WO2014162846A1 - Lens unit and imaging device - Google Patents

Lens unit and imaging device Download PDF

Info

Publication number
WO2014162846A1
WO2014162846A1 PCT/JP2014/056856 JP2014056856W WO2014162846A1 WO 2014162846 A1 WO2014162846 A1 WO 2014162846A1 JP 2014056856 W JP2014056856 W JP 2014056856W WO 2014162846 A1 WO2014162846 A1 WO 2014162846A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
diameter
light
lenses
shielding plate
Prior art date
Application number
PCT/JP2014/056856
Other languages
French (fr)
Japanese (ja)
Inventor
伸恭 栗原
宏 梅田
片桐 禎人
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014162846A1 publication Critical patent/WO2014162846A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms

Definitions

  • the present invention relates to a lens unit and an imaging apparatus suitable for use in an imaging apparatus having a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor.
  • FIGS. 7 to 8 of Patent Document 1 a flange portion outside the effective diameter of the lens is projected in the optical axis direction and brought into contact with an adjacent lens, and a plurality of lenses are overlapped.
  • a lens unit is disclosed. According to such a lens unit, since the distance between the lenses in the optical axis direction can be easily adjusted by bringing the flange portions into contact with each other, high-precision assembly and improvement in productivity can be ensured.
  • the lens unit disclosed in Patent Document 1 has the following problems.
  • light rays that pass outside the effective diameter of the lens become unnecessary light and enter the imaging surface, causing ghosts and flares and hindering the formation of high-quality images. Therefore, a light shielding plate is disposed between the lenses to block unnecessary light, but in the case of the lens unit of Patent Document 1, since the flange portion protrudes in the optical axis direction and is in contact with the adjacent lens, The light shielding plate provided between the lenses physically stays on the inner side of the flange portion in the direction perpendicular to the optical axis. Therefore, the light cannot pass through the outer side of the light shielding plate in the direction perpendicular to the optical axis, which may become unnecessary light. There is.
  • Patent Document 2 a groove shape is formed outside the effective diameter of the lens, and unnecessary light is reflected on the inclined surface to prevent the incident light from entering the imaging surface.
  • the lens disclosed in Patent Document 2 is as follows. Forming problems arise. That is, when the concave portion is formed outside the effective diameter of the thin lens as shown in FIG. 1 so as to contribute to the function of reflecting unnecessary light using a convex mold, the material flows out from the gate into the cavity. As a result, the moldability deteriorates. Further, in the method of suppressing unnecessary light by reflection outside the effective diameter, not all unnecessary light can be dealt with, and more effective blocking of unnecessary light is desired.
  • Patent Document 3 discloses a technique for suppressing unnecessary light by adjusting the arrangement position of the light shielding plate.
  • the method of suppressing unnecessary light by adjusting the arrangement position of the light shielding plate does not necessarily cope with all unnecessary light, and more effective blocking of unnecessary light is desired.
  • Patent Document 4 discloses a technique for absorbing incident unnecessary light by applying a black paint or the like to an inclined portion outside the effective diameter.
  • the inclined portion is only blackened, unnecessary light is allowed to pass through the outside of the blackened inclined portion in the direction perpendicular to the optical axis, thereby causing ghost and flare. The risk of causing it increases.
  • Patent Document 4 suggests that the inclined portion is blackened by two-color molding, but it is difficult to create a lens by two-color molding.
  • Patent Document 4 Although it is conceivable to apply a black paint to the outside of the inclined portion of the lens in the direction orthogonal to the optical axis, the optical axis when the lenses are overlapped due to the thickness of the black paint. Since the distance varies, there is a problem that a highly accurate lens cannot be assembled.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a lens unit and an imaging apparatus that can suppress generation of ghosts and flares while suppressing unnecessary light while ensuring high-precision assembly and productivity improvement. .
  • the lens unit according to the present invention comprises: A plurality of lenses formed in series so that the protruding portions protruding in the optical axis direction are formed outside the effective diameter, and the protruding portions are in contact with each other; An annular light shielding plate interposed between two of the plurality of lenses and disposed on the inner side in the direction perpendicular to the optical axis with respect to the protrusion, A lens frame that houses the lens, Of the surface of the lens, a portion outside the effective diameter and other than the surface in contact with another component is a functional surface that diffuses or absorbs light.
  • the light that passes through the inside of the effective diameter and becomes unnecessary light can be suppressed by the ghost and flare by being captured by the light shielding plate.
  • unnecessary light passing through the outside of the light shielding plate in the direction perpendicular to the optical axis is diffused or absorbed by being incident on the functional surface, thereby suppressing generation of ghosts and flares.
  • the functional surface is provided on a portion of the surface of the lens that is outside the effective diameter and other than the surface in contact with other parts, the distance between the lenses depends on the surface properties of the functional surface. Therefore, the distance between lenses can be ensured with high accuracy, and a highly accurate lens unit can be formed.
  • the “other parts” refers to a light shielding plate, another lens, a lens frame, and the like.
  • Another lens unit is: A plurality of small-diameter lenses formed in series so that the protruding portions protruding in the optical axis direction are formed outside the effective diameter, and the protruding portions are in contact with each other; An annular small-diameter light-shielding plate that is interposed between two small-diameter lenses among the plurality of small-diameter lenses and is disposed on the inner side in the optical axis orthogonal direction with respect to the protruding portion, A large-diameter lens arranged in series on the image side with respect to the plurality of small-diameter lenses; A large-diameter light shielding plate disposed between the plurality of small-diameter lenses and the large-diameter lens; A lens frame that houses the small-diameter lens and the large-diameter lens, Any one of the plurality of small diameter lenses is coaxially fitted to the lens frame, and the large diameter lens is coaxially fitted to the lens
  • the light that passes through the effective diameters of the small-diameter lens and the large-diameter lens and becomes unnecessary light is captured by the small-diameter light-shielding plate and the large-diameter light-shielding plate. Generation can be suppressed.
  • unnecessary light passing through the outside of the small-diameter light shielding plate in the direction perpendicular to the optical axis is diffused or absorbed by being incident on the functional surface, or captured by the large-diameter light shielding plate, thereby generating ghost and flare. Can be suppressed.
  • the functional surface is provided in a portion other than the surface that is outside the effective diameter and abuts against other components, at least one surface of the small-diameter lens and the large-diameter lens. It is not affected by the surface properties of the functional surface, and therefore the distance between the lenses can be ensured with high accuracy and a highly accurate lens unit can be formed.
  • An imaging apparatus includes the lens unit described above and a solid-state imaging device.
  • the present invention it is possible to provide a lens unit and an imaging apparatus capable of suppressing unnecessary light and suppressing generation of ghosts and flares while ensuring highly accurate assembly and productivity improvement.
  • FIG. 6 is a cross-sectional view of a five-lens lens unit, and is a view showing an optical path of unnecessary light.
  • FIG. 6 is a cross-sectional view of a five-lens lens unit, and is a view showing an unnecessary light optical path.
  • FIG. 4 is a cross-sectional view of a four-lens lens unit, and is a view showing an unnecessary light optical path.
  • FIG. 4 is a cross-sectional view of a four-lens lens unit, and is a view showing an optical path of unnecessary light. It is sectional drawing of a 6-unit lens unit, Comprising: It is a figure shown with the optical path of unnecessary light. It is sectional drawing of a 6-unit lens unit, Comprising: It is a figure shown with the optical path of unnecessary light. It is sectional drawing of the lens unit of another embodiment. It is sectional drawing of the lens unit of another structure, Comprising: It is a figure shown with the optical path of unnecessary light. It is sectional drawing of the lens unit of another structure, Comprising: It is a figure shown with the optical path of unnecessary light. It is sectional drawing of the lens unit of another structure, Comprising: It is a figure shown with the optical path of unnecessary light. It is sectional drawing which expands and shows a part of lens unit.
  • FIG. 1 is a cross-sectional view along the optical axis of the imaging apparatus 10 according to the present embodiment.
  • the following configuration is a schematic diagram, and some shapes, dimensions, and the like are different from actual ones.
  • the imaging device 10 causes a CMOS type imaging device 11 as a solid-state imaging device provided with a photoelectric conversion unit (light receiving surface) 11 a and the photoelectric conversion unit 11 a of the imaging device 11 to capture a subject image.
  • the imaging lens 12, a lens frame 13 that accommodates the imaging lens 12, an IR cut filter 14 that has a parallel plate shape, and a substrate 15 that supports the imaging element 11 are included.
  • the image pickup device 11 is an image pickup device in which pixels (photoelectric conversion elements) are two-dimensionally arranged at the center of the light receiving side (upper surface in FIG. 1) on a parallel plate chip.
  • a photoelectric conversion unit 11a as a surface is formed, and a signal processing circuit (not shown) is formed around the photoelectric conversion unit 11a.
  • Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like.
  • the image sensor 11 converts the signal charge from the photoelectric conversion unit 11a into an image signal such as a digital YUV signal, and transmits the image signal to an external circuit (not shown) (for example, a control circuit included in a host device on which the image pickup device is mounted). It is like that. In addition, it is possible to receive power and a clock signal for driving the image sensor 11 from an external circuit.
  • Y is a luminance signal
  • the image sensor is not limited to the above CMOS image sensor, and other devices such as a CCD may be used.
  • an imaging lens 12 having a five-lens configuration is provided inside a lens frame 13.
  • the imaging lens 12 and the lens frame 13 constitute a lens unit.
  • the imaging lens 12 includes, in order from the object side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5, each having a flange portion outside the effective diameter.
  • the image side surface L1f1 of the flange portion L1f of the first lens L1 protrudes toward the image side to form a protruding portion, and hits the object side surface L2f2 shifted to the image side in the flange portion L2f of the second lens L2. Yes.
  • a donut-plate-shaped first light-shielding plate AP1 is disposed on the inner side in the optical axis orthogonal direction of the protruding portion of the flange portion L1f of the first lens L1.
  • the first light shielding plate AP1 extends to the outside of the effective diameter of the first lens L1.
  • FIG. 2 is an enlarged view of an arrow II part of FIG.
  • an inclined surface L1f3 is formed so as to be connected to the image side surface L1f1 of the flange portion L1f of the first lens L1
  • an inclined surface L2f3 is formed so as to be connected to the object side surface L2f2 of the flange portion L2f of the second lens L2.
  • the optical axes can be aligned by bringing the inclined surfaces L1f3 and L2f3 into contact with each other. In this figure, a gap that does not affect the performance is provided in consideration of solid variations such as component tolerances.
  • the image side surface L2f1 of the flange portion L2f of the second lens L2 protrudes toward the image side to form a protruding portion, and the object side surface L3f2 shifted to the image side in the flange portion L3f of the third lens L3.
  • a donut-plate-shaped second light shielding plate AP2 is disposed on the inner side in the optical axis orthogonal direction of the protruding portion of the flange portion L2f of the second lens L2.
  • the second light shielding plate AP2 extends to the outside of the effective diameter of the second lens L2.
  • the relationship between the second lens L2 and the third lens L3 is the same as in FIG.
  • the image side surface L3f1 of the flange portion L3f of the third lens L3 protrudes toward the image side to form a protrusion, and contacts the object side surface L4f2 shifted to the image side in the flange portion L4f of the fourth lens L4. Yes.
  • a donut-plate-shaped third light shielding plate AP3 is disposed on the inner side in the optical axis orthogonal direction of the protruding portion of the flange portion L3f of the third lens L3.
  • the third light shielding plate AP3 extends to the outside of the effective diameter of the third lens L3.
  • the relationship between the third lens L3 and the fourth lens L4 is the same as in FIG.
  • a fourth light shielding plate AP4 having a donut shape is in contact and sandwiched.
  • the outer periphery of the fourth light shielding plate AP4 is in contact with the inner periphery of the lens frame 13, and the optical axis from the outermost periphery (indicated by the dotted line A) of the light beam passing through the effective diameter of the fourth lens L4 and the fifth lens L5. It extends in a cantilevered manner to a position outside in the orthogonal direction (the same applies to FIGS. 7 to 10 described later).
  • a position shifted from the fourth light shielding plate AP4 to the object side (other than the surface abutting on [other components] in the claims) From the portion, that is, the position that does not contact the fourth light shielding plate AP4 in this embodiment) to the outside of the effective diameter of the fourth lens L4 is defined as a functional surface L4f3, and black ink is applied or roughened here. Since the functional surface L4f3 extends substantially perpendicular to the incident unnecessary light, the effect of suppressing unnecessary light is high.
  • black ink is applied to the surface outside the effective diameter that extends perpendicularly to the incident unnecessary light (portion other than the surface in contact with [other parts] in the claims). By applying or roughening the surface, higher unnecessary light suppression effect can be secured.
  • black ink is applied or roughened on the outer peripheral surfaces of the flange portions L2f to L4f of the lenses L2 to L4.
  • the black ink may be applied or roughened in any of the lenses L2 to L4 depending on the effect of suppressing unnecessary light.
  • the object side surface L1f2 of the flange portion L1f of the first lens L1 is in contact with the image side surface of the wall portion 13a having the opening of the lens frame 13, and the outer peripheral surface L1f4 of the flange portion L1f is the small diameter portion 13b adjacent to the wall portion 13a. It is in contact with the inner peripheral surface.
  • the outer peripheral surface of the flange portion L5f of the fifth lens L5 is in contact with the inner peripheral surface of the lens frame 13 adjacent to the fourth light shielding plate AP4.
  • the first lens L1 to the fourth lens L4 constitute a small diameter lens
  • the fifth lens L5 constitutes a large diameter lens
  • the first light shielding plate AP1 to the third light shielding plate AP3 constitute a small diameter light shielding plate
  • the fourth light shielding plate AP4 constitutes a large diameter light shielding plate.
  • the IR cut filter 14 is disposed on the imaging element 11 side of the flange portion L5f of the fifth lens L5 via an annular spacer SP.
  • the lower end of the lens frame 13 is in contact with the substrate 15 via an annular holder 16 that holds the IR cut filter 14.
  • the flange of each lens is accurately formed by injection molding. Accordingly, when assembled, the first lens L1, the first light shielding plate AP1, the second lens L2, the second light shielding plate AP2, the third lens L3, the third light shielding plate AP3, and the fourth lens L4 with respect to the lens frame 13. When assembled, the flange portions come into contact with each other, so that the relative position in the optical axis direction from the first lens L1 to the fourth lens L4 is accurately adjusted. In addition, since the thickness of the fourth light shielding plate AP4 is controlled with high accuracy, when the fifth lens L5 is assembled with the fourth light shielding plate AP4 interposed therebetween, the relative relationship in the optical axis direction between the fourth lens L4 and the fifth lens L5. The position is adjusted with high accuracy.
  • the optical axes from the first lens L1 to the fourth lens L4 are accurately aligned as shown in FIG. Further, the optical axes of the first lens L1 and the fifth lens L5 are accurately aligned via the lens frame 13.
  • FIGS. 3A and 3B show a state in which the imaging device 10 is mounted on a smartphone 100 as a mobile terminal.
  • FIG. 4 is a control block diagram of the smartphone 100.
  • the object side end surface of the lens frame 13 is provided on the back surface of the smartphone 100 (see FIG. 3B), and is disposed at a position corresponding to the lower side of the liquid crystal display unit.
  • the imaging device 10 is connected to the control unit 101 of the smartphone 100 via an external connection terminal (an arrow in FIG. 4), and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.
  • the smartphone 100 performs overall control of each unit, and a control unit (CPU) 101 that executes a program corresponding to each process, a switch such as a power source, a number, and the like using a touch pad.
  • a control unit CPU
  • a switch such as a power source, a number, and the like using a touch pad.
  • ROM storage unit
  • the smartphone 100 operates by operating the input unit 60, drives the imaging lens 12 by an actuator (not shown) to perform an autofocus operation, and presses the release button 71 or the like to operate the imaging device 10 to perform imaging. It can be performed.
  • the image signal input from the imaging device 10 is stored in the storage unit 92 or displayed on the touch panel 70 by the control system of the smartphone 100, and further transmitted to the outside as video information via the wireless communication unit 80. Is done.
  • the unnecessary light cutting function in the present embodiment will be described.
  • the light that has passed through the effective diameter of the first lens L1 is reflected by the image side optical surface of the second lens L2 and becomes unnecessary light.
  • This unnecessary light is further reflected within the flange portion L2f of the second lens (if the intensity of the unnecessary light is high, a part of the unnecessary light incident on the outer peripheral surface L2f5 is absorbed by the black ink or diffused by the rough surface. However, since the remainder is reflected), it finally exits from the image side surface L2f1, but the object side surface L3f2 of the flange portion L3f of the third lens L3 that is in contact with this is also transparent. Incident light is further emitted from the image side surface L3f1, and is incident on the flange portion L4f from the object side surface L4f2 of the flange portion L4f of the fourth lens L4.
  • the functional surface L4f3 is not provided on the image side surface L4f1 of the flange portion L4f of the fourth lens L4 on the inner side in the optical axis orthogonal direction of the fourth light shielding plate AP4, after passing through this, the effective diameter of the fifth lens L5 is passed.
  • black ink is applied or roughened on the inner side in the direction perpendicular to the optical axis of the surface of the image side surface L4f1 of the flange portion L4f of the fourth lens L4 that is in contact with the fourth light shielding plate AP4. Since the functional surface L4f3 is provided, unnecessary light that has entered the functional surface L4f3 substantially perpendicularly is absorbed or diffused, so that it is suppressed from entering the photoelectric conversion unit 11a, and ghost and flare can be avoided.
  • the illustration shows only an example of the optical path of unnecessary light, and the light ray generated from the internal reflection or the like based on the angle and intensity of the light ray incident on the lens unit, and the lens shape in the lens unit.
  • black ink or a roughened surface can be provided so as to prevent unnecessary light from entering the imaging surface.
  • black ink and a roughened surface are also provided on the outer peripheral surface L3f5 of the third lens L3 and the outer peripheral surface L4f5 of the fourth lens L4.
  • the above-mentioned examples are limited examples of unnecessary light, and unnecessary light can be generated in various directions depending on conditions such as the type and shape of the lens used in the lens unit and the material of the lens frame. Accordingly, the position where the black ink or the roughened surface is employed can be appropriately selected.
  • the first lens L1 to the third lens L3 constitute a small diameter lens
  • the fourth lens L4 constitutes a large diameter lens
  • the first light shielding plate AP1 to the second light shielding plate AP2 constitute a small diameter light shielding plate
  • the third light shielding plate AP3 constitutes a large diameter light shielding plate.
  • the basic configuration is the same as that of the above-described embodiment.
  • black ink is applied to the image side surface L3f1 of the flange portion L3f of the third lens L3 on the inner side in the direction perpendicular to the optical axis, or a rough surface.
  • a surface L3f3 is provided.
  • black ink is applied or roughened to the outer peripheral surfaces of the flange portions L2f to L3f of the lenses L2 to L3.
  • the light that has passed through the effective diameter of the first lens L1 is reflected by the image side optical surface of the second lens L2 and becomes unnecessary light.
  • This unnecessary light is further reflected within the flange portion L2f of the second lens (if the intensity of the unnecessary light is high, a part of the unnecessary light incident on the outer peripheral surface L2f5 is absorbed by the black ink or diffused by the rough surface. However, the remainder is reflected) and finally exits from the image side surface L2f1, but enters the flange portion L3f of the third lens L3 from here.
  • the functional surface L3f3 is provided on the image side surface L3f1 of the flange portion L3f of the third lens L3 on the inner side in the direction orthogonal to the optical axis of the surface that contacts the third light shielding plate AP3, the functional surface L3f3 is incident substantially perpendicularly. By absorbing or diffusing unnecessary light, it is suppressed from entering the photoelectric conversion unit 11a, and ghost and flare can be avoided.
  • the light that has passed through the effective diameter of the first lens L1 enters the second lens L2, and then exits from outside the effective diameter as unnecessary light.
  • the effective diameter outside the second lens L2 is a light transmission surface, even if the second light shielding plate AP2 is provided between the second lens L2 and the third lens L3, unnecessary light passes and enters the photoelectric conversion unit 11a. Doing so may cause ghosts and flares.
  • the black side is applied or roughened to the image side surface L2f6 that is outside the effective diameter of the second lens L2 and is not in contact with the second light shielding plate AP2, the image side surface L2f6 is used. Can absorb or diffuse the unnecessary light incident on the second lens L2 and suppress the emission from the outside of the effective diameter of the second lens L2. Therefore, the incident light to the photoelectric conversion unit 11a is suppressed, and ghost and flare can be avoided.
  • the illustration shows only an example of the optical path of unnecessary light, and the light ray generated from the internal reflection or the like based on the angle and intensity of the light ray incident on the lens unit, and the lens shape in the lens unit.
  • black ink or a roughened surface can be provided so as to prevent unnecessary light from entering the imaging surface.
  • black ink and a roughened surface are also provided on the outer peripheral surface L3f5 of the third lens L3.
  • the above-mentioned examples are limited examples of unnecessary light, and unnecessary light can be generated in various directions depending on conditions such as the type and shape of the lens used in the lens unit and the material of the lens frame. Accordingly, the position where the black ink or the roughened surface is employed can be appropriately selected.
  • the first lens L1 to the fifth lens L5 constitute a small diameter lens
  • the sixth lens L6 constitutes a large diameter lens
  • the first light shielding plate AP1 to the fourth light shielding plate AP4 constitute a small diameter light shielding plate
  • the fifth light shielding plate AP5 constitutes a large diameter light shielding plate.
  • the basic configuration is the same as that of the above-described embodiment.
  • the other lenses L2 to L5 by applying black ink to a surface outside the effective diameter that extends substantially perpendicular to the incident unnecessary light, or using a roughened surface, a higher unnecessary light suppression effect is achieved. Can be secured.
  • black ink is applied or roughened to the outer peripheral surfaces of the flange portions L2f to L5f of the lenses L2 to L5.
  • the light that has passed through the effective diameter of the first lens L1 is reflected by the image side optical surface of the second lens L2 and becomes unnecessary light.
  • the unnecessary light is further reflected in the flange portion L2f of the second lens, passes through the flange portion L3f of the third lens, enters the flange portion L4f of the fourth lens, and is reflected on the outer peripheral surface (unnecessary). If the light intensity is high, a part of the unnecessary light incident on the outer peripheral surface L4f5 is absorbed by the black ink or diffused by the rough surface, but the rest is reflected), and further emitted from the image side surface L4f1. To the flange portion L5f of the fifth lens L5.
  • the functional surface L5f3 is provided on the image side surface L5f1 of the flange portion L5f of the fifth lens L5 on the inner side in the direction perpendicular to the optical axis of the surface contacting the fifth light shielding plate AP5, the functional surface L5f3 is incident substantially perpendicularly. By absorbing or diffusing unnecessary light, it is suppressed from entering the photoelectric conversion unit 11a, and ghost and flare can be avoided.
  • the light that has passed through the effective diameter of the first lens L1 enters the second lens L2, and then exits from the effective diameter as unnecessary light.
  • the effective diameter outside the second lens L2 is a light transmission surface, even if the second light shielding plate AP2 is provided between the second lens L2 and the third lens L3, unnecessary light passes and enters the photoelectric conversion unit 11a. This may cause ghosts and flares.
  • the black side is applied or roughened to the image side surface L2f6 that is outside the effective diameter of the second lens L2 and is not in contact with the second light shielding plate AP2, the image side surface L2f6 is used. Can absorb or diffuse the unnecessary light incident on the second lens L2 and suppress the emission from the outside of the effective diameter of the second lens L2. Therefore, the incident light to the photoelectric conversion unit 11a is suppressed, and ghost and flare can be avoided.
  • black ink or a roughened surface can be provided so as to prevent unnecessary light from entering the imaging surface.
  • black ink and a roughened surface are provided on the outer peripheral surface L2f5 of the second lens L2, the outer peripheral surface L3f5 of the third lens L3, and the outer peripheral surface L5f5 of the fifth lens L5.
  • the above-mentioned examples are limited examples of unnecessary light, and unnecessary light can be generated in various directions depending on conditions such as the type and shape of the lens used in the lens unit and the material of the lens frame. Accordingly, the position where the black ink or the roughened surface is employed can be appropriately selected.
  • FIG. 11 is a sectional view showing a five-lens lens unit according to another embodiment.
  • the object side surface L2f2 of the flange portion L2f of the second lens L2 protrudes toward the object side to form a protruding portion, and the image shifted to the object side in the flange portion L1f of the first lens L1. It contacts the side surface L1f1.
  • a donut-plate-shaped first light-shielding plate AP1 is disposed on the inner side in the optical axis orthogonal direction of the protruding portion of the flange portion L2f of the second lens L2.
  • the object side surface L3f2 of the flange portion L3f of the third lens L3 protrudes toward the object side to form a protrusion, and hits the image side surface L2f1 shifted to the object side in the flange portion L2f of the second lens L2. Yes.
  • a donut-plate-shaped second light-shielding plate AP2 is disposed on the inner side in the optical axis orthogonal direction of the protruding portion of the flange portion L3f of the third lens L3.
  • the object side surface L4f2 of the flange portion L4f of the fourth lens L4 protrudes toward the object side to form a protruding portion, and hits the image side surface L3f1 shifted to the object side in the flange portion L3f of the third lens L3. Yes.
  • a donut-plate-shaped third light-shielding plate AP3 is disposed on the inner side in the optical axis orthogonal direction of the protruding portion of the flange portion L4f of the fourth lens L4.
  • a fourth light shielding plate AP4 having a donut shape is in contact and sandwiched.
  • the outer periphery of the fourth light shielding plate AP4 is in contact with the inner periphery of the lens frame 13, and the optical axis from the outermost periphery (indicated by the dotted line A) of the light beam passing through the effective diameter of the fourth lens L4 and the fifth lens L5. It extends in a cantilevered manner to a position outside in the orthogonal direction.
  • a position shifted from the fourth light shielding plate AP4 to the object side (other than the surface abutting on [other components] in the claims) From the portion, that is, the position that does not contact the fourth light shielding plate AP4 in this embodiment) to the outside of the effective diameter of the fourth lens L4 is defined as a functional surface L4f3, and black ink is applied or roughened here. Since the functional surface L4f3 extends substantially perpendicular to the incident unnecessary light, the effect of suppressing unnecessary light is high.
  • black ink is applied to the surface outside the effective diameter that extends perpendicularly to the incident unnecessary light (portion other than the surface in contact with [other parts] in the claims). By applying or roughening the surface, higher unnecessary light suppression effect can be secured.
  • black ink is applied or roughened on the outer peripheral surfaces of the flange portions L2f to L4f of the lenses L2 to L4.
  • the black ink may be applied or roughened in any of the lenses L2 to L4 depending on the effect of suppressing unnecessary light.
  • the object side surface L1f2 of the flange portion L1f of the first lens L1 is in contact with the image side surface of the wall portion 13a having the opening of the lens frame 13, and the outer peripheral surface L1f4 of the flange portion L1f is the small diameter portion 13b adjacent to the wall portion 13a. It is in contact with the inner peripheral surface.
  • the outer peripheral surface of the flange portion L5f of the fifth lens L5 is in contact with the inner peripheral surface of the lens frame 13 adjacent to the fourth light shielding plate AP4.
  • the unnecessary light cutting function in this embodiment will be described.
  • the light incident on the effective diameter of the first lens L1 is reflected on the image side surface, further reflected on the object side surface L1f2 of the flange portion L1f, and then the transparent image side surface L1f1 and object
  • the light enters the flange portion L2f of the second lens L2 through the side surface L2f2 and becomes unnecessary light.
  • This unnecessary light is further reflected within the flange portion L2f of the second lens (if the intensity of the unnecessary light is high, a part of the unnecessary light incident on the outer peripheral surface L2f5 is absorbed by the black ink or diffused by the rough surface.
  • the remainder may be reflected) and may eventually exit from the image side surface L2f1, but pass through the flange portion L3f of the third lens L3 and exit from the image side surface L3f1, and the flange portion of the fourth lens L4.
  • the light enters the flange portion L4f from the object side surface L4f2 of L4f.
  • the functional surface L4f3 is not provided on the image side surface L4f1 of the flange portion L4f of the fourth lens L4 on the inner side in the optical axis orthogonal direction of the fourth light shielding plate AP4, after passing through this, the effective diameter of the fifth lens L5 is passed.
  • black ink is applied or roughened on the inner side in the direction perpendicular to the optical axis of the surface of the image side surface L4f1 of the flange portion L4f of the fourth lens L4 that is in contact with the fourth light shielding plate AP4. Since the functional surface L4f3 is provided, unnecessary light that has entered the functional surface L4f3 substantially perpendicularly is absorbed or diffused, so that it is suppressed from entering the photoelectric conversion unit 11a, and ghost and flare can be avoided.
  • the light that has passed through the effective diameter of the first lens L1 and entered the effective diameter of the second lens L2 is reflected on the image side surface and further reflected on the object side surface of the flange portion L2f. From here, the light enters the flange portion L3f of the third lens L3 via the transparent image side surface L2f1 and the object side surface L3f2, and becomes unnecessary light. This unnecessary light is further reflected in the flange portion L3f of the third lens (if the intensity of the unnecessary light is high, a part of the unnecessary light incident on the outer peripheral surface L3f5 is absorbed by the black ink or diffused by the rough surface. However, there are cases where the remainder is reflected and finally exits from the image side surface L3f1, but this enters the flange portion L4f from the object side surface L4f2 of the flange portion L4f of the fourth lens L4.
  • the functional surface L4f3 is not provided on the image side surface L4f1 of the flange portion L4f of the fourth lens L4 on the inner side in the optical axis orthogonal direction of the fourth light shielding plate AP4, after passing through this, the effective diameter of the fifth lens L5 is passed.
  • black ink is applied or roughened on the inner side in the direction perpendicular to the optical axis of the surface of the image side surface L4f1 of the flange portion L4f of the fourth lens L4 that is in contact with the fourth light shielding plate AP4. Since the functional surface L4f3 is provided, unnecessary light that has entered the functional surface L4f3 substantially perpendicularly is absorbed or diffused, so that it is suppressed from entering the photoelectric conversion unit 11a, and ghost and flare can be avoided.
  • the illustration shows only an example of the optical path of unnecessary light, and the light ray generated from the internal reflection or the like based on the angle and intensity of the light ray incident on the lens unit, and the lens shape in the lens unit.
  • black ink or a roughened surface can be provided so as to prevent unnecessary light from entering the imaging surface.
  • black ink and a roughened surface are also provided on the outer peripheral surface L4f5 of the fourth lens L4.
  • the above-mentioned examples are limited examples of unnecessary light, and unnecessary light can be generated in various directions depending on conditions such as the type and shape of the lens used in the lens unit and the material of the lens frame. Accordingly, the position where the black ink or the roughened surface is employed can be appropriately selected.
  • the outer peripheral surface of the flange portion of each lens is formed in parallel with the optical axis.
  • the flange portion is configured so that unnecessary light is positively incident on the ink-coated surface or the roughened surface.
  • the outer peripheral surface may be a tapered surface.
  • a thin black material is formed on the functional surface.
  • a thin film-like black material By forming a thin film-like black material on the functional surface, unnecessary light can be absorbed and generation of ghosts and flares can be suppressed.
  • “Formation of black material” includes application of black ink by inkjet, black ink stamp, black film coating, black tape application, and the like.
  • the functional surface is preferably a rough surface.
  • a roughened surface refers to a surface having a high degree of roughness obtained by molding with a die having a textured surface or a roughened surface, for example. Specifically, the average roughness Ra is 0.2 ⁇ m or more.
  • the functional surface is provided on the inner side in the direction perpendicular to the optical axis of the surface in contact with the light shielding plate. Accordingly, unnecessary light that has passed through the outside of the light shielding plate in the direction perpendicular to the optical axis can be incident on the functional surface and diffused or absorbed.
  • the functional surface is an outer peripheral surface of the flange portion of the lens. Thereby, unnecessary light can be more effectively suppressed.
  • any one of the plurality of lenses is coaxially fitted to the lens frame, and a large-diameter lens different from the plurality of lenses is coaxially fitted to the lens frame, Furthermore, it is preferable that an outer periphery of a ring-shaped large-diameter light-shielding plate disposed between the plurality of lenses and the large-diameter lens is in contact with an inner periphery of the lens frame. Since any one of the plurality of lenses is coaxially fitted to the lens frame, and a large-diameter lens different from the plurality of lenses is coaxially fitted to the lens frame.
  • the coaxiality between the plurality of lenses and the large-diameter lens can be ensured, and the optical axis can be accurately aligned.
  • the outer periphery of the ring-shaped large-diameter light-shielding plate disposed between the plurality of lenses and the large-diameter lens is in contact with the inner periphery of the lens frame, unnecessary light is emitted by the large-diameter light-shielding plate. Can be effectively blocked.
  • the large diameter lens is preferably the most image side lens. If the large-diameter lens is the most image side lens, the tolerance for eccentricity with the plurality of lenses is relatively high, and adjustment during assembly is easy.
  • the outer peripheral surface of the flange portion of the lens has a tapered shape. Thereby, the direction of the unnecessary light incident on the outer peripheral surface of the flange portion can be adjusted and incident on the functional surface.
  • the outer peripheral surface of the flange portion of the small diameter lens has a tapered shape. Thereby, the direction of the unnecessary light incident on the outer peripheral surface of the flange portion can be adjusted and incident on the functional surface.
  • the present invention is not limited to the embodiments described in the specification, and other embodiments and modifications may be included for those skilled in the art from the embodiments and technical ideas described in the present specification. it is obvious.
  • a surface that does not come into contact with other components as long as it is outside the effective diameter can be a functional surface.
  • black ink may be applied or roughened to the outer peripheral side surfaces L2f4 to L4f4 that do not come into contact with other lenses or the like. Similar processing can be applied to a surface that does not come into contact with other components of all lenses under the same conditions.
  • the flange portions of the lens are not limited to directly contacting each other, and can be assembled by interposing a spacer whose thickness is controlled.

Abstract

Provided are a lens unit and an imaging device that ensure high-precision assembly and improved productivity, suppress unnecessary light, and are capable of suppressing the occurrence of ghosting or flaring. Unnecessary light incident to a functional surface (L4f3) is absorbed or diffused therefore incidence of said light to a light conversion unit (11a) is suppressed and ghosting and flaring can be avoided, as a result of the functional surface (L4f3) being provided on the inside in a direction orthogonal to the optical axis of a surface in contact with a fourth light-blocking plate (AP4) in an image side surface (L4f1) in a flange section (L4f) of a fourth lens (L4), said functional surface (L4f3) coating black ink or being a rough surface. In addition, unnecessary light emitted from outside the effective diameter of a third lens (L3) is absorbed therefore incidence of said light to a light conversion unit (11a) is suppressed and ghosting and flaring can be avoided, as a result of a third light-blocking plate (AP3) being provided between the third lens (L3) and the fourth lens (L4).

Description

レンズユニット及び撮像装置Lens unit and imaging device
 本発明は、CCD型イメージセンサあるいはCMOS型イメージセンサ等の固体撮像素子を有する撮像装置に用いられると好適なレンズユニット及び撮像装置に関するものである。 The present invention relates to a lens unit and an imaging apparatus suitable for use in an imaging apparatus having a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor.
 近年、CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子を用いた撮像装置が搭載された携帯端末が普及している。このような携帯端末に搭載される撮像装置においても、より高画質の画像が得られるよう、高画素数の撮像素子を使用したものが市場に供給されるようになってきた。高画素数をもつ撮像素子は大型化をともなっていたが、近年、画素の高細密化が進み、撮像素子が小型化されるようになってきた。これに伴い、撮像装置に搭載されるレンズユニットも、低背化に加え、高精度な組み立てを確保しつつ生産性を向上することが要求されている。 In recent years, portable terminals equipped with an imaging device using a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor have become widespread. In such an imaging apparatus mounted on a portable terminal, an apparatus using an imaging element having a high pixel number has been supplied to the market so that a higher quality image can be obtained. An image pickup device having a large number of pixels has been accompanied by an increase in size, but in recent years, an increase in the density of pixels has progressed, and the image pickup device has been downsized. Along with this, the lens unit mounted on the imaging apparatus is also required to improve productivity while ensuring high-precision assembly in addition to a reduction in height.
 このような課題に対し、特許文献1の図7~8には、レンズの有効径外のフランジ部を光軸方向に突出させて隣接するレンズに当接させ、複数枚のレンズを重ね合わせたレンズユニットが開示されている。このようなレンズユニットによれば、フランジ部同士を当接させることで、光軸方向のレンズ間距離を容易に調整できるので、高精度な組み立てと生産性向上を確保できる。 To deal with such a problem, in FIGS. 7 to 8 of Patent Document 1, a flange portion outside the effective diameter of the lens is projected in the optical axis direction and brought into contact with an adjacent lens, and a plurality of lenses are overlapped. A lens unit is disclosed. According to such a lens unit, since the distance between the lenses in the optical axis direction can be easily adjusted by bringing the flange portions into contact with each other, high-precision assembly and improvement in productivity can be ensured.
 しかしながら、特許文献1のレンズユニットによれば、以下のような問題がある。一般的に、レンズの有効径外を通過する光線は不要光となって撮像面に入射し、ゴーストやフレアを生じさせ高画質な画像の形成を阻害する。そこで、不要光を阻止すべくレンズ間に遮光板を配置することが行われるが、特許文献1のレンズユニットの場合、フランジ部が光軸方向に突出して隣接するレンズに当接しているので、レンズ間に設ける遮光板は、物理的に、フランジ部の光軸直交方向内側に留まるから、その遮光板の光軸直交方向外側を光線が通過することを阻止できず、これが不要光となる恐れがある。一方、特許文献1の図2に示すように、遮光板を鏡枠まで延長させれば、遮光板の光軸直交方向外側を不要光が通過することを阻止できるが、各レンズ間に遮光板が介在することで、光軸全長がばらついてしまい、精度の良いレンズユニットを形成できないという問題がある。これは、特にレンズ枚数の多いレンズユニットでは無視できない問題となる。 However, the lens unit disclosed in Patent Document 1 has the following problems. In general, light rays that pass outside the effective diameter of the lens become unnecessary light and enter the imaging surface, causing ghosts and flares and hindering the formation of high-quality images. Therefore, a light shielding plate is disposed between the lenses to block unnecessary light, but in the case of the lens unit of Patent Document 1, since the flange portion protrudes in the optical axis direction and is in contact with the adjacent lens, The light shielding plate provided between the lenses physically stays on the inner side of the flange portion in the direction perpendicular to the optical axis. Therefore, the light cannot pass through the outer side of the light shielding plate in the direction perpendicular to the optical axis, which may become unnecessary light. There is. On the other hand, as shown in FIG. 2 of Patent Document 1, if the light shielding plate is extended to the lens frame, unnecessary light can be prevented from passing through the outside of the light shielding plate in the direction perpendicular to the optical axis. As a result, the total length of the optical axis varies, and there is a problem that a highly accurate lens unit cannot be formed. This is a problem that cannot be ignored particularly in a lens unit having a large number of lenses.
 これに対し、特許文献2には、レンズの有効径外に溝形状を形成し、その斜面で不要光を反射させて、撮像面に入射することを抑制している。しかるに、高精度なレンズを安価に大量生産しようとする場合、プラスチックの成形に頼らざるを得ないが、更にレンズの薄形化を促進しようとすると、特許文献2のレンズでは、以下のような成形上の問題が生じる。すなわち、薄いレンズの有効径外に、図1のごとく不要光の反射機能に寄与させるためのごとく凹状部を、凸状の金型などを用いて成形する場合、ゲートからキャビティ内に流出する素材の流れの障害となって、成形性が低下する。又、有効径外の反射により不要光を抑制する手法では、必ずしも全ての不要光に対応できる訳ではなく、より有効な不要光の阻止が望まれている。 On the other hand, in Patent Document 2, a groove shape is formed outside the effective diameter of the lens, and unnecessary light is reflected on the inclined surface to prevent the incident light from entering the imaging surface. However, when mass-producing high-precision lenses at low cost, it is unavoidable to rely on plastic molding. However, in order to further promote lens thinning, the lens disclosed in Patent Document 2 is as follows. Forming problems arise. That is, when the concave portion is formed outside the effective diameter of the thin lens as shown in FIG. 1 so as to contribute to the function of reflecting unnecessary light using a convex mold, the material flows out from the gate into the cavity. As a result, the moldability deteriorates. Further, in the method of suppressing unnecessary light by reflection outside the effective diameter, not all unnecessary light can be dealt with, and more effective blocking of unnecessary light is desired.
 次に、特許文献3には、遮光板の配置位置を調整することで、不要光を抑制する技術が開示されている。しかしながら、遮光板の配置位置の調整により不要光を抑制する手法では、必ずしも全ての不要光に対応できる訳ではなく、より有効な不要光の阻止が望まれている。 Next, Patent Document 3 discloses a technique for suppressing unnecessary light by adjusting the arrangement position of the light shielding plate. However, the method of suppressing unnecessary light by adjusting the arrangement position of the light shielding plate does not necessarily cope with all unnecessary light, and more effective blocking of unnecessary light is desired.
 更に、特許文献4には、有効径外の傾斜部に黒色塗料等を付与することで、入射する不要光を吸収する技術が開示されている。しかるに、特許文献4のレンズにおいて、傾斜部を黒色化するのみでは、黒色化された傾斜部の光軸直交方向外側を不要光が通過することが許容されてしまうので、それによりゴーストやフレアを生じさせる恐れが高まる。これに対し、特許文献4では、二色成形により傾斜部を黒色化することが示唆されているが、二色成形でレンズを作成することは困難であるから、実際の効果に疑問が残る。更に、特許文献4には記載がないが、レンズの傾斜部の光軸直交方向外側にも黒色塗料を付与することも考えられるものの、黒色塗料の厚みにより、レンズを重ね合わせたときに光軸間距離がばらつくので、高精度なレンズの組み立てができないという問題がある。 Furthermore, Patent Document 4 discloses a technique for absorbing incident unnecessary light by applying a black paint or the like to an inclined portion outside the effective diameter. However, in the lens of Patent Document 4, if the inclined portion is only blackened, unnecessary light is allowed to pass through the outside of the blackened inclined portion in the direction perpendicular to the optical axis, thereby causing ghost and flare. The risk of causing it increases. On the other hand, Patent Document 4 suggests that the inclined portion is blackened by two-color molding, but it is difficult to create a lens by two-color molding. Further, although not described in Patent Document 4, although it is conceivable to apply a black paint to the outside of the inclined portion of the lens in the direction orthogonal to the optical axis, the optical axis when the lenses are overlapped due to the thickness of the black paint. Since the distance varies, there is a problem that a highly accurate lens cannot be assembled.
特開2009-282264号公報JP 2009-282264 A 特開2011-242504号公報JP 2011-242504 A 特開2009-282423号公報JP 2009-282423 A 特開2008-122801号公報JP 2008-122801 A
 本発明は、上記した問題に鑑み、高精度な組み立てと生産性向上を確保しつつ、不要光を抑えて、ゴーストやフレアの発生を抑制できるレンズユニット及び撮像装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a lens unit and an imaging apparatus that can suppress generation of ghosts and flares while suppressing unnecessary light while ensuring high-precision assembly and productivity improvement. .
 本発明によるレンズユニットは、
 光軸方向に突出する突出部を有効径外にそれぞれ形成しており、前記突出部を当接させるようにして直列的に配置されてなる複数のレンズと、
 前記複数のレンズのうち2つのレンズ間に介在し、前記突出部に対して光軸直交方向内側に配置された輪帯状の遮光板と、
 前記レンズを収容する鏡枠と、を有し、
 前記レンズの表面のうち、有効径より外側であって且つ他部品に当接する面以外の部分を、光を拡散又は吸収する機能面としたことを特徴とする。
The lens unit according to the present invention comprises:
A plurality of lenses formed in series so that the protruding portions protruding in the optical axis direction are formed outside the effective diameter, and the protruding portions are in contact with each other;
An annular light shielding plate interposed between two of the plurality of lenses and disposed on the inner side in the direction perpendicular to the optical axis with respect to the protrusion,
A lens frame that houses the lens,
Of the surface of the lens, a portion outside the effective diameter and other than the surface in contact with another component is a functional surface that diffuses or absorbs light.
 本発明によれば、有効径の内側を通過して不要光となる光は、前記遮光板により捕捉することで、ゴーストやフレアの発生を抑制できる。一方、前記遮光板の光軸直交方向外側を通過する不要光は、前記機能面に入射させることで拡散又は吸収し、これによりゴーストやフレアの発生を抑制できる。更に、前記機能面は、前記レンズの表面のうち、有効径より外側であって且つ他部品に当接する面以外の部分に設けているので、レンズ間距離が前記機能面の表面性状に左右されることがなく、よってレンズ間距離を精度良く確保し、高精度なレンズユニットを形成できる。尚、「他部品」とは、遮光板、他のレンズや鏡枠などをいう。 According to the present invention, the light that passes through the inside of the effective diameter and becomes unnecessary light can be suppressed by the ghost and flare by being captured by the light shielding plate. On the other hand, unnecessary light passing through the outside of the light shielding plate in the direction perpendicular to the optical axis is diffused or absorbed by being incident on the functional surface, thereby suppressing generation of ghosts and flares. Furthermore, since the functional surface is provided on a portion of the surface of the lens that is outside the effective diameter and other than the surface in contact with other parts, the distance between the lenses depends on the surface properties of the functional surface. Therefore, the distance between lenses can be ensured with high accuracy, and a highly accurate lens unit can be formed. The “other parts” refers to a light shielding plate, another lens, a lens frame, and the like.
 本発明による別のレンズユニットは、
 光軸方向に突出する突出部を有効径外にそれぞれ形成しており、前記突出部を当接させるようにして直列的に配置されてなる複数の小径レンズと、
 前記複数の小径レンズのうち2つの小径レンズ間に介在し、前記突出部に対して光軸直交方向内側に配置された輪帯状の小径遮光板と、
 前記複数の小径レンズに対して直列的に、その像側に配置された大径レンズと、
 前記複数の小径レンズと前記大径レンズとの間に配置された大径遮光板と、
 前記小径レンズ及び前記大径レンズを収容する鏡枠と、を有し、
 前記複数の小径レンズのうちいずれか1つの小径レンズが、前記鏡枠に同軸的に嵌合し、前記大径レンズが、前記鏡枠に同軸的に嵌合しており、
 前記大径遮光板の外周は、前記鏡枠の内周に当接するように配置されており、
 前記小径レンズ及び前記大径レンズの少なくとも1つの表面のうち、有効径より外側であって且つ他部品に当接する面以外の部分を、光を拡散又は吸収する機能面としたことを特徴とする。
Another lens unit according to the present invention is:
A plurality of small-diameter lenses formed in series so that the protruding portions protruding in the optical axis direction are formed outside the effective diameter, and the protruding portions are in contact with each other;
An annular small-diameter light-shielding plate that is interposed between two small-diameter lenses among the plurality of small-diameter lenses and is disposed on the inner side in the optical axis orthogonal direction with respect to the protruding portion,
A large-diameter lens arranged in series on the image side with respect to the plurality of small-diameter lenses;
A large-diameter light shielding plate disposed between the plurality of small-diameter lenses and the large-diameter lens;
A lens frame that houses the small-diameter lens and the large-diameter lens,
Any one of the plurality of small diameter lenses is coaxially fitted to the lens frame, and the large diameter lens is coaxially fitted to the lens frame,
The outer periphery of the large-diameter light shielding plate is disposed so as to contact the inner periphery of the lens frame,
Of the at least one surface of the small-diameter lens and the large-diameter lens, a portion other than the surface that is outside the effective diameter and is in contact with another component is a functional surface that diffuses or absorbs light. .
 本発明によれば、前記小径レンズ及び前記大径レンズの有効径の内側を通過して不要光となる光は、前記小径遮光板及び前記大径遮光板により捕捉することで、ゴーストやフレアの発生を抑制できる。一方、前記小径遮光板の光軸直交方向外側を通過する不要光は、前記機能面に入射させることで拡散又は吸収し、もしくは前記大径遮光板により捕捉することで、ゴーストやフレアの発生を抑制できる。更に、前記機能面は、前記小径レンズ及び前記大径レンズの少なくとも1つの表面のうち、有効径より外側であって且つ他部品に当接する面以外の部分に設けているので、レンズ間距離が前記機能面の表面性状に左右されることがなく、よってレンズ間距離を精度良く確保し、高精度なレンズユニットを形成できる。 According to the present invention, the light that passes through the effective diameters of the small-diameter lens and the large-diameter lens and becomes unnecessary light is captured by the small-diameter light-shielding plate and the large-diameter light-shielding plate. Generation can be suppressed. On the other hand, unnecessary light passing through the outside of the small-diameter light shielding plate in the direction perpendicular to the optical axis is diffused or absorbed by being incident on the functional surface, or captured by the large-diameter light shielding plate, thereby generating ghost and flare. Can be suppressed. Furthermore, since the functional surface is provided in a portion other than the surface that is outside the effective diameter and abuts against other components, at least one surface of the small-diameter lens and the large-diameter lens. It is not affected by the surface properties of the functional surface, and therefore the distance between the lenses can be ensured with high accuracy and a highly accurate lens unit can be formed.
 本発明による撮像装置は、上述のレンズユニットと、固体撮像素子とを有することを特徴とする。 An imaging apparatus according to the present invention includes the lens unit described above and a solid-state imaging device.
 本発明によれば、高精度な組み立てと生産性向上を確保しつつ、不要光を抑えて、ゴーストやフレアの発生を抑制できるレンズユニット及び撮像装置を提供することができる。 According to the present invention, it is possible to provide a lens unit and an imaging apparatus capable of suppressing unnecessary light and suppressing generation of ghosts and flares while ensuring highly accurate assembly and productivity improvement.
本実施の形態にかかる撮像装置10の光軸に沿った断面図である。It is sectional drawing along the optical axis of the imaging device 10 concerning this Embodiment. 図1の矢印II部を拡大して示す図である。It is a figure which expands and shows the arrow II part of FIG. 撮像装置10を搭載したスマートフォンの正面図(a)及び背面図(b)である。It is the front view (a) and back view (b) of the smart phone which mounts the imaging device 10. 図3のスマートフォンの制御ブロック図である。It is a control block diagram of the smart phone of FIG. 5枚構成のレンズユニットの断面図であって、不要光の光路とともに示す図である。FIG. 6 is a cross-sectional view of a five-lens lens unit, and is a view showing an optical path of unnecessary light. 5枚構成のレンズユニットの断面図であって、不要光の光路とともに示す図である。FIG. 6 is a cross-sectional view of a five-lens lens unit, and is a view showing an unnecessary light optical path. 4枚構成のレンズユニットの断面図であって、不要光の光路とともに示す図である。FIG. 4 is a cross-sectional view of a four-lens lens unit, and is a view showing an unnecessary light optical path. 4枚構成のレンズユニットの断面図であって、不要光の光路とともに示す図である。FIG. 4 is a cross-sectional view of a four-lens lens unit, and is a view showing an optical path of unnecessary light. 6枚構成のレンズユニットの断面図であって、不要光の光路とともに示す図である。It is sectional drawing of a 6-unit lens unit, Comprising: It is a figure shown with the optical path of unnecessary light. 6枚構成のレンズユニットの断面図であって、不要光の光路とともに示す図である。It is sectional drawing of a 6-unit lens unit, Comprising: It is a figure shown with the optical path of unnecessary light. 別な実施の形態のレンズユニットの断面図である。It is sectional drawing of the lens unit of another embodiment. 別な構成のレンズユニットの断面図であって、不要光の光路とともに示す図である。It is sectional drawing of the lens unit of another structure, Comprising: It is a figure shown with the optical path of unnecessary light. 別な構成のレンズユニットの断面図であって、不要光の光路とともに示す図である。It is sectional drawing of the lens unit of another structure, Comprising: It is a figure shown with the optical path of unnecessary light. レンズユニットの一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of lens unit.
 以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかる撮像装置10の光軸に沿った断面図である。以下に示す構成は概略図であり、形状や寸法等は実際と異なるものがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view along the optical axis of the imaging apparatus 10 according to the present embodiment. The following configuration is a schematic diagram, and some shapes, dimensions, and the like are different from actual ones.
 図1に示すように、撮像装置10は、光電変換部(受光面)11aを備えた固体撮像素子としてのCMOS型撮像素子11と、この撮像素子11の光電変換部11aに被写体像を撮像させる撮像レンズ12と、撮像レンズ12を収容する鏡枠13と、平行平板状であるIRカットフィルタ14と、撮像素子11を支持する基板15とを有する。 As shown in FIG. 1, the imaging device 10 causes a CMOS type imaging device 11 as a solid-state imaging device provided with a photoelectric conversion unit (light receiving surface) 11 a and the photoelectric conversion unit 11 a of the imaging device 11 to capture a subject image. The imaging lens 12, a lens frame 13 that accommodates the imaging lens 12, an IR cut filter 14 that has a parallel plate shape, and a substrate 15 that supports the imaging element 11 are included.
 図1に示すように、撮像素子11は、平行平板状のチップ上において、その受光側(図1で上面)の中央部に、画素(光電変換素子)が2次元的に配置された、撮像面としての光電変換部11aが形成されており、その周囲には信号処理回路(不図示)が形成されている。かかる信号処理回路は、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用いて画像信号出力を形成する信号処理部等から構成されている。 As shown in FIG. 1, the image pickup device 11 is an image pickup device in which pixels (photoelectric conversion elements) are two-dimensionally arranged at the center of the light receiving side (upper surface in FIG. 1) on a parallel plate chip. A photoelectric conversion unit 11a as a surface is formed, and a signal processing circuit (not shown) is formed around the photoelectric conversion unit 11a. Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like.
 また、撮像素子11のチップにおける受光面側の外縁近傍に形成された複数のパッドは、不図示のワイヤにより基板15に接続されている。撮像素子11は、光電変換部11aからの信号電荷をデジタルYUV信号等の画像信号等に変換し、不図示の外部回路(例えば、撮像装置を実装した上位装置が有する制御回路)へと送信するようになっている。又、外部回路から撮像素子11を駆動するための電力やクロック信号の供給を受けることもできる。ここで、Yは輝度信号、U(=R-Y)は赤と輝度信号との色差信号、V(=B-Y)は青と輝度信号との色差信号である。なお、撮像素子は上記CMOS型のイメージセンサに限定されるものではなく、CCD等の他のものを使用しても良い。 Further, a plurality of pads formed in the vicinity of the outer edge on the light receiving surface side in the chip of the image sensor 11 are connected to the substrate 15 by wires (not shown). The image sensor 11 converts the signal charge from the photoelectric conversion unit 11a into an image signal such as a digital YUV signal, and transmits the image signal to an external circuit (not shown) (for example, a control circuit included in a host device on which the image pickup device is mounted). It is like that. In addition, it is possible to receive power and a clock signal for driving the image sensor 11 from an external circuit. Here, Y is a luminance signal, U (= RY) is a color difference signal between red and the luminance signal, and V (= BY) is a color difference signal between blue and the luminance signal. Note that the image sensor is not limited to the above CMOS image sensor, and other devices such as a CCD may be used.
 図1において、鏡枠13の内部には、5枚レンズ構成の撮像レンズ12が設けられている。撮像レンズ12と鏡枠13とでレンズユニットを構成する。撮像レンズ12は物体側より順に、第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、第5レンズL5からなり、それぞれ有効径外にフランジ部を有する。第1レンズL1のフランジ部L1fの像側面L1f1は、像側に突出して突出部を構成しており、第2レンズL2のフランジ部L2fにおける、像側にシフトした物体側面L2f2に面当たりしている。第1レンズL1のフランジ部L1fにおける突出部の光軸直交方向内側には、ドーナッツ板状の第1遮光板AP1が配置されている。第1遮光板AP1は、第1レンズL1の有効径の外側まで延在している。 In FIG. 1, an imaging lens 12 having a five-lens configuration is provided inside a lens frame 13. The imaging lens 12 and the lens frame 13 constitute a lens unit. The imaging lens 12 includes, in order from the object side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5, each having a flange portion outside the effective diameter. The image side surface L1f1 of the flange portion L1f of the first lens L1 protrudes toward the image side to form a protruding portion, and hits the object side surface L2f2 shifted to the image side in the flange portion L2f of the second lens L2. Yes. A donut-plate-shaped first light-shielding plate AP1 is disposed on the inner side in the optical axis orthogonal direction of the protruding portion of the flange portion L1f of the first lens L1. The first light shielding plate AP1 extends to the outside of the effective diameter of the first lens L1.
 図2は、図1の矢印II部を拡大して示す図である。図2において、第1レンズL1のフランジ部L1fの像側面L1f1につながるようにして傾斜面L1f3が形成され、第2レンズL2のフランジ部L2fの物体側面L2f2につながるようにして傾斜面L2f3が形成されている。傾斜面L1f3、L2f3同士を当接させることで、光軸合わせを行うことができる。尚、本図においては、部品公差等の固体バラツキを考慮して、性能に影響を及ぼさない程度の隙間を設けている。 FIG. 2 is an enlarged view of an arrow II part of FIG. In FIG. 2, an inclined surface L1f3 is formed so as to be connected to the image side surface L1f1 of the flange portion L1f of the first lens L1, and an inclined surface L2f3 is formed so as to be connected to the object side surface L2f2 of the flange portion L2f of the second lens L2. Has been. The optical axes can be aligned by bringing the inclined surfaces L1f3 and L2f3 into contact with each other. In this figure, a gap that does not affect the performance is provided in consideration of solid variations such as component tolerances.
 図1において、第2レンズL2のフランジ部L2fの像側面L2f1は、像側に突出して突出部を構成しており、第3レンズL3のフランジ部L3fにおける、像側にシフトした物体側面L3f2に面当たりしている。第2レンズL2のフランジ部L2fにおける突出部の光軸直交方向内側には、ドーナッツ板状の第2遮光板AP2が配置されている。第2遮光板AP2は、第2レンズL2の有効径の外側まで延在している。第2レンズL2と第3レンズL3との関係は図2と同様である。 In FIG. 1, the image side surface L2f1 of the flange portion L2f of the second lens L2 protrudes toward the image side to form a protruding portion, and the object side surface L3f2 shifted to the image side in the flange portion L3f of the third lens L3. I'm hitting you. A donut-plate-shaped second light shielding plate AP2 is disposed on the inner side in the optical axis orthogonal direction of the protruding portion of the flange portion L2f of the second lens L2. The second light shielding plate AP2 extends to the outside of the effective diameter of the second lens L2. The relationship between the second lens L2 and the third lens L3 is the same as in FIG.
 第3レンズL3のフランジ部L3fの像側面L3f1は、像側に突出して突出部を構成しており、第4レンズL4のフランジ部L4fにおける、像側にシフトした物体側面L4f2に面当たりしている。第3レンズL3のフランジ部L3fにおける突出部の光軸直交方向内側には、ドーナッツ板状の第3遮光板AP3が配置されている。第3遮光板AP3は、第3レンズL3の有効径の外側まで延在している。第3レンズL3と第4レンズL4との関係は図2と同様である。 The image side surface L3f1 of the flange portion L3f of the third lens L3 protrudes toward the image side to form a protrusion, and contacts the object side surface L4f2 shifted to the image side in the flange portion L4f of the fourth lens L4. Yes. A donut-plate-shaped third light shielding plate AP3 is disposed on the inner side in the optical axis orthogonal direction of the protruding portion of the flange portion L3f of the third lens L3. The third light shielding plate AP3 extends to the outside of the effective diameter of the third lens L3. The relationship between the third lens L3 and the fourth lens L4 is the same as in FIG.
 第4レンズL4のフランジ部L4fの像側面L4f1と、第5レンズL5のフランジ部の物体側面L5f2との間に、ドーナッツ板状の第4遮光板AP4が当接して挟持されている。第4遮光板AP4の外周は、鏡枠13の内周に当接しており、また第4レンズL4と第5レンズL5の有効径内を通る光線の最外周(点線Aで示す)から光軸直交方向外側の位置まで片持ち状に延在している(後述する図7~10にて同様)。第4レンズL4のフランジ部L4fの像側面L4f1の光軸直交方向内側には、第4遮光板AP4から物体側にシフトした位置(特許請求の範囲でいう[他部品]に当接する面以外の部分、すなわち本実施の形態において第4遮光板AP4に当接しない位置)から第4レンズL4の有効径の外側までを機能面L4f3として、ここに黒色インクを塗布するか粗し面としている。機能面L4f3が,入射する不要光に対してほぼ垂直に延在するので、不要光の抑制効果が高い。 Between the image side surface L4f1 of the flange portion L4f of the fourth lens L4 and the object side surface L5f2 of the flange portion of the fifth lens L5, a fourth light shielding plate AP4 having a donut shape is in contact and sandwiched. The outer periphery of the fourth light shielding plate AP4 is in contact with the inner periphery of the lens frame 13, and the optical axis from the outermost periphery (indicated by the dotted line A) of the light beam passing through the effective diameter of the fourth lens L4 and the fifth lens L5. It extends in a cantilevered manner to a position outside in the orthogonal direction (the same applies to FIGS. 7 to 10 described later). On the inner side in the optical axis orthogonal direction of the image side surface L4f1 of the flange portion L4f of the fourth lens L4, a position shifted from the fourth light shielding plate AP4 to the object side (other than the surface abutting on [other components] in the claims) From the portion, that is, the position that does not contact the fourth light shielding plate AP4 in this embodiment) to the outside of the effective diameter of the fourth lens L4 is defined as a functional surface L4f3, and black ink is applied or roughened here. Since the functional surface L4f3 extends substantially perpendicular to the incident unnecessary light, the effect of suppressing unnecessary light is high.
 更に、他のレンズL2~L4において、入射する不要光に対して垂直に延在する有効径外の面(特許請求の範囲でいう[他部品]に当接する面以外の部分)に黒色インクを塗布するか粗し面とすることで、より高い不要光の抑制効果を確保できる。尚、この例では、レンズL2~L4のフランジ部L2f~L4fの外周面にも、黒色インクを塗布するか粗し面としている。但し、黒色インクを塗布するか粗し面とするのは、不要光の抑制効果に応じて、レンズL2~L4のいずれかにおいて行うようにしても良い。 Further, in the other lenses L2 to L4, black ink is applied to the surface outside the effective diameter that extends perpendicularly to the incident unnecessary light (portion other than the surface in contact with [other parts] in the claims). By applying or roughening the surface, higher unnecessary light suppression effect can be secured. In this example, black ink is applied or roughened on the outer peripheral surfaces of the flange portions L2f to L4f of the lenses L2 to L4. However, the black ink may be applied or roughened in any of the lenses L2 to L4 depending on the effect of suppressing unnecessary light.
 第1レンズL1のフランジ部L1fの物体側面L1f2は、鏡枠13の開口を有する壁部13aの像側面に当接し、またフランジ部L1fの外周面L1f4は壁部13aに隣接した小径部13bの内周面に当接している。一方、第5レンズL5のフランジ部L5fの外周面は、第4遮光板AP4に隣接して鏡枠13の内周面に当接している。 The object side surface L1f2 of the flange portion L1f of the first lens L1 is in contact with the image side surface of the wall portion 13a having the opening of the lens frame 13, and the outer peripheral surface L1f4 of the flange portion L1f is the small diameter portion 13b adjacent to the wall portion 13a. It is in contact with the inner peripheral surface. On the other hand, the outer peripheral surface of the flange portion L5f of the fifth lens L5 is in contact with the inner peripheral surface of the lens frame 13 adjacent to the fourth light shielding plate AP4.
 本実施の形態では、第1レンズL1~第4レンズL4が小径レンズを構成し、第5レンズL5が大径レンズを構成する。又、第1遮光板AP1~第3遮光板AP3が小径遮光板を構成し、第4遮光板AP4が大径遮光板を構成する。 In the present embodiment, the first lens L1 to the fourth lens L4 constitute a small diameter lens, and the fifth lens L5 constitutes a large diameter lens. The first light shielding plate AP1 to the third light shielding plate AP3 constitute a small diameter light shielding plate, and the fourth light shielding plate AP4 constitutes a large diameter light shielding plate.
 第5レンズL5のフランジ部L5fの撮像素子11側には、環状のスペーサSPを介してIRカットフィルタ14が配置されている。鏡枠13の下端は、IRカットフィルタ14を保持する環状のホルダ16を介して基板15上に当接している。 The IR cut filter 14 is disposed on the imaging element 11 side of the flange portion L5f of the fifth lens L5 via an annular spacer SP. The lower end of the lens frame 13 is in contact with the substrate 15 via an annular holder 16 that holds the IR cut filter 14.
 各レンズのフランジ部は射出成形によって精度良く形成されている。よって、組み付け時には、鏡枠13に対して、第1レンズL1,第1遮光板AP1、第2レンズL2,第2遮光板AP2、第3レンズL3,第3遮光板AP3、第4レンズL4と組み付けていくと、フランジ部同士が互いに当接し合うことで、第1レンズL1から第4レンズL4までの光軸方向の相対位置が精度良く調整される。又、第4遮光板AP4の板厚は、精度良く管理されているので、これを介在させて第5レンズL5を組み付けた場合、第4レンズL4と第5レンズL5との光軸方向の相対位置が精度良く調整される。 ¡The flange of each lens is accurately formed by injection molding. Accordingly, when assembled, the first lens L1, the first light shielding plate AP1, the second lens L2, the second light shielding plate AP2, the third lens L3, the third light shielding plate AP3, and the fourth lens L4 with respect to the lens frame 13. When assembled, the flange portions come into contact with each other, so that the relative position in the optical axis direction from the first lens L1 to the fourth lens L4 is accurately adjusted. In addition, since the thickness of the fourth light shielding plate AP4 is controlled with high accuracy, when the fifth lens L5 is assembled with the fourth light shielding plate AP4 interposed therebetween, the relative relationship in the optical axis direction between the fourth lens L4 and the fifth lens L5. The position is adjusted with high accuracy.
 一方、フランジ部同士が互いに当接し合うことで、図2に示したとおり、第1レンズL1から第4レンズL4までの光軸が精度良く合わされる。又、第1レンズL1と第5レンズL5は、鏡枠13を介して互いの光軸が精度良く合わされる。 On the other hand, as the flange portions come into contact with each other, the optical axes from the first lens L1 to the fourth lens L4 are accurately aligned as shown in FIG. Further, the optical axes of the first lens L1 and the fifth lens L5 are accurately aligned via the lens frame 13.
 上述した撮像装置10の動作について説明する。図3(a)(b)は、撮像装置10を携帯端末としてのスマートフォン100に装備した状態を示す。また、図4はスマートフォン100の制御ブロック図である。 The operation of the imaging device 10 described above will be described. FIGS. 3A and 3B show a state in which the imaging device 10 is mounted on a smartphone 100 as a mobile terminal. FIG. 4 is a control block diagram of the smartphone 100.
 撮像装置10は、例えば、鏡枠13の物体側端面がスマートフォン100の背面(図3(b)参照)に設けられ、液晶表示部の下方に相当する位置に配設される。 In the imaging device 10, for example, the object side end surface of the lens frame 13 is provided on the back surface of the smartphone 100 (see FIG. 3B), and is disposed at a position corresponding to the lower side of the liquid crystal display unit.
 撮像装置10は、外部接続端子(図4では矢印)を介して、スマートフォン100の制御部101と接続され、輝度信号や色差信号等の画像信号を制御部101側に出力する。 The imaging device 10 is connected to the control unit 101 of the smartphone 100 via an external connection terminal (an arrow in FIG. 4), and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.
 一方、スマートフォン100は、図4に示すように、各部を統括的に制御すると共に、各処理に応じたプログラムを実行する制御部(CPU)101と、電源等のスイッチ及び番号等をタッチパッドにより指示入力するための入力部60と、所定のデータの他に撮像した映像等を液晶パネルで表示する表示部65(但し、表示部の液晶パネルと入力部のタッチパッドはタッチパネル70が兼用する)と、外部サーバとの間の各種情報通信を実現するための無線通信部80と、スマートフォン100のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)91と、制御部101によって実行される各種処理プログラムやデータ、若しくは処理データ、或いは撮像装置10により得られた撮像データ等を一時的に格納する作業領域として用いられる及び一時記憶部(RAM)92とを備えている。 On the other hand, as shown in FIG. 4, the smartphone 100 performs overall control of each unit, and a control unit (CPU) 101 that executes a program corresponding to each process, a switch such as a power source, a number, and the like using a touch pad. An input unit 60 for inputting instructions, and a display unit 65 for displaying captured images and the like in addition to predetermined data on a liquid crystal panel (however, the touch panel 70 serves as both the liquid crystal panel of the display unit and the touch pad of the input unit) And a wireless communication unit 80 for realizing various information communications with an external server, and a storage unit (ROM) storing necessary data such as a system program, various processing programs, and a terminal ID of the smartphone 100 91, various processing programs and data executed by the control unit 101, or processing data, or obtained by the imaging device 10 And a temporary storage unit used as a work area for temporarily storing image data, etc. (RAM) and a 92.
 スマートフォン100は、入力部60の操作によって動作し、アクチュエータ(不図示)により撮像レンズ12を駆動してオートフォーカス動作を行い、レリーズボタン71等を押圧することで、撮像装置10を動作させて撮像を行うことができる。撮像装置10から入力された画像信号は、上記スマートフォン100の制御系により、記憶部92に記憶されたり、或いはタッチパネル70で表示され、さらには、無線通信部80を介して映像情報として外部に送信される。 The smartphone 100 operates by operating the input unit 60, drives the imaging lens 12 by an actuator (not shown) to perform an autofocus operation, and presses the release button 71 or the like to operate the imaging device 10 to perform imaging. It can be performed. The image signal input from the imaging device 10 is stored in the storage unit 92 or displayed on the touch panel 70 by the control system of the smartphone 100, and further transmitted to the outside as video information via the wireless communication unit 80. Is done.
 次に、図5,6を参照して、本実施の形態における不要光のカット機能について説明する。図5の例では、第1レンズL1の有効径内を通過した光は、第2レンズL2の像側光学面で反射して不要光となる。この不要光は、更に第2レンズのフランジ部L2f内で反射して(不要光の強度が高いと、外周面L2f5に入射した不要光の一部は黒インクで吸収され又は粗し面で拡散されるが、残りが反射し)、最終的に像側面L2f1から出射するが、これに当接した第3レンズL3のフランジ部L3fの物体側面L3f2も透明であるから、ここからフランジ部L3fに入射し、更に像側面L3f1から出射し、第4レンズL4のフランジ部L4fの物体側面L4f2からフランジ部L4fに入射する。 Next, with reference to FIGS. 5 and 6, the unnecessary light cutting function in the present embodiment will be described. In the example of FIG. 5, the light that has passed through the effective diameter of the first lens L1 is reflected by the image side optical surface of the second lens L2 and becomes unnecessary light. This unnecessary light is further reflected within the flange portion L2f of the second lens (if the intensity of the unnecessary light is high, a part of the unnecessary light incident on the outer peripheral surface L2f5 is absorbed by the black ink or diffused by the rough surface. However, since the remainder is reflected), it finally exits from the image side surface L2f1, but the object side surface L3f2 of the flange portion L3f of the third lens L3 that is in contact with this is also transparent. Incident light is further emitted from the image side surface L3f1, and is incident on the flange portion L4f from the object side surface L4f2 of the flange portion L4f of the fourth lens L4.
 ここで、第4レンズL4のフランジ部L4fの像側面L4f1における第4遮光板AP4の光軸直交方向内側に機能面L4f3を設けていない場合、ここを通過した後、第5レンズL5の有効径内を通過して、更に光電変換部11aに入射することで、ゴーストやフレアを発生させる恐れがある。しかしながら、本実施の形態では、第4レンズL4のフランジ部L4fの像側面L4f1における第4遮光板AP4に当接する面の光軸直交方向内側には、黒色インクを塗布するか粗し面となっている機能面L4f3を設けたので、機能面L4f3にほぼ垂直に入射した不要光が吸収もしくは拡散されることで、光電変換部11aに入射することが抑制され、ゴーストやフレアを回避できる。 Here, when the functional surface L4f3 is not provided on the image side surface L4f1 of the flange portion L4f of the fourth lens L4 on the inner side in the optical axis orthogonal direction of the fourth light shielding plate AP4, after passing through this, the effective diameter of the fifth lens L5 is passed. There is a possibility that ghosts and flares may be generated by passing through and entering the photoelectric conversion unit 11a. However, in the present embodiment, black ink is applied or roughened on the inner side in the direction perpendicular to the optical axis of the surface of the image side surface L4f1 of the flange portion L4f of the fourth lens L4 that is in contact with the fourth light shielding plate AP4. Since the functional surface L4f3 is provided, unnecessary light that has entered the functional surface L4f3 substantially perpendicularly is absorbed or diffused, so that it is suppressed from entering the photoelectric conversion unit 11a, and ghost and flare can be avoided.
 図6の例では、第1レンズL1及び第2レンズL2の有効径内を通過した光は、第3レンズL3に入射した後、不要光として有効径外から出射する。ここで、第3レンズL3の有効径外が光透過面であると、第4レンズL4との間に第3遮光板AP3を設けたとしても、不要光が通過して光電変換部11aに入射することで、ゴーストやフレアを発生させる恐れがある。しかしながら、本実施の形態では、第3レンズL3の有効径外であって、第3遮光板AP3と当接しない像側面L3f6に、黒インクを付与するか粗し面としているので、像側面L3f6に入射した不要光を吸収又は拡散することができ、第3レンズL3の有効径外から出射することを抑制するため、光電変換部11aに入射することが抑制され、ゴーストやフレアを回避できる。 In the example of FIG. 6, light that has passed through the effective diameters of the first lens L1 and the second lens L2 enters the third lens L3, and then exits from outside the effective diameter as unnecessary light. Here, if the effective diameter of the third lens L3 is outside the light transmission surface, even if the third light shielding plate AP3 is provided between the third lens L3 and the fourth lens L4, unnecessary light passes and enters the photoelectric conversion unit 11a. Doing so may cause ghosts and flares. However, in the present embodiment, since the black side is applied or roughened to the image side surface L3f6 that is outside the effective diameter of the third lens L3 and does not come into contact with the third light shielding plate AP3, the image side surface L3f6 is used. Can absorb or diffuse unnecessary light that is incident on the light source, and is prevented from being emitted from outside the effective diameter of the third lens L3. Therefore, it is possible to prevent the light from entering the photoelectric conversion unit 11a and to avoid ghosts and flares.
 尚、図示しているのは、不要光の光路の一例に過ぎず、レンズユニットへ入射する光線の角度や強度、さらにはレンズユニット内においてはレンズの形状に基づき内面反射などから発生する光線に対して、撮像面に不要光が入射することを抑制するように、黒インクや粗し面を設けることができる。例えば図5,6では、第3レンズL3の外周面L3f5や、第4レンズL4の外周面L4f5にも、黒インクや粗し面を設けている。以上述べた例は、不要光の限定された例であり、レンズユニットに用いられるレンズのタイプや形状、鏡枠の材質などの条件によって不要光は種々の方向に発生しうるから、その仕様に応じて、黒インクや粗し面を採用する位置を、適宜選択することができる。 The illustration shows only an example of the optical path of unnecessary light, and the light ray generated from the internal reflection or the like based on the angle and intensity of the light ray incident on the lens unit, and the lens shape in the lens unit. On the other hand, black ink or a roughened surface can be provided so as to prevent unnecessary light from entering the imaging surface. For example, in FIGS. 5 and 6, black ink and a roughened surface are also provided on the outer peripheral surface L3f5 of the third lens L3 and the outer peripheral surface L4f5 of the fourth lens L4. The above-mentioned examples are limited examples of unnecessary light, and unnecessary light can be generated in various directions depending on conditions such as the type and shape of the lens used in the lens unit and the material of the lens frame. Accordingly, the position where the black ink or the roughened surface is employed can be appropriately selected.
 次に、4枚構成の撮像レンズ12を持つ別のレンズユニットについて、図7,8を参照して、不要光のカット機能について説明する。本例では、第1レンズL1~第3レンズL3が小径レンズを構成し、第4レンズL4が大径レンズを構成する。又、第1遮光板AP1~第2遮光板AP2が小径遮光板を構成し、第3遮光板AP3が大径遮光板を構成する。基本的な構成は、上述した実施の形態と同様である。尚、本例では、第3レンズL3のフランジ部L3fの像側面L3f1における第3遮光板AP3に当接する面の光軸直交方向内側に、黒色インクを塗布するか粗し面となっている機能面L3f3を設けている。更に、他のレンズL2~L3において、入射する不要光に対してほぼ垂直に延在する有効径外の面に黒色インクを塗布するか粗し面とすることで、より高い不要光の抑制効果を確保できる。尚、この例では、レンズL2~L3のフランジ部L2f~L3fの外周面にも、黒色インクを塗布するか粗し面としている。 Next, with respect to another lens unit having the imaging lens 12 having a four-lens configuration, an unnecessary light cutting function will be described with reference to FIGS. In this example, the first lens L1 to the third lens L3 constitute a small diameter lens, and the fourth lens L4 constitutes a large diameter lens. The first light shielding plate AP1 to the second light shielding plate AP2 constitute a small diameter light shielding plate, and the third light shielding plate AP3 constitutes a large diameter light shielding plate. The basic configuration is the same as that of the above-described embodiment. In this example, black ink is applied to the image side surface L3f1 of the flange portion L3f of the third lens L3 on the inner side in the direction perpendicular to the optical axis, or a rough surface. A surface L3f3 is provided. Further, in the other lenses L2 to L3, by applying black ink to a surface outside the effective diameter that extends substantially perpendicular to the incident unnecessary light or making it a rough surface, a higher unnecessary light suppression effect is achieved. Can be secured. In this example, black ink is applied or roughened to the outer peripheral surfaces of the flange portions L2f to L3f of the lenses L2 to L3.
 図7の例では、第1レンズL1の有効径内を通過した光は、第2レンズL2の像側光学面で反射して不要光となる。この不要光は、更に第2レンズのフランジ部L2f内で反射して(不要光の強度が高いと、外周面L2f5に入射した不要光の一部は黒インクで吸収され又は粗し面で拡散されるが、残りが反射し)、最終的に像側面L2f1から出射するが、ここから第3レンズL3のフランジ部L3fに入射する。 In the example of FIG. 7, the light that has passed through the effective diameter of the first lens L1 is reflected by the image side optical surface of the second lens L2 and becomes unnecessary light. This unnecessary light is further reflected within the flange portion L2f of the second lens (if the intensity of the unnecessary light is high, a part of the unnecessary light incident on the outer peripheral surface L2f5 is absorbed by the black ink or diffused by the rough surface. However, the remainder is reflected) and finally exits from the image side surface L2f1, but enters the flange portion L3f of the third lens L3 from here.
 ここで、第3レンズL3のフランジ部L3fの像側面L3f1における第3遮光板AP3に当接する面の光軸直交方向内側に機能面L3f3を設けているので、機能面L3f3にほぼ垂直に入射した不要光が吸収もしくは拡散されることで、光電変換部11aに入射することが抑制され、ゴーストやフレアを回避できる。 Here, since the functional surface L3f3 is provided on the image side surface L3f1 of the flange portion L3f of the third lens L3 on the inner side in the direction orthogonal to the optical axis of the surface that contacts the third light shielding plate AP3, the functional surface L3f3 is incident substantially perpendicularly. By absorbing or diffusing unnecessary light, it is suppressed from entering the photoelectric conversion unit 11a, and ghost and flare can be avoided.
 図8の例では、第1レンズL1の有効径内を通過した光は、第2レンズL2に入射した後、不要光として有効径外から出射する。ここで、第2レンズL2の有効径外が光透過面であると、第3レンズL3との間に第2遮光板AP2を設けたとしても、不要光が通過して光電変換部11aに入射することで、ゴーストやフレアを発生させる恐れがある。しかしながら、本実施の形態では、第2レンズL2の有効径外であって、第2遮光板AP2と当接しない像側面L2f6に、黒インクを付与するか粗し面としているので、像側面L2f6に入射した不要光を吸収又は拡散することができ、第2レンズL2の有効径外から出射することを抑制するため、光電変換部11aに入射することが抑制され、ゴーストやフレアを回避できる。 In the example of FIG. 8, the light that has passed through the effective diameter of the first lens L1 enters the second lens L2, and then exits from outside the effective diameter as unnecessary light. Here, if the effective diameter outside the second lens L2 is a light transmission surface, even if the second light shielding plate AP2 is provided between the second lens L2 and the third lens L3, unnecessary light passes and enters the photoelectric conversion unit 11a. Doing so may cause ghosts and flares. However, in the present embodiment, since the black side is applied or roughened to the image side surface L2f6 that is outside the effective diameter of the second lens L2 and is not in contact with the second light shielding plate AP2, the image side surface L2f6 is used. Can absorb or diffuse the unnecessary light incident on the second lens L2 and suppress the emission from the outside of the effective diameter of the second lens L2. Therefore, the incident light to the photoelectric conversion unit 11a is suppressed, and ghost and flare can be avoided.
 尚、図示しているのは、不要光の光路の一例に過ぎず、レンズユニットへ入射する光線の角度や強度、さらにはレンズユニット内においてはレンズの形状に基づき内面反射などから発生する光線に対して、撮像面に不要光が入射することを抑制するように、黒インクや粗し面を設けることができる。例えば図7,8では、第3レンズL3の外周面L3f5にも、黒インクや粗し面を設けている。以上述べた例は、不要光の限定された例であり、レンズユニットに用いられるレンズのタイプや形状、鏡枠の材質などの条件によって不要光は種々の方向に発生しうるから、その仕様に応じて、黒インクや粗し面を採用する位置を、適宜選択することができる。 The illustration shows only an example of the optical path of unnecessary light, and the light ray generated from the internal reflection or the like based on the angle and intensity of the light ray incident on the lens unit, and the lens shape in the lens unit. On the other hand, black ink or a roughened surface can be provided so as to prevent unnecessary light from entering the imaging surface. For example, in FIGS. 7 and 8, black ink and a roughened surface are also provided on the outer peripheral surface L3f5 of the third lens L3. The above-mentioned examples are limited examples of unnecessary light, and unnecessary light can be generated in various directions depending on conditions such as the type and shape of the lens used in the lens unit and the material of the lens frame. Accordingly, the position where the black ink or the roughened surface is employed can be appropriately selected.
 次に、6枚構成の撮像レンズ12を持つ別のレンズユニットについて、図9,10を参照して、不要光のカット機能について説明する。本例では、第1レンズL1~第5レンズL5が小径レンズを構成し、第6レンズL6が大径レンズを構成する。又、第1遮光板AP1~第4遮光板AP4が小径遮光板を構成し、第5遮光板AP5が大径遮光板を構成する。基本的な構成は、上述した実施の形態と同様である。更に、他のレンズL2~L5において、入射する不要光に対してほぼ垂直に延在する有効径外の面に黒色インクを塗布するか粗し面とすることで、より高い不要光の抑制効果を確保できる。尚、この例では、レンズL2~L5のフランジ部L2f~L5fの外周面にも、黒色インクを塗布するか粗し面としている。 Next, with reference to FIGS. 9 and 10, an unnecessary light cutting function will be described with reference to FIGS. In this example, the first lens L1 to the fifth lens L5 constitute a small diameter lens, and the sixth lens L6 constitutes a large diameter lens. The first light shielding plate AP1 to the fourth light shielding plate AP4 constitute a small diameter light shielding plate, and the fifth light shielding plate AP5 constitutes a large diameter light shielding plate. The basic configuration is the same as that of the above-described embodiment. Further, in the other lenses L2 to L5, by applying black ink to a surface outside the effective diameter that extends substantially perpendicular to the incident unnecessary light, or using a roughened surface, a higher unnecessary light suppression effect is achieved. Can be secured. In this example, black ink is applied or roughened to the outer peripheral surfaces of the flange portions L2f to L5f of the lenses L2 to L5.
 図9の例では、第1レンズL1の有効径内を通過した光は、第2レンズL2の像側光学面で反射して不要光となる。この不要光は、更に第2レンズのフランジ部L2f内で反射して、第3レンズのフランジ部L3fを通過し、第4レンズのフランジ部L4fに入射して、その外周面で反射され(不要光の強度が高いと、外周面L4f5に入射した不要光の一部は黒インクで吸収され又は粗し面で拡散されるが、残りが反射し)、更に像側面L4f1から出射するが、ここから第5レンズL5のフランジ部L5fに入射する。 In the example of FIG. 9, the light that has passed through the effective diameter of the first lens L1 is reflected by the image side optical surface of the second lens L2 and becomes unnecessary light. The unnecessary light is further reflected in the flange portion L2f of the second lens, passes through the flange portion L3f of the third lens, enters the flange portion L4f of the fourth lens, and is reflected on the outer peripheral surface (unnecessary). If the light intensity is high, a part of the unnecessary light incident on the outer peripheral surface L4f5 is absorbed by the black ink or diffused by the rough surface, but the rest is reflected), and further emitted from the image side surface L4f1. To the flange portion L5f of the fifth lens L5.
 ここで、第5レンズL5のフランジ部L5fの像側面L5f1における第5遮光板AP5に当接する面の光軸直交方向内側に機能面L5f3を設けているので、機能面L5f3にほぼ垂直に入射した不要光が吸収もしくは拡散されることで、光電変換部11aに入射することが抑制され、ゴーストやフレアを回避できる。 Here, since the functional surface L5f3 is provided on the image side surface L5f1 of the flange portion L5f of the fifth lens L5 on the inner side in the direction perpendicular to the optical axis of the surface contacting the fifth light shielding plate AP5, the functional surface L5f3 is incident substantially perpendicularly. By absorbing or diffusing unnecessary light, it is suppressed from entering the photoelectric conversion unit 11a, and ghost and flare can be avoided.
 図10の例では、第1レンズL1の有効径内を通過した光は、第2レンズL2に入射した後、不要光として有効径外から出射する。ここで、第2レンズL2の有効径外が光透過面であると、第3レンズL3との間に第2遮光板AP2設けたとしても、不要光が通過して光電変換部11aに入射することで、ゴーストやフレアを発生させる恐れがある。しかしながら、本実施の形態では、第2レンズL2の有効径外であって、第2遮光板AP2と当接しない像側面L2f6に、黒インクを付与するか粗し面としているので、像側面L2f6に入射した不要光を吸収又は拡散することができ、第2レンズL2の有効径外から出射することを抑制するため、光電変換部11aに入射することが抑制され、ゴーストやフレアを回避できる。 In the example of FIG. 10, the light that has passed through the effective diameter of the first lens L1 enters the second lens L2, and then exits from the effective diameter as unnecessary light. Here, if the effective diameter outside the second lens L2 is a light transmission surface, even if the second light shielding plate AP2 is provided between the second lens L2 and the third lens L3, unnecessary light passes and enters the photoelectric conversion unit 11a. This may cause ghosts and flares. However, in the present embodiment, since the black side is applied or roughened to the image side surface L2f6 that is outside the effective diameter of the second lens L2 and is not in contact with the second light shielding plate AP2, the image side surface L2f6 is used. Can absorb or diffuse the unnecessary light incident on the second lens L2 and suppress the emission from the outside of the effective diameter of the second lens L2. Therefore, the incident light to the photoelectric conversion unit 11a is suppressed, and ghost and flare can be avoided.
 尚、図示しているのは、不要光の光路の一例に過ぎず、レンズユニットへ入射する光線の角度や強度、さらにはレンズユニット内においてはレンズの形状に基づき内面反射などから発生する光線に対して、撮像面に不要光が入射することを抑制するように、黒インクや粗し面を設けることができる。例えば図9,10では、第2レンズL2の外周面L2f5や、第3レンズL3の外周面L3f5や、第5レンズL5の外周面L5f5にも、黒インクや粗し面を設けている。以上述べた例は、不要光の限定された例であり、レンズユニットに用いられるレンズのタイプや形状、鏡枠の材質などの条件によって不要光は種々の方向に発生しうるから、その仕様に応じて、黒インクや粗し面を採用する位置を、適宜選択することができる。 The illustration shows only an example of the optical path of unnecessary light, and the light ray generated from the internal reflection or the like based on the angle and intensity of the light ray incident on the lens unit, and the lens shape in the lens unit. On the other hand, black ink or a roughened surface can be provided so as to prevent unnecessary light from entering the imaging surface. For example, in FIGS. 9 and 10, black ink and a roughened surface are provided on the outer peripheral surface L2f5 of the second lens L2, the outer peripheral surface L3f5 of the third lens L3, and the outer peripheral surface L5f5 of the fifth lens L5. The above-mentioned examples are limited examples of unnecessary light, and unnecessary light can be generated in various directions depending on conditions such as the type and shape of the lens used in the lens unit and the material of the lens frame. Accordingly, the position where the black ink or the roughened surface is employed can be appropriately selected.
 図11は、別な実施の形態にかかる5枚構成のレンズユニットを示す断面図である。本実施の形態においては、第2レンズL2のフランジ部L2fの物体側面L2f2は、物体側に突出して突出部を構成しており、第1レンズL1のフランジ部L1fにおける、物体側にシフトした像側面L1f1に面当たりしている。第2レンズL2のフランジ部L2fにおける突出部の光軸直交方向内側には、ドーナッツ板状の第1遮光板AP1が配置されている。 FIG. 11 is a sectional view showing a five-lens lens unit according to another embodiment. In the present embodiment, the object side surface L2f2 of the flange portion L2f of the second lens L2 protrudes toward the object side to form a protruding portion, and the image shifted to the object side in the flange portion L1f of the first lens L1. It contacts the side surface L1f1. A donut-plate-shaped first light-shielding plate AP1 is disposed on the inner side in the optical axis orthogonal direction of the protruding portion of the flange portion L2f of the second lens L2.
 第3レンズL3のフランジ部L3fの物体側面L3f2は、物体側に突出して突出部を構成しており、第2レンズL2のフランジ部L2fにおける、物体側にシフトした像側面L2f1に面当たりしている。第3レンズL3のフランジ部L3fにおける突出部の光軸直交方向内側には、ドーナッツ板状の第2遮光板AP2が配置されている。 The object side surface L3f2 of the flange portion L3f of the third lens L3 protrudes toward the object side to form a protrusion, and hits the image side surface L2f1 shifted to the object side in the flange portion L2f of the second lens L2. Yes. A donut-plate-shaped second light-shielding plate AP2 is disposed on the inner side in the optical axis orthogonal direction of the protruding portion of the flange portion L3f of the third lens L3.
 第4レンズL4のフランジ部L4fの物体側面L4f2は、物体側に突出して突出部を構成しており、第3レンズL3のフランジ部L3fにおける、物体側にシフトした像側面L3f1に面当たりしている。第4レンズL4のフランジ部L4fにおける突出部の光軸直交方向内側には、ドーナッツ板状の第3遮光板AP3が配置されている。 The object side surface L4f2 of the flange portion L4f of the fourth lens L4 protrudes toward the object side to form a protruding portion, and hits the image side surface L3f1 shifted to the object side in the flange portion L3f of the third lens L3. Yes. A donut-plate-shaped third light-shielding plate AP3 is disposed on the inner side in the optical axis orthogonal direction of the protruding portion of the flange portion L4f of the fourth lens L4.
 第4レンズL4のフランジ部L4fの像側面L4f1と、第5レンズL5のフランジ部の物体側面L5f2との間に、ドーナッツ板状の第4遮光板AP4が当接して挟持されている。第4遮光板AP4の外周は、鏡枠13の内周に当接しており、また第4レンズL4と第5レンズL5の有効径内を通る光線の最外周(点線Aで示す)から光軸直交方向外側の位置まで片持ち状に延在している。第4レンズL4のフランジ部L4fの像側面L4f1の光軸直交方向内側には、第4遮光板AP4から物体側にシフトした位置(特許請求の範囲でいう[他部品]に当接する面以外の部分、すなわち本実施の形態において第4遮光板AP4に当接しない位置)から第4レンズL4の有効径の外側までを機能面L4f3として、ここに黒色インクを塗布するか粗し面としている。機能面L4f3が,入射する不要光に対してほぼ垂直に延在するので、不要光の抑制効果が高い。 Between the image side surface L4f1 of the flange portion L4f of the fourth lens L4 and the object side surface L5f2 of the flange portion of the fifth lens L5, a fourth light shielding plate AP4 having a donut shape is in contact and sandwiched. The outer periphery of the fourth light shielding plate AP4 is in contact with the inner periphery of the lens frame 13, and the optical axis from the outermost periphery (indicated by the dotted line A) of the light beam passing through the effective diameter of the fourth lens L4 and the fifth lens L5. It extends in a cantilevered manner to a position outside in the orthogonal direction. On the inner side in the optical axis orthogonal direction of the image side surface L4f1 of the flange portion L4f of the fourth lens L4, a position shifted from the fourth light shielding plate AP4 to the object side (other than the surface abutting on [other components] in the claims) From the portion, that is, the position that does not contact the fourth light shielding plate AP4 in this embodiment) to the outside of the effective diameter of the fourth lens L4 is defined as a functional surface L4f3, and black ink is applied or roughened here. Since the functional surface L4f3 extends substantially perpendicular to the incident unnecessary light, the effect of suppressing unnecessary light is high.
 更に、他のレンズL2~L4において、入射する不要光に対して垂直に延在する有効径外の面(特許請求の範囲でいう[他部品]に当接する面以外の部分)に黒色インクを塗布するか粗し面とすることで、より高い不要光の抑制効果を確保できる。尚、この例では、レンズL2~L4のフランジ部L2f~L4fの外周面にも、黒色インクを塗布するか粗し面としている。但し、黒色インクを塗布するか粗し面とするのは、不要光の抑制効果に応じて、レンズL2~L4のいずれかにおいて行うようにしても良い。 Further, in the other lenses L2 to L4, black ink is applied to the surface outside the effective diameter that extends perpendicularly to the incident unnecessary light (portion other than the surface in contact with [other parts] in the claims). By applying or roughening the surface, higher unnecessary light suppression effect can be secured. In this example, black ink is applied or roughened on the outer peripheral surfaces of the flange portions L2f to L4f of the lenses L2 to L4. However, the black ink may be applied or roughened in any of the lenses L2 to L4 depending on the effect of suppressing unnecessary light.
 第1レンズL1のフランジ部L1fの物体側面L1f2は、鏡枠13の開口を有する壁部13aの像側面に当接し、またフランジ部L1fの外周面L1f4は壁部13aに隣接した小径部13bの内周面に当接している。一方、第5レンズL5のフランジ部L5fの外周面は、第4遮光板AP4に隣接して鏡枠13の内周面に当接している。 The object side surface L1f2 of the flange portion L1f of the first lens L1 is in contact with the image side surface of the wall portion 13a having the opening of the lens frame 13, and the outer peripheral surface L1f4 of the flange portion L1f is the small diameter portion 13b adjacent to the wall portion 13a. It is in contact with the inner peripheral surface. On the other hand, the outer peripheral surface of the flange portion L5f of the fifth lens L5 is in contact with the inner peripheral surface of the lens frame 13 adjacent to the fourth light shielding plate AP4.
 本実施の形態における不要光のカット機能について説明する。図12の例では、第1レンズL1の有効径内に入射した光は、その像側面で反射して、更にフランジ部L1fの物体側面L1f2で反射した後、ここから透明な像側面L1f1と物体側面L2f2を介して、第2レンズL2のフランジ部L2f内へと入射して不要光となる。この不要光は、更に第2レンズのフランジ部L2f内で反射して(不要光の強度が高いと、外周面L2f5に入射した不要光の一部は黒インクで吸収され又は粗し面で拡散されるが、残りが反射し)、最終的に像側面L2f1から出射することがあるが、第3レンズL3のフランジ部L3fを透過して像側面L3f1から出射し、第4レンズL4のフランジ部L4fの物体側面L4f2からフランジ部L4fに入射する。 The unnecessary light cutting function in this embodiment will be described. In the example of FIG. 12, the light incident on the effective diameter of the first lens L1 is reflected on the image side surface, further reflected on the object side surface L1f2 of the flange portion L1f, and then the transparent image side surface L1f1 and object The light enters the flange portion L2f of the second lens L2 through the side surface L2f2 and becomes unnecessary light. This unnecessary light is further reflected within the flange portion L2f of the second lens (if the intensity of the unnecessary light is high, a part of the unnecessary light incident on the outer peripheral surface L2f5 is absorbed by the black ink or diffused by the rough surface. However, the remainder may be reflected) and may eventually exit from the image side surface L2f1, but pass through the flange portion L3f of the third lens L3 and exit from the image side surface L3f1, and the flange portion of the fourth lens L4. The light enters the flange portion L4f from the object side surface L4f2 of L4f.
 ここで、第4レンズL4のフランジ部L4fの像側面L4f1における第4遮光板AP4の光軸直交方向内側に機能面L4f3を設けていない場合、ここを通過した後、第5レンズL5の有効径内を通過して、更に光電変換部11aに入射することで、ゴーストやフレアを発生させる恐れがある。しかしながら、本実施の形態では、第4レンズL4のフランジ部L4fの像側面L4f1における第4遮光板AP4に当接する面の光軸直交方向内側には、黒色インクを塗布するか粗し面となっている機能面L4f3を設けたので、機能面L4f3にほぼ垂直に入射した不要光が吸収もしくは拡散されることで、光電変換部11aに入射することが抑制され、ゴーストやフレアを回避できる。 Here, when the functional surface L4f3 is not provided on the image side surface L4f1 of the flange portion L4f of the fourth lens L4 on the inner side in the optical axis orthogonal direction of the fourth light shielding plate AP4, after passing through this, the effective diameter of the fifth lens L5 is passed. There is a possibility that ghosts and flares may be generated by passing through and entering the photoelectric conversion unit 11a. However, in the present embodiment, black ink is applied or roughened on the inner side in the direction perpendicular to the optical axis of the surface of the image side surface L4f1 of the flange portion L4f of the fourth lens L4 that is in contact with the fourth light shielding plate AP4. Since the functional surface L4f3 is provided, unnecessary light that has entered the functional surface L4f3 substantially perpendicularly is absorbed or diffused, so that it is suppressed from entering the photoelectric conversion unit 11a, and ghost and flare can be avoided.
 図13の例では、第1レンズL1有効径内を通過し、第2レンズL2の有効径内に入射した光は、その像側面で反射して、更にフランジ部L2fの物体側面で反射した後、ここから透明な像側面L2f1と物体側面L3f2を介して、第3レンズL3のフランジ部L3f内へと入射して不要光となる。この不要光は、更に第3レンズのフランジ部L3f内で反射して(不要光の強度が高いと、外周面L3f5に入射した不要光の一部は黒インクで吸収され又は粗し面で拡散されるが、残りが反射し)、最終的に像側面L3f1から出射することがあるが、これは第4レンズL4のフランジ部L4fの物体側面L4f2からフランジ部L4fに入射する。 In the example of FIG. 13, the light that has passed through the effective diameter of the first lens L1 and entered the effective diameter of the second lens L2 is reflected on the image side surface and further reflected on the object side surface of the flange portion L2f. From here, the light enters the flange portion L3f of the third lens L3 via the transparent image side surface L2f1 and the object side surface L3f2, and becomes unnecessary light. This unnecessary light is further reflected in the flange portion L3f of the third lens (if the intensity of the unnecessary light is high, a part of the unnecessary light incident on the outer peripheral surface L3f5 is absorbed by the black ink or diffused by the rough surface. However, there are cases where the remainder is reflected and finally exits from the image side surface L3f1, but this enters the flange portion L4f from the object side surface L4f2 of the flange portion L4f of the fourth lens L4.
 ここで、第4レンズL4のフランジ部L4fの像側面L4f1における第4遮光板AP4の光軸直交方向内側に機能面L4f3を設けていない場合、ここを通過した後、第5レンズL5の有効径内を通過して、更に光電変換部11aに入射することで、ゴーストやフレアを発生させる恐れがある。しかしながら、本実施の形態では、第4レンズL4のフランジ部L4fの像側面L4f1における第4遮光板AP4に当接する面の光軸直交方向内側には、黒色インクを塗布するか粗し面となっている機能面L4f3を設けたので、機能面L4f3にほぼ垂直に入射した不要光が吸収もしくは拡散されることで、光電変換部11aに入射することが抑制され、ゴーストやフレアを回避できる。 Here, when the functional surface L4f3 is not provided on the image side surface L4f1 of the flange portion L4f of the fourth lens L4 on the inner side in the optical axis orthogonal direction of the fourth light shielding plate AP4, after passing through this, the effective diameter of the fifth lens L5 is passed. There is a possibility that ghosts and flares may be generated by passing through and entering the photoelectric conversion unit 11a. However, in the present embodiment, black ink is applied or roughened on the inner side in the direction perpendicular to the optical axis of the surface of the image side surface L4f1 of the flange portion L4f of the fourth lens L4 that is in contact with the fourth light shielding plate AP4. Since the functional surface L4f3 is provided, unnecessary light that has entered the functional surface L4f3 substantially perpendicularly is absorbed or diffused, so that it is suppressed from entering the photoelectric conversion unit 11a, and ghost and flare can be avoided.
 尚、図示しているのは、不要光の光路の一例に過ぎず、レンズユニットへ入射する光線の角度や強度、さらにはレンズユニット内においてはレンズの形状に基づき内面反射などから発生する光線に対して、撮像面に不要光が入射することを抑制するように、黒インクや粗し面を設けることができる。例えば図12,13では、第4レンズL4の外周面L4f5にも、黒インクや粗し面を設けている。以上述べた例は、不要光の限定された例であり、レンズユニットに用いられるレンズのタイプや形状、鏡枠の材質などの条件によって不要光は種々の方向に発生しうるから、その仕様に応じて、黒インクや粗し面を採用する位置を、適宜選択することができる。 The illustration shows only an example of the optical path of unnecessary light, and the light ray generated from the internal reflection or the like based on the angle and intensity of the light ray incident on the lens unit, and the lens shape in the lens unit. On the other hand, black ink or a roughened surface can be provided so as to prevent unnecessary light from entering the imaging surface. For example, in FIGS. 12 and 13, black ink and a roughened surface are also provided on the outer peripheral surface L4f5 of the fourth lens L4. The above-mentioned examples are limited examples of unnecessary light, and unnecessary light can be generated in various directions depending on conditions such as the type and shape of the lens used in the lens unit and the material of the lens frame. Accordingly, the position where the black ink or the roughened surface is employed can be appropriately selected.
 以上の実施の形態において、各レンズのフランジ部の外周面を、光軸と平行に形成したが、不要光を積極的に、インクを塗布した面又は粗し面に入射させるように、フランジ部の外周面をテーパ面としても良い。 In the above embodiment, the outer peripheral surface of the flange portion of each lens is formed in parallel with the optical axis. However, the flange portion is configured so that unnecessary light is positively incident on the ink-coated surface or the roughened surface. The outer peripheral surface may be a tapered surface.
 以下、好ましい態様についてまとめて説明する。 Hereinafter, preferred embodiments will be described together.
 前記機能面には、薄膜状の黒色材が形成されていることが好ましい。前記機能面に薄膜状の黒色材を形成することにより、不要光を吸収でき、ゴーストやフレアの発生を抑制できる。「黒色材の形成」とは、インクジェットによる黒色インクの塗布、黒色インクのスタンプ、黒色膜のコート、黒色テープの貼り付けなどがある。 It is preferable that a thin black material is formed on the functional surface. By forming a thin film-like black material on the functional surface, unnecessary light can be absorbed and generation of ghosts and flares can be suppressed. “Formation of black material” includes application of black ink by inkjet, black ink stamp, black film coating, black tape application, and the like.
 前記機能面は、粗し面とされていることが好ましい。前記機能面として粗し面を形成することにより、不要光を吸収でき、ゴーストやフレアの発生を抑制できる。「粗し面」とは、例えば転写面にシボ加工や粗し加工を施した金型により成形することで得られる粗度が高い面をいう。具体的には、平均粗さRa0.2μm以上のものをいう。 The functional surface is preferably a rough surface. By forming a roughened surface as the functional surface, unnecessary light can be absorbed and generation of ghost and flare can be suppressed. The “roughened surface” refers to a surface having a high degree of roughness obtained by molding with a die having a textured surface or a roughened surface, for example. Specifically, the average roughness Ra is 0.2 μm or more.
 前記機能面は、前記遮光板に当接する面の光軸直交方向内側に設けられていることが好ましい。これにより、前記遮光板の光軸直交方向外側を通過した不要光を、前記機能面に入射して拡散もしくは吸収することができる。 It is preferable that the functional surface is provided on the inner side in the direction perpendicular to the optical axis of the surface in contact with the light shielding plate. Accordingly, unnecessary light that has passed through the outside of the light shielding plate in the direction perpendicular to the optical axis can be incident on the functional surface and diffused or absorbed.
 前記機能面には、不要光が略垂直に入射することが好ましい。これにより効果的に不要光を抑制できる。 It is preferable that unnecessary light is incident on the functional surface substantially perpendicularly. Thereby, unnecessary light can be effectively suppressed.
 前記機能面は、前記レンズのフランジ部外周面であることが好ましい。これによりさ、更に効果的に不要光を抑制できる。 It is preferable that the functional surface is an outer peripheral surface of the flange portion of the lens. Thereby, unnecessary light can be more effectively suppressed.
 前記複数のレンズのうちいずれか1つのレンズが、前記鏡枠に同軸的に嵌合し、前記複数のレンズとは別の大径レンズが、前記鏡枠に同軸的に嵌合しており、更に前記複数のレンズと前記大径レンズとの間に配置された輪帯状の大径遮光板の外周が、前記鏡枠の内周に当接していることが好ましい。前記複数のレンズのうちいずれか1つのレンズが、前記鏡枠に同軸的に嵌合し、前記複数のレンズとは別の大径レンズが、前記鏡枠に同軸的に嵌合しているので、前記複数のレンズと、前記大径レンズとの同軸性を確保でき、精度の良い光軸合わせを行える。又、前記複数のレンズと前記大径レンズとの間に配置された輪帯状の大径遮光板の外周が、前記鏡枠の内周に当接しているので、前記大径遮光板により不要光の通過を効果的に阻止できる。 Any one of the plurality of lenses is coaxially fitted to the lens frame, and a large-diameter lens different from the plurality of lenses is coaxially fitted to the lens frame, Furthermore, it is preferable that an outer periphery of a ring-shaped large-diameter light-shielding plate disposed between the plurality of lenses and the large-diameter lens is in contact with an inner periphery of the lens frame. Since any one of the plurality of lenses is coaxially fitted to the lens frame, and a large-diameter lens different from the plurality of lenses is coaxially fitted to the lens frame. The coaxiality between the plurality of lenses and the large-diameter lens can be ensured, and the optical axis can be accurately aligned. In addition, since the outer periphery of the ring-shaped large-diameter light-shielding plate disposed between the plurality of lenses and the large-diameter lens is in contact with the inner periphery of the lens frame, unnecessary light is emitted by the large-diameter light-shielding plate. Can be effectively blocked.
 前記大径レンズは、最も像側のレンズであることが好ましい。前記大径レンズが最も像側のレンズであると、前記複数のレンズとの偏心許容度が比較的高いので、組み付け時の調整が容易である。 The large diameter lens is preferably the most image side lens. If the large-diameter lens is the most image side lens, the tolerance for eccentricity with the plurality of lenses is relatively high, and adjustment during assembly is easy.
 前記レンズのフランジ部外周面がテーパ形状であることが好ましい。これにより、前記フランジ部外周面に入射した不要光の向きを調整して、前記機能面に入射させることができる。 It is preferable that the outer peripheral surface of the flange portion of the lens has a tapered shape. Thereby, the direction of the unnecessary light incident on the outer peripheral surface of the flange portion can be adjusted and incident on the functional surface.
 前記小径レンズのフランジ部外周面がテーパ形状であることが好ましい。これにより、前記フランジ部外周面に入射した不要光の向きを調整して、前記機能面に入射させることができる。 It is preferable that the outer peripheral surface of the flange portion of the small diameter lens has a tapered shape. Thereby, the direction of the unnecessary light incident on the outer peripheral surface of the flange portion can be adjusted and incident on the functional surface.
 本発明は、明細書に記載の実施形態に限定されるものではなく、他の実施形態、変形例を含むことは、本明細書に記載された実施形態や技術思想から本分野の当業者にとって明らかである。例えば、上述した実施の形態に限らず、有効径より外側である限り他部品と当接しない面を機能面とできる。例を挙げると、図14に示すように、第4レンズL4のフランジ部L4fにおける第4遮光板AP4に当接する像側面の光軸直交方向内側(L4f3)や、第2~4レンズL2~L4の外周面L2f5~L4f5のみならず、他レンズ等に当接しない、外周側物体側面L2f4~L4f4などに、黒色インクを塗布するか粗し面としても良い。同様な処理は、同じ条件で全てのレンズの他部品と当接しない面に適用できる。又、レンズのフランジ部同士は直接当接することに限られず、厚みが管理されたスペーサを介在させて組み付けることもできる。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications may be included for those skilled in the art from the embodiments and technical ideas described in the present specification. it is obvious. For example, not only the embodiment described above, but also a surface that does not come into contact with other components as long as it is outside the effective diameter can be a functional surface. For example, as shown in FIG. 14, the inner side in the optical axis orthogonal direction (L4f3) of the image side surface contacting the fourth light shielding plate AP4 in the flange portion L4f of the fourth lens L4, or the second to fourth lenses L2 to L4. In addition to the outer peripheral surfaces L2f5 to L4f5, black ink may be applied or roughened to the outer peripheral side surfaces L2f4 to L4f4 that do not come into contact with other lenses or the like. Similar processing can be applied to a surface that does not come into contact with other components of all lenses under the same conditions. Further, the flange portions of the lens are not limited to directly contacting each other, and can be assembled by interposing a spacer whose thickness is controlled.
10      撮像装置
11      撮像素子
11a     光電変換部
12      撮像レンズ
13      鏡枠
14      IRカットフィルタ
15      基板
16      ホルダ
60      入力部
65      表示部
70      タッチパネル
71      レリーズボタン
80      無線通信部
92      記憶部
100     スマートフォン
101     制御部
L1~L6   レンズ
DESCRIPTION OF SYMBOLS 10 Image pick-up device 11 Image pick-up element 11a Photoelectric conversion part 12 Imaging lens 13 Mirror frame 14 IR cut filter 15 Board | substrate 16 Holder 60 Input part 65 Display part 70 Touch panel 71 Release button 80 Wireless communication part 92 Memory | storage part 100 Smartphone 101 Control part L1-L6 lens

Claims (14)

  1.  光軸方向に突出する突出部を有効径外にそれぞれ形成しており、前記突出部を当接させるようにして直列的に配置されてなる複数のレンズと、
     前記複数のレンズのうち2つのレンズ間に介在し、前記突出部に対して光軸直交方向内側に配置された輪帯状の遮光板と、
     前記レンズを収容する鏡枠と、を有し、
     前記レンズの表面のうち、有効径より外側であって且つ他部品に当接する面以外の部分を、光を拡散又は吸収する機能面としたことを特徴とするレンズユニット。
    A plurality of lenses formed in series so that the protruding portions protruding in the optical axis direction are formed outside the effective diameter, and the protruding portions are in contact with each other;
    An annular light shielding plate interposed between two of the plurality of lenses and disposed on the inner side in the direction perpendicular to the optical axis with respect to the protrusion,
    A lens frame that houses the lens,
    A lens unit characterized in that a portion of the surface of the lens that is outside the effective diameter and other than the surface that comes into contact with another component is a functional surface that diffuses or absorbs light.
  2.  前記機能面には、薄膜状の黒色材が形成されていることを特徴とする請求項1に記載のレンズユニット。 The lens unit according to claim 1, wherein a thin black material is formed on the functional surface.
  3.  前記機能面は、粗し面とされていることを特徴とする請求項1に記載のレンズユニット。 The lens unit according to claim 1, wherein the functional surface is a rough surface.
  4.  前記機能面は、前記遮光板と当接する面の光軸直交方向内側に設けられていることを特徴とする請求項1~3のいずれかに記載のレンズユニット。 The lens unit according to any one of claims 1 to 3, wherein the functional surface is provided on an inner side in a direction orthogonal to the optical axis of a surface that contacts the light shielding plate.
  5.  前記機能面には、不要光が略垂直に入射することを特徴とする請求項4に記載のレンズユニット。 The lens unit according to claim 4, wherein unnecessary light is incident on the functional surface substantially perpendicularly.
  6.  前記機能面は、前記レンズのフランジ部外周面であることを特徴とする請求項1~3のいずれかに記載のレンズユニット。 The lens unit according to any one of claims 1 to 3, wherein the functional surface is an outer peripheral surface of a flange portion of the lens.
  7.  前記複数のレンズのうちいずれか1つのレンズが、前記鏡枠に同軸的に嵌合し、前記複数のレンズとは別の大径レンズが、前記鏡枠に同軸的に嵌合しており、更に前記複数のレンズと前記大径レンズとの間に配置された輪帯状の大径遮光板の外周が、前記鏡枠の内周に当接していることを特徴とする請求項1~6のいずれかに記載のレンズユニット。 Any one of the plurality of lenses is coaxially fitted to the lens frame, and a large-diameter lens different from the plurality of lenses is coaxially fitted to the lens frame, The outer periphery of a ring-shaped large-diameter light-shielding plate disposed between the plurality of lenses and the large-diameter lens is in contact with the inner periphery of the lens frame. The lens unit according to any one of the above.
  8.  前記大径レンズは、最も像側のレンズであることを特徴とする請求項7に記載のレンズユニット。 The lens unit according to claim 7, wherein the large-diameter lens is a lens closest to the image side.
  9.  前記レンズのフランジ部外周面がテーパ形状であることを特徴とする請求項1~8のいずれかに記載のレンズユニット。 9. The lens unit according to claim 1, wherein the outer peripheral surface of the flange portion of the lens is tapered.
  10.  光軸方向に突出する突出部を有効径外にそれぞれ形成しており、前記突出部を当接させるようにして直列的に配置されてなる複数の小径レンズと、
     前記複数の小径レンズのうち2つの小径レンズ間に介在し、前記突出部に対して光軸直交方向内側に配置された輪帯状の小径遮光板と、
     前記複数の小径レンズに対して直列的に、その像側に配置された大径レンズと、
     前記複数の小径レンズと前記大径レンズとの間に配置された大径遮光板と、
     前記小径レンズ及び前記大径レンズを収容する鏡枠と、を有し、
     前記複数の小径レンズのうちいずれか1つの小径レンズが、前記鏡枠に同軸的に嵌合し、前記大径レンズが、前記鏡枠に同軸的に嵌合しており、
     前記大径遮光板の外周は、前記鏡枠の内周に当接するように配置されており、
     前記小径レンズ及び前記大径レンズの少なくとも1つの表面のうち、有効径より外側であって且つ他部品に当接する面以外の部分を、光を拡散又は吸収する機能面としたことを特徴とするレンズユニット。
    A plurality of small-diameter lenses formed in series so that the protruding portions protruding in the optical axis direction are formed outside the effective diameter, and the protruding portions are in contact with each other;
    An annular small-diameter light-shielding plate that is interposed between two small-diameter lenses among the plurality of small-diameter lenses and is disposed on the inner side in the optical axis orthogonal direction with respect to the protruding portion,
    A large-diameter lens arranged in series on the image side with respect to the plurality of small-diameter lenses;
    A large-diameter light shielding plate disposed between the plurality of small-diameter lenses and the large-diameter lens;
    A lens frame that houses the small-diameter lens and the large-diameter lens,
    Any one of the plurality of small diameter lenses is coaxially fitted to the lens frame, and the large diameter lens is coaxially fitted to the lens frame,
    The outer periphery of the large-diameter light shielding plate is disposed so as to contact the inner periphery of the lens frame,
    Of the at least one surface of the small-diameter lens and the large-diameter lens, a portion other than the surface that is outside the effective diameter and is in contact with another component is a functional surface that diffuses or absorbs light. Lens unit.
  11.  前記機能面には、薄膜状の黒色材が形成されていることを特徴とする請求項10に記載のレンズユニット。 The lens unit according to claim 10, wherein a thin black material is formed on the functional surface.
  12.  前記機能面は、粗し面とされていることを特徴とする請求項10に記載のレンズユニット。 The lens unit according to claim 10, wherein the functional surface is a rough surface.
  13.  前記小径レンズのフランジ部外周面がテーパ形状であることを特徴とする請求項10~12のいずれかに記載のレンズユニット。 The lens unit according to any one of claims 10 to 12, wherein an outer peripheral surface of the flange portion of the small-diameter lens has a tapered shape.
  14.  請求項1~13のいずれかに記載のレンズユニットと、固体撮像素子とを有することを特徴とする撮像装置。 An imaging apparatus comprising the lens unit according to any one of claims 1 to 13 and a solid-state imaging device.
PCT/JP2014/056856 2013-04-04 2014-03-14 Lens unit and imaging device WO2014162846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013078422 2013-04-04
JP2013-078422 2013-04-04

Publications (1)

Publication Number Publication Date
WO2014162846A1 true WO2014162846A1 (en) 2014-10-09

Family

ID=51658147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056856 WO2014162846A1 (en) 2013-04-04 2014-03-14 Lens unit and imaging device

Country Status (1)

Country Link
WO (1) WO2014162846A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487191A (en) * 2015-12-29 2016-04-13 宁波舜宇光电信息有限公司 Camera module group lens, camera module group, assembly method of camera module group lens and assembly method of camera module group
TWI583989B (en) * 2015-07-02 2017-05-21 先進光電科技股份有限公司 Optical image capturing system
TWI585451B (en) * 2015-07-02 2017-06-01 先進光電科技股份有限公司 Optical image capturing system
TWI647480B (en) * 2018-01-30 2019-01-11 大立光電股份有限公司 Imaging lens and electronic device with two-color molded optical components
WO2020022295A1 (en) * 2018-07-26 2020-01-30 Agc株式会社 Optical element, optical system, and optical device
CN111208587A (en) * 2016-05-09 2020-05-29 大立光电股份有限公司 Imaging lens and electronic device
TWI701473B (en) * 2019-09-11 2020-08-11 大立光電股份有限公司 Imaging lens assembly module, camera module and electronic device
CN112363360A (en) * 2020-06-15 2021-02-12 武汉高德智感科技有限公司 Diaphragm, infrared module and infrared imaging device
WO2021103066A1 (en) * 2019-11-27 2021-06-03 诚瑞光学(常州)股份有限公司 Lens module and electronic device
WO2021120159A1 (en) * 2019-12-20 2021-06-24 诚瑞光学(常州)股份有限公司 Lens structure and inking method
TWI784333B (en) * 2020-10-22 2022-11-21 大陸商玉晶光電(廈門)有限公司 Spacer assembly
US11835784B2 (en) 2015-12-21 2023-12-05 Ningbo Sunny Opotech Co., Ltd. Adjustable optical lens and camera module and aligning method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010394A (en) * 1996-04-26 1998-01-16 Chiyuugai Oputoronikusu Kk Electronic image pickup device
JP2009048024A (en) * 2007-08-21 2009-03-05 Sharp Corp Lens unit, imaging module, and optical apparatus
JP2009139693A (en) * 2007-12-07 2009-06-25 Sharp Corp Lens unit and camera module
US20110134548A1 (en) * 2009-12-04 2011-06-09 Hon Hai Precision Industry Co., Ltd. Camera module with anti-astigmatic protrusions on lens
JP2011221136A (en) * 2010-04-06 2011-11-04 Tamron Co Ltd Compound lens, lens unit, image pick-up device, and method of connecting and fixing compound lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010394A (en) * 1996-04-26 1998-01-16 Chiyuugai Oputoronikusu Kk Electronic image pickup device
JP2009048024A (en) * 2007-08-21 2009-03-05 Sharp Corp Lens unit, imaging module, and optical apparatus
JP2009139693A (en) * 2007-12-07 2009-06-25 Sharp Corp Lens unit and camera module
US20110134548A1 (en) * 2009-12-04 2011-06-09 Hon Hai Precision Industry Co., Ltd. Camera module with anti-astigmatic protrusions on lens
JP2011221136A (en) * 2010-04-06 2011-11-04 Tamron Co Ltd Compound lens, lens unit, image pick-up device, and method of connecting and fixing compound lens

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI583989B (en) * 2015-07-02 2017-05-21 先進光電科技股份有限公司 Optical image capturing system
TWI585451B (en) * 2015-07-02 2017-06-01 先進光電科技股份有限公司 Optical image capturing system
US10288841B2 (en) 2015-07-02 2019-05-14 Ability Opto-Electronics Technology Co. Ltd. Optical image capturing system
US11835784B2 (en) 2015-12-21 2023-12-05 Ningbo Sunny Opotech Co., Ltd. Adjustable optical lens and camera module and aligning method thereof
CN105487191A (en) * 2015-12-29 2016-04-13 宁波舜宇光电信息有限公司 Camera module group lens, camera module group, assembly method of camera module group lens and assembly method of camera module group
CN111208587B (en) * 2016-05-09 2022-05-13 大立光电股份有限公司 Imaging lens and electronic device
CN111208587A (en) * 2016-05-09 2020-05-29 大立光电股份有限公司 Imaging lens and electronic device
TWI647480B (en) * 2018-01-30 2019-01-11 大立光電股份有限公司 Imaging lens and electronic device with two-color molded optical components
JPWO2020022295A1 (en) * 2018-07-26 2021-08-02 Agc株式会社 Optical elements, optics, and optics
WO2020022295A1 (en) * 2018-07-26 2020-01-30 Agc株式会社 Optical element, optical system, and optical device
TWI701473B (en) * 2019-09-11 2020-08-11 大立光電股份有限公司 Imaging lens assembly module, camera module and electronic device
US11614595B2 (en) 2019-09-11 2023-03-28 Largan Precision Co., Ltd. Imaging lens assembly module, camera module and electronic device
US11960140B2 (en) 2019-09-11 2024-04-16 Largan Precision Co., Ltd. Imaging lens assembly module, camera module and electronic device
WO2021103066A1 (en) * 2019-11-27 2021-06-03 诚瑞光学(常州)股份有限公司 Lens module and electronic device
WO2021120159A1 (en) * 2019-12-20 2021-06-24 诚瑞光学(常州)股份有限公司 Lens structure and inking method
CN112363360A (en) * 2020-06-15 2021-02-12 武汉高德智感科技有限公司 Diaphragm, infrared module and infrared imaging device
CN112363360B (en) * 2020-06-15 2022-12-13 武汉高德智感科技有限公司 Diaphragm, infrared module and infrared imaging device
TWI784333B (en) * 2020-10-22 2022-11-21 大陸商玉晶光電(廈門)有限公司 Spacer assembly

Similar Documents

Publication Publication Date Title
WO2014162846A1 (en) Lens unit and imaging device
TW201447413A (en) Lens unit and camera device
US20220317411A1 (en) Auto-Focus Driving Assembly, Lens Kit, and Electronic Device
JP2013068857A (en) Optical element, imaging lens unit, image pickup apparatus
TWI596417B (en) Light blocking sheet, imaging lens module and electronic apparatus
TWI714247B (en) Camera module and electronic device
JP5734769B2 (en) Imaging lens and imaging module
US11966010B2 (en) Electronic device including camera module
JP2016001262A (en) Lens unit and imaging device
JP2020027287A (en) Lens module
CN213780493U (en) Imaging lens, image capturing device and electronic device
JP2016001261A (en) Lens unit and imaging apparatus
JP6443633B2 (en) Combination lens and imaging device
JP5435409B2 (en) Actuator unit, imaging device, and adjustment method of actuator unit
WO2014132795A1 (en) Combination lens and imaging device
JP2005250089A (en) Imaging lens and manufacturing method of the lens
JP2010217279A (en) Lens, lens unit and camera module
JP6627526B2 (en) Imaging module, imaging device
JP2007121745A (en) Imaging apparatus
TWI665474B (en) Annular optical component, image capturing module and electronic device
TWI775706B (en) Camera module, imaging module and electronic device
US20130277788A1 (en) Imaging unit and imaging device
CN212539582U (en) Plastic lens and imaging lens
EP4145190A2 (en) Camera module, imaging module and electronic device
WO2014203677A1 (en) Lens, lens unit, and lens manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP