WO2020021821A1 - Switching power supply device - Google Patents

Switching power supply device Download PDF

Info

Publication number
WO2020021821A1
WO2020021821A1 PCT/JP2019/019302 JP2019019302W WO2020021821A1 WO 2020021821 A1 WO2020021821 A1 WO 2020021821A1 JP 2019019302 W JP2019019302 W JP 2019019302W WO 2020021821 A1 WO2020021821 A1 WO 2020021821A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
output
voltage detection
switching element
Prior art date
Application number
PCT/JP2019/019302
Other languages
French (fr)
Japanese (ja)
Inventor
隆志 朝日
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020021821A1 publication Critical patent/WO2020021821A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present disclosure relates to a switching power supply device that includes a series circuit of an energizing switching element and an inductor connected between a power supply and an output terminal to perform synchronous rectification.
  • a switching power supply device including a series circuit of a high-side switch and an inductor between a power supply and an output terminal
  • a switching power supply device that performs a synchronous rectification by providing a low-side switch, for example, as shown in Patent Document 1.
  • the synchronous rectification method has an advantage that a loss caused by a forward voltage can be reduced as compared with a configuration in which rectification is performed by a freewheel diode.
  • the low-side switch is turned on by feedback control, so that the current flows backward to the ground side, and an excessive current may flow through the inductor and the low-side switch.
  • a configuration is conceivable in which a low-side switch is turned off when an excessive current flows by detecting a current flowing through an inductor via a shunt resistor.
  • the control unit of the switching power supply device is configured by an IC, there is a problem that a loss occurs in the shunt resistance, and an increase in external components and an increase in the number of terminals of the IC increase costs. .
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a countermeasure at the time of occurrence of short-to-power without increasing the number of external components and terminals at least when the control unit is integrated into an IC.
  • a switching power supply device is provided.
  • the switching power supply device is arranged in a reverse flow path in which a current flows from the terminal to the inductor in a reverse direction when the output terminal is short-circuited, and at least one is used for performing synchronous rectification.
  • Switching element the switching element is referred to as a backflow path switching element.
  • the input low voltage detector outputs an input low voltage detection signal when the voltage of the power supply drops below the threshold voltage V1, and the output high voltage detector detects an output high voltage when the voltage of the output terminal rises above the threshold voltage V2. Outputs a detection signal.
  • the backflow prevention control unit turns off the backflow path switching element to prevent the backflow of the current.
  • the voltage of the output terminal is controlled to a constant voltage by the operation of the error amplifier and the signal generator, so that the output high voltage detection signal is not output.
  • the power supply voltage may temporarily drop when supplying current to the load.
  • the input low voltage detection unit outputs an input low voltage detection signal.
  • the synchronous rectification operation by the backflow path switching element is stopped.
  • the control unit excluding the switching element and the inductor is configured by an IC.
  • the voltage of the output terminal needs to be detected by the error amplifier in order to generate the PWM signal, so that it is not necessary to increase the number of IC terminals. Therefore, the output high voltage detection unit can be configured inside the IC together with the input low voltage detection unit that detects the power supply voltage, and the same applies to the backflow prevention control unit. That is, the switching power supply device can be provided with a function to cope with short-to-power without adding external components to the IC and increasing the number of terminals of the IC.
  • the switching element that is turned off by the backflow prevention control unit is a synchronous rectification switching element that is connected between the common connection point of the series circuit and the ground. According to this configuration, at least in a configuration that performs a step-down switching operation, the switching element for synchronous rectification can be turned off to prevent a reverse current from flowing.
  • the switching power supply device of the present disclosure is connected between the first boosting switching element connected between the output terminal and the inductor, and between the common connection point of the inductor and the first boosting switching element and the ground.
  • a second boosting switching element is connected between the first boosting switching element connected between the output terminal and the inductor, and between the common connection point of the inductor and the first boosting switching element and the ground.
  • the boosted voltage can be output. Therefore, in the configuration for performing the buck-boost switching operation, the reverse current path switching element is turned off to reverse the current. Can be prevented.
  • the backflow prevention control unit turns off the first boosting switching element.
  • a reverse current can be prevented by turning off at least the first step-up switching element.
  • the switching power supply of the present disclosure sets the threshold voltage V1 to be higher than the threshold voltage V2, in the process in which the power supply voltage changes from a state lower than the threshold voltage V2 to exceeding the threshold voltage V1, the input low voltage The output period of the detection signal and the output period of the output high voltage detection signal surely overlap. Therefore, the backflow of the current can be more reliably prevented.
  • FIG. 2 is a diagram illustrating a configuration of a switching power supply device according to the first embodiment; It is a timing chart showing the operation at the time of short-to-power, It is a timing chart showing the operation at the time of normal, It is a timing chart showing the operation of only the output high voltage detection unit at the time of short-to-power, It is a timing chart showing the operation of only the input low voltage detection unit at the time of short-to-power, FIG. 9 is a timing chart showing an operation at the time of short-to-power in the second embodiment; FIG.
  • FIG. 13 is a diagram illustrating a configuration of a switching power supply device according to a third embodiment
  • FIG. 14 is a diagram (part 1) illustrating a configuration of a switching power supply device and a response to occurrence of a short to power in the fourth embodiment
  • FIG. 11 is a diagram (part 2) illustrating a response when a short to power occurs.
  • a switching power supply device 1 As shown in FIG. 1, a switching power supply device 1 according to the present embodiment is mounted on, for example, a vehicle, and includes a control IC 2, an external inductor 3 and a capacitor 4. Inside the control IC 2, there is a series circuit of a high-side switch 5 and a low-side switch 6 connected between the power supply VIN and the ground. These switches 5 and 6 correspond to switching elements, specifically, for example, MOSFETs, bipolar transistors, IGBTs and the like. In the present embodiment, these are all described as switches that are turned off when a high-level signal is supplied.
  • freewheel diodes are connected to both ends of the switches 5 and 6, respectively.
  • the common connection point of the switches 5 and 6 is connected to ground via a series circuit of the inductor 3 and the capacitor 4.
  • the common connection point of the inductor 3 and the capacitor 4 is the output terminal VOUT of the switching power supply 1.
  • the high-side switch 5 corresponds to an energizing switching element
  • the low-side switch 6 corresponds to a backflow path switching element and a synchronous rectification switching element.
  • the input low voltage detector 7 compares the power supply voltage VIN input to the inverting input terminal by the comparator 7a with the threshold voltage V1 applied to the non-inverting input terminal.
  • the output high voltage detector 8 compares the output voltage VOUT input to the non-inverting input terminal by the comparator 8a with the threshold voltage V2 applied to the inverting input terminal.
  • Output terminals of the comparators 7a and 8a are connected to input terminals of the OR gate 9, respectively.
  • the voltage VIN is, for example, about 12 to 14 V
  • the set voltage of the switching power supply 1 is, for example, about 5 V.
  • the threshold voltage V1 is set to, for example, about 10V
  • the threshold voltage V2 is set to, for example, about 6V. That is, V1> V2 is set.
  • the output terminal of the OR gate 9 is connected to one of the input terminals of the pulse generator 10.
  • the error amplifier 11 is an error amplifier that amplifies the difference between the output voltage VOUT and the set voltage, and the output voltage is input to another one of the input terminals of the pulse generator 10.
  • the pulse generation unit 10 uses the error voltage input from the error amplification unit 11 as a PWM command, generates a PWM signal by comparing the PWM signal with a carrier, and outputs the PWM signal to the switches 5 and 6, respectively.
  • the PWM signal applied to the switch 6 is the inverse of the PWM signal applied to the switch 5.
  • the switch 5 performs a step-down switching operation, and the switch 6 performs a synchronous rectification operation.
  • the pulse generation unit 10 keeps the signal given to the low-side switch 6 at high level and turns off the switch 6.
  • the pulse generation unit 10 corresponds to a backflow prevention unit.
  • the output terminal VOUT if the output terminal VOUT is in a normal state where there is no short-to-power or the like, the output voltage VOUT is maintained at a substantially constant set voltage 5V even if the power supply voltage VIN fluctuates.
  • the power supply voltage VIN fluctuates according to the state of current supply to the load. For example, when the engine is cranked, the power supply voltage VIN may drop to about 3V.
  • the output signal of the input low-voltage detector 7 is output at a timing before the output signal of the output high-voltage detector 8 changes to a low level. Change to high level. As a result, the signal supplied to the low-side switch 6 continuously goes to the high level, and the switch 6 continuously maintains the off state.
  • the switching power supply device 1 when the output terminal VOUT is short-circuited to the switching power supply device 1, the switching power supply device 1 is disposed in the reverse flow path in which the current flows from the terminal to the inductor 3 in the reverse direction, and the step-down switching is performed.
  • a low-side switch 6 used for performing synchronous rectification with operation is provided.
  • the input low voltage detector 7 outputs an input low voltage detection signal when the power supply voltage VIN falls below the threshold voltage V1
  • the output high voltage detector 8 outputs an output high voltage when the output voltage VOUT rises above the threshold voltage V2. Outputs a detection signal.
  • the pulse generation unit 10 turns off the switch 6 to prevent the current from flowing backward.
  • the output high voltage detection unit 8 can be configured inside the control IC 2 together with the input low voltage detection unit 7 that detects the power supply voltage VIN, and the same applies to the pulse generation unit 10. That is, the switching power supply device 1 can be provided with a function to cope with short-to-power without adding external parts and without increasing the number of terminals of the control IC 2.
  • the second embodiment shows a case where a hysteresis comparator is used for the input low-voltage detector 7 and the output high-voltage detector 8.
  • a higher voltage threshold V1 ' is set for the threshold voltage V1
  • a lower voltage threshold V2' is set for the threshold voltage V2.
  • the threshold voltage V1 ′ is set as a voltage detection threshold
  • the threshold voltage V1 is set as a detection release threshold.
  • the threshold voltage V2 is set as a high voltage detection threshold
  • the threshold voltage V2 ' is set as a detection release threshold. Further in this case, V1 '> V2 and V1>V2' are set.
  • the operation of the second embodiment will be described. Even when the comparators used in the detection units 7 and 8 have hysteresis characteristics in this manner, when a short-to-power occurs, the period during which the input low-voltage detection unit 7 outputs the input low-voltage detection signal and the output high-voltage detection signal are output. The period in which the voltage detection section 8 outputs the output high voltage detection signal surely overlaps. Therefore, it is possible to reliably prevent the backflow of the current when the short-to-power occurs.
  • the switching power supply device 21 of the third embodiment is configured as a control IC 22 in which the series circuit of the switches 5 and 6 is removed from the control IC 2 of the first embodiment, and the series circuit is externally connected. It consists of the element of. With such a configuration, the same effect as in the first embodiment can be obtained.
  • the switching power supply device 31 of the fourth embodiment differs from the configuration of the third embodiment in that a high-side switch 35 is inserted between one end of the inductor 3 and the output terminal OUT.
  • the low side switch 36 is connected between the power supply and the ground.
  • the control IC 32 includes a pulse generation unit 33 instead of the pulse generation unit 10, and the pulse generation unit 33 outputs a PWM signal to the switches 35 and 36.
  • the switches 35 and 36 correspond to first and second boosting switching elements, respectively.
  • the switch 35 also corresponds to a backflow path switching element.
  • the switching power supply device 31 has a buck-boost configuration.
  • the switch 6 when a short-to-power occurs, for example, as in the first to third embodiments, the switch 6 is turned off as shown in FIG. 8 to prevent a reverse current from flowing. Also, as shown in FIG. 9, turning off the switch 35 can similarly prevent the backflow of current.
  • the switching power supply device 31 includes the high-side switch 35 connected between the output terminal VOUT and the inductor 3, the common connection point between the inductor 3 and the switch 35, and the ground. And a low-side switch 36 connected between them. Since the boosted voltage can be output by supplying the PWM signal to the switches 35 and 36, the reverse flow path switching element can be turned off to prevent the current from flowing backward even in the configuration for performing the step-up / step-down switching operation.
  • the pulse generator 33 turns off the switch 6 or the switch 35 when a short to power occurs. Accordingly, in a configuration in which the step-up / step-down switching operation is performed, the reverse current can be prevented by turning off at least the switch 35.
  • the four switches of the fourth embodiment may be configured inside the control IC 32. It is not limited to those mounted on vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

In an embodiment according to the present disclosure, a switching power supply device 1 is provided with a low-side switch 6 which is disposed in a reverse flow path through which, when a short to power occurs at an output terminal VOUT, current flows reversely from the terminal to an inductor 3. The low-side switch 6 is used for performing synchronous rectification in association with a step-down switching operation. An input low-voltage detection unit 7 outputs an input low-voltage detection signal when a power supply voltage VIN becomes lower than a threshold voltage V1. An output high-voltage detection unit 8 outputs an output high-voltage detection signal when an output voltage VOUT becomes greater than a threshold voltage V2. A pulse generation unit 10 turns off the switch 6 to prevent the reverse flow of current when the input low-voltage detection signal or the output high-voltage detection signal has been output.

Description

スイッチング電源装置Switching power supply 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年7月25日に出願された日本出願番号2018-139391号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-139391 filed on July 25, 2018, the contents of which are incorporated herein by reference.
 本開示は、電源と出力端子との間に接続される通電用スイッチング素子及びインダクタの直列回路を備えて同期整流を行うスイッチング電源装置に関する。 The present disclosure relates to a switching power supply device that includes a series circuit of an energizing switching element and an inductor connected between a power supply and an output terminal to perform synchronous rectification.
 電源と出力端子との間にハイサイドスイッチ及びインダクタの直列回路を備えるスイッチング電源装置においては、例えば特許文献1に示すように、ローサイドスイッチを設けて同期整流を行うものがある。同期整流方式は、フリーホイールダイオードにより整流を行う構成に比較して、順方向電圧により発生する損失を低減できるメリットがある。 (4) In a switching power supply device including a series circuit of a high-side switch and an inductor between a power supply and an output terminal, there is a switching power supply device that performs a synchronous rectification by providing a low-side switch, for example, as shown in Patent Document 1. The synchronous rectification method has an advantage that a loss caused by a forward voltage can be reduced as compared with a configuration in which rectification is performed by a freewheel diode.
 その一方で、出力端子が天絡した際には、フィードバック制御によりローサイドスイッチがオンするためグランド側に電流が逆流し、インダクタ及びローサイドスイッチに過大な電流が流れるおそれがある。 On the other hand, when the output terminal is short-to-power, the low-side switch is turned on by feedback control, so that the current flows backward to the ground side, and an excessive current may flow through the inductor and the low-side switch.
特開2009-171741号公報JP 2009-171741 A
 このような事態を防止するには、例えばインダクタに流れる電流をシャント抵抗を介して検出することで、過大な電流が流れた際にローサイドスイッチをオフする構成が想定される。しかしながら、スイッチング電源装置の制御部をICで構成する場合には、シャント抵抗において損失が発生すると共に、外付け部品の増加及びICの端子数が増加することでコストアップを招来するという問題がある。 In order to prevent such a situation, for example, a configuration is conceivable in which a low-side switch is turned off when an excessive current flows by detecting a current flowing through an inductor via a shunt resistor. However, when the control unit of the switching power supply device is configured by an IC, there is a problem that a loss occurs in the shunt resistance, and an increase in external components and an increase in the number of terminals of the IC increase costs. .
 本開示は上記事情に鑑みてなされたものであり、その目的は、少なくとも制御部をIC化する際に、外付け部品や端子数を増加させることなく天絡発生時の対策を行うことができるスイッチング電源装置を提供することにある。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a countermeasure at the time of occurrence of short-to-power without increasing the number of external components and terminals at least when the control unit is integrated into an IC. A switching power supply device is provided.
 本開示のスイッチング電源装置は、出力端子が天絡した際に、当該端子よりインダクタに電流が逆方向に流れる逆流経路中に配置され、少なくとも1つは同期整流を行うために用いられる1つ以上のスイッチング素子を備える。以下、前記スイッチング素子を逆流経路スイッチング素子と称する。入力低電圧検出部は、電源の電圧が閾値電圧V1よりも低下すると入力低電圧検出信号を出力し、出力高電圧検出部は、出力端子の電圧が閾値電圧V2よりも上昇すると、出力高電圧検出信号を出力する。そして、逆流防止制御部は、入力低電圧検出信号,又は出力高電圧検出信号が出力されると、逆流経路スイッチング素子をオフさせて電流の逆流を防止する。 The switching power supply device according to the present disclosure is arranged in a reverse flow path in which a current flows from the terminal to the inductor in a reverse direction when the output terminal is short-circuited, and at least one is used for performing synchronous rectification. Switching element. Hereinafter, the switching element is referred to as a backflow path switching element. The input low voltage detector outputs an input low voltage detection signal when the voltage of the power supply drops below the threshold voltage V1, and the output high voltage detector detects an output high voltage when the voltage of the output terminal rises above the threshold voltage V2. Outputs a detection signal. When the input low voltage detection signal or the output high voltage detection signal is output, the backflow prevention control unit turns off the backflow path switching element to prevent the backflow of the current.
 正常な状態であれば、出力端子の電圧は、誤差増幅部及び信号生成部の作用により一定の電圧に制御されるため、出力高電圧検出信号が出力されることはない。また、電源電圧は、負荷に電流を供給する際に一時的に低下することがある。その際に、電源電圧が閾値電圧V1よりも低下すると、入力低電圧検出部が入力低電圧検出信号を出力する。その期間は、逆流経路スイッチング素子による同期整流動作が停止される。 (4) In a normal state, the voltage of the output terminal is controlled to a constant voltage by the operation of the error amplifier and the signal generator, so that the output high voltage detection signal is not output. Also, the power supply voltage may temporarily drop when supplying current to the load. At this time, when the power supply voltage falls below the threshold voltage V1, the input low voltage detection unit outputs an input low voltage detection signal. During that period, the synchronous rectification operation by the backflow path switching element is stopped.
 一方、出力端子が天絡すれば、当該端子の電圧は電源電圧と同様に変化することになるから、電源電圧が閾値電圧V2よりも上昇すれば、出力高電圧検出部が出力高電圧検出信号を出力する。例えば、電源電圧が閾値電圧V1及びV2よりも低い状態から上昇する過程では、例えばV1=V2に設定すると、入力低電圧検出信号の出力に続いて出力高電圧検出信号が出力されることになる。これにより、逆流防止制御部により逆流経路スイッチング素子による同期整流動作が停止されるので、出力端子側からグランドに電流が逆流することを防止できる。 On the other hand, if the output terminal is short-to-power, the voltage of the terminal changes in the same manner as the power supply voltage. Therefore, if the power supply voltage rises above the threshold voltage V2, the output high voltage detection unit outputs Is output. For example, in the process where the power supply voltage rises from a state lower than the threshold voltages V1 and V2, if V1 = V2, for example, the output high voltage detection signal is output following the output of the input low voltage detection signal. . Thereby, the synchronous rectification operation by the backflow path switching element is stopped by the backflow prevention control unit, so that the backflow of the current from the output terminal side to the ground can be prevented.
 ここで、スイッチング素子及びインダクタを除く制御部をICで構成することを想定する。この場合、出力端子の電圧は、PWM信号を生成するために誤差増幅部が検出する必要があるので、ICの端子を増やす必要がない。したがって、出力高電圧検出部は、電源電圧を検出する入力低電圧検出部と共にICの内部に構成でき、逆流防止制御部についても同様である。つまり、ICに外付け部品を追加することなく、且つICの端子を増加させることなく、天絡に対処する機能をスイッチング電源装置に持たせることができる。 Here, it is assumed that the control unit excluding the switching element and the inductor is configured by an IC. In this case, the voltage of the output terminal needs to be detected by the error amplifier in order to generate the PWM signal, so that it is not necessary to increase the number of IC terminals. Therefore, the output high voltage detection unit can be configured inside the IC together with the input low voltage detection unit that detects the power supply voltage, and the same applies to the backflow prevention control unit. That is, the switching power supply device can be provided with a function to cope with short-to-power without adding external components to the IC and increasing the number of terminals of the IC.
 また、本開示のスイッチング電源装置は、逆流防止制御部がオフさせるスイッチング素子は、直列回路の共通接続点とグランドとの間に接続される同期整流用スイッチング素子とする。このように構成すれば、少なくとも降圧型のスイッチング動作を行う構成について、同期整流用スイッチング素子をオフさせて電流の逆流を防止できる。 In addition, in the switching power supply device of the present disclosure, the switching element that is turned off by the backflow prevention control unit is a synchronous rectification switching element that is connected between the common connection point of the series circuit and the ground. According to this configuration, at least in a configuration that performs a step-down switching operation, the switching element for synchronous rectification can be turned off to prevent a reverse current from flowing.
 また、本開示のスイッチング電源装置は、出力端子とインダクタとの間に接続される第1昇圧用スイッチング素子と、インダクタ及び第1昇圧用スイッチング素子の共通接続点とグランドとの間に接続される第2昇圧用スイッチング素子とを備える。そして、PWM信号を第1及び第2昇圧用スイッチング素子に与えることで、昇圧した電圧を出力可能とするので、昇降圧スイッチング動作を行う構成についても、逆流経路スイッチング素子をオフさせて電流の逆流を防止できる。 Further, the switching power supply device of the present disclosure is connected between the first boosting switching element connected between the output terminal and the inductor, and between the common connection point of the inductor and the first boosting switching element and the ground. A second boosting switching element. Then, by applying the PWM signal to the first and second boosting switching elements, the boosted voltage can be output. Therefore, in the configuration for performing the buck-boost switching operation, the reverse current path switching element is turned off to reverse the current. Can be prevented.
 また、本開示のスイッチング電源装置は、逆流防止制御部が第1昇圧用スイッチング素子をオフさせる。これにより、昇降圧スイッチング動作を行う構成であれば、少なくとも第1昇圧用スイッチング素子をオフさせることで電流の逆流を防止できる。 In the switching power supply of the present disclosure, the backflow prevention control unit turns off the first boosting switching element. Thus, in a configuration in which the step-up / step-down switching operation is performed, a reverse current can be prevented by turning off at least the first step-up switching element.
 また、本開示のスイッチング電源装置は、閾値電圧V1を閾値電圧V2よりも高く設定するので、電源電圧が、閾値電圧V2よりも低い状態から閾値電圧V1を超えて変化する過程では、入力低電圧検出信号の出力期間と出力高電圧検出信号の出力期間とが確実にオーバーラップする。したがって、電流の逆流をより確実に防止できる。 Further, since the switching power supply of the present disclosure sets the threshold voltage V1 to be higher than the threshold voltage V2, in the process in which the power supply voltage changes from a state lower than the threshold voltage V2 to exceeding the threshold voltage V1, the input low voltage The output period of the detection signal and the output period of the output high voltage detection signal surely overlap. Therefore, the backflow of the current can be more reliably prevented.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1実施形態において、スイッチング電源装置の構成を示す図であり、 天絡時の動作を示すタイミングチャートであり、 通常時の動作を示すタイミングチャートであり、 天絡時において、出力高電圧検出部のみによる動作を示すタイミングチャートであり、 天絡時において、入力低電圧検出部のみによる動作を示すタイミングチャートであり、 第2実施形態において、天絡時の動作を示すタイミングチャートであり、 第3実施形態において、スイッチング電源装置の構成を示す図であり、 第4実施形態において、スイッチング電源装置の構成を示すと共に、天絡発生時の対応を示す図(その1)であり、 天絡発生時の対応を示す図(その2)である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 2 is a diagram illustrating a configuration of a switching power supply device according to the first embodiment; It is a timing chart showing the operation at the time of short-to-power, It is a timing chart showing the operation at the time of normal, It is a timing chart showing the operation of only the output high voltage detection unit at the time of short-to-power, It is a timing chart showing the operation of only the input low voltage detection unit at the time of short-to-power, FIG. 9 is a timing chart showing an operation at the time of short-to-power in the second embodiment; FIG. 13 is a diagram illustrating a configuration of a switching power supply device according to a third embodiment; FIG. 14 is a diagram (part 1) illustrating a configuration of a switching power supply device and a response to occurrence of a short to power in the fourth embodiment; FIG. 11 is a diagram (part 2) illustrating a response when a short to power occurs.
  (第1実施形態)
 図1に示すように、本実施形態のスイッチング電源装置1は、例えば車両に搭載されるもので、制御IC2と、外付けのインダクタ3及びコンデンサ4とを備えている。制御IC2の内部は、電源VINとグランドとの間に接続されるハイサイドスイッチ5及びローサイドスイッチ6の直列回路がある。これらのスイッチ5,6はスイッチング素子に相当し、具体的には例えばMOSFETやバイポーラトランジスタ,IGBT等である。本実施形態では、これらは何れも、ハイレベル信号が与えられるとオフするスイッチとして説明する。
(1st Embodiment)
As shown in FIG. 1, a switching power supply device 1 according to the present embodiment is mounted on, for example, a vehicle, and includes a control IC 2, an external inductor 3 and a capacitor 4. Inside the control IC 2, there is a series circuit of a high-side switch 5 and a low-side switch 6 connected between the power supply VIN and the ground. These switches 5 and 6 correspond to switching elements, specifically, for example, MOSFETs, bipolar transistors, IGBTs and the like. In the present embodiment, these are all described as switches that are turned off when a high-level signal is supplied.
 スイッチ5,6の両端には、図示しないがそれぞれフリーホイールダイオードが接続されている。スイッチ5及び6の共通接続点は、インダクタ3及びコンデンサ4の直列回路を介してグランドに接続されている。インダクタ3及びコンデンサ4の共通接続点は、スイッチング電源装置1の出力端子VOUTである。また、ハイサイドスイッチ5は通電用スイッチング素子に相当し、ローサイドスイッチ6は逆流経路スイッチング素子,同期整流用スイッチング素子に相当する。 Although not shown, freewheel diodes are connected to both ends of the switches 5 and 6, respectively. The common connection point of the switches 5 and 6 is connected to ground via a series circuit of the inductor 3 and the capacitor 4. The common connection point of the inductor 3 and the capacitor 4 is the output terminal VOUT of the switching power supply 1. The high-side switch 5 corresponds to an energizing switching element, and the low-side switch 6 corresponds to a backflow path switching element and a synchronous rectification switching element.
 また、制御IC2の内部には、入力低電圧検出部7及び出力高電圧検出部8がある。入力低電圧検出部7は、コンパレータ7aにより反転入力端子に入力される電源電圧VINと、非反転入力端子に与えられる閾値電圧V1とを比較する。出力高電圧検出部8は、コンパレータ8aにより非反転入力端子に入力される出力電圧VOUTと、反転入力端子に与えられる閾値電圧V2とを比較する。コンパレータ7a,8aの出力端子は、それぞれORゲート9の入力端子に接続されている。 {Circle around (2)} Inside the control IC 2, there are an input low voltage detection unit 7 and an output high voltage detection unit 8. The input low voltage detector 7 compares the power supply voltage VIN input to the inverting input terminal by the comparator 7a with the threshold voltage V1 applied to the non-inverting input terminal. The output high voltage detector 8 compares the output voltage VOUT input to the non-inverting input terminal by the comparator 8a with the threshold voltage V2 applied to the inverting input terminal. Output terminals of the comparators 7a and 8a are connected to input terminals of the OR gate 9, respectively.
 本実施形態では、電源が車載バッテリであるから、電圧VINは例えば12~14V程度であり、スイッチング電源装置1の設定電圧は例えば5V程度である。これに対して、閾値電圧V1は例えば10V程度に設定し、閾値電圧V2は例えば6V程度に設定する。すなわち、V1>V2に設定されている。 In this embodiment, since the power supply is a vehicle-mounted battery, the voltage VIN is, for example, about 12 to 14 V, and the set voltage of the switching power supply 1 is, for example, about 5 V. On the other hand, the threshold voltage V1 is set to, for example, about 10V, and the threshold voltage V2 is set to, for example, about 6V. That is, V1> V2 is set.
 ORゲート9の出力端子は、パルス生成部10の入力端子の1つに接続されている。誤差増幅部11は、出力電圧VOUTと、設定電圧との差を増幅するエラーアンプであり、その出力電圧は、パルス生成部10の入力端子の他の1つに入力される。パルス生成部10は、誤差増幅部11より入力される誤差電圧をPWM指令とし、キャリアと比較することでPWM信号を生成し、スイッチ5,6にそれぞれ出力する。基本的に、スイッチ6に与えられるPWM信号は、スイッチ5に与えられるPWM信号の反転である。スイッチ5により降圧スイッチング動作が行われ、スイッチ6により同期整流動作が行われる。 The output terminal of the OR gate 9 is connected to one of the input terminals of the pulse generator 10. The error amplifier 11 is an error amplifier that amplifies the difference between the output voltage VOUT and the set voltage, and the output voltage is input to another one of the input terminals of the pulse generator 10. The pulse generation unit 10 uses the error voltage input from the error amplification unit 11 as a PWM command, generates a PWM signal by comparing the PWM signal with a carrier, and outputs the PWM signal to the switches 5 and 6, respectively. Basically, the PWM signal applied to the switch 6 is the inverse of the PWM signal applied to the switch 5. The switch 5 performs a step-down switching operation, and the switch 6 performs a synchronous rectification operation.
 また、パルス生成部10は、ORゲート9より入力される信号レベルがハイになると、ローサイドスイッチ6に与える信号をハイレベルに維持してスイッチ6をオフ状態にする。パルス生成部10は、逆流防止部に相当する。 {Circle around (4)} When the signal level input from the OR gate 9 becomes high, the pulse generation unit 10 keeps the signal given to the low-side switch 6 at high level and turns off the switch 6. The pulse generation unit 10 corresponds to a backflow prevention unit.
 次に、本実施形態の作用について説明する。図3に示すように、出力端子VOUTが天絡等していない正常状態であれば、電源電圧VINが変動しても出力電圧VOUTは略一定の設定電圧5Vに維持される。電源電圧VINは、負荷への通電状態に応じて変動する。例えばエンジンのクランクキングが行われる際に、電源電圧VINは3V程度にまで低下することがある。 Next, the operation of the present embodiment will be described. As shown in FIG. 3, if the output terminal VOUT is in a normal state where there is no short-to-power or the like, the output voltage VOUT is maintained at a substantially constant set voltage 5V even if the power supply voltage VIN fluctuates. The power supply voltage VIN fluctuates according to the state of current supply to the load. For example, when the engine is cranked, the power supply voltage VIN may drop to about 3V.
 電源電圧VINが閾値電圧V1を下回ると、入力低電圧検出部7の出力信号がハイレベルになる。このハイレベル信号が入力低電圧検出信号に相当する。これにより、パルス生成部10は、ローサイドスイッチ6に対するPWM信号の出力を停止し、信号レベルをハイに維持する。すると、スイッチ6はオフ状態を維持することになり、同期整流動作が停止する。この期間では、ハイサイドスイッチ5がオフした際に流れる還流電流は、スイッチ6側のフリーホイールダイオードを介して流れる。図中の「SW」は、スイッチ6が同期整流動作を行う期間を示す。 (4) When the power supply voltage VIN falls below the threshold voltage V1, the output signal of the input low-voltage detector 7 goes high. This high level signal corresponds to the input low voltage detection signal. As a result, the pulse generation unit 10 stops outputting the PWM signal to the low-side switch 6 and maintains the signal level at high. Then, the switch 6 maintains the off state, and the synchronous rectification operation stops. In this period, the return current flowing when the high-side switch 5 is turned off flows through the freewheel diode on the switch 6 side. “SW” in the figure indicates a period during which the switch 6 performs the synchronous rectification operation.
 一方、出力端子VOUTが天絡状態になると、その電圧VOUTは電源電圧VINに等しくなる。したがって、図2に示すように、出力電圧VOUTは電源電圧VINと同様に変化する。電源電圧VINが、図3に示すケースと同様に変化すると、電源電圧VINが閾値電圧V1よりも低い状態から上昇する過程では、V1>V2に設定されていることで、入力低電圧検出部7の出力信号がローレベルに変化する以前のタイミングで、出力高電圧検出部8の出力信号がハイレベルに変化する。このハイレベル信号が出力高電圧検出信号に相当する。 (4) On the other hand, when the output terminal VOUT is in the short-to-supply state, the voltage VOUT becomes equal to the power supply voltage VIN. Therefore, as shown in FIG. 2, the output voltage VOUT changes similarly to the power supply voltage VIN. When the power supply voltage VIN changes in the same manner as in the case shown in FIG. 3, in a process where the power supply voltage VIN rises from a state lower than the threshold voltage V1, V1> V2 is set, so that the input low voltage detection unit 7 The output signal of the output high voltage detector 8 changes to a high level at a timing before the output signal of the output high voltage changes to a low level. This high level signal corresponds to the output high voltage detection signal.
 また、電源電圧VINが閾値電圧V1よりも高い状態から低下する過程においては、出力高電圧検出部8の出力信号がローレベルに変化する以前のタイミングで、入力低電圧検出部7の出力信号がハイレベルに変化する。これにより、ローサイドスイッチ6に与えられる信号は、切れ目なくハイレベルとなることで、スイッチ6はオフ状態を継続的に維持する。 Further, in the process where the power supply voltage VIN decreases from a state higher than the threshold voltage V1, the output signal of the input low-voltage detector 7 is output at a timing before the output signal of the output high-voltage detector 8 changes to a low level. Change to high level. As a result, the signal supplied to the low-side switch 6 continuously goes to the high level, and the switch 6 continuously maintains the off state.
 その結果、天絡が発生し、スイッチ6がオンした際に形成される下記の電流の逆流経路は、
      電源VIN→出力端子VOUT→インダクタ3→スイッチ6→グランド
図1に示すように、スイッチ6がオフになることで断たれる。したがって、電流の逆流が阻止される。
As a result, a short-to-power fault occurs, and the following current reverse flow path formed when the switch 6 is turned on is:
Power supply VIN → output terminal VOUT → inductor 3 → switch 6 → ground As shown in FIG. 1, the switch is turned off when the switch 6 is turned off. Therefore, the backflow of the current is prevented.
 ここで、例えば図4に示すように、出力高電圧検出部8のみを備えた場合は、電源電圧VINが図2に示すケースと同様に変化すると、電源電圧VINが出力設定電圧を超えてから閾値電圧V2を上回るまでの期間にローサイドスイッチ6による同期整流が行われる。その間に逆流電流が流れてしまう。また、電源電圧VINが低下する際に、閾値電圧V2を下回ってから出力設定電圧を下回るまでの期間にも、同様に逆流電流が流れてしまう。 Here, for example, as shown in FIG. 4, when only the output high voltage detecting unit 8 is provided, when the power supply voltage VIN changes in the same manner as in the case shown in FIG. 2, the power supply voltage VIN exceeds the output set voltage. Synchronous rectification by the low-side switch 6 is performed until the voltage exceeds the threshold voltage V2. During that time, a reverse current flows. Further, when the power supply voltage VIN decreases, a reverse current similarly flows in a period from when the power supply voltage VIN falls below the threshold voltage V2 to below the output set voltage.
 一方、図5に示すように入力定電圧検出部7のみを備えた場合は、電源電圧VINが閾値電圧V1を上回っている期間にローサイドスイッチ6による同期整流が行われるため、やはりその間に逆流電流が流れてしまう。すなわち、何れか一方のみを備える構成では、電流の逆流を適切に阻止できない。 On the other hand, when only the input constant voltage detection unit 7 is provided as shown in FIG. 5, synchronous rectification by the low-side switch 6 is performed during a period when the power supply voltage VIN is higher than the threshold voltage V1, so that the reverse current Will flow. That is, in a configuration including only one of them, the backflow of the current cannot be appropriately prevented.
 以上のように本実施形態によれば、スイッチング電源装置1に、出力端子VOUTが天絡した際に、当該端子よりインダクタ3に電流が逆方向に流れる逆流経路中に配置され、降圧型のスイッチング動作に伴い同期整流を行うために用いられるローサイドスイッチ6を備える。入力低電圧検出部7は、電源電圧VINが閾値電圧V1よりも低下すると入力低電圧検出信号を出力し、出力高電圧検出部8は、出力電圧VOUTが閾値電圧V2よりも上昇すると出力高電圧検出信号を出力する。そして、パルス生成部10は、入力低電圧検出信号,又は出力高電圧検出信号が出力されると、スイッチ6をオフさせて電流の逆流を防止する。 As described above, according to the present embodiment, when the output terminal VOUT is short-circuited to the switching power supply device 1, the switching power supply device 1 is disposed in the reverse flow path in which the current flows from the terminal to the inductor 3 in the reverse direction, and the step-down switching is performed. A low-side switch 6 used for performing synchronous rectification with operation is provided. The input low voltage detector 7 outputs an input low voltage detection signal when the power supply voltage VIN falls below the threshold voltage V1, and the output high voltage detector 8 outputs an output high voltage when the output voltage VOUT rises above the threshold voltage V2. Outputs a detection signal. When the input low voltage detection signal or the output high voltage detection signal is output, the pulse generation unit 10 turns off the switch 6 to prevent the current from flowing backward.
 このように構成すれば、天絡発生時に電源電圧VINが閾値電圧V2を下回る状態から上昇する過程では、その電圧が閾値電圧V1よりも低い期間に続いて、閾値電圧V2よりも高くなる期間が続く。これにより、入力低電圧検出信号の出力に続いて出力高電圧検出信号が出力されるため、パルス生成部10によりスイッチ6による同期整流動作が停止され、出力端子VOUTからグランド側に電流が逆流することを防止できる。 With this configuration, in a process in which the power supply voltage VIN rises from a state where the power supply voltage falls below the threshold voltage V2 when a short-to-power occurs, a period in which the voltage is higher than the threshold voltage V2 follows a period in which the voltage is lower than the threshold voltage V1. Continue. As a result, the output high voltage detection signal is output following the output of the input low voltage detection signal, so that the synchronous rectification operation by the switch 6 is stopped by the pulse generation unit 10, and the current flows backward from the output terminal VOUT to the ground side. Can be prevented.
 そして、制御IC2では、PWM信号を生成するために誤差増幅部11が出力電圧VOUTを検出しているので、制御IC2の端子を増やす必要がない。したがって、出力高電圧検出部8は、電源電圧VINを検出する入力低電圧検出部7と共に制御IC2の内部に構成でき、パルス生成部10についても同様である。つまり、外付け部品を追加することなく、且つ制御IC2の端子数を増加させることなく、天絡に対処する機能をスイッチング電源装置1に持たせることができる。 {Circle around (2)} In the control IC 2, since the error amplifier 11 detects the output voltage VOUT to generate the PWM signal, it is not necessary to increase the number of terminals of the control IC 2. Therefore, the output high voltage detection unit 8 can be configured inside the control IC 2 together with the input low voltage detection unit 7 that detects the power supply voltage VIN, and the same applies to the pulse generation unit 10. That is, the switching power supply device 1 can be provided with a function to cope with short-to-power without adding external parts and without increasing the number of terminals of the control IC 2.
  (第2実施形態)
 以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。第2実施形態は、入力低電圧検出部7及び出力高電圧検出部8にヒステリシスコンパレータを用いた場合を示す。ここで、閾値電圧V1に対してより高い電圧の閾値V1’を設定し、閾値電圧V2に対してより低い電圧の閾値V2’を設定する。そして、閾値電圧V1’を電圧検出閾値とし、閾値電圧V1を検出解除閾値とする。また、閾値電圧V2を高電圧検出閾値とし、閾値電圧V2’を検出解除閾値とする。更にこの場合、
V1’>V2,V1>V2’となるように設定する。
(2nd Embodiment)
Hereinafter, the same portions as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. Different portions will be described. The second embodiment shows a case where a hysteresis comparator is used for the input low-voltage detector 7 and the output high-voltage detector 8. Here, a higher voltage threshold V1 'is set for the threshold voltage V1, and a lower voltage threshold V2' is set for the threshold voltage V2. Then, the threshold voltage V1 ′ is set as a voltage detection threshold, and the threshold voltage V1 is set as a detection release threshold. The threshold voltage V2 is set as a high voltage detection threshold, and the threshold voltage V2 'is set as a detection release threshold. Further in this case,
V1 '> V2 and V1>V2' are set.
 次に、第2実施形態の作用について説明する。このように検出部7及び8で用いるコンパレータにヒステリシス特性を持たせた場合にも、天絡が発生した際に、入力低電圧検出部7が入力低電圧検出信号を出力する期間と、出力高電圧検出部8が出力高電圧検出信号を出力する期間とが確実にオーバーラップするようになる。したがって、天絡発生時における電流の逆流を確実に防止できる。 Next, the operation of the second embodiment will be described. Even when the comparators used in the detection units 7 and 8 have hysteresis characteristics in this manner, when a short-to-power occurs, the period during which the input low-voltage detection unit 7 outputs the input low-voltage detection signal and the output high-voltage detection signal are output. The period in which the voltage detection section 8 outputs the output high voltage detection signal surely overlaps. Therefore, it is possible to reliably prevent the backflow of the current when the short-to-power occurs.
  (第3実施形態)
 図7に示すように、第3実施形態のスイッチング電源装置21は、第1実施形態の制御IC2よりスイッチ5及び6の直列回路を除いたものを制御IC22として構成し、前記直列回路を外付けの素子で構成している。このように構成した場合も、第1実施形態と同様の効果が得られる。
(Third embodiment)
As shown in FIG. 7, the switching power supply device 21 of the third embodiment is configured as a control IC 22 in which the series circuit of the switches 5 and 6 is removed from the control IC 2 of the first embodiment, and the series circuit is externally connected. It consists of the element of. With such a configuration, the same effect as in the first embodiment can be obtained.
  (第4実施形態)
 図8に示すように、第4実施形態のスイッチング電源装置31は、第3実施形態の構成において、インダクタ3の一端と出力端子OUTとの間にハイサイドスイッチ35を挿入し、インダクタ3の一端とグランドとの間にローサイドスイッチ36を接続している。制御IC32は、パルス生成部10に替わるパルス生成部33を備え、パルス生成部33は、スイッチ35及び36に対してもPWM信号を出力する。スイッチ35及び36は、それぞれ第1及び第2昇圧用スイッチング素子に相当する。また、スイッチ35は逆流経路スイッチング素子にも相当する。
(Fourth embodiment)
As shown in FIG. 8, the switching power supply device 31 of the fourth embodiment differs from the configuration of the third embodiment in that a high-side switch 35 is inserted between one end of the inductor 3 and the output terminal OUT. The low side switch 36 is connected between the power supply and the ground. The control IC 32 includes a pulse generation unit 33 instead of the pulse generation unit 10, and the pulse generation unit 33 outputs a PWM signal to the switches 35 and 36. The switches 35 and 36 correspond to first and second boosting switching elements, respectively. The switch 35 also corresponds to a backflow path switching element.
 すなわち、スイッチ35をオン,スイッチ36をオフした状態で、第1~第3実施形態と同様にスイッチ5及び6を制御すれば、同じく降圧型のスイッチング動作が行われる。一方、スイッチ5をオン,スイッチ6をオフした状態で、スイッチ35及び36をスイッチング動作させれば、昇圧型のスイッチング動作になる。つまり、スイッチング電源装置31は昇降圧型の構成となっている。 That is, if the switches 5 and 6 are controlled in the state where the switch 35 is turned on and the switch 36 is turned off in the same manner as in the first to third embodiments, a step-down switching operation is performed. On the other hand, if the switches 35 and 36 are switched while the switch 5 is turned on and the switch 6 is turned off, a step-up switching operation is performed. That is, the switching power supply device 31 has a buck-boost configuration.
 このように構成すれば、天絡が発生した際には、例えば第1~第3実施形態と同様に、図8に示すように、スイッチ6をオフにすることで電流の逆流を防止できる。また、図9に示すように、スイッチ35をオフにすることによっても、同様に電流の逆流を防止できる。 With this configuration, when a short-to-power occurs, for example, as in the first to third embodiments, the switch 6 is turned off as shown in FIG. 8 to prevent a reverse current from flowing. Also, as shown in FIG. 9, turning off the switch 35 can similarly prevent the backflow of current.
 以上のように第4実施形態によれば、スイッチング電源装置31は、出力端子VOUTとインダクタ3との間に接続されるハイサイドスイッチ35と、インダクタ3とスイッチ35との共通接続点とグランドとの間に接続されるローサイドスイッチ36とを備える。そして、スイッチ35及び36にもPWM信号を与えることで、昇圧した電圧を出力可能とするので、昇降圧スイッチング動作を行う構成についても、逆流経路スイッチング素子をオフさせて電流の逆流を防止できる。 As described above, according to the fourth embodiment, the switching power supply device 31 includes the high-side switch 35 connected between the output terminal VOUT and the inductor 3, the common connection point between the inductor 3 and the switch 35, and the ground. And a low-side switch 36 connected between them. Since the boosted voltage can be output by supplying the PWM signal to the switches 35 and 36, the reverse flow path switching element can be turned off to prevent the current from flowing backward even in the configuration for performing the step-up / step-down switching operation.
 具体的には、パルス生成部33は、天絡が発生した際にスイッチ6又はスイッチ35をオフさせる。これにより、昇降圧スイッチング動作を行う構成であれば、少なくともスイッチ35をオフさせることで電流の逆流を防止できる。 Specifically, the pulse generator 33 turns off the switch 6 or the switch 35 when a short to power occurs. Accordingly, in a configuration in which the step-up / step-down switching operation is performed, the reverse current can be prevented by turning off at least the switch 35.
  (その他の実施形態)
 閾値電圧V1,V2は、必ずしもV1>V2に設定する必要は無く、少なくともV1=V2に設定すれば良い。
 第4実施形態の4つのスイッチを、制御IC32の内部に構成しても良い。
 車両に搭載されるものに限ることはない。
(Other embodiments)
The threshold voltages V1 and V2 do not necessarily need to be set to V1> V2, and may be set to at least V1 = V2.
The four switches of the fourth embodiment may be configured inside the control IC 32.
It is not limited to those mounted on vehicles.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also encompasses various modifications and variations within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more or less, are also included in the scope and concept of the present disclosure.

Claims (6)

  1.  電源と出力端子との間に接続される通電用スイッチング(5)素子及びインダクタ(3)の直列回路と、
     前記出力端子が天絡した際に、当該端子より電流が逆方向に流れる逆流経路中に配置され、少なくとも1つは同期整流を行うために用いられる1つ以上のスイッチング素子(6,35)と、
     前記出力端子の電圧と目標電圧との偏差に基づく誤差信号を出力する誤差増幅部(11)と、
     前記誤差信号に基づいてPWM信号を生成し、前記通電用スイッチング素子に出力する信号生成部(10,33)と、
     前記電源の電圧が閾値電圧V1よりも低下すると、入力低電圧検出信号を出力する入力低電圧検出部(7)と、
     前記出力端子の電圧が閾値電圧V2よりも上昇すると、出力高電圧検出信号を出力する出力高電圧検出部(8)と、
     前記入力低電圧検出信号,又は前記出力高電圧検出信号が出力されると、前記逆流経路中に配置されているスイッチング素子をオフさせて、電流の逆流を防止する逆流防止制御部(10,33)とを備えるスイッチング電源装置。
    A series circuit of an energizing switching element (5) and an inductor (3) connected between a power supply and an output terminal;
    When the output terminal is short-to-supply, the output terminal is disposed in a reverse flow path in which current flows from the terminal in a reverse direction, and at least one of the output terminals includes one or more switching elements (6, 35) used for performing synchronous rectification. ,
    An error amplifier (11) for outputting an error signal based on a deviation between the voltage of the output terminal and a target voltage;
    A signal generation unit (10, 33) that generates a PWM signal based on the error signal and outputs the PWM signal to the energizing switching element;
    An input low voltage detection unit (7) that outputs an input low voltage detection signal when the voltage of the power supply drops below a threshold voltage V1;
    An output high voltage detection unit (8) that outputs an output high voltage detection signal when the voltage of the output terminal rises above a threshold voltage V2;
    When the input low-voltage detection signal or the output high-voltage detection signal is output, a backflow prevention control unit (10, 33) that turns off a switching element disposed in the backflow path to prevent a backflow of current. A switching power supply device comprising:
  2.  前記逆流防止制御部がオフさせるスイッチング素子は、前記直列回路の共通接続点とグランドとの間に接続される同期整流用スイッチング素子(6)である請求項1記載のスイッチング電源装置。 The switching power supply according to claim 1, wherein the switching element turned off by the backflow prevention control unit is a synchronous rectification switching element (6) connected between a common connection point of the series circuits and a ground.
  3.  前記出力端子と前記インダクタとの間に接続される第1昇圧用スイッチング素子(35)と、
     前記インダクタとの前記第1昇圧用スイッチング素子との共通接続点とグランドとの間に接続される第2昇圧用スイッチング素子(36)とを備え、前記PWM信号を前記第1及び第2昇圧用スイッチング素子に与えることで、昇圧した電圧を出力可能である請求項1又は2記載のスイッチング電源装置。
    A first boosting switching element (35) connected between the output terminal and the inductor;
    A second boosting switching element (36) connected between a common connection point of the inductor and the first boosting switching element and a ground, wherein the PWM signal is supplied to the first and second boosting switching elements. The switching power supply device according to claim 1, wherein a boosted voltage can be output by applying the boosted voltage to the switching element.
  4.  前記逆流防止制御部(33)がオフさせるスイッチング素子は、前記第1昇圧用スイッチング素子(35)である請求項3記載のスイッチング電源装置。 The switching power supply according to claim 3, wherein the switching element that is turned off by the backflow prevention control unit is the first boosting switching element.
  5.  前記閾値電圧V1は、前記閾値電圧V2よりも高く設定されている請求項1から4の何れか一項に記載のスイッチング電源装置。 The switching power supply device according to any one of claims 1 to 4, wherein the threshold voltage V1 is set higher than the threshold voltage V2.
  6.  前記閾値電圧V1よりも高い電圧の閾値V1’と、前記閾値電圧V2よりも低い電圧の閾値V2’とを設定して、これらの閾値の高低関係をV1’>V2,V1>V2’に設定し、
     前記入力低電圧検出部は、前記電源の電圧が前記検出解除閾値V1’以上になると前記入力低電圧検出信号の出力を停止し、
     前記出力高電圧検出部は、前記出力端子の電圧が前記検出解除閾値V2’以下になると前記入力高電圧検出信号の出力を停止する請求項1から5の何れか一項に記載のスイッチング電源装置。
    A threshold value V1 'of a voltage higher than the threshold voltage V1 and a threshold value V2' of a voltage lower than the threshold voltage V2 are set, and the relationship between these threshold values is set to V1 '> V2, V1>V2'. And
    The input low-voltage detection unit stops outputting the input low-voltage detection signal when the voltage of the power supply is equal to or higher than the detection release threshold V1 ′,
    The switching power supply device according to any one of claims 1 to 5, wherein the output high voltage detection unit stops outputting the input high voltage detection signal when a voltage of the output terminal becomes equal to or less than the detection release threshold value V2 '. .
PCT/JP2019/019302 2018-07-25 2019-05-15 Switching power supply device WO2020021821A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018139391A JP2020018090A (en) 2018-07-25 2018-07-25 Switching power supply device
JP2018-139391 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020021821A1 true WO2020021821A1 (en) 2020-01-30

Family

ID=69182206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019302 WO2020021821A1 (en) 2018-07-25 2019-05-15 Switching power supply device

Country Status (2)

Country Link
JP (1) JP2020018090A (en)
WO (1) WO2020021821A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171741A (en) * 2008-01-16 2009-07-30 Fujitsu Ten Ltd Synchronous rectifying type switching regulator and electronic component
JP2011050221A (en) * 2009-08-28 2011-03-10 Seiko Instruments Inc Synchronous rectification type voltage converter
JP2013143831A (en) * 2012-01-11 2013-07-22 Rohm Co Ltd Switching regulator and control method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107989A (en) * 2012-11-28 2014-06-09 Toshiba Corp Dc-dc converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171741A (en) * 2008-01-16 2009-07-30 Fujitsu Ten Ltd Synchronous rectifying type switching regulator and electronic component
JP2011050221A (en) * 2009-08-28 2011-03-10 Seiko Instruments Inc Synchronous rectification type voltage converter
JP2013143831A (en) * 2012-01-11 2013-07-22 Rohm Co Ltd Switching regulator and control method thereof

Also Published As

Publication number Publication date
JP2020018090A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
US9625932B2 (en) Switching mode converter having 100% duty cycle mode and method for controlling thereof
US9831780B2 (en) Buck-boost converter and method for controlling buck-boost converter
JP4887841B2 (en) DC-DC converter control circuit, DC-DC converter, semiconductor device, and DC-DC converter control method
CN109428483B (en) Power control apparatus
US20110043176A1 (en) Step-down switching regulator
US10148184B2 (en) Multiphase converter
CN108933527B (en) Output overvoltage protection for a converter
CN111837325B (en) DCDC converter for vehicle
US11208067B2 (en) Airbag control device and semiconductor device
US20220407409A1 (en) Control circuit and power supply circuit of dc/dc converter, and electronic equipment
CN111630763B (en) Boost type switching power supply circuit
KR100793678B1 (en) Dc-dc converter control circuit, dc-dc converter, and dc-dc converter control method
US10468981B2 (en) Switching power supply device
JP2009225642A (en) Power supply apparatus and semiconductor integrated circuit apparatus
JP6637754B2 (en) Power supply circuit and electronic device including the same
WO2017195427A1 (en) Power supply device and electronic control device
WO2020021821A1 (en) Switching power supply device
US9641074B2 (en) Current control for DC-DC converter
JP2019213317A (en) Semiconductor device
US11476750B2 (en) Vehicle power supply device with charge circuit section
JP2022187421A (en) Dc/dc converter control circuit, power source circuit, and electronic apparatus
US8502508B2 (en) Switching regulator circuit configured to perform step up and step down operations and operation method therefor
JP2021039076A (en) Short-circuit detection circuit
JP2009273252A (en) Boosting power circuit
JP2020089095A (en) Switching power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841749

Country of ref document: EP

Kind code of ref document: A1