic restraint located between the reactive device deck and the calandria and connected to the liner plate of the calandria bolt, and using the cutting device to restrain the earthquake from the liner plate. Separating water may be further included.
  • the checking of the lower space of the reactivity device deck using the camera device may include installing another shielding ring between the other through hole and the camera device.
  • a method of dismantling a heavy water reactor facility that facilitates detachment of a reactive equipment deck from calandria bolts.
  • FIG. 1 is a flowchart illustrating a decommissioning method of a heavy water reactor facility according to an embodiment.
  • 2 to 9 are diagrams for explaining a decommissioning method of the heavy water reactor facility according to an embodiment.
  • a CANDU type heavy water reactor facility including a calandria as a heavy water reactor facility will be described as an example, but the heavy water facility is not limited thereto.
  • FIG. 1 is a flowchart illustrating a decommissioning method of a heavy water reactor facility according to an embodiment.
  • 2 to 9 are diagrams for explaining a decommissioning method of the heavy water reactor facility according to an embodiment.
  • FIG. 2 is a cross-sectional view showing a part of the heavy water reactor facility.
  • the plurality of guide tubes 400 are removed from the plurality of through holes 310 (S100).
  • the dewatering facility 1000 may include a calandria 100, a calandria vault 200 for storing the calandria 100, and a calandria vault 200.
  • a plurality of reactivity mechanism decks 300 that are supported and positioned above the calandria 100 and include a plurality of through holes 310 and connected to the calandria 100 through the plurality of through holes 310.
  • Control devices such as control rods and absorbing rods inserted into the calandria 100 through guide tubes 400 supported by the guide tubes 400 and the reactive device deck 300 through the through holes 310.
  • Seismic restraint which is located between the 500 and the monitoring device 600, the reactivity device deck 300 and the calandria (100) and is supported by the calandria bolt 200 can support the guide tube (400) restraint 700 and tread plate 800 covering the reactive device deck 300. ).
  • a pressure tube and a calandria tube connected to the calandria 100 may be dismantled from the calandria 100 to minimize worker exposure.
  • the tread plate 800 installed on the upper portion of the reactivity device deck 300 is removed, and the control device 500 and the monitoring device 600, such as control rods and absorbing rods supported on the reactivity device deck 300, and the guide tube ( 400).
  • the plurality of guide tubes 400 are removed from the plurality of through holes 310.
  • FIG. 3 is a cross-sectional view of a portion of a heavy water reactor facility with guide tubes removed. In FIG. 3, Callandria is not shown.
  • a plurality of shielding plugs 10 are installed in the plurality of through holes 310 (S200).
  • the plurality of shielding plugs 10 in the plurality of through holes 310 in order to suppress the outflow of radiation through the through holes 310 from the lower space BS of the reactivity device deck 300. Install them.
  • FIG. 4 is a perspective view illustrating the shielding plug shown in FIG. 3.
  • the shielding plug 10 may include a cone-shaped weight 11 and a stopper 12 positioned on the weight 11, but may shield the through hole 310. It may have various shapes.
  • FIG. 5 is a cross-sectional view showing that the camera device and the cutting device are inserted into the lower portion of the reactivity device deck through the through holes of the water reactor facility.
  • the lower space of the reactivity device deck 300 is checked using the camera device 50 (S300).
  • the shielding plug 10 installed in the other through hole 310 of the plurality of through holes 310 of the reactivity device deck 300 is removed, and the camera device 50 is opened through the other through holes 310. Insert the bottom of the reactive device deck 300 to check the lower space (BS) of the reactive device deck 300 by using the camera device 50.
  • the other shielding ring 20 is installed between the other through hole 310 and the camera device 50.
  • the camera device 50 may include an end effector including a manipulator and a radiation-resistant camera, but the lower space BS of the reactivity device deck 300 may be formed through the other through hole 310. If it can be confirmed, it may be a variety of known camera types.
  • FIG. 6 is a perspective view of the shield ring shown in FIG.
  • the shield ring 20 has a ring shape having a central opening 21.
  • the camera device 50 and the cutting device 60 to be described later are inserted through the opening 21.
  • the opening 21 may have various sizes corresponding to each of the width of the camera device 50 and the width of the cutting device 60.
  • FIG. 7 is a cross-sectional view illustrating a portion A of FIG. 5.
  • connection portion between the reactive device substrate 300 and the calandria bolt 200 is cut using the cutting device 60 (S400).
  • the shielding plug 10 installed in one of the plurality of through holes 310 is removed, and the cutting device 60 is reacted through the one through hole 310. Inserted below the device deck 300 to cut the connection between the reactive device deck 300 and the calandria bolt 200 using the cutting device 60. At this time, the other shielding ring 20 is installed between the through-hole 310 and the cutting device 60.
  • Cutting using the cutting device 60 may be performed using an image of the lower space BS of the reactivity device deck 300 identified by the camera device described above.
  • cutting the connection portion between the reactive device deck 300 and the calandria bolt 200 using the cutting device 60 is a liner plate located on the inner wall of the bioshielded concrete of the calandria bolt 200.
  • the seal plate 220 welded between the liner plate 210 and the reactivity device deck 300 may be cut along one cutting line CL1.
  • the cutting device 60 is an end effector for an articulated manipulator and an oscillator for irradiating a rotary saw or laser beam.
  • the seal plate 220 welded between the liner plate 210 and the reactive device deck 300 through one through hole 310 may be cut along one cutting line CL1. If possible, there may be various known types of cutting devices.
  • the seal plate 220 which is a connection portion between the reactivity device deck 300 and the calandria bolt 200, is cut, thereby supporting the top of the calandria bolt 200 with the shim plate 230 interposed therebetween.
  • the reactive device deck 300 can be easily separated from the calandria bolt 200 using a crane or the like.
  • foamed resins such as grout and styrofoam, which may be filled between the side of the reactivity device deck 300 and the calandria bolt 200, may be removed by mechanical methods such as hammering or drilling. .
  • FIG. 8 is a perspective view illustrating a portion B of FIG. 5.
  • the seismic restraint 700 is separated from the liner plate 210 of the Calandria bolt 200 using the cutting device 60 (S500).
  • the seismic restraint 700 supported by the Calandria bolt 200 is separated from the liner plate 210 using the cutting device 60.
  • the seismic confinement 700 is separated from the calandria bolts 200 using the cutting device 60 to the liner plate 210 located at the inner wall of the bioshield concrete of the calandria bolts 200.
  • the seismic restraint 700 connected may be cut along the other cutting line CL2.
  • the ring-shaped structure included in the seismic constraint 700 may be a structure for supporting the guide tube, but is not limited thereto.
  • FIG. 9 is a cross-sectional view illustrating the separation of the reactive equipment deck from the calandria bolt.
  • the reactive device deck 300 is separated from the callandaria bolt 200 (S600).
  • the crane 90 is used to lift the reactivity device deck 300 from the calandria bolt 200.
  • a platform 70 is installed on the callandaria bolt 200, and a carrier roller 80 is installed on the platform 70.
  • the reactivity device deck 300 is seated on the carrier roller 80 using the crane 90 and moved to the discharge passage to separate the reaction device deck 300 from the calandria bolt 200.
  • reaction apparatus deck 300 may be dismantled and taken out of the calandria through the separated space, and the calandria bolt 200 may be dismantled to dismantle the heavy water facility.
  • the dismantling method of the heavy water reactor facility by inserting the cutting device 60 through the through hole 310 of the reactor deck 300 into the lower space (BS) of the reactor deck 300.
  • the reactive device deck 300 is easily separated from the calandria bolt 200.
  • the decommissioning method of the heavy water reactor facility by easily separating the reactive device deck 300 from the calandria bolt 200, the work space and equipment entrance for dismantling and dismantling the reactor calandria Can be easily obtained.
  • the dismantling method of the heavy water reactor facility is inserted through the through holes 310 of the reactor deck 300, the cutting device 60 into the lower space (BS) of the reactor deck 300 by callandaria
  • the seismic restraint 700 connected to the liner plate 210 of the bolt 200 is easily separated.
  • the decommissioning method of the heavy water reactor facility according to an embodiment between the shielding plug 10 and the through-hole 310 and the cutting device 60 to shield the through-holes 310 and the through-hole 310 and the camera device 50
  • the shielding ring 20 which shields between
  • the dismantling method of the heavy water reactor facility by easily separating the reactivity device deck 300, which is a heavy material supported on the calandria bolt 200 from the calandria bolt 200, Callan during Improved stability of the bio-shielded concrete structure of the dry bolt (200).
  • Calandria (100), calandria bolt (200), reactive device deck (300), guide tube (400), shielding cap (10), cutting device (60)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

중수로 시설의 해체 방법은 복수의 가이드 튜브들을 복수의 관통홀들로부터 제거하는 단계, 복수의 관통홀들에 복수의 차폐 마개들을 설치하는 단계, 일 관통홀을 통해 절단 장치를 반응도 장치 갑판 하부로 삽입하여 절단 장치를 이용해 반응도 장치 갑판과 칼란드리아 볼트 사이의 연결 부분을 절단하는 단계, 및 칼란드리아 볼트로부터 반응도 장치 갑판을 분리하는 단계를 포함한다.

Description

중수로 시설의 해체 방법
본 기재는 중수로 시설의 해체 방법에 관한 것이다.
일반적으로, 원자력 발전에 이용되는 원자력 시설 중 칼란드리아(calandria)를 포함하는 중수로 시설은 칼란드리아를 수납하는 칼란드리아 볼트(calandria vault) 및 칼란드리아 볼트에 지지되어 칼란드리아 상부에 위치하는 반응도 장치 갑판(reactivity mechanism deck)를 더 포함한다.
중수로 시설의 해체 시, 칼란드리아를 칼란드리아 볼트로부터 용이하게 분리하기 위해서는 칼란드리아 상부에 위치하는 반응도 장치 갑판을 칼란드리아 볼트로부터 분리할 필요가 있다.
일 실시예는, 반응도 장치 갑판을 칼란드리아 볼트로부터 용이하게 분리하는 중수로 시설의 해체 방법을 제공하고자 한다.
일 측면은 칼란드리아(calandria), 상기 칼란드리아를 수납하는 칼란드리아 볼트(calandria vault), 상기 칼란드리아 볼트에 지지되어 상기 칼란드리아 상부에 위치하며 복수의 관통홀들을 포함하는 반응도 장치 갑판(reactivity mechanism deck), 및 상기 복수의 관통홀들을 통해 상기 칼란드리아와 연결된 복수의 가이드 튜브들을 포함하는 중수로 시설의 해체 방법에 있어서, 상기 복수의 가이드 튜브들을 상기 복수의 관통홀들로부터 제거하는 단계, 상기 복수의 관통홀들에 복수의 차폐 마개들을 설치하는 단계, 상기 복수의 관통홀들 중 일 관통홀에 설치된 차폐 마개를 제거하고, 상기 일 관통홀을 통해 절단 장치를 상기 반응도 장치 갑판 하부로 삽입하여 상기 절단 장치를 이용해 상기 반응도 장치 갑판과 상기 칼란드리아 볼트 사이의 연결 부분을 절단하는 단계, 및 상기 칼란드리아 볼트로부터 상기 반응도 장치 갑판을 분리하는 단계를 포함하는 중수로 시설의 해체 방법을 제공한다.
상기 절단 장치를 이용해 상기 반응도 장치 갑판과 상기 칼란드리아 볼트 사이의 연결 부분을 절단하는 단계는, 상기 일 관통홀과 상기 절단 장치 사이에 일 차폐 고리를 설치하는 단계를 포함할 수 있다.
상기 절단 장치를 이용해 상기 반응도 장치 갑판과 상기 칼란드리아 볼트 사이의 연결 부분을 절단하는 단계는 상기 칼란드리아 볼트의 내벽에 위치하는 라이너 플레이트(liner plate)와 상기 반응도 장치 갑판 사이에 용접된 실 플레이트(seal plate)를 절단하여 수행할 수 있다.
상기 중수로 시설은 상기 반응도 장치 갑판과 상기 칼란드리아 사이에 위치하며 상기 칼란드리아 볼트의 상기 라이너 플레이트에 연결된 지진 구속물(seismic restraint)을 더 포함하며, 상기 절단 장치를 이용해 상기 라이너 플레이트로부터 상기 지진 구속물을 분리하는 단계를 더 포함할 수 있다.
상기 복수의 관통홀들 중 타 관통홀에 설치된 차폐 마개를 제거하고, 상기 타 관통홀을 통해 카메라 장치를 상기 반응도 장치 갑판 하부로 삽입하여 상기 카메라 장치를 이용해 상기 반응도 장치 갑판의 하부 공간을 확인하는 단계를 더 포함할 수 있다.
상기 카메라 장치를 이용해 상기 반응도 장치 갑판의 하부 공간을 확인하는 단계는, 상기 타 관통홀과 상기 카메라 장치 사이에 타 차폐 고리를 설치하는 단계를 포함할 수 있다.
상기 칼란드리아 볼트로부터 상기 반응도 장치 갑판을 분리하는 단계는, 크레인(crane)을 이용해 상기 반응도 장치 갑판을 상기 칼란드리아 볼트로부터 들어올리는 단계, 상기 칼란드리아 볼트 상부에 플랫폼(platform)을 설치하는 단계, 상기 플랫폼 상부에 캐리어 롤러(carrier roller)를 설치하는 단계, 및 상기 캐리어 롤러에 상기 반응도 장치 갑판을 안착시켜 이동시키는 단계를 포함할 수 있다.
일 실시예에 따르면, 반응도 장치 갑판을 칼란드리아 볼트로부터 용이하게 분리하는 중수로 시설의 해체 방법이 제공된다.
도 1은 일 실시예에 따른 중수로 시설의 해체 방법을 나타낸 순서도이다.
도 2 내지 도 9는 일 실시예에 따른 중수로 시설의 해체 방법을 설명하기 위한 도면들이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 일 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 일 실시예에 한정되지 않는다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이하, 도 1 내지 도 9를 참조하여 일 실시예에 따른 중수로 시설의 해체 방법을 설명한다.
이하에서는, 중수로 시설로서 칼란드리아(calandria)를 포함하는 캔두형(CANDU)형 중수로 시설을 일례로 설명하나, 중수로 시설은 이에 한정되지는 않는다.
도 1은 일 실시예에 따른 중수로 시설의 해체 방법을 나타낸 순서도이다.
도 2 내지 도 9는 일 실시예에 따른 중수로 시설의 해체 방법을 설명하기 위한 도면들이다.
도 2는 중수로 시설의 일부를 나타낸 단면도이다.
우선, 도 1 및 도 2를 참조하면, 복수의 가이드 튜브(400)들을 복수의 관통홀(310)들로부터 제거한다(S100).
구체적으로, 도 2를 참조하면, 중수로 시설(1000)은 칼란드리아(calandria)(100), 칼란드리아(100)를 수납하는 칼란드리아 볼트(calandria vault)(200), 칼란드리아 볼트(200)에 지지되어 칼란드리아(100) 상부에 위치하며 복수의 관통홀(310)들을 포함하는 반응도 장치 갑판(reactivity mechanism deck)(300), 복수의 관통홀(310)들을 통해 칼란드리아(100)와 연결된 복수의 가이드 튜브(400)들, 반응도 장치 갑판(300)에 지지되어 관통홀(310)을 통하는 가이드 튜브(400)들을 통해 칼란드리아(100)의 내부로 삽입된 조절봉 및 흡수봉 등의 제어 장치(500)와 감시 장치(600), 반응도 장치 갑판(300)과 칼란드리아(100) 사이에 위치하며 칼란드리아 볼트(200)에 지지되어 가이드 튜브(400)를 지지할 수 있는 지진 구속물(seismic restraint)(700), 그리고 반응도 장치 갑판(300)을 덮는 트레드 플레이트(tread plate)(800)를 포함한다.
우선, 칼란드리아(100)와 연결된 압력관(pressure tube) 및 칼란드리아 튜브(calandria tube)를 칼란드리아(100)로부터 해체하여 작업자 피폭을 최소화할 수 있다.
다음, 반응도 장치 갑판(300) 상부에 설치된 트레드 플레이트(800)를 철거하고 반응도 장치 갑판(300)에 지지된 조절봉 및 흡수봉 등의 제어 장치(500)와 감시 장치(600)를 가이드 튜브(400)로부터 인출한다.
다음, 복수의 가이드 튜브(400)들을 복수의 관통홀(310)들로부터 제거한다.
도 3은 가이드 튜브들이 제거된 중수로 시설의 일부를 나타낸 단면도이다. 도 3에서 칼란드리아는 도시하지 않았다.
다음, 도 3을 참조하면, 복수의 관통홀(310)들에 복수의 차폐 마개(10)들을 설치한다(S200).
구체적으로, 반응도 장치 갑판(300)의 하부 공간(BS)으로부터 관통홀(310)들을 통해 외부로 방사능이 유출되는 것을 억제하기 위해, 복수의 관통홀(310)들에 복수의 차폐 마개(10)들을 설치한다.
도 4는 도 3에 도시된 차폐 마개를 나타낸 사시도이다.
도 4를 참조하면, 차폐 마개(10)는 원뿔 형상의 무게추(11) 및 무게추(11) 상부에 위치하는 마개(12)를 포함할 수 있으나, 관통홀(310)을 차폐할 수 있다면 다양한 형상을 가질 수 있다.
도 5는 중수로 시설의 관통홀들을 통해 카메라 장치 및 절단 장치가 반응도 장치 갑판의 하부로 삽입된 것을 나타낸 단면도이다.
다음, 도 5를 참조하면, 카메라 장치(50)를 이용해 반응도 장치 갑판(300)의 하부 공간을 확인한다(S300).
구체적으로, 반응도 장치 갑판(300)의 복수의 관통홀(310)들 중 타 관통홀(310)에 설치된 차폐 마개(10)를 제거하고, 타 관통홀(310)을 통해 카메라 장치(50)를 반응도 장치 갑판(300) 하부로 삽입하여 카메라 장치(50)를 이용해 반응도 장치 갑판(300)의 하부 공간(BS)을 확인한다. 이때, 타 관통홀(310)과 카메라 장치(50) 사이에 타 차폐 고리(20)를 설치한다.
카메라 장치(50)는 매니퓰레이터(manipulator) 및 내방사선 카메라를 포함하는 엔드이펙터(end effector)를 포함할 수 있으나, 타 관통홀(310)을 통해 반응도 장치 갑판(300)의 하부 공간(BS)을 확인할 수 있다면, 공지된 다양한 형태의 카메라일 수 있다.
도 6은 도 5에 도시된 차폐 고리를 나타낸 사시도이다.
도 6을 참조하면, 차폐 고리(20)는 가운데 개구부(21)를 가지는 링(ring) 형상을 가진다. 개구부(21)를 통해 카메라 장치(50) 및 후술할 절단 장치(60)가 삽입된다. 개구부(21)는 카메라 장치(50)의 너비 및 절단 장치(60)의 너비 각각에 대응하여 다양한 크기를 가질 수 있다.
도 7은 도 5의 A 부분을 나타낸 단면도이다.
다음, 도 5 및 도 7을 참조하면, 절단 장치(60)를 이용해 반응도 장치 기판(300)과 칼란드리아 볼트(200) 사이의 연결 부분을 절단한다(S400).
구체적으로, 도 5를 참조하면, 복수의 관통홀(310)들 중 일 관통홀(310)에 설치된 차폐 마개(10)를 제거하고, 일 관통홀(310)을 통해 절단 장치(60)를 반응도 장치 갑판(300) 하부로 삽입하여 절단 장치(60)를 이용해 반응도 장치 갑판(300)과 칼란드리아 볼트(200) 사이의 연결 부분을 절단한다. 이때, 일 관통홀(310)과 절단 장치(60) 사이에 타 차폐 고리(20)를 설치한다.
절단 장치(60)를 이용한 절단은 상술한 카메라 장치가 확인한 반응도 장치 갑판(300)의 하부 공간(BS)의 이미지(image)를 이용하여 수행될 수 있다.
도 7을 참조하면, 절단 장치(60)를 이용해 반응도 장치 갑판(300)과 칼란드리아 볼트(200) 사이의 연결 부분을 절단하는 것은 칼란드리아 볼트(200)의 생체차폐콘크리트 내벽에 위치하는 라이너 플레이트(liner plate)(210)와 반응도 장치 갑판(300) 사이에 용접된 실 플레이트(seal plate)(220)를 일 절단선(CL1)을 따라 절단하여 수행할 수 있다.
절단 장치(60)는 다관절 매니퓰레이터(manipulator) 및 회전톱 또는 레이저 빔을 조사하는 오실레이터(oscillator)를 엔드이펙터
(end effector)를 포함할 수 있으나, 일 관통홀(310)을 통해 라이너 플레이트(210)와 반응도 장치 갑판(300) 사이에 용접된 실 플레이트(220)를 일 절단선(CL1)을 따라 절단할 수 있다면, 공지된 다양한 형태의 절단 장치일 수 있다.
반응도 장치 갑판(300)과 칼란드리아 볼트(200) 사이의 연결 부분인 실 플레이트(220)가 절단됨으로써, 심 플레이트(shim plate)(230)를 사이에 두고 칼란드리아 볼트(200) 상부에 지지된 반응도 장치 갑판(300)을 크레인(crane) 등을 이용해 칼란드리아 볼트(200)로부터 용이하게 분리할 수 있다.
한편, 반응도 장치 갑판(300)의 측면과 칼란드리아 볼트(200) 사이에 충진될 수 있는 그라우트(grout) 및 스티로폼(styrofoam) 등의 발포 수지는 해머링 또는 드릴링 등의 기계적 방법을 이용해 제거될 수 있다.
도 8은 도 5의 B 부분을 나타낸 사시도이다.
다음, 도 5 및 도 8을 참조하면, 절단 장치(60)를 이용해 칼란드리아 볼트(200)의 라이너 플레이트(210)로부터 지진 구속물(700)을 분리한다(S500).
구체적으로, 도 5를 참조하면, 칼란드리아 볼트(200)에 지지된 지진 구속물(700)을 절단 장치(60)를 이용해 라이너 플레이트(210)로부터 분리한다.
도 8을 참조하면, 절단 장치(60)를 이용해 칼란드리아 볼트(200)로부터 지진 구속물(700)을 분리하는 것은 칼란드리아 볼트(200)의 생체차폐콘크리트 내벽에 위치하는 라이너 플레이트(210)에 연결된 지진 구속물(700)을 타 절단선(CL2)을 따라 절단하여 수행할 수 있다. 지진 구속물(700)에 포함된 링 형태의 구조물은 가이드 튜브를 지지하는 구조물일 수 있으나, 이에 한정되지는 않는다.
도 9는 칼란드리아 볼트로부터 반응도 장치 갑판을 분리하는 것을 나타낸 단면도이다.
다음, 도 9를 참조하면, 칼란드리아 볼트(200)로부터 반응도 장치 갑판(300)을 분리한다(S600).
구체적으로, 우선, 크레인(crane)(90)을 이용해 반응도 장치 갑판(300)을 칼란드리아 볼트(200)로부터 들어올린다.
다음, 칼란드리아 볼트(200) 상부에 플랫폼(platform)(70)을 설치하고, 플랫폼(70) 상부에 캐리어 롤러(carrier roller)(80)를 설치한다.
다음, 크레인(90)을 이용해 캐리어 롤러(80)에 반응도 장치 갑판(300)을 안착시키고 반출 통로로 이동시켜 반응도 장치 갑판(300)을 칼란드리아 볼트(200)로부터 분리한다.
이후, 반응도 장치 갑판(300)이 분리된 공간을 통해 칼란드리아를 해체 및 반출하고, 칼란드리아 볼트(200)를 해체하여 중수로 시설을 해체할 수 있다.
이상과 같이, 일 실시예에 따른 중수로 시설의 해체 방법은 반응도 장치 갑판(300)의 관통홀(310)들을 통해 절단 장치(60)를 반응도 장치 갑판(300)의 하부 공간(BS)으로 삽입하여 칼란드리아 볼트(200)와 반응도 장치 갑판(300) 사이의 연결 부위를 용이하게 절단함으로써, 칼란드리아 볼트(200)로부터 반응도 장치 갑판(300)을 용이하게 분리한다.
또한, 일 실시예에 따른 중수로 시설의 해체 방법은 칼란드리아 볼트(200)로부터 반응도 장치 갑판(300)을 용이하게 분리함으로써, 원자로인 칼란드리아(calandria) 해체 및 철거를 위한 작업 공간 및 장비반 입구를 용이하게 확보할 수 있다.
또한, 일 실시예에 따른 중수로 시설의 해체 방법은 반응도 장치 갑판(300)의 관통홀(310)들을 통해 절단 장치(60)를 반응도 장치 갑판(300)의 하부 공간(BS)으로 삽입하여 칼란드리아 볼트(200)의 라이너 플레이트(210)에 연결된 지진 구속물(700)을 용이하게 분리한다.
또한, 일 실시예에 따른 중수로 시설의 해체 방법은 관통홀(310)들을 차폐하는 차폐 마개(10) 및 관통홀(310)과 절단 장치(60) 사이와 관통홀(310)과 카메라 장치(50) 사이를 차폐하는 차폐 고리(20)를 이용함으로써, 작업자가 방사선에 피폭되는 것을 억제한다.
또한, 일 실시예에 따른 중수로 시설의 해체 방법은 칼란드리아 볼트(200)에 지지된 중량물인 반응도 장치 갑판(300)을 칼란드리아 볼트(200)로부터 용이하게 분리함으로써, 중수로 시설의 해체 공정 시 칼란드리아 볼트(200)의 생체차폐콘크리트 구조물의 안정성을 향상한다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
-부호의 설명-
칼란드리아(100), 칼란드리아 볼트(200), 반응도 장치 갑판(300), 가이드 튜브(400), 차폐 마개(10), 절단 장치(60)

Claims (7)

  1. 칼란드리아(calandria), 상기 칼란드리아를 수납하는 칼란드리아 볼트(calandria vault), 상기 칼란드리아 볼트에 지지되어 상기 칼란드리아 상부에 위치하며 복수의 관통홀들을 포함하는 반응도 장치 갑판(reactivity mechanism deck), 및 상기 복수의 관통홀들을 통해 상기 칼란드리아와 연결된 복수의 가이드 튜브들을 포함하는 중수로 시설의 해체 방법에 있어서,
    상기 복수의 가이드 튜브들을 상기 복수의 관통홀들로부터 제거하는 단계;
    상기 복수의 관통홀들에 복수의 차폐 마개들을 설치하는 단계;
    상기 복수의 관통홀들 중 일 관통홀에 설치된 차폐 마개를 제거하고, 상기 일 관통홀을 통해 절단 장치를 상기 반응도 장치 갑판 하부로 삽입하여 상기 절단 장치를 이용해 상기 반응도 장치 갑판과 상기 칼란드리아 볼트 사이의 연결 부분을 절단하는 단계; 및
    상기 칼란드리아 볼트로부터 상기 반응도 장치 갑판을 분리하는 단계
    를 포함하는 중수로 시설의 해체 방법.
  2. 제1항에서,
    상기 절단 장치를 이용해 상기 반응도 장치 갑판과 상기 칼란드리아 볼트 사이의 연결 부분을 절단하는 단계는,
    상기 일 관통홀과 상기 절단 장치 사이에 일 차폐 고리를 설치하는 단계를 포함하는 중수로 시설의 해체 방법.
  3. 제1항에서,
    상기 절단 장치를 이용해 상기 반응도 장치 갑판과 상기 칼란드리아 볼트 사이의 연결 부분을 절단하는 단계는 상기 칼란드리아 볼트의 내벽에 위치하는 라이너 플레이트(liner plate)와 상기 반응도 장치 갑판 사이에 용접된 실 플레이트(seal plate)를 절단하여 수행하는 중수로 시설의 해체 방법.
  4. 제3항에서,
    상기 중수로 시설은 상기 반응도 장치 갑판과 상기 칼란드리아 사이에 위치하며 상기 칼란드리아 볼트의 상기 라이너 플레이트에 연결된 지진 구속물(seismic restraint)을 더 포함하며,
    상기 절단 장치를 이용해 상기 라이너 플레이트로부터 상기 지진 구속물을 분리하는 단계를 더 포함하는 중수로 시설의 해체 방법.
  5. 제1항에서,
    상기 복수의 관통홀들 중 타 관통홀에 설치된 차폐 마개를 제거하고, 상기 타 관통홀을 통해 카메라 장치를 상기 반응도 장치 갑판 하부로 삽입하여 상기 카메라 장치를 이용해 상기 반응도 장치 갑판의 하부 공간을 확인하는 단계를 더 포함하는 중수로 시설의 해체 방법.
  6. 제5항에서,
    상기 카메라 장치를 이용해 상기 반응도 장치 갑판의 하부 공간을 확인하는 단계는,
    상기 타 관통홀과 상기 카메라 장치 사이에 타 차폐 고리를 설치하는 단계를 포함하는 중수로 시설의 해체 방법.
  7. 제1항에서,
    상기 칼란드리아 볼트로부터 상기 반응도 장치 갑판을 분리하는 단계는,
    크레인(crane)을 이용해 상기 반응도 장치 갑판을 상기 칼란드리아 볼트로부터 들어올리는 단계;
    상기 칼란드리아 볼트 상부에 플랫폼(platform)을 설치하는 단계;
    상기 플랫폼 상부에 캐리어 롤러(carrier roller)를 설치하는 단계; 및
    상기 캐리어 롤러에 상기 반응도 장치 갑판을 안착시켜 이동시키는 단계
    를 포함하는 중수로 시설의 해체 방법.
PCT/KR2019/008158 2018-07-13 2019-07-03 중수로 시설의 해체 방법 WO2020013518A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/259,691 US11984233B2 (en) 2018-07-13 2019-07-03 Method for decommissioning heavy water reactor facility
CA3106387A CA3106387C (en) 2018-07-13 2019-07-03 Method for decommissioning heavy water reactor facility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180081781A KR102025875B1 (ko) 2018-07-13 2018-07-13 중수로 시설의 해체 방법
KR10-2018-0081781 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020013518A1 true WO2020013518A1 (ko) 2020-01-16

Family

ID=68067827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008158 WO2020013518A1 (ko) 2018-07-13 2019-07-03 중수로 시설의 해체 방법

Country Status (4)

Country Link
US (1) US11984233B2 (ko)
KR (1) KR102025875B1 (ko)
CA (1) CA3106387C (ko)
WO (1) WO2020013518A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102144533B1 (ko) * 2019-02-14 2020-08-13 한국수력원자력 주식회사 절단 장치를 이용한 중수로 시설의 해체 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212149A (ja) * 2002-12-27 2004-07-29 Sumitomo Mitsui Construction Co Ltd 原子炉の解体及び撤去方法
JP2005291710A (ja) * 2004-03-31 2005-10-20 Sumitomo Mitsui Construction Co Ltd 原子炉本体の解体方法
KR20120082831A (ko) * 2011-01-14 2012-07-24 지이-히타치 뉴클리어 에너지 캐나다 인코퍼레이티드 원자로로부터 칼란드리아 튜브들과 가압 튜브들을 제거하는 방법
KR20140042009A (ko) * 2012-09-26 2014-04-07 한국수력원자력 주식회사 중수로 원자로 원격육안검사 시스템 및 중수로 원자로 원격육안검사 방법
KR101776102B1 (ko) * 2016-10-28 2017-09-19 한국수력원자력 주식회사 칼란드리아 내부 구조물 검사장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL247851A (ko) * 1959-01-29
FR2743445B1 (fr) * 1996-01-10 1998-04-03 Framatome Sa Procede et dispositif de demantelement et d'evacuation d'equipements internes inferieurs d'un reacteur nucleaire refroidi par de l'eau sous pression
GB201317722D0 (en) * 2013-10-07 2013-11-20 Cs Technical Services Ltd A die and punch cutter
RO134273A2 (ro) * 2017-06-23 2020-06-30 Candu Energy Inc. Sculă şi metodă de eliberare şi îndepărtare a unei inserţii de tub calandria
KR102041966B1 (ko) * 2018-05-14 2019-11-07 한국원자력연구원 원전 원격 해체 시스템 및 이를 구비한 원전

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212149A (ja) * 2002-12-27 2004-07-29 Sumitomo Mitsui Construction Co Ltd 原子炉の解体及び撤去方法
JP2005291710A (ja) * 2004-03-31 2005-10-20 Sumitomo Mitsui Construction Co Ltd 原子炉本体の解体方法
KR20120082831A (ko) * 2011-01-14 2012-07-24 지이-히타치 뉴클리어 에너지 캐나다 인코퍼레이티드 원자로로부터 칼란드리아 튜브들과 가압 튜브들을 제거하는 방법
KR20140042009A (ko) * 2012-09-26 2014-04-07 한국수력원자력 주식회사 중수로 원자로 원격육안검사 시스템 및 중수로 원자로 원격육안검사 방법
KR101776102B1 (ko) * 2016-10-28 2017-09-19 한국수력원자력 주식회사 칼란드리아 내부 구조물 검사장치

Also Published As

Publication number Publication date
CA3106387A1 (en) 2020-01-16
KR102025875B1 (ko) 2019-09-26
CA3106387C (en) 2022-10-18
US11984233B2 (en) 2024-05-14
US20210319923A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2020166945A1 (ko) 중수로 시설의 방사화 구조물 해체 방법
US4450134A (en) Method and apparatus for handling nuclear fuel elements
KR100277238B1 (ko) 상부 장착식 원자력 계장의 일체형 헤드 패키지
WO2020013518A1 (ko) 중수로 시설의 해체 방법
WO2014193023A1 (ko) 수중 교각 기초 시공을 위한 하우징 브라켓 및 이를 이용한 수중 교각 기초 시공 방법
WO2020149568A1 (ko) 중수로 시설의 해체 장치 및 방법
WO2020009476A1 (ko) 원자로의 해체 시스템
KR101539017B1 (ko) 방사성 물질의 처리 조립체
WO2012173388A2 (ko) 방사성 폐기물 보관용 구조체
WO2021010580A1 (ko) 난간틀
WO2020022629A1 (ko) 원전 방사화 구조물 제거 방법
WO2019203576A1 (ko) 가압 경수로형 원자력 발전소의 생체 보호 콘크리트의 해체 방법
WO2020149567A1 (ko) 중수로 시설의 해체 장치 및 방법
JP5627117B2 (ja) 原子炉建屋解体システム
JP5681318B1 (ja) 破損した原子炉炉心の解体方法
WO2020138930A1 (ko) 원자력 시설의 해체 방법
WO2020166915A1 (ko) 절단 장치를 이용한 중수로 시설의 해체 방법
WO2019203578A1 (ko) 원자력 시설의 해체 방법
EP0043394A1 (en) Radiation shield ring assembly for disassembling components of a nuclear steam generator
WO2019203577A1 (ko) 가압 경수로형 원자력 발전소의 생체 보호 콘크리트의 해체 및 제염 시스템및 방법
WO2019124707A1 (ko) 낙하 사고 방지 족장 커버
WO2019203582A1 (ko) 원자력 시설의 해체 방법
JP3786009B2 (ja) 原子炉容器の取扱い方法
JP2005308626A (ja) 原子炉圧力容器交換方法
WO2024155176A1 (ko) 방사성 액체폐기물 제거시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3106387

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834585

Country of ref document: EP

Kind code of ref document: A1