WO2020022157A1 - 干渉型光ファイバジャイロ及びセンシングコイル機構 - Google Patents

干渉型光ファイバジャイロ及びセンシングコイル機構 Download PDF

Info

Publication number
WO2020022157A1
WO2020022157A1 PCT/JP2019/028146 JP2019028146W WO2020022157A1 WO 2020022157 A1 WO2020022157 A1 WO 2020022157A1 JP 2019028146 W JP2019028146 W JP 2019028146W WO 2020022157 A1 WO2020022157 A1 WO 2020022157A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
core
light
transmission
fiber
Prior art date
Application number
PCT/JP2019/028146
Other languages
English (en)
French (fr)
Inventor
真司 巳谷
健一郎 児子
忠均 水谷
賢志 唐澤
裕作 鳥取
武敏 高畠
治幸 遠藤
多久島 裕一
中村 茂
Original Assignee
国立研究開発法人宇宙航空研究開発機構
株式会社オプトクエスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構, 株式会社オプトクエスト filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to EP19840889.0A priority Critical patent/EP3828500A4/en
Priority to US17/261,726 priority patent/US20210341288A1/en
Publication of WO2020022157A1 publication Critical patent/WO2020022157A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details

Definitions

  • the present invention relates to an interference type optical fiber gyro and a sensing coil mechanism.
  • each light is split into two by an optical splitter, and each light is phase-modulated by an optical modulator. Thereafter, each light is guided to a sensing coil in which a single mode fiber is symmetrically wound around a bobbin, and each light travels counterclockwise and clockwise in the sensing coil, and then returns to the optical modulator. , Undergoes phase modulation again by the optical modulator, and are superimposed and interfere with each other.
  • the interfered light is guided to an optical receiver via an optical coupler, and is converted into an electric signal by the optical receiver.
  • the optical receiver can detect the change in the intensity of the interference light according to the phase difference, and can detect the angular velocity.
  • the multi-core fiber is basically symmetrically wound, and a great deal of labor is required for the winding process.
  • a multi-core fiber is applied to an interference type optical fiber gyro, there is a limit to the cost reduction.
  • the symmetric winding of the multi-core fiber is avoided, the accuracy of detecting the angular velocity deteriorates.
  • an object of the present invention is to provide an interference-type optical fiber gyro and a sensing coil mechanism that can perform more accurate measurement and can be manufactured at low cost.
  • an interference-type optical fiber gyro is an interference-type optical fiber gyro that detects angular velocity by optical interference between left-handed light and right-handed light.
  • the interference type optical fiber gyro optically couples a multi-core fiber having a plurality of transmission cores and at least a first transmission core and a second transmission core among the plurality of transmission cores to form one optical path.
  • a sensing coil mechanism having a multi-core fiber optical path coupling unit is provided.
  • an interference type optical fiber gyro includes a light source, a first optical splitter, a polarizer, a second optical splitter, an optical modulator, and a sensing coil.
  • a mechanism and a light receiver The first optical splitter splits light emitted from the light source.
  • the polarizer makes the polarization of the light split by the first optical splitter into a single deflection.
  • the second optical splitter splits the single-polarized light by the polarizer into two.
  • the optical modulator modulates the phase of each light split by the second optical splitter.
  • the sensing coil mechanism has a multi-core fiber having a plurality of transmission cores, and an optical input / output device that optically couples any transmission core of the multi-core fiber.
  • One optical path is formed by the multi-core fiber and the optical input / output device. Then, each light phase-modulated by the optical modulator travels in the optical path in the opposite direction as left-handed light and right-handed light.
  • the light receiver receives light emitted from the sensing coil mechanism and interfering with the left-handed light and the right-handed light via the second optical splitter.
  • a sensing coil mechanism is a sensing coil mechanism incorporated in an interference type optical fiber gyro that detects an angular velocity by optical interference between left-handed light and right-handed light.
  • a multi-core fiber having a plurality of transmission cores, and a multi-core fiber optical path coupling for optically coupling at least each of the first transmission core and the second transmission core among the plurality of transmission cores to form one optical path And a part.
  • an interference-type optical fiber gyro and a sensing coil mechanism that can perform more accurate measurement and can be manufactured at low cost.
  • FIG. 2 is a block diagram of an interference type optical fiber gyro according to the embodiment. It is a block configuration diagram of a sensing coil mechanism according to the present embodiment.
  • FIG. 3 is a schematic diagram of a virtual optical system showing a state in which light is transmitted in the sensing coil of the embodiment.
  • FIG. 4 is a schematic diagram of a virtual optical system showing a combination of adjacent transmission cores in the sensing coil shown in FIG. 3. It is a schematic diagram of a virtual optical system showing another state in which light is transmitted into the sensing coil of the present embodiment.
  • FIG. 6 is a schematic diagram of a virtual optical system showing a combination of adjacent transmission cores in the sensing coil shown in FIG. 5.
  • FIG. 1 is a block diagram of an interference type optical fiber gyro according to the present embodiment.
  • the interferometric optical fiber gyro 100 shown in FIG. 1 is an interferometric optical fiber gyro (I-FOG) that detects angular velocity by utilizing the effect of left-handed light and right-handed light interfering with each other.
  • the interference type optical fiber gyro 100 includes a light source 21, an optical coupler 22 (first optical splitter), a polarizer 23, an optical splitter 241 (second optical splitter), an optical modulator 242, and a depolarizer 25. , A light receiver 26, and a sensing coil mechanism 10A.
  • the sensing coil mechanism 10A has optical input / output devices 11 and 12, a plurality of single mode fibers 13, a multi-core fiber 14, and a bobbin 16. Further, in the interference type optical fiber gyro 100, the optical coupler 22, the polarizer 23, the optical splitter 241, the optical modulator 242, and the depolarizer 25 may be integrated into one module.
  • the light emitted from the light source 21 is split by the optical coupler 22, and a part of the light is introduced into the polarizer 23, and the light is polarized into a single polarized light.
  • the single polarized light is split into two by an optical splitter 241, and each split light is phase-modulated by an optical modulator 242.
  • each light passes through the depolarizer 25 and becomes non-polarized light, it passes through the optical input / output devices 11 and 12 into the sensing coil 15 in which the multi-core fiber 14 is wound around the bobbin 16 in the form of a clockwise light. , And is guided as counterclockwise light.
  • the depolarizer 25 may be appropriately removed, and it is sufficient that at least one depolarizer 25 is provided between the optical modulator 242 and the sensing coil mechanism 10A.
  • the depolarizer 25 may be removed from the above-described module to provide a polarization-maintaining multi-core fiber.
  • the optical splitter 241, the polarizer 23, and the optical modulator 242 may be integrated on one substrate (not shown), and the optical integrated circuit may be formed on this substrate.
  • the interference type optical fiber gyro 100 is reduced in size by integrating a plurality of elements, and the modulation voltage is reduced by the push-pull phase modulation method by using an optical waveguide.
  • the clockwise light passes through any of the transmission cores (optical fibers) of the multi-core fiber 14 included in the sensing coil 15 via the optical input / output device 11, and then reaches the optical input / output device 12.
  • the clockwise light is optically coupled to the single mode fiber 13 by the optical input / output device 12 and is guided to the optical input / output device 11 again.
  • the clockwise light is optically coupled to a transmission core different from the transmission core previously passed in the multi-core fiber 14, and passes through a different transmission core in the multi-core fiber 14.
  • the clockwise light repeatedly passes through the transmission cores arranged in the multi-core fiber 14 by repeating the above-mentioned progress, and finally reaches the optical input / output device 12. Thereafter, the clockwise light passes through the depolarizer 25 and the optical modulator 242 in this order, and reaches the optical splitter 241.
  • the counterclockwise light travels in the sensing coil 15 in the opposite direction to the clockwise light.
  • the counterclockwise light passes through one of the transmission cores of the multi-core fiber 14 included in the sensing coil 15 via the optical input / output device 12, and then reaches the optical input / output device 11.
  • the counterclockwise light is optically coupled to the single mode fiber 13 by the optical input / output device 11 and is guided to the optical input / output device 12 again.
  • the counterclockwise light is optically coupled to a transmission core different from the transmission core previously passed in the multi-core fiber 14 and passes through a different transmission core in the multi-core fiber 14.
  • the left-handed light repeatedly passes through the transmission cores arranged in the multi-core fiber 14 by repeating such progression, and finally reaches the optical input / output device 11. Thereafter, the counterclockwise light passes through the depolarizer 25, the optical modulator 242, and the optical coupler 22 in this order, and reaches the optical splitter 241.
  • a transmission core adjacent to the transmission core in which clockwise light travels is selected as the transmission core in which counterclockwise light travels.
  • the clockwise light and the counterclockwise light emitted from the sensing coil mechanism 10A reach the optical splitter 241 via the optical modulator 242, they overlap and interfere with each other.
  • the interference light passes through the polarizer 23 and the optical coupler 22, and the light receiver 26 receives the interference light.
  • the interference light reaches the light receiver 26, it is converted into an electric signal.
  • FIG. 2 is a block diagram of the sensing coil mechanism according to the present embodiment.
  • FIG. 2 the clockwise light is schematically indicated by a solid arrow, and the counterclockwise light is indicated by a broken arrow.
  • a cross-sectional view of the multi-core fiber 14 cut along a cutting plane A is shown on the upper side of the drawing of the sensing coil mechanism 10A, and a cross-sectional view of the multi-core fiber 14 cut along a cutting plane B is shown on the lower side. It is shown.
  • the multi-core fiber 14 has a plurality of transmission cores 1 to 7.
  • the transmission core 1 is located at the center of the multi-core fiber 14, and the transmission cores 2 to 7 are arranged around the transmission core 1. Is arranged.
  • the transmission core 1 is a central core, and the transmission cores 2 to 7 are peripheral cores.
  • the intervals between the transmission cores 1 to 7 are, for example, equal intervals.
  • Each of the transmission cores 1 to 7 is filled with, for example, a resin, and the transmission cores 1 to 7 are arranged, for example, in a resin layer having a circular cross section.
  • At least two of the transmission cores 1 to 7 are optically coupled by the optical input / output devices 11 and 12, respectively.
  • the optical input and output from the respective transmission cores of the optical input and output devices 11 and 12 are optically coupled by a single mode fiber 13. That is, the optical input / output devices 11, 12 and the single mode fiber 13 cooperate to function as a multi-core fiber optical path coupling unit.
  • the clockwise light guided to the optical input / output device 11 is optically coupled to the transmission core 2 of the multi-core fiber 14 by the optical input / output device 11, and travels inside the sensing coil 15.
  • the counterclockwise light guided to the optical input / output device 12 is optically coupled to the transmission core 3 of the multi-core fiber 14 by the optical input / output device 12 and travels inside the sensing coil 15.
  • the clockwise light and the counterclockwise light travel in the adjacent transmission cores 2 and 3, and even if the temperature of the multi-core fiber 14 changes, the transmission core 2 And the transmission core 3 are close to each other, the spatial distributions of the respective temperature change rates are approximated, and the phase changes of the clockwise light and the counterclockwise light are extremely small.
  • the gyro output hardly fluctuates. This means that the same effect can be obtained by optically coupling the counterclockwise light to the transmission core 7 instead of optically coupling it to the transmission core 3.
  • the light input / output devices 11 and 12 for example, means capable of changing the traveling path of light by an optical mechanism using a lens, a prism, or the like is used as in the example disclosed in Japanese Patent No. 5870426. .
  • FIG. 3 is a schematic view of a virtual optical system showing how light is transmitted into the sensing coil of the present embodiment.
  • FIG. 3 shows an example in which light passes through all of the odd seven transmission cores 1 to 7.
  • the sensing coil mechanism 10A at least two of the plurality of transmission cores 1 to 7 are optically coupled by the optical input / output devices 11 and 12, respectively.
  • Optical input / output from an arbitrary transmission core of the optical input / output device and optical input / output from another arbitrary transmission core are optically coupled by a single mode fiber 13 to form one optical path.
  • each of the transmission cores 1 to 7 is connected to one of the plurality of single mode fibers 13 by the optical input / output devices 11 and 12, so that all of the transmission cores 1 to 7 are optically connected. Are combined to form one optical path.
  • each light is phase-modulated by the light modulator 242 and depolarized by the depolarizer 25.
  • clockwise light (solid arrow) is guided to the second input / output port of the optical input / output device 11 and optically coupled to the transmission core 2 of the multi-core fiber 14. Thereafter, the clockwise light is guided to the second input / output port of the optical input / output device 12.
  • the clockwise light output from the second input / output port of the optical input / output device 12 is guided by the single mode fiber 13, optically coupled to the fourth input / output port of the optical input / output device 11, and transmitted by the multi-core fiber 14. Optically coupled to the core 4. Thereafter, the clockwise light is guided to the fourth input / output port of the optical input / output device 12.
  • the clockwise light output from the fourth input / output port of the optical input / output device 12 is guided by the single mode fiber 13 and optically coupled to the sixth input / output port of the optical input / output device 11.
  • the clockwise light is transmitted from the transmission core 6, the sixth input / output port of the optical input / output device 12, the single mode fiber 13, the first input / output port of the optical input / output device 11, the transmission core 1, the optical input / output device 12 No. 1 input / output port, single mode fiber 13, seventh input / output port of optical input / output device 11, transmission core 7, seventh input / output port of optical input / output device 12, single mode fiber 13, optical input / output device 11 No.
  • the counterclockwise light (broken arrow) is guided to the third input / output port of the optical input / output device 12 and optically coupled to the transmission core 3 of the multi-core fiber 14. Thereafter, the counterclockwise light is guided to the third input / output port of the optical input / output device 11.
  • the counterclockwise light output from the third input / output port of the optical input / output device 11 is guided by the single mode fiber 13, optically coupled to the fifth input / output port of the optical input / output device 12, and transmitted by the multi-core fiber 14. Optically coupled to the core 5.
  • the counterclockwise light is guided to the fifth input / output port of the optical input / output device 11.
  • the counterclockwise light output from the fifth input / output port of the optical input / output device 11 is guided by the single mode fiber 13 and optically coupled to the seventh input / output port of the optical input / output device 12.
  • the counterclockwise light is transmitted from the transmission core 7, the seventh input / output port of the optical input / output device 11, the single mode fiber 13, the first input / output port of the optical input / output device 12, the transmission core 1, the optical input / output device 11 No. 1 input / output port, single mode fiber 13, sixth input / output port of optical input / output device 12, transmission core 6, sixth input / output port of optical input / output device 11, single mode fiber 13, optical input / output device 12 No. 4 input / output port, transmission core 4, fourth input / output port of optical input / output device 11, single mode fiber 13, second input / output port of optical input / output device 12, transmission core 2, and finally light It is output from the second input / output port of the input / output device 11.
  • the left-handed light output from the second input / output port of the optical input / output device 11 and the right-handed light output from the third input / output port of the optical input / output device 12 are depolarized by the depolarizer 25. , Are phase-modulated by the optical modulator 242, superposed by the optical splitter 241, and interfere with each other.
  • FIG. 4 is a schematic diagram of a virtual optical system showing a combination of adjacent transmission cores in the sensing coil shown in FIG.
  • the numbers arranged in the frame shown in FIG. 4 mean, for example, the leftmost (11, 2), the "2" input / output port of the optical input / output device "11". .
  • the transmission core 1 arranged at the center is located at the center of the optical path in the sensing coil mechanism 10A. Furthermore, the center point in the transmission core 1 bisects the length of the optical path. In other words, the center point of the optical path is in the transmission core 1.
  • Combinations of adjacent transmission cores at equal distances from this center point are the transmission cores 6 and 7, the transmission cores 4 and 5, and the transmission cores 2 and 3 (combination of double arrows). Note that the transmission core 1 is adjacent to all of the other transmission cores 2 to 7.
  • the transmission core at a position separated by a predetermined distance clockwise along the optical path, and at a position separated by the same distance as the predetermined distance counterclockwise along the optical path.
  • a certain transmission core is adjacent in the multi-core fiber 14. That is, the sensing coil mechanism 10A is configured so that clockwise light and counterclockwise light pass through adjacent transmission cores in opposite directions.
  • Some conventional interference-type optical fiber gyros have a single mode fiber wound in a coil shape as a sensing coil. In such an interference type optical fiber gyro, since the single mode fiber has only one transmission core, the entire length of the single mode fiber is equal to the optical path length.
  • an interference type optical fiber gyro there is a method of increasing the length of a single mode fiber in order to increase the sensitivity of angular velocity. Further, in such an interference type optical fiber gyro, a method of winding a single mode fiber symmetrically with respect to a center of an optical path length in order to suppress a fluctuation (Shupe effect) of a gyro output caused by a temperature change of the single mode fiber. There is. In this case, the single mode fiber is wound symmetrically so that the transmission cores at the same distance from the center of the optical path length have the same rate of temperature change.
  • the distance between adjacent transmission cores cannot be smaller than the diameter of the resin layer covering the transmission core (eg, 165 ⁇ m diameter).
  • the diameter of the resin layer covering the transmission core eg, 165 ⁇ m diameter.
  • the spatial distribution of the respective temperature change rates is not approximated, and there is a limit in suppressing the fluctuation of the gyro output due to the temperature change.
  • the length obtained by multiplying the length of the multi-core fiber 14 by the number of transmission cores is substantially equal to the sensing coil 15. Length. Therefore, in order to obtain the same optical path length as that of the sensing coil constituted only by the single mode fiber, the multi-core fiber 14 having a length 1 / (the number of transmission cores) of the length of the sensing coil constituted solely by the single mode fiber is used. Is sufficient, and the winding operation for forming the sensing coil 15 is greatly simplified.
  • the right-handed light and the left-handed light pass through the adjacent transmission core in the sensing coil mechanism 10A without winding the multi-core fiber 14 symmetrically with respect to the center of the optical path length.
  • the distance between adjacent transmission cores is, for example, 50 ⁇ m or less.
  • the distance is 45 ⁇ m, but is not limited to this value. With such a short interval, the distance between the transmission core in which the left-handed light travels and the transmission core in which the right-handed light travels becomes closer, and the spatial distributions of the respective temperature change rates become more approximate.
  • FIG. 5 is a schematic diagram of a virtual optical system showing another state in which light is transmitted in the sensing coil of the present embodiment.
  • a multi-core fiber 14 is shown in which the transmission core 1 disposed at the center of the multi-core fiber 14 is not used as an optical path, and an even number of transmission cores 2 to 7 are used as an optical path. .
  • an optical path is formed by the even number of transmission cores 2 to 7.
  • the transmission core 1 may be removed from the multi-core fiber 14.
  • the center point of the optical path does not exist in the sensing coil 15, and the center point connects the seventh input / output port of the optical input / output device 11 and the sixth input / output port of the optical input / output device 12. It is in the coupling single mode fiber 13.
  • the combination of the adjacent transmission cores is the same as that of the sensing coil mechanism 10A.
  • FIG. 6 is a schematic diagram of a virtual optical system showing a combination of adjacent transmission cores in the sensing coil shown in FIG.
  • sensing coil mechanism 10B has the same effect as the sensing coil mechanism 10A.
  • the sensing coil mechanism 10B since the transmission core 1 disposed at the center of the multi-core fiber 14 is not used, the clockwise light and the counterclockwise light always pass through the adjacent transmission core, and the gyro is used. Fluctuations in the output are further suppressed, and the angular velocity can be detected with higher accuracy.
  • the coil may be wound around the bobbin 16 so as to be symmetric with respect to the center point of the optical path.
  • two symmetries that is, spatial proximity between the multi-core fibers 14 in addition to spatial proximity between adjacent transmission cores, are given to the sensing coil mechanism, and angular velocity can be more accurately increased. Can be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

【課題】より高精度な測定が可能であり、低コストで製造し得る干渉型光ファイバジャイロを提供することにある。 【解決手段】干渉型光ファイバジャイロは、左回り光と右回り光との光干渉により角速度を検出する干渉型光ファイバジャイロである。このような左回り光と右回り光との光干渉により角速度を検出する干渉型光ファイバジャイロにおいて、干渉型光ファイバジャイロは、複数の伝送コアを有するマルチコアファイバと、前記複数の伝送コアのうち、少なくとも第1の伝送コア及び第2の伝送コアのそれぞれを光結合するマルチコアファイバ光路結合部とを有するセンシングコイル機構を具備する。

Description

干渉型光ファイバジャイロ及びセンシングコイル機構
 本発明は、干渉型光ファイバジャイロ及びセンシングコイル機構に関する。
 干渉型光ファイバジャイロでは、光源から発せられた光が光分岐器で2つに分岐され、光変調器で、各々の光に対しての位相変調が行われる。この後、各々の光は、シングルモードファイバがボビンに対称に巻かれたセンシングコイルに導光され、各々の光は、センシングコイル内を左回り及び右回りで進んだ後、光変調器に戻り、光変調器で再度位相変調を受け、重ね合わされ互いに干渉する。干渉した光は、光カプラを介して光受光器に導光され、光受光器で電気信号に変換される。
 センシングコイル内で光が進行している際、センシングコイルに角速度が印加されると、右回り光と左回り光とに位相差が発生する(サニャック効果)。これにより、光受光器は、位相差に応じた干渉光の強度変化を捉えることができ、角速度の検知が可能になる。
 このような干渉型光ファイバジャイロのセンシングコイルとして、最近では、複数の伝送コアを有するマルチコアファイバが用いられた例がある(例えば、特許文献1参照)。
米国特許第8497994B2号明細書
 しかしながら、上記の開示例では、マルチコアファイバを対称的に巻くことを基本とし、巻き線工程に多大な手間がかかることになる。これにより、マルチコアファイバを干渉型光ファイバジャイロに適用しても、その低コスト化に限界が生じている。また、マルチコアファイバの対称的な巻き方を回避してしまえば、角速度を検知する精度が劣ってしまう。
 以上のような事情に鑑み、本発明の目的は、より高精度な測定が可能であり、低コストで製造し得る干渉型光ファイバジャイロ及びセンシングコイル機構を提供することにある。
 上記目的を達成するため、本発明の一形態に係る干渉型光ファイバジャイロは、左回り光と右回り光との光干渉により角速度を検出する干渉型光ファイバジャイロである。干渉型光ファイバジャイロは、複数の伝送コアを有するマルチコアファイバと、複数の伝送コアのうち、少なくとも第1の伝送コア及び第2の伝送コアのそれぞれを光結合して1本の光路を形成するマルチコアファイバ光路結合部とを有するセンシングコイル機構を具備する。
 また、上記目的を達成するため、本発明の一形態に係る干渉型光ファイバジャイロは、光源と、第1光分岐器と、ポラライザと、第2光分岐器と、光変調器と、センシングコイル機構と、受光器とを具備する。
 第1光分岐器は、光源から放出された光を分岐する。
 ポラライザは、第1光分岐器によって分岐された光の偏向を単一偏向にする。
 第2光分岐器は、ポラライザによって単一偏向にされた光を2つに分岐する。
 光変調器は、第2光分岐器によって分岐された、それぞれの光の位相を変調する。
 センシングコイル機構は、複数の伝送コアを有するマルチコアファイバと、マルチコアファイバの任意の伝送コア間を光結合する光入出力デバイスとを有し、マルチコアファイバ及び光入出力デバイスによって1本の光路が形成され、光変調器によって位相変調されたそれぞれの光が左回り光と右回り光として光路内を逆向きに進行する。
 受光器は、センシングコイル機構から放出された、左回り光と右回り光とが第2光分岐器を介して干渉する光を受光する。
 また、上記目的を達成するため、本発明の一形態に係るセンシングコイル機構は、左回り光と右回り光との光干渉により角速度を検出する干渉型光ファイバジャイロに組み込まれるセンシングコイル機構であって、複数の伝送コアを有するマルチコアファイバと、前記複数の伝送コアのうち、少なくとも第1の伝送コア及び第2の伝送コアのそれぞれを光結合して1本の光路を形成するマルチコアファイバ光路結合部とを有する。
 以上述べたように、本発明によれば、より高精度な測定が可能であり、低コストで製造し得る干渉型光ファイバジャイロ及びセンシングコイル機構が提供される。
本実施形態に係る干渉型光ファイバジャイロのブロック構成図である。 本実施形態に係るセンシングコイル機構のブロック構成図である。 本実施形態のセンシングコイル内に光が伝送される様子を示す仮想光学系の模式図である。 図3に示すセンシングコイル内で隣接する伝送コアの組み合せを示す仮想光学系の模式図である。 本実施形態のセンシングコイル内に光が伝送される別の様子を示す仮想光学系の模式図である。 図5に示すセンシングコイル内で隣接する伝送コアの組み合せを示す仮想光学系の模式図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。また、同一の部材または同一の機能を有する部材には同一の符号を付し、その部材を説明した後には適宜説明を省略する場合がある。
 (干渉型光ファイバジャイロ)
 まず、本実施形態に係る干渉型光ファイバジャイロの基本構成について説明する。
 図1は、本実施形態に係る干渉型光ファイバジャイロのブロック構成図である。
 図1に示す干渉型光ファイバジャイロ100は、左回り光と右回り光とが光干渉する作用を利用して角速度を検出する干渉型光ファイバジャイロ(I-FOG)である。干渉型光ファイバジャイロ100は、光源21と、光カプラ22(第1光分岐器)と、ポラライザ23と、光分岐器241(第2光分岐器)と、光変調器242と、デポラライザ25と、受光器26と、センシングコイル機構10Aとを具備する。センシングコイル機構10Aは、光入出力デバイス11、12と、複数のシングルモードファイバ13と、マルチコアファイバ14と、ボビン16とを有する。また、干渉型光ファイバジャイロ100においては、光カプラ22、ポラライザ23、光分岐器241、光変調器242、及びデポラライザ25を纏めて1つのモジュールとしてもよい。
 干渉型光ファイバジャイロ100においては、光源21から放出された光が光カプラ22によって分岐され、その一部の光がポラライザ23に導入され、光の偏向が単一偏光となる。単一偏光となった光は、光分岐器241で2つに分岐され、分岐された各々の光が光変調器242で位相変調される。各々の光は、デポラライザ25を通過し無偏光となった後、光入出力デバイス11、12を介して、マルチコアファイバ14がボビン16にコイル状に巻かれたセンシングコイル15内へ右回り光と、左回り光として導光される。なお、デポラライザ25は、適宜取り除かれてもよく、光変調器242とセンシングコイル機構10Aとの間に少なくとも1つあればよい。例えば、上記のモジュールからデポラライザ25を取り除き、偏波保持マルチコアファイバとしてもよい。また、光分岐器241、ポラライザ23、及び光変調器242は、1つの基板(不図示)の上に集積され、この基板上に光集積回路が形成されてもよい。この場合、複数の要素が集積されることにより、干渉型光ファイバジャイロ100が小型になり、光導波路を利用することでPush-Pull位相変調方式による変調電圧の低電圧化が図られる。
 例えば、右回り光は、光入出力デバイス11を介して、センシングコイル15に含まれるマルチコアファイバ14のいずれかの伝送コア(光ファイバ)を通過した後、光入出力デバイス12に到達する。右回り光は、光入出力デバイス12によってシングルモードファイバ13へ光結合され、再度、光入出力デバイス11に導光される。光入出力デバイス11では、右回り光がマルチコアファイバ14内で先に通過した伝送コアとは異なる伝送コアへ光結合され、マルチコアファイバ14内の異なる伝送コアを通過する。右回り光は、上記の進行を繰り返すことで、マルチコアファイバ14内に複数配置された伝送コアを順次通過し、最後に光入出力デバイス12に到達する。この後、右回り光は、デポラライザ25、光変調器242の順に通過し、光分岐器241に到達する。
 左回り光は、センシングコイル15において右回り光と逆方向に進行する。左回り光は、光入出力デバイス12を介して、センシングコイル15に含まれるマルチコアファイバ14のいずれかの伝送コアを通過した後、光入出力デバイス11に到達する。左回り光は、光入出力デバイス11によってシングルモードファイバ13へ光結合され、再度、光入出力デバイス12に導光される。次に、左回り光は、マルチコアファイバ14内で先に通過した伝送コアとは異なる伝送コアへ光結合され、マルチコアファイバ14内の異なる伝送コアを通過する。左回り光は、このような進行を繰り返すことで、マルチコアファイバ14内に複数配置された伝送コアを順次通過し、最後に光入出力デバイス11に到達する。この後、左回り光は、デポラライザ25、光変調器242、光カプラ22の順に通過し、光分岐器241に到達する。
 ここで、センシングコイル15内では、左回り光が進行する伝送コアとして、右回り光が進行する伝送コアに隣接する伝送コアが選択される。
 センシングコイル機構10Aから放出された、右回り光と、左回り光とが光変調器242を経由して光分岐器241に到達すると、互いに重なり合い干渉する。干渉光は、ポラライザ23、光カプラ22を通過し、受光器26が干渉光を受光する。干渉光が受光器26へ到達すると、電気信号へ変換される。
 センシングコイル15内に、右回り光と、左回り光とが通過している際、センシングコイル15に角速度が印加されると、右回り光と、左回り光との間に位相差が生じ、干渉光強度が変化する。受光器26で変換された電気信号が信号処理回路31で信号処理されると、干渉光強度の変化に応じたジャイロ出力、すなわち角速度が得られる。
 (センシングコイル機構)
 次に、本実施形態に係るセンシングコイル機構10Aの詳細について説明する。
 図2は、本実施形態に係るセンシングコイル機構のブロック構成図である。
 図2では、模式的に右回り光が実線の矢印で、左回り光が破線の矢印で示されている。また、センシングコイル機構10Aの図の上側には、マルチコアファイバ14を切断面Aで切断したときの断面図が示され、下側には、マルチコアファイバ14を切断面Bで切断したときの断面図が示されている。
 図2に示すように、マルチコアファイバ14は、複数の伝送コア1~7を有し、例えば、伝送コア1は、マルチコアファイバ14の中心に位置し、伝送コア1の周りに伝送コア2~7が配置されている。ここで、伝送コア1を中心コア、伝送コア2~7を周辺コアとする。伝送コア1~7のそれぞれの間隔は、例えば、等間隔である。伝送コア1~7のそれぞれの間には、例えば、樹脂が充填され、伝送コア1~7は、例えば、断面の外形が円状の樹脂層内に配置されている。
 センシングコイル機構10Aでは、複数の伝送コア1~7のうち、少なくとも2つ伝送コアのそれぞれが光入出力デバイス11、12によって光結合される。また、光入出力デバイス11、12のそれぞれの伝送コアからの光入出力とは、シングルモードファイバ13によって光結合される。すなわち、光入出力デバイス11、12及びシングルモードファイバ13が共働してマルチコアファイバ光路結合部として機能する。
 例えば、センシングコイル機構10Aにおいては、光入出力デバイス11に導光された右回り光が光入出力デバイス11によってマルチコアファイバ14の伝送コア2に光結合されて、センシングコイル15内を進む。このとき、光入出力デバイス12に導光された左回り光は、光入出力デバイス12によってマルチコアファイバ14の伝送コア3に光結合されて、センシングコイル15内を進む。
 この例のように、センシングコイル機構10Aにおいては、右回り光と左回り光とが隣接する伝送コア2、3を進行することになり、マルチコアファイバ14の温度が変化したとしても、伝送コア2と伝送コア3とが近接しているために、それぞれの温度変化率の空間分布が近似し、右回り光及び左回り光のそれぞれの位相変化が極めて小さくなる。この結果、マルチコアファイバ14の温度が変化しても、ジャイロ出力が変動しにくくなる。これは、左回り光を伝送コア3に光結合する代わりに、伝送コア7へ光結合しても、同じ効果が得られることになる。
 なお、光入出力デバイス11、12においては、例えば、特許5870426に開示されている例のように、レンズ、プリズム等を用いた光学的機構により光の進行路を変更できる手段が利用されている。
 本実施形態に係るセンシングコイル機構10Aの動作を具体的に説明する。
 図3は、本実施形態のセンシングコイル内に光が伝送される様子を示す仮想光学系の模式図である。
 図3には、奇数個である7個の伝送コア1~7の全てに光が通過する例が示されている。センシングコイル機構10Aにおいては、複数の伝送コア1~7のうち、少なくとも2つの伝送コアのそれぞれが光入出力デバイス11、12によって光結合される。光入出力デバイスの任意の伝送コアからの光入出力と、別の任意の伝送コアからの光入出力とがシングルモードファイバ13によって光結合されて、1本の光路が形成されている。例えば、センシングコイル機構10Aにおいては、伝送コア1~7のそれぞれが光入出力デバイス11、12によって、複数のシングルモードファイバ13のいずれかが接続することで、全ての伝送コア1~7が光結合され、1本の光路が形成されている。
 例えば、光は、光分岐器241で右回り光と左回り光とに分岐された後、各々の光は、光変調器242で位相変調され、デポラライザ25で無偏光化される。
 例えば、右回り光(実線の矢印)は、光入出力デバイス11の2番入出力ポートに導かれ、マルチコアファイバ14の伝送コア2に光結合される。この後、右回り光は、光入出力デバイス12の2番入出力ポートに導かれる。光入出力デバイス12の2番入出力ポートから出力された右回り光は、シングルモードファイバ13で導光され、光入出力デバイス11の4番入出力ポートへ光結合され、マルチコアファイバ14の伝送コア4に光結合される。この後、右回り光は、光入出力デバイス12の4番入出力ポートに導かれる。光入出力デバイス12の4番入出力ポートから出力された右回り光は、シングルモードファイバ13で導光され、光入出力デバイス11の6番入出力ポートへ光結合される。
 右回り光は、これ以降、伝送コア6、光入出力デバイス12の6番入出力ポート、シングルモードファイバ13、光入出力デバイス11の1番入出力ポート、伝送コア1、光入出力デバイス12の1番入出力ポート、シングルモードファイバ13、光入出力デバイス11の7番入出力ポート、伝送コア7、光入出力デバイス12の7番入出力ポート、シングルモードファイバ13、光入出力デバイス11の5番入出力ポート、伝送コア5、光入出力デバイス12の5番入出力ポート、シングルモードファイバ13、光入出力デバイス11の3番入出力ポート、伝送コア3の順に進み、最後に光入出力デバイス12の3番入出力ポートから出力される。
 一方、左回り光(破線の矢印)は、光入出力デバイス12の3番入出力ポートに導かれ、マルチコアファイバ14の伝送コア3に光結合される。この後、左回り光は、光入出力デバイス11の3番入出力ポートに導かれる。光入出力デバイス11の3番入出力ポートから出力された左回り光は、シングルモードファイバ13で導光され、光入出力デバイス12の5番入出力ポートへ光結合され、マルチコアファイバ14の伝送コア5に光結合される。この後、左回り光は、光入出力デバイス11の5番入出力ポートに導かれる。光入出力デバイス11の5番入出力ポートから出力された左回り光は、シングルモードファイバ13で導光され、光入出力デバイス12の7番入出力ポートへ光結合される。
 左回り光は、これ以降、伝送コア7、光入出力デバイス11の7番入出力ポート、シングルモードファイバ13、光入出力デバイス12の1番入出力ポート、伝送コア1、光入出力デバイス11の1番入出力ポート、シングルモードファイバ13、光入出力デバイス12の6番入出力ポート、伝送コア6、光入出力デバイス11の6番入出力ポート、シングルモードファイバ13、光入出力デバイス12の4番入出力ポート、伝送コア4、光入出力デバイス11の4番入出力ポート、シングルモードファイバ13、光入出力デバイス12の2番入出力ポート、伝送コア2の順に進み、最後に光入出力デバイス11の2番入出力ポートから出力される。
 光入出力デバイス11の2番入出力ポートから出力された左回り光と、光入出力デバイス12の3番入出力ポートから出力された右回り光は、デポラライザ25で無偏光化され、この後、光変調器242で位相変調されて、光分岐器241で重ね合わされ干渉する。
 図4は、図3に示すセンシングコイル内で隣接する伝送コアの組み合せを示す仮想光学系の模式図である。
 図4に示す枠中に並べられた数字は、例えば、一番左の(11,2)を例にあげると、光入出力デバイス"11"の"2"番入出力ポートを意味している。図4に示すように、複数の伝送コア1~7の中で、その中心に配置された伝送コア1は、センシングコイル機構10Aにおける光路の中心に位置している。さらに、伝送コア1内の中心点は、光路の長さを2分する。換言すれば、光路の中心点が伝送コア1内にある。この中心点から等しい距離にある隣接する伝送コアの組み合せは、伝送コア6及び伝送コア7、伝送コア4及び伝送コア5、伝送コア2と伝送コア3になる(両矢印の組み合せ)。なお、伝送コア1については、他の伝送コア2~7の全てに隣接している。
 換言すれば、光路の中心点から、右回りに光路に沿って所定の距離を隔てた位置にある伝送コアと、左回りに光路に沿って、前記所定の距離と同じ距離を隔てた位置にある伝送コアとは、マルチコアファイバ14内で隣接している。すなわち、センシングコイル機構10Aでは、右回り光と左回り光とが隣接する伝送コアで、それぞれが逆向きに通過するように構成されている。
 従来の干渉型光ファイバジャイロの中には、センシングコイルとして、シングルモードファイバをコイル状に巻きつけたものがある。このような干渉型光ファイバジャイロでは、シングルモードファイバが1個の伝送コアのみを有するため、シングルモードファイバの全長が光路長と等しくなる。
 このような干渉型光ファイバジャイロでは、角速度の感度を上昇させるために、シングルモードファイバの長さを長くする方法がある。また、このような干渉型光ファイバジャイロでは、シングルモードファイバの温度変化によって生じるジャイロ出力の変動(Shupe効果)を抑制するため、シングルモードファイバを光路長の中心に対して対称に巻回する方法がある。この場合、光路長の中心からみて同距離にある伝送コアが同じ温度変化率になるように対称にシングルモードファイバが巻回されることになる。
 しかし、長いファイバをボビンに巻く作業は、多くの時間を要し、さらに、長いファイバを光路の中心に対して対称的に巻く作業には、さらに多くの時間、手間がかかる。従って、このような手法で製造した干渉型光ファイバジャイロは、高価格になってしまう。
 また、シングルモードファイバを用いた場合、隣接する伝送コア間の距離は、伝送コアを被覆する樹脂層の径(例えば、165μm径)より小さくすることができないため、左回り光が進む伝送コアと右回り光が進む伝送コアとの距離を近づけるのには制限が生じてしまう。このため、伝送コアを隣接させても、それぞれの温度変化率の空間分布が近似せず、温度変化によるジャイロ出力の変動を抑制するのには限界が生じてしまう。
 これに対して、本実施形態では、複数の伝送コア1~7を有するマルチコアファイバ14を用いることで、マルチコアファイバ14の長さに伝送コアの数を乗じた長さが実質的なセンシングコイル15の長さになる。従って、シングルモードファイバのみで構成されたセンシングコイルと同じ光路長を得るには、シングルモードファイバのみで構成されたセンシングコイルの長さの1/(伝送コアの数)の長さのマルチコアファイバ14を用いることで足り、センシングコイル15を形成するための巻き作業が大幅に簡略化される。
 さらに、本実施形態では、マルチコアファイバ14を光路長の中心に対して対称に巻かずとも、センシングコイル機構10Aでは、右回り光と左回り光とが隣接する伝送コアを通過する。
 これにより、左回り光が進む伝送コアと右回り光が進む伝送コアとの距離が近づき、それぞれの温度変化率の空間分布が近似する。この結果、センシングコイル15に温度変化が生じても、ジャイロ出力の変動が抑制され、高精度に角速度が検知することができる。
 特に、マルチコアファイバ14では、隣接する伝送コア間の距離は、例えば、50μm以下である。一例として、その距離は、45μmであるが、この数値に限らない。このような短い間隔であれば、左回り光が進む伝送コアと右回り光が進む伝送コアとの距離が近づき、それぞれの温度変化率の空間分布がより近似することになる。
 (変形例1)
 図5は、本実施形態のセンシングコイル内に光が伝送される別の様子を示す仮想光学系の模式図である。
 図5に示すセンシングコイル機構10Bでは、マルチコアファイバ14で中心に配置された伝送コア1を光路として用いず、偶数個の伝送コア2~7が光路として使用されたマルチコアファイバ14が示されている。センシングコイル機構10Bでは、偶数個の伝送コア2~7により光路が形成される。なお、伝送コア1については、マルチコアファイバ14から取り除いてもよい。
 センシングコイル機構10Bでは、光路の中心点がセンシングコイル15内に存在せず、中心点が光入出力デバイス11の7番入出力ポートと、光入出力デバイス12の6番入出力ポートとを光結合するシングルモードファイバ13内にある。隣接する伝送コアの組み合せは、センシングコイル機構10Aと同様である。
 例えば、図6は、図5に示すセンシングコイル内で隣接する伝送コアの組み合せを示す仮想光学系の模式図である。
 光路の中心点から等しい距離にある隣接する伝送コアの組み合せとしては、伝送コア6及び伝送コア7、伝送コア4及び伝送コア5、伝送コア2及び伝送コア3、である。
 このようなセンシングコイル機構10Bであっても、センシングコイル機構10Aと同じ効果を奏する。特に、センシングコイル機構10Bにおいては、マルチコアファイバ14で中心に配置された伝送コア1を用いないことから、右回り光と左回り光とが常時、隣接する伝送コアを通過することになり、ジャイロ出力の変動がさらに抑制され、さらに高精度に角速度が検知することができる。
 (変形例2)
 マルチコアファイバ14においては、光路の中心点に対して対称になるようにボビン16にコイル状に巻回されてもよい。このような対称巻きを行うことにより、隣接する伝送コア間の空間近接性の他に、マルチコアファイバ14間の空間近接性という2つの対称性がセンシングコイル機構に付与され、より高精度に角速度を計測することができる。
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。また、各実施形態は、独立の形態とは限らず、技術的に可能な限り複合することができる。
 1~7…伝送コア
 10A、10B…センシングコイル機構
 11、12…光入出力デバイス
 13…シングルモードファイバ
 14…マルチコアファイバ
 15…センシングコイル
 16…ボビン
 21…光源
 22…光カプラ
 23…ポラライザ
 241…光分岐器
 242…光変調器
 25…デポラライザ
 26…受光器
 31…信号処理回路
 100…干渉型光ファイバジャイロ

Claims (9)

  1.  左回り光と右回り光との光干渉により角速度を検出する干渉型光ファイバジャイロにおいて、
     複数の伝送コアを有するマルチコアファイバと、前記複数の伝送コアのうち、少なくとも第1の伝送コア及び第2の伝送コアのそれぞれを光結合して1本の光路を形成するマルチコアファイバ光路結合部とを有するセンシングコイル機構を具備する干渉型光ファイバジャイロ。
  2.  請求項1に記載された干渉型光ファイバジャイロにおいて、
     前記マルチコアファイバ光路結合部は、前記第1の伝送コア及び前記第2の伝送コアのそれぞれを光結合する光入出力デバイスと、前記光入出力デバイスの前記第1の伝送コアからの光入出力と前記第2の伝送コアからの光入出力とを結合して1本の光路を形成するシングルモードファイバとを有する
     干渉型光ファイバジャイロ。
  3.  左回り光と右回り光との光干渉により角速度を検出する干渉型光ファイバジャイロにおいて、
     光源と、
     前記光源から放出された光を分岐する第1光分岐器と、
     前記第1光分岐器によって分岐された光の偏向を単一偏向にするポラライザと、
     前記ポラライザによって単一偏向にされた光を2つに分岐する第2光分岐器と、
     前記第2光分岐器によって分岐された、それぞれの光の位相を変調する光変調器と、
     複数の伝送コアを有するマルチコアファイバと、前記マルチコアファイバの任意の伝送コア間を光結合する光入出力デバイスとを有し、前記マルチコアファイバ及び前記光入出力デバイスによって1本の光路が形成され、前記光変調器によって位相変調されたそれぞれの前記光が前記左回り光と前記右回り光として前記光路内を逆向きに進行するセンシングコイル機構と、
     前記センシングコイル機構から放出された、前記左回り光と右回り光とが前記第2光分岐器を介して干渉する干渉光を受光する受光器と
     を具備する干渉型光ファイバジャイロ。
  4.  請求項1~3のいずれか1つに記載された干渉型光ファイバジャイロにおいて、
     前記光路の長さを2分する前記光路の中心点から、右回りに前記光路に沿って第1の距離を隔てた位置にある伝送コアと、左回りに前記光路に沿って前記第1の距離を隔てた位置にある伝送コアとが前記マルチコアファイバ内で隣接している
     干渉型光ファイバジャイロ。
  5.  請求項1~4のいずれか1つに記載された干渉型光ファイバジャイロにおいて、
     前記複数の伝送コアは、前記マルチコアファイバの中心に位置する中心コアと、前記中心コアの周りに配置された偶数個の周辺コアとを有し、
     前記中心コア内に前記光路の中心点がある
     干渉型光ファイバジャイロ。
  6.  請求項1~4のいずれか1つに記載された干渉型光ファイバジャイロにおいて、
     前記複数の伝送コアは、偶数個のコアを有し、
     前記偶数個のコアにより前記光路が形成される
     干渉型光ファイバジャイロ
  7.  請求項1~6のいずれか1つに記載された干渉型光ファイバジャイロにおいて、
     前記マルチコアファイバが前記光路の中心点に対して対称になるようにコイル状に巻回された
     干渉型光ファイバジャイロ。
  8.  請求項1~7のいずれか1つに記載された干渉型光ファイバジャイロにおいて、
     第2光分岐器、前記ポラライザ、及び前記光変調器が1つの基板上に集積され、前記基板上に光集積回路が構成されている
     干渉型光ファイバジャイロ。
  9.  左回り光と右回り光との光干渉により角速度を検出する干渉型光ファイバジャイロに組み込まれるセンシングコイル機構であって、
     複数の伝送コアを有するマルチコアファイバと、前記複数の伝送コアのうち、少なくとも第1の伝送コア及び第2の伝送コアのそれぞれを光結合して1本の光路を形成するマルチコアファイバ光路結合部とを有するセンシングコイル機構。
PCT/JP2019/028146 2018-07-25 2019-07-17 干渉型光ファイバジャイロ及びセンシングコイル機構 WO2020022157A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19840889.0A EP3828500A4 (en) 2018-07-25 2019-07-17 INTERFEROMETRIC FIBER OPTIC GYROSCOPE AND SENSING COIL MECHANISM
US17/261,726 US20210341288A1 (en) 2018-07-25 2019-07-17 Interferometric optical fiber gyroscope and sensing coil mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-139195 2018-07-25
JP2018139195A JP7216951B2 (ja) 2018-07-25 2018-07-25 干渉型光ファイバジャイロ及びセンシングコイル機構

Publications (1)

Publication Number Publication Date
WO2020022157A1 true WO2020022157A1 (ja) 2020-01-30

Family

ID=69181526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028146 WO2020022157A1 (ja) 2018-07-25 2019-07-17 干渉型光ファイバジャイロ及びセンシングコイル機構

Country Status (4)

Country Link
US (1) US20210341288A1 (ja)
EP (1) EP3828500A4 (ja)
JP (1) JP7216951B2 (ja)
WO (1) WO2020022157A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021210994A1 (en) * 2020-01-23 2022-09-15 4S - Silversword Software And Services, LLC Multicore fiber optic gyro
KR20240076224A (ko) * 2022-11-23 2024-05-30 삼성전자주식회사 무선 전력 전송 장치 및 그 제어 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037972A1 (en) * 2008-02-14 2011-02-17 Bergh Ralph A Interferometer employing a multi-waveguide optical loop path and fiber optic rotation rate sensor employing same
CN103047980A (zh) * 2012-12-05 2013-04-17 北京大学 再入式光纤陀螺
JP2015166731A (ja) * 2013-12-02 2015-09-24 ハネウェル・インターナショナル・インコーポレーテッド マルチコア伝送ファイバを備えた共振器光ファイバ・ジャイロスコープ
JP5870426B2 (ja) 2012-03-04 2016-03-01 国立研究開発法人情報通信研究機構 マルチコアファイバ結合装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331404A (en) * 1992-11-30 1994-07-19 The United States Of America As Represented By The Secretary Of The Navy Low noise fiber gyroscope system which includes excess noise subtraction
US6801319B2 (en) * 2002-01-03 2004-10-05 Honeywell International, Inc. Symmetrical depolarized fiber optic gyroscope
FR2948994B1 (fr) * 2009-08-06 2011-08-26 Ixsea Interferometre a fibre optique a forte pmd en regime couple, gyroscope a fibre optique (fog) a forte pmd et systeme de navigation inertielle comprenant un tel gyroscope
WO2011140534A2 (en) * 2010-05-07 2011-11-10 Bergh Ralph A Method and apparatus for multiplexing multiple sagnac interferometers with single input for source light

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037972A1 (en) * 2008-02-14 2011-02-17 Bergh Ralph A Interferometer employing a multi-waveguide optical loop path and fiber optic rotation rate sensor employing same
US8497994B2 (en) 2008-02-14 2013-07-30 Ralph A. Bergh Interferometer employing a multi-waveguide optical loop path and fiber optic rotation rate sensor employing same
JP5870426B2 (ja) 2012-03-04 2016-03-01 国立研究開発法人情報通信研究機構 マルチコアファイバ結合装置
CN103047980A (zh) * 2012-12-05 2013-04-17 北京大学 再入式光纤陀螺
JP2015166731A (ja) * 2013-12-02 2015-09-24 ハネウェル・インターナショナル・インコーポレーテッド マルチコア伝送ファイバを備えた共振器光ファイバ・ジャイロスコープ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3828500A4

Also Published As

Publication number Publication date
EP3828500A1 (en) 2021-06-02
JP2020016525A (ja) 2020-01-30
JP7216951B2 (ja) 2023-02-02
US20210341288A1 (en) 2021-11-04
EP3828500A4 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
US9103676B2 (en) Interferometer employing a multi-waveguide optical loop path and fiber optic rotation rate sensor employing same
US7973938B2 (en) Bias-reduced fiber optic gyroscope with polarizing fibers
EP3141865B1 (en) Single-pump cascaded stimulated brillouin scattering (sbs) ring laser gyro
US9395184B2 (en) Resonant fiber optic gyroscope with polarizing crystal waveguide coupler
US10145727B2 (en) Method and structure for diminishing signal interference of transmission path of optical fibre interference system
US9441969B2 (en) Resonant fiber optic gyroscopes with multi-core transport fiber
US20110170109A1 (en) Photonic crystal based sensor or modulator
WO2020022157A1 (ja) 干渉型光ファイバジャイロ及びセンシングコイル機構
IT202000005710A1 (it) Semilavorato per la realizzazione di un giroscopio e giroscopio comprendente il semilavorato.
US10041816B2 (en) Sagnac-ring fiber-optic interferometric system with Rayleigh length spaced polarizer
EP2230484A1 (en) Depolarizer for a fiber optic gyroscope (fog) using high birefringence photonic crystal fiber
JP2010032520A (ja) 光ファイバジャイロスコープ
US9518826B2 (en) Interferometric measurement system with optical fibre and inertial guidance or navigation system including such an interferometric measurement system
CN105674975B (zh) 一种单轴光纤陀螺仪
CN103047980A (zh) 再入式光纤陀螺
JP2013253922A (ja) 光電流センサ
JP2016053565A (ja) 干渉型光ファイバセンサシステム及び干渉型光ファイバセンサヘッド
JP2004309466A (ja) 光ファイバジャイロ
CN107607106A (zh) 一种可调谐光纤陀螺仪
JPH0658227B2 (ja) 光フアイバジヤイロ
JP2006153540A (ja) サニャック干渉計型応力センサ
JPS62291514A (ja) 光フアイバ回転センサ
JPH05118863A (ja) 光フアイバジヤイロ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019840889

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019840889

Country of ref document: EP

Effective date: 20210225