WO2020022052A1 - 発電情報出力方法、発電情報出力装置及びプログラム - Google Patents

発電情報出力方法、発電情報出力装置及びプログラム Download PDF

Info

Publication number
WO2020022052A1
WO2020022052A1 PCT/JP2019/027231 JP2019027231W WO2020022052A1 WO 2020022052 A1 WO2020022052 A1 WO 2020022052A1 JP 2019027231 W JP2019027231 W JP 2019027231W WO 2020022052 A1 WO2020022052 A1 WO 2020022052A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
power generation
specific value
amount
threshold
Prior art date
Application number
PCT/JP2019/027231
Other languages
English (en)
French (fr)
Inventor
幸太郎 坂田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020532272A priority Critical patent/JPWO2020022052A1/ja
Publication of WO2020022052A1 publication Critical patent/WO2020022052A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present disclosure relates to a power generation information output method, a power generation information output device, and a program.
  • the solar power generation system of Patent Literature 1 compares a predicted power generation amount based on the average solar radiation with an integrated power generation amount based on the generated power, and a difference between the integrated power generation according to the fine weather ratio is caused by a change in weather. It is determined whether the failure is due to a failure of the solar power generation device.
  • the estimated amount of generated power is calculated based only on the average amount of solar radiation.
  • a weather condition such as a large amount of cloud or a large amount of snow
  • the present disclosure provides a power generation information output method, a power generation information output device, and a program that can output information that accurately determines whether a decrease in power generation is due to weather or a failure or deterioration of power generation equipment. .
  • a power generation information output method is directed to an estimated value based on at least the amount of solar radiation and the amount of cloud, and the first estimated value or the An estimated value obtaining step of obtaining a first specific value that is a second estimated value of the power sale amount based on the first estimated value; and a first actual value or a first actual value of the power generation amount of the power generation equipment in the predetermined period.
  • the power generation information output device is an estimated value based on at least the amount of solar radiation and the amount of cloud, and the first estimated value or the An estimated value acquisition unit that acquires a first specific value that is a second estimated value of the power sale amount based on the first estimated value, and a first actual value or a first actual value of the electric power generation amount of the power generation equipment in the predetermined period.
  • An actual value acquiring unit that acquires a second specific value that is a second actual value of the power sale amount, the first specific value acquired by the estimated value acquiring unit, and the second specific value acquired by the actual value acquiring unit.
  • Output unit that outputs information , Comprising a.
  • a program according to an embodiment of the present disclosure causes a computer to execute a power generation information output method.
  • the power generation information output method and the like of the present disclosure it is possible to output information in which it is accurately determined whether the decrease in the amount of power generation is due to the weather or a failure or deterioration of the power generation equipment.
  • FIG. 1 is a block diagram illustrating a power generation system according to the first embodiment.
  • FIG. 2 is a flowchart illustrating an operation of the power generation information output device according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating a mode of presentation by the presentation device according to the first embodiment.
  • FIG. 4A is a flowchart illustrating an operation of the power generation information output device according to the first modification of the first embodiment.
  • FIG. 4B is a flowchart illustrating the operation of the power generation information output device according to the second modification of the first embodiment.
  • FIG. 5 is a block diagram illustrating a power generation system according to the second embodiment.
  • FIG. 6 is a flowchart illustrating an operation of the power generation information output device according to the second embodiment.
  • FIG. 7 is a schematic diagram illustrating a mode of presentation by a presentation device according to the second embodiment.
  • FIG. 8 is a flowchart illustrating an operation of the power generation information output device according to a modification of the second embodiment.
  • FIG. 1 is a block diagram illustrating a power generation system 1 according to the first embodiment.
  • the power generation information output device 3 of the power generation system 1 outputs the actual value of the photovoltaic power generation device 7 during a predetermined period or the amount of power sold based on this actual value (hereinafter, the actual value of the generated power (power generation The amount of power) or the amount of power sold is referred to as a specific value.) Is compared with a specific value estimated in a predetermined period, or with a specific value in the same period in the past, thereby actually generating or selling power. The information for judging the validity of the specific value which is the actual value is output.
  • the power generation information output device 3 determines whether the solar power generation device 7 has failed or has deteriorated, or Determine if this is an effect. As a result of the determination, the power generation information output device 3 has information indicating that there is a possibility of failure or deterioration of the photovoltaic power generation device 7, and the possibility of failure or deterioration of the photovoltaic power generation device 7 is low. As a result, information indicating that the power generation amount has decreased is output to the presentation device 9.
  • the possibility of failure or deterioration of the solar power generation device 7 means that the possibility of failure or deterioration of the solar power generation device 7 is high.
  • the solar power generation device 7 is an example of a power generation facility.
  • the power generation information output device 3 is connected to a power generation amount estimation device 5, a solar power generation device 7, and a presentation device 9 so as to be able to communicate with each other.
  • the power generation amount estimation device 5 is a device for estimating the power generation amount of the solar power generation device 7. Specifically, the power generation amount estimation device 5 acquires respective information indicating the current amount of solar radiation, cloudiness, humidity, and snowfall, and calculates a specific value that is an estimated value at the current time by using the information. . Specifically, the power generation amount estimation device 5 indicates a first estimated value of the power generation amount of the photovoltaic power generation device 7 in a predetermined period or a first specific value that is a second estimated value of the power sale amount based on the first estimated value. The information is output to the output unit 35. The power generation amount estimating device 5 acquires respective information indicating the amount of solar radiation, the amount of cloud, the humidity, and the amount of snow from an external server such as the Meteorological Agency.
  • the power generation amount estimation device 5 can also estimate the power generation amount using the solar radiation amount, cloud amount, humidity, and snow amount at a certain point in the past, and the solar radiation amount, cloud amount, humidity, and future weather data.
  • the amount of power generation can also be estimated using the amount of snow.
  • the estimated power generation amount is a power generation amount in a predetermined period, for example, one day, one week, one month, etc., but is not limited to these periods.
  • the first estimated value and the second estimated value are estimated values based on the amount of insolation, the amount of cloud, the humidity, and the amount of snow, but if the values are calculated based on at least the amount of insolation and the amount of cloud. Good.
  • the humidity and the amount of snow are not essential components for calculating the first estimated value and the second estimated value.
  • the power generation amount estimation device 5 acquires information indicating the light receiving area of the solar power generation device 7 and calculates the first estimation value and the second estimation value in consideration of the light reception area of the solar power generation device 7. For example, the power generation amount estimation device 5 acquires information indicating the light receiving area of the solar power generation device 7 from the solar power generation device 7 or obtains the information by a user input.
  • the photovoltaic power generator 7 is a power generator that receives sunlight and generates power using a power generation panel.
  • the photovoltaic power generation device 7 has a second specific value that is a second actual value of the power generation amount based on the actual power generation amount (hereinafter, referred to as a first actual value) or the first actual value generated by the own device during a predetermined period. Is output to the actual value acquisition unit 32.
  • the presentation device 9 uses the first specific value, which is an estimated value of the power generation amount or the power sale amount of the photovoltaic power generation device 7 that fluctuates due to factors such as weather conditions in a predetermined period, and the actual value of the photovoltaic power generation device 7. A certain second specific value or the like is presented. In addition, when the second specific value is smaller than the first specific value, the presentation device 9 indicates information indicating a possibility of failure or deterioration of the photovoltaic power generation device 7, and a possibility of failure or deterioration of the photovoltaic power generation device 7. Information indicating that power generation is low due to poor weather and the weather.
  • the presentation device 9 is, for example, a personal computer, a smartphone, a tablet terminal, or the like having a display panel.
  • the power generation information output device 3 includes an estimated value acquisition unit 31, an actual value acquisition unit 32, a processing unit 33, and an output unit 35.
  • the estimated value acquisition unit 31 acquires information indicating the first specific value output by the power generation amount estimation device 5. When acquiring the information indicating the first specific value, the estimated value acquiring unit 31 outputs the information to the processing unit 33.
  • the actual value acquisition unit 32 acquires information indicating the second specific value output by the power generation amount estimation device 5. Upon acquiring the information indicating the second specific value, the actual value acquisition unit 32 outputs the information to the processing unit 33.
  • the processing unit 33 calculates a difference value between the first specific value and the second specific value, and determines whether a ratio of the difference value to the third specific value that is the first specific value or the second specific value is larger than a predetermined value. Is determined. That is, the processing unit 33 compares the power generation amount that is the actual value of the power generation in the predetermined period with the estimated value of the power generation amount.
  • the processing unit 33 outputs information indicating that there is a possibility of failure or deterioration of the photovoltaic power generation device 7 according to the ratio of the difference value to the third specific value, Alternatively, information indicating that the possibility of deterioration is low and the amount of power generation is reduced due to the weather is output to the output unit 35.
  • the detailed processing of the processing unit 33 will be described later.
  • the output unit 35 is a communication interface that outputs the information output by the processing unit 33 to the presentation device 9.
  • FIG. 2 is a flowchart illustrating the operation of the power generation information output device 3 according to the first embodiment. It is assumed that the first specific value in FIG. 2 is an estimated value calculated using all information indicating the amount of solar radiation, the amount of cloud, the humidity, and the amount of snow.
  • the power generation amount estimation device 5 acquires information indicating the amount of solar radiation, the amount of cloud, the humidity, and the amount of snow from an external server such as the Japan Meteorological Agency, and uses these information for a predetermined period.
  • a first specific value that is an estimated value is calculated.
  • the amount of power generation tends to increase as the amount of solar radiation increases, and the first specific value tends to decrease if at least one of the conditions of a large amount of cloud, a large amount of snow, and a high humidity is satisfied. For example, if the amount of snow is large even if the amount of solar radiation is large, the amount of light received by the photovoltaic power generator 7 is reduced, so that the amount of generated power is reduced.
  • the power generation amount estimating device 5 calculates the first specific value from the correlation using these. As described above, the power generation amount estimating apparatus 5 sets the power generation amount estimated from the solar radiation amount based on the information obtained by combining the factors (cloud amount, humidity, and snow amount) that reduce the estimated power generation amount. The first specific value is calculated, and information indicating the first specific value is output.
  • the estimated value acquisition unit 31 of the power generation information output device 3 acquires information indicating the first specific value from the power generation amount estimation device 5 (S11: an example of an estimated value acquisition step) and outputs the information to the processing unit 33.
  • the amount of solar radiation means the amount of sunshine per unit area and unit time in a plane perpendicular to the direction of incidence of sunlight at the vertical top (surface) of the atmosphere covering the surface of the earth when the earth is at an average distance from the sun.
  • Means the amount of radiant energy received from The cloud cover is the apparent ratio of the entire sky covered by clouds.
  • the photovoltaic power generation device 7 generates, for example, in units of one month (predetermined period), the actual power generation amount (first actual value) generated by itself, or the amount of power sold based on the first actual value (second actual value). ) Is calculated.
  • the photovoltaic power generator 7 outputs information indicating the second specific value to the actual value acquisition unit 32.
  • the performance value acquisition unit 32 acquires information indicating the second specific value (S12: an example of a performance value acquisition step) and outputs the information to the processing unit 33.
  • the processing unit 33 acquires information indicating the first specific value from the estimated value acquiring unit 31 and information indicating the second specific value from the actual value acquiring unit 32.
  • the processing unit 33 calculates a difference value between the first specific value and the second specific value, for example, a value (absolute value) obtained by subtracting the second specific value from the first specific value.
  • the processing unit 33 determines whether the ratio of the calculated difference value to the third specific value is larger than the second threshold value (S13). For example, if the ratio of this difference value to the third specific value (for example, 33% in FIG. 3 described later) is larger than the second threshold value, the difference between the estimated value and the actual value is large, and the solar power generation device 7 It means that it is not generating electricity.
  • the second threshold is, for example, about 50% of the first specific value.
  • the processing unit 33 outputs the information indicating that there is a possibility of failure of the photovoltaic power generator 7. Is output to the presentation device 9 (S16: an example of an output step).
  • the presentation device 9 acquires this information via the output unit 35, and presents information indicating that there is a possibility of failure of the photovoltaic power generator 7.
  • the processing unit 33 determines that the ratio of the differential value to the third specific value is larger than the first threshold value and It is determined whether the value is equal to or less than the threshold (S14). That is, if the ratio of the difference value to the third specific value is larger than the first threshold value and up to the second threshold value, the difference between the estimated value and the actual value is medium, and the photovoltaic power generator 7 Not only means that it is generating power.
  • the first threshold is smaller than the second threshold, for example, about 20%.
  • the processing unit 33 may determine that the photovoltaic power generator 7 is degraded.
  • Information indicating the presence is output to the presentation device 9 (S15: an example of an output step).
  • the presentation device 9 acquires this information via the output unit 35 and presents information indicating that there is a possibility of deterioration of the photovoltaic power generator 7.
  • Deterioration of the photovoltaic power generator 7 means aging of components provided in the photovoltaic power generator 7 or aging of the photovoltaic power generator 7 itself.
  • the processing unit 33 returns the process to Step S11.
  • FIG. 3 is a schematic diagram illustrating a mode of presentation by the presentation device 9 according to the first embodiment.
  • the presentation device 9 displays the power generation amount of this month (first actual value), the power sales amount of this month (second actual value), and the previous year with respect to the first actual value of this month (1882.1 kWh) per month.
  • the presentation device 9 outputs information indicating the possibility of failure or deterioration of the photovoltaic power generation device 7 (indicated by a two-dot chain line).
  • the enclosed portion H1) is presented. Thereby, the user can recognize, via the presentation device 9, the cause of the decrease of the first actual value with respect to the first estimated value.
  • FIG. 3 is an example, and the present invention is not limited thereto.
  • the power generation information output device 3 ends the processing of FIG. 2 and repeats the above processing.
  • the power generation information output method uses the first estimated value or the first estimated value of the power generation amount of the An estimated value obtaining step of obtaining a first specific value that is a second estimated value of the power sale amount based on the value, and a first actual value or a power sale amount of the power generation amount of the photovoltaic power generator 7 during a predetermined period.
  • the first specific value more accurately estimated based on the amount of solar radiation and the amount of cloud that causes a decrease in the amount of power generation or the amount of power sold in the predetermined period is obtained, and the actual value of the photovoltaic power generator 7 is used.
  • a certain second specific value can be obtained. Therefore, the ratio of the difference value between the first specific value and the second specific value to the third specific value can be calculated more accurately.
  • the power generation information output method it is possible to output information that accurately determines whether the decrease in the amount of power generation is due to the weather or a failure or deterioration of the solar power generation device 7. This allows the user to recognize the cause of the decrease in the amount of power generation. As a result, unnecessary parts replacement, repair, equipment replacement, and the like are less likely to occur, so that it is possible to suppress an increase in cost of the photovoltaic power generator 7.
  • the power generation information output device 3 is an estimated value based on at least the amount of solar radiation and the amount of cloud, and outputs the first estimated value or the first estimated value of the amount of power generated by the An estimated value acquisition unit 31 that acquires a first specific value that is a second estimated value of the power sales amount based on the first actual value or the first actual value of the electric power generation amount of the photovoltaic power generator 7 during a predetermined period.
  • a result value acquiring unit 32 that acquires a second specific value that is a second actual value, a first specific value acquired by the estimated value acquiring unit 31, and a second specific value acquired by the actual value acquiring unit 32.
  • the program according to the present embodiment causes a computer to execute the power generation information output method.
  • the estimated value obtaining step includes, in addition to the amount of solar radiation and the amount of cloud, a first specific value which is an estimated value in consideration of at least one weather condition of humidity and snowfall. get.
  • the first specific value which is a more accurate estimated value, is obtained in order to take into account not only the amount of cloud that causes a decrease in the amount of generated power or the amount of sold power but also the weather conditions of at least one of the humidity and the amount of snow. can do.
  • this power generation information output method it is possible to output more accurate information indicating that there is a possibility of failure or deterioration of the photovoltaic power generator 7. As a result, unnecessary parts replacement, repair, equipment replacement, etc. are less likely to occur.
  • the estimated value acquiring unit 31 is the first specified value which is an estimated value in consideration of at least one weather condition of humidity and snowfall in addition to solar radiation and cloudiness. Get the value.
  • This power generation information output device 3 also has the same operation and effect as the above-described power generation information output method.
  • the threshold is configured by a first threshold and a second threshold higher than the first threshold. Then, the output step indicates that, when the ratio of the difference value to the third specific value is larger than the first threshold value and equal to or smaller than the second threshold value, there is a possibility that the photovoltaic power generator 7 is deteriorated.
  • the information is output, and when the ratio of the difference value to the third specific value is larger than the second threshold value, information indicating that there is a possibility of failure of the photovoltaic power generator 7 is output.
  • the ratio of the difference value to the third specific value is large, that is, if the ratio is larger than the second threshold value, it is possible to output information indicating that there is a possibility of failure of the photovoltaic power generator 7, and to output the difference value.
  • the ratio with respect to the third specific value is medium, that is, greater than the first threshold and equal to or less than the second threshold, information indicating that there is a possibility of deterioration of the photovoltaic power generator 7 can be output. Therefore, the user can recognize the cause of the decrease in the amount of power generation, and can take appropriate measures for the solar power generation device 7. As a result, unnecessary parts replacement, repair, equipment replacement, and the like are less likely to occur, so that an increase in the cost of the solar power generation device 7 can be further suppressed.
  • the threshold is configured by the first threshold and the second threshold higher than the first threshold. Then, when the ratio of the difference value to the third specific value is larger than the first threshold and equal to or less than the second threshold, the output unit 35 indicates that the photovoltaic power generator 7 may be deteriorated. When the ratio of the difference value to the third specific value is larger than the second threshold value, information indicating that there is a possibility of failure of the photovoltaic power generator 7 is output.
  • This power generation information output device 3 also has the same operation and effect as the above-described power generation information output method.
  • Modification 1 of Embodiment 1 Other configurations in this modification are the same as those in the first embodiment, and the same configurations are denoted by the same reference numerals and detailed description of the configurations will be omitted. Further, in the present modified example, a detailed description of the same processing as in the first embodiment will be appropriately simplified or omitted.
  • Steps S13, S14, S15, and S16 as shown in FIG. 2 in the first embodiment are not essential components. Instead of the processing of steps S13, S14, S15, and S16 of FIG. 2, the processing of S113 and S115 of FIG. 4A may be used.
  • the operation of the power generation system 1 will be described with reference to FIG. 4A.
  • FIG. 4A is a flowchart illustrating an operation of the power generation information output device 3 according to the first modification of the first embodiment.
  • step S11 the estimated value acquiring unit 31 acquires information indicating the first specific value
  • step S12 the actual value acquiring unit 32 acquires information indicating the second specific value.
  • the information indicating the value and the second specific value is output to the processing unit 33.
  • the processing unit 33 calculates a difference value between the first specific value and the second specific value based on the first specific value and the second specific value acquired in steps S11 and S12. Then, the processing unit 33 determines whether the ratio of the calculated difference value to the third specific value is larger than the first threshold value (S113).
  • the processing unit 33 sends information indicating that there is a possibility of failure or deterioration of the photovoltaic power generator 7.
  • Output to the presentation device 9 (S115: an example of an output step).
  • the presentation device 9 acquires this information via the output unit 35 and presents information indicating that there is a possibility of failure or deterioration of the photovoltaic power generator 7.
  • the power generation information output device 3 ends the processing of FIG. 4A and repeats the above processing.
  • the processing unit 33 returns the process to step S11.
  • FIG. 4B is a flowchart illustrating the operation of the power generation information output device 3 according to the second modification of the first embodiment.
  • step S11 the estimated value obtaining unit 31 obtains information indicating the first specific value
  • step S12 the actual value obtaining unit 32 obtains information indicating the second specific value.
  • the information indicating the value and the second specific value is output to the processing unit 33.
  • the processing unit 33 determines whether or not the difference value is smaller than a predetermined difference value (S121).
  • the processing unit 33 If the difference value is not smaller than the predetermined difference value (No in S121), the processing unit 33 returns the processing to step S11.
  • the processing unit 33 determines whether the ratio of the difference value to the third specific value is equal to or less than the first threshold (S122). .
  • the difference value is smaller than the predetermined difference value, it means that the actual value does not deviate so much from the estimated value.
  • the processing unit 33 If the ratio of the difference value to the third specific value is greater than the first threshold value (No in S122), the processing unit 33 returns the processing to step S11.
  • the processing unit 33 has a low possibility of failure or deterioration of the photovoltaic power generator 7, and the power generation amount depends on the weather.
  • Is output to the output unit 35 (S123: an example of an output step).
  • the presentation device 9 acquires this information via the output unit 35, and presents information indicating that the possibility of failure or deterioration of the photovoltaic power generation device 7 is low, and the power generation amount is reduced due to the weather.
  • the output step includes, when the difference value between the second specified value and the first specified value is smaller than a predetermined difference value, the third value of the difference value.
  • a threshold value first threshold value in the present modification
  • the photovoltaic power generator 7 may fail or deteriorate. It means that the power generation amount has decreased due to the weather without making a determination. Therefore, the possibility of failure or deterioration of the solar power generation device 7 is low, and information indicating that the amount of power generation has been reduced due to weather can be output.
  • the output unit 35 when the difference value between the second specified value and the first specified value is smaller than a predetermined difference value, the output unit 35 outputs the third difference value.
  • a threshold value first threshold value in the present modification
  • the power generation information output device 3 also has the same operation and effect as the above-described power generation information output method.
  • FIG. 5 is a block diagram illustrating a power generation system 200 according to the second embodiment.
  • the power generation information output device 203 is a third actual value indicating the amount of power generated by the photovoltaic power generator 7 before the previous year or a fourth actual value of the power sales amount based on the third actual value.
  • the system further includes a past value acquisition unit 34 for acquiring the four specified values.
  • the past value acquisition unit 34 acquires, from the storage control device 11, information indicating a fourth specific value indicating the amount of power generation before the previous year, which is the actual value of the power generation by the photovoltaic power generation device 7.
  • the past value acquisition unit 34 outputs information indicating the acquired fourth specific value to the processing unit 33.
  • This storage control device 11 has a database that stores past actual values generated by the solar power generation device 7.
  • the storage control device 11 may be mounted on the power generation information output device 203, or may be another device different from the power generation information output device 203.
  • the processing unit 33 when the predetermined period of the current year and the predetermined period before the previous year indicated by the fourth specific value correspond to each other, the processing unit 33 sets the ratio of the second specific value to the fourth specific value to the third threshold value. It is determined whether it is smaller than. The processing unit 33 further determines whether a difference value between the second specified value and the first specified value or a ratio of the difference value to the third specified value (also referred to as a difference rate) is equal to or less than a first threshold value. That is, the processing unit 33 compares the power generation amount that is the actual value and the estimated value of the power generation amount in the predetermined period.
  • the processing unit 33 outputs, to the output unit, information indicating that the possibility of failure or deterioration of the photovoltaic power generator 7 is low and the amount of power generation is reduced due to the weather according to the ratio of the difference value to the third specific value. 35.
  • the detailed processing of the processing unit 33 will be described later.
  • FIG. 6 is a flowchart illustrating an operation of the power generation information output device 203 according to the second embodiment.
  • step S11 the estimated value obtaining unit 31 obtains information indicating the first specific value
  • step S12 the actual value obtaining unit 32 obtains information indicating the second specific value.
  • the information indicating the value and the second specific value is output to the processing unit 33.
  • the past value acquisition unit 34 of the power generation information output device 203 acquires information indicating the fourth specific value from the storage control device 11 (S21: an example of a past value acquisition step) and outputs the information to the processing unit 33. Specifically, the past value acquiring unit 34 sends the storage control device 11 a command to the storage control device 11 to acquire information indicating the fourth specific value in a predetermined period before the previous year corresponding to the predetermined period in the current year indicated by the second specific value. Then, a request for information indicating the fourth specific value is made.
  • the storage control device 11 extracts the fourth specific value stored in the database, and outputs information indicating the extracted fourth specific value to the power generation information output device 203, so that the past
  • the value acquisition unit 34 acquires this fourth specific value. For example, if the predetermined period of the current year indicated by the second specific value is X month (January), the past value acquiring unit 34 calculates the fourth specific value of X month (January) before the previous year. Get the information shown.
  • the processing unit 33 determines whether the ratio of the second specific value to the fourth specific value is smaller than the third threshold (S22). That is, it is determined whether or not the past actual value before the previous year is close to or the same as the actual value of this year.
  • the processing unit 33 If the ratio of the second specific value to the fourth specific value is equal to or greater than the third threshold value (No in S22), the processing unit 33 returns the processing to step S11.
  • the processing unit 33 determines whether the ratio of the difference value to the third specific value is equal to or less than the first threshold value. Is determined (S23).
  • the processing unit 33 If the ratio of the difference value to the third specific value is larger than the first threshold value (No in S23), the processing unit 33 returns the processing to step S11.
  • the processing unit 33 has a low possibility of failure or deterioration of the photovoltaic power generator 7, and the power generation amount depends on the weather.
  • Is output to the output unit 35 (S24: an example of an output step).
  • the presentation device 9 acquires this information via the output unit 35, and presents information indicating that the possibility of failure or deterioration of the photovoltaic power generation device 7 is low, and the power generation amount is reduced due to the weather.
  • FIG. 7 is a schematic diagram illustrating a mode of presentation by the presentation device 9 according to the second embodiment.
  • the presentation device 9 presents the ratio of the first actual value (2614.8 kWh) of the same month last year to the first actual value (1882.1 kWh) of this month. Since the ratio of the first actual value of this month is 72% of the same month of the previous year, it means that the power generation amount is greatly reduced compared to the same month of the previous year (meaning that it is smaller than the third threshold value). In addition, the ratio of the difference between the first estimated value of this month (1804.2 kWh) and the first actual value of this month to the first estimated value of this month or the first actual value of this month is 4%. This means that there is not much difference between the first estimated value and the first actual value of this month (meaning that the ratio of the difference value to the third specific value is equal to or less than the first threshold value).
  • the presentation device 9 presents information (a portion H1 surrounded by a two-dot chain line) indicating that the possibility of failure or deterioration of the photovoltaic power generation device 7 is low and the power generation amount is reduced due to the weather. Thus, the user can recognize, via the presentation device 9, the cause of the decrease in the first actual value from the first actual value in the same month of the previous year.
  • Each number in FIG. 7 is an example, and the present invention is not limited thereto.
  • the power generation information output device 203 ends the processing of FIG. 6 and repeats the above processing.
  • the power generation information output method uses the third actual value indicating the amount of power generated by the photovoltaic power generator 7 before the previous year or the fourth actual value of the amount of power sold based on the third actual value.
  • the method further includes a past value obtaining step of obtaining a fourth specific value that is a value.
  • the output step includes, when the predetermined period of the current year indicated by the second specific value corresponds to the predetermined period before the previous year indicated by the fourth specific value, the ratio of the second specific value to the fourth specific value becomes the fourth specific value.
  • the difference is smaller than the third threshold value and the ratio of the difference value to the third specific value is equal to or less than the threshold value (first threshold value in the embodiment), the possibility of failure or deterioration of the photovoltaic power generator 7 is low, Outputs information indicating that the amount of power generation has decreased due to the weather.
  • the second specific value that is the actual value in the predetermined period of this year is compared with the fourth specific value that is the actual value in the predetermined period before the previous year corresponding to the predetermined period of this year, and the second specific value is compared with the second specific value. If the ratio of the specific value to the fourth specific value is large, it means that the actual value of the power generation amount is lower than before the previous year. With this, if the ratio of the difference value to the third specific value is equal to or less than the threshold value (first threshold value in the embodiment), the first specific value that is the estimated value is close to or the same as the second specific value that is the actual value. Value. Therefore, the possibility of failure or deterioration of the solar power generation device 7 is low, and information indicating that the amount of power generation has been reduced due to weather can be output.
  • the power generation information output device 203 uses a third actual value indicating the amount of power generated by the photovoltaic power generator 7 before the previous year or a fourth actual value of the amount of power sold based on the third actual value. It further includes a past value acquisition unit that acquires a certain fourth specific value. Then, when the predetermined period of the current year indicated by the second specific value and the predetermined period before the previous year indicated by the fourth specific value correspond to each other, the output unit 35 sets the ratio of the second specific value to the fourth specific value.
  • This power generation information output device 203 also has the same operation and effect as the above-described power generation information output method.
  • the estimated value acquisition unit 231 can further acquire information (hereinafter, referred to as weather information) indicating the amount of solar radiation, the amount of cloud, the humidity, and the amount of snow from an external server such as the Meteorological Agency.
  • the estimated value acquisition unit 231 outputs the acquired weather information to the processing unit 33.
  • the processing unit 33 outputs information indicating the weather to the output unit, based on the acquired weather information, based on the ratio of the first actual value of the same month of the previous year to the first actual value of the current month, indicating whether the influence is due to the weather. I do.
  • the presentation device 9 presents information indicating the weather that caused the solar power generation device 7 in addition to the information indicating that the possibility of failure or deterioration related to the photovoltaic power generation device 7 is low and the power generation amount has been reduced due to the weather.
  • the information indicating the weather is information indicating the reason why the power generation amount has decreased during the predetermined period of this year as compared with the same predetermined period as the previous year, for example, there are many clouds, there is much snowfall Information indicating that there is a lot of fog.
  • FIG. 8 is a flowchart illustrating an operation of the power generation information output device 203 according to a modification of the second embodiment.
  • the detailed description of the same processing as in the second embodiment will be appropriately simplified or omitted.
  • the estimated value acquisition unit 31 of the power generation information output device 3 acquires information indicating the first specific value and weather information from the power generation amount estimation device 5 (S31: an example of an estimated value acquisition step), Each piece of information is output to the processing unit 33.
  • step S12 the actual value acquisition unit 32 acquires information indicating the second specific value, and outputs information indicating the second specific value to the processing unit 33. Further, the past value acquiring unit 34 acquires information indicating the fourth specific value from the storage control device 11 (S21) and outputs the information to the processing unit 33.
  • the past value acquisition unit 34 of the power generation information output device 203 acquires information indicating the fourth specific value from the storage control device 11 (S21) and outputs the information to the processing unit 33.
  • the processing unit 33 determines whether the ratio of the second specific value to the fourth specific value is smaller than the third threshold (S22). When the ratio of the second specific value to the fourth specific value is smaller than the third threshold (Yes in S22), the processing unit 33 determines whether the ratio of the difference value to the third specific value is equal to or less than the first threshold. (S23).
  • the processing unit 33 When the ratio of the difference value to the third specific value is equal to or less than the first threshold value (Yes in S23), the processing unit 33 has a low possibility of failure or deterioration of the photovoltaic power generator 7, and the power generation amount is reduced by the weather. Is output, and information indicating the weather is output (S32: an example of an output step).
  • the presentation device 9 outputs, via the output unit 35, information indicating that the possibility of failure or deterioration of the solar power generation device 7 is low, and that the power generation amount is reduced due to the weather, and information indicating the weather (for example, “ This month, there is much cloudiness, so the amount of power generation has decreased compared to the same month last year. "
  • the processing unit may output information indicating that the solar power generation device is normal to the presentation device.
  • the processing unit may output information indicating that the solar power generation device is normal to the presentation device.
  • the power generation information output device is integrated with at least one of the solar power generation device and the presentation device. It may be.
  • the presentation device corresponds to an output unit.
  • the output unit is not limited to the communication interface.
  • the power generation information output device may include a power generation amount estimating device. That is, the power generation amount estimation device may be mounted on the power generation information output device.
  • the power generation information output device may include a presentation device.
  • a program using the power generation information output method according to the first and second embodiments, the first and second modifications of the first embodiment, and the modification of the second embodiment is stored in a storage device mounted on a computer. It may be.
  • each processing unit included in the power generation information output device according to the first and second embodiments, the first and second modifications of the first embodiment, and the modification of the second embodiment, and a storage device that stores a program includes: Is typically implemented as an LSI which is an integrated circuit. These may be individually integrated into one chip, or may be integrated into one chip so as to include some or all of them.
  • the integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • each component is configured by dedicated hardware, May be realized by executing a software program suitable for the application.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the division of functional blocks in the block diagram is merely an example, and a plurality of functional blocks can be implemented as one functional block, one functional block can be divided into a plurality of functional blocks, and some functions can be transferred to other functional blocks. You may. Also, a single piece of hardware or software may process the functions of a plurality of functional blocks having similar functions in parallel or in a time-division manner.
  • first and second embodiments, the first and second modifications of the first embodiment, and the modifications of the second embodiment are modified by various modifications conceived by those skilled in the art, and depart from the spirit of the present disclosure.
  • the present disclosure includes embodiments realized by arbitrarily combining components and functions in the first and second embodiments, the first and second modifications of the first embodiment, and the second embodiment. .

Abstract

発電情報出力方法は、所定期間における太陽光発電装置(7)の発電量の第1推定値または第1推定値に基づく売電量の第2推定値である第1特定値を取得する推定値取得ステップと、所定期間における太陽光発電装置(7)の発電量の第1実績値または第1実績値に基づく売電量の第2実績値である第2特定値を取得する実績値取得ステップと、推定値取得ステップにおいて取得された第1特定値と、実績値取得ステップにおいて取得された第2特定値との差分値の第1特定値または第2特定値である第3特定値に対する割合が閾値よりも大きい場合に、太陽光発電装置(7)に係る故障あるいは劣化の可能性があることを示す情報を出力する出力ステップと、を含む。

Description

発電情報出力方法、発電情報出力装置及びプログラム
 本開示は、発電情報出力方法、発電情報出力装置及びプログラムに関する。
 特許文献1の太陽光発電システムは、平均日射量に基づく予測発電電力量と発電電力に基づく積算発電電力量とを比較し、晴天率に応じて積算発電電力の差異の原因が、気象の変化によるものなのか、太陽光発電装置の故障によるものなのかを判定する。
特開2006-67738号公報
 従来の太陽光発電システムでは、平均日射量だけに基づく予測発電電力量を計算している。この太陽光発電システムでは、雲量または積雪が多いといった天候状態の場合、気象条件の悪化により発電量が低下していると判定できず、発電装置の故障で発電量が低下したと判定してしまうことがある。
 本開示は、発電量の低下が天候によるものか、発電設備の故障あるいは劣化によるものかどうかを精度よく判定した情報を出力することができる発電情報出力方法、発電情報出力装置及びプログラムを提供する。
 上記目的を達成するために、本開示の一形態に係る発電情報出力方法は、少なくとも日射量及び雲量に基づく推定値であって、所定期間における発電設備の発電量の第1推定値または前記第1推定値に基づく売電量の第2推定値である第1特定値を取得する推定値取得ステップと、前記所定期間における前記発電設備の発電量の第1実績値または前記第1実績値に基づく売電量の第2実績値である第2特定値を取得する実績値取得ステップと、前記推定値取得ステップにおいて取得された前記第1特定値と、前記実績値取得ステップにおいて取得された前記第2特定値との差分値の前記第1特定値または前記第2特定値である第3特定値に対する割合が閾値よりも大きい場合に、前記発電設備に係る故障あるいは劣化の可能性があることを示す情報を出力する出力ステップと、を含む。
 上記目的を達成するために、本開示の一形態に係る発電情報出力装置は、少なくとも日射量及び雲量に基づく推定値であって、所定期間における発電設備の発電量の第1推定値または前記第1推定値に基づく売電量の第2推定値である第1特定値を取得する推定値取得部と、前記所定期間における前記発電設備の発電量の第1実績値または前記第1実績値に基づく売電量の第2実績値である第2特定値を取得する実績値取得部と、前記推定値取得部において取得された前記第1特定値と、前記実績値取得部において取得された前記第2特定値との差分値の前記第1特定値または前記第2特定値である第3特定値に対する割合が閾値よりも大きい場合に、前記発電設備に係る故障あるいは劣化の可能性があることを示す情報を出力する出力部と、を備える。
 上記目的を達成するために、本開示の一形態に係るプログラムは、発電情報出力方法をコンピュータに実行させる。
 本開示の発電情報出力方法等によれば、発電量の低下が天候によるものか、発電設備の故障あるいは劣化によるものかどうかを精度よく判定した情報を出力することができる。
図1は、実施の形態1に係り、発電システムを例示したブロック図である。 図2は、実施の形態1に係り、発電情報出力装置の動作を例示したフローチャートである。 図3は、実施の形態1に係り、提示装置による提示の態様を例示した模式図である。 図4Aは、実施の形態1の変形例1に係り、発電情報出力装置の動作を例示したフローチャートである。 図4Bは、実施の形態1の変形例2に係り、発電情報出力装置の動作を例示したフローチャートである。 図5は、実施の形態2に係り、発電システムを例示したブロック図である。 図6は、実施の形態2に係り、発電情報出力装置の動作を例示したフローチャートである。 図7は、実施の形態2に係り、提示装置による提示の態様を例示した模式図である。 図8は、実施の形態2の変形例に係り、発電情報出力装置の動作を例示したフローチャートである。
 以下、本開示の実施の形態について、図面を参照しながら説明する。以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。
 以下、本開示の実施の形態に係る発電情報出力方法、発電情報出力装置及びプログラムについて説明する。
 (実施の形態1)
 [構成]
 本実施の形態に係る発電情報出力装置3を備えた発電システム1の構成について説明する。
 図1は、実施の形態1に係り、発電システム1を例示したブロック図である。
 図1に示すように、発電システム1の発電情報出力装置3は、所定期間における太陽光発電装置7が実際に発電した実績値またはこの実績値に基づく売電量(以下、発電した実績値(発電量)または売電量のことを特定値という。)を、所定期間において推定される特定値と比較したり、過去における同時期の特定値と比較したりすることで、実際に発電または売電した実績値である特定値の妥当性を判定するための情報を出力する。例えば、発電情報出力装置3は、実績値である今月の特定値が、推定される今月の特定値と乖離する場合には、太陽光発電装置7が故障あるいは劣化しているか、または、天候による影響かどうかを判定する。そして、発電情報出力装置3は、判定結果として、太陽光発電装置7に係る故障あるいは劣化の可能性があることを示す情報、太陽光発電装置7に係る故障あるいは劣化の可能性が低く、天候によって発電量が低下していることを示す情報を提示装置9に出力する。ここで、太陽光発電装置7に係る故障あるいは劣化の可能性があることは、太陽光発電装置7に係る故障あるいは劣化の可能性が高いことを意味する。太陽光発電装置7は発電設備の一例である。
 発電情報出力装置3には、発電量推定装置5と、太陽光発電装置7と、提示装置9とが通信可能に接続されている。
 発電量推定装置5は、太陽光発電装置7の発電量を推定する装置である。具体的には、発電量推定装置5は、現時点の日射量、雲量、湿度、及び積雪量を示すそれぞれの情報を取得し、これらの情報を用いて現時点の推定値である特定値を算出する。具体的には、発電量推定装置5は、所定期間における太陽光発電装置7の発電量の第1推定値または第1推定値に基づく売電量の第2推定値である第1特定値を示す情報を出力部35に出力する。発電量推定装置5は、日射量、雲量、湿度、及び積雪量を示すそれぞれの情報を気象庁等における外部のサーバから取得する。
 なお、発電量推定装置5は、過去のある時点の日射量、雲量、湿度、及び積雪量を用いて発電量を推定することもでき、未来の気象データである日射量、雲量、湿度、及び積雪量を用いて発電量を推定することもできる。推定する発電量は、所定期間における発電量であり、例えば、1日、1週間、1か月等であるが、これらの期間に限定されない。
 本実施の形態では、第1推定値及び第2推定値は、日射量、雲量、湿度、及び積雪量に基づく推定値であるが、少なくとも日射量及び雲量に基づいて算出された値であればよい。なお、湿度、及び積雪量については、第1推定値及び第2推定値を算出する上での必須の構成要件ではない。
 また、発電量推定装置5は、太陽光発電装置7の受光面積を示す情報を取得し、太陽光発電装置7の受光面積を加味した第1推定値及び第2推定値を算出する。例えば、発電量推定装置5は、太陽光発電装置7の受光面積を示す情報を太陽光発電装置7から取得したり、ユーザの入力によって取得したりする。
 太陽光発電装置7は、太陽光を受光して発電パネルにより発電する発電機である。太陽光発電装置7は、所定期間において、自機が発電した実際の発電量(以下、第1実績値という。)または第1実績値に基づく売電量の第2実績値である第2特定値を示す情報を実績値取得部32に出力する。
 提示装置9は、所定期間において、気象条件等の要因により変動する太陽光発電装置7の発電量または売電量が予測された推定値である第1特定値、太陽光発電装置7の実績値である第2特定値等を提示する。また、提示装置9は、第2特定値が第1特定値よりも小さい場合、太陽光発電装置7に係る故障あるいは劣化の可能性を示す情報、太陽光発電装置7に係る故障あるいは劣化の可能性が低く、天候によって発電量が低下していることを示す情報等を提示する。提示装置9は、表示パネルを備えた、例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等である。
 発電情報出力装置3は、推定値取得部31と、実績値取得部32と、処理部33と、出力部35とを有する。
 推定値取得部31は、発電量推定装置5が出力した第1特定値を示す情報を取得する。推定値取得部31は、第1特定値を示す情報を取得すると、処理部33に出力する。
 実績値取得部32は、発電量推定装置5が出力した第2特定値を示す情報を取得する。実績値取得部32は、第2特定値を示す情報を取得すると、処理部33に出力する。
 処理部33は、第1特定値と第2特定値との差分値を算出し、第1特定値または第2特定値である第3特定値に対する差分値の割合が所定値よりも大きいかどうかを判定する。つまり処理部33は、所定期間における、実際に発電した実績値である発電量と発電量の推定値とを比較する。処理部33は、第3特定値に対する差分値の割合に応じて、太陽光発電装置7に係る故障あるいは劣化の可能性があることを示す情報を出力したり、太陽光発電装置7に係る故障あるいは劣化の可能性が低く、天候によって発電量が低下していることを示す情報を、出力部35に出力したりする。処理部33の詳細な処理については、後述する。
 出力部35は、処理部33が出力した情報を提示装置9に出力する、通信インターフェイスである。
 [動作]
 発電システム1の動作について図2を用いて説明する。図2は、実施の形態1に係り、発電情報出力装置3の動作を例示したフローチャートである。図2の第1特定値は、日射量、雲量、湿度、及び積雪量を示す情報すべてを用いて算出された推定値である場合を想定する。
 図2に示すように、まず、発電量推定装置5は、日射量、雲量、湿度、及び積雪量を示す情報を気象庁などの外部のサーバから取得し、これらの情報を用いて、所定期間の推定値である第1特定値を算出する。日射量が多いほど発電量が増加する傾向にあり、雲量が多い及び積雪量が多い並びに湿度が高いもののうち少なくとも1つの条件を満たせば第1特定値が減少する傾向にある。例えば、日射量が多くても積雪量が多ければ、太陽光発電装置7の受光量は減少するため発電量が減少してしまう。発電量推定装置5は、これらを用いた相関関係から第1特定値を算出する。このように、発電量推定装置5は、日射量から推定される発電量に対して、推定される発電量を減少させる要因(雲量、湿度、及び積雪量)を組み合わせた情報に基づいて、第1特定値を算出し、第1特定値を示す情報を出力する。発電情報出力装置3の推定値取得部31は、第1特定値を示す情報を発電量推定装置5から取得し(S11:推定値取得ステップの一例)、処理部33に出力する。
 ここで、日射量とは、地球が太陽からの平均距離にあるときに地表を覆う大気の鉛直上端(表面)部分において、太陽光の入射方向と直交する平面における単位面積及び単位時間当たりに太陽から受ける放射エネルギーの量を意味する。雲量とは、全天空に対して雲で覆われた見かけ上の割合である。
 次に、太陽光発電装置7は、例えば1か月単位(所定期間)で、自機が発電した実際の発電量(第1実績値)または第1実績値に基づく売電量(第2実績値)である第2特定値を算出する。太陽光発電装置7は、第2特定値を示す情報を実績値取得部32に出力する。実績値取得部32は、第2特定値を示す情報を取得し(S12:実績値取得ステップの一例)、処理部33に出力する。
 次に、処理部33は、推定値取得部31から第1特定値を示す情報、及び実績値取得部32から第2特定値を示す情報を取得する。処理部33は、第1特定値と第2特定値との差分値、例えば第1特定値から第2特定値を減算した値(絶対値)を算出する。処理部33は、算出した差分値の第3特定値に対する割合が第2閾値よりも大きいかどうかを判定する(S13)。例えば、この差分値の第3特定値に対する割合(一例として、後述する図3の33%)が第2閾値より大きければ、推定値と実績値との差異が大きく、太陽光発電装置7はほとんど発電していないことを意味する。第2閾値は、例えば、第1特定値の50%程度である。
 これにより、算出した差分値の第3特定値に対する割合が第2閾値よりも大きい場合(S13でYes)、処理部33は、太陽光発電装置7に係る故障の可能性があることを示す情報を提示装置9に出力する(S16:出力ステップの一例)。提示装置9は、この情報を出力部35を介して取得し、太陽光発電装置7に係る故障の可能性があることを示す情報を提示する。
 一方、算出した差分値の第3特定値に対する割合が第2閾値以下の場合(S13でNo)、処理部33は、差分値の第3特定値に対する割合が第1閾値よりも大きく、第2閾値以下であるかどうかを判定する(S14)。つまり、この差分値の第3特定値に対する割合が第1閾値より大きく第2閾値までであれば、推定値と実績値との差異が中程度の大きさであり、太陽光発電装置7が如何ばかりかは発電していることを意味する。なお、第1閾値は、第2閾値よりも小さい値であり、例えば、20%程度である。
 これにより、差分値の第3特定値に対する割合が第1閾値よりも大きく、第2閾値以下である場合(S14でYes)、処理部33は、太陽光発電装置7に係る劣化の可能性があることを示す情報を提示装置9に出力する(S15:出力ステップの一例)。提示装置9は、この情報を出力部35を介して取得し、太陽光発電装置7に係る劣化の可能性があることを示す情報を提示する。太陽光発電装置7に係る劣化は、太陽光発電装置7が備える部品の経年劣化、または、太陽光発電装置7そのものの経年劣化を意味する。
 一方、差分値の第3特定値に対する割合が第1閾値よりも大きく、第2閾値以下でない場合(S14でNo)、つまり第1閾値以下の場合は推定値と実績値との差異がさほどなく、第2特定値が第1特定値に近しい値または同一の値となるため、太陽光発電装置7に係る故障あるいは劣化等の要因が無いことを意味する。そして、処理部33はステップS11に処理を戻す。
 提示装置9に出力される提示の態様について、図3を用いて説明する。図3は、実施の形態1に係り、提示装置9による提示の態様を例示した模式図である。
 図3では、提示装置9は、一か月あたりの、今月の発電量(第1実績値)、今月の売電量(第2実績値)、今月の第1実績値(1882.1kWh)に対する前年同月の第1実績値(2614.8kWh)の割合、前年同月の第1実績値、今月の第1推定値(2519.2kWh)等を提示する。また、提示装置9は、今月の第1実績値に対する今月の第1推定値の割合{(2519.2/1882.1)-1}×100=33%を提示する。さらに、割合33%が所定値よりも大きいと処理部33により判定されれば、提示装置9は、太陽光発電装置7に係る故障あるいは劣化の可能性があることを示す情報(二点鎖線で囲まれる部分H1)を提示する。これにより、ユーザは、提示装置9を介して、第1推定値に対して第1実績値が減少した原因を認識することができる。なお、図3における各々の数字は一例でありこれらに限定されない。
 こうして、発電情報出力装置3は、図2の処理を終了して以上の処理を繰り返す。
 [作用効果]
 次に、本実施の形態における発電情報出力方法、発電情報出力装置3及びプログラムの作用効果について説明する。
 上述したように、本実施の形態に係る発電情報出力方法は、少なくとも日射量及び雲量に基づく推定値であって、所定期間における太陽光発電装置7の発電量の第1推定値または第1推定値に基づく売電量の第2推定値である第1特定値を取得する推定値取得ステップと、所定期間における太陽光発電装置7の発電量の第1実績値または第1実績値に基づく売電量の第2実績値である第2特定値を取得する実績値取得ステップと、推定値取得ステップにおいて取得された第1特定値と、実績値取得ステップにおいて取得された第2特定値との差分値の第1特定値または第2特定値である第3特定値に対する割合が閾値よりも大きい場合に、太陽光発電装置7に係る故障あるいは劣化の可能性があることを示す情報を出力する出力ステップと、を含む。
 このように、所定期間における、日射量、及び発電量または売電量の減少の要因となる雲量に基づいてより正確に推定された第1特定値を取得し、太陽光発電装置7の実績値である第2特定値を取得することができる。このため、第1特定値と第2特定値との差分値の第3特定値に対する割合を、より正確に算出することができる。
 したがって、発電情報出力方法では、発電量の低下が天候によるものか、太陽光発電装置7の故障あるいは劣化によるものかどうかを精度よく判定した情報を出力することができる。これにより、ユーザは、発電量の低下の要因を認識することができる。その結果、不要な部品交換、修理、設備の交換等が発生し難くなるため、太陽光発電装置7にかかるコストの増大化を抑制することができる。
 また、本実施の形態に係る発電情報出力装置3は、少なくとも日射量及び雲量に基づく推定値であって、所定期間における太陽光発電装置7の発電量の第1推定値または第1推定値に基づく売電量の第2推定値である第1特定値を取得する推定値取得部31と、所定期間における太陽光発電装置7の発電量の第1実績値または第1実績値に基づく売電量の第2実績値である第2特定値を取得する実績値取得部32と、推定値取得部31において取得された第1特定値と、実績値取得部32において取得された第2特定値との差分値の第1特定値または第2特定値である第3特定値に対する割合が閾値よりも大きい場合に、太陽光発電装置7に係る故障あるいは劣化の可能性があることを示す情報を出力する出力部35と、を備える。
 また、本実施の形態に係るプログラムは、発電情報出力方法をコンピュータに実行させる。
 これらにおいても上述と同様の作用効果を奏する。
 また、本実施の形態に係る発電情報出力方法において、推定値取得ステップは、日射量及び雲量に加えて、湿度及び積雪量の少なくとも一方の気象条件を考慮した推定値である第1特定値を取得する。
 このように、発電量または売電量の減少の要因となる雲量だけでなく、さらに湿度、及び積雪量の少なくとも一方の気象条件を考慮するため、さらに正確な推定値である第1特定値を取得することができる。このため、この発電情報出力方法では、さらに正確な、太陽光発電装置7に係る故障あるいは劣化の可能性があることを示す情報を出力することができる。その結果、不要な部品交換、修理、設備の交換等がより発生し難くなる。
 また、本実施の形態に係る発電情報出力装置3において、推定値取得部31は、日射量及び雲量に加えて、湿度及び積雪量の少なくとも一方の気象条件を考慮した推定値である第1特定値を取得する。
 この発電情報出力装置3においても上記の発電情報出力方法と同様の作用効果を奏する。
 また、本実施の形態に係る発電情報出力方法において、閾値は、第1閾値、及び第1閾値よりも高い第2閾値で構成される。そして、出力ステップは、差分値の第3特定値に対する割合が第1閾値よりも大きく、かつ、第2閾値以下である場合に、太陽光発電装置7に係る劣化の可能性があることを示す情報を出力し、差分値の第3特定値に対する割合が第2閾値よりも大きい場合に、太陽光発電装置7に係る故障の可能性があることを示す情報を出力する。
 このように、差分値の第3特定値に対する割合が大きい、つまりこの割合が第2閾値より大きければ太陽光発電装置7に係る故障の可能性があることを示す情報を出力でき、差分値の第3特定値に対する割合が中程度、つまり第1閾値よりも大きく、かつ、第2閾値以下であれば太陽光発電装置7に係る劣化の可能性があることを示す情報を出力できる。このため、ユーザは、発電量の低下の要因を認識することができるため、太陽光発電装置7に対する適切な対応を取ることができる。その結果、不要な部品交換、修理、設備の交換等がより発生し難くなるため、太陽光発電装置7にかかるコストの増大化をより抑制することができる。
 また、本実施の形態に係る発電情報出力装置3において、閾値は、第1閾値、及び第1閾値よりも高い第2閾値で構成される。そして、出力部35は、差分値の第3特定値に対する割合が第1閾値よりも大きく、かつ、第2閾値以下である場合に、太陽光発電装置7に係る劣化の可能性があることを示す情報を出力し、差分値の第3特定値に対する割合が第2閾値よりも大きい場合に、太陽光発電装置7に係る故障の可能性があることを示す情報を出力する。
 この発電情報出力装置3においても上記の発電情報出力方法と同様の作用効果を奏する。
 (実施の形態1の変形例1)
 本変形例における他の構成は、実施の形態1と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。また、本変形例において、実施の形態1と同様の処理については、その詳細な説明を適宜、簡略化または省略する。
 実施の形態1における図2のような、ステップS13、S14、S15、S16は必須の構成要件ではない。図2のステップS13、S14、S15、S16の処理の代わりに、図4AのS113、S115の処理を用いてもよい。発電システム1の動作について、図4Aを用いて説明する。図4Aは、実施の形態1の変形例1に係り、発電情報出力装置3の動作を例示したフローチャートである。
 図4Aに示すように、ステップS11で推定値取得部31が第1特定値を示す情報、ステップS12で実績値取得部32が第2特定値を示す情報を取得し、それぞれが、第1特定値及び第2特定値を示す情報を処理部33に出力する。次に、処理部33は、ステップS11、及びステップS12で取得した第1特定値及び第2特定値に基づいて、第1特定値と第2特定値との差分値を算出する。そして、処理部33は、算出した差分値の第3特定値に対する割合が第1閾値よりも大きいかどうかを判定する(S113)。
 算出した差分値の第3特定値に対する割合が第1閾値よりも大きい場合(S113でYes)、処理部33は、太陽光発電装置7に係る故障あるいは劣化の可能性があることを示す情報を提示装置9に出力する(S115:出力ステップの一例)。提示装置9は、この情報を出力部35を介して取得し、太陽光発電装置7に係る故障あるいは劣化の可能性があることを示す情報を提示する。こうして、発電情報出力装置3は、図4Aの処理を終了して以上の処理を繰り返す。
 一方、算出した差分値の第3特定値に対する割合が第1閾値以下の場合(S113でNo)、処理部33はステップS11に処理を戻す。
 (実施の形態1の変形例2)
 本変形例における他の構成は、実施の形態1と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。また、本変形例において、実施の形態1と同様の処理については、その詳細な説明を適宜、簡略化または省略する。
 発電システム1の動作について、図4Bを用いて説明する。図4Bは、実施の形態1の変形例2に係り、発電情報出力装置3の動作を例示したフローチャートである。
 図4Bに示すように、ステップS11で推定値取得部31が第1特定値を示す情報、ステップS12で実績値取得部32が第2特定値を示す情報を取得し、それぞれが、第1特定値及び第2特定値を示す情報を処理部33に出力する。
 次に、処理部33は、差分値が所定の差分値よりも下回っているかどうかを判定する(S121)。
 差分値が所定の差分値よりも下回っていない場合(S121でNo)、処理部33は、ステップS11にこの処理を戻す。
 一方、差分値が所定の差分値よりも下回っている場合(S121でYes)、処理部33は、差分値の第3特定値に対する割合が第1閾値以下であるかどうかを判定する(S122)。ここで、差分値が所定の差分値よりも下回っている場合は、実績値が推定値とさほど大きく乖離しているわけではないことを意味する。
 差分値の第3特定値に対する割合が第1閾値よりも大きい場合(S122でNo)、処理部33は、ステップS11にこの処理を戻す。
 一方、差分値の第3特定値に対する割合が第1閾値以下である場合(S122でYes)、処理部33は、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力部35に出力する(S123:出力ステップの一例)。提示装置9は、この情報を出力部35を介して取得し、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を提示する。
 上述したように、本変形例に係る発電情報出力方法において、出力ステップは、第2特定値と第1特定値との差分値が所定の差分値よりも下回った場合に、差分値の第3特定値に対する割合が閾値(本変形例では第1閾値)以下であるときに、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力する。
 このように、実績値が推定値と多少の差異はあるものの、実績値と推定値とが大きく乖離しているわけではない場合は、太陽光発電装置7の故障あるいは劣化の可能性があると判定せずに、天候によって発電量が低下していることを意味する。このため、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力することができる。
 また、本実施の形態に係る発電情報出力装置3において、出力部35は、第2特定値と第1特定値との差分値が所定の差分値よりも下回った場合に、差分値の第3特定値に対する割合が閾値(本変形例では第1閾値)以下であるときに、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力する。
 この発電情報出力装置3においても上述の発電情報出力方法と同様の作用効果を奏する。
 (実施の形態2)
 [構成]
 本実施の形態における他の構成は、特に明記しない場合は、実施の形態1と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。本実施の形態の構成について、図5を用いて説明する。図5は、実施の形態2に係り、発電システム200を例示したブロック図である。
 図5に示すように、発電情報出力装置203は、太陽光発電装置7が発電した前年以前の発電量を示す第3実績値または第3実績値に基づく売電量の第4実績値である第4特定値を取得する過去値取得部34をさらに備える。
 過去値取得部34は、記憶制御装置11から太陽光発電装置7が実際に発電した実績値である前年以前の発電量を示す第4特定値を示す情報を取得する。過去値取得部34は、取得した第4特定値を示す情報を処理部33に出力する。
 この記憶制御装置11は、太陽光発電装置7が発電した過去の実績値を格納するデータベースを保有する。記憶制御装置11は、発電情報出力装置203に搭載されていてもよく、発電情報出力装置203と異なる別の装置であってもよい。
 本実施の形態では、処理部33は、今年の所定期間と第4特定値に示される前年以前の所定期間とが対応するときに、第2特定値の第4特定値に対する割合が第3閾値よりも小さいかどうかを判定する。処理部33は、さらに、第2特定値と第1特定値との差分値あるいは差分値の第3特定値に対する割合(差分率ともいう)が、第1閾値以下であるかどうかを判定する。つまり処理部33は、所定期間における、実績値である発電量と発電量の推定値とを比較する。処理部33は、差分値の第3特定値に対する割合に応じて、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力部35に出力する。処理部33の詳細な処理については、後述する。
 [動作]
 発電システム200の動作について、図6を用いて説明する。図6は、実施の形態2に係り、発電情報出力装置203の動作を例示したフローチャートである。
 実施の形態1と同様の処理については、その詳細な説明を適宜、簡略化または省略する。
 図6に示すように、ステップS11で推定値取得部31が第1特定値を示す情報、ステップS12で実績値取得部32が第2特定値を示す情報を取得し、それぞれが、第1特定値及び第2特定値を示す情報を処理部33に出力する。
 次に、発電情報出力装置203の過去値取得部34は、第4特定値を示す情報を記憶制御装置11から取得し(S21:過去値取得ステップの一例)、処理部33に出力する。具体的には、過去値取得部34は、第2特定値が示す今年の所定期間に対応する前年以前の所定期間の第4特定値を示す情報を取得するために、記憶制御装置11に対して、この第4特定値を示す情報の要求を行う。記憶制御装置11は、この要求に応じて、データベースに格納されている、この第4特定値を抽出し、抽出した第4特定値を示す情報を発電情報出力装置203に出力することで、過去値取得部34がこの第4特定値を取得する。一例を挙げれば、過去値取得部34は、第2特定値が示す今年の所定期間がX月(1月分)であれば、前年以前のX月(1月分)の第4特定値を示す情報を取得する。
 次に、処理部33は、第2特定値の第4特定値に対する割合が第3閾値よりも小さいかどうかを判定する(S22)。つまり、前年以前である過去の実績値が今年の実績値と近しい値または同一の値かどうかを判定する。
 第2特定値の第4特定値に対する割合が第3閾値以上である場合(S22でNo)、処理部33は、ステップS11にこの処理を戻す。
 一方、第2特定値の第4特定値に対する割合が第3閾値よりも小さい場合(S22でYes)、処理部33は、差分値の第3特定値に対する割合が第1閾値以下であるかどうかを判定する(S23)。
 差分値の第3特定値に対する割合が第1閾値よりも大きい場合(S23でNo)、処理部33は、ステップS11にこの処理を戻す。
 一方、差分値の第3特定値に対する割合が第1閾値以下である場合(S23でYes)、処理部33は、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力部35に出力する(S24:出力ステップの一例)。提示装置9は、この情報を出力部35を介して取得し、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を提示する。
 提示装置9に出力される提示の態様について、図7を用いて説明する。図7は、実施の形態2に係り、提示装置9による提示の態様を例示した模式図である。
 提示装置9は、今月の第1実績値(1882.1kWh)に対する前年同月の第1実績値(2614.8kWh)の割合を提示する。今月の第1実績値の割合は、前年同月の72%であるため、前年同月に比べて大きく発電量が低下していることを意味する(第3閾値よりも小さいことを意味する)。また、今月の第1推定値(1804.2kWh)と今月の第1実績値との差分値の、今月の第1推定値または今月の第1実績値に対する割合が4%であるため、今月の第1推定値と今月の第1実績値とにさほど差異が無いことを意味する(差分値の第3特定値に対する割合が第1閾値以下であることを意味する)。提示装置9は、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報(二点鎖線で囲まれる部分H1)を提示する。これにより、ユーザは、提示装置9を介して、前年同月の第1実績値に対して第1実績値が減少した原因を認識することができる。なお、図7における各々の数字は一例でありこれらに限定されない。
 こうして、発電情報出力装置203は、図6の処理を終了して以上の処理を繰り返す。
 [作用効果]
 次に、本実施の形態における発電情報出力方法、発電情報出力装置203及びプログラムの作用効果について説明する。
 上述したように、本実施の形態に係る発電情報出力方法は、太陽光発電装置7が発電した前年以前の発電量を示す第3実績値または当該第3実績値に基づく売電量の第4実績値である第4特定値を取得する過去値取得ステップを、さらに含む。そして、出力ステップは、第2特定値に示される今年の所定期間と第4特定値に示される前年以前の所定期間とが対応するときに、第2特定値の第4特定値に対する割合が第3閾値よりも小さく、かつ、差分値の第3特定値に対する割合が閾値(実施の形態では第1閾値)以下である場合に、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力する。
 このように、今年の所定期間における実績値である第2特定値と、今年の所定期間に対応する前年以前の所定期間であって、実績値である第4特定値とを比較し、第2特定値の第4特定値に対する割合が大きければ前年以前よりも発電量の実績値が低下していることを意味する。これにより、差分値の第3特定値に対する割合が閾値(実施の形態では第1閾値)以下であれば、推定値である第1特定値と実績値である第2特定値とが近しいまたは同一の値であることを意味する。このため、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力することができる。
 また、本実施の形態に係る発電情報出力装置203は、太陽光発電装置7が発電した前年以前の発電量を示す第3実績値または当該第3実績値に基づく売電量の第4実績値である第4特定値を取得する過去値取得部を、さらに含む。そして、出力部35は、第2特定値に示される今年の所定期間と第4特定値に示される前年以前の所定期間とが対応するときに、第2特定値の第4特定値に対する割合が第3閾値よりも小さく、かつ、差分値の第3特定値に対する割合が閾値以下である場合に、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力する。
 この発電情報出力装置203においても上述の発電情報出力方法と同様の作用効果を奏する。
 (実施の形態2の変形例)
 本変形例における他の構成は、実施の形態2と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。
 推定値取得部231は、気象庁等の外部のサーバから日射量、雲量、湿度、及び積雪量を示すそれぞれの情報(以下、気象情報という)を、さらに取得することが可能である。推定値取得部231は、取得した気象情報を処理部33に出力する。処理部33は、取得した気象情報に基づいて、今月の第1実績値に対する前年同月の第1実績値の割合から、天候の影響によるものかどうかを表す、天候を示す情報を出力部に出力する。提示装置9は、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報の他に、原因となった天候を示す情報を提示する。天候を示す情報は、今年の所定期間が前年と同一の所定期間と比べてどのような天候の理由で発電量が低下しているかを示す情報であり、例えば、雲が多いこと、積雪が多いこと、霧が多いこと等を示す情報である。
 発電システム200の動作について、図8を用いて説明する。図8は、実施の形態2の変形例に係り、発電情報出力装置203の動作を例示したフローチャートである。本変形例において、実施の形態2と同様の処理については、その詳細な説明を適宜、簡略化または省略する。
 図8に示すように、発電情報出力装置3の推定値取得部31は、第1特定値を示す情報及び気象情報を発電量推定装置5から取得し(S31:推定値取得ステップの一例)、それぞれの情報を処理部33に出力する。
 また、ステップS12で実績値取得部32が第2特定値を示す情報を取得し、第2特定値を示す情報を処理部33に出力する。また、過去値取得部34は、第4特定値を示す情報を記憶制御装置11から取得し(S21)、処理部33に出力する。
 次に、発電情報出力装置203の過去値取得部34は、第4特定値を示す情報を記憶制御装置11から取得し(S21)、処理部33に出力する。
 次に、処理部33は、第2特定値の第4特定値に対する割合が第3閾値よりも小さいかどうかを判定する(S22)。第2特定値の第4特定値に対する割合が第3閾値よりも小さい場合(S22でYes)、処理部33は、差分値の第3特定値に対する割合が第1閾値以下であるかどうかを判定する(S23)。
 差分値の第3特定値に対する割合が第1閾値以下である場合(S23でYes)、処理部33は、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報、及び天候を示す情報を出力する(S32:出力ステップの一例)。提示装置9は、出力部35を介して、太陽光発電装置7に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報、及び天候を示す情報(例えば「今月は曇りが多いため、前年同月に比べて発電量が低下しています」等の情報)を提示する。
 (その他変形例等)
 以上、本開示について、実施の形態1、2、実施の形態1の変形例1、2、及び実施の形態2の変形例に基づいて説明したが、本開示は、上記発電情報出力方法、発電情報出力装置及びプログラムに限定されるものではない。
 例えば、上記実施の形態1、2、実施の形態1の変形例1、2、及び実施の形態2の変形例に係る発電情報出力方法、発電情報出力装置及びプログラムにおいて、図2のステップS13でNoである場合、処理部は、太陽光発電装置が正常であることを示す情報を提示装置に出力してもよい。また、図6のステップS21でNoである場合、あるいは図6のステップS22でNoである場合、処理部は、太陽光発電装置が正常であることを示す情報を提示装置に出力してもよい。
 また、上記実施の形態1、2、実施の形態1の変形例1、2、及び実施の形態2の変形例に係る発電情報出力装置において、太陽光発電装置及び提示装置の少なくとも一方と一体化されていてもよい。この場合、提示装置は、出力部に相当する。このため、出力部は通信インターフェイスに限定されない。
 また、上記実施の形態1、2、実施の形態1の変形例1、2、及び実施の形態2の変形例に係る発電情報出力装置は、発電量推定装置を有していてもよい。つまり、発電量推定装置は、発電情報出力装置に搭載されていてもよい。
 また、上記実施の形態1、2、実施の形態1の変形例1、2、及び実施の形態2の変形例に係る発電情報出力装置は、提示装置を備えていてもよい。
 また、上記実施の形態1、2、実施の形態1の変形例1、2、及び実施の形態2の変形例に係る発電情報出力方法を用いたプログラムは、コンピュータに搭載された記憶装置に格納されていてもよい。
 また、上記実施の形態1、2、実施の形態1の変形例1、2、及び実施の形態2の変形例に係る発電情報出力装置、及びプログラムを格納する記憶装置に含まれる各処理部は、典型的に集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。
 また、集積回路化はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、またはLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 なお、上記各実施の形態1、2、実施の形態1の変形例1、2、及び実施の形態2の変形例において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、上記で用いた数字は、全て本開示を具体的に説明するために例示するものであり、本開示の実施の形態は例示された数字に制限されない。
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェアまたはソフトウェアが並列または時分割に処理してもよい。
 また、フローチャートにおける各ステップが実行される順序は、本開示を具体的に説明するために例示するためであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
 その他、実施の形態1、2、実施の形態1の変形例1、2、及び実施の形態2の変形例に対して当業者が思いつく各種変形を施して得られる形態、本開示の趣旨を逸脱しない範囲で実施の形態1、2、実施の形態1の変形例1、2、及び実施の形態2の変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
3、203 発電情報出力装置
7 太陽光発電装置(発電設備)
31 推定値取得部
32 実績値取得部
34 過去値取得部
35 出力部

Claims (11)

  1.  少なくとも日射量及び雲量に基づく推定値であって、所定期間における発電設備の発電量の第1推定値または前記第1推定値に基づく売電量の第2推定値である第1特定値を取得する推定値取得ステップと、
     前記所定期間における前記発電設備の発電量の第1実績値または前記第1実績値に基づく売電量の第2実績値である第2特定値を取得する実績値取得ステップと、
     前記推定値取得ステップにおいて取得された前記第1特定値と、前記実績値取得ステップにおいて取得された前記第2特定値との差分値の前記第1特定値または前記第2特定値である第3特定値に対する割合が閾値よりも大きい場合に、前記発電設備に係る故障あるいは劣化の可能性があることを示す情報を出力する出力ステップと、を含む
     発電情報出力方法。
  2.  前記推定値取得ステップは、日射量及び雲量に加えて、湿度及び積雪量の少なくとも一方の気象条件を考慮した推定値である第1特定値を取得する
     請求項1に記載の発電情報出力方法。
  3.  前記出力ステップは、前記第2特定値と前記第1特定値との差分値が所定の差分値よりも下回った場合に、前記差分値の前記第3特定値に対する割合が閾値以下であるときに、前記発電設備に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力する
     請求項1または2に記載の発電情報出力方法。
  4.  前記発電設備が発電した前年以前の発電量を示す第3実績値または当該第3実績値に基づく売電量の第4実績値である第4特定値を取得する過去値取得ステップを、さらに含み、
     前記出力ステップは、前記第2特定値に示される今年の所定期間と前記第4特定値に示される前年以前の所定期間とが対応するときに、前記第2特定値の前記第4特定値に対する割合が第3閾値よりも小さく、かつ、前記差分値の前記第3特定値に対する割合が閾値以下である場合に、前記発電設備に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力する
     請求項1~3のいずれか1項に記載の発電情報出力方法。
  5.  前記閾値は、第1閾値、及び前記第1閾値よりも高い第2閾値で構成され、
     前記出力ステップは、
      前記差分値の前記第3特定値に対する割合が前記第1閾値よりも大きく、かつ、前記第2閾値以下である場合に、前記発電設備に係る劣化の可能性があることを示す情報を出力し、
      前記差分値の前記第3特定値に対する割合が前記第2閾値よりも大きい場合に、前記発電設備に係る故障の可能性があることを示す情報を出力する
     請求項1~4のいずれか1項に記載の発電情報出力方法。
  6.  少なくとも日射量及び雲量に基づく推定値であって、所定期間における発電設備の発電量の第1推定値または前記第1推定値に基づく売電量の第2推定値である第1特定値を取得する推定値取得部と、
     前記所定期間における前記発電設備の発電量の第1実績値または前記第1実績値に基づく売電量の第2実績値である第2特定値を取得する実績値取得部と、
     前記推定値取得部において取得された前記第1特定値と、前記実績値取得部において取得された前記第2特定値との差分値の前記第1特定値または前記第2特定値である第3特定値に対する割合が閾値よりも大きい場合に、前記発電設備に係る故障あるいは劣化の可能性があることを示す情報を出力する出力部と、を備える
     発電情報出力装置。
  7.  前記推定値取得部は、日射量及び雲量に加えて、湿度及び積雪量の少なくとも一方の気象条件を考慮した推定値である第1特定値を取得する
     請求項6に記載の発電情報出力装置。
  8.  前記出力部は、前記第2特定値と前記第1特定値との差分値が所定の差分値よりも下回った場合に、前記差分値の前記第3特定値に対する割合が閾値以下であるときに、前記発電設備に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力する
     請求項6または7に記載の発電情報出力装置。
  9.  前記発電設備が発電した前年以前の発電量を示す第3実績値または当該第3実績値に基づく売電量の第4実績値である第4特定値を取得する過去値取得部を、さらに含み、
     前記出力部は、前記第2特定値に示される今年の所定期間と前記第4特定値に示される前年以前の所定期間とが対応するときに、前記第2特定値の前記第4特定値に対する割合が第3閾値よりも小さく、かつ、前記差分値の前記第3特定値に対する割合が閾値以下である場合に、前記発電設備に係る故障あるいは劣化の可能性は低く、天候によって発電量が低下していることを示す情報を出力する
     請求項6~8のいずれか1項に記載の発電情報出力装置。
  10.  前記閾値は、第1閾値、及び前記第1閾値よりも高い第2閾値で構成され、
     前記出力部は、
      前記差分値の前記第3特定値に対する割合が前記第1閾値よりも大きく、かつ、前記第2閾値以下である場合に、前記発電設備に係る劣化の可能性があることを示す情報を出力し、
      前記差分値の前記第3特定値に対する割合が前記第2閾値よりも大きい場合に、前記発電設備に係る故障の可能性があることを示す情報を出力する
     請求項6~9のいずれか1項に記載の発電情報出力装置。
  11.  請求項1~5のいずれか1項に記載の発電情報出力方法をコンピュータに実行させるための
     プログラム。
PCT/JP2019/027231 2018-07-26 2019-07-09 発電情報出力方法、発電情報出力装置及びプログラム WO2020022052A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020532272A JPWO2020022052A1 (ja) 2018-07-26 2019-07-09 発電情報出力方法、発電情報出力装置及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018140344 2018-07-26
JP2018-140344 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020022052A1 true WO2020022052A1 (ja) 2020-01-30

Family

ID=69181493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027231 WO2020022052A1 (ja) 2018-07-26 2019-07-09 発電情報出力方法、発電情報出力装置及びプログラム

Country Status (2)

Country Link
JP (1) JPWO2020022052A1 (ja)
WO (1) WO2020022052A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073537A (ja) * 2011-09-29 2013-04-22 Omron Corp 情報処理装置、発電量算出方法、および、プログラム
JP2013258796A (ja) * 2012-06-11 2013-12-26 Toyota Motor Corp 自然エネルギーを利用した発電システムの劣化診断装置
JP2016019404A (ja) * 2014-07-10 2016-02-01 三菱電機株式会社 故障判定装置
JP2017093275A (ja) * 2015-11-10 2017-05-25 育雄 久保 太陽光発電装置の実績データーをベースとした劣化や異常検知システム
WO2017204032A1 (ja) * 2016-05-26 2017-11-30 パナソニックIpマネジメント株式会社 太陽光発電装置の発電量に関する情報を生成する方法、サーバ、プログラム、及び、端末

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073537A (ja) * 2011-09-29 2013-04-22 Omron Corp 情報処理装置、発電量算出方法、および、プログラム
JP2013258796A (ja) * 2012-06-11 2013-12-26 Toyota Motor Corp 自然エネルギーを利用した発電システムの劣化診断装置
JP2016019404A (ja) * 2014-07-10 2016-02-01 三菱電機株式会社 故障判定装置
JP2017093275A (ja) * 2015-11-10 2017-05-25 育雄 久保 太陽光発電装置の実績データーをベースとした劣化や異常検知システム
WO2017204032A1 (ja) * 2016-05-26 2017-11-30 パナソニックIpマネジメント株式会社 太陽光発電装置の発電量に関する情報を生成する方法、サーバ、プログラム、及び、端末

Also Published As

Publication number Publication date
JPWO2020022052A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
Liang et al. A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation
Pelland et al. Solar and photovoltaic forecasting through post‐processing of the Global Environmental Multiscale numerical weather prediction model
Deline et al. Estimating and parameterizing mismatch power loss in bifacial photovoltaic systems
Luoma et al. Optimal inverter sizing considering cloud enhancement
US8892411B2 (en) Information processor, power generation determining method, and program
KR102404397B1 (ko) 태양광 발전량 예측 장치 및 그 방법
US10643128B2 (en) Power generation prediction system and a method thereof
Navabi et al. On the fast convergence modeling and accurate calculation of PV output energy for operation and planning studies
US11631978B2 (en) Real-time estimation of contributions from classes of energy generators in residual load signals
US11196380B2 (en) Power generation prediction system and method thereof
US10255393B2 (en) Optimally placing photovoltaic arrays to maximize value of energy production based on peak power production, local solar radiation, weather, electricity market prices and rate structures
JP6573129B2 (ja) 監視装置、太陽光発電装置、監視システムおよび監視方法
US20160246272A1 (en) Weather pattern based electrical demand forecasting for a building
US20170093160A1 (en) Systems and methods for secondary voltage loss estimator
EP2624094A1 (en) Method and arrangement in connection with photovoltaic power generator composed of series-connected photovoltaic modules
WO2015152941A1 (en) Combing multiple trending models for photovoltaic plant output forecasting
Sauer et al. Systematic approaches to ensure correct representation of measured multi-irradiance module performance in PV system energy production forecasting software programs
Lenz et al. Mission profile characterization of PV systems for the specification of power converter design requirements
WO2020022052A1 (ja) 発電情報出力方法、発電情報出力装置及びプログラム
JP2018018329A (ja) 電力量予測プログラム、電力量予測装置および電力量予測方法
Popovic et al. Methodology for detection of photovoltaic systems underperformance operation based on the correlation of irradiance estimates of neighboring systems
KR102412304B1 (ko) 태양광 발전 시스템의 리파워링 측정 장치 및 그 방법과, 이를 적용한 태양광 발전 시스템
Virtuani et al. Profitability of solar photovoltaic projects: A sensitivity analysis of performance loss curves and operation and maintenance expenses
Anderson et al. The effect of inverter loading ratio on energy estimate bias
JP2016208606A (ja) 異常監視装置、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841592

Country of ref document: EP

Kind code of ref document: A1