WO2020022447A1 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
WO2020022447A1
WO2020022447A1 PCT/JP2019/029256 JP2019029256W WO2020022447A1 WO 2020022447 A1 WO2020022447 A1 WO 2020022447A1 JP 2019029256 W JP2019029256 W JP 2019029256W WO 2020022447 A1 WO2020022447 A1 WO 2020022447A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
torque
inclination angle
target
vehicle speed
Prior art date
Application number
PCT/JP2019/029256
Other languages
English (en)
French (fr)
Inventor
敬造 荒木
水野 晃
昇太 久保
Original Assignee
株式会社エクォス・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクォス・リサーチ filed Critical 株式会社エクォス・リサーチ
Priority to US17/263,193 priority Critical patent/US20210206446A1/en
Priority to EP19842100.0A priority patent/EP3828068A1/en
Priority to CN201980049554.1A priority patent/CN112469623A/zh
Publication of WO2020022447A1 publication Critical patent/WO2020022447A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/18Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
    • B60G3/20Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram all arms being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/027Motorcycles with three wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/46Means for locking the suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/12Cycles; Motorcycles
    • B60G2300/122Trikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/45Rolling frame vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/34Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/39Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J1/00Saddles or other seats for cycles; Arrangement thereof; Component parts
    • B62J1/02Saddles resiliently mounted on the frame; Equipment therefor, e.g. springs
    • B62J1/04Saddles capable of swinging about a horizontal pivot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J1/00Saddles or other seats for cycles; Arrangement thereof; Component parts
    • B62J1/28Other additional equipment, e.g. back-rests for children
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K2005/001Suspension details for cycles with three or more main road wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/05Tricycles characterised by a single rear wheel

Definitions

  • This specification relates to a vehicle that turns while leaning the vehicle body.
  • the target value of the steering angle is determined using the steering wheel angle, which is the rotation angle of the steering bar.
  • the inclination angle and the steering angle of the vehicle body can be changed independently. As described above, sufficient measures have not been taken to improve the running stability of a vehicle in which the angle of inclination of the vehicle body and the direction of the wheels change.
  • This specification discloses a technique capable of improving running stability of a vehicle.
  • a vehicle The body and N (N is an integer of 2 or more) wheels including one or more turning wheels rotatable left and right with respect to the forward direction of the vehicle, wherein one or more front wheels and one or more rear wheels Said N wheels comprising: An inclination sensor configured to measure an inclination angle in a width direction of the vehicle body, An operation input unit configured to be operated to input an operation amount indicating a turning direction and a degree of turning; A turning wheel supporting portion that supports the one or more turning wheels, A control device; With The rotating wheel support portion, A support member rotatably supporting the one or more rotating wheels; A rotation device that supports the support member to be rotatable left and right with respect to the vehicle body; A rotation drive device configured to apply a rotation torque for rotating the support member to the support member, With The target inclination angle of the vehicle body is a target inclination angle, A difference between the target inclination angle and the inclination angle of the vehicle body is defined as an inclination angle difference, When the target torque is a target inclination
  • the first type control value used for determining the target rotation torque is determined to be a value indicating the first torque for rotating the support member in the direction opposite to the target direction.
  • the inclination angle of the vehicle body can easily approach the target inclination angle.
  • the type 1 control value is determined using the tilt angle difference that is the difference between the target tilt angle and the vehicle body tilt angle, the type 1 control value is set to a value suitable for the tilt angle difference. It is determined. Therefore, the running stability of the vehicle can be improved.
  • the first type control value suitable for the vehicle speed is determined. Therefore, the running stability of the vehicle can be improved.
  • the vehicle according to application example 2 The control device may be configured such that the angular difference torque ratio when the magnitude of the vehicle speed is smaller than a first threshold is greater than the angular difference torque ratio when the magnitude of the vehicle speed is greater than the first threshold.
  • the vehicle configured to determine the first type control value.
  • the first type control when the magnitude of the vehicle speed is smaller than the first threshold value, the first type control is performed such that the angular difference torque ratio is larger than when the magnitude of the vehicle speed is greater than the first threshold value. Since the value is determined, it is possible to suppress a delay in a change in the inclination angle of the vehicle body when the vehicle speed is low.
  • the vehicle according to any one of application examples 1 to 3,
  • the control device includes: Using the angular velocity of the tilt angle of the vehicle body, a second type control value indicating a second torque for rotating the support member in a direction of the change in the tilt angle between the right direction and the left direction is determined. And Determining the target rotation torque using two or more control values including the first type control value and the second type control value; Is configured as vehicle.
  • the second type control value indicating the second torque for rotating the support member in the direction of the change in the inclination angle is determined using the angular velocity of the inclination angle, and the first type control value and the second type control are determined. Since the target turning torque is determined using two or more control values including the value, the running stability of the vehicle can be improved.
  • the second type control value suitable for the vehicle speed is determined. Therefore, the running stability of the vehicle can be improved.
  • the second type control value when the magnitude of the vehicle speed is smaller than the second threshold value, the second type control value is set such that the angular velocity torque ratio is larger than when the magnitude of the vehicle speed is greater than the second threshold value. Is determined, an unintended change in the inclination angle can be suppressed.
  • the control device includes: A third type of control showing a third torque for rotating the support member in a direction of a change in the angular velocity of the tilt angle between the right direction and the left direction using the angular acceleration of the tilt angle of the vehicle body; Determine the value, Determining the target rotation torque using two or more control values including the first type control value and the third type control value; Is configured as vehicle.
  • the third type control value indicating the third torque for rotating the support member in the direction of the change in the angular velocity of the inclination angle is determined using the angular acceleration of the inclination angle, and the first type control value and the third type of control value are determined. Since the target turning torque is determined using two or more control values including three control values, the running stability of the vehicle can be improved.
  • the third type control value suitable for the vehicle speed is determined. Therefore, the running stability of the vehicle can be improved.
  • the control device may be configured such that the angular acceleration torque ratio when the magnitude of the vehicle speed is smaller than a third threshold is greater than the angular acceleration torque ratio when the magnitude of the vehicle speed is greater than the third threshold.
  • Vehicle configured to determine the third type control value.
  • the third type of control is performed such that when the magnitude of the vehicle speed is smaller than the third threshold, the angular acceleration torque ratio is larger than when the magnitude of the vehicle speed is larger than the third threshold. Since the value is determined, an unintended change in the tilt angle can be suppressed.
  • a vehicle comprising: a tilt drive device configured to apply a tilt torque for controlling the tilt angle of the vehicle body to the vehicle body.
  • the inclination angle can be appropriately changed by using the inclination torque.
  • the N wheels include three or more wheels including a pair of wheels arranged apart from each other in the width direction,
  • the vehicle is A tilt device configured to tilt the vehicle body in the width direction,
  • a locking device configured to lock the tilt device;
  • the control device includes: If the magnitude of the vehicle speed is greater than or equal to the fourth threshold, Causing the locking device to release the tilt device, Controlling the rotation drive device according to the target rotation torque, When the magnitude of the vehicle speed is less than the fourth threshold, Causing the locking device to lock the tilt device, Causing the rotation drive device to output the rotation torque for rotating the support member in the target direction;
  • the vehicle is configured as follows.
  • the technology disclosed in the present specification can be realized in various modes, for example, a vehicle, a vehicle control device, a vehicle control method, and the like.
  • FIG. 2 is a right side view of the vehicle 10.
  • FIG. 2 is a top view of the vehicle 10.
  • FIG. 2 is a bottom view of the vehicle 10.
  • FIG. 2 is a rear view of the vehicle 10.
  • (A), (B) is a simplified rear view of the vehicle 10.
  • (A), (B) is a simplified rear view of the vehicle 10.
  • FIG. 4 is an explanatory diagram showing a simplified relationship between a wheel angle AF and a turning radius R. It is explanatory drawing of the force which acts on the front wheel 12F which rotates.
  • FIG. 2 is a block diagram of a control device 100.
  • 5 is a flowchart illustrating an example of a first control process.
  • (A)-(D) is an explanatory view of a rotation torque and a tilt torque. It is a perspective view of 12 F of front wheels.
  • 9 is a flowchart illustrating an example of a process for determining a first control value Vc1.
  • 9 is a flowchart illustrating an example of a process for determining a second control value Vc2.
  • 13 is a flowchart illustrating an example of a process for determining a third control value Vc3.
  • (A) is a graph showing an example of a correspondence relationship between a vehicle speed V and a first P gain Kp1.
  • (B) is a graph showing an example of a correspondence relationship between the vehicle speed V and the second P gain Kp2.
  • (C) is a graph showing an example of a correspondence relationship between the vehicle speed V and the third P gain Kp3. It is a flow chart which shows another example of control processing. It is a flowchart which shows the example of a process of 3rd control.
  • A. First embodiment: A1. Configuration of vehicle 10: 1 to 4 are explanatory diagrams showing a vehicle 10 as one embodiment. 1 shows a right side view of the vehicle 10, FIG. 2 shows a top view of the vehicle 10, FIG. 3 shows a bottom view of the vehicle 10, and FIG. 4 shows a rear view of the vehicle 10. .
  • FIGS. 1 to 4 show the vehicle 10 which is arranged on a horizontal ground GL (FIG. 1) and is not inclined. 2 to 4, the portion used for description in the configuration of the vehicle 10 shown in FIG. 1 is illustrated, and other portions are not illustrated. 1 to 4 show six directions DF, DB, DU, DD, DR, and DL.
  • the forward direction DF is a forward direction of the vehicle 10, and the backward direction DB is a direction opposite to the forward direction DF.
  • the upward direction DU is a vertically upward direction
  • the downward direction DD is a direction opposite to the upward direction DU.
  • the right direction DR is a right direction viewed from the vehicle 10 traveling in the front direction DF
  • the left direction DL is a direction opposite to the right direction DR.
  • the directions DF, DB, DR, and DL are all horizontal directions.
  • the right and left directions DR, DL are perpendicular to the forward direction DF.
  • the vehicle 10 is a small vehicle for one person.
  • the vehicle 10 (FIGS. 1 and 2) is a tricycle having a vehicle body 90, one front wheel 12F, and two rear wheels 12L and 12R.
  • the front wheel 12F is an example of a turning wheel that can turn in the left-right direction, and is disposed at the center in the width direction of the vehicle 10 (that is, a direction parallel to the right direction DR).
  • the rear wheels 12L and 12R are drive wheels, and are arranged symmetrically with respect to the center in the width direction of the vehicle 10 and apart from each other.
  • the vehicle body 90 (FIG. 1) has the main body 20.
  • the main body 20 has a front part 20a, a bottom part 20b, a rear part 20c, and a support part 20d.
  • the bottom part 20b is a horizontal plate-like part.
  • the front portion 20a is a plate-like portion extending from the end of the bottom portion 20b on the front DF side toward the upward DU side.
  • the rear portion 20c is a plate-shaped portion extending upward from the rear DB side end of the bottom portion 20b to the DU side.
  • the support portion 20d is a plate-like portion extending from the upper end of the rear portion 20c toward the rear direction DB.
  • the main body 20 has, for example, a metal frame and a panel fixed to the frame.
  • the vehicle body 90 further includes a seat 11 fixed on the bottom 20b, an accelerator pedal 45 and a brake pedal 46 arranged on the front direction DF side of the seat 11, a control device 100 and a battery 120 fixed on the bottom 20b. And a shift switch 47 attached to the front wheel support device 41, which is fixed to an end of the front portion 20a on the upward DU side.
  • other members for example, a roof, a headlight, and the like
  • the vehicle body 90 includes a member fixed to the main body 20.
  • the shift switch 47 is a switch for selecting a traveling mode of the vehicle 10.
  • one of four driving modes of “drive”, “neutral”, “reverse”, and “parking” can be selected.
  • Driving is a mode in which the driving wheels 12L and 12R advance by driving
  • Negtral is a mode in which the driving wheels 12L and 12R are rotatable
  • Reverse is driving of the driving wheels 12L and 12R.
  • the “parking” is a mode in which at least one wheel (for example, the rear wheels 12L and 12R) cannot rotate.
  • Drive” and “neutral” are usually used when the vehicle 10 moves forward.
  • the front wheel support device 41 (FIG. 1) is a device that supports the front wheel 12F so as to be rotatable around a rotation axis Ax1.
  • the front wheel support device 41 includes the front fork 17, a bearing 68, and a steering motor 65.
  • the front fork 17 rotatably supports the front wheel 12F, and is, for example, a telescopic fork incorporating a suspension (a coil spring and a shock absorber).
  • the bearing 68 connects the main body 20 (here, the front part 20 a) and the front fork 17.
  • the bearing 68 supports the front fork 17 (and, consequently, the front wheel 12F) so as to be rotatable left and right with respect to the vehicle body 90 about the rotation axis Ax1.
  • the steering motor 65 is an electric motor that is an example of an actuator that rotates the front fork 17.
  • the steering motor 65 includes a rotor and a stator (not shown). One of the rotor and the stator is fixed to the front fork 17, and the other is fixed to the main body 20 (here, the front portion 20a).
  • the vehicle 10 is provided with a handle 41a that can be rotated left and right.
  • the handle 41a is an example of an operation input unit configured to be operated to input a turning direction and a degree of turning.
  • the turning direction (right or left) of the handle 41a with respect to the predetermined straight traveling direction indicates the turning direction desired by the user.
  • the magnitude of the turning angle of the handle 41a with respect to the straight traveling direction (hereinafter, also referred to as the "handle angle”) indicates the degree of turning desired by the user.
  • “steering wheel angle> zero” indicates right turn
  • “steering wheel angle ⁇ zero” indicates left turn.
  • the sign of the steering wheel angle indicates the turning direction.
  • the absolute value of the steering wheel angle indicates the degree of turning.
  • Such a steering wheel angle is an example of an operation amount indicating the turning direction and the degree of turning input to the steering wheel 41a.
  • a support rod 41ax extending along the rotation axis of the handle 41a is fixed to the handle 41a.
  • the support rod 41ax is connected to the front wheel support device 41 so as to be rotatable about a rotation axis.
  • the wheel angle AF (FIG. 2) is an angle of the traveling direction D12 of the rotating front wheel 12F with respect to the forward direction DF when the vehicle 10 is viewed in the downward direction DD.
  • the traveling direction D12 is a direction perpendicular to the rotation axis Ax2 of the front wheel 12F.
  • the steering motor 65 is controlled by the control device 100 (FIG. 1).
  • the torque generated by the steering motor 65 is also referred to as turning torque.
  • the direction D12 of the front wheel 12F is allowed to turn left and right independently of the steering wheel angle. Details of the control of the steering motor 65 will be described later.
  • the angle CA in FIG. 1 indicates the angle between the vertically upward direction DU and the direction toward the vertically upward direction DU along the rotation axis Ax1 (also referred to as a caster angle).
  • the caster angle CA is larger than zero.
  • the direction toward the vertical upward direction DU along the rotation axis Ax1 is inclined backward.
  • the intersection P2 between the rotation axis Ax1 of the front wheel support device 41 and the ground GL is closer to the front DF than the contact center P1 of the front wheel 12F with the ground GL. positioned.
  • the distance Lt in the backward direction DB between these points P1 and P2 is called a trail.
  • the positive trail Lt indicates that the contact center P1 is located on the backward DB side of the intersection P2.
  • the contact center P1 is the center of the contact area Ca1 between the front wheel 12F and the ground GL.
  • the center of the contact area is the center of gravity of the contact area, specifically, the position of the center of gravity when assuming that the mass is uniformly distributed in the area.
  • the contact center PbR of the contact area CaR between the right rear wheel 12R and the ground GL and the contact center PbL of the contact area CaL between the left rear wheel 12L and the ground GL are similarly specified.
  • the two rear wheels 12L, 12R are rotatably supported by the rear wheel support 80.
  • the rear wheel support 80 is fixed to the link mechanism 30, the lean motor 25 fixed to the upper part of the link mechanism 30, the first support 82 fixed to the upper part of the link mechanism 30, and the front part of the link mechanism 30.
  • 2nd support part 83 (FIG. 1).
  • the portion of the link mechanism 30, the first support portion 82, and the second support portion 83 that are hidden by the right rear wheel 12R are also indicated by solid lines.
  • FIG. 1 for the sake of explanation, the portion of the link mechanism 30, the first support portion 82, and the second support portion 83 that are hidden by the right rear wheel 12R are also indicated by solid lines.
  • the link mechanism 30 is shown in a simplified manner.
  • the first support portion 82 (FIG. 4) includes a plate-like portion extending parallel to the right direction DR on the upper direction DU side of the rear wheels 12L and 12R.
  • the second support portion 83 (FIGS. 1 and 2) is disposed between the left rear wheel 12L and the right rear wheel 12R on the front side DF side of the link mechanism 30.
  • Right rear wheel 12R (FIG. 1) has wheel 12Ra and tire 12Rb mounted on wheel 12Ra.
  • the wheel 12Ra (FIG. 4) is connected to the right electric motor 51R.
  • the right electric motor 51R has a stator and a rotor (not shown). One of the rotor and the stator is fixed to the wheel 12Ra, and the other is fixed to the rear wheel support 80.
  • the rotation axis of the right electric motor 51R is the same as the rotation axis of the wheel 12Ra, and is parallel to the right direction DR.
  • the configuration of the left rear wheel 12L is the same as the configuration of the right rear wheel 12R. Specifically, the left rear wheel 12L has a wheel 12La and a tire 12Lb.
  • One of the rotor and the stator of the left electric motor 51L is fixed to the wheel 12La, and the other is fixed to the rear wheel support 80.
  • These electric motors 51L and 51R are in-wheel motors that directly drive the rear wheels 12L and 12R.
  • FIGS. 1 and 4 show a state in which the vehicle body 90 stands upright on the horizontal ground GL without inclining (a state in which the later-described inclination angle T is zero).
  • the rotation axis ArL of the left rear wheel 12L (FIG. 4) and the rotation axis ArR of the right rear wheel 12R are located on the same straight line.
  • the position of the front center DF of the contact center PbR of the right rear wheel 12R with the ground GL is the position of the front center DF of the contact center PbL of the left rear wheel 12L with the ground GL. Approximately the same.
  • the link mechanism 30 (FIG. 4) is a so-called parallel link.
  • the link mechanism 30 has three vertical link members 33L, 21 and 33R arranged in order in the right direction DR, and two horizontal link members 31U and 31D arranged in order in the downward direction DD. .
  • the vertical link members 33L, 21, 33R are parallel to the vertical direction
  • the horizontal link members 31U, 31D are parallel to the horizontal direction.
  • the two vertical link members 33L and 33R and the two horizontal link members 31U and 31D form a parallelogram link mechanism.
  • the upper horizontal link member 31U connects the upper ends of the vertical link members 33L and 33R.
  • the lower horizontal link member 31D connects the lower ends of the vertical link members 33L and 33R.
  • the middle vertical link member 21 connects central portions of the horizontal link members 31U and 31D.
  • These link members 33L, 33R, 31U, 31D, 21 are rotatably connected to each other, and the rotation axis is parallel to the forward direction DF.
  • a left electric motor 51L is fixed to the left vertical link member 33L.
  • a right electric motor 51R is fixed to the right vertical link member 33R.
  • a first support portion 82 and a second support portion 83 (FIG. 1) are fixed to an upper portion of the middle vertical link member 21.
  • the link members 33L, 21, 33R, 31U, 31D and the support portions 82, 83 are formed, for example, of metal.
  • the link mechanism 30 has a bearing for rotatably connecting a plurality of link members.
  • the bearing 38 rotatably connects the lower horizontal link member 31D and the middle vertical link member 21, and the bearing 39 rotatably connects the upper horizontal link member 31U and the middle vertical link member 21.
  • bearings are also provided at other portions that rotatably connect the plurality of link members.
  • the lean motor 25 is an example of an actuator that operates the link mechanism 30, and in this embodiment, is an electric motor having a stator and a rotor.
  • One of the stator and the rotor of the lean motor 25 is fixed to the middle vertical link member 21, and the other is fixed to the upper horizontal link member 31U.
  • the rotation axis of the lean motor 25 is the same as the rotation axis of the bearing 39, and is located at the center of the vehicle 10 in the width direction.
  • the torque generated by the lean motor 25 is also referred to as tilt torque.
  • the tilt torque is a torque for controlling the tilt angle of the vehicle body 90.
  • FIGS. 5A and 5B are schematic diagrams showing the state of the vehicle 10 on the horizontal ground GL.
  • FIG. 5A shows a state in which the vehicle 10 is upright
  • FIG. 5B shows a state in which the vehicle 10 is inclined.
  • FIG. 5A when the upper horizontal link member 31U is orthogonal to the middle vertical link member 21, all the wheels 12F, 12L, 12R stand upright on the horizontal ground GL. Then, the entire vehicle 10 including the vehicle body 90 stands upright on the ground GL.
  • the vehicle upward DVU in the drawing is the upward direction of the vehicle 10. When the vehicle 10 is not inclined, the vehicle upward DVU is the same as the upward DU. In the present embodiment, the predetermined upward direction with respect to the vehicle body 90 is used as the vehicle upward DVU.
  • the vehicle upward DVU is inclined to the right direction DR side with respect to the upward direction DU.
  • the angle between the upward direction DU and the vehicle upward direction DVU when the vehicle 10 is viewed in the forward direction DF is referred to as an inclination angle T.
  • T> zero indicates an inclination toward the right direction DR
  • T ⁇ zero indicates an inclination toward the left direction DL.
  • FIG. 5 (B) shows the control angle Tc of the link mechanism 30.
  • the control angle Tc indicates the angle of the direction of the middle vertical link member 21 with respect to the direction of the upper horizontal link member 31U.
  • “Tc> zero” indicates that the middle vertical link member 21 has rotated clockwise with respect to the upper horizontal link member 31U in the rear view of FIG. 5B.
  • “Tc ⁇ zero” indicates that the middle vertical link member 21 has rotated counterclockwise with respect to the upper horizontal link member 31U.
  • the control angle Tc is approximately the same as the inclination angle T.
  • an inclined axis AxL is arranged on the ground GL.
  • the link mechanism 30 and the lean motor 25 can tilt the vehicle 10 right and left around the tilt axis AxL.
  • the tilt axis AxL is a straight line that passes through the contact center P1 between the front wheel 12F and the ground GL and is parallel to the front direction DF.
  • the link mechanism 30 that rotatably supports the rear wheels 12L and 12R and the lean motor 25 form an inclining device 89 configured to incline the vehicle body 90 in the width direction of the vehicle 10.
  • the horizontal link member 31U is connected to the wheels 12L and 12R via the vertical link members 33L and 33R and the motors 51L and 51R.
  • the middle vertical link member 21 is connected to the vehicle body 90 via the first support portion 82 and a suspension system 70 (described later).
  • the lean motor 25 changes the relative position of the member 31U connected to the wheels 12L and 12R and the member 21 connected to the vehicle body 90 (here, changes the direction of the member 21 with respect to the member 31U). (Torque) is applied to the member 31U and the member 21.
  • FIGS. 6 (A) and 6 (B) show simplified rear views of the vehicle 10 as in FIGS. 5 (A) and 5 (B).
  • the ground GLx is inclined obliquely with respect to the vertical upward direction DU (the right side is high and the left side is low).
  • FIG. 6A shows a state where the control angle Tc is zero. In this state, all the wheels 12F, 12L, 12R stand upright on the ground GLx.
  • the vehicle upward DVU is perpendicular to the ground GLx, and is inclined to the left direction DL with respect to the vertical upward DU.
  • FIG. 6B shows a state in which the inclination angle T is zero.
  • the upper horizontal link member 31U is approximately parallel to the ground GLx and is inclined counterclockwise with respect to the middle vertical link member 21.
  • the wheels 12F, 12L, 12R are inclined with respect to the ground GL.
  • the magnitude of the inclination angle T of the vehicle body 90 may be different from the magnitude of the control angle Tc of the link mechanism 30.
  • the vehicle 10 includes a locking device 900 configured to lock the tilt device 89.
  • the lock device 900 is a friction brake connected to the middle vertical link member 21 and the upper horizontal link member 31U.
  • the lock device 900 moves the brake rotor 910 fixed to the middle vertical link member 21, the brake caliper 920 fixed to the upper horizontal link member 31U, the brake pad 930 fixed to the brake caliper 920, and the brake caliper 920.
  • a lock motor 925 is mechanically connected to the shift switch 47 (for example, the brake caliper 920 and the shift switch 47 are connected by a wire).
  • the position of shift switch 47 is a position indicating parking
  • brake caliper 920 presses brake pad 930 against brake rotor 910.
  • the upper horizontal link member 31U is non-rotatably fixed to the middle vertical link member 21.
  • the locking device 900 locks the tilting device 89.
  • the T control angle Tc and, consequently, the inclination angle T are fixed.
  • the state of the lock device 900 that locks the tilt device 89 is referred to as a locked state.
  • the user operates the lock device 900 by moving the position of the shift switch 47 to the parking position (that is, the state of the lock device 900 becomes a locked state).
  • the lock device 900 is a mechanical device capable of fixing the control angle Tc without consuming power.
  • the control device 100 can control the state of the lock device 900 by controlling the lock motor 925.
  • the main body 20 is connected to the rear wheel support 80 by a suspension system 70 and a connecting rod 75.
  • the suspension system 70 (FIG. 4) has an extendable left suspension 70L and an extendable right suspension 70R.
  • each of the suspensions 70L, 70R is a telescopic suspension incorporating coil springs 71L, 71R and shock absorbers 72L, 72R.
  • the ends of the suspensions 70L and 70R on the upward DU side are rotatably connected to the support 20d of the main body 20 (for example, ball joints, hinges, and the like). Ends of the suspensions 70L, 70R on the lower direction DD side are rotatably connected to the first support portions 82 of the rear wheel support portions 80 (for example, ball joints, hinges, etc.).
  • the connecting rod 75 is a rod extending in the front direction DF as shown in FIGS.
  • the connecting rod 75 is arranged at the center of the vehicle 10 in the width direction.
  • the end of the connecting rod 75 on the front DF side is rotatably connected to the rear portion 20c of the main body 20 (for example, a ball joint).
  • An end of the connecting rod 75 on the rear direction DB side is rotatably connected to the second support 83 of the rear wheel support 80 (for example, a ball joint).
  • the main body 20 (and the vehicle body 90) is connected to the rear wheel support 80 via the suspension system 70 and the connecting rod 75.
  • the vehicle body 90 is rotatable in the width direction by expansion and contraction of the suspensions 70L and 70R.
  • the rotation axis AxR in FIG. 1 indicates a central axis when the vehicle body 90 rotates in the right direction DR and the left direction DL with respect to the rear wheel support portion 80.
  • the rotation axis AxR is a straight line passing through the contact center P1 between the front wheel 12F and the ground GL and the vicinity of the connecting rod 75.
  • the tilt axis AxL of the tilt by the tilt device 89 is different from the rotation axis AxR.
  • the vehicle body 90 which rotates around the rotation axis AxR is indicated by a dotted line.
  • the rotation axis AxR in the figure indicates the position of the rotation axis AxR on a plane that includes the suspensions 70L and 70R and that is perpendicular to the front direction DF. As shown in FIG. 5B, even when the vehicle 10 is inclined, the vehicle body 90 can further rotate rightward DR and leftward DL about the rotation axis AxR.
  • the vehicle body 90 is rotated in the width direction of the vehicle 10 with respect to the vertically upward direction DU (therefore, the ground GL) by the rotation by the rear wheel support portion 80 and the rotation by the suspension system 70 and the connecting rod 75. Can move.
  • the rotation in the width direction of the vehicle body 90 realized as a whole of the vehicle 10 is also referred to as a roll. Rolling can also occur due to deformation of members of the vehicle 10, such as the vehicle body 90 and the tires 12Rb, 12Lb.
  • the rotation about the rotation axis AxR is a temporary rotation, and its magnitude is smaller than the magnitude of the rotation by the tilting device 89.
  • FIGS. 1, 5A and 5B show a center of gravity 90c.
  • the center of gravity 90c is the center of gravity of the vehicle body 90 in the fully loaded state.
  • the full load state is a state in which the vehicle 10 is loaded with occupants (and, if possible, luggage) so that the total weight of the vehicle 10 becomes the allowable total vehicle weight.
  • the center of gravity 90c is the center of gravity in a state where the occupant of the maximum number of persons associated with the vehicle 10 has boarded the vehicle 10.
  • a predetermined reference weight for example, 55 kg
  • the maximum weight of the baggage may be specified in addition to the maximum capacity.
  • the center of gravity 90c is the center of gravity of the vehicle body 90 in a state where the maximum number of occupants and the heaviest luggage are loaded.
  • the center of gravity 90c is disposed on the downward DD side of the rotation axis AxR. Therefore, when the vehicle body 90 vibrates around the rotation axis AxR, it is possible to suppress the amplitude of the vibration from becoming excessively large.
  • the battery 120 which is a relatively heavy element among the elements of the vehicle body 90 (FIG. 1), is arranged at a low position in order to arrange the center of gravity 90c on the downward direction DD of the rotation axis AxR.
  • battery 120 is fixed to bottom portion 20 b, which is the lowest portion of main body portion 20 of vehicle body 90. Therefore, the center of gravity 90c can be easily made lower than the rotation axis AxR.
  • FIG. 7 is an explanatory view of the balance of the force at the time of turning.
  • the figure shows a rear view of the rear wheels 12L and 12R when the turning direction is the right direction.
  • the control device 100 (FIG. 1) leans so that the rear wheels 12L and 12R (and, consequently, the vehicle 10) incline in the right direction DR with respect to the ground GL.
  • the motor 25 and the steering motor 65 may be controlled.
  • the first force F1 in the drawing is a centrifugal force acting on the vehicle body 90.
  • the second force F2 is gravity acting on the vehicle body 90.
  • the mass of the vehicle body 90 is m (kg)
  • the gravitational acceleration is g (approximately 9.8 m / s 2 )
  • the inclination angle of the vehicle 10 with respect to the vertical direction is T (degree)
  • the turning radius is R (m).
  • the first force F1 and the second force F2 are represented by the following equations 1 and 2.
  • F1 (m * V 2) / R ( Equation 1)
  • F2 m * g (Equation 2)
  • * is a multiplication symbol (the same applies hereinafter).
  • the force F1b in the figure is a component of the first force F1 in a direction perpendicular to the vehicle upward direction DVU.
  • the force F2b is a component of the second force F2 in a direction perpendicular to the vehicle upward DVU.
  • the force F1b and the force F2b are represented by the following Expressions 3 and 4.
  • F1b F1 * cos (T) (Equation 3)
  • F2b F2 * sin (T) (Equation 4)
  • cos () is a cosine function
  • sin () is a sine function (the same applies hereinafter).
  • the force F1b is a component for rotating the vehicle upward DVU to the left direction DL
  • the force F2b is a component for rotating the vehicle upward DVU to the right direction DR.
  • Equation 6 is satisfied without depending on the mass m of the vehicle body 90.
  • T the absolute value of the tilt angle T
  • Equation 6a the absolute value of the tilt angle without distinguishing between the left direction and the right direction. Equation 6a is satisfied regardless of the inclination direction of the vehicle body 90.
  • R V 2 / (g * tan (Ta)) ( Equation 6a)
  • FIG. 8 is an explanatory diagram showing a simplified relationship between the wheel angle AF and the turning radius R.
  • the wheels 12F, 12L, and 12R viewed in the downward direction DD are shown.
  • the front wheel 12F is turning rightward DR
  • the vehicle 10 turns rightward DR.
  • the front center Cf in the figure is the center of the front wheel 12F.
  • the front center Cf is located on the rotation axis Ax2 of the front wheel 12F.
  • the front center Cf is located at approximately the same position as the contact center P1 (FIG. 1).
  • the rear center Cb is a center between the two rear wheels 12L and 12R.
  • the rear center Cb is located at the center between the rear wheels 12L and 12R on the rotation axes ArL and ArR of the rear wheels 12L and 12R.
  • the center Cr is the center of turning (referred to as turning center Cr).
  • the wheel base Lh is a distance in the forward direction DF between the front center Cf and the rear center Cb. As shown in FIG. 1, the wheel base Lh is a distance in the forward direction DF between the rotation axis Ax2 of the front wheel 12F and the rotation axes ArL and ArR of the rear wheels 12L and 12R.
  • the front center Cf, the rear center Cb, and the turning center Cr form a right triangle.
  • the interior angle of the point Cb is 90 degrees.
  • the inner angle of the point Cr is the same as the wheel angle AF. Therefore, the relationship between the wheel angle AF and the turning radius R is expressed by the following equation 7.
  • AF arctan (Lh / R) (Equation 7)
  • arctan () is an inverse function of the tangent function (the same applies hereinafter).
  • the center of gravity 90c of the vehicle body 90 moves to the right direction DR, and the traveling direction of the vehicle 10 moves to the right direction DR. Change. Further, the front wheel support device 41 (FIG. 1) (and thus the rotation axis Ax1 (FIG. 5B)) also moves to the right direction DR. On the other hand, the contact center P1 between the front wheel 12F and the ground GL cannot immediately move to the right direction DR due to friction. In this embodiment, as described with reference to FIG. 1, the front wheel 12F has a positive trail Lt.
  • the contact center P1 is located on the rear direction DB side with respect to the intersection P2 between the rotation axis Ax1 and the ground GL.
  • the direction of the front wheels 12F that is, the traveling direction D12 (FIG. 2)
  • the turning direction RF in FIG. 5B indicates the turning direction of the front wheel 12F about the turning axis Ax1 when the vehicle body 90 is inclined to the right direction DR.
  • the forces F1b and F2b (FIG. 7, equation 5) are balanced, so that the behavior of the vehicle 10 Stability is improved.
  • the vehicle 10 that turns at the inclination angle T tries to turn with the turning radius R represented by Expression 6.
  • the traveling direction D12 of the front wheel 12F naturally becomes the same as the traveling direction of the vehicle 10. Therefore, when the vehicle 10 turns at the inclination angle T, the direction of the front wheel 12F (that is, the wheel angle AF) is the direction of the wheel angle AF specified from the turning radius R expressed by Expression 6 and Expression 7. You can calm down.
  • the wheel angle AF changes following the inclination of the vehicle body 90.
  • FIG. 9 is an explanatory diagram of the force acting on the rotating front wheel 12F.
  • a perspective view of the front wheel 12F is shown.
  • the direction D12 of the front wheel 12F is the same as the front direction DF.
  • the rotation axis Ax2 is a rotation axis of the front wheel 12F.
  • the front wheels 12F rotate around the rotation axis Ax2.
  • a rotation axis Ax1 of the front wheel support device 41 (FIG. 1) and a front axis Ax3 are shown.
  • the rotation axis Ax1 extends from the upper direction DU toward the lower direction DD.
  • the front axis Ax3 is an axis that passes through the center of gravity 12Fc of the front wheel 12F and is parallel to the direction D12 of the front wheel 12F.
  • the rotation axis Ax2 of the front wheel 12F also passes through the center of gravity 12Fc of the front wheel 12F.
  • the front wheel support device 41 is fixed to the vehicle body 90. Therefore, when the vehicle body 90 is tilted, the front wheel support device 41 is tilted together with the vehicle body 90, and the rotation axis Ax2 of the front wheel 12F also tries to tilt in the same direction.
  • a torque Tqx for tilting to the right direction DR acts on the front wheel 12F that rotates about the rotation axis Ax2.
  • the torque Tqx includes a component of a force for tilting the front wheel 12F to the right direction DR around the front axis Ax3.
  • the movement of an object when an external torque is applied to the rotating object is known as precession.
  • a rotating object rotates around an axis perpendicular to the rotation axis and the axis of the external torque.
  • the application of the torque Tqx causes the rotating front wheel 12 ⁇ / b> F to rotate rightward DR around the rotation axis Ax ⁇ b> 1 of the front wheel support device 41.
  • the direction D12 of the front wheel 12F that is, the wheel angle AF
  • the front wheel support device 41 supports the front wheel 12F as described below. That is, the front wheel 12F can rotate to the left and right with respect to the vehicle body 90, following the change in the inclination of the vehicle body 90 regardless of the information input to the handle 41a. For example, even when the steering wheel 41a is maintained in a state in which the steering wheel 41a is directed in a predetermined direction indicating that the vehicle is traveling straight, if the inclination angle T of the vehicle body 90 changes to the right, the front wheels 12F change in the inclination angle T. Following, it can turn to the right (that is, the wheel angle AF can change to the right).
  • the front wheel support device 41 supports the front wheel 12F in this way is paraphrased as follows. That is, the front wheel supporting device 41 follows the change in the inclination of the vehicle body 90 so that the wheel angle AF of the front wheel 12F with respect to one operation amount input to the handle 41a is not limited to one wheel angle AF.
  • the front wheel 12F is supported so as to be rotatable left and right.
  • the front wheel support device 41 has a connecting portion 50 for connecting the support bar 41ax of the handle 41a to the front fork 17.
  • the connecting portion 50 includes a first portion 51 fixed to the support rod 41ax, a second portion 52 fixed to the front fork 17, a third portion 53 connecting the first portion 51 and the second portion 52, Contains.
  • the connecting portion 50 is indirectly connected to the handle 41a via a support bar 41ax, and is directly connected to the front fork 17.
  • the third portion 53 is a viscous damper in the present embodiment.
  • the connecting portion 50 applies a force for suppressing the change to the handle 41a and the front fork 17.
  • the direction D12 of the front wheel 12F may suddenly change unintentionally due to external factors such as unevenness of the road surface.
  • the connecting portion 50 allows a gradual change in the relative direction of the front fork 17 (and, consequently, the front wheel 12F) with respect to the direction of the handle 41a.
  • the connecting portion 50 loosely connects the handle 41a and the front fork 17.
  • the torque of the steering motor 65 is small, such a connecting portion 50 allows the front wheels 12F to move right and left with respect to the vehicle body 90 following the change in the inclination of the vehicle body 90 regardless of the steering wheel angle input to the steering wheel 41a. Is allowed to rotate. Therefore, the wheel angle AF can be changed to an angle suitable for the inclination angle T, so that running stability is improved.
  • FIG. 10 is a block diagram illustrating a configuration related to control of the vehicle 10.
  • the vehicle 10 includes a vehicle speed sensor 122, a steering wheel angle sensor 123, a wheel angle sensor 124, a vertical direction sensor 126, an accelerator pedal sensor 145, a brake pedal sensor 146, a shift switch 47, and a lock It has a device 900, a control device 100, a right electric motor 51R, a left electric motor 51L, a lean motor 25, and a steering motor 65.
  • the vehicle speed sensor 122 is a sensor that detects the vehicle speed of the vehicle 10.
  • the vehicle speed sensor 122 is attached to the lower end of the front fork 17 (FIG. 1), and detects the rotation speed of the front wheels 12F, that is, the vehicle speed.
  • the handle angle sensor 123 is a sensor that detects the direction of the handle 41a (that is, the handle angle).
  • the handle angle sensor 123 is attached to a support bar 41ax fixed to the handle 41a (FIG. 1).
  • the wheel angle sensor 124 is a sensor that detects the wheel angle AF of the front wheel 12F.
  • the wheel angle sensor 124 is attached to the steering motor 65 (FIG. 1).
  • the vertical sensor 126 is a sensor that specifies the vertical direction DD.
  • the vertical direction sensor 126 includes an acceleration sensor 126a, a gyro sensor 126g, and a control unit 126c.
  • the acceleration sensor is a sensor that detects acceleration in an arbitrary direction, and is, for example, a three-axis acceleration sensor.
  • the direction of the acceleration detected by the acceleration sensor 126a is referred to as a detection direction.
  • the detection direction is the same as the vertically downward direction DD. That is, the direction opposite to the detection direction is the vertically upward direction DU.
  • the gyro sensor 126g is a sensor that detects angular acceleration about a rotation axis in an arbitrary direction, and is, for example, a three-axis angular acceleration sensor.
  • the control unit 126c is a device that specifies the vertical downward direction DD using a signal from the acceleration sensor 126a and a signal from the gyro sensor 126g.
  • the control unit 126c is, for example, a data processing device including a computer.
  • the acceleration sensor 126a and the gyro sensor 126g may be fixed to various members of the vehicle 10.
  • the acceleration sensor 126a and the gyro sensor 126g are fixed to the same member.
  • the acceleration sensor 126a and the gyro sensor 126g, and furthermore, the vertical sensor 126 are fixed to the rear portion 20c of the main body 20.
  • the detection direction may deviate from the vertically downward direction DD according to the movement of the vehicle 10. For example, when the vehicle 10 accelerates while moving forward, the detection direction shifts in a direction inclining toward the rear direction DB with respect to the vertically downward direction DD. When the vehicle 10 decelerates while moving forward, the detection direction shifts in a direction inclined toward the forward direction DF with respect to the vertically downward direction DD. When the vehicle 10 turns to the left while moving forward, the detection direction is shifted in a direction inclined to the right direction DR with respect to the vertically downward direction DD. When the vehicle 10 turns right while moving forward, the detection direction is shifted in a direction inclining to the left direction DL with respect to the vertically downward direction DD.
  • the control unit 126c of the vertical sensor 126 calculates the acceleration of the vehicle 10 by using the vehicle speed V specified by the vehicle speed sensor 122. Then, the control unit 126c uses the acceleration to specify a deviation in the detection direction with respect to the vertical downward direction DD due to the acceleration of the vehicle 10 (for example, a deviation in the front direction DF or the rear direction DB in the detection direction is specified). ). Further, the control unit 126c specifies the deviation of the detection direction from the vertical downward direction DD caused by the angular acceleration of the vehicle 10 by using the angular acceleration specified by the gyro sensor 126g (for example, the right direction DR of the detection direction). Alternatively, a shift in the left direction DL is specified). The control unit 126c specifies the vertical downward direction DD by correcting the detection direction using the specified deviation. As described above, the vertical direction sensor 126 can specify an appropriate vertical downward direction DD in various running states of the vehicle 10.
  • the control unit 126c outputs the vertical down direction information indicating the specified vertical down direction DD.
  • the vertical downward direction information indicates a vertical downward direction DD with respect to a predetermined reference direction of the vertical direction sensor 126.
  • the vertical direction sensor 126 is fixed to the vehicle body 90 (specifically, the main body 20). Therefore, the correspondence between the vehicle upward direction DVU of the vehicle body 90 and the reference direction of the vertical direction sensor 126 is predetermined (referred to as a sensor direction relationship). By using this sensor direction relationship, the vertical downward direction DD indicated by the vertical downward direction information can be converted into the vertical downward direction DD with respect to the vehicle upward direction DVU of the vehicle body 90.
  • the accelerator pedal sensor 145 is attached to the accelerator pedal 45 (FIG. 1), and detects an accelerator operation amount.
  • the brake pedal sensor 146 is attached to the brake pedal 46 (FIG. 1), and detects a brake operation amount.
  • Each sensor 122, 123, 124, 145, 146 is configured using, for example, a resolver or an encoder.
  • the control device 100 includes a main control unit 110, a drive device control unit 300, a lean motor control unit 400, a steering motor control unit 500, and a lock motor control unit 600.
  • Control device 100 operates using power from battery 120 (FIG. 1).
  • each of the control units 110, 300, 400, and 500 has a computer.
  • the control units 110, 300, 400, and 500 include processors 110p, 300p, 400p, and 500p (for example, CPU), volatile storage devices 110v, 300v, 400v, and 500v (for example, DRAM), and a non-volatile memory.
  • Storage devices 110n, 300n, 400n, and 500n for example, a flash memory).
  • Programs 110g, 300g, 400g, and 500g for the operations of the corresponding control units 110, 300, 400, and 500 are stored in advance in the nonvolatile storage devices 110n, 300n, 400n, and 500n.
  • the map data MT and MAF are stored in the nonvolatile storage device 110n of the main control unit 110 in advance.
  • the map data Mp1, Mp21, Mp22, Mp31, Mp32 are stored in the nonvolatile storage device 500n of the steering motor control section 500 in advance.
  • the processors 110p, 300p, 400p, and 500p execute various processes by executing the corresponding programs 110g, 300g, 400g, and 500g, respectively.
  • the processor 110p of the main control unit 110 receives signals from the sensors 122, 123, 124, 126, 145, 146 and the shift switch 47, and controls the vehicle 10 according to the received signals.
  • the processor 110p of the main control unit 110 controls the vehicle 10 by outputting instructions to the drive device control unit 300, the lean motor control unit 400, and the steering motor control unit 500 (details will be described later).
  • the processor 300p of the driving device control unit 300 controls the electric motors 51L and 51R according to the instruction from the main control unit 110.
  • the processor 400p of the lean motor control unit 400 controls the lean motor 25 according to an instruction from the main control unit 110.
  • the processor 500p of the steering motor control unit 500 controls the steering motor 65 according to an instruction from the main control unit 110.
  • These control units 300, 400, and 500 have power control units 300c, 400c, and 500c, respectively, that supply power from the battery 120 to the motors 51L, 51R, 25, and 65 to be controlled.
  • the power control units 300c, 400c, and 500c are configured using an electric circuit (for example, an inverter circuit).
  • control units 110, 300, 400, and 500 are also simply referred to as the execution of the processing by the control units 110, 300, 400, and 500.
  • the lock motor control unit 600 includes an electric circuit (for example, an inverter circuit) that supplies electric power from the battery 120 to the lock motor 925 of the lock device 900.
  • an electric circuit for example, an inverter circuit
  • FIG. 11 is a flowchart showing an example of a control process executed by the control device 100 (FIG. 10).
  • the flowchart of FIG. 11 shows a control procedure of the rear wheel support unit 80 and the front wheel support device 41.
  • each process is provided with a symbol obtained by combining a character “S” and a number following the character “S”.
  • the main control unit 110 acquires signals from the sensors 122, 123, 124, 126, 145, 146 and the shift switch 47. Then, the main control unit 110 specifies the speed V, the steering wheel angle, the wheel angle AF, the vertical downward direction DD, the accelerator operation amount, the brake operation amount, and the traveling mode.
  • main controller 110 determines whether or not the condition that the traveling mode is one of "drive” and "neutral" is satisfied.
  • the condition of S110 indicates that the vehicle 10 is moving forward. If the determination result in S110 is Yes, the main control unit 110 proceeds to S130.
  • control device 100 controls lean motor 25 and steering motor 65 such that vehicle 10 advances in the direction associated with the steering wheel angle.
  • the outline of S130 is as follows.
  • the main control unit 110 determines the first target inclination angle T1 using the steering wheel angle and the vehicle speed V.
  • the first target inclination angle T1 indicates a target value of the inclination angle T.
  • the absolute value of the first target inclination angle T1 increases as the absolute value of the steering wheel angle increases.
  • the turning direction in the case where the vehicle body 90 is turned in the width direction such that the tilt angle T approaches the first target tilt angle T1 is referred to as a target direction.
  • the target direction is either the right direction or the left direction.
  • the lean motor control unit 400 causes the lean motor 25 to output the target direction tilt torque so that the tilt angle T approaches the first target tilt angle T1. Further, the steering motor control section 500 can cause the steering motor 65 to output a torque for rotating the front wheel 12F in a direction opposite to the target direction. As a result, the vehicle 10 appropriately travels in the direction corresponding to the steering wheel angle. Details of the processing of S130 will be described later.
  • the main control unit 110 determines the first target inclination angle T1, as in S130.
  • the main control unit 110 supplies an instruction to the lean motor control unit 400 to control the lean motor 25 so that the inclination angle T becomes the first target inclination angle T1.
  • the lean motor control unit 400 drives the lean motor 25 according to the instruction so that the tilt angle T becomes the first target tilt angle T1.
  • the lean motor control unit 400 performs feedback control of the lean motor 25 using a difference between the tilt angle T and the first target tilt angle T1 (for example, so-called PID (Proportional Integral Derivative) control).
  • PID Proportional Integral Derivative
  • the main controller 110 also determines the first target wheel angle AFt1 using the steering wheel angle and the vehicle speed V. Information indicating the correspondence between the first target wheel angle AFt1, the steering wheel angle, and the vehicle speed V is determined in advance by map data MAF stored in the nonvolatile storage device 110n of the main control unit 110 (FIG. 10). I have.
  • the main control unit 110 specifies the first target wheel angle AFt1 corresponding to the combination of the steering wheel angle and the vehicle speed V with reference to the map data MAF.
  • the correspondence relationship between the steering wheel angle, the vehicle speed V, and the first target wheel angle AFt1 is the wheel specified by using the first target inclination angle T1, the vehicle speed V, and the above equations (6) and (7).
  • the same first target wheel angle AFt1 can be specified using the first target inclination angle T1 and the vehicle speed V.
  • the map data MAF may define a correspondence between a combination of the first target inclination angle T1 and the vehicle speed V and the first target wheel angle AFt1.
  • the main control unit 110 may specify the first target wheel angle AFt1 using the first target inclination angle T1 and the vehicle speed V.
  • the main control unit 110 supplies an instruction for controlling the steering motor 65 to the steering motor control unit 500 so that the wheel angle AF becomes the first target wheel angle AFt1.
  • the steering motor control unit 500 drives the steering motor 65 according to the instruction so that the wheel angle AF becomes the first target wheel angle AFt1.
  • the steering motor control unit 500 performs feedback control of the steering motor 65 using a difference between the wheel angle AF and the first target wheel angle AFt1 (for example, so-called PID (Proportional Integral Derivative) control).
  • the vehicle 10 appropriately travels in the direction corresponding to the steering wheel angle.
  • the processing of FIG. 11 ends in response to the execution of the processing of S130 or S170.
  • the control device 100 repeatedly executes the processing of FIG.
  • the condition for executing S130 is satisfied (S110: Yes)
  • the control device 100 continuously performs the processing of S130.
  • the condition for executing S170 is satisfied (S110: No)
  • the control device 100 continuously performs the process of S170.
  • the vehicle 10 travels in a traveling direction suitable for the steering wheel angle.
  • the main control unit 110 (FIG. 10) and the drive device control unit 300 function as a drive control unit that controls the electric motors 51L and 51R according to the accelerator operation amount and the brake operation amount.
  • the main control unit 110 supplies an instruction to increase the output power of the electric motors 51L and 51R to the drive device control unit 300.
  • the drive device control unit 300 controls the electric motors 51L and 51R so that the output power increases according to the instruction.
  • the main control unit 110 supplies an instruction to reduce the output power of the electric motors 51L and 51R to the drive device control unit 300.
  • the drive device control unit 300 controls the electric motors 51L and 51R so that the output power decreases according to the instruction.
  • the main control unit 110 supplies an instruction for reducing the output power of the electric motors 51L and 51R to the drive device control unit 300.
  • the drive device control unit 300 controls the electric motors 51L and 51R so that the output power decreases according to the instruction.
  • the vehicle 10 includes a brake device that reduces the rotation speed of at least one of the wheels 12F, 12L, and 12R by friction. When the user depresses the brake pedal 46, the brake device preferably reduces the rotation speed of at least one wheel.
  • FIG. 12 is a block diagram of a portion related to control of the lean motor 25 and the steering motor 65 in the control device 100.
  • the main control unit 110 includes an inclination angle identification unit 112, a target inclination angle determination unit 114, an addition point 116, a first determination unit 212, a first differential calculation unit 214, a second determination unit 216, and a second And a differential calculation unit 218.
  • the steering motor controller 500 includes a first P gain controller 512, a first P controller 514, a first D controller 516, a first addition point 518, a second P gain controller 522, and a second P controller 524.
  • Lean motor control section 400 includes a P control section 414, a D control section 416, an addition point 490, and a power control section 400c.
  • the processing units 112, 114, 116, 212, 214, 216, and 218 of the main control unit 110 are realized by the processor 110p of the main control unit 110 (FIG. 10).
  • the processing units 414, 416, and 490 of the lean motor control unit 400 are realized by the processor 400p of the lean motor control unit 400.
  • the processing units 512, 514, 516, 518, 522, 524, 526, 528, 532, 534, 536, 538, 590 of the steering motor control unit 500 are realized by the processor 500p of the steering motor control unit 500.
  • the processors 110p, 400p, and 500p are processed by the processing units 112, 114, 116, 212, 214, 216, 218, 414, 416, 490, 512, 514, 516, 518, 522, 524, 526, 528, 532,
  • the execution of the processing as 534, 536, 538, 590 is performed by the processing units 112, 114, 116, 212, 214, 216, 218, 414, 416, 490, 512, 514, 516, 518, 522, 524, 526. , 528, 532, 534, 536, 538, and 590 execute the processing.
  • FIG. 13 is a flowchart showing an example of the process of the first control (FIG. 11: S130).
  • the main control unit 110 acquires information indicating the vehicle speed V, the steering wheel angle Ai, and the vertically downward direction DD from the sensors 122, 123, and 126, respectively.
  • the tilt angle specifying unit 112 calculates the tilt angle T using the vertically downward direction DD.
  • the sensor direction relationship between the vehicle upward direction DVU of the vehicle body 90 and the reference direction of the vertical direction sensor 126 is predetermined.
  • the inclination angle specifying unit 112 calculates an inclination angle T, which is an angle between the upward direction DU, which is the opposite direction to the vertical downward direction DD, and the vehicle upward direction DVU.
  • the calculated inclination angle T is an angle formed by a vertically upward direction DU and a vehicle upward direction DVU when the vehicle 10 is viewed in the forward direction DF as shown in FIG. 5B.
  • the whole of the portion of the control device 100 that operates as the tilt angle specifying unit 112 and the vertical direction sensor 126 is an example of a tilt angle sensor configured to measure the tilt angle T.
  • the entirety of the tilt angle specifying unit 112 and the vertical direction sensor 126 is also referred to as a tilt angle sensor 127.
  • the target tilt angle determination unit 114 determines the first target tilt angle T1 using the steering wheel angle Ai and the vehicle speed V.
  • the first target inclination angle T1 indicates a target value of the inclination angle T.
  • the correspondence relationship between the steering wheel angle Ai, the vehicle speed V, and the first target inclination angle T1 is determined in advance by the angle map data MT stored in the nonvolatile storage device 110n of the main control unit 110 (FIG. 10). .
  • the target inclination angle determination unit 114 specifies the first target inclination angle T1 corresponding to the combination of the steering wheel angle Ai and the vehicle speed V by referring to the angle map data MT.
  • the absolute value of the first target inclination angle T1 increases as the absolute value of the steering wheel angle Ai increases.
  • the turning radius R decreases as the absolute value of the steering wheel angle Ai increases, so that the vehicle 10 can turn with the turning radius R suitable for the steering wheel angle Ai.
  • the steering wheel angle Ai is constant, the higher the vehicle speed V, the smaller the absolute value of the first target inclination angle T1.
  • the vehicle speed V is high, a large change in the inclination angle T due to a change in the steering wheel angle Ai is suppressed, so that the running stability of the vehicle 10 can be improved.
  • the relationship between the first target inclination angle T1 and the vehicle speed V other various relationships may be adopted.
  • the higher the vehicle speed V the larger the absolute value of the first target inclination angle T1 may be.
  • the information used for specifying the first target inclination angle T1 may be any information including the steering wheel angle Ai instead of the combination of the steering wheel angle Ai and the vehicle speed V.
  • the addition point 116 calculates a difference dT by subtracting the inclination angle T from the first target inclination angle T1 (also referred to as an inclination angle difference dT).
  • the first determination unit 212 determines a first flag FL1 indicating whether or not the absolute value of the tilt angle difference dT has increased.
  • Various methods can be adopted as a method for determining whether or not the absolute value of the inclination angle difference dT is increasing. In this embodiment, the processing in FIG. 13 is repeatedly executed.
  • the first determination unit 212 compares the current tilt angle difference dT (that is, the latest tilt angle difference dT) with the tilt angle difference dT at a point in time past a predetermined time from the present time, thereby obtaining the tilt angle difference dT. It is determined whether or not the absolute value of dT has increased.
  • the first flag FL1 is set to zero.
  • the first flag FL1 is set to 1.
  • the first derivative calculator 214 calculates the angular velocity Vt, which is the derivative of the tilt angle T.
  • a known method may be used as a method for calculating the differential value. For example, a value obtained by subtracting the inclination angle T at a point in time that is a predetermined time from the present time from the current inclination angle T (that is, the latest inclination angle T) is a differential value of the inclination angle T, that is, the angular velocity. Vt may be used.
  • various methods may be used for calculating a differential value of another parameter described later.
  • the second determination unit 216 determines a second flag FL2 indicating whether or not the absolute value of the angular velocity Vt has increased.
  • Various methods can be adopted as a method for determining whether or not the absolute value of the angular velocity Vt is increasing.
  • the second determination unit 216 compares the current angular velocity Vt (that is, the latest angular velocity Vt) with the angular velocity Vt at a point in time past a predetermined time from the present time, thereby obtaining the absolute value of the angular velocity Vt. Determine whether the value has increased.
  • the second flag FL2 is set to zero.
  • the second flag FL2 is set to 1.
  • the second derivative calculator 218 calculates an angular acceleration At that is a differential value of the angular velocity Vt.
  • a known method may be used as a method for calculating the differential value. For example, a value obtained by subtracting the angular velocity Vt at a point in time past a predetermined time from the present time from the current angular velocity Vt (that is, the latest angular velocity Vt) is used as a differential value of the angular velocity Vt, that is, the angular acceleration At. May be.
  • Steps S240 to S280 are executed by the steering motor control unit 500.
  • S300 to S340 are executed by the lean motor control unit 400.
  • FIGS. 14A to 14D are diagrams for explaining the rotation torque of the steering motor 65 controlled by the steering motor control unit 500 and the inclination torque of the lean motor 25 controlled by the lean motor control unit 400.
  • FIG. FIGS. 14A and 14C show rear views of the vehicle 10, and FIGS. 14B and 14D show top views of the vehicle 10.
  • FIGS. 14A and 14B show a case where the handlebar 41a is turned to the right while the upright vehicle 10 is moving forward.
  • the vehicle upward DVU is approximately the same as the upward DU
  • the inclination angle T is approximately zero.
  • the first target tilt angle T1 indicates a state where the vehicle body 90 is tilted to the right direction DR side.
  • the target direction DTg in the figure is the case where the vehicle body 90 is rotated in the width direction so that the inclination angle T approaches the first target inclination angle T1 (that is, the vehicle body 90 is rolled), between the right direction and the left direction. 3 shows the direction of rotation.
  • the target direction DTg is the right direction.
  • the direction DT1 in FIG. 14A is the direction indicated by the first target inclination angle T1, and is the target direction of the vehicle upward DVU.
  • the direction DT1 indicates the vehicle upward direction DVU in a state where the inclination angle T is the first target inclination angle T1. As illustrated, the direction DT1 is inclined from the upper direction DU to the right direction DR.
  • the lean motor control unit 400 outputs, to the lean motor 25 (FIG. 14A), the inclination torque TqL for rotating the middle vertical link member 21 clockwise with respect to the upper horizontal link member 31U. (Details will be described later).
  • This tilt torque TqL tilts the vehicle body 90 to the right direction DR.
  • the direction of the tilt torque TqL (here, the right direction DR) is the same as the target direction DTg.
  • the steering motor control unit 500 causes the steering motor 65 to output a turning torque TqT (FIG. 14B) for turning the front fork 17 (and thus the front wheel 12F) in the left direction DL.
  • the direction of the rotation torque TqT (here, the left direction DL) is opposite to the target direction DTg (also referred to as reverse torque TqT).
  • the steering motor control unit 500 performs the roll of the vehicle body 90 to make the target direction DTg (that is, the tilt angle T closer to the first target tilt angle T1).
  • Direction the steering motor 65 outputs a torque in the opposite direction.
  • Such wheel control is also called counter steering. In the present embodiment, counter steering is used to make the inclination angle T closer to the first target inclination angle T1.
  • the front wheel 12F is turned leftward by the reverse torque TqT. Accordingly, the traveling direction D12 of the front wheel 12F is directed to the left direction DL, and the vehicle 10 turns toward the left direction DL. As a result, the centrifugal force F3 acts on the vehicle body 90. This centrifugal force F3 is directed to the right direction DR, that is, the target direction DTg. Therefore, the vehicle body 90 can rotate in the target direction DTg using the centrifugal force F3.
  • the traveling direction D12 of the front wheel 12F faces the left direction DL side, as shown by an arrow AL in FIGS. 14A and 14B, the downward direction DD side of the vehicle 10 including the front wheel 12F is included.
  • the part (particularly, the part on the lower side DD side than the center of gravity 90c) moves to the left side DL side.
  • the movement of the center of gravity 90c is not easy as compared with the movement of the portion on the lower direction DD side of the vehicle 10. Therefore, as shown by the arrow AH in FIGS. 14A and 14B, the portion of the vehicle 10 on the upper DU side than the center of gravity 90c easily moves to the right DR side.
  • the vehicle body 90 can rotate in the target direction DTg using the rotation about the center of gravity 90c.
  • FIG. 15 is a perspective view of the front wheel 12F similar to FIG. In the figure, a handle 41a is also shown.
  • a left turn torque TqT is applied to the front wheels 12F. Due to such a reverse torque TqT, a torque Tqz that rotates about the front shaft Ax3 acts on the rotating front wheel 12F so as to incline to the right direction DR.
  • the front wheels 12F that receive such torque Tqz incline the vehicle body 90 to the right, that is, the target direction DTg.
  • the reverse torque TqT is determined by the centrifugal force F3 (FIG. 14B), the motion of the vehicle body 90 about the center of gravity 90c (FIG. 14A), and the precession motion of the front wheel 12F (FIG. 15). ),
  • the vehicle body 90 can be rotated in the target direction DTg. Thereby, the inclination angle T can easily approach the first target inclination angle T1. Further, when the vehicle body 90 rotates in the direction of the centrifugal force F3, the acceleration in the width direction perceived by the occupant of the vehicle 10 is suppressed. Thereby, the riding comfort of the vehicle 10 is improved. The same applies to the case where the handle 41a is turned to the left.
  • the centrifugal force F3 increases as the vehicle speed V increases.
  • the rotation of the vehicle body 90 about the center of gravity 90c increases as the vehicle speed V increases.
  • the angular momentum of the front wheels 12F increases as the vehicle speed V increases. Therefore, the force that rotates the vehicle body 90 in the target direction DTg due to the reverse torque TqT increases as the vehicle speed V increases.
  • FIGS. 14C and 14D show a state in which the inclination angle T has become the first target inclination angle T1 after FIGS. 14A and 14B (the inclination angle difference dT). Is approximately zero).
  • the inclination torque TqL of the lean motor 25 is approximately zero
  • the turning torque TqT of the steering motor 65 is also approximately zero.
  • the front wheel 12F can turn right and left independently of the direction of the handle 41a.
  • the direction of the front wheel 12F can be settled to the direction of the wheel angle AF specified by the turning radius R expressed by Expression 6 and Expression 7. .
  • the traveling direction D12 of the front wheel 12F faces the same right direction DR as the direction of the handle 41a.
  • step S240, S250, and S260 the steering motor controller 500 determines the control values Vc1, Vc2, and Vc3 used for controlling the turning torque.
  • FIG. 16, FIG. 17, and FIG. 18 are flowcharts illustrating examples of the processing of S240, S250, and S260, respectively. Hereinafter, S240, S250, and S260 will be described in this order.
  • the steering motor control unit 500 determines the first control value Vc1 according to the procedure of FIG.
  • the first control value Vc1 is a control value determined by feedback control using the inclination angle difference dT, and indicates the above-described reverse torque.
  • first P gain control section 512 determines first P gain Kp1 using vehicle speed V.
  • the correspondence between the vehicle speed V and the first P gain Kp1 is predetermined by the map data Mp1 stored in the non-volatile storage device 500n of the steering motor control unit 500 (FIG. 10).
  • the first P gain control unit 512 specifies the first P gain Kp1 corresponding to the vehicle speed V by referring to the map data Mp1.
  • FIG. 19A is a graph showing an example of the correspondence between the vehicle speed V and the first P gain Kp1.
  • the horizontal axis indicates the absolute value of the vehicle speed V (that is, the magnitude of the vehicle speed V), and the vertical axis indicates the first P gain Kp1.
  • the smaller the absolute value of the vehicle speed V the larger the first P gain Kp1.
  • the first P gain Kp1 changes smoothly with changes in the vehicle speed V.
  • first P gain Kp1 is larger than when the absolute value of vehicle speed V is larger than threshold value Tha. The reason why the relationship between the vehicle speed V and the first P gain Kp1 is configured as shown in FIG. 19A will be described later.
  • the first P control unit 514 determines the first proportional term Vp1 using the inclination angle difference dT and the first P gain Kp1 determined in S730.
  • the method of determining the first proportional term Vp1 may be a known method for determining the proportional term of the PID control. For example, a value obtained by multiplying the inclination angle difference dT by the first P gain Kp1 is output as the first proportional term Vp1.
  • the first D control unit 516 determines the first differential term Vd1 using the inclination angle difference dT and the first D gain Kd1.
  • the first D gain Kd1 is predetermined.
  • the method of determining the first differential term Vd1 may be a known method for determining the differential term of PID control. For example, a value obtained by multiplying the differential value of the inclination angle difference dT by the first D gain Kd1 is output as the first differential term Vd1.
  • Various methods may be used to calculate the differential value of the inclination angle difference dT.
  • a value obtained by subtracting a tilt angle difference dT at a point in time in the past by a specific time difference from the present time from the current tilt angle difference dT may be adopted as a differential value.
  • the time difference for specifying the differential value of the inclination angle difference dT may be determined in advance, and may be determined based on another parameter (for example, the vehicle speed V) instead.
  • the first D gain Kd1 may be a variable value that changes according to another parameter (for example, the vehicle speed V).
  • the first addition point 518 acquires information representing the terms Vp1 and Vd1 from the processing units 514 and 516, respectively. Then, the first addition point 518 determines a first control value Vc1, which is the sum of these terms Vp1 and Vd1. Then, the process of FIG. 16, that is, S240 of FIG. 13 ends.
  • the steering motor control unit 500 determines the second control value Vc2 according to the procedure of FIG.
  • the second control value Vc2 is a control value determined by feedback control using the angular velocity Vt, and indicates a turning torque that reduces the angular velocity Vt.
  • the second P gain control unit 522 (FIG. 12) refers to the first flag FL1 (FIG. 13: S232) and determines whether or not the absolute value of the inclination angle difference dT has increased. .
  • the second P gain control unit 522 uses the vehicle speed V and the second P gain in accordance with the first correspondence relationship R21 in S830. Determine Kp2.
  • the first correspondence R21 is a correspondence between the vehicle speed V and the second P gain Kp2.
  • the first correspondence R21 is determined in advance by the map data Mp21 stored in the nonvolatile storage device 500n of the steering motor control unit 500 (FIG. 10).
  • the second P gain control unit 522 specifies the second P gain Kp2 corresponding to the vehicle speed V by referring to the map data Mp21.
  • FIG. 19B is a graph showing an example of the correspondence between the vehicle speed V and the second P gain Kp2.
  • the horizontal axis indicates the absolute value of the vehicle speed V (that is, the magnitude of the vehicle speed V), and the vertical axis indicates the second P gain Kp2.
  • the first correspondence R21 in the figure the smaller the absolute value of the vehicle speed V, the larger the second P gain Kp2.
  • the second P gain Kp2 changes smoothly with changes in the vehicle speed V.
  • Thb 15 km / h.
  • second P gain control section 522 determines second P gain Kp2 using vehicle speed V according to second correspondence relationship R22.
  • the second correspondence R22 is a correspondence between the vehicle speed V and the second P gain Kp2.
  • the second correspondence R22 is determined in advance by the map data Mp22 stored in the nonvolatile storage device 500n of the steering motor control unit 500 (FIG. 10).
  • the second P gain control unit 522 specifies the second P gain Kp2 corresponding to the vehicle speed V by referring to the map data Mp22.
  • FIG. 19B also shows a graph of the second correspondence relationship R22.
  • the smaller the absolute value of the vehicle speed V the larger the second P gain Kp2.
  • second P gain Kp2 is larger than when the absolute value of vehicle speed V is larger than threshold Thb.
  • the second P gain Kp2 of the second correspondence R22 is smaller than the second P gain Kp2 of the first correspondence R21.
  • the second P control unit 524 determines the second proportional term Vp2 using the angular velocity Vt and the second P gain Kp2 determined in S830 or S840.
  • the method of determining the second proportional term Vp2 may be a known method for determining the proportional term of the PID control. For example, a value obtained by multiplying the angular velocity Vt by the second P gain Kp2 is output as the second proportional term Vp2.
  • the second D control unit 526 determines the second differential term Vd2 using the angular velocity Vt and the second D gain Kd2.
  • the second D gain Kd2 is predetermined.
  • the method of determining the second differential term Vd2 may be a known method for determining the differential term of PID control. For example, a value obtained by multiplying the differential value of the angular velocity Vt by the second D gain Kd2 is output as the second differential term Vd2.
  • the time difference for specifying the differential value of the angular velocity Vt may be determined in advance, and may be determined based on another parameter (for example, the vehicle speed V) instead.
  • the second D gain Kd2 may be a variable value that changes according to another parameter (for example, the vehicle speed V).
  • the second addition point 528 acquires information representing the terms Vp2 and Vd2 from the processing units 524 and 526, respectively. Then, the second addition point 528 determines a second control value Vc2 that is the sum of these terms Vp2 and Vd2. Then, the processing in FIG. 17, that is, S250 in FIG. 13 ends.
  • the steering motor control unit 500 determines the third control value Vc3 according to the procedure of FIG.
  • the third control value Vc3 is a control value determined by feedback control using the angular acceleration At, and indicates a turning torque for reducing the angular acceleration At.
  • the third P gain control unit 532 (FIG. 12) refers to the second flag FL2 (FIG. 13: S236) and determines whether or not the absolute value of the angular velocity Vt has increased.
  • the third control value Vc3 is determined to be zero.
  • the third P gain control unit 532 determines the third P gain Kp3 to be zero.
  • the third P control unit 534 determines the third proportional term Vp3 to be zero according to the third P gain Kp3 of zero.
  • the third D control unit 536 determines the third D gain Kd3 to be zero in S980, and the third differential term according to the third D gain Kd3 of zero. Vd3 is determined to be zero.
  • the third addition point 538 determines the third control value Vc3 to be zero by adding the third proportional term Vp3 of zero and the third differential term Vd3 of zero.
  • the third P gain control unit 532 (FIG. 12) refers to the first flag FL1 (FIG. 13: S232), It is determined whether or not the absolute value of the inclination angle difference dT has increased.
  • the third P gain control unit 532 uses the vehicle speed V according to the first correspondence relationship R31 to obtain the third P gain. Determine Kp3.
  • the first correspondence R31 is a correspondence between the vehicle speed V and the third P gain Kp3.
  • the first correspondence R31 is determined in advance by map data Mp31 stored in the non-volatile storage device 500n of the steering motor control unit 500 (FIG. 10).
  • the third P gain control unit 532 specifies the third P gain Kp3 corresponding to the vehicle speed V by referring to the map data Mp31.
  • FIG. 19C is a graph showing an example of the correspondence between the vehicle speed V and the third P gain Kp3.
  • the horizontal axis shows the absolute value of the vehicle speed V (that is, the magnitude of the vehicle speed V), and the vertical axis shows the third P gain Kp3.
  • the first correspondence R31 in the figure the smaller the absolute value of the vehicle speed V, the larger the third P gain Kp3.
  • the third P gain Kp3 changes smoothly with changes in the vehicle speed V.
  • Thc 15 km / h
  • the third P gain control unit 532 determines the third P gain Kp3 according to the second correspondence relationship R32 using the vehicle speed V.
  • the second correspondence R32 is a correspondence between the vehicle speed V and the third P gain Kp3.
  • the second correspondence R32 is predetermined by the map data Mp32 stored in the nonvolatile storage device 500n of the steering motor control unit 500 (FIG. 10).
  • the third P gain control unit 532 specifies the third P gain Kp3 corresponding to the vehicle speed V by referring to the map data Mp32.
  • FIG. 19 (CL) also shows a graph of the second correspondence relationship R32.
  • the second correspondence R32 in the figure the smaller the absolute value of the vehicle speed V, the larger the third P gain Kp3.
  • the third P gain Kp3 is larger than when the absolute value of the vehicle speed V is larger than the threshold Thc.
  • the third P gain Kp3 of the second correspondence R32 is smaller than the third P gain Kp3 of the first correspondence R31.
  • the third P control unit 534 determines the third proportional term Vp3 using the angular acceleration At and the third P gain Kp3 determined in S930 or S940.
  • the method of determining the third proportional term Vp3 may be a known method for determining the proportional term of the PID control. For example, a value obtained by multiplying the angular acceleration At by the third P gain Kp3 is output as the third proportional term Vp3.
  • the third D control section 536 determines the third differential term Vd3 using the angular acceleration At and the third D gain Kd3.
  • the third D gain Kd3 is determined in advance.
  • the method of determining the third differential term Vd3 may be a known method for determining the differential term of PID control. For example, a value obtained by multiplying the differential value of the angular acceleration At by the third D gain Kd3 is output as the third differential term Vd3.
  • the time difference for specifying the differential value of the angular acceleration At may be predetermined, and may be determined based on another parameter (for example, the vehicle speed V) instead.
  • the third D gain Kd3 may be a variable value that changes according to another parameter (for example, the vehicle speed V).
  • the third addition point 538 acquires information representing the terms Vp3 and Vd3 from the processing units 534 and 536, respectively. Then, the third addition point 538 determines a third control value Vc3 that is the sum of these terms Vp3 and Vd3. Then, the processing in FIG. 18, that is, S260 in FIG. 13 ends.
  • the fourth addition point 590 acquires information representing the control values Vc1, Vc2, and Vc3 from the addition points 518, 528, and 538, respectively. Then, the fourth addition point 590 calculates the rotation drive control value Vca that is the sum of these control values Vc1, Vc2, and Vc3, and outputs information indicating the rotation drive control value Vca to the power control unit 500c. . In S280, the power control unit 500c controls the power supplied to the steering motor 65 according to the control value Vca.
  • the rotation drive control value Vca indicates a target value of the rotation torque of the steering motor 65.
  • the torque indicated by the rotation drive control value Vca is also referred to as a target rotation torque TqTt.
  • the rotation drive control value Vca indicates, for example, the direction and magnitude of the current to be supplied to the steering motor 65.
  • the magnitude of the electric power (that is, the magnitude of the torque of the steering motor 65) increases as the absolute value of the control value Vca increases.
  • the steering motor control unit 500 (specifically, the fourth addition point 590) has determined the target rotation torque TqTt of the steering motor 65.
  • the steering motor control unit 500 controls the torque of the steering motor 65 to be the target rotation torque TqTt.
  • the first control value Vc1 is determined by feedback control using the inclination angle difference dT. Then, the direction of the rotation torque indicated by the first control value Vc1 is opposite to the target direction DTg (that is, the reverse torque), as described with reference to FIG.
  • the first control value Vc1 indicates a turning torque for bringing the inclination angle T closer to the first target inclination angle T1.
  • the second control value Vc2 and the third control value Vc3 indicate a turning torque for suppressing an unintended change in the inclination angle T due to disturbance (for example, unevenness of a road) or overshoot.
  • disturbance for example, unevenness of a road
  • the magnitude of each of the second control value Vc2 and the third control value Vc3 increases.
  • the angular velocity Vt and the angular acceleration At are small, so that the magnitudes of the second control value Vc2 and the third control value Vc3 are also small.
  • the magnitude of the first control value Vc1 determined by the feedback control of the inclination angle difference dT is the magnitude of each of the control values Vc2 and Vc3 determined by the feedback control of the angular velocity Vt and the angular acceleration At of the inclination angle T. Larger than That is, a main component of the target rotation torque TqTt of the steering motor 65 can be indicated by the first control value Vc1.
  • the first P gain Kp1 and the first D gain Kd1 are determined such that the magnitude of the first proportional term Vp1 becomes larger than the magnitude of the first differential term Vd1 when the user operates the handle 41a gently.
  • a main component of the target rotation torque TqTt of the steering motor 65 can be represented by the first proportional term Vp1. Since the rotation torque is controlled in accordance with such a target rotation torque TqTt, as described with reference to FIGS. 14A and 14B, the inclination angle T is easily changed to the first target inclination angle T1. You can get closer.
  • the first control value Vc1 is determined using the inclination angle difference dT. Therefore, the first control value Vc1 is determined to be a value suitable for the inclination angle difference dT. Therefore, the running stability of the vehicle 10 can be improved.
  • the magnitude of the first control value Vc1 (here, the magnitude of the first proportional term Vp1), that is, the magnitude of the target rotation torque TqTt, increases as the magnitude of the inclination angle difference dT increases.
  • the rotation torque TqT (that is, the large reverse torque TqT) is determined based on the large target rotation torque TqTt.
  • the size increases.
  • the large turning torque TqT (that is, the large reverse torque TqT) can turn the front wheel 12F in a direction opposite to the target direction DTg. Thereby, the vehicle body 90 can easily rotate in the target direction DTg. Then, the inclination angle T can easily approach the first target inclination angle T1.
  • the traveling direction D12 of the wheel 12F can be oriented in a direction suitable for the inclination angle T (that is, the first target inclination angle T1).
  • the first P gain Kp1 and the first D gain Kd1 are the ratio of the magnitude of the rotation torque indicated by the first control value Vc1 to the magnitude of the inclination angle difference dT. It is determined to be approximately the same as a certain angular difference torque ratio (for example, the first D gain Kd1 is sufficiently small). Then, as shown in FIG. 19A, the first P gain Kp1 changes according to the vehicle speed V. That is, the first control value Vc1 is determined so that the angular difference torque ratio changes according to the vehicle speed V. As described above, since the first control value Vc1 suitable for the vehicle speed V is determined, traveling stability at various vehicle speeds V can be improved.
  • the first P gain Kp1 when the magnitude of the vehicle speed V is smaller than the threshold Tha is larger than the first P gain Kp1 when the magnitude of the vehicle speed V is larger than the threshold Tha.
  • the first control value Vc1 is set such that the angular difference torque ratio when the magnitude of the vehicle speed V is smaller than the threshold value Tha is greater than the angular difference torque ratio when the magnitude of the vehicle speed V is greater than the threshold value Tha. Is determined.
  • the force for rotating the vehicle body 90 in the target direction DTg by the reverse torque TqT described with reference to FIGS. 14A, 14B, and 15 decreases as the vehicle speed V decreases.
  • the second control value Vc2 is determined by feedback control using the angular velocity Vt of the inclination angle T.
  • the direction of the turning torque indicated by the second control value Vc2 is the direction of the change in the inclination angle T.
  • the direction of the rotation torque indicated by the second control value Vc2 is the left direction.
  • This turning torque turns the front wheel 12F to the left.
  • the vehicle 10 turns leftward when the front wheel 12F turns leftward. Therefore, a rightward centrifugal force acts on the vehicle body 90. As a result, unintentional turning of the vehicle upward DVU of the vehicle body 90 to the left side is suppressed.
  • the second P gain Kp2 and the second D gain Kd2 are defined as an angular velocity at which the second P gain Kp2 is a ratio of the magnitude of the rotation torque indicated by the second control value Vc2 to the magnitude of the angular velocity Vt. It is determined to be approximately the same as the torque ratio (for example, the second D gain Kd2 is sufficiently small). Then, as shown in FIG. 19B, the second P gain Kp2 changes according to the vehicle speed V. That is, the second control value Vc2 is determined so that the angular velocity torque ratio changes according to the vehicle speed V. As described above, the second control value Vc2 suitable for the vehicle speed V is determined, so that running stability at various vehicle speeds V can be improved.
  • the second P gain Kp2 when the magnitude of the vehicle speed V is smaller than the threshold Thb is larger than the second P gain Kp2 when the magnitude of the vehicle speed V is larger than the threshold Thb.
  • the second control value Vc2 is determined such that the angular velocity torque ratio when the magnitude of the vehicle speed V is smaller than the threshold Thb is greater than the angular velocity torque rate when the magnitude of the vehicle speed V is greater than the threshold Thb. Is done.
  • the force for rotating the vehicle body 90 in the target direction DTg by the reverse torque TqT described with reference to FIGS. 14A, 14B, and 15 decreases as the vehicle speed V decreases.
  • the inclination angle T is likely to change unintentionally due to disturbance or the like.
  • the second P gain Kp2 (and, consequently, the angular velocity torque ratio) becomes large. Unnecessary changes can be suppressed.
  • the absolute value of the inclination angle difference dT increases (S820: Yes, R21). ), The second P gain Kp2 is larger than when the absolute value of the inclination angle difference dT has not increased (S820: No, R22).
  • the absolute value of the inclination angle difference dT increases, the increase in the absolute value of dT can be suppressed by the large second P gain Kp2 (and, consequently, the large second control value Vc2).
  • the absolute value of the inclination angle difference dT decreases, the decrease of the absolute value of dT can be promoted by the small second P gain Kp2 (and, consequently, the small second control value Vc2).
  • the third control value Vc3 is determined by feedback control using the angular acceleration At of the inclination angle T.
  • the direction of the turning torque indicated by the third control value Vc3 is the direction of the change in the angular velocity Vt of the inclination angle T.
  • the angular velocity Vt increases leftward (that is, the angular velocity Vt changes leftward).
  • the direction of the rotation torque indicated by the third control value Vc3 is the left direction. This turning torque turns the front wheel 12F to the left.
  • the vehicle 10 turns leftward when the front wheel 12F turns leftward.
  • the third P gain Kp3 and the third D gain Kd3 are the ratio of the magnitude of the turning torque indicated by the third control value Vc3 to the magnitude of the angular acceleration At, where the third P gain Kp3 is. It is determined to be approximately the same as the angular acceleration torque ratio (for example, the third D gain Kd3 is sufficiently small). Then, as shown in FIG. 19C, the third P gain Kp3 changes according to the vehicle speed V. That is, the third control value Vc3 is determined such that the angular acceleration torque ratio changes according to the vehicle speed V. As described above, the third control value Vc3 suitable for the vehicle speed V is determined, so that the running stability at various vehicle speeds V can be improved.
  • the third P gain Kp3 when the magnitude of the vehicle speed V is smaller than the threshold Thc is larger than the third P gain Kp3 when the magnitude of the vehicle speed V is larger than the threshold Thc.
  • the third control value Vc3 is set such that the angular acceleration torque ratio when the magnitude of the vehicle speed V is smaller than the threshold Thc is larger than the angular acceleration torque ratio when the magnitude of the vehicle speed V is greater than the threshold Thc. Is determined.
  • the force for rotating the vehicle body 90 in the target direction DTg by the reverse torque TqT described with reference to FIGS. 14A, 14B, and 15 decreases as the vehicle speed V decreases.
  • the inclination angle T is likely to change unintentionally due to disturbance or the like.
  • the third P gain Kp3 increases. Therefore, when the magnitude of the vehicle speed V is small, the inclination angle T due to disturbance or the like is reduced. Unintended changes can be suppressed.
  • the absolute value of the inclination angle difference dT increases (S920: Yes, R31). ),
  • the third P gain Kp3 is larger than when the absolute value of the inclination angle difference dT has not increased (S920: No, R32).
  • the absolute value of the inclination angle difference dT increases, the increase in the absolute value of dT can be suppressed by the large third P gain Kp3 (and, consequently, the large third control value Vc3).
  • the absolute value of the inclination angle difference dT is reduced, the reduction of the absolute value of dT can be promoted by the small third P gain Kp3 (and, consequently, the small third control value Vc3).
  • the vehicle 10 includes the lean motor 25 (FIG. 4) configured to apply the inclination torque to the vehicle body 90. Therefore, the vehicle 10 can appropriately change the inclination angle T by using the inclination torque.
  • P control section 414 determines proportional term Vpb using inclination angle difference dT and P gain Kpb.
  • the P gain Kpb is determined in advance.
  • the method of determining the proportional term Vpb may be a known method for determining the proportional term of the PID control. For example, a value obtained by multiplying the inclination angle difference dT by the P gain Kpb is output as the proportional term Vpb.
  • the P gain Kpb may be a variable value that changes according to another parameter (for example, the vehicle speed V).
  • the D control unit 416 determines the differential term Vdb using the inclination angle difference dT and the D gain Kdb.
  • the D gain Kdb is determined in advance.
  • the method of determining the differential term Vdb may be a known method for determining the differential term of PID control. For example, a value obtained by multiplying the differential value of the inclination angle difference dT by the D gain Kdb is output as the differential term Vdb.
  • the time difference for specifying the differential value of the inclination angle difference dT may be determined in advance, and may be determined based on another parameter (for example, the vehicle speed V) instead.
  • the D gain Kdb may be a variable value that changes according to another parameter (for example, the vehicle speed V).
  • the addition point 490 acquires information representing the terms Vpb and Vdb from the processing units 414 and 416, respectively. Then, the addition point 490 calculates the slope drive control value Vcb, which is the sum of these terms Vpb and Vdb, and outputs information indicating the slope drive control value Vcb to the power control unit 400c. In S340, power control unit 400c controls the power supplied to lean motor 25 according to control value Vcb.
  • the tilt drive control value Vcb indicates a target value of the tilt torque of the lean motor 25.
  • the torque indicated by the inclination drive control value Vcb is also referred to as a target inclination torque.
  • the direction of the inclination torque indicated by the inclination drive control value Vcb is the target direction DTg, that is, the rotation of the vehicle body 90 for bringing the inclination angle T closer to the first target inclination angle T1. Same as the direction.
  • the tilt drive control value Vcb indicates, for example, the direction and magnitude of the current to be supplied to the lean motor 25.
  • the magnitude of the electric power increases as the absolute value of the control value Vcb increases.
  • the lean motor control unit 400 (specifically, the addition point 490) has determined the target tilt torque of the lean motor 25.
  • the lean motor control unit 400 (specifically, the power control unit 400c) controls the torque of the lean motor 25 to be the target inclination torque.
  • Each of the terms Vpb and Vdb forms a part of the tilt drive control value Vcb. Therefore, it can be said that each of the terms Vpb and Vdb is also a kind of control value indicating the inclination torque of the lean motor 25.
  • the lock motor 925 (FIG. 4) may be controlled by the control device 100 (FIG. 10).
  • the control device 100 may change the state of the lock device 900 by driving the lock motor 925 according to a user's instruction.
  • the lock motor 925 and the lock motor control unit 600 may be omitted.
  • FIG. 20 is a flowchart illustrating another example of the control process. The only difference from the embodiment of FIG. 11 is that S120 and S125 are added between S110 and S130, and that S145 and S150 branched from S120 are added. 20, the same steps as those in FIG. 11 are denoted by the same reference numerals, and description thereof will be omitted. Further, the hardware configuration of the vehicle according to the present embodiment is the same as the hardware configuration of the vehicle 10 according to the first embodiment.
  • main controller 110 determines whether or not vehicle speed V is equal to or greater than threshold value Vth.
  • threshold value Vth indicates a lower limit of the vehicle speed V at which the reverse torque TqT can appropriately change the inclination angle T.
  • the threshold value Vth is, for example, 5 km / h.
  • the main controller 110 causes the lock device 900 to release the tilt device 89 in S125.
  • the main control unit 110 causes the lock motor control unit 600 to drive the lock motor 925 so that the lock device 900 is in the released state.
  • the main control unit 110 maintains the released state of the lock device 900 without driving the lock motor 925.
  • the processing in S130 is the same as the processing in S130 in FIG. Note that S125 and S130 may be executed in parallel.
  • the main control unit 110 causes the lock device 900 to lock the tilt device 89 in S145.
  • the main control unit 110 causes the lock motor control unit 600 to drive the lock motor 925 so that the lock device 900 is in the locked state.
  • the main control unit 110 does not drive the lock motor 925 and maintains the locked state of the lock device 900. Thereby, the control angle Tc and, consequently, the inclination angle T are fixed.
  • control device 100 performs third control for controlling steering motor 65 such that vehicle 10 advances in the direction associated with the steering wheel angle.
  • FIG. 21 is a flowchart illustrating an example of the third control process.
  • Step S700 is the same as step S200 in FIG.
  • the main control unit 110 acquires information indicating the vehicle speed V, the steering wheel angle Ai, the wheel angle AF, and the vertically downward direction DD from the sensors 122, 123, 124, 126, respectively.
  • main controller 110 determines a target wheel angle using steering wheel angle Ai and vehicle speed V.
  • the method of determining the target wheel angle is the same as the method of determining the target wheel angle (here, the first target wheel angle AFt1) in S170 of FIG.
  • the main control unit 110 specifies the target wheel angle corresponding to the combination of the steering wheel angle and the vehicle speed V by referring to the map data MAF.
  • the main controller 110 supplies an instruction to the steering motor controller 500 to control the steering motor 65 so that the wheel angle AF becomes the target wheel angle.
  • the steering motor control unit 500 drives the steering motor 65 according to the instruction so that the wheel angle AF becomes the target wheel angle.
  • the steering motor controller 500 performs feedback control of the steering motor 65 using the difference between the wheel angle AF and the target wheel angle (for example, so-called PID (Proportional Integral Derivative) control).
  • the steering motor control unit 500 outputs the torque (also referred to as forward torque) for rotating the front fork 17 (and the front wheel 12F) in the target direction DTg instead of the reverse torque (FIG. 14B). 65.
  • the lock device 900 locks the tilt device 89.
  • the control angle Tc (and thus the tilt angle T) is fixed. Therefore, the inclination angle T is suppressed from becoming unstable.
  • the turning torque of the steering motor 65 turns the front wheels 12F in the target direction DTg such that the wheel angle AF becomes the target wheel angle. Therefore, the vehicle 10 can travel in the direction indicated by the steering wheel angle Ai.
  • control device 100 ends the processing of FIG. 21, that is, S150 of FIG. Note that S145 and S150 may be executed in parallel.
  • the processing of FIG. 20 ends in response to the execution of any one of S130, S150, and S170.
  • Control device 100 repeatedly executes the processing of FIG.
  • the control device 100 continuously performs the processing of S125 and S130.
  • the control device 100 continuously performs the processing of S145 and S150.
  • the control device 100 continuously performs the process of S170.
  • the main control unit 110 may cause the lock motor control unit 600 to drive the lock motor 925 so that the lock device 900 is in the locked state.
  • the state of the lock device 900 switches from the released state to the locked state.
  • the vehicle 10 uses the reverse torque to stabilize in the direction indicated by the steering wheel angle Ai as described with reference to FIGS. You can run.
  • the tilt device 89 is locked by the lock device 900. Therefore, the unstable inclination angle T of the vehicle 10 is suppressed.
  • the steering motor 65 rotates the front wheels 12F such that the wheel angle AF becomes the target wheel angle. Therefore, the vehicle 10 can stably travel in the direction indicated by the steering wheel angle Ai.
  • the control angle Tc when the tilt device 89 is locked is the same as the control angle Tc immediately before the tilt device 89 is locked. Normally, the vehicle 10 is decelerated while the steering wheel angle Ai is small. Therefore, the locking of the tilting device 89 due to the deceleration of the vehicle 10 (FIG. 20: S145) is normally performed in a state where the tilt angle T is small. Therefore, after the state of the tilting device 89 is switched from the released state to the locked state in S145, the vehicle 10 can travel properly. Further, when the magnitude of the tilt angle T in the locked state is larger than a predetermined angle threshold, the control device 100 controls the lean motor 25 so that the magnitude of the tilt angle T is equal to or smaller than the angle threshold. May be.
  • the angle threshold may be various values equal to or greater than zero (for example, 5 degrees).
  • the state of the lock device 900 switches from the locked state to the released state.
  • the tilt device 89 is locked by the lock device 900, so that the tilt angle T of the vehicle 10 is prevented from becoming unstable.
  • the steering motor 65 rotates the front wheels 12F such that the wheel angle AF becomes the target wheel angle. Therefore, the vehicle 10 can stably travel in the direction indicated by the steering wheel angle Ai.
  • the tilt device 89 is released. Then, as described with reference to FIGS. 14A to 14D and the like, the vehicle 10 can stably travel in the direction indicated by the steering wheel angle Ai using the reverse torque.
  • the rotation torque control process is various other processes in place of the processes described with reference to FIGS. 12, 13, 16 to 18, 19A to 19C. Good.
  • the first P gain Kp1 may change stepwise with respect to a change in the magnitude of the vehicle speed V. Further, the first P gain Kp1 may be maintained at a constant value with respect to a change in the vehicle speed V. The first P gain Kp1 may change according to a change in another parameter different from the vehicle speed V. Further, the first P gain Kp1 may be a fixed value instead of a variable value. In this case, the first P gain control unit 512 (FIG. 12) and S730 (FIG. 16) may be omitted.
  • various feedback control processes using the inclination angle difference dT may be employed.
  • the D control (FIG. 16: S760) may be omitted.
  • the stability of the rotation torque can be improved.
  • the second P gain Kp2 may change stepwise with respect to the change in the magnitude of the vehicle speed V. Further, the second P gain Kp2 may be maintained at a constant value with respect to a change in the vehicle speed V. The second P gain Kp2 may change according to a change in another parameter different from the vehicle speed V. Further, the second P gain Kp2 may be a fixed value instead of a variable value. In this case, the second P gain control unit 522 (FIG. 12) and S820, S830, and S840 (FIG. 17) may be omitted. As the process of determining the second control value Vc2, various feedback control processes using the angular velocity Vt may be employed. For example, the D control (FIG. 17: S860) may be omitted. However, if the D control is used, the stability of the rotation torque can be improved. Further, the second control value Vc2 may be omitted.
  • the third P gain Kp3 may change stepwise with respect to a change in the magnitude of the vehicle speed V. Further, the third P gain Kp3 may be maintained at a constant value with respect to a change in the vehicle speed V. The third P gain Kp3 may change according to a change in another parameter different from the vehicle speed V. Further, the third P gain Kp3 may be a fixed value instead of a variable value. In this case, the third P gain control section 532 (FIG. 12) and S920, S930, and S940 (FIG. 18) may be omitted.
  • Various feedback control processes using the angular acceleration At may be employed as the process of determining the third control value Vc3. For example, the D control (FIG. 18: S960) may be omitted. However, if the D control is used, the stability of the rotation torque can be improved. Further, the third control value Vc3 may be omitted.
  • the control using the first flag FL1 (for example, S820, S840) may be omitted.
  • the second P gain Kp2 may be determined in S830 regardless of the inclination angle difference dT.
  • the control using the first flag FL1 (for example, S920 and S940) may be omitted.
  • the control using the second flag FL2 (for example, S910, S980) may be omitted.
  • control device 100 uses one or more control values including a control value indicating the reverse torque (for example, the first proportional term Vp1) to generate the rotation drive control value Vca (and thus the target rotation torque). May be determined.
  • control device 100 may calculate a total value of one or more control values as the rotation drive control value Vca.
  • the configuration of the control device 100 is configured to execute processing for controlling a device that outputs a rotation torque (for example, the steering motor 65) and a device that outputs a tilt torque (for example, the lean motor 25).
  • a rotation torque for example, the steering motor 65
  • a tilt torque for example, the lean motor 25
  • the control device 100 may be configured using one computer.
  • At least a part of the control device 100 may be configured by dedicated hardware such as an ASIC (Application ⁇ Integrated ⁇ Circuit).
  • the lean motor control unit 400 and the steering motor control unit 500 in FIG. 12 may be configured by an ASIC.
  • Control device 100 may be various electric circuits, for example, may be an electric circuit including a computer, or may be an electric circuit not including a computer.
  • the input value and the output value associated with the map data MT, MAF, Mp1, Mp21, Mp22, Mp31, and Mp32 may be associated with other elements.
  • elements such as mathematical functions and analog circuits may associate input values with output values.
  • the inclination angle used for each control of the turning torque and the inclination torque is different from the inclination angle T (FIG. 5B) based on the vertical upward direction DU in the width direction of the vehicle body 90.
  • Various angles indicating the degree of inclination may be employed.
  • the control angle Tc may be used as the inclination angle.
  • the vehicle 10 is preferably provided with a sensor configured to measure the control angle Tc. This sensor is an example of a tilt angle sensor.
  • the front wheel 12F (FIG. 2) is an example of a turning wheel that can turn left and right in the forward direction DF of the vehicle 10.
  • the front wheel support device 41 is an example of a turning wheel support that supports a turning wheel.
  • the configuration of the turning wheel support may be various other configurations instead of the configuration of the front wheel support device 41.
  • the support member that rotatably supports the rotating wheel may be a cantilevered member instead of the front fork 17.
  • the rotating device that supports the supporting member so as to be rotatable left and right with respect to the vehicle body 90 may be various other devices instead of the bearing 68.
  • the rotation device may be a link mechanism that connects the vehicle body and the support member.
  • the rotating wheel support may include K (K is an integer of 1 or more) support members. Each support member may support one or more rotating wheels.
  • the turning wheel support may include K turning devices.
  • the K rotating devices may rotatably support the K support members, respectively.
  • the turning wheel support may include K turning drives.
  • the K rotation driving devices and the K support members are associated one-to-one.
  • Each rotation drive device may be configured to apply a rotation torque to one corresponding support member.
  • the turning wheel support may include one turning drive.
  • One rotation drive device may be configured to apply a rotation torque to each of the K support members.
  • the rotating wheel support unit is configured to move the one or more rotating wheels with respect to the vehicle body in accordance with the change in the inclination of the vehicle body regardless of the operation amount input to the operation input unit (for example, the handle 41a). It is preferable to be configured so as to allow turning to the left and right.
  • a rotation device fixed to the vehicle body rotatably supports the support member. In this case, when the vehicle body tilts, the support member also tilts with the vehicle body. Therefore, as described with reference to FIG. 9 and the like, the direction of the turning wheel (that is, the wheel angle AF (FIG. 2)) can change following the inclination of the vehicle body.
  • the operation input unit is operated to input an operation amount indicating the turning direction and the degree of turning, instead of a device that can turn left and right like the handle 41a (FIG. 1).
  • the operation input unit may be a lever that can be tilted left and right from a predetermined reference direction (for example, an upright direction).
  • the configuration of the tilting device may be any other configuration configured to tilt the vehicle body 90 in the width direction instead of the configuration of the tilting device 89 in FIG.
  • the link mechanism 30 may be replaced with a base.
  • Motors 51L and 51R are fixed to the table.
  • the table and the first support portion 82 are rotatably connected by a bearing.
  • the lean motor 25 rotates the first support portion 82 relative to the table on the right direction DR side and the left direction DL side. Thereby, the vehicle body 90 can be tilted to the right direction DR side and the left direction DL side.
  • the tilting device includes “a first member directly or indirectly connected to at least one of a pair of wheels disposed apart from each other in a width direction of the vehicle” and “a first member directly or indirectly connected to a vehicle body. And a driving device.
  • the driving device applies a force (for example, a torque that changes the direction of the second member with respect to the first member) that changes the relative position between the first member and the second member to the first member and the second member.
  • the tilting device may further include a “connection device that movably connects the first member to the second member”.
  • the connection device may be, for example, a hydraulic cylinder that slidably connects the first member to the second member.
  • connection device may be a bearing that rotatably connects the first member and the second member.
  • the bearing may be a rolling bearing, and instead may be a plain bearing.
  • the drive may be an electric motor such as lean motor 25.
  • the tilt device includes a hydraulic cylinder, the driving device may be a pump.
  • connection unit connected to the operation input unit and the support member of the rotating wheel support unit may be various other configurations instead of the configuration of the connection unit 50 in FIG.
  • the third portion 53 of the connecting portion 50 may be an elastic body that can be elastically deformed (for example, a coil spring, a torsion spring, rubber, or the like) instead of the viscous damper.
  • the third part 53 is connected to the first part 51 and the second part 52, transmits torque from the first part 51 to the second part 52, and transmits a torque between the first part 51 and the second part 52.
  • Various devices may be included, including movable parts that allow changes in relative position.
  • connection unit is mechanically connected to the operation input unit and the support member, and transmits torque from the operation input unit to the support member according to mechanical movement of the operation input unit due to operation of the operation input unit.
  • the connection unit may allow the direction of one or more rotating wheels to change following the change in the inclination of the vehicle body regardless of the operation amount input to the operation input unit. In addition, such a connection part may be omitted.
  • the total number of front wheels may be one and the total number of rear wheels may be one.
  • the total number of front wheels may be two and the total number of rear wheels may be one.
  • the total number of front wheels may be two, and the total number of rear wheels may be two.
  • a pair of wheels arranged apart from each other in the width direction may be front wheels or rotating wheels.
  • the rear wheel may be a rotating wheel.
  • the drive wheels may be front wheels.
  • a vehicle includes N (N is an integer of 2 or more) wheels including one or more front wheels and one or more rear wheels.
  • the N wheels include one or more turning wheels that can turn left and right. If the total number N of wheels is two, a tilting device such as tilting device 89 is omitted.
  • the vehicle may include N wheels including a pair of wheels arranged apart from each other in a width direction of the vehicle and one or more other wheels. In this case, the total number N of the wheels is 3 or more.
  • the pair of wheels may be front wheels, and instead may be rear wheels.
  • it is preferable that at least one of the pair of wheels and the other wheel is configured as one or more turning wheels that can turn left and right with respect to the forward direction of the vehicle.
  • a pair of wheels may be turning wheels, only the other wheels may be turning wheels, and three or more wheels including a pair of wheels and another wheel may be turning wheels.
  • the total number of other wheels included in the one or more rotating wheels may be an arbitrary number.
  • 20 and 21 may be applied to various vehicles including three or more wheels and a tilt device. In either case, the drive of the tilt device (eg, lean motor 25) may be omitted.
  • the tilt drive device may be any device configured to apply a tilt torque to the vehicle body.
  • the tilt drive device may include a weight slidably connected to the vehicle body in the width direction, and an electric motor that controls a position of the weight with respect to the vehicle body. When the weight moves to the right side of the vehicle body, the vehicle body can lean rightward, and when the weight moves to the left side of the vehicle body, the vehicle body can lean leftward.
  • a tilt drive device may be omitted.
  • the lock device may be any device configured to lock the tilt device instead of the lock device 900 in FIG.
  • the lock device includes “a first lock member that is directly or indirectly connected to at least one of a pair of wheels arranged apart from each other in a width direction of the vehicle” and “a first lock member that is directly or indirectly connected to the vehicle body. And a second lock member connected thereto.
  • the moving device is configured to move at least one of the first lock member and the second lock member so that the first lock member and the second lock member come into contact with each other, so that a relative movement between the first lock member and the second lock member, that is, a pair of wheels is provided. Relative movement between the vehicle and the vehicle body may be prohibited.
  • the brake pad 930 is an example of a first lock member
  • the brake rotor 910 is an example of a second lock member
  • the brake caliper 920 is an example of a moving device.
  • the first lock member may be a member of another device different from the lock device (for example, the above-described first member of the tilt device).
  • the second lock member may be a member of another device different from the lock device (for example, the above-described second member of the tilt device). Note that the lock device may be omitted.
  • the vehicle control method may be various other methods instead of the method described with reference to FIG. 11 and the like.
  • a second target tilt angle T2 instead of the first target tilt angle T1, a second target tilt angle T2 having an absolute value smaller than the absolute value of the first target tilt angle T1 may be used.
  • the control device 100 may determine the first target inclination angle T1 using the steering wheel angle Ai without using the vehicle speed V.
  • the control device 100 may determine the target inclination angle using one or more parameters including the steering wheel angle Ai (more generally, the operation amount input to the operation input unit).
  • the parameters other than the operation amount are not limited to the vehicle speed V, and various other parameters can be adopted.
  • the control device 100 may determine the first target inclination angle T1 using the yaw rate of the vehicle 10 in addition to the steering wheel angle Ai.
  • the yaw rate of the vehicle 10 is the speed at which the yaw angle changes, and is the angular velocity of rotation about an axis that passes through the center of gravity of the vehicle 10 and is parallel to the vertically upward direction DU.
  • the current yaw rate may be identified using information from gyro sensor 126g.
  • the vehicle 10 receives force from external factors such as wind. The direction of travel of the vehicle 10 can be affected by such forces. For example, assume that the steering wheel angle Ai is zero and the vehicle 10 is traveling straight on a horizontal road.
  • the control device 100 may determine the target inclination angle using the steering wheel angle Ai and the current yaw rate.
  • Control device 100 specifies a target yaw rate using steering wheel angle Ai. The correspondence between the steering wheel angle Ai and the target yaw rate is determined in advance. For example, a zero target yaw rate is associated with a zero handle angle Ai.
  • a target yaw rate indicating a right turn is associated with the steering wheel angle Ai indicating a right turn.
  • the control device 100 specifies the target yaw rate corresponding to the steering wheel angle Ai with reference to the correspondence.
  • main controller 110 determines a target inclination angle using the difference between the target yaw rate and the current yaw rate.
  • the control device 100 calculates a target tilt angle by adding a correction value corresponding to a yaw rate difference that is a difference between the target yaw rate and the current yaw rate to the current tilt angle T.
  • the correspondence between the yaw rate difference and the correction value may be experimentally determined in advance.
  • the correction value is zero.
  • the first target inclination angle T1 is the same as the current inclination angle T.
  • the correction value is an angle obtained by rotating the first target inclination angle T1 to the right direction DR side of the current inclination angle T. Then, correct it.
  • the first target tilt angle T1 is such that the vehicle body 90 moves to the right direction DR side.
  • the angle is determined to indicate the inclination.
  • the vehicle 10 can go straight against the wind. In this way, a deviation in the traveling direction of the vehicle 10 due to an external factor is suppressed.
  • the control unit 126c of the vertical sensor 126 detects the vertical downward direction DD by using other information related to the movement of the vehicle 10 in addition to the information from the gyro sensor 126g and the acceleration sensor 126a. Good.
  • the position of the vehicle 10 specified using a GPS (Global Positioning System) may be used.
  • the control unit 126c may correct the vertical downward direction DD in accordance with a change in position due to GPS. The correction amount based on the change in the position due to the GPS may be experimentally determined in advance.
  • the control unit 126c may be various electric circuits, for example, may be an electric circuit including a computer, or may be an electric circuit (for example, an ASIC) not including a computer.
  • the gyro sensor 126g may be a sensor that detects angular velocity instead of angular acceleration.
  • the configuration of the vehicle may be various other configurations instead of the configurations of the above-described embodiment and the modified examples.
  • the motors 51L and 51R may be connected to the link mechanism 30 via a suspension.
  • the drive device that drives the drive wheels may be any device that rotates the wheels instead of the electric motor (for example, an internal combustion engine).
  • the maximum capacity of the vehicle may be two or more instead of one.
  • the correspondence used for controlling the vehicle (for example, the correspondence indicated by the map data MT, MAF, Mp1, and Mp2) may be experimentally determined so that the vehicle 10 can travel appropriately.
  • the control device of the vehicle may dynamically change the correspondence used for controlling the vehicle according to the state of the vehicle.
  • the vehicle may include a weight sensor that measures the weight of the vehicle body, and the control device may adjust the correspondence according to the weight of the vehicle body.
  • a part of the configuration realized by hardware may be replaced by software, and conversely, a part or all of the configuration realized by software may be replaced by hardware. Is also good.
  • the function of the control device 100 in FIG. 12 may be realized by a dedicated hardware circuit.
  • the program When part or all of the functions of the present invention are implemented by a computer program, the program is provided in a form stored in a computer-readable recording medium (for example, a non-temporary recording medium). be able to.
  • the program can be used in a state stored in the same or different recording medium (computer-readable recording medium) at the time of provision.
  • the “computer-readable recording medium” is not limited to a portable recording medium such as a memory card or a CD-ROM, but is connected to an internal storage device in the computer such as various ROMs or a computer such as a hard disk drive. External storage may also be included.
  • the present invention can be suitably used for vehicles.

Abstract

車両は、車体と、左右に回動可能な1以上の回動輪と、回動輪支持部と、制御装置と、を備える。回動輪支持部は、1以上の回動輪を回転可能に支持する支持部材と、回動トルクを支持部材に印加するように構成された回動駆動装置と、を備える。制御装置は、目標傾斜角を決定し、目標傾斜角と傾斜角との間の差を用いて第1種制御値を決定し、第1種制御値を含む1以上の制御値を用いて、目標回動トルクを決定するように構成されている。ここで、第1種制御値は、傾斜角が目標傾斜角に近づくように車体を幅方向に回動させる場合の回動方向である目標方向とは反対の方向に支持部材を回動させるトルクを示している。

Description

車両
 本明細書は、車体を傾斜させて旋回する車両に関する。
 旋回時に車体を傾斜させる車両が、知られている。また、車体を旋回方向内側にスムーズに傾斜させるための種々の技術が提案されている。例えば、乗員がハンドルバーを操作し始めた時に、ハンドルバーを回した方向と反対の方向に、操舵輪の操舵角を変化させる技術が提案されている。この技術によれば、乗員の意図した旋回方向と逆の旋回方向への旋回が開始されるので、旋回によって発生する遠心力が、乗員の意図した旋回方向内側に車体を傾斜させる。従って、車体を旋回方向内側にスムーズに傾斜させることができる。
特開2013-23166号公報
 上記の文献では、操舵角の目標値は、ハンドルバーの回転角であるハンドル角を用いて決定されている。ところで、車体の傾斜の角度と操舵角とは、独立に変化し得る。このように車体の傾斜の角度と車輪の方向とが変化する車両の走行安定性を向上することに関しては、十分な工夫がなされていなかった。
 本明細書は、車両の走行安定性を向上できる技術を開示する。
 本明細書に開示された技術は、以下の適用例として実現することが可能である。
[適用例1]
 車両であって、
 車体と、
 前記車両の前進方向に対して左右に回動可能な1以上の回動輪を含むN個(Nは2以上の整数)の車輪であって、1個以上の前輪と1個以上の後輪とを含む前記N個の車輪と、
 前記車体の幅方向の傾斜角を測定するように構成された傾斜角センサと、
 旋回方向と旋回の程度とを示す操作量を入力するために操作されるように構成された操作入力部と、
 前記1以上の回動輪を支持する回動輪支持部と、
 制御装置と、
 を備え、
 前記回動輪支持部は、
  前記1以上の回動輪を回転可能に支持する支持部材と、
  前記支持部材を前記車体に対して左右に回動可能に支持する回動装置と、
  前記支持部材を回動させる回動トルクを前記支持部材に印加するように構成された回動駆動装置と、
 を備え、
 前記車体の目標の傾斜角を目標傾斜角とし、
 前記目標傾斜角と前記車体の前記傾斜角との間の差を傾斜角差とし、
 前記回動駆動装置の目標トルクを目標回動トルクとする場合に、
 前記制御装置は、
  前記操作量を含む1以上のパラメータを用いて前記目標傾斜角を決定し、
  前記傾斜角が前記目標傾斜角に近づくように前記車体を幅方向に回動させる場合の回動方向である目標方向であって、右方向と左方向とのいずれかである前記目標方向とは反対の方向に前記支持部材を回動させる第1トルクを示す第1種制御値を、前記傾斜角差を用いて決定し、
  前記第1種制御値を含む1以上の制御値を用いて、前記目標回動トルクを決定し、
  前記目標回動トルクに従って前記回動駆動装置を制御する、
 ように構成されている、車両。
 この構成によれば、目標回動トルクの決定に用いられる第1種制御値が、目標方向とは反対の方向に支持部材を回動させる第1トルクを示す値に決定されるので、回動トルクによる支持部材の回動によって、車体の傾斜角は、容易に、目標傾斜角に近づくことができる。さらに、第1種制御値は、目標傾斜角と車体の傾斜角との間の差である傾斜角差を用いて決定されるので、第1種制御値は、傾斜角差に適した値に決定される。従って、車両の走行安定性を向上できる。
[適用例2]
 適用例1に記載の車両であって、
 前記傾斜角差の大きさに対する前記第1種制御値によって示される前記第1トルクの大きさの割合を、角差トルク割合とする場合に、
 前記制御装置は、車速に応じて前記角差トルク割合が変化するように前記第1種制御値を決定するように構成されている、車両。
 この構成によれば、車速に応じて角差トルク割合が変化するので、車速に適した第1種制御値が決定される。従って、車両の走行安定性を向上できる。
[適用例3]
 適用例2に記載の車両であって、
 前記制御装置は、前記車速の大きさが第1閾値よりも小さい場合の前記角差トルク割合が、前記車速の大きさが前記第1閾値よりも大きい場合の前記角差トルク割合よりも大きくなるように、前記第1種制御値を決定するように構成されている、車両。
 この構成によれば、車速の大きさが第1閾値よりも小さい場合には、車速の大きさが第1閾値よりも大きい場合と比べて、角差トルク割合が大きくなるように第1種制御値が決定されるので、車速の大きさが小さい場合に、車体の傾斜角の変化の遅れを抑制できる。
[適用例4]
 適用例1から3のいずれかに記載の車両であって、
 前記制御装置は、
  前記車体の前記傾斜角の角速度を用いて、前記右方向と前記左方向とのうちの前記傾斜角の変化の方向に前記支持部材を回動させる第2トルクを示す第2種制御値を決定し、
  前記第1種制御値と前記第2種制御値とを含む2以上の制御値を用いて、前記目標回動トルクを決定する、
 ように構成されている、
 車両。
 この構成によれば、傾斜角の変化の方向に支持部材を回動させる第2トルクを示す第2種制御値が傾斜角の角速度を用いて決定され、第1種制御値と第2種制御値とを含む2以上の制御値を用いて目標回動トルクが決定されるので、車両の走行安定性を向上できる。
[適用例5]
 適用例4に記載の車両であって、
 前記傾斜角の前記角速度の大きさに対する前記第2種制御値によって示される前記第2トルクの大きさの割合を、角速度トルク割合とする場合に、
 前記制御装置は、前記車速に応じて前記角速度トルク割合が変化するように前記第2種制御値を決定するように構成されている、車両。
 この構成によれば、車速に応じて角速度トルク割合が変化するので、車速に適した第2種制御値が決定される。従って、車両の走行安定性を向上できる。
[適用例6]
 適用例5に記載の車両であって、
 前記制御装置は、前記車速の大きさが第2閾値よりも小さい場合の前記角速度トルク割合が、前記車速の大きさが前記第2閾値よりも大きい場合の前記角速度トルク割合よりも大きくなるように、前記第2種制御値を決定するように構成されている、車両。
 この構成によれば、車速の大きさが第2閾値よりも小さい場合には、車速の大きさが第2閾値よりも大きい場合と比べて、角速度トルク割合が大きくなるように第2種制御値が決定されるので、傾斜角の意図しない変化を抑制できる。
[適用例7]
 適用例1から6のいずれかに記載の車両であって、
 前記制御装置は、
  前記車体の前記傾斜角の角加速度を用いて、前記右方向と前記左方向とのうちの前記傾斜角の角速度の変化の方向に前記支持部材を回動させる第3トルクを示す第3種制御値を決定し、
  前記第1種制御値と前記第3種制御値とを含む2以上の制御値を用いて、前記目標回動トルクを決定する、
 ように構成されている、
 車両。
 この構成によれば、傾斜角の角速度の変化の方向に支持部材を回動させる第3トルクを示す第3種制御値が傾斜角の角加速度を用いて決定され、第1種制御値と第3種制御値とを含む2以上の制御値を用いて目標回動トルクが決定されるので、車両の走行安定性を向上できる。
[適用例8]
 適用例7に記載の車両であって、
 前記傾斜角の前記角加速度の大きさに対する前記第3種制御値によって示される前記第3トルクの大きさの割合を、角加速度トルク割合とする場合に、
 前記制御装置は、車速に応じて前記角加速度トルク割合が変化するように前記第3種制御値を決定するように構成されている、車両。
 この構成によれば、車速に応じて角加速度トルク割合が変化するので、車速に適した第3種制御値が決定される。従って、車両の走行安定性を向上できる。
[適用例9]
 適用例8に記載の車両であって、
 前記制御装置は、前記車速の大きさが第3閾値よりも小さい場合の前記角加速度トルク割合が、前記車速の大きさが前記第3閾値よりも大きい場合の前記角加速度トルク割合よりも大きくなるように、前記第3種制御値を決定するように構成されている、車両。
 この構成によれば、車速の大きさが第3閾値よりも小さい場合には、車速の大きさが第3閾値よりも大きい場合と比べて、角加速度トルク割合が大きくなるように第3種制御値が決定されるので、傾斜角の意図しない変化を抑制できる。
[適用例10]
 適用例1から9のいずれかに記載の車両であって、
 前記車体の前記傾斜角を制御するための傾斜トルクを前記車体に作用させるように構成された傾斜駆動装置を備える、車両。
 この構成によれば、傾斜トルクを用いることによって、傾斜角を適切に変化させることができる。
[適用例11]
 適用例1から10のいずれかに記載の車両であって、
 前記N個の車輪は、前記幅方向に互いに離れて配置された一対の車輪を含む3個以上の車輪を含み、
 前記車両は、
  前記車体を前記幅方向に傾斜させるように構成された傾斜装置と、
  前記傾斜装置をロックするように構成されたロック装置と、
 を備え、
 前記制御装置は、
  車速の大きさが第4閾値以上である場合には、
   前記ロック装置に前記傾斜装置を解放させ、
   前記目標回動トルクに従って前記回動駆動装置を制御し、
  前記車速の大きさが前記第4閾値未満である場合には、
   前記ロック装置に前記傾斜装置をロックさせ、
   前記支持部材を前記目標方向に回動させる前記回動トルクを前記回動駆動装置に出力させる、
 ように構成されている、車両。
 この構成によれば、低速時にロック装置によって傾斜装置がロックされるので、傾斜角が不安定になることを抑制できる。
 なお、本明細書に開示の技術は、種々の態様で実現することが可能であり、例えば、車両、車両の制御装置、車両の制御方法、等の態様で実現することができる。
車両10の右側面図である。 車両10の上面図である。 車両10の下面図である。 車両10の背面図である。 (A)、(B)は、車両10の簡略化された背面図である。 (A)、(B)は、車両10の簡略化された背面図である。 旋回時の力のバランスの説明図である。 車輪角AFと旋回半径Rとの簡略化された関係を示す説明図である。 回転する前輪12Fに作用する力の説明図である。 車両10の制御に関する構成を示すブロック図である。 制御処理の例を示すフローチャートである。 制御装置100のブロック図である。 第1制御の処理の例を示すフローチャートである。 (A)~(D)は、回動トルクと傾斜トルクとの説明図である。 前輪12Fの斜視図である。 第1制御値Vc1を決定する処理の例を示すフローチャートである。 第2制御値Vc2を決定する処理の例を示すフローチャートである。 第3制御値Vc3を決定する処理の例を示すフローチャートである。 (A)は、車速Vと第1PゲインKp1との対応関係の例を示すグラフである。(B)は、車速Vと第2PゲインKp2との対応関係の例を示すグラフである。(C)は、車速Vと第3PゲインKp3との対応関係の例を示すグラフである。 制御処理の別の実施例を示すフローチャートである。 第3制御の処理の例を示すフローチャートである。
A.第1実施例:
A1.車両10の構成:
 図1~図4は、一実施例としての車両10を示す説明図である。図1は、車両10の右側面図を示し、図2は、車両10の上面図を示し、図3は、車両10の下面図を示し、図4は、車両10の背面図を示している。図1~図4には、水平な地面GL(図1)上に配置され、傾斜していない状態の車両10が、示されている。図2~図4では、図1に示す車両10の構成のうち説明に用いる部分が図示され、他の部分の図示が省略されている。図1~図4には、6つの方向DF、DB、DU、DD、DR、DLが示されている。前方向DFは、車両10の前進方向であり、後方向DBは、前方向DFの反対方向である。上方向DUは、鉛直上方向であり、下方向DDは、上方向DUの反対方向である。右方向DRは、前方向DFに走行する車両10から見た右方向であり、左方向DLは、右方向DRの反対方向である。方向DF、DB、DR、DLは、いずれも、水平な方向である。右と左の方向DR、DLは、前方向DFに垂直である。
 本実施例では、この車両10は、一人乗り用の小型車両である。車両10(図1、図2)は、車体90と、1つの前輪12Fと、2つの後輪12L、12Rと、を有する三輪車である。前輪12Fは、左右方向に回動可能な回動輪の例であり、車両10の幅方向(すなわち、右方向DRに平行な方向)の中心に配置されている。後輪12L、12Rは、駆動輪であり、車両10の幅方向の中心に対して対称に、互いに離れて配置されている。
 車体90(図1)は、本体部20を有している。本体部20は、前部20aと、底部20bと、後部20cと、支持部20dと、を有している。底部20bは、水平な板状の部分である。前部20aは、底部20bの前方向DF側の端部から上方向DU側に延びる板状の部分である。後部20cは、底部20bの後方向DB側の端部から上方向DU側に延びる板状の部分である。支持部20dは、後部20cの上端から後方向DBに向かって延びる板状の部分である。本体部20は、例えば、金属製のフレームと、フレームに固定されたパネルと、を有している。
 車体90は、さらに、底部20b上に固定された座席11と、座席11の前方向DF側に配置されたアクセルペダル45とブレーキペダル46と、底部20bに固定された制御装置100とバッテリ120と、前部20aの上方向DU側の端部に固定された前輪支持装置41と、前輪支持装置41に取り付けられたシフトスイッチ47と、を有している。図示を省略するが、本体部20には、他の部材(例えば、屋根、前照灯など)が固定され得る。車体90は、本体部20に固定された部材を含んでいる。
 シフトスイッチ47は、車両10の走行モードを選択するためのスイッチである。本実施例では、「ドライブ」と「ニュートラル」と「リバース」と「パーキング」との4つの走行モードから1つを選択可能である。「ドライブ」は、駆動輪12L、12Rの駆動によって前進するモードであり、「ニュートラル」は、駆動輪12L、12Rが回転自在であるモードであり、「リバース」は、駆動輪12L、12Rの駆動によって後退するモードであり、「パーキング」は、少なくとも1つの車輪(例えば、後輪12L、12R)が回転不能であるモードである。「ドライブ」と「ニュートラル」とは、通常は、車両10の前進時に利用される。
 前輪支持装置41(図1)は、回動軸Ax1を中心に回動可能に前輪12Fを支持する装置である。前輪支持装置41は、前フォーク17と、軸受68と、操舵モータ65と、を有している。前フォーク17は、前輪12Fを回転可能に支持しており、例えば、サスペンション(コイルスプリングとショックアブソーバ)を内蔵したテレスコピックタイプのフォークである。軸受68は、本体部20(ここでは、前部20a)と、前フォーク17と、を連結している。軸受68は、回動軸Ax1を中心に、前フォーク17(ひいては、前輪12F)を、車体90に対して左右に回動可能に支持している。操舵モータ65は、前フォーク17を回動させるアクチュエータの例である電気モータである。操舵モータ65は、図示しないロータとステータとを含んでいる。ロータとステータとのうち、一方は、前フォーク17に固定され、他方は、本体部20(ここでは、前部20a)に固定されている。
 車両10には、左右に回動可能なハンドル41aが、設けられている。ハンドル41aは、旋回方向と旋回の程度とを入力するために操作されるように構成された操作入力部の例である。所定の直進方向に対するハンドル41aの回動方向(右、または、左)は、ユーザの望む旋回方向を示している。直進方向に対するハンドル41aの回動角度(以下、「ハンドル角」とも呼ぶ)の大きさは、ユーザの望む旋回の程度を示している。本実施例では、「ハンドル角=ゼロ」は、直進を示し、「ハンドル角>ゼロ」は、右旋回を示し、「ハンドル角<ゼロ」は、左旋回を示している。このように、ハンドル角の正負の符号は、旋回方向を示している。また、ハンドル角の絶対値は、旋回の程度を示している。このようなハンドル角は、ハンドル41aに入力される旋回方向と旋回の程度とを表す操作量の例である。
 なお、本実施例では、ハンドル41aには、ハンドル41aの回転軸に沿って延びる支持棒41axが固定されている。支持棒41axは、回転軸を中心に回転可能に前輪支持装置41に接続されている。
 車輪角AF(図2)は、下方向DDを向いて車両10を見る場合に、前方向DFを基準とする、回転する前輪12Fの進行方向D12の角度である。進行方向D12は、前輪12Fの回転軸Ax2に垂直な方向である。本実施例では、「AF=ゼロ」は、「方向D12=前方向DF」を示している。「AF>ゼロ」は、方向D12が右方向DR側を向いていることを示している(旋回方向=右方向DR)。「AF<ゼロ」は、方向D12が左方向DL側を向いていることを示している(旋回方向=左方向DL)。
 操舵モータ65は、制御装置100(図1)によって制御される。以下、操舵モータ65によって生成されるトルクを、回動トルクとも呼ぶ。回動トルクが小さい場合、前輪12Fの方向D12がハンドル角とは独立に左右に回動することが許容される。操舵モータ65の制御の詳細については、後述する。
 図1中の角度CAは、鉛直上方向DUと、回動軸Ax1に沿って鉛直上方向DU側へ向かう方向と、のなす角度を示している(キャスター角とも呼ばれる)。本実施例では、キャスター角CAがゼロよりも大きい。キャスター角CAがゼロよりも大きい場合、回動軸Ax1に沿って鉛直上方向DU側へ向かう方向は、斜め後ろに傾斜している。
 また、図1に示すように、本実施例では、前輪支持装置41の回動軸Ax1と地面GLとの交点P2は、前輪12Fの地面GLとの接触中心P1よりも、前方向DF側に位置している。これらの点P1、P2の間の後方向DBの距離Ltは、トレールと呼ばれる。正のトレールLtは、接触中心P1が交点P2よりも後方向DB側に位置していることを示している。なお、図1、図3に示すように、接触中心P1は、前輪12Fと地面GLとの接触領域Ca1の中心である。接触領域の中心は、接触領域の重心であり、具体的には、領域内に質量が均等に分布していると仮定する場合の重心の位置である。右後輪12Rと地面GLとの接触領域CaRの接触中心PbRと、左後輪12Lと地面GLとの接触領域CaLの接触中心PbLとも、同様に特定される。
 2つの後輪12L、12R(図4)は、後輪支持部80に回転可能に支持されている。後輪支持部80は、リンク機構30と、リンク機構30の上部に固定されたリーンモータ25と、リンク機構30の上部に固定された第1支持部82と、リンク機構30の前部に固定された第2支持部83(図1)と、を有している。図1では、説明のために、リンク機構30と第1支持部82と第2支持部83のうちの右後輪12Rに隠れている部分も実線で示されている。図2では、説明のために、本体部20に隠れている後輪支持部80と後輪12L、12Rと連結棒75とが、実線で示されている。図1~図3では、リンク機構30が簡略化して示されている。
 第1支持部82(図4)は、後輪12L、12Rの上方向DU側において、右方向DRに平行に延びる板状の部分を含んでいる。第2支持部83(図1、図2)は、リンク機構30の前方向DF側の、左後輪12Lと右後輪12Rとの間に配置されている。
 右後輪12R(図1)は、ホイール12Raと、ホイール12Raに装着されたタイヤ12Rbと、を有している。ホイール12Ra(図4)は、右電気モータ51Rに接続されている。右電気モータ51Rは、ステータとロータとを有している(図示省略)。ロータとステータとのうちの一方は、ホイール12Raに固定され、他方は、後輪支持部80に固定されている。右電気モータ51Rの回転軸は、ホイール12Raの回転軸と同じであり、右方向DRに平行である。左後輪12Lの構成は、右後輪12Rの構成と、同様である。具体的には、左後輪12Lは、ホイール12Laとタイヤ12Lbとを有している。左電気モータ51Lのロータとステータとのうちの一方は、ホイール12Laに固定され、他方は、後輪支持部80に固定されている。これらの電気モータ51L、51Rは、後輪12L、12Rを直接的に駆動するインホイールモータである。
 図1、図4には、車体90が水平な地面GL上で傾斜せずに直立している状態(後述する傾斜角Tがゼロである状態)が、示されている。この状態で、左後輪12Lの回転軸ArL(図4)と右後輪12Rの回転軸ArRとは、同じ直線上に位置している。図1、図3に示すように、右後輪12Rの地面GLとの接触中心PbRの前方向DFの位置は、左後輪12Lの地面GLとの接触中心PbLの前方向DFの位置と、おおよそ同じである。
 リンク機構30(図4)は、いわゆる、平行リンクである。リンク機構30は、右方向DRに向かって順番に並ぶ3つの縦リンク部材33L、21、33Rと、下方向DDに向かって順番に並ぶ2つの横リンク部材31U、31Dと、を有している。水平な地面GL上で車体90が傾斜せずに直立している場合、縦リンク部材33L、21、33Rは、鉛直方向に平行であり、横リンク部材31U、31Dは、水平方向に平行である。2つの縦リンク部材33L、33Rと、2つの横リンク部材31U、31Dとは、平行四辺形リンク機構を形成している。上横リンク部材31Uは、縦リンク部材33L、33Rの上端を連結している。下横リンク部材31Dは、縦リンク部材33L、33Rの下端を連結している。中縦リンク部材21は、横リンク部材31U、31Dの中央部分を連結している。これらのリンク部材33L、33R、31U、31D、21は、互いに回動可能に連結されており、回動軸は、前方向DFに平行である。左縦リンク部材33Lには、左電気モータ51Lが固定されている。右縦リンク部材33Rには、右電気モータ51Rが固定されている。中縦リンク部材21の上部には、第1支持部82と第2支持部83(図1)とが、固定されている。リンク部材33L、21、33R、31U、31Dと、支持部82、83とは、例えば、金属で形成されている。
 本実施例では、リンク機構30は、複数のリンク部材を回動可能に連結するための軸受けを有している。例えば、軸受38は、下横リンク部材31Dと中縦リンク部材21とを回動可能に連結し、軸受39は、上横リンク部材31Uと中縦リンク部材21とを回動可能に連結している。説明を省略するが、複数のリンク部材を回動可能に連結している他の部分にも、軸受が設けられている。
 リーンモータ25は、リンク機構30を作動させるアクチュエータの例であり、本実施例では、ステータとロータとを有する電気モータである。リーンモータ25のステータとロータのうちの一方は、中縦リンク部材21に固定され、他方は、上横リンク部材31Uに固定されている。リーンモータ25の回動軸は、軸受39の回動軸と同じであり、車両10の幅方向の中心に位置している。リーンモータ25のロータがステータに対して回動すると、上横リンク部材31Uが、中縦リンク部材21に対して、傾斜する。これにより、車両10が傾斜する。以下、リーンモータ25によって生成されるトルクを、傾斜トルクとも呼ぶ。傾斜トルクは、車体90の傾斜角を制御するためのトルクである。
 図5(A)、図5(B)は、水平な地面GL上の車両10の状態を示す概略図である。図中には、車両10の簡略化された背面図が示されている。図5(A)は、車両10が直立している状態を示し、図5(B)は、車両10が傾斜している状態を示している。図5(A)に示すように、上横リンク部材31Uが中縦リンク部材21に対して直交する場合、全ての車輪12F、12L、12Rが、水平な地面GLに対して直立する。そして、車体90を含む車両10の全体は、地面GLに対して、直立する。図中の車両上方向DVUは、車両10の上方向である。車両10が傾斜していない状態では、車両上方向DVUは、上方向DUと同じである。本実施例では、車体90に対して予め決められた上方向が、車両上方向DVUとして用いられる。
 図5(B)に示すように、背面図上で、中縦リンク部材21が上横リンク部材31Uに対して時計回り方向に回動している場合、右後輪12Rが車両上方向DVU側に移動し、左後輪12Lが反対側に移動する。この結果、全ての車輪12F、12L、12Rが地面GLに接触した状態で、これらの車輪12F、12L、12Rは、地面GLに対して右方向DR側に傾斜する。そして、車体90を含む車両10の全体は、地面GLに対して、右方向DR側に傾斜する。一般的には、上横リンク部材31Uが中縦リンク部材21に対して傾斜する場合、右後輪12Rと左後輪12Lとの一方が、車両上方向DVU側に移動し、他方は、車両上方向DVUとは反対方向側に移動する。すなわち、リンク機構30とリーンモータ25とは、幅方向に互いに離れて配置された一対の車輪12L、12Rの間で、車輪12L、12Rの回転軸ArL、ArRに垂直な方向の相対位置を変化させる。この結果、車輪12F、12L、12R、ひいては、車体90を含む車両10の全体は、地面GLに対して傾斜する。後述するように、車両10が右方向DR側に旋回する場合に、車両10は、右方向DR側に傾斜する。車両10が左方向DL側に旋回する場合に、車両10は、左方向DL側に傾斜する。
 図5(B)では、車両上方向DVUは、上方向DUに対して、右方向DR側に傾斜している。以下、前方向DFを向いて車両10を見る場合の、上方向DUと車両上方向DVUとの間の角度を、傾斜角Tと呼ぶ。ここで、「T>ゼロ」は、右方向DR側への傾斜を示し、「T<ゼロ」は、左方向DL側への傾斜を示している。車両10が傾斜する場合、車体90を含む車両10の全体が、おおよそ、同じ方向に傾斜する。従って、車体90の傾斜角Tは、車両10の傾斜角Tであると言うことができる。
 また、図5(B)には、リンク機構30の制御角Tcが示されている。制御角Tcは、上横リンク部材31Uの向きに対する中縦リンク部材21の向きの角度を示している。「Tc=ゼロ」は、上横リンク部材31Uに対して中縦リンク部材21が垂直であることを、示している。「Tc>ゼロ」は、図5(B)の背面図において、中縦リンク部材21が、上横リンク部材31Uに対して、時計回りに回動したことを示している。図示を省略するが、「Tc<ゼロ」は、中縦リンク部材21が、上横リンク部材31Uに対して、反時計回りに回動したことを示している。図示するように、車両10が、水平な地面GL(すなわち、鉛直上方向DUに垂直な地面GL)上に位置している場合、制御角Tcは、傾斜角Tと、おおよそ同じである。
 図5(A)、図5(B)に示すように、地面GL上には、傾斜軸AxLが配置されている。リンク機構30とリーンモータ25とは、車両10を、傾斜軸AxLを中心に、右と左とに傾斜させることができる。本実施例では、傾斜軸AxLは、前輪12Fと地面GLとの接触中心P1を通り前方向DFに平行な直線である。後輪12L、12Rを回転可能に支持するリンク機構30とリーンモータ25とは、車体90を車両10の幅方向に傾斜させるように構成された傾斜装置89を構成する。
 なお、横リンク部材31Uは、縦リンク部材33L、33Rとモータ51L、51Rとを介して車輪12L、12Rに接続されている。中縦リンク部材21は、第1支持部82とサスペンションシステム70(後述)とを介して、車体90に接続されている。リーンモータ25は、車輪12L、12Rに接続された部材31Uと、車体90に接続された部材21と、の相対的な位置を変化させる力(ここでは、部材31Uに対する部材21の向きを変化させるトルク)を、部材31Uと部材21とに印加する。
 図6(A)、図6(B)は、図5(A)、図5(B)と同様に、車両10の簡略化された背面図を示している。図6(A)、図6(B)では、地面GLxは、鉛直上方向DUに対して斜めに傾斜している(右側が高く、左側が低い)。図6(A)は、制御角Tcがゼロである状態を示している。この状態では、全ての車輪12F、12L、12Rが、地面GLxに対して直立する。そして、車両上方向DVUは、地面GLxに対して垂直であり、また、鉛直上方向DUに対して左方向DL側に傾斜している。
 図6(B)は、傾斜角Tがゼロである状態を示している。この状態では、上横リンク部材31Uは、地面GLxにおおよそ平行であり、中縦リンク部材21に対して反時計回りの方向に傾斜している。また、車輪12F、12L、12Rは、地面GLに対して傾斜している。
 このように、地面GLxが傾斜している場合、車体90の傾斜角Tの大きさは、リンク機構30の制御角Tcの大きさと、異なり得る。
 なお、車両10(図4)は、傾斜装置89をロックするように構成されたロック装置900を備えている。本実施例では、ロック装置900は、中縦リンク部材21と上横リンク部材31Uとに接続された摩擦ブレーキである。ロック装置900は、中縦リンク部材21に固定されたブレーキロータ910と、上横リンク部材31Uに固定されたブレーキキャリパー920と、ブレーキキャリパー920に固定されたブレーキパッド930と、ブレーキキャリパー920を動かすロックモータ925と、を備えている。ブレーキキャリパー920は、シフトスイッチ47に機械的に連結されている(例えば、ブレーキキャリパー920とシフトスイッチ47とは、ワイヤーによって接続されている)。シフトスイッチ47の位置が、パーキングを示す位置である場合に、ブレーキキャリパー920は、ブレーキパッド930をブレーキロータ910に押し付ける。これにより、上横リンク部材31Uは、中縦リンク部材21に対して回動不能に固定される。このように、ロック装置900は、傾斜装置89をロックする。そして、T制御角Tc、ひいては、傾斜角Tが固定される。以下、傾斜装置89をロックしているロック装置900の状態を、ロック状態と呼ぶ。ユーザは、例えば、車両10の停止時に、シフトスイッチ47の位置をパーキングの位置に移動させることによって、ロック装置900を作動させる(すなわち、ロック装置900の状態は、ロック状態になる)。これにより、制御角Tc、ひいては、傾斜角Tの意図しない変化が、抑制される。シフトスイッチ47の位置がパーキングを示す位置とは異なる場合、ブレーキキャリパー920は、ブレーキパッド930を、ブレーキロータ910から引き離す。これにより、上横リンク部材31Uは、中縦リンク部材21に対して、回動可能である。このように、ロック装置900は、傾斜装置89を解放する。そして、T制御角Tc、ひいては、傾斜角Tは、変化可能である。以下、傾斜装置89を解放しているロック装置900の状態を、解放状態と呼ぶ。このように、ロック装置900は、電力を消費せずに制御角Tcを固定可能な機械的な装置である。また、制御装置100は、ロックモータ925を制御することによって、ロック装置900の状態を制御可能である。
 図2、図4に示すように、本実施例では、本体部20は、サスペンションシステム70と連結棒75とによって、後輪支持部80に連結されている。サスペンションシステム70(図4)は、伸縮可能な左サスペンション70Lと、伸縮可能な右サスペンション70Rと、を有している。本実施例では、各サスペンション70L、70Rは、コイルスプリング71L、71Rとショックアブソーバ72L、72Rとを内蔵するテレスコピックタイプのサスペンションである。サスペンション70L、70Rの上方向DU側の端部は、本体部20の支持部20dに、回動可能に連結されている(例えば、玉継ぎ手、ヒンジなど)。サスペンション70L、70Rの下方向DD側の端部は、後輪支持部80の第1支持部82に、回動可能に連結されている(例えば、玉継ぎ手、ヒンジなど)。
 連結棒75は、図1、図2に示すように、前方向DFに延びる棒である。連結棒75は、車両10の幅方向の中心に配置されている。連結棒75の前方向DF側の端部は、本体部20の後部20cに、回動可能に連結されている(例えば、玉継ぎ手)。連結棒75の後方向DB側の端部は、後輪支持部80の第2支持部83に、回動可能に連結されている(例えば、玉継ぎ手)。
 このように、本体部20(ひいては、車体90)は、サスペンションシステム70と連結棒75とを介して、後輪支持部80に連結されている。車体90は、サスペンション70L、70Rの伸縮によって、幅方向に回動可能である。図1の回転軸AxRは、車体90が後輪支持部80に対して右方向DRと左方向DLとに回動する場合の中心軸を示している。本実施例では、回転軸AxRは、前輪12Fと地面GLとの接触中心P1と、連結棒75の近傍と、を通る直線である。なお、本実施例では、傾斜装置89による傾斜の傾斜軸AxLは、回転軸AxRと異なっている。
 図5(A)、図5(B)には、回転軸AxRを中心に回動する車体90が、点線で示されている。図中の回転軸AxRは、サスペンション70L、70Rを含み前方向DFに垂直な平面上の回転軸AxRの位置を示している。図5(B)に示すように、車両10が傾斜した状態においても、車体90は、さらに、回転軸AxRを中心に、右方向DRと左方向DLとに回動可能である。
 車体90は、後輪支持部80による回動と、サスペンションシステム70と連結棒75とによる回動と、によって、鉛直上方向DU(ひいては、地面GL)に対して、車両10の幅方向に回動し得る。このように、車両10の全体を総合して実現される車体90の幅方向の回動を、ロールとも呼ぶ。ロールは、車体90やタイヤ12Rb、12Lbなどの車両10の部材の変形によっても、生じ得る。なお、通常は、回転軸AxRを中心とする回動は、一時的な回動であり、その大きさは、傾斜装置89による回動の大きさと比べて、小さい。
 図1、図5(A)、図5(B)には、重心90cが示されている。この重心90cは、満載状態での車体90の重心である。満載状態は、車両10が、車両10の総重量が許容される車両総重量になるように、乗員(可能なら荷物も)を積んだ状態である。例えば、荷物の最大重量は規定されず、最大定員数が規定される場合がある。この場合、重心90cは、車両10に対応付けられた最大定員数の乗員が車両10に搭乗した状態の重心である。乗員の体重としては、予め決められた基準体重(例えば、55kg)が採用される。また、最大定員数に加えて、荷物の最大重量が規定される場合がある。この場合、重心90cは、最大定員数の乗員と、最大重量の荷物と、を積んだ状態での、車体90の重心である。
 図示するように、本実施例では、重心90cは、回転軸AxRの下方向DD側に配置されている。従って、車体90が回転軸AxRを中心に振動する場合に、振動の振幅が過度に大きくなることを抑制できる。本実施例では、重心90cを回転軸AxRの下方向DD側に配置するために、車体90(図1)の要素のうち比較的重い要素であるバッテリ120が、低い位置に配置されている。具体的には、バッテリ120は、車体90の本体部20のうちの最も低い部分である底部20bに固定されている。従って、重心90cを、容易に、回転軸AxRよりも低くできる。
 図7は、旋回時の力のバランスの説明図である。図中には、旋回方向が右方向である場合の後輪12L、12Rの背面図が示されている。後述するように、旋回方向が右方向である場合、制御装置100(図1)は、後輪12L、12R(ひいては、車両10)が地面GLに対して右方向DRに傾斜するように、リーンモータ25と操舵モータ65とを制御する場合がある。
 図中の第1力F1は、車体90に作用する遠心力である。第2力F2は、車体90に作用する重力である。ここで、車体90の質量をm(kg)とし、重力加速度をg(おおよそ、9.8m/s)とし、鉛直方向に対する車両10の傾斜角をT(度)とし、旋回時の車両10の速度をV(m/s)とし、旋回半径をR(m)とする。第1力F1と第2力F2とは、以下の式1、式2で表される。
   F1 = (m*V)/R        (式1)
   F2 = m*g             (式2)
 ここで、*は、乗算記号(以下、同じ)。
 また、図中の力F1bは、第1力F1の、車両上方向DVUに垂直な方向の成分である。力F2bは、第2力F2の、車両上方向DVUに垂直な方向の成分である。力F1bと力F2bとは、以下の式3、式4で表される。
   F1b = F1*cos(T)      (式3)
   F2b = F2*sin(T)      (式4)
 ここで、「cos()」は、余弦関数であり、「sin()」は、正弦関数である(以下、同じ)。
 力F1bは、車両上方向DVUを左方向DL側に回動させる成分であり、力F2bは、車両上方向DVUを右方向DR側に回動させる成分である。車両10が傾斜角T(さらには、速度Vと旋回半径R)を保ちつつ安定して旋回を続ける場合には、F1bとF2bとの関係は、以下の式5で表される
   F1b = F2b           (式5)
 式5に上記の式1~式4を代入すると、旋回半径Rは、以下の式6で表される。
   R = V/(g*tan(T))   (式6)
 ここで、「tan()」は、正接関数である(以下、同じ)。
 式6は、車体90の質量mに依存せずに、成立する。ここで、式6の「T」を、左方向と右方向とを区別せずに傾斜角の大きさを表すパラメータTa(ここでは、傾斜角Tの絶対値)に置換することによって得られる以下の式6aは、車体90の傾斜方向に拘わらずに、成立する。
   R = V/(g*tan(Ta))   (式6a)
 図8は、車輪角AFと旋回半径Rとの簡略化された関係を示す説明図である。図中には、下方向DDを向いて見た車輪12F、12L、12Rが示されている。図中では、前輪12Fは、右方向DRに回動しており、車両10は、右方向DRに旋回する。図中の前中心Cfは、前輪12Fの中心である。前中心Cfは、前輪12Fの回転軸Ax2上に位置している。下方向DDを向いて車両10を見る場合、前中心Cfは、接触中心P1(図1)とおおよそ同じ位置に位置している。後中心Cbは、2つの後輪12L、12Rの間の中心である。車体90が傾斜していない場合、後中心Cbは、後輪12L、12Rの回転軸ArL、ArR上の、後輪12L、12Rの間の中央に位置している。下方向DDを向いて車両10を見る場合、後中心Cbの位置は、2個の後輪12L、12Rの接触中心PbL、PbRの間の中央の位置と、同じである。中心Crは、旋回の中心である(旋回中心Crと呼ぶ)。ホイールベースLhは、前中心Cfと後中心Cbとの間の前方向DFの距離である。図1に示すように、ホイールベースLhは、前輪12Fの回転軸Ax2と、後輪12L、12Rの回転軸ArL、ArRとの間の前方向DFの距離である。
 図8に示すように、前中心Cfと後中心Cbと旋回中心Crとは、直角三角形を形成する。点Cbの内角は、90度である。点Crの内角は、車輪角AFと同じである。従って、車輪角AFと旋回半径Rとの関係は、以下の式7で表される。
   AF = arctan(Lh/R)   (式7)
  ここで「arctan()」は、正接関数の逆関数である(以下、同じ)。
 なお、現実の車両10の挙動と、図8の簡略化された挙動と、の間には、種々の差異が存在する。例えば、現実の車輪12F、12L、12Rは、地面GLに対して滑り得る。また、現実の前輪12Fと後輪12L、12Rは、傾斜する。従って、現実の旋回半径は、式7の旋回半径Rと異なり得る。ただし、式7は、車輪角AFと旋回半径Rとの関係を示す良い近似式として、利用可能である。
 前進中に図5(B)のように車両10が右方向DR側へ傾斜した場合、車体90の重心90cが右方向DR側へ移動するので、車両10の進行方向は、右方向DR側へ変化する。また、前輪支持装置41(図1)(ひいては、回動軸Ax1(図5(B)))も、右方向DR側へ移動する。一方、前輪12Fと地面GLとの接触中心P1は、摩擦によって、直ぐに右方向DR側へ移動することはできない。そして、本実施例では、図1で説明したように、前輪12Fは、正のトレールLtを有する。すなわち、接触中心P1は、回動軸Ax1と地面GLとの交点P2よりも、後方向DB側に位置している。これらの結果、前進中に車両10が右方向DR側へ傾斜した場合、前輪12Fの向き(すなわち、進行方向D12(図2))は、自然に、車両10の新たな進行方向、すなわち、傾斜方向(図5(B)の例では、右方向DR)に、回動可能である。図5(B)中の回動方向RFは、車体90が右方向DR側へ傾斜する場合の、回動軸Ax1を中心とする前輪12Fの回動方向を示している。操舵モータ65のトルクが小さい場合には、前輪12Fの向きは、傾斜角Tの変更開始に続いて、自然に、傾斜方向に回動する。そして、車両10は、傾斜方向に向かって、旋回する。
 また、旋回半径が上記の式6(ひいては、式6a)で表される旋回半径Rと同じである場合には、力F1b、F2b(図7、式5)が釣り合うので、車両10の挙動の安定性が向上する。傾斜角Tで旋回する車両10は、式6で表される旋回半径Rで旋回しようとする。また、車両10が正のトレールLtを有するので、前輪12Fの進行方向D12は、自然に、車両10の進行方向と同じになる。従って、車両10が傾斜角Tで旋回する場合、前輪12Fの向き(すなわち、車輪角AF)は、式6で表される旋回半径Rと、式7と、から特定される車輪角AFの向きに、落ち着き得る。このように、車輪角AFは、車体90の傾斜に追随して、変化する。
 また、本実施例では、車体90が傾斜する場合に、前輪12Fには、トレールLtに依存せずに、車輪角AFを傾斜方向に回動させる力が作用する。図9は、回転する前輪12Fに作用する力の説明図である。図中には、前輪12Fの斜視図が示されている。図9の例では、前輪12Fの方向D12は、前方向DFと同じである。回転軸Ax2は、前輪12Fの回転軸である。車両10が前進する場合、前輪12Fは、この回転軸Ax2を中心に、回転する。図中には、前輪支持装置41(図1)の回動軸Ax1と、前軸Ax3とが示されている。回動軸Ax1は、上方向DU側から下方向DD側に向かって延びている。前軸Ax3は、前輪12Fの重心12Fcを通り、前輪12Fの方向D12に平行な軸である。なお、前輪12Fの回転軸Ax2も、前輪12Fの重心12Fcを通っている。
 本実施例では、前輪支持装置41が車体90に固定されている。従って、車体90が傾斜する場合には、前輪支持装置41が車体90とともに傾斜するので、前輪12Fの回転軸Ax2も、同様に、同じ方向へ傾斜しようとする。走行中の車両10の車体90が右方向DR側に傾斜する場合、回転軸Ax2を中心に回転する前輪12Fに、右方向DR側へ傾斜させるトルクTqxが作用する。このトルクTqxは、前軸Ax3を中心に前輪12Fを右方向DR側へ傾斜させようとする力の成分を含んでいる。このように、回転する物体に外部トルクが印加される場合の物体の運動は、歳差運動として知られている。例えば、回転する物体は、回転軸と外部トルクの軸とに垂直な軸を中心に、回動する。図9の例では、トルクTqxの印加によって、回転する前輪12Fは、前輪支持装置41の回動軸Ax1を中心に右方向DR側へ回動する。このように、回転する前輪12Fの角運動量に起因して、前輪12Fの方向D12(すなわち、車輪角AF)は、車体90の傾斜に追随して変化する。
 以上、車両10が右方向DR側に傾斜する場合について説明した。車両10が左方向DL側に傾斜する場合も、同様に、前輪12Fの方向D12(すなわち、車輪角AF)は、車体90の傾斜に追随して左方向DL側へ回動する。
 操舵モータ65のトルクが小さい場合、前輪支持装置41は、以下のように、前輪12Fを支持している。すなわち、前輪12Fは、ハンドル41aに入力される情報に拘わらず、車体90の傾斜の変化に追随して、車体90に対して左右に回動可能である。例えば、ハンドル41aが直進を示す所定方向を向いた状態に維持される場合であっても、車体90の傾斜角Tが右方向に変化する場合には、前輪12Fは、傾斜角Tの変化に追随して、右方向に回動し得る(すなわち、車輪角AFは、右方向に変化し得る)。前輪支持装置41がこのように前輪12Fを支持していることは、以下のように言い換えられる。すなわち、前輪支持装置41は、ハンドル41aに入力される1つの操作量に対する前輪12Fの車輪角AFが1つの車輪角AFに制限されないように、車体90の傾斜の変化に追随して車体90に対して左右に回動可能に、前輪12Fを支持している。
 なお、図1に示すように、前輪支持装置41は、ハンドル41aの支持棒41axと前フォーク17とを連結する接続部50を、有している。接続部50は、支持棒41axに固定された第1部分51と、前フォーク17に固定された第2部分52と、第1部分51と第2部分52とを接続する第3部分53と、を含んでいる。接続部50は、ハンドル41aに、支持棒41axを介して間接的に接続され、前フォーク17に、直接的に接続されている。第3部分53は、本実施例では、粘性ダンパである。接続部50は、ハンドル41aの向きに対する前フォーク17(ひいては、前輪12F)の相対的な向きが急に変化する場合に、その変化を抑制する力をハンドル41aと前フォーク17とに印加する。操舵モータ65のトルクが小さい場合、路面の凹凸などの外部の要因によって、前輪12Fの方向D12が、意図せずに急に変化し得る。ユーザは、ハンドル41aを持つことによって、前輪12Fの方向D12の意図しない急な変化を、抑制できる。これにより、走行安定性を向上できる。
 なお、接続部50は、ハンドル41aの向きに対する前フォーク17(ひいては、前輪12F)の相対的な向きの緩やかな変化を、許容する。このように、接続部50は、ハンドル41aと前フォーク17とを緩く接続する。このような接続部50は、操舵モータ65のトルクが小さい場合に、ハンドル41aに入力されるハンドル角に拘わらずに、前輪12Fが車体90の傾斜の変化に追随して車体90に対して左右に回動することを、許容する。従って、車輪角AFは傾斜角Tに適した角度に変化できるので、走行安定性が向上する。
A2.車両10の制御:
 図10は、車両10の制御に関する構成を示すブロック図である。車両10は、制御に関する構成として、車速センサ122と、ハンドル角センサ123と、車輪角センサ124と、鉛直方向センサ126と、アクセルペダルセンサ145と、ブレーキペダルセンサ146と、シフトスイッチ47と、ロック装置900と、制御装置100と、右電気モータ51Rと、左電気モータ51Lと、リーンモータ25と、操舵モータ65と、を有している。
 車速センサ122は、車両10の車速を検出するセンサである。本実施例では、車速センサ122は、前フォーク17(図1)の下端に取り付けられており、前輪12Fの回転速度、すなわち、車速を検出する。
 ハンドル角センサ123は、ハンドル41aの向き(すなわち、ハンドル角)を検出するセンサである。本実施例では、ハンドル角センサ123は、ハンドル41a(図1)に固定された支持棒41axに取り付けられている。
 車輪角センサ124は、前輪12Fの車輪角AFを検出するセンサである。本実施例では、車輪角センサ124は、操舵モータ65(図1)に取り付けられている。
 鉛直方向センサ126は、鉛直下方向DDを特定するセンサである。本実施例では、鉛直方向センサ126は、加速度センサ126aと、ジャイロセンサ126gと、制御部126cと、を含んでいる。
 加速度センサは、任意の方向の加速度を検出するセンサであり、例えば、3軸の加速度センサである。以下、加速度センサ126aによって検出される加速度の方向を、検出方向と呼ぶ。車両10が停止している状態では、検出方向は、鉛直下方向DDと同じである。すなわち、検出方向の反対の方向が、鉛直上方向DUである。
 ジャイロセンサ126gは、任意の方向の回転軸を中心とする角加速度を検出するセンサであり、例えば、3軸の角加速度センサである。
 制御部126cは、加速度センサ126aからの信号とジャイロセンサ126gからの信号とを用いて鉛直下方向DDを特定する装置である。制御部126cは、例えば、コンピュータを含むデータ処理装置である。
 加速度センサ126aとジャイロセンサ126gとは、車両10の種々の部材に固定されてよい。例えば、加速度センサ126aとジャイロセンサ126gは、同じ部材に固定される。図1の実施例では、加速度センサ126aとジャイロセンサ126g、ひいては、鉛直方向センサ126は、本体部20の後部20cに固定されている。
 車両10の走行時には、検出方向は、車両10の動きに応じて、鉛直下方向DDからずれ得る。例えば、車両10が前進中に加速する場合、検出方向は、鉛直下方向DDに対して後方向DB側に傾斜する方向に、ずれる。車両10が前進中に減速する場合、検出方向は、鉛直下方向DDに対して前方向DF側に傾斜する方向に、ずれる。車両10が前進中に左方向に旋回する場合、検出方向は、鉛直下方向DDに対して右方向DR側に傾斜する方向に、ずれる。車両10が前進中に右方向に旋回する場合、検出方向は、鉛直下方向DDに対して左方向DL側に傾斜する方向に、ずれる。
 鉛直方向センサ126の制御部126cは、車速センサ122によって特定される車速Vを用いることによって、車両10の加速度を算出する。そして、制御部126cは、加速度を用いることによって、車両10の加速度に起因する鉛直下方向DDに対する検出方向のずれを特定する(例えば、検出方向の前方向DFまたは後方向DBのずれが特定される)。また、制御部126cは、ジャイロセンサ126gによって特定される角加速度を用いることによって、車両10の角加速度に起因する鉛直下方向DDに対する検出方向のずれを特定する(例えば、検出方向の右方向DRまたは左方向DLのずれが、特定される)。制御部126cは、特定されたずれを用いて検出方向を修正することによって、鉛直下方向DDを特定する。このように鉛直方向センサ126は、車両10の種々の走行状態において、適切な鉛直下方向DDを特定できる。
 制御部126cは、特定した鉛直下方向DDを示す鉛直下方向情報を、出力する。鉛直下方向情報は、鉛直方向センサ126の予め決められた基準方向に対する鉛直下方向DDを示している。本実施例では、鉛直方向センサ126は、車体90(具体的には、本体部20)に固定されている。従って、車体90の車両上方向DVUと、鉛直方向センサ126の基準方向と、の間の対応関係は、予め決められている(センサ方向関係と呼ぶ)。このセンサ方向関係を用いることによって、鉛直下方向情報によって示される鉛直下方向DDを、車体90の車両上方向DVUに対する鉛直下方向DDに、変換できる。
 アクセルペダルセンサ145は、アクセルペダル45(図1)に取り付けられており、アクセル操作量を検出する。ブレーキペダルセンサ146は、ブレーキペダル46(図1)に取り付けられており、ブレーキ操作量を検出する。
 各センサ122、123、124、145、146は、例えば、レゾルバ、または、エンコーダを用いて構成されている。
 制御装置100は、主制御部110と、駆動装置制御部300と、リーンモータ制御部400と、操舵モータ制御部500と、ロックモータ制御部600と、を有している。制御装置100は、バッテリ120(図1)からの電力を用いて動作する。本実施例では、制御部110、300、400、500は、それぞれ、コンピュータを有している。具体的には、制御部110、300、400、500は、プロセッサ110p、300p、400p、500p(例えば、CPU)と、揮発性記憶装置110v、300v、400v、500v(例えば、DRAM)と、不揮発性記憶装置110n、300n、400n、500n(例えば、フラッシュメモリ)と、を有している。不揮発性記憶装置110n、300n、400n、500nには、対応する制御部110、300、400、500の動作のためのプログラム110g、300g、400g、500gが、予め格納されている。また、主制御部110の不揮発性記憶装置110nには、マップデータMT、MAFが、予め格納されている。操舵モータ制御部500の不揮発性記憶装置500nには、マップデータMp1、Mp21、Mp22、Mp31、Mp32が、予め格納されている。プロセッサ110p、300p、400p、500pは、それぞれ、対応するプログラム110g、300g、400g、500gを実行することによって、種々の処理を実行する。
 主制御部110のプロセッサ110pは、センサ122、123、124、126、145、146とシフトスイッチ47とからの信号を受信し、受信した信号に応じて車両10を制御する。主制御部110のプロセッサ110pは、駆動装置制御部300とリーンモータ制御部400と操舵モータ制御部500とに指示を出力することによって、車両10を制御する(詳細は後述)。
 駆動装置制御部300のプロセッサ300pは、主制御部110からの指示に従って、電気モータ51L、51Rを制御する。リーンモータ制御部400のプロセッサ400pは、主制御部110からの指示に従って、リーンモータ25を制御する。操舵モータ制御部500のプロセッサ500pは、主制御部110からの指示に従って、操舵モータ65を制御する。これらの制御部300、400、500は、それぞれ、制御対象のモータ51L、51R、25、65にバッテリ120からの電力を供給する電力制御部300c、400c、500cを有している。電力制御部300c、400c、500cは、電気回路(例えば、インバータ回路)を用いて、構成されている。
 以下、制御部110、300、400、500のプロセッサ110p、300p、400p、500pが処理を実行することを、単に、制御部110、300、400、500が処理を実行する、とも表現する。
 ロックモータ制御部600は、ロック装置900のロックモータ925にバッテリ120からの電力を供給する電気回路(例えば、インバータ回路)を含んでいる。
 図11は、制御装置100(図10)によって実行される制御処理の例を示すフローチャートである。図11のフローチャートは、後輪支持部80と前輪支持装置41との制御の手順を示している。図11では、各処理に、文字「S」と、文字「S」に続く数字と、を組み合わせた符号が、付されている。
 S100では、主制御部110は、センサ122、123、124、126、145、146とシフトスイッチ47とからの信号を取得する。そして、主制御部110は、速度Vとハンドル角と車輪角AFと鉛直下方向DDとアクセル操作量とブレーキ操作量と走行モードとを、特定する。
 S110では、主制御部110は、「走行モードが「ドライブ」と「ニュートラル」とのいずれかである」という条件が満たされるか否かを判断する。S110の条件は、車両10が前進していることを、示している。S110の判断結果が、Yesである場合、主制御部110は、S130へ移行する。
 S130では、制御装置100は、車両10がハンドル角に対応付けられた方向に進むように、リーンモータ25と操舵モータ65とを制御する。S130の概要は、以下の通りである。主制御部110は、ハンドル角と車速Vとを用いて、第1目標傾斜角T1を決定する。第1目標傾斜角T1は、傾斜角Tの目標値を示している。後述するように、第1目標傾斜角T1の絶対値は、ハンドル角の絶対値が大きいほど、大きい。ここで、傾斜角Tが第1目標傾斜角T1に近づくように車体90を幅方向に回動させる場合の回動方向を、目標方向と呼ぶ。目標方向は、右方向と左方向とのいずれかである。リーンモータ制御部400は、傾斜角Tが第1目標傾斜角T1に近づくように、リーンモータ25に目標方向の傾斜トルクを出力させる。また、操舵モータ制御部500は、目標方向とは反対の方向に前輪12Fを回動させるトルクを、操舵モータ65に出力させ得る。これにより、車両10は、ハンドル角に対応する方向に向かって、適切に、進行する。S130の処理の詳細については、後述する。
 走行モードが「ドライブ」と「ニュートラル」とのいずれとも異なる場合(ここでは、走行モードが「リバース」と「パーキング」とのいずれかである場合)、S110の判断結果は、Noである。この場合、主制御部110は、S170へ移行する。
 S170では、主制御部110は、S130と同じく、第1目標傾斜角T1を決定する。主制御部110は、リーンモータ制御部400に、傾斜角Tが第1目標傾斜角T1となるようにリーンモータ25を制御するための指示を、リーンモータ制御部400に供給する。リーンモータ制御部400は、指示に従って、傾斜角Tが第1目標傾斜角T1になるように、リーンモータ25を駆動する。リーンモータ制御部400は、傾斜角Tと第1目標傾斜角T1との差を用いるリーンモータ25のフィードバック制御を行う(例えば、いわゆるPID(Proportional Integral Derivative)制御)。
 また、主制御部110は、ハンドル角と車速Vとを用いて、第1目標車輪角AFt1を決定する。第1目標車輪角AFt1とハンドル角と車速Vとの対応関係を表す情報は、主制御部110(図10)の不揮発性記憶装置110nに格納されているマップデータMAFによって、予め、決められている。主制御部110は、このマップデータMAFを参照し、ハンドル角と車速Vとの組み合わせに対応する第1目標車輪角AFt1を特定する。
 本実施例では、ハンドル角と車速Vと第1目標車輪角AFt1との対応関係は、第1目標傾斜角T1と、車速Vと、上記の式6、式7とを用いて特定される車輪角AFと、の対応関係と同じである。従って、同じ第1目標車輪角AFt1は、第1目標傾斜角T1と車速Vとを用いて、特定可能である。例えば、マップデータMAFは、第1目標傾斜角T1と車速Vとの組み合わせと、第1目標車輪角AFt1と、の対応関係を規定してよい。そして、主制御部110は、第1目標傾斜角T1と車速Vとを用いて、第1目標車輪角AFt1を特定してよい。
 主制御部110は、車輪角AFが第1目標車輪角AFt1となるように操舵モータ65を制御するための指示を、操舵モータ制御部500に供給する。操舵モータ制御部500は、指示に従って、車輪角AFが第1目標車輪角AFt1になるように、操舵モータ65を駆動する。操舵モータ制御部500は、車輪角AFと第1目標車輪角AFt1との差を用いる操舵モータ65のフィードバック制御を行う(例えば、いわゆるPID(Proportional Integral Derivative)制御)。
 以上により、車両10は、ハンドル角に対応する方向に向かって、適切に、進行する。
 S130、または、S170の処理が実行されたことに応じて、図11の処理が終了する。制御装置100は、図11の処理を繰り返し実行する。S130を実行するための条件が満たされる場合(S110:Yes)、制御装置100は、S130の処理を、継続して行う。S170を実行するための条件が満たされる場合(S110:No)、制御装置100は、S170の処理を、継続して行う。これらの結果、車両10は、ハンドル角に適した進行方向に向かって、走行する。
 図示を省略するが、主制御部110(図10)と駆動装置制御部300とは、アクセル操作量とブレーキ操作量とに応じて電気モータ51L、51Rを制御する駆動制御部として機能する。本実施例では、アクセル操作量が増大した場合には、主制御部110は、電気モータ51L、51Rの出力パワーを増大させるための指示を、駆動装置制御部300に供給する。駆動装置制御部300は、指示に従って、出力パワーが増大するように、電気モータ51L、51Rを制御する。アクセル操作量が減少した場合には、主制御部110は、電気モータ51L、51Rの出力パワーを減少させるための指示を、駆動装置制御部300に供給する。駆動装置制御部300は、指示に従って、出力パワーが減少するように、電気モータ51L、51Rを制御する。
 ブレーキ操作量がゼロよりも大きくなった場合には、主制御部110は、電気モータ51L、51Rの出力パワーを減少させるための指示を、駆動装置制御部300に供給する。駆動装置制御部300は、指示に従って、出力パワーが減少するように、電気モータ51L、51Rを制御する。なお、車両10は、全ての車輪12F、12L、12Rのうちの少なくとも1つの車輪の回転速度を摩擦によって低減するブレーキ装置を有することが好ましい。そして、ユーザがブレーキペダル46を踏み込んだ場合に、ブレーキ装置が、少なくとも1つの車輪の回転速度を低減することが好ましい。
A3.制御処理:
 S130(図11)の制御処理について、説明する。図12は、制御装置100のうち、リーンモータ25と操舵モータ65との制御の関連する部分のブロック図である。主制御部110は、傾斜角特定部112と、目標傾斜角決定部114と、加算点116と、第1決定部212と、第1微分計算部214と、第2決定部216と、第2微分計算部218と、を含んでいる。操舵モータ制御部500は、第1Pゲイン制御部512と、第1P制御部514と、第1D制御部516と、第1加算点518と、第2Pゲイン制御部522と、第2P制御部524と、第2D制御部526と、第2加算点528と、第3Pゲイン制御部532と、第3P制御部534と、第3D制御部536と、第3加算点538と、第4加算点590と、電力制御部500cと、を含んでいる。リーンモータ制御部400は、P制御部414と、D制御部416と、加算点490と、電力制御部400cと、を含んでいる。
 主制御部110の処理部112、114、116、212、214、216、218は、主制御部110(図10)のプロセッサ110pによって実現されている。リーンモータ制御部400の処理部414、416、490は、リーンモータ制御部400のプロセッサ400pによって実現されている。操舵モータ制御部500の処理部512、514、516、518、522、524、526、528、532、534、536、538、590は、操舵モータ制御部500のプロセッサ500pによって実現されている。以下、プロセッサ110p、400p、500pが、処理部112、114、116、212、214、216、218、414、416、490、512、514、516、518、522、524、526、528、532、534、536、538、590として処理を実行することを、処理部112、114、116、212、214、216、218、414、416、490、512、514、516、518、522、524、526、528、532、534、536、538、590が処理を実行する、とも表現する。
 図13は、第1制御(図11:S130)の処理の例を示すフローチャートである。S200では、主制御部110は、センサ122、123、126から、車速V、ハンドル角Ai、鉛直下方向DDを示す情報を、それぞれ取得する。
 S210では、傾斜角特定部112(図12)は、鉛直下方向DDを用いて、傾斜角Tを算出する。上述したように、車体90の車両上方向DVUと、鉛直方向センサ126の基準方向と、の間のセンサ方向関係は、予め決められている。傾斜角特定部112は、このセンサ方向関係を用いることによって、鉛直下方向DDの反対の方向である上方向DUと、車両上方向DVUと、の間の角度である傾斜角Tを、算出する。算出される傾斜角Tは、図5(B)のように、前方向DFを向いて車両10を見る場合の鉛直上方向DUと車両上方向DVUとの成す角度である。なお、制御装置100のうちの傾斜角特定部112として動作する部分と、鉛直方向センサ126と、の全体は、傾斜角Tを測定するように構成された傾斜角センサの例である。以下、傾斜角特定部112と鉛直方向センサ126との全体を、傾斜角センサ127とも呼ぶ。
 S220では、目標傾斜角決定部114(図12)は、ハンドル角Aiと車速Vとを用いて、第1目標傾斜角T1を決定する。第1目標傾斜角T1は、傾斜角Tの目標値を示している。ハンドル角Aiと車速Vと第1目標傾斜角T1との対応関係は、主制御部110(図10)の不揮発性記憶装置110nに格納されている角度マップデータMTによって、予め、決められている。目標傾斜角決定部114は、この角度マップデータMTを参照することによって、ハンドル角Aiと車速Vとの組み合わせに対応する第1目標傾斜角T1を特定する。本実施例では、車速Vが一定である場合には、ハンドル角Aiの絶対値が大きいほど、第1目標傾斜角T1の絶対値が大きい。これにより、ハンドル角Aiの絶対値が大きいほど旋回半径Rが小さくなるので、車両10は、ハンドル角Aiに適した旋回半径Rで、旋回できる。また、ハンドル角Aiが一定である場合には、車速Vが速いほど、第1目標傾斜角T1の絶対値が小さい。これにより、車速Vが速い場合に、ハンドル角Aiの変化に起因する傾斜角Tの大きな変化が抑制されるので、車両10の走行安定性を向上できる。なお、第1目標傾斜角T1と車速Vとの関係としては、他の種々の関係が、採用されてよい。例えば、車速Vが速いほど、第1目標傾斜角T1の絶対値が大きくてもよい。また、第1目標傾斜角T1の特定に用いられる情報は、ハンドル角Aiと車速Vとの組み合わせに代えて、ハンドル角Aiを含む任意の情報であってよい。
 S230では、加算点116(図12)は、第1目標傾斜角T1から傾斜角Tを減算することによって差dTを算出する(傾斜角差dTとも呼ぶ)。
 S232では、第1決定部212(図12)は、傾斜角差dTの絶対値が増大しているか否かを示す第1フラグFL1を決定する。傾斜角差dTの絶対値が増大しているか否かを判断する方法としては、種々の方法を採用可能である。本実施例では、図13の処理は、繰り返し実行される。第1決定部212は、現行の傾斜角差dT(すなわち、最新の傾斜角差dT)と、現在から所定時間だけ過去の時点での傾斜角差dTと、を比較することによって、傾斜角差dTの絶対値が増大しているか否かを判断する。また、傾斜角差dTの絶対値が増大している場合、第1フラグFL1は、ゼロに設定される。傾斜角差dTの絶対値が維持、または、減少している場合、第1フラグFL1は、1に設定される。
 S234では、第1微分計算部214(図12)は、傾斜角Tの微分値である角速度Vtを算出する。微分値の算出方法としては、公知の方法であってよい。例えば、現行の傾斜角T(すなわち、最新の傾斜角T)から、現在から所定時間だけ過去の時点での傾斜角Tを減算して得られる値が、傾斜角Tの微分値、すなわち、角速度Vtとして用いられてよい。後述する他のパラメータの微分値の算出方法も、同様に、種々の方法であってよい。
 S236では、第2決定部216(図12)は、角速度Vtの絶対値が増大しているか否かを示す第2フラグFL2を決定する。角速度Vtの絶対値が増大しているか否かを判断する方法としては、種々の方法を採用可能である。本実施例では、第2決定部216は、現行の角速度Vt(すなわち、最新の角速度Vt)と、現在から所定時間だけ過去の時点での角速度Vtと、を比較することによって、角速度Vtの絶対値が増大しているか否かを判断する。また、角速度Vtの絶対値が増大している場合、第2フラグFL2は、ゼロに設定される。角速度Vtの絶対値が維持、または、減少している場合、第2フラグFL2は、1に設定される。
 S238では、第2微分計算部218(図12)は、角速度Vtの微分値である角加速度Atを算出する。微分値の算出方法としては、公知の方法であってよい。例えば、現行の角速度Vt(すなわち、最新の角速度Vt)から、現在から所定時間だけ過去の時点での角速度Vtを減算して得られる値が、角速度Vtの微分値、すなわち、角加速度Atとして用いられてよい。
 S240~S280は、操舵モータ制御部500によって実行される。S300~S340は、リーンモータ制御部400によって実行される。図14(A)~図14(D)は、操舵モータ制御部500によって制御される操舵モータ65の回動トルクと、リーンモータ制御部400によって制御されるリーンモータ25の傾斜トルクとの、説明図である。図14(A)、図14(C)は、車両10の背面図を示し、図14(B)、図14(D)は、車両10の上面図を示している。
 図14(A)、図14(B)は、直立する車両10が前進している状態で、ハンドル41aが右に回動された場合を示している。この状態で、車両上方向DVUは、上方向DUとおおよそ同じであり、傾斜角Tは、おおよそゼロである。また、ハンドル41aが右に回動されているので、第1目標傾斜角T1は、車体90が右方向DR側に傾斜した状態を示している。図中の目標方向DTgは、右方向と左方向とのうち、傾斜角Tが第1目標傾斜角T1に近づくように車体90を幅方向に回動させる(すなわち、車体90をロールさせる)場合の回動方向を示している。図14(A)、図14(B)の例では、目標方向DTgは、右方向である。図14(A)中の方向DT1は、第1目標傾斜角T1によって示される方向であり、車両上方向DVUの目標の方向である。方向DT1は、傾斜角Tが第1目標傾斜角T1である状態の車両上方向DVUを示している。図示するように、方向DT1は、上方向DUから右方向DR側に傾斜している。
 この状態で、リーンモータ制御部400は、リーンモータ25(図14(A))に、上横リンク部材31Uに対して中縦リンク部材21を時計回り方向に回動させる傾斜トルクTqLを、出力させる(詳細は、後述)。この傾斜トルクTqLは、車体90を右方向DR側へ傾斜させる。この傾斜トルクTqLの方向(ここでは、右方向DR)は、目標方向DTgと同じである。
 操舵モータ制御部500は、操舵モータ65に、前フォーク17(ひいては、前輪12F)を左方向DLに回動させる回動トルクTqT(図14(B))を、出力させる。回動トルクTqTの方向(ここでは、左方向DL)は、目標方向DTgとは反対の方向である(逆トルクTqTとも呼ぶ)。このように、操舵モータ制御部500は、傾斜角Tが第1目標傾斜角T1と異なる場合に、目標方向DTg(すなわち、傾斜角Tを第1目標傾斜角T1に近づけるための車体90のロール方向)とは反対の方向のトルクを、操舵モータ65に出力させる。このような車輪の制御は、カウンタステアリングとも呼ばれる。本実施例では、傾斜角Tを第1目標傾斜角T1へ近づけるために、カウンタステアリングが利用される。
 図14(B)に示すように、逆トルクTqTによって、前輪12Fは、左方向DL側に回動する。これにより、前輪12Fの進行方向D12が左方向DL側を向くので、車両10は、左方向DL側に向かって旋回する。この結果、車体90には遠心力F3が作用する。この遠心力F3は、右方向DR、すなわち、目標方向DTgを、向いている。従って、車体90は、遠心力F3を利用して、目標方向DTgへ回動できる。
 また、前輪12Fの進行方向D12が左方向DL側を向くので、図14(A)、図14(B)の矢印ALで示すように、車両10のうちの前輪12Fを含む下方向DD側の部分(特に、重心90cよりも下方向DD側の部分)は、左方向DL側へ移動する。また、重心90cの移動は、車両10の下方向DD側の部分の移動と比べて、容易ではない。従って、図14(A)、図14(B)の矢印AHで示すように、車両10のうちの重心90cよりも上方向DU側の部分は、右方向DR側へ移動し易い。このように、車体90は、重心90cを中心とする回動を利用して、目標方向DTgへ回動できる。
 また、車体90は、前輪12Fの歳差運動を利用して、目標方向DTgへ回動できる。図15は、図9と同様の前輪12Fの斜視図である。図中には、ハンドル41aも示されている。ハンドル41aが右に回動された場合、左向きの回動トルクTqTが、前輪12Fに印加される。このような逆トルクTqTに起因して、回転する前輪12Fには、右方向DR側へ傾斜するように前軸Ax3を中心に回動するトルクTqzが、作用する。このようなトルクTqzを受ける前輪12Fは、車体90を、右方向、すなわち、目標方向DTgへ、傾斜させる。
 以上のように、逆トルクTqTは、遠心力F3(図14(B))と、重心90cを中心とする車体90の運動(図14(A))と、前輪12Fの歳差運動(図15)と、を利用して、車体90を目標方向DTgへ回動させ得る。これにより、傾斜角Tは、容易に、第1目標傾斜角T1に近づくことができる。また、車体90が遠心力F3の方向に回動する場合、車両10の搭乗者によって知覚される幅方向の加速度が抑制される。これにより、車両10の乗り心地が向上する。ハンドル41aが左に回動された場合も、同様である。なお、遠心力F3は、車速Vが速いほど、大きい。重心90cを中心とする車体90の回動は、車速Vが速いほど、大きい。前輪12Fの角運動量は、車速Vが速いほど、大きい。従って、逆トルクTqTによる車体90を目標方向DTgに回動させる力は、車速Vが大きいほど、大きい。
 図14(C)、図14(D)は、図14(A)、図14(B)の後、傾斜角Tが第1目標傾斜角T1になった状態を示している(傾斜角差dTは、おおよそゼロ)。この場合、リーンモータ25の傾斜トルクTqLは、おおよそゼロであり、また、操舵モータ65の回動トルクTqTも、おおよそゼロである。回動トルクTqTが小さい場合、前輪12Fは、ハンドル41aの方向とは独立に、左右に回動し得る。上述したように、車両10が傾斜角Tで走行する場合、前輪12Fの向きは、式6で表される旋回半径Rと、式7と、から特定される車輪角AFの向きに、落ち着き得る。図14(D)の例では、前輪12Fの進行方向D12は、ハンドル41aの方向と同じ右方向DR側を向いている。
 本実施例では、傾斜角差dTの大きさが大きい場合には、大きな逆トルクTqTによって、車体90の傾斜角Tの変化が促進される。傾斜角差dTの大きさが小さい場合には、小さな回動トルクによって、前輪12Fの自然な回動が許容される。以下、図13のS240~S280とS300~S340とについて、説明する。
 S240、S250、S260では、操舵モータ制御部500は、回動トルクの制御に利用される制御値Vc1、Vc2、Vc3を決定する。図16、図17、図18は、それぞれ、S240、S250、S260の処理の例を示すフローチャートである。以下、S240、S250、S260の順に説明する。
 S240(図13)では、操舵モータ制御部500は、図16の手順に従って、第1制御値Vc1を決定する。第1制御値Vc1は、傾斜角差dTを用いるフィードバック制御によって決定される制御値であり、上述した逆トルクを示している。
 S730(図16)では、第1Pゲイン制御部512(図12)は、車速Vを用いて、第1PゲインKp1を決定する。車速Vと第1PゲインKp1との対応関係は、操舵モータ制御部500(図10)の不揮発性記憶装置500nに格納されているマップデータMp1によって、予め決められている。第1Pゲイン制御部512は、このマップデータMp1を参照することによって、車速Vに対応する第1PゲインKp1を特定する。
 図19(A)は、車速Vと第1PゲインKp1との対応関係の例を示すグラフである。横軸は、車速Vの絶対値(すなわち、車速Vの大きさ)を示し、縦軸は、第1PゲインKp1を示している。図示するように、車速Vの絶対値が小さいほど、第1PゲインKp1は大きい。第1PゲインKp1は、車速Vの変化に対して滑らかに変化する。図中には、ゼロよりも大きい予め決められた閾値Thaが、示されている(例えば、Tha=15km/h)。車速Vの絶対値が閾値Thaよりも小さい場合には、車速Vの絶対値が閾値Thaよりも大きい場合と比べて、第1PゲインKp1は大きい。車速Vと第1PゲインKp1との関係が、図19(A)のように構成されている理由については、後述する。
 S750(図16)では、第1P制御部514(図12)は、傾斜角差dTと、S730で決定された第1PゲインKp1と、を用いて、第1比例項Vp1を決定する。第1比例項Vp1の決定方法は、PID制御の比例項を決定するための公知の方法であってよい。例えば、傾斜角差dTに第1PゲインKp1を乗じて得られる値が、第1比例項Vp1として出力される。
 S760では、第1D制御部516は、傾斜角差dTと第1DゲインKd1とを用いて、第1微分項Vd1を決定する。本実施例では、第1DゲインKd1は、予め決められている。第1微分項Vd1の決定方法は、PID制御の微分項を決定するための公知の方法であってよい。例えば、傾斜角差dTの微分値に第1DゲインKd1を乗じて得られる値が、第1微分項Vd1として出力される。傾斜角差dTの微分値の算出方法は、種々の方法であってよい。例えば、現行の傾斜角差dTから、現在から特定の時間差だけ過去の時点での傾斜角差dTを減算して得られる値を、微分値として採用してよい。傾斜角差dTの微分値を特定するための時間差は、予め決められていてよく、これに代えて、他のパラメータ(例えば、車速V)に基づいて決定されてよい。なお、第1DゲインKd1は、他のパラメータ(例えば、車速V)に応じて変化する可変値であってもよい。
 なお、第1比例項Vp1を決定するためのS730、S750と、第1微分項Vd1を決定するためのS760とは、並列に実行される。
 S770では、第1加算点518(図12)は、処理部514、516から項Vp1、Vd1を表す情報を、それぞれ取得する。そして、第1加算点518は、これらの項Vp1、Vd1の合計である第1制御値Vc1を、決定する。そして、図16の処理、すなわち、図13のS240が、終了する。
 S250(図13)では、操舵モータ制御部500は、図17の手順に従って、第2制御値Vc2を決定する。第2制御値Vc2は、角速度Vtを用いるフィードバック制御によって決定される制御値であり、角速度Vtを小さくする回動トルクを示している。
 S820(図17)では、第2Pゲイン制御部522(図12)は、第1フラグFL1(図13:S232)を参照し、傾斜角差dTの絶対値が増大しているか否かを判断する。傾斜角差dTの絶対値が増大している場合(FL1=0、S820:Yes)、S830で、第2Pゲイン制御部522は、車速Vを用いて、第1対応関係R21に従って、第2PゲインKp2を決定する。第1対応関係R21は、車速Vと第2PゲインKp2との対応関係である。第1対応関係R21は、操舵モータ制御部500(図10)の不揮発性記憶装置500nに格納されているマップデータMp21によって、予め決められている。第2Pゲイン制御部522は、このマップデータMp21を参照することによって、車速Vに対応する第2PゲインKp2を特定する。
 図19(B)は、車速Vと第2PゲインKp2との対応関係の例を示すグラフである。横軸は、車速Vの絶対値(すなわち、車速Vの大きさ)を示し、縦軸は、第2PゲインKp2を示している。図中の第1対応関係R21によって示されるように、車速Vの絶対値が小さいほど、第2PゲインKp2は大きい。第2PゲインKp2は、車速Vの変化に対して滑らかに変化する。図中には、ゼロよりも大きい予め決められた閾値Thbが、示されている(例えば、Thb=15km/h)。車速Vの絶対値が閾値Thbよりも小さい場合には、車速Vの絶対値が閾値Thbよりも大きい場合と比べて、第2PゲインKp2は大きい。車速Vと第2PゲインKp2との関係が、図19(B)のように構成されている理由については、後述する。
 傾斜角差dTの絶対値が増大していない場合(FL1=1、S820:No)、すなわち、傾斜角差dTの絶対値が変化せずに維持されている、または、減少している場合、S840で、第2Pゲイン制御部522は、車速Vを用いて、第2対応関係R22に従って、第2PゲインKp2を決定する。第2対応関係R22は、車速Vと第2PゲインKp2との対応関係である。第2対応関係R22は、操舵モータ制御部500(図10)の不揮発性記憶装置500nに格納されているマップデータMp22によって、予め決められている。第2Pゲイン制御部522は、このマップデータMp22を参照することによって、車速Vに対応する第2PゲインKp2を特定する。
 図19(B)には、第2対応関係R22のグラフも示されている。図中の第2対応関係R22によって示されるように、車速Vの絶対値が小さいほど、第2PゲインKp2は大きい。車速Vの絶対値が閾値Thbよりも小さい場合には、車速Vの絶対値が閾値Thbよりも大きい場合と比べて、第2PゲインKp2は大きい。また、任意の車速Vにおいて、第2対応関係R22の第2PゲインKp2は、第1対応関係R21の第2PゲインKp2よりも小さい。
 S850では、第2P制御部524(図12)は、角速度Vtと、S830またはS840で決定された第2PゲインKp2と、を用いて、第2比例項Vp2を決定する。第2比例項Vp2の決定方法は、PID制御の比例項を決定するための公知の方法であってよい。例えば、角速度Vtに第2PゲインKp2を乗じて得られる値が、第2比例項Vp2として出力される。
 S860では、第2D制御部526は、角速度Vtと第2DゲインKd2とを用いて、第2微分項Vd2を決定する。本実施例では、第2DゲインKd2は、予め決められている。第2微分項Vd2の決定方法は、PID制御の微分項を決定するための公知の方法であってよい。例えば、角速度Vtの微分値に第2DゲインKd2を乗じて得られる値が、第2微分項Vd2として出力される。角速度Vtの微分値を特定するための時間差は、予め決められていてよく、これに代えて、他のパラメータ(例えば、車速V)に基づいて決定されてよい。なお、第2DゲインKd2は、他のパラメータ(例えば、車速V)に応じて変化する可変値であってもよい。
 なお、第2比例項Vp2を決定するためのS820~S850と、第2微分項Vd2を決定するためのS860とは、並列に実行される。
 S870では、第2加算点528(図12)は、処理部524、526から項Vp2、Vd2を表す情報を、それぞれ取得する。そして、第2加算点528は、これらの項Vp2、Vd2の合計である第2制御値Vc2を、決定する。そして、図17の処理、すなわち、図13のS250が、終了する。
 S260(図13)では、操舵モータ制御部500は、図18の手順に従って、第3制御値Vc3を決定する。第3制御値Vc3は、角加速度Atを用いるフィードバック制御によって決定される制御値であり、角加速度Atを小さくする回動トルクを示している。
 S910(図18)では、第3Pゲイン制御部532(図12)は、第2フラグFL2(図13:S236)を参照し、角速度Vtの絶対値が増大しているか否かを判断する。角速度Vtの絶対値が変化せずに維持されている、または、減少している場合(FL2=1、S910:No)、S980で、第3制御値Vc3は、ゼロに決定される。本実施例では、第3Pゲイン制御部532は、第3PゲインKp3をゼロに決定する。そして、第3P制御部534は、ゼロの第3PゲインKp3に従って、第3比例項Vp3をゼロに決定する。また、第3D制御部536は、第2フラグFL2が1である場合には(S910:No)、S980で、第3DゲインKd3をゼロに決定し、ゼロの第3DゲインKd3に従って第3微分項Vd3をゼロに決定する。第3加算点538は、ゼロの第3比例項Vp3とゼロの第3微分項Vd3とを加算することによって、第3制御値Vc3をゼロに決定する。S980が完了した場合、図18の処理、すなわち、図13のS260は、終了する。
 角速度Vtの絶対値が増大している場合(FL2=0、S910:Yes)、S920で、第3Pゲイン制御部532(図12)は、第1フラグFL1(図13:S232)を参照し、傾斜角差dTの絶対値が増大しているか否かを判断する。傾斜角差dTの絶対値が増大している場合(FL1=0、S920:Yes)、S930で、第3Pゲイン制御部532は、車速Vを用いて、第1対応関係R31に従って、第3PゲインKp3を決定する。第1対応関係R31は、車速Vと第3PゲインKp3との対応関係である。第1対応関係R31は、操舵モータ制御部500(図10)の不揮発性記憶装置500nに格納されているマップデータMp31によって、予め決められている。第3Pゲイン制御部532は、このマップデータMp31を参照することによって、車速Vに対応する第3PゲインKp3を特定する。
 図19(C)は、車速Vと第3PゲインKp3との対応関係の例を示すグラフである。横軸は、車速Vの絶対値(すなわち、車速Vの大きさ)を示し、縦軸は、第3PゲインKp3を示している。図中の第1対応関係R31によって示されるように、車速Vの絶対値が小さいほど、第3PゲインKp3は大きい。第3PゲインKp3は、車速Vの変化に対して滑らかに変化する。図中には、ゼロよりも大きい予め決められた閾値Thcが、示されている(例えば、Thc=15km/h)。車速Vの絶対値が閾値Thcよりも小さい場合には、車速Vの絶対値が閾値Thcよりも大きい場合と比べて、第3PゲインKp3は大きい。車速Vと第3PゲインKp3との関係が、図19(C)のように構成されている理由については、後述する。
 傾斜角差dTの絶対値が増大していない場合(FL1=1、S920:No)、すなわち、傾斜角差dTの絶対値が変化せずに維持されている、または、減少している場合、S940で、第3Pゲイン制御部532は、車速Vを用いて、第2対応関係R32に従って、第3PゲインKp3を決定する。第2対応関係R32は、車速Vと第3PゲインKp3との対応関係である。第2対応関係R32は、操舵モータ制御部500(図10)の不揮発性記憶装置500nに格納されているマップデータMp32によって、予め決められている。第3Pゲイン制御部532は、このマップデータMp32を参照することによって、車速Vに対応する第3PゲインKp3を特定する。
 図19(CL)には、第2対応関係R32のグラフも示されている。図中の第2対応関係R32によって示されるように、車速Vの絶対値が小さいほど、第3PゲインKp3は大きい。車速Vの絶対値が閾値Thcよりも小さい場合には、車速Vの絶対値が閾値Thcよりも大きい場合と比べて、第3PゲインKp3は大きい。また、任意の車速Vにおいて、第2対応関係R32の第3PゲインKp3は、第1対応関係R31の第3PゲインKp3よりも小さい。
 S950では、第3P制御部534(図12)は、角加速度Atと、S930またはS940で決定された第3PゲインKp3と、を用いて、第3比例項Vp3を決定する。第3比例項Vp3の決定方法は、PID制御の比例項を決定するための公知の方法であってよい。例えば、角加速度Atに第3PゲインKp3を乗じて得られる値が、第3比例項Vp3として出力される。
 S960では、第3D制御部536は、角加速度Atと第3DゲインKd3とを用いて、第3微分項Vd3を決定する。本実施例では、第3DゲインKd3は、予め決められている。第3微分項Vd3の決定方法は、PID制御の微分項を決定するための公知の方法であってよい。例えば、角加速度Atの微分値に第3DゲインKd3を乗じて得られる値が、第3微分項Vd3として出力される。角加速度Atの微分値を特定するための時間差は、予め決められていてよく、これに代えて、他のパラメータ(例えば、車速V)に基づいて決定されてよい。なお、第3DゲインKd3は、他のパラメータ(例えば、車速V)に応じて変化する可変値であってもよい。
 なお、第3比例項Vp3を決定するためのS920~S950と、第3微分項Vd3を決定するためのS960とは、並列に実行される。
 S970では、第3加算点538(図12)は、処理部534、536から項Vp3、Vd3を表す情報を、それぞれ取得する。そして、第3加算点538は、これらの項Vp3、Vd3の合計である第3制御値Vc3を、決定する。そして、図18の処理、すなわち、図13のS260が、終了する。
 なお、図13のS240、S250、S260は、並列に実行される。
 S270(図13)では、第4加算点590(図12)は、加算点518、528、538から制御値Vc1、Vc2、Vc3を表す情報を、それぞれ取得する。そして、第4加算点590は、これらの制御値Vc1、Vc2、Vc3の合計である回動駆動制御値Vcaを算出し、回動駆動制御値Vcaを示す情報を、電力制御部500cに出力する。S280では、電力制御部500cは、制御値Vcaに従って、操舵モータ65に供給される電力を制御する。
 回動駆動制御値Vcaは、操舵モータ65の回動トルクの目標値を示している。以下、回動駆動制御値Vcaによって示されるトルクを、目標回動トルクTqTtとも呼ぶ。回動駆動制御値Vcaは、例えば、操舵モータ65に供給すべき電流の向きと大きさとを示している。電力の大きさ(すなわち、操舵モータ65のトルクの大きさ)は、制御値Vcaの絶対値が大きいほど、大きい。S270では、操舵モータ制御部500(具体的には、第4加算点590)は、操舵モータ65の目標回動トルクTqTtを決定しているといえる。S280では、操舵モータ制御部500(具体的には、電力制御部500c)は、操舵モータ65のトルクを目標回動トルクTqTtとなるように制御しているといえる。
 各制御値Vc1、Vc2、Vc3、ひいては、各項Vp1、Vd1、Vp2、Vd2、Vp3、Vd3は、いずれも、回動駆動制御値Vcaの一部を形成している。従って、各制御値Vc1、Vc2、Vc3、ひいては、各項Vp1、Vd1、Vp2、Vd2、Vp3、Vd3も、操舵モータ65の回動トルクを示す制御値の一種である、といえる。
 第1制御値Vc1は、傾斜角差dTを用いるフィードバック制御によって決定される。そして、第1制御値Vc1によって示される回動トルクの方向は、図14(B)で説明したように、目標方向DTgとは反対の方向である(すなわち、逆トルク)。この第1制御値Vc1は、傾斜角Tを第1目標傾斜角T1に近づけるための回動トルクを示している。
 第2制御値Vc2と第3制御値Vc3とは、外乱(例えば、道路の凹凸)やオーバーシュートによる傾斜角Tの意図しない変化を抑制するための回動トルクを示している。外乱などによって傾斜角Tが急に変化する場合に、第2制御値Vc2と第3制御値Vc3とのそれぞれの大きさが大きくなる。車両10が安定して走行している状態では、角速度Vtと角加速度Atとが小さいので、第2制御値Vc2と第3制御値Vc3とのそれぞれの大きさも小さい。
 通常は、ユーザは、ハンドル41aを緩やかに操作する。この場合、傾斜角Tの角速度Vtの大きさと角加速度Atの大きさとは、傾斜角差dTの大きさのようには、大きくならない。従って、傾斜角差dTのフィードバック制御によって決定される第1制御値Vc1の大きさは、傾斜角Tの角速度Vtと角加速度Atとのフィードバック制御によって決定される制御値Vc2、Vc3のそれぞれの大きさと比べて、大きい。すなわち、操舵モータ65の目標回動トルクTqTtの主な成分は、第1制御値Vc1によって示され得る。また、第1PゲインKp1と第1DゲインKd1とは、ユーザがハンドル41aを緩やかに操作する場合に、第1比例項Vp1の大きさが第1微分項Vd1の大きさよりも大きくなるように、決定されている。すなわち、操舵モータ65の目標回動トルクTqTtの主な成分は、第1比例項Vp1によって示され得る。このような目標回動トルクTqTtに従って回動トルクが制御されるので、図14(A)、図14(B)で説明したように、傾斜角Tを、容易に、第1目標傾斜角T1に近づけることができる。
 また、第1制御値Vc1は、傾斜角差dTを用いて、決定される。従って、第1制御値Vc1は、傾斜角差dTに適した値に決定される。従って、車両10の走行安定性を向上できる。
 また、第1制御値Vc1の大きさ(ここでは、第1比例項Vp1の大きさ)、すなわち、目標回動トルクTqTtの大きさは、傾斜角差dTの大きさが大きいほど、大きい。図14(A)、図14(B)のように傾斜角差dTの大きさが大きい場合には、大きな目標回動トルクTqTtに基づいて、回動トルクTqT(すなわち、大きな逆トルクTqT)の大きさが、大きくなる。大きな回動トルクTqT(すなわち、大きな逆トルクTqT)は、前輪12Fを、目標方向DTgとは反対の方向に回動させることができる。これにより、車体90は、容易に、目標方向DTgに回動できる。そして、傾斜角Tは、容易に、第1目標傾斜角T1に近づくことができる。
 また、図14(C)、図14(D)のように傾斜角Tが第1目標傾斜角T1に近づき、そして、傾斜角差dTの大きさが小さくなった場合には、第1比例項Vp1の大きさが小さくなる。従って、目標回動トルクTqTtの大きさが小さくなる。この結果、車輪12Fの進行方向D12は、傾斜角T(すなわち第1目標傾斜角T1)に適した方向を向くことができる。
 また、本実施例では、第1PゲインKp1と第1DゲインKd1とは、第1PゲインKp1が、傾斜角差dTの大きさに対する第1制御値Vc1によって示される回動トルクの大きさの割合である角差トルク割合とおおよそ同じとなるように、決定されている(例えば、第1DゲインKd1は、十分に小さい)。そして、図19(A)に示すように、第1PゲインKp1は、車速Vに応じて変化する。すなわち、角差トルク割合が車速Vに応じて変化するように、第1制御値Vc1が決定される。このように、車速Vに適した第1制御値Vc1が決定されるので、種々の車速Vでの走行安定性を向上できる。
 また、図19(A)に示すように、車速Vの大きさが閾値Thaよりも小さい場合の第1PゲインKp1は、車速Vの大きさが閾値Thaよりも大きい場合の第1PゲインKp1よりも、大きい。すなわち、車速Vの大きさが閾値Thaよりも小さい場合の角差トルク割合が、車速Vの大きさが閾値Thaよりも大きい場合の角差トルク割合よりも大きくなるように、第1制御値Vc1は決定される。上述したように、図14(A)、図14(B)、図15で説明した逆トルクTqTによる車体90を目標方向DTgに回動させる力は、車速Vが小さいほど、小さい。従って、車速Vの大きさが小さい場合に第1PゲインKp1を大きくすることによって、車速Vの大きさが小さい場合であっても、適切に、車体90を目標方向DTgに向かって回動させることができる。そして、車体90の傾斜角Tの変化の遅れを抑制できる。
 第2制御値Vc2は、傾斜角Tの角速度Vtを用いるフィードバック制御によって決定される。この第2制御値Vc2によって示される回動トルクの方向は、傾斜角Tの変化の方向である。例えば、車体90の車両上方向DVUが外乱などによって左方向へ回動している場合、傾斜角Tは、左方向に向かって変化している。この場合、第2制御値Vc2によって示される回動トルクの方向は、左方向である。この回動トルクは、前輪12Fを左方向に回動させる。前輪12Fが左方向に回動することによって、車両10は左方向に旋回する。従って、右方向の遠心力が車体90に作用する。この結果、車体90の車両上方向DVUが意図せずに左方向側に回動することが、抑制される。
 また、本実施例では、第2PゲインKp2と第2DゲインKd2とは、第2PゲインKp2が、角速度Vtの大きさに対する第2制御値Vc2によって示される回動トルクの大きさの割合である角速度トルク割合とおおよそ同じとなるように、決定されている(例えば、第2DゲインKd2は、十分に小さい)。そして、図19(B)に示すように、第2PゲインKp2は、車速Vに応じて変化する。すなわち、角速度トルク割合が車速Vに応じて変化するように、第2制御値Vc2が決定される。このように、車速Vに適した第2制御値Vc2が決定されるので、種々の車速Vでの走行安定性を向上できる。
 また、図19(B)に示すように、車速Vの大きさが閾値Thbよりも小さい場合の第2PゲインKp2は、車速Vの大きさが閾値Thbよりも大きい場合の第2PゲインKp2よりも、大きい。すなわち、車速Vの大きさが閾値Thbよりも小さい場合の角速度トルク割合が、車速Vの大きさが閾値Thbよりも大きい場合の角速度トルク割合よりも大きくなるように、第2制御値Vc2は決定される。上述したように、図14(A)、図14(B)、図15で説明した逆トルクTqTによる車体90を目標方向DTgに回動させる力は、車速Vが小さいほど、小さい。従って、車速Vの大きさが小さい場合には、傾斜角Tは、外乱などに起因して、意図せずに変化し易い。本実施例では、車速Vの大きさが小さい場合に第2PゲインKp2(ひいては、角速度トルク割合)が大きくなるので、車速Vの大きさが小さい場合に、外乱などに起因する傾斜角Tの意図しない変化を抑制できる。
 また、図17のS820~S840、図19(B)で説明したように、車速Vが一定であるという条件下では、傾斜角差dTの絶対値が増大している場合(S820:Yes、R21)には、傾斜角差dTの絶対値が増大していない場合(S820:No、R22)と比べて、第2PゲインKp2は大きい。傾斜角差dTの絶対値が増大している場合には、大きな第2PゲインKp2(ひいては、大きな第2制御値Vc2)によって、dTの絶対値の増大を抑制できる。また、傾斜角差dTの絶対値が減少している場合には、小さな第2PゲインKp2(ひいては、小さな第2制御値Vc2)によって、dTの絶対値の減少を促進できる。
 第3制御値Vc3は、傾斜角Tの角加速度Atを用いるフィードバック制御によって決定される。この第3制御値Vc3によって示される回動トルクの方向は、傾斜角Tの角速度Vtの変化の方向である。車体90の車両上方向DVUが外乱などによって左方向へ回動し始めた場合、傾斜角Tは、左方向に向かって変化し始める。そして、角速度Vtは、左方向に向かって増大する(すなわち、角速度Vtは、左方向に向かって変化する)。この場合、第3制御値Vc3によって示される回動トルクの方向は、左方向である。この回動トルクは、前輪12Fを左方向に回動させる。前輪12Fが左方向に回動することによって、車両10は左方向に旋回する。従って、右方向の遠心力が車体90に作用する。この結果、車体90の車両上方向DVUが意図せず左方向側に回動することが、抑制される。なお、車体90の車両上方向DVUが左方向へ回動している状態において、角速度Vtの大きさが小さくなっている場合には、角速度Vtの変化の方向は右方向である。
 また、本実施例では、第3PゲインKp3と第3DゲインKd3とは、第3PゲインKp3が、角加速度Atの大きさに対する第3制御値Vc3によって示される回動トルクの大きさの割合である角加速度トルク割合とおおよそ同じとなるように、決定されている(例えば、第3DゲインKd3は、十分に小さい)。そして、図19(C)に示すように、第3PゲインKp3は、車速Vに応じて変化する。すなわち、角加速度トルク割合が車速Vに応じて変化するように、第3制御値Vc3が決定される。このように、車速Vに適した第3制御値Vc3が決定されるので、種々の車速Vでの走行安定性を向上できる。
 また、図19(C)に示すように、車速Vの大きさが閾値Thcよりも小さい場合の第3PゲインKp3は、車速Vの大きさが閾値Thcよりも大きい場合の第3PゲインKp3よりも、大きい。すなわち、車速Vの大きさが閾値Thcよりも小さい場合の角加速度トルク割合が、車速Vの大きさが閾値Thcよりも大きい場合の角加速度トルク割合よりも大きくなるように、第3制御値Vc3は決定される。上述したように、図14(A)、図14(B)、図15で説明した逆トルクTqTによる車体90を目標方向DTgに回動させる力は、車速Vが小さいほど、小さい。従って、車速Vの大きさが小さい場合には、傾斜角Tは、外乱などに起因して、意図せずに変化し易い。本実施例では、車速Vの大きさが小さい場合に第3PゲインKp3(ひいては、角加速度トルク割合)が大きくなるので、車速Vの大きさが小さい場合に、外乱などに起因する傾斜角Tの意図しない変化を抑制できる。
 また、図18のS920、S980で説明したように、角速度Vtの絶対値が減少している場合(S910:No)、第3制御値Vc3はゼロに決定される。従って、第3制御値Vc3に起因する角速度Vtの絶対値の増大は、抑制される。
 また、図18のS920~S940、図19(C)で説明したように、車速Vが一定であるという条件下では、傾斜角差dTの絶対値が増大している場合(S920:Yes、R31)、傾斜角差dTの絶対値が増大していない場合(S920:No、R32)と比べて、第3PゲインKp3は大きい。傾斜角差dTの絶対値が増大している場合には、大きな第3PゲインKp3(ひいては、大きな第3制御値Vc3)によって、dTの絶対値の増大を抑制できる。また、傾斜角差dTの絶対値が減少している場合には、小さな第3PゲインKp3(ひいては、小さな第3制御値Vc3)によって、dTの絶対値の減少を促進できる。
 また、本実施例では、車両10は、傾斜トルクを車体90に作用させるように構成されたリーンモータ25(図4)を備えている。従って、車両10は、傾斜トルクを用いることによって、傾斜角Tを適切に変化させることができる。
 S310(図13)では、P制御部414(図12)は、傾斜角差dTとPゲインKpbと、を用いて、比例項Vpbを決定する。本実施例では、PゲインKpbは、予め決められている。比例項Vpbの決定方法は、PID制御の比例項を決定するための公知の方法であってよい。例えば、傾斜角差dTにPゲインKpbを乗じて得られる値が、比例項Vpbとして出力される。なお、PゲインKpbは、他のパラメータ(例えば、車速V)に応じて変化する可変値であってもよい。
 S320では、D制御部416は、傾斜角差dTとDゲインKdbとを用いて、微分項Vdbを決定する。本実施例では、DゲインKdbは、予め決められている。微分項Vdbの決定方法は、PID制御の微分項を決定するための公知の方法であってよい。例えば、傾斜角差dTの微分値にDゲインKdbを乗じて得られる値が、微分項Vdbとして出力される。傾斜角差dTの微分値を特定するための時間差は、予め決められていてよく、これに代えて、他のパラメータ(例えば、車速V)に基づいて決定されてよい。なお、DゲインKdbは、他のパラメータ(例えば、車速V)に応じて変化する可変値であってもよい。
 なお、比例項Vpbを決定するためのS310と、微分項Vdbを決定するためのS320とは、並列に実行される。
 S330では、加算点490(図12)は、処理部414、416から項Vpb、Vdbを表す情報を、それぞれ取得する。そして、加算点490は、これらの項Vpb、Vdbの合計である傾斜駆動制御値Vcbを算出し、傾斜駆動制御値Vcbを示す情報を、電力制御部400cに出力する。S340では、電力制御部400cは、制御値Vcbに従って、リーンモータ25に供給される電力を制御する。
 傾斜駆動制御値Vcbは、リーンモータ25の傾斜トルクの目標値を示している。以下、傾斜駆動制御値Vcbによって示されるトルクを、目標傾斜トルクとも呼ぶ。傾斜駆動制御値Vcbによって示される傾斜トルクの方向は、図14(A)で説明したように、目標方向DTg、すなわち、傾斜角Tを第1目標傾斜角T1へ近づけるための車体90の回動方向と、同じである。傾斜駆動制御値Vcbは、例えば、リーンモータ25に供給すべき電流の向きと大きさとを示している。電力の大きさ(すなわち、リーンモータ25のトルクの大きさ)は、制御値Vcbの絶対値が大きいほど、大きい。S330では、リーンモータ制御部400(具体的には、加算点490)は、リーンモータ25の目標傾斜トルクを決定しているといえる。S340では、リーンモータ制御部400(具体的には、電力制御部400c)は、リーンモータ25のトルクを目標傾斜トルクとなるように制御しているといえる。また、各項Vpb、Vdbは、いずれも、傾斜駆動制御値Vcbの一部を形成している。従って、各項Vpb、Vdbも、リーンモータ25の傾斜トルクを示す制御値の一種である、といえる。
 なお、操舵モータ65を制御するためのS240~S280と、リーンモータ25を制御するためのS310~S340とは、並列に実行される。以上により、図13の処理、すなわち、図11のS130の処理が終了する。
 なお、ロックモータ925(図4)は、制御装置100(図10)によって制御されてよい。例えば、制御装置100は、ユーザの指示に応じてロックモータ925を駆動することによって、ロック装置900の状態を変更してよい。ただし、ロックモータ925とロックモータ制御部600とは、省略されてよい。
B.第2実施例:
 図20は、制御処理の別の実施例を示すフローチャートである。図11の実施例との差異は、S110とS130との間にS120、S125が追加されている点と、S120から分岐するS145、S150が追加されている点と、だけである。図20のステップのうち、図11のステップと同じステップには、同じ符号を付して、説明を省略する。また、本実施例の車両のハードウェア構成は、第1実施例の車両10のハードウェア構成と、同じである。
 S110の判断結果がYesである場合、S120で、主制御部110(図10)は、車速Vの大きさが閾値Vth以上であるか否かを判断する。図14(A)、図14(B)で説明したように、逆トルクTqTによる車体90を目標方向DTgに回動させる力(すなわち、傾斜角Tを変化させる力)は、車速Vが小さいほど、小さい。車速Vが小さい場合、逆トルクTqTが傾斜角Tを適切に変化させることができない可能性がある。閾値Vthは、逆トルクTqTが傾斜角Tを適切に変化させることが可能な車速Vの下限を示している。このような閾値Vthは、車両10の構成に応じて異なっており、予め実験的に決定される。閾値Vthは、例えば、5km/hである。
 車速Vの大きさが閾値Vth以上である場合(S120:Yes)、S125で、主制御部110は、ロック装置900に傾斜装置89を解放させる。本実施例では、主制御部110は、ロック装置900の状態が解放状態となるように、ロックモータ制御部600にロックモータ925を駆動させる。既にロック装置900の状態が解放状態である場合、主制御部110は、ロックモータ925を駆動せずに、ロック装置900の解放状態を維持する。
 S130の処理は、図11のS130の処理と同じである。なお、S125とS130は、並列に実行されてよい。
 車速Vの大きさが閾値Vth未満である場合(S120:No)、S145で、主制御部110は、ロック装置900に傾斜装置89をロックさせる。本実施例では、主制御部110は、ロック装置900の状態がロック状態となるように、ロックモータ制御部600にロックモータ925を駆動させる。既にロック装置900の状態がロック状態である場合、主制御部110は、ロックモータ925を駆動せずに、ロック装置900のロック状態を維持する。これにより、制御角Tc、ひいては、傾斜角Tは、固定される。
 S150では、制御装置100は、車両10がハンドル角に対応付けられた方向に進むように、操舵モータ65を制御する第3制御を行う。図21は、第3制御の処理の例を示すフローチャートである。S700は、図13のS200と同様である。主制御部110は、センサ122、123、124、126から、車速V、ハンドル角Ai、車輪角AF、鉛直下方向DDを示す情報を、それぞれ取得する。
 S710では、主制御部110は、ハンドル角Aiと車速Vとを用いて、目標車輪角を決定する。目標車輪角の決定方法は、図11のS170での目標車輪角(ここでは、第1目標車輪角AFt1)の決定方法と、同じである。主制御部110は、マップデータMAFを参照することによって、ハンドル角と車速Vとの組み合わせに対応する目標車輪角を特定する。
 S720では、主制御部110は、車輪角AFが目標車輪角となるように操舵モータ65を制御するための指示を、操舵モータ制御部500に供給する。操舵モータ制御部500は、指示に従って、車輪角AFが目標車輪角になるように、操舵モータ65を駆動する。操舵モータ制御部500は、車輪角AFと目標車輪角との差を用いる操舵モータ65のフィードバック制御を行う(例えば、いわゆるPID(Proportional Integral Derivative)制御)。S720では、操舵モータ制御部500は、逆トルク(図14(B))ではなく、前フォーク17(ひいては、前輪12F)を目標方向DTgに回動させるトルク(順トルクとも呼ぶ)を、操舵モータ65に出力させる。
 このように、車速Vの大きさが閾値Vth未満である場合には、ロック装置900が傾斜装置89をロックする。これにより、制御角Tc(ひいては、傾斜角T)は、固定される。従って、傾斜角Tが不安定になることが抑制される。また、車速Vの大きさが閾値Vth未満である場合には、操舵モータ65の回動トルクは、車輪角AFが目標車輪角になるように、前輪12Fを目標方向DTgに回動させる。従って、車両10は、ハンドル角Aiによって示される方向に、走行できる。
 以上により、制御装置100は、図21の処理、すなわち、図20のS150を、終了する。なお、S145とS150は、並列に実行されてよい。
 S130、S150、S170のいずれかの処理が実行されたことに応じて、図20の処理が終了する。制御装置100は、図20の処理を繰り返し実行する。S125、S130を実行するための条件が満たされる場合(S110:Yes、S120:Yes)、制御装置100は、S125、S130の処理を、継続して行う。S145、S150を実行するための条件が満たされる場合(S110:Yes、S120:No)、制御装置100は、S145、S150の処理を、継続して行う。S170を実行するための条件が満たされる場合(S110:No)、制御装置100は、S170の処理を、継続して行う。なお、S170では、主制御部110は、ロック装置900の状態がロック状態となるように、ロックモータ制御部600にロックモータ925を駆動させてよい。
 走行中の車両10が減速し、そして、車速Vが閾値Vth以上の値から閾値Vth未満の値に変化する場合、ロック装置900の状態は、解放状態からロック状態へ切り替わる。車速Vが閾値Vth以上である段階では、図14(A)~図14(D)等で説明したように、車両10は、逆トルクを利用して、ハンドル角Aiによって示される方向に、安定して走行できる。車速Vが閾値Vth未満になると、傾斜装置89がロック装置900によってロックされる。従って、車両10の傾斜角Tが不安定になることが抑制される。また、操舵モータ65は、車輪角AFが目標車輪角になるように、前輪12Fを回動させる。従って、車両10は、ハンドル角Aiによって示される方向に、安定して走行できる。
 なお、傾斜装置89がロックされた状態の制御角Tcは、傾斜装置89のロックの直前の制御角Tcと同じである。通常は、車両10の減速は、ハンドル角Aiの大きさが小さい状態で、行われる。従って、車両10の減速に起因する傾斜装置89のロック(図20:S145)は、通常は、傾斜角Tの大きさが小さい状態で、行われる。従って、S145で傾斜装置89の状態が解放状態からロック状態へ切り替えられた後、車両10は、適切に、走行できる。また、制御装置100は、ロックされた状態の傾斜角Tの大きさが予め決められた角度閾値よりも大きい場合に、傾斜角Tの大きさが角度閾値以下になるようにリーンモータ25を制御してもよい。ここで、角度閾値は、ゼロ以上の種々の値であってよい(例えば、5度)。
 車両10が加速し、そして、車速Vが閾値Vth未満の値から閾値Vth以上の値に変化する場合、ロック装置900の状態は、ロック状態から解放状態へ切り替わる。車速Vが閾値Vth未満である段階では、傾斜装置89がロック装置900によってロックされているので、車両10の傾斜角Tが不安定になることが抑制される。また、操舵モータ65は、車輪角AFが目標車輪角になるように、前輪12Fを回動させる。従って、車両10は、ハンドル角Aiによって示される方向に、安定して走行できる。車速Vが閾値Vth以上になると、傾斜装置89が解放される。そして、図14(A)~図14(D)等で説明したように、車両10は、逆トルクを利用して、ハンドル角Aiによって示される方向に、安定して走行できる。
 なお、通常は、車両10の加速は、ハンドル角Aiの大きさが小さい状態で、行われる。従って、車両10の加速に起因して傾斜装置89が解放される場合に(図20:S125)、制御角Tcの急な変化(ひいては、傾斜角Tの急な変化)は、抑制される。
B.変形例:
(1)回動トルクの制御処理は、図12、図13、図16~図18、図19(A)~図19(C)で説明した処理に代えて、他の種々の処理であってよい。例えば、図19(A)のグラフにおいて、第1PゲインKp1は、車速Vの大きさの変化に対して、階段状に変化してよい。また、第1PゲインKp1は、車速Vの変化に対して一定値に維持されてよい。第1PゲインKp1は、車速Vとは異なる他のパラメータの変化に応じて変化してもよい。また、第1PゲインKp1は、可変値ではなく、固定値であってよい。この場合、第1Pゲイン制御部512(図12)と、S730(図16)が、省略されてよい。第1制御値Vc1の決定処理としては、傾斜角差dTを用いる種々のフィードバック制御処理を採用してよい。例えば、D制御(図16:S760)は、省略されてよい。ただし、D制御を利用すれば、回動トルクの安定性を向上できる。
 また、図19(B)のグラフにおいて、第2PゲインKp2は、車速Vの大きさの変化に対して、階段状に変化してよい。また、第2PゲインKp2は、車速Vの変化に対して一定値に維持されてよい。第2PゲインKp2は、車速Vとは異なる他のパラメータの変化に応じて変化してもよい。また、第2PゲインKp2は、可変値ではなく、固定値であってよい。この場合、第2Pゲイン制御部522(図12)と、S820、S830、S840(図17)が、省略されてよい。第2制御値Vc2の決定処理としては、角速度Vtを用いる種々のフィードバック制御処理を採用してよい。例えば、D制御(図17:S860)は、省略されてよい。ただし、D制御を利用すれば、回動トルクの安定性を向上できる。また、第2制御値Vc2は、省略されてよい。
 また、図19(C)のグラフにおいて、第3PゲインKp3は、車速Vの大きさの変化に対して、階段状に変化してよい。また、第3PゲインKp3は、車速Vの変化に対して一定値に維持されてよい。第3PゲインKp3は、車速Vとは異なる他のパラメータの変化に応じて変化してもよい。また、第3PゲインKp3は、可変値ではなく、固定値であってよい。この場合、第3Pゲイン制御部532(図12)と、S920、S930、S940(図18)が、省略されてよい。第3制御値Vc3の決定処理としては、角加速度Atを用いる種々のフィードバック制御処理を採用してよい。例えば、D制御(図18:S960)は、省略されてよい。ただし、D制御を利用すれば、回動トルクの安定性を向上できる。また、第3制御値Vc3は、省略されてよい。
 また、図17において、第1フラグFL1を用いる制御(例えば、S820、S840)は、省略されてよい。この場合、傾斜角差dTに関わらずに、S830で第2PゲインKp2が決定されてよい。図18においても、同様に、第1フラグFL1を用いる制御(例えば、S920、S940)は、省略されてよい。また、図18において、第2フラグFL2を用いる制御(例えば、S910、S980)は、省略されてよい。
 一般的には、制御装置100は、逆トルクを示す制御値(例えば、第1比例項Vp1)を含む1以上の制御値を用いて、回動駆動制御値Vca(ひいては、目標回動トルク)を決定してよい。ここで、制御装置100は、1以上の制御値の合計値を、回動駆動制御値Vcaとして算出してよい。
(2)制御装置100の構成は、回動トルクを出力する装置(例えば、操舵モータ65)と、傾斜トルクを出力する装置(例えば、リーンモータ25)と、を制御する処理を実行するように構成された種々の構成であってよい。例えば、制御装置100は、1つのコンピュータを用いて構成されてもよい。制御装置100の少なくとも一部は、ASIC(Application Specific Integrated Circuit)などの専用のハードウェアによって、構成されてよい。例えば、図12のリーンモータ制御部400と操舵モータ制御部500は、ASICによって構成されてよい。制御装置100は、種々の電気回路であってよく、例えば、コンピュータを含む電気回路であってよく、コンピュータを含まない電気回路であってもよい。また、マップデータMT、MAF、Mp1、Mp21、Mp22、Mp31、Mp32によって対応付けられる入力値と出力値とは、他の要素によって対応付けられてよい。例えば、数学的関数、アナログ回路などの要素が、入力値と出力値とを対応つけてよい。
 また、回動トルクと傾斜トルクとのそれぞれの制御に利用される傾斜角としては、鉛直上方向DUを基準とする傾斜角T(図5(B))に代えて、車体90の幅方向の傾斜の度合いを示す種々の角度を採用してよい。例えば、制御角Tcが、傾斜角として利用されてよい。この場合、車両10には、制御角Tcを測定するように構成されたセンサが設けられることが好ましい。このセンサは、傾斜角センサの例である。
(3)前輪12F(図2)は、車両10の前進方向DFに対して左右に回動可能な回動輪の例である。前輪支持装置41は、回動輪を支持する回動輪支持部の例である。回動輪支持部の構成は、前輪支持装置41の構成に代えて、他の種々の構成であってよい。例えば、回動輪を回転可能に支持する支持部材は、前フォーク17に代えて、片持ちの部材であってよい。また、支持部材を車体90に対して左右に回動可能に支持する回動装置は、軸受68に代えて、他の種々の装置であってよい。例えば、回動装置は、車体と支持部材とを連結するリンク機構であってよい。
 一般的には、回動輪支持部は、K個(Kは1以上の整数)の支持部材を備えてよい。そして、各支持部材は、1以上の回動輪を支持してよい。回動輪支持部は、K個の回動装置を備えてよい。K個の回動装置は、K個の支持部材を、それぞれ回動可能に支持してよい。回動輪支持部は、K個の回動駆動装置を備えてよい。K個の回動駆動装置とK個の支持部材とは、一対一に対応付けられる。そして、各回動駆動装置は、対応する1個の支持部材に回動トルクを印加するように、構成されてよい。これに代えて、回動輪支持部は、1個の回動駆動装置を備えてよい。1個の回動駆動装置は、K個の支持部材のそれぞれに回動トルクを印加するように構成されてよい。
 いずれの場合も、回動輪支持部は、1以上の回動輪が、操作入力部(例えば、ハンドル41a)に入力される操作量に拘わらず、車体の傾斜の変化に追随して車体に対して左右に回動することを許容するように構成されていることが好ましい。例えば、車体に固定された回動装置が、支持部材を回動可能に支持することが好ましい。この場合、車体が傾斜する場合に、支持部材も車体と共に傾斜する。従って、図9等で説明したように、回動輪の方向(すなわち、車輪角AF(図2))は、車体の傾斜に追随して変化できる。
(4)操作入力部は、ハンドル41a(図1)のように左と右とに回動可能な装置に代えて、旋回方向と旋回の程度とを示す操作量を入力するために操作されるように構成された他の種々の装置であってよい。例えば、操作入力部は、予め決められた基準方向(例えば、直立方向)から左と右とに傾斜可能なレバーであってよい。
(5)傾斜装置の構成は、図4の傾斜装置89の構成に代えて、車体90を幅方向に傾斜させるように構成された他の任意の構成であってよい。例えば、リンク機構30が台に置換されてよい。台には、モータ51L、51Rが固定される。そして、台と第1支持部82とは、軸受によって、回動可能に連結される。リーンモータ25は、台に対して、第1支持部82を、右方向DR側と左方向DL側とのそれぞれに回動させる。これにより、車体90は、右方向DR側と左方向DL側とのそれぞれに、傾斜できる。
 一般的には、傾斜装置は、「車両の幅方向に互いに離れて配置された一対の車輪の少なくとも一方に直接的または間接的に接続された第1部材」と、「車体に直接的または間接的に接続された第2部材」と、駆動装置と、を含んでよい。駆動装置は、第1部材と第2部材との相対的な位置を変化させる力(例えば、第1部材に対する第2部材の向きを変化させるトルク)を第1部材と第2部材とに印加する装置である。傾斜装置は、さらに、「第1部材を第2部材に可動に接続する接続装置」を含んでよい。接続装置は、例えば、第1部材を第2部材にスライド可能に接続する液圧シリンダであってよい。また、接続装置は、第1部材と第2部材とを回動可能に連結する軸受であってよい。軸受は、転がり軸受であってよく、これに代えて、滑り軸受であってもよい。駆動装置は、リーンモータ25のような電気モータであってよい。また、傾斜装置が、液圧シリンダを含む場合、駆動装置は、ポンプであってよい。
(6)操作入力部と回動輪支持部の支持部材とに接続されている接続部の構成は、図1の接続部50の構成に代えて、他の種々の構成であってよい。接続部50の第3部分53は、粘性ダンパに代えて、弾性変形可能な弾性体であってよい(例えば、コイルバネ、トーションバネ、ゴム等)。第3部分53は、第1部分51と第2部分52とに接続され、第1部分51から第2部分52へトルクを伝達し、そして、第1部分51と第2部分52との間の相対位置の変化を許容する可動部分を含む、種々の装置であってよい。このような第3部分53は、第1部分51が動いていない状態で第2部分52が動くことを許容する、すなわち、ハンドル角Aiが変化していない状態で車輪角AFが変化することを許容する。この結果、前輪12Fの車輪角AFは、車体90の傾斜に追随して容易に変化できる。一般的には、接続部は、操作入力部と支持部材とに機械的に接続され、操作入力部の操作による操作入力部の機械的な動きに応じて操作入力部から支持部材へトルクを伝達することが好ましい。そして、接続部は、操作入力部に入力される操作量に拘わらず車体の傾斜の変化に追随して1以上の回動輪の方向が変化することを許容してよい。なお、このような接続部が、省略されてもよい。
(7)複数の車輪の総数と配置としては、種々の構成を採用可能である。例えば、前輪の総数が1であり、後輪の総数が1であってもよい。前輪の総数が2であり、後輪の総数が1であってもよい。前輪の総数が2であり、後輪の総数が2であってもよい。また、幅方向に互いに離れて配置された一対の車輪が、前輪であってもよく、また、回動輪であってもよい。また、後輪が回動輪であってもよい。また、駆動輪が前輪であってもよい。
 一般的には、車両は、1個以上の前輪と1個以上の後輪とを含むN個(Nは2以上の整数)の車輪を備えている。そして、N個の車輪は、左右に回動可能な1以上の回動輪を含んでいる。車輪の総数Nが2である場合、傾斜装置89のような傾斜装置は、省略される。ここで、車両は、車両の幅方向に互いに離れて配置された一対の車輪と、1個以上の他の車輪と、を含むN個の車輪を備えてよい。この場合、車輪の総数Nは、3以上である。一対の車輪は、前輪であってよく、これに代えて、後輪であってよい。ここで、一対の車輪と他の車輪との少なくとも一方が、車両の前進方向に対して左右に回動可能な1以上の回動輪として構成されていることが好ましい。すなわち、一対の車輪のみが回動輪であってよく、他の車輪のみが回動輪であってよく、一対の車輪と他の車輪とを含む3以上の車輪が回動輪であってよい。ここで、1以上の回動輪に含まれる他の車輪の総数は、任意の数であってよい。図20、図21の制御は、3以上の車輪と傾斜装置とを備える種々の車両に適用されてよい。いずれの場合も、傾斜装置の駆動装置(例えば、リーンモータ25)は、省略されてよい。
(8)傾斜駆動装置は、傾斜トルクを車体に作用させるように構成された任意の装置であってよい。例えば、傾斜駆動装置は、車体に対して幅方向にスライド可能に接続された錘と、車体に対する錘の位置を制御する電気モータと、を備えてもよい。錘が車体の右側に移動すると、車体は右方向側に傾斜でき、錘が車体の左側に移動すると、車体は左方向側に傾斜できる。ただし、このような傾斜駆動装置は、省略されてもよい。
(9)ロック装置は、図4のロック装置900に代えて、傾斜装置をロックするように構成された任意の装置であってよい。例えば、ロック装置は、特定の制御角Tc(例えば、Tc=ゼロ)で、中縦リンク部材21の貫通孔と上横リンク部材31Uの貫通孔とに挿入されるように構成された棒を含んでよい。棒が部材21、31Uのそれぞれの貫通孔に挿入されることによって、部材21、31Uの相対的な動きが禁止される。また、ロック装置は、傾斜装置とともに、車両に設けられてよい。例えば、ロック装置は、「車両の幅方向に互いに離れて配置された一対の車輪の少なくとも一方に直接的または間接的に接続された第1ロック部材」と、「車体に直接的または間接的に接続された第2ロック部材」と、の少なくとも一方を移動させるように構成された移動装置を備えてよい。移動装置は、第1ロック部材と第2ロック部材との少なくとも一方を移動させて互いに接触させることによって、第1ロック部材と第2ロック部材との間の相対的な動き、すなわち、一対の車輪と車体との相対的な動きを禁止してよい。図4のロック装置900においては、ブレーキパッド930は、第1ロック部材の例であり、ブレーキロータ910は、第2ロック部材の例であり、ブレーキキャリパー920は、移動装置の例である。第1ロック部材は、ロック装置とは異なる他の装置の部材(例えば、傾斜装置の上記の第1部材)であってよい。同様に、第2ロック部材は、ロック装置とは異なる他の装置の部材(例えば、傾斜装置の上記の第2部材)であってよい。なお、ロック装置は、省略されてよい。
(10)車両の制御方法は、図11等で説明した方法に代えて、他の種々の方法であってよい。例えば、S170では、第1目標傾斜角T1に代えて、第1目標傾斜角T1の絶対値よりも小さい絶対値を有する第2目標傾斜角T2が、利用されてよい。
(11)制御装置100(例えば、主制御部110)は、車速Vを用いずにハンドル角Aiを用いて第1目標傾斜角T1を決定してよい。一般的には、制御装置100は、ハンドル角Ai(より一般的には、操作入力部に入力された操作量)を含む1以上のパラメータを用いて、目標傾斜角を決定してよい。操作量以外のパラメータとしては、車速Vに限らず、他の種々のパラ-メータを採用可能である。
 例えば、制御装置100は、ハンドル角Aiに加えて、車両10のヨーレートを用いて、第1目標傾斜角T1を決定してよい。車両10のヨーレートは、ヨー角の変化する速さであり、車両10の重心を通り鉛直上方向DUに平行な軸を中心とする回転の角速度である。現行のヨーレートは、ジャイロセンサ126gからの情報を用いて特定され得る。車両10は、風などの外部の要因から力を受ける。車両10の進行方向は、このような力から影響を受け得る。例えば、ハンドル角Aiがゼロであり、車両10が水平な道を直進していると仮定する。ここで、風が右から左に向かって吹く場合、車体90には、左方向DLの力が作用する。この結果、車体90は、左方向DL側へ傾斜し得、そして、車両10は、左方向DLに、旋回し得る。このような意図しない旋回を抑制するために、制御装置100(例えば、主制御部110)は、ハンドル角Aiと現行のヨーレートとを用いて、目標傾斜角を決定してよい。制御装置100は、ハンドル角Aiを用いて、目標ヨーレートを特定する。ハンドル角Aiと目標ヨーレートとの対応関係は、予め決定される。例えば、ゼロのハンドル角Aiには、ゼロの目標ヨーレートが、対応付けられる。右旋回を示すハンドル角Aiには、右旋回を示す目標ヨーレートが、対応付けられる。制御装置100は、この対応関係を参照して、ハンドル角Aiに対応する目標ヨーレートを特定する。そして、主制御部110は、目標ヨーレートと現行のヨーレートとの差を用いて、目標傾斜角を決定する。例えば、制御装置100は、目標ヨーレートと現行のヨーレートとの差であるヨーレート差に対応する修正値を、現行の傾斜角Tに加算することによって、目標傾斜角を算出する。ヨーレート差と修正値との対応関係は、予め実験的に決定されてよい。例えば、現行ヨーレートが目標ヨーレートと同じである場合(ヨーレート差=ゼロ)、修正値はゼロである。この場合、第1目標傾斜角T1は、現行の傾斜角Tと同じである。目標ヨーレートがゼロ(すなわち、直進)であり、現行のヨーレートが左旋回を示す場合、修正値は、第1目標傾斜角T1を、現行の傾斜角Tよりも右方向DR側に回動した角度に、修正する。例えば、ハンドル角Aiがゼロであるにも拘わらず左に向かって吹く風によって車両10が意図せずに左方向に旋回する場合、第1目標傾斜角T1は、車体90が右方向DR側に傾斜することを示す角度に、決定される。これにより、車両10は、風に抗って直進できる。このように、外部の要因に起因する車両10の進行方向のズレが、抑制される。
(12)鉛直方向センサ126の制御部126cは、ジャイロセンサ126gと加速度センサ126aとからの情報に加えて、車両10の動きに関連する他の情報を用いて、鉛直下方向DDを検出してよい。他の情報としては、例えば、GPS(Global Positioning System)を用いて特定される車両10の位置が、用いられてよい。制御部126cは、鉛直下方向DDを、GPSによる位置の変化に応じて、補正してもよい。GPSによる位置の変化に基づく補正量は、予め実験的に決定されてよい。なお、制御部126cは、種々の電気回路であってよく、例えば、コンピュータを含む電気回路であってよく、コンピュータを含まない電気回路(例えば、ASIC)であってもよい。ジャイロセンサ126gは、角加速度に代えて、角速度を検出するセンサであってよい。
(13)車両の構成は、上記実施例と変形例とのそれぞれの構成に代えて、他の種々の構成であってよい。例えば、図4の実施例において、モータ51L、51Rは、サスペンションを介して、リンク機構30に接続されてもよい。駆動輪を駆動する駆動装置は、電気モータに代えて、車輪を回転させる任意の装置であってよい(例えば、内燃機関)。車両の最大定員数は、1人に代えて、2人以上であってよい。車両の制御に用いられる対応関係(例えば、マップデータMT、MAF、Mp1、Mp2によって示される対応関係)は、車両10が適切に走行できるように、実験的に決定されてよい。車両の制御装置は、車両の制御に用いられる対応関係を、車両の状態に応じて、動的に変更してよい。例えば、車両は、車体の重量を測定する重量センサをー備え、制御装置は、車体の重量に応じて対応関係を調整してよい。
 上記各実施例において、ハードウェアによって実現されていた構成の一部をソフトウェアに置き換えるようにしてもよく、逆に、ソフトウェアによって実現されていた構成の一部あるいは全部をハードウェアに置き換えるようにしてもよい。例えば、図12の制御装置100の機能を、専用のハードウェア回路によって実現してもよい。
 また、本発明の機能の一部または全部がコンピュータプログラムで実現される場合には、そのプログラムは、コンピュータ読み取り可能な記録媒体(例えば、一時的ではない記録媒体)に格納された形で提供することができる。プログラムは、提供時と同一または異なる記録媒体(コンピュータ読み取り可能な記録媒体)に格納された状態で、使用され得る。「コンピュータ読み取り可能な記録媒体」は、メモリーカードやCD-ROMのような携帯型の記録媒体に限らず、各種ROM等のコンピュータ内の内部記憶装置や、ハードディスクドライブ等のコンピュータに接続されている外部記憶装置も含み得る。
 以上、実施例、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。
 本発明は、車両に、好適に利用できる。
10…車両、11…座席、12F…前輪、12L…左後輪、12R…右後輪、12Fc…重心、12La…ホイール、12Lb…タイヤ、12Ra…ホイール、12Rb…タイヤ、17…前フォーク、20…本体部、20a…前部、20b…底部、20c…後部、20d…支持部、21…中縦リンク部材、25…リーンモータ、30…リンク機構、31D…下横リンク部材、31U…上横リンク部材、33L…左縦リンク部材、33R…右縦リンク部材、38…軸受、39…軸受、41…前輪支持装置、41a…ハンドル、41ax…支持棒、45…アクセルペダル、46…ブレーキペダル、47…シフトスイッチ、50…接続部、51…第1部分、52…第2部分、53…第3部分、51L…左電気モータ、51R…右電気モータ、65…操舵モータ、68…軸受、70…サスペンションシステム、70L…左サスペンション、70R…右サスペンション、71L、71R…コイルスプリング、72L、72R…ショックアブソーバ、75…連結棒、80…後輪支持部、82…第1支持部、83…第2支持部、89…傾斜装置、90…車体、90c…重心、100…制御装置、110…主制御部、110g、300g、400g、500g…プログラム、110n、300n、400n、500n…不揮発性記憶装置、110p、300p、400p、500p…プロセッサ、110v、300v、400v、500v…揮発性記憶装置、120…バッテリ、122…車速センサ、123…ハンドル角センサ、124…車輪角センサ、126…鉛直方向センサ、126a…加速度センサ、126c…制御部、126g…ジャイロセンサ、127…傾斜角センサ、145…アクセルペダルセンサ、146…ブレーキペダルセンサ、300…駆動装置制御部、300c…電力制御部、400…リーンモータ制御部、400c…電力制御部、500…操舵モータ制御部、500c…電力制御部、600…ロックモータ制御部600、900…ロック装置、910…ブレーキロータ、920…ブレーキキャリパー、930…ブレーキパッド、925…ロックモータ

Claims (11)

  1.  車両であって、
     車体と、
     前記車両の前進方向に対して左右に回動可能な1以上の回動輪を含むN個(Nは2以上の整数)の車輪であって、1個以上の前輪と1個以上の後輪とを含む前記N個の車輪と、
     前記車体の幅方向の傾斜角を測定するように構成された傾斜角センサと、
     旋回方向と旋回の程度とを示す操作量を入力するために操作されるように構成された操作入力部と、
     前記1以上の回動輪を支持する回動輪支持部と、
     制御装置と、
     を備え、
     前記回動輪支持部は、
      前記1以上の回動輪を回転可能に支持する支持部材と、
      前記支持部材を前記車体に対して左右に回動可能に支持する回動装置と、
      前記支持部材を回動させる回動トルクを前記支持部材に印加するように構成された回動駆動装置と、
     を備え、
     前記車体の目標の傾斜角を目標傾斜角とし、
     前記目標傾斜角と前記車体の前記傾斜角との間の差を傾斜角差とし、
     前記回動駆動装置の目標トルクを目標回動トルクとする場合に、
     前記制御装置は、
      前記操作量を含む1以上のパラメータを用いて前記目標傾斜角を決定し、
      前記傾斜角が前記目標傾斜角に近づくように前記車体を幅方向に回動させる場合の回動方向である目標方向であって、右方向と左方向とのいずれかである前記目標方向とは反対の方向に前記支持部材を回動させる第1トルクを示す第1種制御値を、前記傾斜角差を用いて決定し、
      前記第1種制御値を含む1以上の制御値を用いて、前記目標回動トルクを決定し、
      前記目標回動トルクに従って前記回動駆動装置を制御する、
     ように構成されている、車両。
  2.  請求項1に記載の車両であって、
     前記傾斜角差の大きさに対する前記第1種制御値によって示される前記第1トルクの大きさの割合を、角差トルク割合とする場合に、
     前記制御装置は、車速に応じて前記角差トルク割合が変化するように前記第1種制御値を決定するように構成されている、車両。
  3.  請求項2に記載の車両であって、
     前記制御装置は、前記車速の大きさが第1閾値よりも小さい場合の前記角差トルク割合が、前記車速の大きさが前記第1閾値よりも大きい場合の前記角差トルク割合よりも大きくなるように、前記第1種制御値を決定するように構成されている、車両。
  4.  請求項1から3のいずれかに記載の車両であって、
     前記制御装置は、
      前記車体の前記傾斜角の角速度を用いて、前記右方向と前記左方向とのうちの前記傾斜角の変化の方向に前記支持部材を回動させる第2トルクを示す第2種制御値を決定し、
      前記第1種制御値と前記第2種制御値とを含む2以上の制御値を用いて、前記目標回動トルクを決定する、
     ように構成されている、
     車両。
  5.  請求項4に記載の車両であって、
     前記傾斜角の前記角速度の大きさに対する前記第2種制御値によって示される前記第2トルクの大きさの割合を、角速度トルク割合とする場合に、
     前記制御装置は、前記車速に応じて前記角速度トルク割合が変化するように前記第2種制御値を決定するように構成されている、車両。
  6.  請求項5に記載の車両であって、
     前記制御装置は、前記車速の大きさが第2閾値よりも小さい場合の前記角速度トルク割合が、前記車速の大きさが前記第2閾値よりも大きい場合の前記角速度トルク割合よりも大きくなるように、前記第2種制御値を決定するように構成されている、車両。
  7.  請求項1から6のいずれかに記載の車両であって、
     前記制御装置は、
      前記車体の前記傾斜角の角加速度を用いて、前記右方向と前記左方向とのうちの前記傾斜角の角速度の変化の方向に前記支持部材を回動させる第3トルクを示す第3種制御値を決定し、
      前記第1種制御値と前記第3種制御値とを含む2以上の制御値を用いて、前記目標回動トルクを決定する、
     ように構成されている、
     車両。
  8.  請求項7に記載の車両であって、
     前記傾斜角の前記角加速度の大きさに対する前記第3種制御値によって示される前記第3トルクの大きさの割合を、角加速度トルク割合とする場合に、
     前記制御装置は、車速に応じて前記角加速度トルク割合が変化するように前記第3種制御値を決定するように構成されている、車両。
  9.  請求項8に記載の車両であって、
     前記制御装置は、前記車速の大きさが第3閾値よりも小さい場合の前記角加速度トルク割合が、前記車速の大きさが前記第3閾値よりも大きい場合の前記角加速度トルク割合よりも大きくなるように、前記第3種制御値を決定するように構成されている、車両。
  10.  請求項1から9のいずれかに記載の車両であって、
     前記車体の前記傾斜角を制御するための傾斜トルクを前記車体に作用させるように構成された傾斜駆動装置を備える、車両。
  11.  請求項1から10のいずれかに記載の車両であって、
     前記N個の車輪は、前記幅方向に互いに離れて配置された一対の車輪を含む3個以上の車輪を含み、
     前記車両は、
      前記車体を前記幅方向に傾斜させるように構成された傾斜装置と、
      前記傾斜装置をロックするように構成されたロック装置と、
     を備え、
     前記制御装置は、
      車速の大きさが第4閾値以上である場合には、
       前記ロック装置に前記傾斜装置を解放させ、
       前記目標回動トルクに従って前記回動駆動装置を制御し、
      前記車速の大きさが前記第4閾値未満である場合には、
       前記ロック装置に前記傾斜装置をロックさせ、
       前記支持部材を前記目標方向に回動させる前記回動トルクを前記回動駆動装置に出力させる、
     ように構成されている、車両。
PCT/JP2019/029256 2018-07-26 2019-07-25 車両 WO2020022447A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/263,193 US20210206446A1 (en) 2018-07-26 2019-07-25 Vehicle
EP19842100.0A EP3828068A1 (en) 2018-07-26 2019-07-25 Vehicle
CN201980049554.1A CN112469623A (zh) 2018-07-26 2019-07-25 车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-140491 2018-07-26
JP2018140491A JP2020015448A (ja) 2018-07-26 2018-07-26 車両

Publications (1)

Publication Number Publication Date
WO2020022447A1 true WO2020022447A1 (ja) 2020-01-30

Family

ID=69181558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029256 WO2020022447A1 (ja) 2018-07-26 2019-07-25 車両

Country Status (5)

Country Link
US (1) US20210206446A1 (ja)
EP (1) EP3828068A1 (ja)
JP (1) JP2020015448A (ja)
CN (1) CN112469623A (ja)
WO (1) WO2020022447A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220314965A1 (en) * 2021-03-31 2022-10-06 Honda Motor Co., Ltd. Systems and methods for stabilizing a vehicle on two wheels
CN114834579A (zh) * 2022-06-22 2022-08-02 浙江欧凯车业有限公司 一种转向拉杆组件、悬架及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230651A (ja) * 2010-04-27 2011-11-17 Equos Research Co Ltd 車両
JP2013023166A (ja) 2011-07-26 2013-02-04 Equos Research Co Ltd 車両
JP2016165986A (ja) * 2015-03-06 2016-09-15 株式会社エクォス・リサーチ 車両
JP2018034531A (ja) * 2016-08-29 2018-03-08 株式会社エクォス・リサーチ 車両

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123240B2 (en) * 2009-07-10 2012-02-28 Bombardier Recreational Products Inc. Control system for leaning vehicle
JP5316958B2 (ja) * 2010-03-03 2013-10-16 株式会社エクォス・リサーチ 車両、及び車両制御プログラム
JP5757511B1 (ja) * 2014-03-18 2015-07-29 サーチウェア株式会社 車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230651A (ja) * 2010-04-27 2011-11-17 Equos Research Co Ltd 車両
JP2013023166A (ja) 2011-07-26 2013-02-04 Equos Research Co Ltd 車両
JP2016165986A (ja) * 2015-03-06 2016-09-15 株式会社エクォス・リサーチ 車両
JP2018034531A (ja) * 2016-08-29 2018-03-08 株式会社エクォス・リサーチ 車両

Also Published As

Publication number Publication date
EP3828068A1 (en) 2021-06-02
JP2020015448A (ja) 2020-01-30
US20210206446A1 (en) 2021-07-08
CN112469623A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
JP6557841B2 (ja) 車両
JP6557880B2 (ja) 車両
WO2019245042A1 (ja) 車両
JP6524343B2 (ja) 車両
JP7128432B2 (ja) 車両
WO2020138494A1 (ja) 車両
WO2020022447A1 (ja) 車両
WO2019088085A1 (ja) 車両
WO2018212186A1 (ja) 車両
WO2020138495A1 (ja) 車両
JP2021160608A (ja) 移動装置
WO2018180754A1 (ja) 車両
JP7348590B2 (ja) 車両
JP2018193009A (ja) 車両
JP2019098885A (ja) 車両
JP2019081475A (ja) 車両
JP2018172072A (ja) 車両
JP2020050012A (ja) 車両
JP7193780B2 (ja) 車両
WO2019131618A1 (ja) 車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019842100

Country of ref document: EP

Effective date: 20210226