WO2020022295A1 - Optical element, optical system, and optical device - Google Patents

Optical element, optical system, and optical device Download PDF

Info

Publication number
WO2020022295A1
WO2020022295A1 PCT/JP2019/028727 JP2019028727W WO2020022295A1 WO 2020022295 A1 WO2020022295 A1 WO 2020022295A1 JP 2019028727 W JP2019028727 W JP 2019028727W WO 2020022295 A1 WO2020022295 A1 WO 2020022295A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
light
absorbing layer
flange portion
light absorbing
Prior art date
Application number
PCT/JP2019/028727
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 宮坂
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2020532394A priority Critical patent/JPWO2020022295A1/en
Priority to CN201980049572.XA priority patent/CN112470043A/en
Publication of WO2020022295A1 publication Critical patent/WO2020022295A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to an optical element capable of reducing stray light, an optical system having the optical element, and an optical device having the optical element.
  • stray light may be generated due to reflection inside the lens or an imaging system including the lens. Then, so-called ghosts and flares may occur due to stray light.
  • Patent Literature 1 also discloses a method in which a peripheral portion of a lens is roughened and light is scattered by the roughened portion.
  • an object of one embodiment of the present invention to provide an optical element capable of reducing stray light without significantly impairing the accuracy of a flange surface, an optical system having the optical element, and an optical device having the optical element.
  • An optical element is an optical element including a curved surface and a flange portion having an annular flat portion extending in the outer radial direction from the curved surface, and at least a part of the flange portion includes an optical element.
  • a light absorbing layer for reducing the reflectance when light enters from the inside is provided, and the thickness of the light absorbing layer is 2 ⁇ m or less.
  • an optical element is an optical element including a curved surface and a flange portion having an annular flat portion extending in the outer radial direction from the curved surface, wherein the side surface of the flange portion complies with JIS B0601.
  • the arithmetic average roughness Ra is 0.1 ⁇ m or less, and at least a part of the flange portion has a light absorbing layer containing a metal, a semiconductor, or a dielectric.
  • An optical system includes the optical element.
  • An optical device includes the optical element.
  • stray light can be reduced without significantly impairing the accuracy of the flange surface.
  • FIG. 1 is a cross-sectional view schematically illustrating a first embodiment of an optical element according to one aspect of the present invention.
  • FIG. 4 is an explanatory diagram for describing stray light generated inside an optical element. It is sectional drawing which shows the mode at the time of forming a light absorption layer typically. 4 is a flowchart illustrating a method for forming a light absorbing layer.
  • FIG. 4 is a cross-sectional view schematically illustrating a second embodiment of the optical element according to one aspect of the present invention. It is sectional drawing which shows the optical system assembled using the optical element typically. It is explanatory drawing which shows the refractive index and extinction coefficient of chromium oxide and chromium.
  • FIG. 4 is an explanatory diagram for describing stray light generated inside an optical element. It is sectional drawing which shows the mode at the time of forming a light absorption layer typically. 4 is a flowchart illustrating a method for forming a light absorbing layer.
  • 9 is an explanatory diagram showing calculation results of transmittance and reflectance when light is incident on the light absorption layer of the example. It is explanatory drawing which shows the reflectance at the time of light in the range of 5 degrees-85 degrees with respect to a light absorption layer in glass. It is explanatory drawing which shows the reflectance of light at the incident angle of 65 degrees when the film thickness of a light absorption layer is 70% and 50%.
  • FIG. 1 is a sectional view schematically showing a first embodiment of an optical element 10 according to one aspect of the present invention.
  • the optical element 10 has a first curved surface 11, a second curved surface 12, a flange 13, and a light absorbing layer 14 covering at least a part of a flat portion of the flange 13.
  • the material of the optical element 10 is, for example, glass. As long as the optical element 10 is transparent in the wavelength band used, a material such as ceramics, plastic, or a mixed material of organic and inorganic materials may be used.
  • FIG. 1 shows a cross section of the optical element 10. In the plan view, the flat portion of the flange portion 13 is annular, and the outer diameter of the optical element 10 extends from the outer periphery of the first curved surface 11.
  • the flat portion of the flange portion 13 is annular, and the outer diameter of the optical element 10 extends from the outer periphery of the first curved surface 11.
  • Direction the plan view, the flat portion of the flange
  • the first curved surface 11 is a convex surface
  • the second curved surface 12 is a convex surface.
  • the shape of the optical element 10 is not limited to such a shape.
  • Each of the first curved surface 11 and the second curved surface 12 may be either a convex surface or a concave surface, or may be a flat surface.
  • FIG. 2 illustrates a concave second curved surface 12.
  • FIG. 3 illustrates a case where the second curved surface 12 is flat.
  • the outer periphery of the flange portion 13 is not centered.
  • the roughness of the outermost side surface of the flange portion 13 is Ra 0.1 ⁇ m or less. Note that Ra of 0.1 ⁇ m or less is an example, and the roughness may be smaller, such as 0.01 ⁇ m.
  • an antireflection layer may be provided on the optical surfaces of the first curved surface 11 and the second curved surface 12.
  • the light absorbing layer 14 is formed on at least a part of the flat portion (the flange surface A on the front surface) or the side surface of the flange portion 13, or at least a part of the flange surface A and the side surface.
  • the light absorption layer 14 is a thin film having a maximum thickness of 2 ⁇ m or less. Since the light absorbing layer 14 is a thin film, the flatness of the flange surface A and the accuracy of the outer shape can be prevented from deteriorating.
  • the light absorption layer 14 is not limited to one layer.
  • the light absorbing layer 14 may be an optical multilayer film in which two or more different materials are stacked.
  • the light absorbing layer 14 partially includes a member having absorption in at least a part of the visible wavelength range.
  • a material various materials such as a metal, a semiconductor, and a dielectric can be used.
  • silicon, silicon compounds, carbon, carbon compounds, nickel compounds, zinc compounds, chromium compounds, phosphorus compounds, titanium compounds, molybdenum compounds, alloys thereof, organic materials, and the like can be used.
  • chromium oxide and silicon are widely used as materials for vacuum deposition and sputtering and have a large technical accumulation, these materials may be used.
  • FIG. 2 is an explanatory diagram for explaining stray light generated inside the optical element 10.
  • the light when light 21 enters the optical element 10 from an unintended direction, the light is reflected inside the optical element 10 and emitted from the optical element 10. If the light absorbing layer 14 does not exist, such light finally reaches an image sensor (not shown) as stray light, and generates flare and ghost.
  • Light incident from an unintended direction corresponds to light incident on a portion outside the effective area (for example, the area of the first curved surface 11) of the optical element 10 (for example, the flange portion 13).
  • the light absorbing layer 14 is formed on at least a part of the flat portion and the side surface of the flange portion 13. In the path until the light 21 is emitted from the optical element 10, the intensity of the reflected light is reduced by the light absorbing layer 14.
  • the reflectance of the light absorbing layer 14 is sufficiently small when light enters from the glass side (the inside of the optical element 10).
  • the incident angle satisfies the condition of satisfying the total reflection
  • the light is guided inside the optical element 10 without being attenuated. Therefore, it is preferable that the reflectance is sufficiently small even at the incident angle at which the total reflection occurs.
  • the flange portion 13 is not roughened or black is not applied to the non-roughened flange portion 13, stray light can be generated without impairing the accuracy of the flange surface A. It becomes possible to reduce.
  • the angle satisfying the total reflection condition is 41 °. That is, when light enters the incident surface (for example, the flange surface A) at an incident angle of 41 ° or more, the incident light is totally reflected on the incident surface.
  • the reflectance should be 50% or less in the visible light wavelength range (for example, a wavelength band of 400 to 700 nm). Is preferred. More preferably, the reflectance is 30% or less.
  • the light 21 can be made to enter the light absorbing layer 14 twice. For example, even when the reflectance of the light absorption layer 14 is 30%, the reflectance after the second reflection can be 9%.
  • the thickness of the light absorbing layer covering the side surface of the flange 13 may be reduced.
  • the reflectance spectrum generally shifts to the shorter wavelength side in the region where the film thickness is reduced. Therefore, it is preferable that the reflectance spectrum at an incident angle of 65 ° has a minimum value in a wavelength band of 500 to 900 nm.
  • the light absorbing layer 14 can be formed by vacuum evaporation, sputtering, CVD (Chemical Vapor Deposition), or the like.
  • FIG. 3 is a cross-sectional view schematically showing a state when the light absorption layer 14 is formed.
  • FIG. 4 is a flowchart showing a method for forming the light absorbing layer 14.
  • the evaporation material 30 comes to the optical element 10 from an evaporation source (not shown in FIG. 3).
  • the mask member 33 is installed in a vacuum evaporation apparatus or a sputtering apparatus so that the light absorption layer 14 is not formed on the functional surface of the optical element 10 (step S11).
  • the optical element 10 on which the light absorption layer 14 is not formed is mounted on a vacuum evaporation apparatus or a sputtering apparatus (Step S12).
  • vapor deposition or sputtering is performed (step S13).
  • step S11 the order of execution of the processing in step S11 and the processing in step S12 may be reversed.
  • the amount of the vapor deposition material 32 is generally equal to the amount of the vapor deposition material 31.
  • the flat portion of the flange portion 13 faces the vapor deposition source to install the optical element 10, and the flat portion has a larger solid angle at which the vapor deposition material 30 can fly.
  • the mask member 33 is not in contact with the optical element 10, but the mask member 33 may be in contact with the optical element 10, for example, by applying a resist agent or the like directly to the optical element 10. Further, the light absorbing layer 14 may be formed only on the side surface of the optical element 10 by increasing the size of the mask member 33. Further, by providing a notch or the like in the mask member 33, a marking function may be given to the light absorbing layer 14.
  • the optical element 10 may be cut, and the thickness of each layer may be measured with an electron microscope or the like, and the optical characteristics (reflectance R) may be evaluated based on equation (1).
  • n 0 is the refractive index of the incident medium
  • n r is the refractive index of each layer of the multilayer film
  • d r is the respective layers of the multilayer film thickness
  • n m represents the refractive index of the exit medium .
  • a complex refractive index having an extinction coefficient as an imaginary part may be used as the refractive index.
  • FIG. FIG. 5 is a sectional view schematically showing a second embodiment of the optical element 50 according to one aspect of the present invention.
  • the light absorbing layer 51 and the light absorbing layer 52 are formed over both surfaces of the flange portion 13 (the front flange surface A and the rear flange surface B). ing.
  • the intensity of stray light can be further reduced.
  • the flat part of the flange portion 13 is annular, and the outer diameter of the optical element 50 extends from the outer periphery of the first curved surface 11.
  • a material such as ceramics, plastic, or a mixed material of organic and inorganic materials may be used.
  • the flange portion 13 is not roughened or black is not applied to the non-roughened flange portion 13, the accuracy of the flange surfaces A and B is not impaired. It becomes possible to reduce stray light.
  • the optical element 50 of the present embodiment can be molded in the same manner as the optical element 10 of the first embodiment (see FIGS. 3 and 4). That is, for example, a film can be formed by vacuum evaporation, sputtering, or a CVD (Chemical Vapor Deposition) method. However, in this embodiment, when vacuum evaporation or sputtering is used, after forming the light absorption layer 51 in the same manner as in the first embodiment, a mask member is provided between the evaporation source and the second curved surface 12. Then, the light absorption layer 52 is formed.
  • the number of molding steps is increased compared to the first embodiment.
  • a method capable of forming the light absorbing layer 51 and the light absorbing layer 52 simultaneously is described. May be used.
  • Embodiment 3 In the first and second embodiments, examples in which the flange portion is not roughened have been described. It is preferable that the flange portion not have a rough surface, but one embodiment of the present invention is not limited thereto, and does not exclude a case where the flange portion is roughened. When the flange portion is roughened, it is preferable that the flange portion be roughened so that the flatness of the flange portion is not impaired. The roughening that does not impair the flatness of the flange portion is preferably, for example, the following rough surface. Two adjacent areas of 100 ⁇ m ⁇ 100 ⁇ m in the roughened flange portion are referred to as a first area and a second area, respectively.
  • the highest convex portion is defined as a first convex portion.
  • the highest convex portion is defined as a second convex portion.
  • the difference in height between the first projection and the second projection is within 5 ⁇ m.
  • the difference between the heights of the first convex portion and the second convex portion is preferably within 3 ⁇ m, more preferably within 2 ⁇ m, and further preferably within 1 ⁇ m. Even when the flange portion is roughened, it is possible to prevent the accuracy of the flange surface from being significantly impaired by the roughened flange portion satisfying the above conditions.
  • the flange portion can be used as a reference for assembly. Further, by satisfying the above-mentioned range even in the case of a roughened flange portion, it is possible to prevent the flat plate from being pressed against the flange portion to prevent deformation and play, thereby causing tilt.
  • the configuration other than the roughened flange portion may be similar to the configuration of the first and second embodiments, and therefore, detailed description is omitted.
  • FIG. 6 is a cross-sectional view schematically showing an optical system 60 assembled using the optical element 10.
  • an optical element 10 a lens member 20, and a spacer 63 are arranged inside a lens barrel 61.
  • FIG. 6 illustrates the optical element 10 of the first embodiment, but the optical element 50 of the second embodiment may be used.
  • the precision of the flange surface A (or the flange surfaces A and B) of the optical element 10 is not impaired. Therefore, the clearance between the optical element 10 and the lens barrel 61 can be made sufficiently small. Therefore, the center of the opening of the lens barrel 61 and the axis of the optical element 10 can be accurately adjusted.
  • the flange surface A (or the flange surfaces A and B) of the optical element 10 is sufficiently flat, the optical element 10 is not tilted with the surface of the lens barrel 61 that receives the flange portion 13, and the optical element 10 is not tilted. 61 can be assembled.
  • the optical element of one embodiment of the present invention can be applied (for example, incorporated) to various optical systems and optical devices. That is, one embodiment of the present invention can provide an optical system including the optical element of one embodiment of the present invention.
  • the optical system of one embodiment of the present invention can include, in addition to the optical element, a lens that cooperates with the optical element, an optical filter such as an antireflection film or a bandpass filter, a cover glass, and an aperture.
  • an optical filter such as an antireflection film or a bandpass filter
  • cover glass such as an antireflection film or a bandpass filter
  • an aperture such as an antireflection film or a bandpass filter
  • cover glass such as an antireflection film or a bandpass filter
  • an aperture such as an antireflection film or a bandpass filter
  • cover glass such as an antireflection film or a bandpass filter
  • an aperture such as an antireflection film or a bandpass filter
  • cover glass such as an antireflection film or
  • optical element 10 of the first embodiment shown in FIG. 1 Glass having a refractive index of 1.52 is subjected to glass preform processing and molded into a lens shape (the optical element 10 in a state where the light absorbing layer 14 is not formed) by molding.
  • the end surface of the optical element 10 is a glass molding surface.
  • the roughness of the side surface of the flange portion 13 is Ra 0.1 ⁇ m or less.
  • chromium oxide (Cr 2 O 3 ) and chromium (Cr) are deposited as the light absorbing layer 14 to a thickness of 60 nm and 10 nm, respectively, by sputtering. Therefore, the thickness of the light absorption layer 14 thus formed is 2 ⁇ m or less.
  • FIG. 7 is an explanatory diagram showing the refractive index and the extinction coefficient of chromium oxide and chromium used in this example.
  • FIG. 7A shows the refractive index (Refractive @ Index) and the extinction coefficient (Extinction @ coefficient) of chromium oxide.
  • FIG. 7B shows the refractive index and extinction coefficient of chromium.
  • n dashed line
  • k solid line
  • FIG. 8 is an explanatory diagram showing calculation results of the transmittance (Transmittance) and the reflectance (Reflectance) when light is vertically incident on the light absorbing layer 14 in the glass in the present embodiment.
  • the values of the transmittance and the reflectance are average values of the p-polarized light and the s-polarized light.
  • FIG. 9A shows the reflectance when light is incident on the light absorbing layer 14 in the glass 90 within a range of 5 ° to 85 °.
  • FIG. 9B shows a structure assumed when calculating the transmittance and the reflectance.
  • a chromium oxide (Cr 2 O 3 ) of 60 nm is formed on the glass 90, and the chromium (Cr) is formed.
  • Cr chromium
  • the reflectance becomes 30% or less in a wavelength band of 400 to 700 nm. I have.
  • the minimum value of the reflectance at the incident angle of 65 ° is about 560 nm.
  • FIG. 10 shows that the thickness of the light absorbing layer 14 made of chromium oxide and chromium is 70% (chromium oxide ⁇ 42 nm, chromium 7 nm) and 50% (relative to the light absorbing layer 14 shown in FIG. 9B).
  • the reflectance of light at an incident angle of 65 ° is shown. The minimum value of the reflectance shifts to the shorter wavelength side as the film thickness decreases, but the reflectance is 30% or less at each thickness.
  • the refractive index of glass is set to 1.52 at the average incident angle 65 ° of the angle 41 ° satisfying the total reflection condition and the maximum incident angle 90 °. .), It can be said that the reflectance is sufficiently small. That is, stray light is reduced.
  • stray light can be reduced without greatly impairing the accuracy of the flange surface.
  • the present invention having this effect is useful for an optical element, an optical system, and an imaging optical device.

Abstract

An optical element (10) includes: a flange part (13) having an annular flat section extending in an outer diameter direction from a curved surface; and a light-absorbing layer (14) for reducing, in at least a portion of the flange part (13), the reflectance when light is made incident from inside the optical element (10), the light absorbing layer having a thickness of 2 μm or less. Alternatively, an optical element (10) includes a flange part (13) having an annular flat section extending in an outer diameter direction from a curved surface, the flange part (13) having the arithmetic average roughness of Ra 0.1 μm or less on the side surface thereof, and at least a portion of the flange part (13) having a light absorbing layer (14) containing a metal, a semiconductor, or a dielectric body.

Description

光学素子、光学系、および光学装置Optical element, optical system, and optical device
 本発明は、迷光を低減できる光学素子、前記光学素子を有する光学系、および前記光学素子を有する光学装置に関する。 The present invention relates to an optical element capable of reducing stray light, an optical system having the optical element, and an optical device having the optical element.
 大きな入射角での光などの意図しない光がレンズに入射すると、レンズや、レンズを含む撮像系の内部での反射によって、迷光が発生することがある。そして、迷光によって、いわゆるゴーストやフレア等が生ずる場合がある。 す る と When unintended light such as light at a large incident angle enters the lens, stray light may be generated due to reflection inside the lens or an imaging system including the lens. Then, so-called ghosts and flares may occur due to stray light.
 迷光の発生を防止する方法として、レンズの周縁部の芯取りを行い、次いで、粗くなった周縁部に墨を塗着する方法がある(例えば、特許文献1参照)。また、特許文献1には、レンズの周縁部を粗面にして粗面部で光を散乱させる方法も紹介されている。 と し て As a method for preventing the generation of stray light, there is a method of centering the peripheral portion of the lens, and then applying black ink to the roughened peripheral portion (for example, see Patent Document 1). Further, Patent Literature 1 also discloses a method in which a peripheral portion of a lens is roughened and light is scattered by the roughened portion.
日本国特開2016-206682号公報Japanese Patent Application Laid-Open No. 2016-206682
 ガラスレンズを例にすると、ガラスを粗面化すると外形の精度が落ちるという問題がある。粗面化されていないガラスに対して墨を塗る場合、ガラスが塗料をはじいて所望の塗着にならないという問題がある。また、墨の厚さのむらによってガラスレンズの外形や、ガラスレンズに含まれるフランジ部の平坦面(フランジ面)の平坦度が低下するという問題がある。 Taking a glass lens as an example, there is a problem that roughening the glass lowers the accuracy of the outer shape. When black ink is applied to glass that has not been roughened, there is a problem that the glass repels paint and does not have a desired coating. In addition, there is a problem that the outer shape of the glass lens and the flatness of the flat surface (flange surface) of the flange portion included in the glass lens are reduced due to the uneven thickness of the black ink.
 撮像光学系等が小型化されることに伴って、レンズ部材などの光学素子の形状精度への要求が上がっている。レンズ部材を撮像光学系の鏡筒に設置する場合に、鏡筒の内面や隣接するレンズ部材のフランジ面との接触によって撮像光学系を調整しつつ組み立てる場合がある。そのような場合に、レンズ部材のフランジ面や外形には、より高い精度が求められる。すなわち、小型化された撮像光学系等では、ガラスの粗面化による問題や墨塗りの問題がより顕著になる。 (4) With the miniaturization of the imaging optical system and the like, there is an increasing demand for the shape accuracy of optical elements such as lens members. When a lens member is installed in a barrel of an imaging optical system, there are cases where the imaging optical system is assembled while adjusting the imaging optical system by contact with the inner surface of the barrel or a flange surface of an adjacent lens member. In such a case, higher accuracy is required for the flange surface and outer shape of the lens member. That is, in a miniaturized imaging optical system or the like, the problem due to the roughening of the glass and the problem of black coating become more prominent.
 そこで、本発明の一態様は、フランジ面の精度を大きく損なうことなく迷光を低減できる光学素子、前記光学素子を有する光学系、および前記光学素子を有する光学装置を提供することを目的とする。 Therefore, it is an object of one embodiment of the present invention to provide an optical element capable of reducing stray light without significantly impairing the accuracy of a flange surface, an optical system having the optical element, and an optical device having the optical element.
 本発明の一態様による光学素子は、曲面と、曲面から外径方向に延在する環状の平坦部を有するフランジ部とを含む光学素子であって、フランジ部の少なくとも一部において、光学素子の内部から光が入射したときの反射率を低減するための光吸収層を有し、光吸収層の厚さが2μm以下であることを特徴とする。 An optical element according to one embodiment of the present invention is an optical element including a curved surface and a flange portion having an annular flat portion extending in the outer radial direction from the curved surface, and at least a part of the flange portion includes an optical element. A light absorbing layer for reducing the reflectance when light enters from the inside is provided, and the thickness of the light absorbing layer is 2 μm or less.
 また、本発明の一態様による光学素子は、曲面と、曲面から外径方向に延在する環状の平坦部を有するフランジ部とを含む光学素子であって、フランジ部の側面のJIS B 0601における算術平均粗さRaは0.1μm以下であり、フランジ部の少なくとも一部において、金属、半導体または誘電体を含む光吸収層を有することを特徴とする。
 本発明の一態様による光学系は、前記光学素子を有することを特徴とする。
 本発明の一態様による光学装置は、前記光学素子を有することを特徴とする。
Further, an optical element according to one embodiment of the present invention is an optical element including a curved surface and a flange portion having an annular flat portion extending in the outer radial direction from the curved surface, wherein the side surface of the flange portion complies with JIS B0601. The arithmetic average roughness Ra is 0.1 μm or less, and at least a part of the flange portion has a light absorbing layer containing a metal, a semiconductor, or a dielectric.
An optical system according to one embodiment of the present invention includes the optical element.
An optical device according to one aspect of the present invention includes the optical element.
 本発明の一態様によれば、フランジ面の精度を大きく損なうことなく迷光を低減できる。 According to one aspect of the present invention, stray light can be reduced without significantly impairing the accuracy of the flange surface.
本発明の一態様による光学素子の第1の実施形態を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically illustrating a first embodiment of an optical element according to one aspect of the present invention. 光学素子の内部で発生する迷光を説明するための説明図である。FIG. 4 is an explanatory diagram for describing stray light generated inside an optical element. 光吸収層を成膜するときの様子を模式的に示す断面図である。It is sectional drawing which shows the mode at the time of forming a light absorption layer typically. 光吸収層の成膜方法を示すフローチャートである。4 is a flowchart illustrating a method for forming a light absorbing layer. 本発明の一態様による光学素子の第2の実施形態を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically illustrating a second embodiment of the optical element according to one aspect of the present invention. 光学素子を用いて組み立てられた光学系を模式的に示す断面図である。It is sectional drawing which shows the optical system assembled using the optical element typically. 酸化クロムおよびクロムの屈折率と消衰係数とを示す説明図である。It is explanatory drawing which shows the refractive index and extinction coefficient of chromium oxide and chromium. 実施例の光吸収層に光が入射した場合の透過率および反射率の計算結果を示す説明図である。FIG. 9 is an explanatory diagram showing calculation results of transmittance and reflectance when light is incident on the light absorption layer of the example. ガラス内で光吸収層に対して5°から85°までの範囲で光が入射した場合の反射率を示す説明図である。It is explanatory drawing which shows the reflectance at the time of light in the range of 5 degrees-85 degrees with respect to a light absorption layer in glass. 光吸収層の膜厚が70%および50%である場合の、入射角度65°の光の反射率を示す説明図である。It is explanatory drawing which shows the reflectance of light at the incident angle of 65 degrees when the film thickness of a light absorption layer is 70% and 50%.
実施形態1.
 図1は、本発明の一態様による光学素子10の第1の実施形態を模式的に示す断面図である。光学素子10は、第1の曲面11と、第2の曲面12と、フランジ部13と、フランジ部13の平坦部の少なくとも一部を覆う光吸収層14とを有している。光学素子10の材質は、例えばガラスである。なお、使用波長帯において透明であれば、光学素子10の材質として、セラミックスやプラスチック、有機無機の混合材料などの材質を用いてもよい。また、図1には光学素子10の一断面が示されているが、平面図においては、フランジ部13の平坦部は環状であり、第1の曲面11の外周部から光学素子10の外径方向に向かって延在する。
Embodiment 1 FIG.
FIG. 1 is a sectional view schematically showing a first embodiment of an optical element 10 according to one aspect of the present invention. The optical element 10 has a first curved surface 11, a second curved surface 12, a flange 13, and a light absorbing layer 14 covering at least a part of a flat portion of the flange 13. The material of the optical element 10 is, for example, glass. As long as the optical element 10 is transparent in the wavelength band used, a material such as ceramics, plastic, or a mixed material of organic and inorganic materials may be used. FIG. 1 shows a cross section of the optical element 10. In the plan view, the flat portion of the flange portion 13 is annular, and the outer diameter of the optical element 10 extends from the outer periphery of the first curved surface 11. Direction.
 図1に示す例では、第1の曲面11は凸面であり、第2の曲面12は凸面である。しかし、光学素子10の形状は、そのような形状に限られない。第1の曲面11および第2の曲面12は、それぞれ、凸面と凹面とのいずれでもよく、平坦な面であってもよい。一例として、図2には、凹面の第2の曲面12が例示されている。図3には、第2の曲面12が平坦である場合が例示されている。また、フランジ部13の外周は、芯取りされていない。フランジ部13の最外面である側面の粗さはRa0.1μm以下である。なお、Ra0.1μm以下は一例であって、粗さは、0.01μmなど、より小さくてもよい。 In the example shown in FIG. 1, the first curved surface 11 is a convex surface, and the second curved surface 12 is a convex surface. However, the shape of the optical element 10 is not limited to such a shape. Each of the first curved surface 11 and the second curved surface 12 may be either a convex surface or a concave surface, or may be a flat surface. As an example, FIG. 2 illustrates a concave second curved surface 12. FIG. 3 illustrates a case where the second curved surface 12 is flat. The outer periphery of the flange portion 13 is not centered. The roughness of the outermost side surface of the flange portion 13 is Ra 0.1 μm or less. Note that Ra of 0.1 μm or less is an example, and the roughness may be smaller, such as 0.01 μm.
 なお、第1の曲面11および第2の曲面12の光学面上に反射防止層が設けられていてもよい。 In addition, an antireflection layer may be provided on the optical surfaces of the first curved surface 11 and the second curved surface 12.
 光吸収層14は、フランジ部13の平坦部(表面側のフランジ面A)もしくは側面の少なくとも一部、または、フランジ面Aおよび側面の少なくとも一部の領域に成膜されている。光吸収層14は、最大厚さが2μm以下の薄膜である。光吸収層14は薄膜であるから、フランジ面Aの平坦度や外形の形状精度を劣化させないようにすることができる。なお、光吸収層14は、1層に限られない。光吸収層14は、異なる材料を2層以上積層した光学多層膜であってもよい。 (4) The light absorbing layer 14 is formed on at least a part of the flat portion (the flange surface A on the front surface) or the side surface of the flange portion 13, or at least a part of the flange surface A and the side surface. The light absorption layer 14 is a thin film having a maximum thickness of 2 μm or less. Since the light absorbing layer 14 is a thin film, the flatness of the flange surface A and the accuracy of the outer shape can be prevented from deteriorating. The light absorption layer 14 is not limited to one layer. The light absorbing layer 14 may be an optical multilayer film in which two or more different materials are stacked.
 光吸収層14は、その一部において、可視波長域における少なくとも一部の波長域で吸収を有する部材を含んでいる。このような材料として、金属、半導体または誘電体の様々な材料を用いることができる。例えば、シリコン、シリコン化合物、カーボン、炭素化合物、ニッケル化合物、亜鉛化合物、クロム化合物、リン化合物、チタン化合物、モリブデン化合物、これらの合金、有機材料などを用いることができる。特に、酸化クロムやシリコンは真空蒸着やスパッタリングの材料として広く用いられているので技術的な蓄積も多いことから、それらの材料を用いてもよい。 (4) The light absorbing layer 14 partially includes a member having absorption in at least a part of the visible wavelength range. As such a material, various materials such as a metal, a semiconductor, and a dielectric can be used. For example, silicon, silicon compounds, carbon, carbon compounds, nickel compounds, zinc compounds, chromium compounds, phosphorus compounds, titanium compounds, molybdenum compounds, alloys thereof, organic materials, and the like can be used. In particular, since chromium oxide and silicon are widely used as materials for vacuum deposition and sputtering and have a large technical accumulation, these materials may be used.
 図2は、光学素子10の内部で発生する迷光を説明するための説明図である。図2に示すように、光学素子10に対して意図しない方向から光21が入射したときに、光学素子10内で光が反射し光学素子10から出射される。光吸収層14が存在しない場合には、このような光は迷光として最終的に撮像素子(図示せず)に到達し、フレアやゴーストを発生させる。意図しない方向から入射する光は、光学素子10の有効領域(例えば、第1の曲面11の領域)の外側(例えば、フランジ部13)の部位にまで入射する光に相当する。 FIG. 2 is an explanatory diagram for explaining stray light generated inside the optical element 10. As shown in FIG. 2, when light 21 enters the optical element 10 from an unintended direction, the light is reflected inside the optical element 10 and emitted from the optical element 10. If the light absorbing layer 14 does not exist, such light finally reaches an image sensor (not shown) as stray light, and generates flare and ghost. Light incident from an unintended direction corresponds to light incident on a portion outside the effective area (for example, the area of the first curved surface 11) of the optical element 10 (for example, the flange portion 13).
 本実施形態では、フランジ部13の平坦部および側面の少なくとも一部の領域に光吸収層14が形成されている。光21が光学素子10から出射されるまでの経路において、光吸収層14によって、反射光の強度は低下する。 In the present embodiment, the light absorbing layer 14 is formed on at least a part of the flat portion and the side surface of the flange portion 13. In the path until the light 21 is emitted from the optical element 10, the intensity of the reflected light is reduced by the light absorbing layer 14.
 したがって、迷光を十分低減するために、光吸収層14の反射率は、ガラス側(光学素子10の内部)から光が入射した際に十分小さいことが好ましい。特に、入射角度が全反射を満たす条件となった場合に、光は減衰せずに光学素子10の内部を導波するので、全反射となる入射角でも反射率が十分小さいことが好ましい。 Therefore, in order to sufficiently reduce stray light, it is preferable that the reflectance of the light absorbing layer 14 is sufficiently small when light enters from the glass side (the inside of the optical element 10). In particular, when the incident angle satisfies the condition of satisfying the total reflection, the light is guided inside the optical element 10 without being attenuated. Therefore, it is preferable that the reflectance is sufficiently small even at the incident angle at which the total reflection occurs.
 また、本実施形態では、フランジ部13が粗面化されたり、粗面化されていないフランジ部13に対して墨が塗られるといったことはないので、フランジ面Aの精度を損なうことなく迷光を低減することが可能になる。 Further, in the present embodiment, since the flange portion 13 is not roughened or black is not applied to the non-roughened flange portion 13, stray light can be generated without impairing the accuracy of the flange surface A. It becomes possible to reduce.
 ガラスの屈折率を1.52とすると全反射条件を満たす角度は41°である。すなわち、入射面(例えば、フランジ面A)に対して入射角41°以上で光が入射すると、入射光は、入射面で全反射する。全反射条件を満たす角度と最大入射角である90°との平均の入射角度65°において、可視光の波長範囲(例えば、400~700nmの波長帯)で反射率が50%以下になるようにすることが好ましい。反射率は30%以下になるようにすることがより好ましい。 す る と Assuming that the refractive index of the glass is 1.52, the angle satisfying the total reflection condition is 41 °. That is, when light enters the incident surface (for example, the flange surface A) at an incident angle of 41 ° or more, the incident light is totally reflected on the incident surface. At an average incident angle of 65 ° between the angle satisfying the total reflection condition and the maximum incident angle of 90 °, the reflectance should be 50% or less in the visible light wavelength range (for example, a wavelength band of 400 to 700 nm). Is preferred. More preferably, the reflectance is 30% or less.
 図2に示すように光吸収層14がフランジ部13の側面にも成膜されている場合には、光21を光吸収層14に2回入射させることができる。例えば光吸収層14の反射率が30%の場合でも、2回反射後の反射率を9%とすることができる。 光 If the light absorbing layer 14 is also formed on the side surface of the flange portion 13 as shown in FIG. 2, the light 21 can be made to enter the light absorbing layer 14 twice. For example, even when the reflectance of the light absorption layer 14 is 30%, the reflectance after the second reflection can be 9%.
 また、フランジ部13の側面を覆う光吸収層の厚さが薄くなる場合がある。そのような場合、膜厚が薄くなった領域では一般的に反射率スペクトルが短波長側にシフトする。したがって、500~900nmの波長帯域において、入射角度65°における反射率スペクトルが極小値を持つようにすることが好ましい。光吸収層14がそのように形成されると、膜厚が薄くなって反射率スペクトルが短波長シフトした場合でも、十分小さい反射率を得ることができる。 (4) The thickness of the light absorbing layer covering the side surface of the flange 13 may be reduced. In such a case, the reflectance spectrum generally shifts to the shorter wavelength side in the region where the film thickness is reduced. Therefore, it is preferable that the reflectance spectrum at an incident angle of 65 ° has a minimum value in a wavelength band of 500 to 900 nm. When the light absorption layer 14 is formed in such a manner, a sufficiently small reflectance can be obtained even when the film thickness is reduced and the reflectance spectrum is shifted by a short wavelength.
 なお、反射率として、p偏光およびs偏光の平均値を用いることができる。 平均 Note that the average value of p-polarized light and s-polarized light can be used as the reflectance.
 光吸収層14は、真空蒸着、スパッタリング、CVD(Chemical Vapor Deposition)法等を用いて成膜することができる。 The light absorbing layer 14 can be formed by vacuum evaporation, sputtering, CVD (Chemical Vapor Deposition), or the like.
 図3および図4を参照して、光吸収層14の形成方法(成膜方法)を説明する。図3は、光吸収層14を成膜するときの様子を模式的に示す断面図である。図4は、光吸収層14の成膜方法を示すフローチャートである。 方法 A method of forming the light absorbing layer 14 (a film forming method) will be described with reference to FIGS. FIG. 3 is a cross-sectional view schematically showing a state when the light absorption layer 14 is formed. FIG. 4 is a flowchart showing a method for forming the light absorbing layer 14.
 真空蒸着やスパッタリングを用いる場合、蒸着源(図3では図示せず)から光学素子10に対して蒸着材30が飛来する。このため、例えば、図3に示すように、真空蒸着装置やスパッタ装置内にマスク部材33を設置して光学素子10の機能面に光吸収層14が成膜されないようにする(ステップS11)。次いで、光吸収層14が成膜されていない状態の光学素子10を、真空蒸着装置やスパッタ装置に装着する(ステップS12)。そして、蒸着又はスパッタリングを行う(ステップS13)。なお、ステップS11の処理とステップS12の処理の実行順は逆であってもよい。また、図3に示すように、フランジ部13の平坦部に到達する蒸着材31とフランジ部13の側面に到達する蒸着材32とを比較すると、一般に蒸着材32の量が蒸着材31の量に対して少なくなる。一般にフランジ部13の平坦部を蒸着源に向けて光学素子10を設置するためであり、蒸着材30が飛来することができる立体角が平坦部の方が大きいからである。 (4) When vacuum evaporation or sputtering is used, the evaporation material 30 comes to the optical element 10 from an evaporation source (not shown in FIG. 3). For this reason, for example, as shown in FIG. 3, the mask member 33 is installed in a vacuum evaporation apparatus or a sputtering apparatus so that the light absorption layer 14 is not formed on the functional surface of the optical element 10 (step S11). Next, the optical element 10 on which the light absorption layer 14 is not formed is mounted on a vacuum evaporation apparatus or a sputtering apparatus (Step S12). Then, vapor deposition or sputtering is performed (step S13). Note that the order of execution of the processing in step S11 and the processing in step S12 may be reversed. As shown in FIG. 3, when comparing the vapor deposition material 31 reaching the flat portion of the flange portion 13 and the vapor deposition material 32 reaching the side surface of the flange portion 13, the amount of the vapor deposition material 32 is generally equal to the amount of the vapor deposition material 31. Less. Generally, the flat portion of the flange portion 13 faces the vapor deposition source to install the optical element 10, and the flat portion has a larger solid angle at which the vapor deposition material 30 can fly.
 図3において、マスク部材33は光学素子10と接していないが、レジスト剤等を光学素子10に直接塗布するなど、マスク部材33が、光学素子10に接触するようにしてもよい。また、マスク部材33を大きくすることによって、光学素子10の側面にのみ光吸収層14を形成するようにしてもよい。また、マスク部材33に切り欠き等を設けることによって、光吸収層14に対してマーキング機能を与えてもよい。 In FIG. 3, the mask member 33 is not in contact with the optical element 10, but the mask member 33 may be in contact with the optical element 10, for example, by applying a resist agent or the like directly to the optical element 10. Further, the light absorbing layer 14 may be formed only on the side surface of the optical element 10 by increasing the size of the mask member 33. Further, by providing a notch or the like in the mask member 33, a marking function may be given to the light absorbing layer 14.
 フランジ部13が小さい場合、光吸収層14の光学特性を直接測定することが難しいことがある。そのような場合には、光学素子10を割断し、各層の厚さを電子顕微鏡などで計測し、それを元に(1)式によって光学特性(反射率R)を評価してもよい。 場合 If the flange 13 is small, it may be difficult to directly measure the optical characteristics of the light absorbing layer 14. In such a case, the optical element 10 may be cut, and the thickness of each layer may be measured with an electron microscope or the like, and the optical characteristics (reflectance R) may be evaluated based on equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (1)式において、 In equation (1),
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 である。ここで、θは入射角、nは入射媒質の屈折率、nは多層膜の各層の屈折率、dは多層膜の各層の厚さ、nは出射媒質の屈折率を表す。材料が吸収を持つような場合には、屈折率として、虚部として消衰係数を持つ複素屈折率を用いればよい。 It is. Here, theta 0 is the angle of incidence, n 0 is the refractive index of the incident medium, n r is the refractive index of each layer of the multilayer film, d r is the respective layers of the multilayer film thickness, n m represents the refractive index of the exit medium . When the material has absorption, a complex refractive index having an extinction coefficient as an imaginary part may be used as the refractive index.
 実施形態2.
 図5は、本発明の一態様による光学素子50の第2の実施形態を模式的に示す断面図である。図5に示すように、第2の実施形態では、光吸収層51および光吸収層52がフランジ部13の両面(表面側のフランジ面Aおよび裏面側のフランジ面B)に亘って成膜されている。そのような構成によって、光学素子10に入射した光が光学素子10から出射されるまでの経路において、光吸収層に入射する回数を増やすことができる。したがって、迷光の強度をより低減することができる。なお、図5には光学素子50の一断面が示されているが、平面図においては、フランジ部13の平坦部は環状であり、第1の曲面11の外周部から光学素子50の外径方向に向かって延在する。また、第1の実施形態と同様、使用波長帯において透明であれば、光学素子50の材質として、セラミックスやプラスチック、有機無機の混合材料などの材質を用いてもよい。
Embodiment 2. FIG.
FIG. 5 is a sectional view schematically showing a second embodiment of the optical element 50 according to one aspect of the present invention. As shown in FIG. 5, in the second embodiment, the light absorbing layer 51 and the light absorbing layer 52 are formed over both surfaces of the flange portion 13 (the front flange surface A and the rear flange surface B). ing. With such a configuration, it is possible to increase the number of times that light incident on the optical element 10 is incident on the light absorbing layer in a path until the light is emitted from the optical element 10. Therefore, the intensity of stray light can be further reduced. FIG. 5 shows one cross section of the optical element 50, but in a plan view, the flat part of the flange portion 13 is annular, and the outer diameter of the optical element 50 extends from the outer periphery of the first curved surface 11. Direction. Further, as in the first embodiment, as long as the optical element 50 is transparent as long as it is transparent in the operating wavelength band, a material such as ceramics, plastic, or a mixed material of organic and inorganic materials may be used.
 また、本実施形態でも、フランジ部13が粗面化されたり、粗面化されていないフランジ部13に対して墨が塗られるといったことはないので、フランジ面A,Bの精度を損なうことなく迷光を低減することが可能になる。 Also in the present embodiment, since the flange portion 13 is not roughened or black is not applied to the non-roughened flange portion 13, the accuracy of the flange surfaces A and B is not impaired. It becomes possible to reduce stray light.
 なお、本実施形態の光学素子50は、第1の実施形態の光学素子10と同様に成形可能である(図3および図4参照)。すなわち、例えば、真空蒸着、スパッタリング、CVD(Chemical Vapor Deposition)法を用いて成膜することができる。ただし、本実施形態では、真空蒸着またはスパッタリングを用いる場合、第1の実施形態と同様にして光吸収層51を成膜した後、蒸着源と第2の曲面12との間にマスク部材を設置して光吸収層52を成膜する。 The optical element 50 of the present embodiment can be molded in the same manner as the optical element 10 of the first embodiment (see FIGS. 3 and 4). That is, for example, a film can be formed by vacuum evaporation, sputtering, or a CVD (Chemical Vapor Deposition) method. However, in this embodiment, when vacuum evaporation or sputtering is used, after forming the light absorption layer 51 in the same manner as in the first embodiment, a mask member is provided between the evaporation source and the second curved surface 12. Then, the light absorption layer 52 is formed.
 本実施形態では、真空蒸着またはスパッタリングを用いる場合には第1の実施形態に対して成形のための工程が増えるが、光吸収層51と光吸収層52とを一括して成膜できる方法を用いてもよい。 In the present embodiment, when vacuum deposition or sputtering is used, the number of molding steps is increased compared to the first embodiment. However, a method capable of forming the light absorbing layer 51 and the light absorbing layer 52 simultaneously is described. May be used.
 実施形態3.
 上記実施形態1、2では、フランジ部が粗面化されていない例を示した。フランジ部は粗面でない方が好ましいが、本発明の一態様はこれに限定されず、フランジ部が粗面化されたものを排除するものではない。フランジ部が粗面化される場合は、フランジ部の平坦度が損なわれないように粗面化されることが好ましい。フランジ部の平坦度が損なわれない粗面化とは、例えば以下のような粗面が好ましい。
 粗面化されたフランジ部において、それぞれ100μm×100μmの隣り合う2つの領域を、第1の領域、第2の領域とする。第1の領域において、最も高い凸部を第1の凸部とする。第2の領域において、もっとも高い凸部を第2の凸部とする。第1の凸部と第2の凸部の高さの差が、5μm以内である。第1の凸部と第2の凸部の高さの差は、好ましくは3μm以内であり、より好ましくは2μm以内であり、さらに好ましくは1μm以内である。
 フランジ部が粗面化される場合でも、粗面化されたフランジ部が上述の条件を満たすことで、フランジ面の精度が大きく損なわれることは防げる。また、粗面化されたフランジ部であっても上述の範囲を満たすことで、平坦な板をフランジ部に押し当てた場合に平坦な板の傾きを小さくすることができる。そのため、本発明の一態様の光学素子を用いて光学系を組み立てる際に、フランジ部を組み立ての基準として用いることができる。また、粗面化されたフランジ部であっても上述の範囲を満たすことで、平坦な板をフランジ部に押し当てた場合に変形やがたが生じてチルトが発生することを防止できる。
 フランジ部が粗面化されている以外の構成は、実施形態1、2の構成に準じればよいため、詳細な説明は省略する。
Embodiment 3 FIG.
In the first and second embodiments, examples in which the flange portion is not roughened have been described. It is preferable that the flange portion not have a rough surface, but one embodiment of the present invention is not limited thereto, and does not exclude a case where the flange portion is roughened. When the flange portion is roughened, it is preferable that the flange portion be roughened so that the flatness of the flange portion is not impaired. The roughening that does not impair the flatness of the flange portion is preferably, for example, the following rough surface.
Two adjacent areas of 100 μm × 100 μm in the roughened flange portion are referred to as a first area and a second area, respectively. In the first region, the highest convex portion is defined as a first convex portion. In the second region, the highest convex portion is defined as a second convex portion. The difference in height between the first projection and the second projection is within 5 μm. The difference between the heights of the first convex portion and the second convex portion is preferably within 3 μm, more preferably within 2 μm, and further preferably within 1 μm.
Even when the flange portion is roughened, it is possible to prevent the accuracy of the flange surface from being significantly impaired by the roughened flange portion satisfying the above conditions. Further, by satisfying the above-mentioned range even when the flange portion is roughened, the inclination of the flat plate can be reduced when a flat plate is pressed against the flange portion. Therefore, when an optical system is assembled using the optical element of one embodiment of the present invention, the flange portion can be used as a reference for assembly. Further, by satisfying the above-mentioned range even in the case of a roughened flange portion, it is possible to prevent the flat plate from being pressed against the flange portion to prevent deformation and play, thereby causing tilt.
The configuration other than the roughened flange portion may be similar to the configuration of the first and second embodiments, and therefore, detailed description is omitted.
 図6は、光学素子10を用いて組み立てられた光学系60を模式的に示す断面図である。図6に例示する光学系60では、鏡筒61の内部に、光学素子10、レンズ部材20およびスペーサ63が配置されている。図6には、第1の実施形態の光学素子10が例示されているが、第2の実施形態の光学素子50を用いてもよい。 FIG. 6 is a cross-sectional view schematically showing an optical system 60 assembled using the optical element 10. In an optical system 60 illustrated in FIG. 6, an optical element 10, a lens member 20, and a spacer 63 are arranged inside a lens barrel 61. FIG. 6 illustrates the optical element 10 of the first embodiment, but the optical element 50 of the second embodiment may be used.
 上述したように、第1の実施形態では(第2の実施形態、第3の実施形態でも同様)、光学素子10におけるフランジ面A(または、フランジ面A,B)の精度が損なわれていないので、光学素子10と鏡筒61とのクリアランスを十分小さくすることができる。したがって、鏡筒61の開口の中心と光学素子10の軸を精度よく合わせることができる。また、光学素子10のフランジ面A(または、フランジ面A,B)は十分平坦であるため、フランジ部13を受ける鏡筒61の面とのチルトを発生させずに、光学素子10を鏡筒61に組みつけることができる。
 本発明の一態様の光学素子(第1~第3の実施形態に示される光学素子)は、種々の光学系や光学装置に適用(例えば組み込み)可能である。すなわち、本発明の一態様は、本発明の一態様の光学素子を備えた光学系を提供できる。本発明の一態様の光学系は、光学素子に加えて、上記光学素子と共働するレンズ、反射防止フィルムやバンドパスフィルタなどの光学フィルタ、カバーガラス、絞り等を備えうる。ただし、これらは一例であって、本発明の一態様の光学素子の適用対象はこれら光学系に限られない。
 また、本発明の一態様は、本発明の一態様の光学素子を備えた光学装置を提供できる。本発明の一態様の光学装置は、撮像素子を備えた撮像装置であってもよく、撮像素子を備えていない光学装置であってもよい。撮像装置としては、例えばカメラなどが挙げられる。
As described above, in the first embodiment (the same applies to the second embodiment and the third embodiment), the precision of the flange surface A (or the flange surfaces A and B) of the optical element 10 is not impaired. Therefore, the clearance between the optical element 10 and the lens barrel 61 can be made sufficiently small. Therefore, the center of the opening of the lens barrel 61 and the axis of the optical element 10 can be accurately adjusted. In addition, since the flange surface A (or the flange surfaces A and B) of the optical element 10 is sufficiently flat, the optical element 10 is not tilted with the surface of the lens barrel 61 that receives the flange portion 13, and the optical element 10 is not tilted. 61 can be assembled.
The optical element of one embodiment of the present invention (the optical element described in the first to third embodiments) can be applied (for example, incorporated) to various optical systems and optical devices. That is, one embodiment of the present invention can provide an optical system including the optical element of one embodiment of the present invention. The optical system of one embodiment of the present invention can include, in addition to the optical element, a lens that cooperates with the optical element, an optical filter such as an antireflection film or a bandpass filter, a cover glass, and an aperture. However, these are merely examples, and the application target of the optical element of one embodiment of the present invention is not limited to these optical systems.
One embodiment of the present invention can provide an optical device including the optical element of one embodiment of the present invention. The optical device of one embodiment of the present invention may be an imaging device including an imaging element or an optical device not including an imaging element. Examples of the imaging device include a camera and the like.
 次に、図1に示された第1の実施形態の光学素子10を用いた場合の実施例を説明する。屈折率1.52のガラスをガラスプリフォーム加工し、モールド成形によってレンズ形状(光吸収層14が成膜されていない状態の光学素子10)に成形する。光学素子10の端面はガラスの成形面となっている。フランジ部13の側面の粗さはRa0.1μm以下である。 Next, an example in which the optical element 10 of the first embodiment shown in FIG. 1 is used will be described. Glass having a refractive index of 1.52 is subjected to glass preform processing and molded into a lens shape (the optical element 10 in a state where the light absorbing layer 14 is not formed) by molding. The end surface of the optical element 10 is a glass molding surface. The roughness of the side surface of the flange portion 13 is Ra 0.1 μm or less.
 このような光学素子10に対してマスク部材33を設置した状態で、スパッタリングによって、光吸収層14として酸化クロム(Cr)、クロム(Cr)をそれぞれ60nm、10nm成膜する。したがって、このように成膜された光吸収層14の厚さは2μm以下になっている。 With the mask member 33 installed on such an optical element 10, chromium oxide (Cr 2 O 3 ) and chromium (Cr) are deposited as the light absorbing layer 14 to a thickness of 60 nm and 10 nm, respectively, by sputtering. Therefore, the thickness of the light absorption layer 14 thus formed is 2 μm or less.
 図7は、本実施例で用いた酸化クロムおよびクロムの屈折率と消衰係数とを示す説明図である。図7(a)に、酸化クロムの屈折率(Refractive Index)と消衰係数(Extinction coefficient)が示されている。図7(b)に、クロムの屈折率と消衰係数が示されている。図7において、n(破線)は屈折率を示し、k(実線)は消衰係数を示す。 FIG. 7 is an explanatory diagram showing the refractive index and the extinction coefficient of chromium oxide and chromium used in this example. FIG. 7A shows the refractive index (Refractive @ Index) and the extinction coefficient (Extinction @ coefficient) of chromium oxide. FIG. 7B shows the refractive index and extinction coefficient of chromium. In FIG. 7, n (dashed line) indicates the refractive index, and k (solid line) indicates the extinction coefficient.
 図8は、本実施例の光吸収層14に対してガラス内で垂直に光が入射した場合の透過率(Transmittance)および反射率(Reflectance)の計算結果を示す説明図である。なお、透過率と反射率の値はp偏光とs偏光の平均値である。 FIG. 8 is an explanatory diagram showing calculation results of the transmittance (Transmittance) and the reflectance (Reflectance) when light is vertically incident on the light absorbing layer 14 in the glass in the present embodiment. The values of the transmittance and the reflectance are average values of the p-polarized light and the s-polarized light.
 図9(a)には、ガラス90内で光吸収層14に対して5°から85°までの範囲で光が入射した場合の反射率が示されている。なお、図9(b)には、透過率および反射率の計算の際に想定した構造であって、ガラス90に対して、酸化クロム(Cr)が60nm成膜され、クロム(Cr)が10nm成膜された構造が例示されている。図9(a)に示すように、入射角度65°、すなわち光吸収層14の鉛直方向を基準とした65°の角度、においても400~700nmの波長帯域において反射率は30%以下になっている。また、入射角度65°において反射率の極小値が約560nmになっている。 FIG. 9A shows the reflectance when light is incident on the light absorbing layer 14 in the glass 90 within a range of 5 ° to 85 °. FIG. 9B shows a structure assumed when calculating the transmittance and the reflectance. A chromium oxide (Cr 2 O 3 ) of 60 nm is formed on the glass 90, and the chromium (Cr) is formed. ) Is illustrated as having a thickness of 10 nm. As shown in FIG. 9A, even at an incident angle of 65 °, that is, an angle of 65 ° with respect to the vertical direction of the light absorbing layer, the reflectance becomes 30% or less in a wavelength band of 400 to 700 nm. I have. The minimum value of the reflectance at the incident angle of 65 ° is about 560 nm.
 図10は、酸化クロムとクロムとによる光吸収層14の膜厚が、図9(b)に示された光吸収層14に対して、70%(酸化クロム 42nm、クロム 7nm)、50%(酸化クロム 30nm、クロム 5nm)である場合の、入射角度65°の光の反射率が示されている。膜厚が薄くなることによって反射率の極小値が短波長側にシフトしているが、各厚さにおいて反射率は30%以下になっている。 FIG. 10 shows that the thickness of the light absorbing layer 14 made of chromium oxide and chromium is 70% (chromium oxide 酸化 42 nm, chromium 7 nm) and 50% (relative to the light absorbing layer 14 shown in FIG. 9B). In the case where chromium oxide (30 nm, chromium 5 nm), the reflectance of light at an incident angle of 65 ° is shown. The minimum value of the reflectance shifts to the shorter wavelength side as the film thickness decreases, but the reflectance is 30% or less at each thickness.
 以上のことから、本実施例の光学素子10では、全反射条件を満たす角度41°と最大入射角である90°との平均の入射角度65°において(ガラスの屈折率を1.52とする。)、反射率が十分小さくなっているといえる。すなわち、迷光が低減されることになる。 From the above, in the optical element 10 of the present embodiment, the refractive index of glass is set to 1.52 at the average incident angle 65 ° of the angle 41 ° satisfying the total reflection condition and the maximum incident angle 90 °. .), It can be said that the reflectance is sufficiently small. That is, stray light is reduced.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の趣旨を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit of the invention.
 本出願は、2018年7月26日出願の日本特許出願(特願2018-139972)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application (No. 2018-139972) filed on July 26, 2018, the contents of which are incorporated herein by reference.
 本発明によれば、フランジ面の精度を大きく損なうことなく迷光を低減できる。この効果を奏する本発明は、光学素子、光学系、および撮像光学装置に関して有用である。 According to the present invention, stray light can be reduced without greatly impairing the accuracy of the flange surface. The present invention having this effect is useful for an optical element, an optical system, and an imaging optical device.
 10,50 光学素子
 11 第1の曲面
 12 第2の曲面
 13 フランジ部
 14,51,52 光吸収層
 20 レンズ部材
 30,31,32 蒸着材
 33 マスク部材
 60 光学系
 61 鏡筒
  63 スペーサ
10, 50 optical element 11 first curved surface 12 second curved surface 13 flange portion 14, 51, 52 light absorption layer 20 lens member 30, 31, 32 vapor deposition material 33 mask member 60 optical system 61 lens barrel 63 spacer

Claims (10)

  1.  曲面と、前記曲面から外径方向に延在する環状の平坦部を有するフランジ部とを含む光学素子であって、
     前記フランジ部の少なくとも一部において、該光学素子の内部から光が入射したときの反射率を低減するための光吸収層を有し、
     前記光吸収層の厚さが2μm以下である
     ことを特徴とする光学素子。
    An optical element including a curved surface and a flange portion having an annular flat portion extending in an outer radial direction from the curved surface,
    At least a portion of the flange portion has a light absorbing layer for reducing the reflectance when light is incident from inside the optical element,
    An optical element, wherein the thickness of the light absorbing layer is 2 μm or less.
  2.  前記光学素子は、ガラスで形成されている
     請求項1に記載の光学素子。
    The optical element according to claim 1, wherein the optical element is formed of glass.
  3.  前記フランジ部の最外面である側面に前記光吸収層を有する
     請求項1または2に記載の光学素子。
    The optical element according to claim 1, further comprising the light absorbing layer on a side surface that is an outermost surface of the flange portion.
  4.  該光学素子の内部から、前記光吸収層に、該光吸収層の鉛直方向を基準とした65°の角度で入射した光の、400nmから700nmの波長帯における反射率が50%以下である
     請求項1~3のいずれか一項に記載の光学素子。
    The reflectance of light incident from the interior of the optical element to the light absorbing layer at an angle of 65 ° with respect to the vertical direction of the light absorbing layer in a wavelength band of 400 nm to 700 nm is 50% or less. Item 4. The optical element according to any one of Items 1 to 3.
  5.  該光学素子の内部から、前記光吸収層に、該光吸収層の鉛直方向を基準とした65°の角度で入射した光の、400nmから700nmの波長帯における反射率が30%以下である
     請求項4に記載の光学素子。
    The reflectance of light incident from the inside of the optical element to the light absorbing layer at an angle of 65 ° with respect to the vertical direction of the light absorbing layer in a wavelength band of 400 nm to 700 nm is 30% or less. Item 5. The optical element according to item 4,
  6.  曲面と、前記曲面から外径方向に延在する環状で平坦部を有するフランジ部とを含む光学素子であって、
     前記フランジ部の側面の算術平均粗さはRa0.1μm以下であり、
     前記フランジ部の少なくとも一部において、金属、半導体または誘電体を含む光吸収層を有する
     ことを特徴とする光学素子。
    A curved surface, an optical element including a flange portion having an annular flat portion extending in the outer radial direction from the curved surface,
    The arithmetic mean roughness of the side surface of the flange portion is Ra 0.1 μm or less,
    An optical element comprising a light absorbing layer containing a metal, a semiconductor, or a dielectric in at least a part of the flange portion.
  7.  前記光学素子は、ガラスで形成されている
     請求項6に記載の光学素子。
    The optical element according to claim 6, wherein the optical element is formed of glass.
  8.  前記フランジ部の最外面である前記側面の算術平均粗さはRa0.01μm以下である
     請求項6または7に記載の光学素子。
    The optical element according to claim 6, wherein an arithmetic average roughness of the side surface that is the outermost surface of the flange portion is Ra 0.01 μm or less.
  9.  請求項1~8のいずれか一項に記載の光学素子を有する光学系。 An optical system having the optical element according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか一項に記載の光学素子と撮像素子とを有する光学装置。 An optical device comprising the optical element according to any one of claims 1 to 8 and an image sensor.
PCT/JP2019/028727 2018-07-26 2019-07-22 Optical element, optical system, and optical device WO2020022295A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020532394A JPWO2020022295A1 (en) 2018-07-26 2019-07-22 Optical elements, optics, and optics
CN201980049572.XA CN112470043A (en) 2018-07-26 2019-07-22 Optical element, optical system, and optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-139972 2018-07-26
JP2018139972 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020022295A1 true WO2020022295A1 (en) 2020-01-30

Family

ID=69182256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028727 WO2020022295A1 (en) 2018-07-26 2019-07-22 Optical element, optical system, and optical device

Country Status (3)

Country Link
JP (1) JPWO2020022295A1 (en)
CN (1) CN112470043A (en)
WO (1) WO2020022295A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045012A1 (en) * 2020-08-31 2022-03-03 Agc株式会社 Optical element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095620A (en) * 2011-10-28 2013-05-20 Olympus Corp Optical element and method for production of optical element
JP2013114235A (en) * 2011-12-01 2013-06-10 Canon Inc Optical element, method for manufacturing optical element, optical system, and optical apparatus
WO2014162846A1 (en) * 2013-04-04 2014-10-09 コニカミノルタ株式会社 Lens unit and imaging device
JP2015225102A (en) * 2014-05-26 2015-12-14 コニカミノルタ株式会社 Image capturing lens, image capturing device, and portable terminal
US9638832B1 (en) * 2016-04-22 2017-05-02 Genius Electronic Optical Co., Ltd. Optical lens
JP2017173593A (en) * 2016-03-24 2017-09-28 キヤノン株式会社 Optical member and manufacturing method of the same
JP2018146878A (en) * 2017-03-08 2018-09-20 カンタツ株式会社 Lens element and image capturing lens unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659848B2 (en) * 2008-03-06 2011-03-30 オリンパスメディカルシステムズ株式会社 Imaging module
CN104317164B (en) * 2009-12-11 2018-03-30 富士胶片株式会社 Black curable composition
CN104570168A (en) * 2013-10-16 2015-04-29 玉晶光电(厦门)有限公司 Lens, lens assembly and manufacture method of lens
CN206115130U (en) * 2016-10-27 2017-04-19 四川长虹电器股份有限公司 Light engine system of DLP projector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095620A (en) * 2011-10-28 2013-05-20 Olympus Corp Optical element and method for production of optical element
JP2013114235A (en) * 2011-12-01 2013-06-10 Canon Inc Optical element, method for manufacturing optical element, optical system, and optical apparatus
WO2014162846A1 (en) * 2013-04-04 2014-10-09 コニカミノルタ株式会社 Lens unit and imaging device
JP2015225102A (en) * 2014-05-26 2015-12-14 コニカミノルタ株式会社 Image capturing lens, image capturing device, and portable terminal
JP2017173593A (en) * 2016-03-24 2017-09-28 キヤノン株式会社 Optical member and manufacturing method of the same
US9638832B1 (en) * 2016-04-22 2017-05-02 Genius Electronic Optical Co., Ltd. Optical lens
JP2018146878A (en) * 2017-03-08 2018-09-20 カンタツ株式会社 Lens element and image capturing lens unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045012A1 (en) * 2020-08-31 2022-03-03 Agc株式会社 Optical element

Also Published As

Publication number Publication date
CN112470043A (en) 2021-03-09
JPWO2020022295A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US7787184B2 (en) Member having antireflection structure
WO2012157719A1 (en) Optical filter and optical device
US7839582B2 (en) Optical element
US9158039B2 (en) Optical element, and optical system and optical apparatus using same
JP2008276059A (en) Optical element and optical system having the same
US20080113273A1 (en) Wafer scale lens module and manufacturing method thereof
US20090316262A1 (en) Transmission type polarizing element, and composite polarizing plate using the element
TWI676852B (en) Light shielding sheet
US20120262794A1 (en) Optical element and optical system
US8559112B2 (en) Optical element
CN112882137A (en) Imaging lens, camera module and electronic device
KR100389996B1 (en) Photomask
JP4568810B1 (en) Thin film type light absorption film
WO2020022295A1 (en) Optical element, optical system, and optical device
US7626772B2 (en) Optical system and optical apparatus having the same
JP4598379B2 (en) Diaphragm structure and compound lens device including the same
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP6053352B2 (en) Optical filter, optical device, and optical filter manufacturing method.
JP2010175941A (en) Optical filter and method of manufacturing the same, and image capturing apparatus having the same
US20180372918A1 (en) Optical element and optical system including the same
JP2004258494A (en) Nd filter
TWI750707B (en) Spacer
US11513440B2 (en) Optical element, optical system, and optical apparatus
KR20060117874A (en) Photomask and video device manufacturing method
TWI746376B (en) Spacer ring and lens module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532394

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19842320

Country of ref document: EP

Kind code of ref document: A1