WO2014203677A1 - Lens, lens unit, and lens manufacturing method - Google Patents
Lens, lens unit, and lens manufacturing method Download PDFInfo
- Publication number
- WO2014203677A1 WO2014203677A1 PCT/JP2014/063548 JP2014063548W WO2014203677A1 WO 2014203677 A1 WO2014203677 A1 WO 2014203677A1 JP 2014063548 W JP2014063548 W JP 2014063548W WO 2014203677 A1 WO2014203677 A1 WO 2014203677A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- shielding film
- light shielding
- slit
- light
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 230000003287 optical effect Effects 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 17
- 230000004907 flux Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000003384 imaging method Methods 0.000 description 31
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000010538 cationic polymerization reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0018—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
- B32B1/08—Tubular products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/266—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/008—Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2551/00—Optical elements
Definitions
- the present invention relates to a lens, a lens unit, and a method for manufacturing a lens.
- a general imaging lens is provided with a light shielding plate that shields unnecessary light adjacent to the lens.
- a light-shielding plate a metal or a non-transparent resin-processed part arranged to cover the outside of the effective field angle range of the lens is usually used.
- assembling the light shielding plate separate from the lens increases the number of parts and increases the number of assembly steps.
- Patent Document 1 a technique is known in which unnecessary light is shielded by a light shielding film obtained by curing ink applied to a lens instead of a light shielding plate. As a result, in addition to reducing the number of parts and the number of assembly steps, shortening of the optical total length, optimization of the light shielding area, and the like can be expected.
- the present invention has been made in view of the problems described above, and manufactures a lens, a lens unit, and a lens capable of suppressing distortion of the lens and effectively suppressing unnecessary light that causes ghosts and the like while reducing the number of parts and the number of assembly steps. It aims to provide a method.
- a lens reflecting one aspect of the present invention is a lens in which a light shielding film is formed by applying ink, and the light shielding film has a slit. It is formed.
- the slit since the slit is formed in the light shielding film, even when the light shielding film contracts, the compressive stress is divided by the slit, so that distortion of the lens can be suppressed as much as possible.
- the “slit” includes both a case where the light shielding film is not formed and a case where the thickness of the light shielding film is locally thin. Even when the light-shielding film is not formed, if the slit width is small, the amount of unnecessary light that enters can be reduced and ghost can be suppressed. In addition, when the thickness of the light shielding film is locally thin, stress at the time of contraction occurs, but since the light shielding function is reduced by that amount, unnecessary light may pass through the slit, but the unnecessary light is mainly used.
- the average film thickness of the light shielding film is 50% or less and 20% or more.
- a lens unit reflecting one aspect of the present invention is a lens unit formed by stacking a plurality of the above-described lenses in the optical axis direction.
- the light beam that has passed through the slit of the light shielding film of the lens is shielded by the light shielding film of another lens.
- the lens unit even if the entrance of unnecessary light is allowed by providing the slit in a certain lens, it is shielded by the light shielding film of another lens, so that the generation of ghost can be effectively suppressed.
- the light beam that has passed through the slit of the light-shielding film of a certain lens is shielded by the light-shielding film of another lens means, for example, the slit formed in the light-shielding film of a certain lens and the light-shielding film of another lens. For example, the phase or position of the formed slit may be shifted.
- a method for manufacturing a lens reflecting one aspect of the present invention is a method for locally shielding the light having a slit by changing the density of ink applied to the surface of the lens. A film is formed.
- the slit is formed in the light shielding film, even when the light shielding film contracts, compressive stress is divided by the slit, so that distortion of the lens can be suppressed as much as possible.
- the light shielding plate made of metal or opaque resin can be replaced with a light shielding film without impairing the light shielding function of the lens, the number of parts can be reduced and the number of assembly steps can be reduced by removing the light shielding plate.
- it can contribute to driving speed and power saving / thinning due to weight reduction, and also suppresses lens distortion caused by curing shrinkage phenomenon as ink characteristics, which is a problem when replaced with a light shielding film
- FIG. 3 is a diagram showing the lens of FIG. 2 cut along line III-III. It is a figure which shows the outline of the inkjet ink coating device which forms a light shielding film. It is the front view (a) and back view (b) of the smart phone which mounts the imaging device 10. It is a control block diagram of the smart phone of FIG. It is a figure which shows the pattern concerning the modification of a light shielding film. It is a figure which shows the pattern concerning the modification of a light shielding film. (A) and (b) are figures which show the pattern concerning the modification of a light shielding film.
- FIG. 1 is a cross-sectional view along the optical axis of the imaging apparatus 10 according to the present embodiment.
- the following configuration is a schematic diagram, and some shapes, dimensions, and the like are different from actual ones.
- the imaging device 10 causes a CMOS type imaging device 11 as a solid-state imaging device provided with a photoelectric conversion unit (light receiving surface) 11 a and the photoelectric conversion unit 11 a of the imaging device 11 to capture a subject image.
- the image pickup device 11 is an image pickup device in which pixels (photoelectric conversion elements) are two-dimensionally arranged at the center of the light receiving side (upper surface in FIG. 1) on a parallel plate chip.
- a photoelectric conversion unit 11a as a surface is formed, and a signal processing circuit (not shown) is formed around the photoelectric conversion unit 11a.
- Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like.
- the image sensor 11 converts the signal charge from the photoelectric conversion unit 11a into an image signal such as a digital YUV signal, and transmits the image signal to an external circuit (not shown) (for example, a control circuit included in a host device on which the image pickup device is mounted). It is like that. In addition, it is possible to receive power and a clock signal for driving the image sensor 11 from an external circuit.
- Y is a luminance signal
- the image sensor is not limited to the CMOS type image sensor, and other types such as a CCD type may be used.
- an imaging lens 12 having a five-lens configuration is provided inside a lens frame 13.
- the imaging lens 12 and the lens frame 13 constitute a lens unit.
- the imaging lens 12 as a lens unit includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in order from the object side, and each has a flange portion outside the effective diameter.
- Each lens is made of resin or glass. More specifically, EP5000 resin manufactured by Mitsubishi Gas Chemical can be used as the lens resin material.
- the image side surface L1f1 which is a plane orthogonal to the optical axis of the flange portion L1f of the first lens L1 protrudes to the image side, and the light shifted to the image side in the flange portion L2f provided outside the effective diameter of the second lens L2.
- the surface abuts on the object side surface L2f2, which is a plane perpendicular to the axis.
- a light shielding film BKM is formed on a surface L1f6 that is closer to the optical axis than the image side surface L1f1 of the first lens L1 and outside the effective diameter of the image side optical surface L1b.
- a cationic polymerization type UV curable ink may be used for the light shielding film.
- the cationic polymerization type causes curing shrinkage of 4 to 5%, but is less effective than the radical type UV ink of several tens%, and is more effective in achieving the object of this embodiment.
- the film thickness is in the range of 5 ⁇ m to 20 ⁇ m.
- the image side surface L2f1 that is the optical axis orthogonal plane of the flange portion L2f of the second lens L2 protrudes to the image side, and the light shifted to the image side in the flange portion L3f provided outside the effective diameter of the third lens L3. It contacts the object side surface L3f2 that is an axis orthogonal to the surface.
- a light shielding film BKM is formed on a surface L2f6 that is closer to the optical axis than the image side surface L2f1 of the second lens L2 and outside the effective diameter of the image side optical surface L2b.
- the image side surface L3f1 that is the optical axis orthogonal plane of the flange portion L3f of the third lens L3 protrudes to the image side, and the light shifted to the image side in the flange portion L4f provided outside the effective diameter of the fourth lens L4. It contacts the object side surface L4f2 that is an axis orthogonal to the surface.
- a light shielding film BKM is formed on a surface L3f6 of the third lens L3 that is closer to the optical axis than the image side surface L3f1 and outside the effective diameter of the image side optical surface L3b.
- FIG. 2 is a view of the lens (here, L) on which the light shielding film BKM of FIG. 1 is formed as seen from the optical axis direction.
- FIG. 3 is an enlarged view showing the lens of FIG. 2 cut along line III-III.
- a slit SL having a width W extends concentrically around the optical axis over the entire circumference.
- the slit SL is a portion where the light shielding film BKM is not formed.
- FIG. 1 the lens (here, L) on which the light shielding film BKM of FIG. 1 is formed as seen from the optical axis direction.
- FIG. 3 is an enlarged view showing the lens of FIG. 2 cut along line III-III.
- a slit SL having a width W extends concentrically around the optical axis over the entire circumference.
- the slit SL is a portion where the light shielding film BKM is not formed.
- FIG. 1 the lens
- the applied ink spreads wet (illustrated by a dotted line), whereby a film is formed on the slit SL.
- a light shielding film having a small thickness may be formed.
- FIG. 4 is a diagram showing an outline of an ink jet ink coating apparatus for forming a light shielding film.
- an inkjet head IH that ejects ink droplets from the lower surface is disposed so as to be relatively movable in the vicinity of the surface of the lens L.
- the drive circuit DR that drives the inkjet head IH stores the pattern PT and position of the light shielding film to be formed.
- the drive circuit DR changes the density of the applied ink by ejecting ink droplets while moving the inkjet head IH relative to the lens L based on the stored pattern PT and position, thereby changing the pattern.
- Ink is applied to the region corresponding to PT.
- the light-shielding film BKM is formed on the lens L by curing the applied ink.
- the width W of the slit SL is preferably n times the ink drawing resolution.
- the process of discharging the ink again is repeated several times, so that the final A film thickness may be obtained. Since the slit SL that is continuous in the circumferential direction is formed in the light shielding film BKM according to the present embodiment, even if the light shielding film BKM contracts during ink curing, the compression stress is divided by the slit SL. The distortion of the optical surface can be suppressed as much as possible.
- a donut-shaped light shielding plate AP is abutted and sandwiched.
- the outer periphery of the light shielding plate AP is in contact with the inner periphery of the lens frame 13 and extends in a cantilever manner to the vicinity of the effective diameter of the fourth lens L4.
- the object side surface L1f2 of the flange portion L1f of the first lens L1 is in contact with the image side surface of the wall portion 13a having the opening of the lens frame 13, and the outer peripheral surface L1f4 of the flange portion L1f is the small diameter portion 13b adjacent to the wall portion 13a. It is in contact with the inner peripheral surface.
- the outer peripheral surface of the flange portion L5f of the fifth lens L5 is in contact with the inner peripheral surface of the lens frame 13 adjacent to the light shielding plate AP.
- the IR cut filter 14 is disposed on the imaging element 11 side of the flange portion L5f of the fifth lens L5 via an annular spacer SP.
- the lower end of the lens frame 13 is in contact with the substrate 15 via an annular holder 16 that holds the IR cut filter 14.
- the flange of each lens is accurately formed by injection molding. Therefore, at the time of assembly, when the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are assembled to the lens frame 13, the abutting contact surfaces of the flange portion come into contact with each other. By matching, the relative position in the optical axis direction from the first lens L1 to the fourth lens L4 is adjusted with high accuracy. In addition, since the thickness of the light shielding plate AP4 is managed with high accuracy, when the fifth lens L5 is assembled with the light shielding plate AP4 interposed, the relative position in the optical axis direction between the fourth lens L4 and the fifth lens L5 is determined. It is adjusted with high accuracy.
- the transition surface when the transition surface extends in the direction orthogonal to the optical axis, the effect of suppressing unnecessary light can be enhanced while suppressing the cost by forming the light shielding film (black film) BKM.
- the light shielding film black film
- a similar light shielding film may be formed on one of the fourth lens L4 and the fifth lens L5.
- FIG. 5A is a front view of a smartphone 100 as a mobile terminal equipped with the imaging device 10, and FIG. 5B is a rear view thereof.
- FIG. 6 is a control block diagram of the smartphone 100.
- the object side end surface of the lens frame 13 is provided on the back surface of the smartphone 100 in FIG. 5B, and is disposed at a position corresponding to the lower side of the liquid crystal display unit.
- the imaging device 10 is connected to the control unit 101 of the smartphone 100 via an external connection terminal (indicated by an arrow in FIG. 6), and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.
- the smartphone 100 in FIGS. 5A and 5B controls each unit in an integrated manner and executes a program corresponding to each process, a power source, etc.
- An input unit 60 for instructing and inputting switches, numbers, and the like on the touch pad, and a display unit 65 for displaying captured images in addition to predetermined data on the liquid crystal panel (however, the liquid crystal panel of the display unit and the input unit)
- the touchpad is also used by the touch panel 70) and a wireless communication unit 80 for realizing various information communication between the external server, and the system program and various processing programs of the smartphone 100 and necessary data such as a terminal are stored.
- RAM temporary memory
- the smartphone 100 operates by operating the input unit 60, drives the imaging lens 12 by an actuator (not shown) to perform an autofocus operation, and presses the release button 71 or the like to operate the imaging device 10 to perform imaging. It can be performed.
- the image signal input from the imaging device 10 is stored in the storage unit 92 or displayed on the touch panel 70 by the control system of the smartphone 100, and further transmitted to the outside as video information via the wireless communication unit 80. Is done.
- FIG. 7 is a diagram showing a pattern according to a modification of the light shielding film.
- the light shielding film BKM has slits SL extending radially over the entire width of the light shielding film BKM.
- FIG. 8 is a diagram showing a pattern according to another modification of the light shielding film.
- the light shielding film BKM has a slit SL extending in a spiral shape over the entire width of the light shielding film BKM.
- FIG. 9 is a diagram showing a pattern according to another modification of the light shielding film.
- 9A shows a pattern of the light shielding film BKM formed on one surface of the lens L in the optical axis direction
- FIG. 9B shows a pattern of the light shielding film BKM formed on the other surface of the lens L.
- both are shown as viewed from the object side.
- the light shielding film BKM having the pattern shown in FIG. 9A is formed on one lens, and the phase of the slit SL is shifted on another lens, as shown in FIG. 9B.
- a light-shielding film BKM having a pattern (however, the inner and outer diameters change according to the refraction of light passing therethrough) may be formed.
- the slit SL of the light shielding film BKM of a certain lens is positioned at the slit of the light shielding film BKM of another lens (or another surface of the same lens). It may be shifted from the position of SL. Accordingly, unnecessary light can be effectively shielded by allowing the light flux that has passed through the slit SL of one of the light shielding films BKM to be shielded by the other light shielding film.
- the slits are concentric circles continuous in the circumferential direction around the optical axis of the lens. If the slits are concentric, the compressive stress acting in the direction perpendicular to the optical axis of the lens when the light shielding film contracts can be divided.
- the slit is a radial shape extending over the entire width of the light shielding film in the direction perpendicular to the optical axis. If the slits are radial, compressive stress acting in the circumferential direction of the lens when the light shielding film contracts can be divided.
- the slit has a spiral shape extending over the entire width of the light shielding film in the direction perpendicular to the optical axis. If the slit is spiral, the compressive stress acting in the circumferential direction of the lens when the light shielding film contracts can be divided.
- the light shielding film is preferably formed by ejecting ink droplets toward the lens by an ink jet method and then curing, and the width of the slit is preferably n times the drawing resolution of the ink. Accordingly, there is an advantage that the slit can be easily formed by the landing control of the ink.
- the “ink drawing resolution” can be expressed, for example, by the number of ink dots per inch (dpi).
- a texture is formed on the surface of the lens where the slit is to be formed. Accordingly, the applied ink is easily spread on the lens surface where the texture is formed, which is convenient for forming the slit.
- the “texture” refers to a roughened surface. Specifically, it is effective to have a ten-point average roughness Rz 4 ⁇ m (Ayamadai AHO-1003 equivalent).
- the light shielding film is formed on one surface and the other surface in the optical axis direction of the lens, the light flux that has passed through the slit of the light shielding film on the one surface is reflected on the light shielding on the other surface. It is preferable that the film is shielded from light. As a result, even if unnecessary light is allowed to enter through the slit of the light shielding film provided on the object side surface of the lens, it is shielded by the light shielding film on the image side surface, so that the occurrence of ghost can be effectively suppressed.
- the light beam that has passed through the slit of the light shielding film on one surface of the lens is shielded by the light shielding film on the other surface means, for example, the slit of the light shielding film formed on one surface of the lens and the other The phase or position of the slit of the light shielding film formed on the surface may be shifted.
- the present invention is not limited to the embodiments and modifications described in this specification, and includes other embodiments and modifications based on the embodiments and technical ideas described in this specification. It will be apparent to those skilled in the art.
- the ink application method is not limited to the ink jet method.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
This invention provides a lens, a lens unit, and a lens manufacturing method that reduce strain in the lens while decreasing the number of components and the amount of labor required for assembly and also effectively reduce unneeded light, which can cause ghosting and the like. Slits are formed in a light-blocking film formed on the lens, so even if said light-blocking film contracts, the slits divide up the resulting compressive stress, reducing strain in the lens as much as possible.
Description
本発明は、レンズ、レンズユニット及びレンズの製造方法に関する。
The present invention relates to a lens, a lens unit, and a method for manufacturing a lens.
近年、レンズ、特に携帯電話・スマートフォンなどの情報端末に内蔵されるMCU(マイクロカメラユニット)と呼ばれる撮像装置に搭載される撮像レンズの薄型化が、急速に進んでいる。また、このような携帯端末に搭載される撮像装置においても、より高画質の画像が得られるよう、高画素数の撮像素子を使用したものが市場に供給されるようになってきた。これに加えて、海外メーカーとの競合の激化から、撮像装置には低コスト化を推進したいという課題もある。
In recent years, the thinning of imaging lenses mounted on imaging devices called MCUs (micro camera units) incorporated in information terminals such as mobile phones and smartphones has been rapidly progressing. In addition, even in an imaging apparatus mounted on such a portable terminal, an apparatus using an imaging element having a high pixel number has been supplied to the market so that a higher quality image can be obtained. In addition to this, due to intensifying competition with overseas manufacturers, there is also a problem that it is desirable to promote cost reduction of imaging devices.
高画質な画像を形成するために、レンズ内に進入する不要光を抑制し、ゴーストの発生を抑えることが重要である。このため一般的な撮像レンズでは、レンズに隣接して不要光を遮光する遮光板を設けている。かかる遮光板としては、通常、レンズの有効画角範囲外を覆う形で配置された金属や非透明の樹脂加工部品が用いられる。しかるに、レンズと別体の遮光板を組み付けることで、部品点数が増大し、組立工数が増大するという問題がある。
In order to form a high-quality image, it is important to suppress unnecessary light entering the lens and suppress ghosting. Therefore, a general imaging lens is provided with a light shielding plate that shields unnecessary light adjacent to the lens. As such a light-shielding plate, a metal or a non-transparent resin-processed part arranged to cover the outside of the effective field angle range of the lens is usually used. However, assembling the light shielding plate separate from the lens increases the number of parts and increases the number of assembly steps.
これに対し、特許文献1に示すように、遮光板の代わりに、レンズに塗布したインクを硬化させてなる遮光膜により不要光を遮光する技術が知られている。これにより、部品点数・組立工数削減に加え、光学全長の短縮、遮光エリアの最適化等が期待できる。
On the other hand, as shown in Patent Document 1, a technique is known in which unnecessary light is shielded by a light shielding film obtained by curing ink applied to a lens instead of a light shielding plate. As a result, in addition to reducing the number of parts and the number of assembly steps, shortening of the optical total length, optimization of the light shielding area, and the like can be expected.
しかしながら、レンズに遮光膜を形成した後に問題が発生する恐れがあることが判明した。より具体的には、遮光膜を形成するためにレンズの広範囲にインクを塗布すると、その硬化時の収縮によりレンズ表面に圧縮応力が付与されるため、レンズの光学面に歪みが生じ収差が発生する恐れがある。さらには、組み付け時においてレンズの歪みが小さい場合でも、環境温度が変化した際に、レンズの素材の熱膨張率と遮光膜の熱膨張率との違いにより、圧縮応力が増大してレンズの歪みが増大する恐れもある。特に、このようなレンズの歪みは、レンズを薄形化することで顕著に発生する傾向があり、従ってレンズを薄形化する上での障害となり得る。
However, it has been found that problems may occur after forming a light-shielding film on the lens. More specifically, when ink is applied over a wide area of the lens to form a light-shielding film, compression stress is applied to the lens surface due to shrinkage during curing, resulting in distortion on the optical surface of the lens and aberrations. There is a fear. Furthermore, even when the lens distortion is small at the time of assembly, when the environmental temperature changes, due to the difference between the thermal expansion coefficient of the lens material and the thermal expansion coefficient of the light shielding film, the compressive stress increases and the lens distortion May increase. In particular, such distortion of the lens tends to occur remarkably when the lens is thinned, and can therefore be an obstacle to thinning the lens.
本発明は、上記した問題に鑑みてなされ、部品点数・組立工数削減を図りつつ、レンズの歪みを抑制し、更にはゴースト等を招く不要光を有効に抑制できるレンズ、レンズユニット及びレンズの製造方法を提供することを目的とする。
The present invention has been made in view of the problems described above, and manufactures a lens, a lens unit, and a lens capable of suppressing distortion of the lens and effectively suppressing unnecessary light that causes ghosts and the like while reducing the number of parts and the number of assembly steps. It aims to provide a method.
上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映したレンズは、インクを塗布することにより遮光膜を形成されたレンズであって、前記遮光膜には、スリットが形成されていることを特徴とする。
In order to achieve at least one of the objects described above, a lens reflecting one aspect of the present invention is a lens in which a light shielding film is formed by applying ink, and the light shielding film has a slit. It is formed.
本レンズによれば、前記遮光膜にはスリットが形成されているので、前記遮光膜が収縮した場合でも、前記スリットにより圧縮応力が分断されるため、前記レンズの歪みを極力抑制できる。尚、「スリット」とは、遮光膜を形成していない場合、及び遮光膜の膜厚が局所的に薄くなっている場合の双方を含む。遮光膜を形成していない場合でも、スリットの幅が小さければ、進入する不要光の量が少なくなりゴーストを抑えることができる。又、遮光膜の膜厚が局所的に薄い場合、収縮時の応力が現象するが、その分遮光機能が低下するから、スリットを不要光が通過してしまう恐れはあるが、不要光は主たる光線に比較すると光量が通常小さいので、スリットにおける遮光膜の膜厚が薄くても、通過した不要光の量が極端に少なくなるためゴーストを抑えることができる。スリットに遮光膜を設ける場合、遮光膜の平均膜厚の50%以下、20%以上であることが望ましい。
According to the present lens, since the slit is formed in the light shielding film, even when the light shielding film contracts, the compressive stress is divided by the slit, so that distortion of the lens can be suppressed as much as possible. The “slit” includes both a case where the light shielding film is not formed and a case where the thickness of the light shielding film is locally thin. Even when the light-shielding film is not formed, if the slit width is small, the amount of unnecessary light that enters can be reduced and ghost can be suppressed. In addition, when the thickness of the light shielding film is locally thin, stress at the time of contraction occurs, but since the light shielding function is reduced by that amount, unnecessary light may pass through the slit, but the unnecessary light is mainly used. Since the amount of light is usually smaller than that of light, even if the light shielding film in the slit is thin, the amount of unnecessary light that has passed through is extremely reduced, so that ghost can be suppressed. When the light shielding film is provided in the slit, it is desirable that the average film thickness of the light shielding film is 50% or less and 20% or more.
上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映したレンズユニットは、上述のレンズを複数枚、光軸方向に重ねることで形成されたレンズユニットであって、あるレンズの前記遮光膜のスリットを通過した光束は、別なレンズの前記遮光膜で遮光されることを特徴とする。
In order to achieve at least one of the objects described above, a lens unit reflecting one aspect of the present invention is a lens unit formed by stacking a plurality of the above-described lenses in the optical axis direction. The light beam that has passed through the slit of the light shielding film of the lens is shielded by the light shielding film of another lens.
このレンズユニットによれば、あるレンズに前記スリットを設けることにより不要光の進入を許しても、別なレンズの前記遮光膜で遮光されるので、ゴーストの発生を効果的に抑制できる。「あるレンズの前記遮光膜のスリットを通過した光束が、別なレンズの前記遮光膜で遮光される」とは、例えば、あるレンズの遮光膜に形成したスリットと、別なレンズの遮光膜に形成したスリットの位相又は位置をずらすことなどがある。
According to this lens unit, even if the entrance of unnecessary light is allowed by providing the slit in a certain lens, it is shielded by the light shielding film of another lens, so that the generation of ghost can be effectively suppressed. “The light beam that has passed through the slit of the light-shielding film of a certain lens is shielded by the light-shielding film of another lens” means, for example, the slit formed in the light-shielding film of a certain lens and the light-shielding film of another lens. For example, the phase or position of the formed slit may be shifted.
上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映したレンズの製造方法は、レンズの表面に塗布するインクの密度を局所的に変更することで、スリットを有する遮光膜を形成することを特徴とする。
In order to achieve at least one of the above-described objects, a method for manufacturing a lens reflecting one aspect of the present invention is a method for locally shielding the light having a slit by changing the density of ink applied to the surface of the lens. A film is formed.
このレンズの製造方法によれば、前記遮光膜にスリットが形成されるので、前記遮光膜が収縮した場合でも、前記スリットにより圧縮応力が分断されるため、前記レンズの歪みを極力抑制できる。
According to this lens manufacturing method, since the slit is formed in the light shielding film, even when the light shielding film contracts, compressive stress is divided by the slit, so that distortion of the lens can be suppressed as much as possible.
本発明によれば、レンズの遮光機能を損なうことなく、金属製又は不透明の樹脂製の遮光板から遮光膜に置き換えることができるため、遮光板を取り去ることによる部品点数の削減・組立工数の削減、重量減に伴う駆動高速化や省電力化・薄型化に貢献することができ、又、遮光膜に置き換えた際の課題である、インクの特性としての硬化収縮現象がもたらすレンズの歪みを抑制し、これにより光学性能の劣化を起こさないレンズ、レンズユニット及びレンズの製造方法を提供できる。
According to the present invention, since the light shielding plate made of metal or opaque resin can be replaced with a light shielding film without impairing the light shielding function of the lens, the number of parts can be reduced and the number of assembly steps can be reduced by removing the light shielding plate. In addition, it can contribute to driving speed and power saving / thinning due to weight reduction, and also suppresses lens distortion caused by curing shrinkage phenomenon as ink characteristics, which is a problem when replaced with a light shielding film Thus, it is possible to provide a lens, a lens unit, and a lens manufacturing method that do not cause deterioration in optical performance.
以下、本発明の実施形態を図面に基づいて説明する。図1は、本実施形態による撮像装置10の光軸に沿った断面図である。以下に示す構成は概略図であり、形状や寸法等は実際と異なるものがある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view along the optical axis of the imaging apparatus 10 according to the present embodiment. The following configuration is a schematic diagram, and some shapes, dimensions, and the like are different from actual ones.
図1に示すように、撮像装置10は、光電変換部(受光面)11aを備えた固体撮像素子としてのCMOS型撮像素子11と、この撮像素子11の光電変換部11aに被写体像を撮像させる撮像レンズ12と、撮像レンズ12を保持する鏡枠13と、平行平板状であるIRカットフィルタ14と、撮像素子11を支持する基板15とを有する。
As shown in FIG. 1, the imaging device 10 causes a CMOS type imaging device 11 as a solid-state imaging device provided with a photoelectric conversion unit (light receiving surface) 11 a and the photoelectric conversion unit 11 a of the imaging device 11 to capture a subject image. The imaging lens 12, a lens frame 13 that holds the imaging lens 12, an IR cut filter 14 that has a parallel plate shape, and a substrate 15 that supports the imaging element 11.
図1に示すように、撮像素子11は、平行平板状のチップ上において、その受光側(図1で上面)の中央部に、画素(光電変換素子)が2次元的に配置された、撮像面としての光電変換部11aが形成されており、その周囲には信号処理回路(不図示)が形成されている。かかる信号処理回路は、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用いて画像信号出力を形成する信号処理部等から構成されている。
As shown in FIG. 1, the image pickup device 11 is an image pickup device in which pixels (photoelectric conversion elements) are two-dimensionally arranged at the center of the light receiving side (upper surface in FIG. 1) on a parallel plate chip. A photoelectric conversion unit 11a as a surface is formed, and a signal processing circuit (not shown) is formed around the photoelectric conversion unit 11a. Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like.
また、撮像素子11のチップにおける受光面側の外縁近傍に形成された複数のパッドは、不図示のワイヤにより基板15に接続されている。撮像素子11は、光電変換部11aからの信号電荷をデジタルYUV信号等の画像信号等に変換し、不図示の外部回路(例えば、撮像装置を実装した上位装置が有する制御回路)へと送信するようになっている。又、外部回路から撮像素子11を駆動するための電力やクロック信号の供給を受けることもできる。ここで、Yは輝度信号、U(=R-Y)は赤と輝度信号との色差信号、V(=B-Y)は青と輝度信号との色差信号である。なお、撮像素子は上記CMOS型のイメージセンサに限定されるものではなく、CCD型等の他のものを使用しても良い。
Further, a plurality of pads formed in the vicinity of the outer edge on the light receiving surface side in the chip of the image sensor 11 are connected to the substrate 15 by wires (not shown). The image sensor 11 converts the signal charge from the photoelectric conversion unit 11a into an image signal such as a digital YUV signal, and transmits the image signal to an external circuit (not shown) (for example, a control circuit included in a host device on which the image pickup device is mounted). It is like that. In addition, it is possible to receive power and a clock signal for driving the image sensor 11 from an external circuit. Here, Y is a luminance signal, U (= RY) is a color difference signal between red and the luminance signal, and V (= BY) is a color difference signal between blue and the luminance signal. Note that the image sensor is not limited to the CMOS type image sensor, and other types such as a CCD type may be used.
図1において、鏡枠13の内部には、5枚レンズ構成の撮像レンズ12が設けられている。撮像レンズ12と鏡枠13とでレンズユニットを構成する。レンズユニットとしての撮像レンズ12は物体側より順に、第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、第5レンズL5からなり、それぞれ有効径外にフランジ部を有する。各レンズは樹脂又はガラス製である。より具体的には、レンズ樹脂材に三菱ガス化学製EP5000樹脂を用いることができる。
In FIG. 1, an imaging lens 12 having a five-lens configuration is provided inside a lens frame 13. The imaging lens 12 and the lens frame 13 constitute a lens unit. The imaging lens 12 as a lens unit includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in order from the object side, and each has a flange portion outside the effective diameter. Each lens is made of resin or glass. More specifically, EP5000 resin manufactured by Mitsubishi Gas Chemical can be used as the lens resin material.
第1レンズL1のフランジ部L1fの光軸直交平面である像側面L1f1は、像側に突出しており、第2レンズL2の有効径外に設けられたフランジ部L2fにおける、像側にシフトした光軸直交平面である物体側面L2f2に面当たりしている。
The image side surface L1f1 which is a plane orthogonal to the optical axis of the flange portion L1f of the first lens L1 protrudes to the image side, and the light shifted to the image side in the flange portion L2f provided outside the effective diameter of the second lens L2. The surface abuts on the object side surface L2f2, which is a plane perpendicular to the axis.
第1レンズL1の像側面L1f1より光軸に近い側であって、像側光学面L1bの有効径外の面L1f6に、遮光膜BKMが形成されている。遮光膜にはカチオン重合型UV硬化インクを用いるとよい。カチオン重合型は4~5%の硬化収縮を起こすが、10数%のラジカル型UVインクより少ないため、本実施形態の目的達成により効果的である。また、膜厚は5μm~20μmの範囲で用いられる。
A light shielding film BKM is formed on a surface L1f6 that is closer to the optical axis than the image side surface L1f1 of the first lens L1 and outside the effective diameter of the image side optical surface L1b. A cationic polymerization type UV curable ink may be used for the light shielding film. The cationic polymerization type causes curing shrinkage of 4 to 5%, but is less effective than the radical type UV ink of several tens%, and is more effective in achieving the object of this embodiment. The film thickness is in the range of 5 μm to 20 μm.
第2レンズL2のフランジ部L2fの光軸直交平面である像側面L2f1は、像側に突出しており、第3レンズL3の有効径外に設けられたフランジ部L3fにおける、像側にシフトした光軸直交平面である物体側面L3f2に面当たりしている。
The image side surface L2f1 that is the optical axis orthogonal plane of the flange portion L2f of the second lens L2 protrudes to the image side, and the light shifted to the image side in the flange portion L3f provided outside the effective diameter of the third lens L3. It contacts the object side surface L3f2 that is an axis orthogonal to the surface.
第2レンズL2の像側面L2f1より光軸に近い側であって、像側光学面L2bの有効径外の面L2f6に、遮光膜BKMが形成されている。
A light shielding film BKM is formed on a surface L2f6 that is closer to the optical axis than the image side surface L2f1 of the second lens L2 and outside the effective diameter of the image side optical surface L2b.
第3レンズL3のフランジ部L3fの光軸直交平面である像側面L3f1は、像側に突出しており、第4レンズL4の有効径外に設けられたフランジ部L4fにおける、像側にシフトした光軸直交平面である物体側面L4f2に面当たりしている。
The image side surface L3f1 that is the optical axis orthogonal plane of the flange portion L3f of the third lens L3 protrudes to the image side, and the light shifted to the image side in the flange portion L4f provided outside the effective diameter of the fourth lens L4. It contacts the object side surface L4f2 that is an axis orthogonal to the surface.
第3レンズL3の像側面L3f1より光軸に近い側であって、像側光学面L3bの有効径外の面L3f6に、遮光膜BKMが形成されている。
A light shielding film BKM is formed on a surface L3f6 of the third lens L3 that is closer to the optical axis than the image side surface L3f1 and outside the effective diameter of the image side optical surface L3b.
図2は、図1の遮光膜BKMを形成したレンズ(ここでは、Lとする)を光軸方向から見た図である。図3は、図2のレンズをIII-III線で切断して示す拡大図である。図2,3に示すように、レンズLに形成された遮光膜BKMには、幅WのスリットSLが光軸を中心とした同心円状に周方向全周にわたって延在している。ここではスリットSLは、遮光膜BKMが形成されていない部分である。但し、図3に示すように、スリットSLを形成するレンズLの表面に粗し面としてのシボSBを形成することで、塗布したインクが濡れ広がり(点線で図示)、これによりスリットSLに膜厚が薄い遮光膜が形成されるようにしても良い。
FIG. 2 is a view of the lens (here, L) on which the light shielding film BKM of FIG. 1 is formed as seen from the optical axis direction. FIG. 3 is an enlarged view showing the lens of FIG. 2 cut along line III-III. As shown in FIGS. 2 and 3, in the light shielding film BKM formed on the lens L, a slit SL having a width W extends concentrically around the optical axis over the entire circumference. Here, the slit SL is a portion where the light shielding film BKM is not formed. However, as shown in FIG. 3, by applying a textured surface SB as a rough surface on the surface of the lens L forming the slit SL, the applied ink spreads wet (illustrated by a dotted line), whereby a film is formed on the slit SL. A light shielding film having a small thickness may be formed.
図4は、遮光膜を形成するインクジェット式インク塗布装置の概略を示す図である。図4において、レンズLの表面に近接して、下面よりインク滴を吐出するインクジェットヘッドIHを相対移動可能に配置している。インクジェットヘッドIHを駆動する駆動回路DRは、形成すべき遮光膜のパターンPTと位置とを記憶している。
FIG. 4 is a diagram showing an outline of an ink jet ink coating apparatus for forming a light shielding film. In FIG. 4, an inkjet head IH that ejects ink droplets from the lower surface is disposed so as to be relatively movable in the vicinity of the surface of the lens L. The drive circuit DR that drives the inkjet head IH stores the pattern PT and position of the light shielding film to be formed.
このインクジェット式インク塗布装置遮光膜を用いたレンズへの遮光膜の形成方法を説明する。駆動回路DRが、記憶したパターンPTと位置とに基づいて、インクジェットヘッドIHをレンズLに対して相対移動させながらインク滴を吐出することで、塗布されたインクの密度を変化させ、これによりパターンPTに対応する領域にインクが塗布される。更に、塗布されたインクを硬化させることで、レンズLに遮光膜BKMが形成される。ここで、スリットSLの幅Wはインクの描画解像度のn倍であると望ましい。又、一回でインクの吐出を終了せず、まずレンズの表面に少量のインクを吐出して、それが硬化した後、その上から再度インクを吐出する工程を複数回繰り返すことで、最終の膜厚を得るようにしても良い。本実施形態にかかる遮光膜BKMには、周方向に連続するスリットSLが形成されているので、インク硬化時に遮光膜BKMが収縮した場合でも、スリットSLにより圧縮応力が分断されるため、レンズLの光学面の歪みを極力抑制できる。
A method of forming a light shielding film on a lens using the ink jet ink coating apparatus light shielding film will be described. The drive circuit DR changes the density of the applied ink by ejecting ink droplets while moving the inkjet head IH relative to the lens L based on the stored pattern PT and position, thereby changing the pattern. Ink is applied to the region corresponding to PT. Further, the light-shielding film BKM is formed on the lens L by curing the applied ink. Here, the width W of the slit SL is preferably n times the ink drawing resolution. Also, without discharging the ink once, a small amount of ink is first discharged onto the surface of the lens, and after it hardens, the process of discharging the ink again is repeated several times, so that the final A film thickness may be obtained. Since the slit SL that is continuous in the circumferential direction is formed in the light shielding film BKM according to the present embodiment, even if the light shielding film BKM contracts during ink curing, the compression stress is divided by the slit SL. The distortion of the optical surface can be suppressed as much as possible.
図1において、第4レンズL4の有効径外周囲に設けられたフランジ部L4fの光軸直交平面である像側に突出した像側面L4f1と、第5レンズL5の有効径外周囲に設けられたフランジ部L5fの光軸直交平面である物体側に突出した物体側面L5f2との間には、ドーナッツ板状の遮光板APが当接挟持されている。遮光板APの外周は、鏡枠13の内周に当接しており、また第4レンズL4の有効径の近傍まで片持ち状に延在している。
In FIG. 1, an image side surface L4f1 projecting to the image side, which is a plane orthogonal to the optical axis, of the flange portion L4f provided around the effective diameter of the fourth lens L4, and a periphery outside the effective diameter of the fifth lens L5. Between the object side surface L5f2 protruding to the object side which is the optical axis orthogonal plane of the flange portion L5f, a donut-shaped light shielding plate AP is abutted and sandwiched. The outer periphery of the light shielding plate AP is in contact with the inner periphery of the lens frame 13 and extends in a cantilever manner to the vicinity of the effective diameter of the fourth lens L4.
第1レンズL1のフランジ部L1fの物体側面L1f2は、鏡枠13の開口を有する壁部13aの像側面に当接し、またフランジ部L1fの外周面L1f4は壁部13aに隣接した小径部13bの内周面に当接している。一方、第5レンズL5のフランジ部L5fの外周面は、遮光板APに隣接して鏡枠13の内周面に当接している。
The object side surface L1f2 of the flange portion L1f of the first lens L1 is in contact with the image side surface of the wall portion 13a having the opening of the lens frame 13, and the outer peripheral surface L1f4 of the flange portion L1f is the small diameter portion 13b adjacent to the wall portion 13a. It is in contact with the inner peripheral surface. On the other hand, the outer peripheral surface of the flange portion L5f of the fifth lens L5 is in contact with the inner peripheral surface of the lens frame 13 adjacent to the light shielding plate AP.
第5レンズL5のフランジ部L5fの撮像素子11側には、環状のスペーサSPを介してIRカットフィルタ14が配置されている。鏡枠13の下端は、IRカットフィルタ14を保持する環状のホルダ16を介して基板15上に当接している。
The IR cut filter 14 is disposed on the imaging element 11 side of the flange portion L5f of the fifth lens L5 via an annular spacer SP. The lower end of the lens frame 13 is in contact with the substrate 15 via an annular holder 16 that holds the IR cut filter 14.
各レンズのフランジ部は射出成形によって精度良く形成されている。よって、組み付け時には、鏡枠13に対して、第1レンズL1,第2レンズL2,第3レンズL3,第4レンズL4と組み付けていくと、フランジ部の対向する当接面同士が互いに当接し合うことで、第1レンズL1から第4レンズL4までの光軸方向の相対位置が精度良く調整される。又、遮光板AP4の板厚は、精度良く管理されているので、これを介在させて第5レンズL5を組み付けた場合、第4レンズL4と第5レンズL5との光軸方向の相対位置が精度良く調整される。
¡The flange of each lens is accurately formed by injection molding. Therefore, at the time of assembly, when the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are assembled to the lens frame 13, the abutting contact surfaces of the flange portion come into contact with each other. By matching, the relative position in the optical axis direction from the first lens L1 to the fourth lens L4 is adjusted with high accuracy. In addition, since the thickness of the light shielding plate AP4 is managed with high accuracy, when the fifth lens L5 is assembled with the light shielding plate AP4 interposed, the relative position in the optical axis direction between the fourth lens L4 and the fifth lens L5 is determined. It is adjusted with high accuracy.
本実施形態によれば、遷移面が光軸直交方向に延在する場合には遮光膜(黒色膜)BKMの形成によりコストを抑えつつ、不要光の抑制効果を高めることができる。尚、遮光板APの代わりに、第4レンズL4と第5レンズL5の一方に同様の遮光膜を形成しても良い。
According to the present embodiment, when the transition surface extends in the direction orthogonal to the optical axis, the effect of suppressing unnecessary light can be enhanced while suppressing the cost by forming the light shielding film (black film) BKM. Instead of the light shielding plate AP, a similar light shielding film may be formed on one of the fourth lens L4 and the fifth lens L5.
上述した撮像装置10の動作について説明する。図5(a)は撮像装置10を装備した携帯端末としてのスマートフォン100の正面図、図5(b)はその背面図である。図6はスマートフォン100の制御ブロック図である。
The operation of the imaging device 10 described above will be described. FIG. 5A is a front view of a smartphone 100 as a mobile terminal equipped with the imaging device 10, and FIG. 5B is a rear view thereof. FIG. 6 is a control block diagram of the smartphone 100.
撮像装置10は、例えば、鏡枠13の物体側端面が図5(b)のスマートフォン100の背面に設けられ、液晶表示部の下方に相当する位置に配設される。
In the imaging device 10, for example, the object side end surface of the lens frame 13 is provided on the back surface of the smartphone 100 in FIG. 5B, and is disposed at a position corresponding to the lower side of the liquid crystal display unit.
撮像装置10は、外部接続端子(図6では矢印で示す)を介して、スマートフォン100の制御部101と接続され、輝度信号や色差信号等の画像信号を制御部101側に出力する。
The imaging device 10 is connected to the control unit 101 of the smartphone 100 via an external connection terminal (indicated by an arrow in FIG. 6), and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.
一方、図5(a)(b)のスマートフォン100は、図6に示すように、各部を統括的に制御すると共に、各処理に応じたプログラムを実行する制御部(CPU)101と、電源等のスイッチ及び番号等をタッチパッドにより指示入力するための入力部60と、所定のデータの他に撮像した映像等を液晶パネルで表示する表示部65(但し、表示部の液晶パネルと入力部のタッチパッドはタッチパネル70が兼用する)と、外部サーバとの間の各種情報通信を実現するための無線通信部80と、スマートフォン100のシステムプログラムや各種処理プログラム及び端末等の必要な諸データを記憶している記憶部(ROM)91と、制御部101によって実行される各種処理プログラムやデータ、若しくは処理データ、或いは撮像装置10により得られた撮像データ等を一時的に格納する作業領域として用いられる及び一時記憶部(RAM)92とを備えている。
On the other hand, as shown in FIG. 6, the smartphone 100 in FIGS. 5A and 5B controls each unit in an integrated manner and executes a program corresponding to each process, a power source, etc. An input unit 60 for instructing and inputting switches, numbers, and the like on the touch pad, and a display unit 65 for displaying captured images in addition to predetermined data on the liquid crystal panel (however, the liquid crystal panel of the display unit and the input unit) The touchpad is also used by the touch panel 70) and a wireless communication unit 80 for realizing various information communication between the external server, and the system program and various processing programs of the smartphone 100 and necessary data such as a terminal are stored. Storage unit (ROM) 91 and various processing programs and data executed by the control unit 101, or processing data, or the imaging device 10 And a, and a temporary memory (RAM) 92 used as a work area for temporarily storing more resulting imaging data and the like.
スマートフォン100は、入力部60の操作によって動作し、アクチュエータ(不図示)により撮像レンズ12を駆動してオートフォーカス動作を行い、レリーズボタン71等を押圧することで、撮像装置10を動作させて撮像を行うことができる。撮像装置10から入力された画像信号は、上記スマートフォン100の制御系により、記憶部92に記憶されたり、或いはタッチパネル70で表示され、さらには、無線通信部80を介して映像情報として外部に送信される。
The smartphone 100 operates by operating the input unit 60, drives the imaging lens 12 by an actuator (not shown) to perform an autofocus operation, and presses the release button 71 or the like to operate the imaging device 10 to perform imaging. It can be performed. The image signal input from the imaging device 10 is stored in the storage unit 92 or displayed on the touch panel 70 by the control system of the smartphone 100, and further transmitted to the outside as video information via the wireless communication unit 80. Is done.
図7は、遮光膜の変形例にかかるパターンを示す図である。図7の例では、遮光膜BKMは、遮光膜BKMの全幅にわたって放射状に延在するスリットSLを有する。このようなスリットSLを設けることで、遮光膜BKMが収縮した場合でも、周方向の圧縮応力が分断されるため、レンズLの光学面の歪みを極力抑制できる。
FIG. 7 is a diagram showing a pattern according to a modification of the light shielding film. In the example of FIG. 7, the light shielding film BKM has slits SL extending radially over the entire width of the light shielding film BKM. By providing such a slit SL, even when the light shielding film BKM contracts, the compressive stress in the circumferential direction is divided, so that distortion of the optical surface of the lens L can be suppressed as much as possible.
図8は、別な遮光膜の変形例にかかるパターンを示す図である。図8の例では、遮光膜BKMは、遮光膜BKMの全幅にわたってスパイラル状に延在するスリットSLを有する。このようなスリットSLを設けることで、遮光膜BKMが収縮した場合でも、周方向の圧縮応力が分断されるため、レンズLの光学面の歪みを極力抑制できる。
FIG. 8 is a diagram showing a pattern according to another modification of the light shielding film. In the example of FIG. 8, the light shielding film BKM has a slit SL extending in a spiral shape over the entire width of the light shielding film BKM. By providing such a slit SL, even when the light shielding film BKM contracts, the compressive stress in the circumferential direction is divided, so that distortion of the optical surface of the lens L can be suppressed as much as possible.
図9は、別な遮光膜の変形例にかかるパターンを示す図である。図9(a)は、レンズLの光軸方向一方の面に形成した遮光膜BKMのパターンを示し、図9(b)は、レンズLの他方の面に形成した遮光膜BKMのパターンを示しているが、理解しやすいようにいずれも物体側から見た状態で示している。
FIG. 9 is a diagram showing a pattern according to another modification of the light shielding film. 9A shows a pattern of the light shielding film BKM formed on one surface of the lens L in the optical axis direction, and FIG. 9B shows a pattern of the light shielding film BKM formed on the other surface of the lens L. However, for the sake of easy understanding, both are shown as viewed from the object side.
図9(a)、(b)を比較すると明らかであるが、遮光膜BKMのスリットSLは、互いに位相がずれているので、たとえ一方の面における遮光膜BKMのスリットSLを不要光が通過しても、他方の面における遮光膜BKMで遮光されるので、トータルで不要光を遮光できる。
9A and 9B, it is clear that the slits SL of the light shielding film BKM are out of phase with each other, so that unnecessary light passes through the slit SL of the light shielding film BKM on one surface. However, since the light is shielded by the light shielding film BKM on the other surface, unnecessary light can be shielded in total.
尚、図1に示す撮像レンズ12のうち、あるレンズに図9(a)に示すパターンの遮光膜BKMを形成し、別のレンズに、スリットSLの位相がずれた図9(b)に示すパターン(但し、通過する光線の屈折に応じて内外径が変わる)の遮光膜BKMを形成しても良い。その他、図2に示す同心円状のパターンの遮光膜BKMを形成する場合、あるレンズの遮光膜BKMのスリットSLの位置を、別のレンズ(又は同じレンズの別な面)の遮光膜BKMのスリットSLの位置とずらせても良い。これにより一方の遮光膜BKMのスリットSLを通過した光束が、他方の遮光膜で遮光されるようにすることで、不要光を有効に遮光できる。
9B, the light shielding film BKM having the pattern shown in FIG. 9A is formed on one lens, and the phase of the slit SL is shifted on another lens, as shown in FIG. 9B. A light-shielding film BKM having a pattern (however, the inner and outer diameters change according to the refraction of light passing therethrough) may be formed. In addition, when the light shielding film BKM having the concentric pattern shown in FIG. 2 is formed, the slit SL of the light shielding film BKM of a certain lens is positioned at the slit of the light shielding film BKM of another lens (or another surface of the same lens). It may be shifted from the position of SL. Accordingly, unnecessary light can be effectively shielded by allowing the light flux that has passed through the slit SL of one of the light shielding films BKM to be shielded by the other light shielding film.
以下、好ましい実施態様についてまとめて説明する。
Hereinafter, preferred embodiments will be described together.
上記レンズLにおいて、前記スリットは、前記レンズの光軸を中心とした周方向に連続する同心円状であることが好ましい。前記スリットが同心円状であれば、前記遮光膜の収縮時に前記レンズの光軸直交方向に作用する圧縮応力を分断できる。
In the lens L, it is preferable that the slits are concentric circles continuous in the circumferential direction around the optical axis of the lens. If the slits are concentric, the compressive stress acting in the direction perpendicular to the optical axis of the lens when the light shielding film contracts can be divided.
また、前記スリットは、前記遮光膜の光軸直交方向全幅にわたって延在する放射状であることが好ましい。前記スリットが放射状であれば、前記遮光膜の収縮時に前記レンズの周方向に作用する圧縮応力を分断できる。
Further, it is preferable that the slit is a radial shape extending over the entire width of the light shielding film in the direction perpendicular to the optical axis. If the slits are radial, compressive stress acting in the circumferential direction of the lens when the light shielding film contracts can be divided.
また、前記スリットは、前記遮光膜の光軸直交方向全幅にわたって延在するスパイラル状であることが好ましい。前記スリットがスパイラル状であれば、前記遮光膜の収縮時に前記レンズの周方向に作用する圧縮応力を分断できる。
Further, it is preferable that the slit has a spiral shape extending over the entire width of the light shielding film in the direction perpendicular to the optical axis. If the slit is spiral, the compressive stress acting in the circumferential direction of the lens when the light shielding film contracts can be divided.
また、前記遮光膜は、インクジェット方式により前記レンズに向かってインク滴を吐出した後、硬化させることで形成されており、前記スリットの幅は前記インクの描画解像度のn倍であることが好ましい。これにより、前記インクの着弾制御により,前記スリットを形成しやすいという利点がある。尚、「インクの描画解像度」とは、例えばインチ当たりのインクドット数(dpi)で表せる。
The light shielding film is preferably formed by ejecting ink droplets toward the lens by an ink jet method and then curing, and the width of the slit is preferably n times the drawing resolution of the ink. Accordingly, there is an advantage that the slit can be easily formed by the landing control of the ink. The “ink drawing resolution” can be expressed, for example, by the number of ink dots per inch (dpi).
また、前記スリットが形成されるべき前記レンズの表面には、シボが形成されていることが好ましい。これにより、前記シボが形成されたレンズ表面において、塗布されたインクが濡れ広がり易くなるので、前記スリットを形成するのに好都合である。尚、「シボ」とは、粗し面をいい、具体的には、十点平均粗さRz4μm(アヤマダイAHO-1003相当品)であることが効果的である。
Further, it is preferable that a texture is formed on the surface of the lens where the slit is to be formed. Accordingly, the applied ink is easily spread on the lens surface where the texture is formed, which is convenient for forming the slit. The “texture” refers to a roughened surface. Specifically, it is effective to have a ten-point average roughness Rz 4 μm (Ayamadai AHO-1003 equivalent).
また、前記レンズの光軸方向における一方の面と他方の面とに前記遮光膜を形成したときに、前記一方の面における前記遮光膜のスリットを通過した光束は、前記他方の面における前記遮光膜で遮光されることが好ましい。これにより、たとえレンズの物体側面に設けた前記遮光膜のスリットを介して不要光の進入を許しても、像側面の前記遮光膜で遮光されるので、ゴーストの発生を効果的に抑制できる。「レンズの一方の面における前記遮光膜のスリットを通過した光束は、他方の面における前記遮光膜で遮光される」とは、例えば、レンズの一方の面に形成した遮光膜のスリットと、他方の面に形成した遮光膜のスリットの位相又は位置をずらすことなどがある。
Further, when the light shielding film is formed on one surface and the other surface in the optical axis direction of the lens, the light flux that has passed through the slit of the light shielding film on the one surface is reflected on the light shielding on the other surface. It is preferable that the film is shielded from light. As a result, even if unnecessary light is allowed to enter through the slit of the light shielding film provided on the object side surface of the lens, it is shielded by the light shielding film on the image side surface, so that the occurrence of ghost can be effectively suppressed. “The light beam that has passed through the slit of the light shielding film on one surface of the lens is shielded by the light shielding film on the other surface” means, for example, the slit of the light shielding film formed on one surface of the lens and the other The phase or position of the slit of the light shielding film formed on the surface may be shifted.
本発明は、本明細書に記載の実施形態・変形例に限定されるものではなく、他の実施形態・変形例を含むことは、本明細書に記載された実施形態や技術思想から本分野の当業者にとって明らかである。例えば、インクの塗布方法はインクジェット方式に限られない。
The present invention is not limited to the embodiments and modifications described in this specification, and includes other embodiments and modifications based on the embodiments and technical ideas described in this specification. It will be apparent to those skilled in the art. For example, the ink application method is not limited to the ink jet method.
10 撮像装置
11 撮像素子
11a 光電変換部
12 撮像レンズ
13 鏡枠
14 IRカットフィルタ
15 基板
16 ホルダ
60 入力キー部
65 表示部
70 タッチパネル
71 レリーズボタン
80 無線通信部
92 記憶部
100 スマートフォン
101 制御部
L1~L5 レンズ
AP 遮光部材
BKM 遮光膜
SL スリット DESCRIPTION OFSYMBOLS 10 Image pick-up device 11 Image pick-up element 11a Photoelectric conversion part 12 Imaging lens 13 Mirror frame 14 IR cut filter 15 Board | substrate 16 Holder 60 Input key part 65 Display part 70 Touch panel 71 Release button 80 Wireless communication part 92 Memory | storage part 100 Smartphone 101 Control part L1- L5 Lens AP Light shielding member BKM Light shielding film SL Slit
11 撮像素子
11a 光電変換部
12 撮像レンズ
13 鏡枠
14 IRカットフィルタ
15 基板
16 ホルダ
60 入力キー部
65 表示部
70 タッチパネル
71 レリーズボタン
80 無線通信部
92 記憶部
100 スマートフォン
101 制御部
L1~L5 レンズ
AP 遮光部材
BKM 遮光膜
SL スリット DESCRIPTION OF
Claims (15)
- インクを塗布することにより遮光膜を形成されたレンズであって、前記遮光膜には、スリットが形成されていることを特徴とするレンズ。 A lens having a light shielding film formed by applying ink, wherein the light shielding film has a slit.
- 前記スリットは、前記レンズの光軸を中心とした周方向に連続する同心円状であることを特徴とする請求項1に記載のレンズ。 2. The lens according to claim 1, wherein the slit has a concentric shape continuous in a circumferential direction around the optical axis of the lens.
- 前記スリットは、前記遮光膜の光軸直交方向全幅にわたって延在する放射状であることを特徴とする請求項1に記載のレンズ。 2. The lens according to claim 1, wherein the slits are radially extending over the entire width of the light shielding film in the direction perpendicular to the optical axis.
- 前記スリットは、前記遮光膜の光軸直交方向全幅にわたって延在するスパイラル状であることを特徴とする請求項1に記載のレンズ。 The lens according to claim 1, wherein the slit has a spiral shape extending over the entire width of the light shielding film in the direction perpendicular to the optical axis.
- 前記遮光膜は、インクジェット方式により前記レンズに向かってインク滴を吐出した後、硬化させることで形成されており、前記スリットの幅は前記インクの描画解像度のn倍であることを特徴とする請求項1~4のいずれかに記載のレンズ。 The light-shielding film is formed by ejecting ink droplets toward the lens by an ink jet method and then curing, and the width of the slit is n times the drawing resolution of the ink. Item 5. The lens according to any one of Items 1 to 4.
- 前記スリットが形成されるべき前記レンズの表面には、シボが形成されていることを特徴とする請求項1~5のいずれかに記載のレンズ。 The lens according to any one of claims 1 to 5, wherein a texture is formed on a surface of the lens where the slit is to be formed.
- 前記レンズの光軸方向における一方の面と他方の面とに前記遮光膜を形成したときに、前記一方の面における前記遮光膜のスリットを通過した光束は、前記他方の面における前記遮光膜で遮光されることを特徴とする請求項1~6のいずれかに記載のレンズ。 When the light shielding film is formed on one surface and the other surface in the optical axis direction of the lens, the light flux that has passed through the slit of the light shielding film on the one surface is reflected by the light shielding film on the other surface. The lens according to any one of claims 1 to 6, wherein the lens is shielded from light.
- 請求項1~7のいずれかに記載のレンズを複数枚、光軸方向に重ねることで形成されたレンズユニットであって、あるレンズの前記遮光膜のスリットを通過した光束は、別なレンズの前記遮光膜で遮光されることを特徴とするレンズユニット。 A lens unit formed by stacking a plurality of lenses according to any one of claims 1 to 7 in the direction of the optical axis, and the light flux that has passed through the slit of the light shielding film of a lens is different from that of another lens. The lens unit is shielded by the light shielding film.
- レンズの製造方法であって、レンズの表面に塗布するインクの密度を局所的に変更することで、スリットを有する遮光膜を形成することを特徴とするレンズの製造方法。 A lens manufacturing method, wherein a light shielding film having a slit is formed by locally changing the density of ink applied to the surface of the lens.
- 前記スリットは、前記レンズの光軸を中心とした周方向に連続する同心円状であることを特徴とする請求項9に記載のレンズの製造方法。 10. The method for manufacturing a lens according to claim 9, wherein the slit has a concentric shape that is continuous in a circumferential direction around the optical axis of the lens.
- 前記スリットは、前記遮光膜の光軸直交方向全幅にわたって延在する放射状であることを特徴とする請求項9に記載のレンズの製造方法。 10. The method for manufacturing a lens according to claim 9, wherein the slits are radially extending over the entire width of the light shielding film in the direction perpendicular to the optical axis.
- 前記スリットは、前記遮光膜の光軸直交方向全幅にわたって延在するスパイラル状であることを特徴とする請求項9に記載のレンズの製造方法。 10. The lens manufacturing method according to claim 9, wherein the slit has a spiral shape extending over the entire width of the light shielding film in the direction perpendicular to the optical axis.
- 前記遮光膜を、インクジェット方式により前記レンズに向かってインク滴を吐出した後、硬化させることで形成し、前記スリットの幅は前記インクの描画解像度のn倍であることを特徴とする請求項9~12のいずれかに記載のレンズの製造方法。 10. The light shielding film is formed by ejecting ink droplets toward the lens by an ink jet method and then curing, and the width of the slit is n times the drawing resolution of the ink. The method for producing a lens according to any one of items 12 to 12.
- 前記スリットが形成されるべき前記レンズの表面に、シボを形成することを特徴とする請求項9~13のいずれかに記載のレンズの製造方法。 14. The method for manufacturing a lens according to claim 9, wherein a texture is formed on a surface of the lens where the slit is to be formed.
- 前記レンズの表面にインクを塗布して、硬化した後、その上から再度インクを塗布することを特徴とする請求項9~14のいずれかに記載のレンズの製造方法。 15. The method for manufacturing a lens according to claim 9, wherein after the ink is applied to the surface of the lens and cured, the ink is applied again from above.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-127303 | 2013-06-18 | ||
JP2013127303 | 2013-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014203677A1 true WO2014203677A1 (en) | 2014-12-24 |
Family
ID=52104419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/063548 WO2014203677A1 (en) | 2013-06-18 | 2014-05-22 | Lens, lens unit, and lens manufacturing method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014203677A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62145201A (en) * | 1985-12-20 | 1987-06-29 | Hitachi Ltd | Plastic lens |
JPH06273651A (en) * | 1993-03-19 | 1994-09-30 | Olympus Optical Co Ltd | Lens barrel |
JP2007322540A (en) * | 2006-05-30 | 2007-12-13 | Mitsumi Electric Co Ltd | Camera module |
JP2008191621A (en) * | 2007-02-08 | 2008-08-21 | Matsushita Electric Ind Co Ltd | Lens barrel |
JP2009175331A (en) * | 2008-01-23 | 2009-08-06 | Sony Corp | Lens barrel and imaging unit |
JP2012185240A (en) * | 2011-03-03 | 2012-09-27 | Fujifilm Corp | Lens array, method of manufacturing lens array and method of manufacturing lens module |
-
2014
- 2014-05-22 WO PCT/JP2014/063548 patent/WO2014203677A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62145201A (en) * | 1985-12-20 | 1987-06-29 | Hitachi Ltd | Plastic lens |
JPH06273651A (en) * | 1993-03-19 | 1994-09-30 | Olympus Optical Co Ltd | Lens barrel |
JP2007322540A (en) * | 2006-05-30 | 2007-12-13 | Mitsumi Electric Co Ltd | Camera module |
JP2008191621A (en) * | 2007-02-08 | 2008-08-21 | Matsushita Electric Ind Co Ltd | Lens barrel |
JP2009175331A (en) * | 2008-01-23 | 2009-08-06 | Sony Corp | Lens barrel and imaging unit |
JP2012185240A (en) * | 2011-03-03 | 2012-09-27 | Fujifilm Corp | Lens array, method of manufacturing lens array and method of manufacturing lens module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014162846A1 (en) | Lens unit and imaging device | |
TWI495335B (en) | Lens module and method of operating the same | |
US10151859B2 (en) | Camera module and manufacturing method for same | |
CN114660791B (en) | Light turning element for camera module, camera module and electronic device | |
CN108140647B (en) | Lens sheet, lens sheet unit, image pickup module, and image pickup apparatus | |
JP2014164239A (en) | Lens unit and image capturing device | |
US8837057B2 (en) | Optical unit, method of producing the same, and image pickup apparatus | |
TWI698672B (en) | Imaging lens assembly, camera module and electronic device | |
WO2011102056A1 (en) | Image-capturing lens unit | |
TWI596417B (en) | Light blocking sheet, imaging lens module and electronic apparatus | |
JP7544221B2 (en) | Lens array, imaging module, imaging device | |
JP5734769B2 (en) | Imaging lens and imaging module | |
JP2016001262A (en) | Lens unit and imaging device | |
US20200195817A1 (en) | Optical lens assembly and electronic device | |
US8190013B2 (en) | Optical system | |
JP6443633B2 (en) | Combination lens and imaging device | |
WO2014203677A1 (en) | Lens, lens unit, and lens manufacturing method | |
WO2014132795A1 (en) | Combination lens and imaging device | |
JP6627526B2 (en) | Imaging module, imaging device | |
JP2010217279A (en) | Lens, lens unit and camera module | |
TWM545257U (en) | Optical lens assembly, imaging lens module and electronic apparatus | |
KR102066418B1 (en) | Carmera lens | |
JP2014085361A (en) | Lens unit and imaging device | |
JP2014174325A (en) | Imaging optical system unit, imaging device and digital device | |
US20230060740A1 (en) | Camera module, imaging module and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14813356 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14813356 Country of ref document: EP Kind code of ref document: A1 |