WO2020021722A1 - Method for manufacturing display device - Google Patents

Method for manufacturing display device Download PDF

Info

Publication number
WO2020021722A1
WO2020021722A1 PCT/JP2018/028333 JP2018028333W WO2020021722A1 WO 2020021722 A1 WO2020021722 A1 WO 2020021722A1 JP 2018028333 W JP2018028333 W JP 2018028333W WO 2020021722 A1 WO2020021722 A1 WO 2020021722A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
deposition
layer
vapor deposition
substrate
Prior art date
Application number
PCT/JP2018/028333
Other languages
French (fr)
Japanese (ja)
Inventor
勇毅 小林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2018/028333 priority Critical patent/WO2020021722A1/en
Publication of WO2020021722A1 publication Critical patent/WO2020021722A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a method for manufacturing a display device.
  • organic EL Electro Luminescence
  • a separate deposition method is often used in order to form a deposition film including a high-definition light emitting layer on a substrate.
  • a red light emitting layer is formed on a substrate using a red light emitting layer forming separate deposition mask, and then the red light emitting layer forming separate deposition mask is used.
  • the green light emitting layer forming separate coating vapor deposition mask is used.
  • the non-deposited hole portion of the separate deposition mask for forming the green light emitting layer directly contacts the red light emitting layer on the substrate.
  • the coating mask for forming the green light emitting layer is separated from the substrate, a defect occurs in the red light emitting layer.
  • FIG. 21 shows that the edge covers 108a and 108b having different heights are formed in the same active matrix substrate 100, and the active matrix substrate 100 and the separate deposition mask 101 are completely separated by the high edge cover 108b.
  • FIG. 7 is a diagram for explaining a case where the sheet does not adhere to the sheet.
  • a high edge cover 108b is provided on a surface of the active matrix substrate 100 which faces the separate deposition mask 101, and the edge cover 108b In addition, a certain distance can be maintained so that the active matrix substrate 100 and the separately-applied deposition mask 101 do not completely adhere to each other.
  • the deposition particles emitted from the deposition source pass through the deposition holes 103 of the mask 101 for separate deposition. Through this, the active matrix substrate 100 is formed in a predetermined shape.
  • FIG. 21B is a diagram showing a schematic configuration of the active matrix substrate 100.
  • the active matrix substrate 100 has a configuration in which a TFT element 105, an interlayer insulating film 106 serving as a planarizing film, an electrode 107, and edge covers 108a and 108b are provided on a substrate 104. Has become.
  • the original role of the edge covers 108a and 108b (also referred to as banks) is that a thin deposited film such as a light emitting layer is formed at the end of the electrode 107, and short-circuits between the electrode 107 and an opposing electrode (not shown). In order to prevent this, the electrode 107 is formed so as to cover the end of the electrode 107.
  • the height of the edge covers 108a and 108b is more than a predetermined height in consideration of forming a common layer (for example, an electrode layer facing the electrode 107) in a later step. It is difficult.
  • the edge cover formed at the boundary of the active area where the plurality of electrodes 107 are regularly formed is the high edge cover 108b (2 ⁇ m in height),
  • the edge cover to be formed was an edge cover 108a having a low height (1 ⁇ m in height).
  • the active matrix substrate 100 When vapor deposition is performed using the color-separated deposition method, the active matrix substrate 100 is used, and the edge cover 108b allows the active matrix substrate 100 and the color-separated deposition mask 101 to have a predetermined distance so as not to be completely adhered to each other. Therefore, it is possible to suppress the occurrence of defects in the light-emitting layer or the like, which is a deposition film, when the separate deposition mask 101 is separated from the active matrix substrate 100.
  • FIG. 22 is a diagram showing a schematic configuration of a conventional mask 201 for separate coating deposition.
  • the mask 201 for separate deposition is composed of a mask body 202 and a frame 203.
  • a surface facing a substrate on which a deposition film is formed is provided in the mask body 202.
  • Convex portions 205 are formed between vapor deposition holes 204 that are vertically adjacent in the drawing.
  • the separate deposition mask 201 When vapor deposition is performed using the separate deposition method, by using the separate deposition mask 201, the separate deposition mask 201 and the substrate on which the deposition film is formed can be prevented from being completely adhered. Therefore, it is described that when the separated deposition mask 201 is separated from a substrate on which a deposition film is formed, it is possible to suppress occurrence of defects in a light emitting layer or the like which is a deposition film.
  • JP-A-2003-323980 Japanese Unexamined Patent Publication
  • the vapor deposition material attached to the high edge cover 108b of the active matrix substrate 100 may be peeled off.
  • the deposited material may become a source of contamination in a deposition chamber used in the manufacturing process. For example, it may be transferred to another mask 101 for separate deposition and float in the deposition chamber.
  • the deposition material adhered to the convex portion 205 of the mask body 202 may peel off, and the peeled deposition material becomes a source of contamination in the deposition chamber.
  • the display device may have a problem that defects such as contamination and color mixing easily occur.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method of manufacturing a display device capable of reducing a defective product rate and improving a manufacturing yield.
  • a method for manufacturing a display device is a method for manufacturing a display device including a substrate and a vapor-deposited film formed on the substrate, and including a plurality of pixels.
  • a first step of performing a vapor deposition process by disposing a part of the vapor deposition mask and a part of the substrate so as to be in contact with each other to form the vapor deposition film on the substrate; and
  • a third step to be performed.
  • a defective product rate can be reduced and a manufacturing yield can be improved.
  • FIG. 5 is a flowchart illustrating an example of a method for manufacturing a display device.
  • FIG. 3 is a cross-sectional view illustrating a configuration of a display area of the display device.
  • 2 is a flowchart illustrating an example of a process for forming the light emitting device illustrated in FIG. 1.
  • FIG. 2 is a schematic plan view showing an example of the arrangement of a red light emitting element, a green light emitting element, and a blue light emitting element constituting a display device manufactured by the manufacturing method according to one embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG. 4, illustrating an example of a stacked structure of the EL layer illustrated in FIG.
  • FIG. 8 is a plan view illustrating an example of a schematic configuration of a mask sheet for a blue light emitting layer illustrated in FIG. 7.
  • 10A is a plan view of the effective portion YA of the mask sheet 80 as viewed from the first surface 80a side (upper surface), and
  • FIG. 10B is a cross-sectional view taken along the line AA of FIG. 7 is a flowchart illustrating an example of a more detailed flow of the film forming step and the cleaning step illustrated in FIG. 6.
  • FIG. 12 is a plan view schematically illustrating the superimposed portion illustrated in FIG. It is a schematic plan view showing an example of arrangement of a red light emitting element, a green light emitting element, and a blue light emitting element which constitute a display device manufactured by a manufacturing method according to another embodiment of the present invention.
  • FIG. 14 is a plan view illustrating a schematic configuration of an effective portion of a mask sheet stretched over a coating mask for red light-emitting layer in the arrangement example illustrated in FIG. 13.
  • FIG. 14 is a plan view illustrating a schematic configuration of an effective portion of a mask sheet stretched over a separate deposition mask for a green light emitting layer in the arrangement example illustrated in FIG. 13.
  • FIG. 14 is a plan view illustrating a schematic configuration of an effective portion of a mask sheet stretched over a separately-applied vapor deposition mask for a blue light emitting layer in the arrangement example illustrated in FIG. 13.
  • It is a schematic sectional drawing which shows the (a) vapor deposition process and the (b) detachment process about the coating mask for blue light emission layer which concerns on the said another one Embodiment of this invention. It is the top view which modeled the convex part shown to FIG.17 (b).
  • FIG. 6 is a schematic cross-sectional view illustrating a step of forming a blue hole transport layer in a manufacturing method according to another embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view illustrating a step of forming a blue hole transport layer in a manufacturing method according to another embodiment of the present invention. It is a figure for explaining the case where the conventional active matrix substrate provided with the edge cover from which height differs, and the conventional mask for separate application vapor deposition do not adhere completely. It is a figure showing the schematic structure of the conventional mask for separate application deposition.
  • the same layer means being formed by the same process (film formation step), and “lower layer” is being formed by a process earlier than the layer to be compared. And “upper layer” means that it is formed in a process subsequent to the layer to be compared.
  • FIG. 1 is a flowchart showing an example of a method for manufacturing a display device.
  • FIG. 2 is a cross-sectional view illustrating a configuration of a display area of the display device 1.
  • FIG. 3 is a flowchart showing an example of step S4 shown in FIG.
  • a resin layer 12 is formed on a light-transmitting support substrate (for example, mother glass) (Step S1).
  • the barrier layer 3 is formed (Step S2).
  • the TFT layer 4 is formed (Step S3).
  • a top emission type light emitting element layer 5 is formed (Step S4).
  • the sealing layer 6 is formed (Step S5).
  • an upper surface film is attached on the sealing layer 6 (Step S6).
  • Step S7 the support substrate is separated from the resin layer 12 by laser light irradiation or the like (Step S7).
  • the lower surface film 10 is attached to the lower surface of the resin layer 12 (Step S8).
  • the laminate including the lower film 10, the resin layer 12, the barrier layer 3, the TFT layer 4, the light emitting element layer 5, and the sealing layer 6 is divided to obtain a plurality of pieces (Step S9).
  • the functional film 39 is attached to the obtained individual pieces (Step S10).
  • an electronic circuit board for example, an IC chip and an FPC
  • Step S11 is performed by a display device manufacturing apparatus (including a film forming apparatus that performs each step of steps S1 to S5).
  • step S4 first, a contact hole for electrically connecting to the source electrode or the drain electrode of the transistor is formed in the flattening film 21 (step S21).
  • the anode 22 is formed in an island shape for each formation region of the light emitting element ES so as to be electrically connected to the source electrode or the drain electrode of the transistor through the contact hole (Step S22).
  • the edge cover 23 is formed (Step S23).
  • the EL layer 24 is formed (Step S24).
  • the cathode 25 is formed.
  • the resin layer 12 for example, polyimide or the like can be used.
  • the resin layer 12 may be replaced with a two-layer resin film (for example, a polyimide film) and an inorganic insulating film sandwiched between them.
  • the barrier layer 3 is a layer that prevents foreign substances such as water and oxygen from entering the TFT layer 4 and the light emitting element layer 5.
  • a silicon oxide film, a silicon nitride film, or an oxynitride film formed by a CVD method It can be composed of a silicon film or a laminated film of these.
  • the TFT layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) above the semiconductor film 15, a gate electrode GE and a gate wiring GH, and a gate electrode GE above the inorganic insulating film 16.
  • a planarizing film 21 (interlayer insulating film) above the source wiring SH.
  • the semiconductor film 15 is made of, for example, low-temperature polysilicon (LTPS) or an oxide semiconductor (for example, an In—Ga—Zn—O-based semiconductor), and a transistor (TFT) is formed to include the semiconductor film 15 and the gate electrode GE. Is done.
  • the transistor is illustrated as having a top-gate structure, but may have a bottom-gate structure.
  • the gate electrode GE, the gate wiring GH, the capacitor electrode CE, and the source wiring SH are formed of, for example, a single-layer film or a stacked film of a metal containing at least one of aluminum, tungsten, molybdenum, tantalum, chromium, titanium, and copper. You.
  • the TFT layer 4 in FIG. 2 includes one semiconductor layer and three metal layers.
  • the inorganic insulating films 16, 18, and 20 can be composed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a stacked film of these films formed by a CVD method.
  • the flattening film 21 can be made of a coatable organic material such as polyimide or acrylic.
  • the light emitting element layer 5 includes an anode 22 above the planarizing film 21, an insulating edge cover 23 covering the edge of the anode 22, an EL (electroluminescence) layer 24 above the edge cover 23, and an EL layer 24 and a cathode 25 above.
  • the edge cover 23 is formed, for example, by applying an organic material such as polyimide or acrylic and then patterning by photolithography.
  • a light emitting element ES for example, OLED: organic light emitting diode, QLED: quantum dot diode
  • a light emitting element ES including an island-shaped anode 22, EL layer 24, and cathode 25 is formed in the light emitting element layer 5, and the light emitting element ES Is formed in the TFT layer 4.
  • the EL layer 24 is formed by, for example, stacking a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the lower layer side.
  • the light emitting layer is formed in an island shape at the opening (for each sub-pixel) of the edge cover 23 by a vapor deposition method or an inkjet method.
  • Other layers are formed in an island shape or a solid shape (common layer). Further, a configuration in which one or more of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are not formed is also possible.
  • an FMM fine metal mask
  • the FMM is a sheet having a large number of evaporation holes (for example, made of Invar material), and an island-like light-emitting layer (corresponding to one sub-pixel) is formed by an organic substance passing through one evaporation hole.
  • the light emitting layer of the QLED can form an island-shaped light emitting layer (corresponding to one sub-pixel), for example, by inkjet coating a solvent in which quantum dots are diffused.
  • the anode (anode) 22 is made of, for example, a laminate of ITO (Indium Tin Oxide) and Ag (silver) or an alloy containing Ag, and has light reflectivity.
  • the cathode (cathode) 25 can be made of a light-transmitting conductive material such as an MgAg alloy (extremely thin film), ITO, or IZO (Indium Zinc Oxide).
  • the light emitting element ES is an OLED
  • holes and electrons are recombined in the light emitting layer due to a driving current between the anode 22 and the cathode 25, and light is emitted in a process in which the generated excitons transition to the ground state.
  • the cathode 25 is translucent and the anode 22 is light-reflective, the light emitted from the EL layer 24 is directed upward, resulting in top emission.
  • the light emitting device ES is a QLED
  • holes and electrons are recombined in the light emitting layer due to the driving current between the anode 22 and the cathode 25, and the excitons generated by the recombination generate conduction band levels of the quantum dots.
  • Light (fluorescence) is emitted in the process of transitioning from to the valence band (valence band).
  • a light emitting element (such as an inorganic light emitting diode) other than the OLED and QLED may be formed in the light emitting element layer 5.
  • the sealing layer 6 is translucent, and covers an inorganic sealing film 26 covering the cathode 25, an organic buffer film 27 above the inorganic sealing film 26, and an inorganic sealing film 28 above the organic buffer film 27. And The sealing layer 6 covering the light emitting element layer 5 prevents foreign substances such as water and oxygen from penetrating into the light emitting element layer 5.
  • Each of the inorganic sealing film 26 and the inorganic sealing film 28 is an inorganic insulating film, and is formed of, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film formed by a CVD method, or a stacked film thereof. be able to.
  • the organic buffer film 27 is a light-transmitting organic film having a flattening effect, and can be made of an applicable organic material such as acrylic.
  • the organic buffer film 27 can be formed by, for example, ink-jet coating, but a bank for stopping droplets may be provided in the frame region.
  • the lower surface film 10 is, for example, a PET film for realizing a display device having excellent flexibility by peeling off the support substrate and attaching the lower surface film 10 to the lower surface of the resin layer 12.
  • the functional film 39 has, for example, at least one of an optical compensation function, a touch sensor function, and a protection function.
  • FIG. 4 shows a red light emitting element ES_R (subpixel), a green light emitting element ES_G (subpixel), and a blue light emitting element ES_B (subpixel) that constitute a display device (display device) manufactured by the manufacturing method according to the present embodiment. It is a schematic plan view which shows the example of arrangement
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG. 4, showing an example of a laminated structure of the EL layer 24.
  • the light-emitting elements ES_R, ES_G, and ES_B of each color included in one pixel 40 have different areas, shapes, and numbers, but are not limited thereto. One or more may be the same as each other.
  • a protrusion 62 (photo spacer) as a photo spacer is provided on the edge cover 23.
  • the protrusion 62 is formed, for example, in the same layer as the edge cover 23.
  • the number of protrusions 62 for each pixel 40 may be smaller, or the number of protrusions 62 for some pixels 40 may be zero.
  • the EL layer 24 includes a hole injection layer 50 (an organic layer common to a plurality of pixels) and a common hole transport layer 51 (an organic layer common to a plurality of pixels) between the anode 22 and the cathode 25.
  • Organic layer an electron blocking layer 52, a hole blocking layer 56, an electron transport layer 58, and an electron injection layer 59 may be formed in this order. Note that this stacking order is the stacking order when the anode 22 is lower than the cathode 25, and the stacking order is reversed when the anode 22 is higher than the cathode 25.
  • a red hole transport layer 51R (evaporated film) is formed between the common hole transport layer 51 and the electron blocking layer 52, and the electron blocking layer 52 and the hole blocking layer 56 are formed.
  • the red light-emitting layer 54R (vapor-deposited film) is formed between the two.
  • a green hole transport layer 51G (evaporated film) is formed between the common hole transport layer 51 and the electron blocking layer 52.
  • a green light-emitting layer 54G (evaporated film) is formed therebetween.
  • a blue hole transport layer 51B (evaporated film) is formed between the common hole transport layer 51 and the electron blocking layer 52, and the electron blocking layer 52 and the hole blocking layer 56 are formed.
  • a blue light-emitting layer 54B (vapor-deposited film) is formed between them.
  • the layer 58 and the electron injection layer 59 are organic layers made of an organic material.
  • the EL layer 24 is not limited to the example of the laminated structure shown in FIG. 5, and a desired laminated structure can be adopted according to required characteristics of the EL layer.
  • the EL layer 24 may be provided with, for example, a hole injection layer / hole transport layer in which the common hole transport layer and the hole injection layer are integrated; one of the common hole transport layer and the hole injection layer Or both may not be provided; one or more of the blue hole transport layer, the red hole transport layer, and the green hole transport layer may not be provided; and the electron blocking layer may not be provided. Is also good.
  • the EL layer 24 may be provided with, for example, an electron injection layer and an electron transport layer in which the electron transport layer and the electron injection layer are integrated; one or both of the electron transport layer and the electron injection layer are provided. It is not necessary to provide a hole blocking layer.
  • FIG. 6 is a flowchart showing an example of the step (step S24) of forming the EL layer shown in FIG.
  • step S24 first, the hole injection layer 50 is formed on the entire display region (step S31) (fourth step). Next, the common hole transport layer 51 is formed on the entire display area (step S32) (fourth step). Next, the blue hole transport layer 51B is formed in the shape of an island using a separate deposition mask for the blue hole transport layer 51B (step S33) (first step). Next, the green hole transport layer 51G is formed in the shape of an island using a separate deposition mask for the green hole transport layer 51G (step S34) (first step). Next, the red hole transport layer 51R is formed in the shape of an island using a separate deposition mask for the red hole transport layer 51R (step S35) (first step).
  • the electron blocking layer 52 is formed on the entire display area (Step S36).
  • the red light-emitting layer 54R is formed in an island shape using the separate deposition mask for the red light-emitting layer 54R (step S37) (first step).
  • the green light-emitting layer 54G is formed in an island shape using a separate deposition mask for the green light-emitting layer 54G (step S38) (first step).
  • the blue light emitting layer 54B is formed in the shape of an island using a separate deposition mask for the blue light emitting layer 54B (step S39) (first step).
  • the hole blocking layer 56 is formed on the entire display area (Step S40).
  • the electron transport layer 58 is formed on the entire display area (step S41).
  • Step S42 the electron injection layer 59 is formed on the entire display area.
  • the deposition target substrates on which various deposition films are formed are sequentially transported from the deposition chamber where step S31 is performed to the deposition chamber where step S42 is performed. Note that the order of steps 33, S34, and S35 is interchangeable. The order of steps 37, S38, and S39 is also interchangeable.
  • step 51 The mask for once-applied deposition used once in step S33 is cleaned (step 51) (second step), and reused in step S33 (third step) performed on the next substrate to be deposited.
  • step 52 the mask for once-applied deposition that has been used once in step S34 is cleaned (step 52) (second step), and is used again in step S34 (third step) performed on the next deposition target substrate.
  • step 53 the mask for once-applied deposition that has been used once in step S35
  • step 53 second step
  • step S37 is cleaned (step 54) (second step), and is used again in step S37 (third step) performed for the next substrate to be formed.
  • step S38 is cleaned (step 55) (second step), and is used again in step S38 (third step) performed on the next substrate.
  • step 56 is cleaned (step 56) (second step), and is used again in step S39 (third step) performed on the next film formation target substrate.
  • Steps S33, S34, S35, S37, S38, and S39 are each a film forming process of forming a vapor-deposited film in an island shape on a substrate on which a film is to be formed, using a corresponding mask for separate vapor deposition.
  • Steps S51, S52, S53, S54, S55, and S56 are each a cleaning step for cleaning the corresponding coating mask for separate deposition. Each cleaning step is performed continuously to the corresponding film forming step. Further, a film forming process on the next substrate to be formed is performed continuously to a corresponding cleaning process.
  • a cleaning process is always performed after a film forming process on a certain film forming substrate and before a film forming process on the next film forming substrate.
  • ⁇ The“ substrate to be deposited ”in this specification includes a support substrate carried into a vapor deposition chamber where each deposition process is performed, and a laminated structure thereon. 5 and 6, for example, the “substrate to be deposited” in step S39 includes the support substrate 2, the resin layer 12, the TFT layer 4, the anode 22, and the edge cover 23.
  • step S39 for forming the blue light-emitting layer 54B, a separate deposition mask 70 for the blue light-emitting layer 54B, and a step for forming the blue light-emitting layer 54B The blue light-emitting layer 54B will be described by way of example, for example, step S56 of cleaning the mask 70 for separate deposition.
  • FIG. 7 is a plan view showing a schematic configuration of a separate deposition mask 70 for the blue light emitting layer 54B used in the manufacturing method according to the present embodiment.
  • the mask sheet 80 is stretched over the opening of the frame 72.
  • the number of the stretched mask sheets 80 is one, but actually, a plurality of the mask sheets 80 are stretched so as to cover the entire opening of the frame 72.
  • a plurality of support sheets 73 also referred to as a howling sheet
  • a plurality of cover sheets 71 that extend in the lateral direction of the frame 72 (the longitudinal direction of the mask sheet).
  • FIG. 8 is a plan view showing an example of a schematic configuration of the mask sheet 80 for the blue light emitting layer 54B shown in FIG.
  • FIG. 8 is a plan view showing a schematic configuration of the mask sheet 80 for the blue light emitting layer 54B shown in FIG.
  • the mask sheet 80 has a strip shape, and is made of, for example, an invar material having a thickness of 10 ⁇ m to 50 ⁇ m as a base material.
  • the first surface 80a which is the upper surface of the mask sheet 80, is the surface on the side facing the deposition target substrate
  • the second surface 80b, the lower surface of the mask sheet 80 is the surface on the side facing the deposition source in FIG. Become.
  • the mask sheet 80 includes two side ends G1 and G2 that can be gripped, and an intermediate portion M.
  • the intermediate portion M includes a plurality of effective portions YA arranged in the longitudinal direction, and an edge portion FA surrounding the effective portions YA.
  • a plurality of vapor deposition holes H are formed in the effective portion YA, and each effective portion corresponds to a display area of one OLED panel. That is, the deposition particles emitted from the deposition source pass through the deposition holes H and deposit on the display region of the deposition target substrate.
  • the edge FA overlaps a frame area surrounding the display area of the substrate, and the vapor deposition particles are blocked by the edge FA and do not reach the frame area.
  • FIG. 9A is a plan view of the effective portion YA of the mask sheet 80 as viewed from the first surface 80a side (upper surface), and FIG. 9B is an AA diagram of FIG. It is sectional drawing.
  • Each deposition hole H penetrates from the first surface 80a to the second surface 80b of the mask sheet 80, the first opening K is formed on the first surface 80a, and the second opening KK is formed on the second surface 80b. It is formed.
  • Each vapor deposition hole H has a shape in which a cross section parallel to the sheet surface increases from the first opening K of the first surface 80a toward the second surface 80b, and the first opening K on the first surface 80a side has: It is smaller than the second opening KK (lower surface etching region) on the second surface 80b side.
  • the plurality of vapor deposition holes H of the effective portion YA are formed in a matrix in the longitudinal direction and the width direction of the sheet, and the first opening K (the opening of the first surface 80a) corresponds to the formation region of the blue light emitting element ES_B.
  • the shape becomes a quadrangular shape or a circular shape with rounded corners.
  • the etching on the second surface 80b side is performed more extensively and deeper than the first surface 80a side with respect to each vapor deposition hole H, so that the shaded portion (the partition between two adjacent vapor deposition holes H) is formed. Height) is reduced, and the deposition accuracy and the deposition efficiency for the deposition target substrate are increased.
  • a recess L is formed between one of the first openings K of two adjacent vapor deposition holes H and the other of the first openings K. Is formed.
  • the concave portion means a concave portion that is concave but does not penetrate.
  • two evaporation holes H are adjacent to each other means that no other evaporation holes H are interposed between the two evaporation holes H.
  • a concave portion L is formed between the first opening K of the vapor deposition hole H at the upper right in FIG. 9 and the first opening K below it.
  • the vapor deposition holes H and the concave portions L form an opening pattern constituted by a unit pattern (first unit pattern) Uk on the first surface 10a.
  • the concave portion L is provided by etching in the gap between the openings of the vapor deposition holes H on the first surface 80a side (the concave portion L is not penetrated by etching, so it is called a half-etched portion). ), And balance the amount of etching on both sides.
  • the thin skin portion of the surface of the mask sheet 80 on which the compressive stress is applied is etched to balance the stress.
  • the shape of the concave portion L is not particularly limited, and may be various shapes.
  • a configuration can be adopted in which the contour of the concave portion L and the contour of the first opening K are similar.
  • the expression that the contour of the recess L is similar to the contour of the first opening K means that the shape of the contour of the first opening K is the same as the shape of the contour of the recess L.
  • the outline of the first opening K is elliptical
  • the outline of the recess L is also elliptical, or when the outline of the first opening K is rectangular
  • the configuration in which the outline of the concave portion L is also rectangular is included in the configuration in which the outline of the concave portion L and the outline of the first opening K are similar.
  • the size of the concave portion L and the size of the first opening portion K may be the same, or the sizes may be different from each other. , Smaller than the first opening K.
  • the outline and arrangement of the first opening K and the outline and arrangement of the recess L are not limited to the example shown in FIG.
  • FIG. 10 is a flowchart showing an example of a more detailed flow in the film forming step and the cleaning step shown in FIG.
  • the “substrate to be deposited” in step S39 includes the support substrate 2, the resin layer 12, the TFT layer 4, the anode 22, the edge cover 23, the hole injection layer 50, the common hole transport layer 51, and the blue hole. It includes a hole transport layer 51B, a green hole transport layer 51G, a red hole transport layer 51R, an electron blocking layer 52, a red light emitting layer 54R, and a green light emitting layer 54G. Then, in step S39, the blue light emitting layer 54B is formed on the film formation substrate by using a separate deposition mask for the blue light emitting layer 54B.
  • the deposition target substrate is carried into the deposition chamber where Step S39 is performed (Step S61), and then the blue color is deposited by using the separate deposition mask 70 for the blue light emitting layer 54B.
  • the light emitting layer 54B is formed in an island shape (step S60) (first step), and is carried out of the vapor deposition chamber (step S66). More specifically, in step S60, first, the mask 70 for deposition and deposition is aligned with the substrate on which the film is to be formed (step S62).
  • the separate deposition mask 70 is coated on the deposition target substrate, and the projections 62 (or the deposition film on the projections 62) provided on the deposition target substrate are deposited and deposited.
  • the mask 70 is disposed so as to face a part of the mask 70 (step S63).
  • a deposition process of depositing a deposition material through a plurality of deposition ports H provided in the mask sheet 80 of the mask 70 for separate deposition deposition is performed, so that a blue light emitting layer is formed on the deposition target substrate.
  • 54B are formed in an island shape (step S64) (vapor deposition step).
  • the coating mask 70 is separated from the deposition target substrate (step S65) (separation step).
  • FIG. 11 is a schematic cross-sectional view showing the (a) vapor deposition step and (b) detachment step shown in FIG. 10 for the mask sheet 80 of the separate vapor deposition mask 70 for the blue light emitting layer 54B according to the present embodiment. .
  • the deposition particles 76 which are particles of the deposition material, are deposited on the deposition target substrate 60 through the deposition holes H of the mask sheet 80 (Step S64), the deposition particles 76 emit blue light.
  • the blue light-emitting layer 54B is attached to the formation region of the element ES_B. Furthermore, since the vapor deposition particles 76 easily adhere to the periphery of the contact portion, the vapor deposition particles 76 form the deposit 42 on the vapor deposition hole H side in the overlapping portion 74.
  • the contact portion is in contact with the convex portion 62 (or the convex portion). This is a portion that comes into contact with the deposited film formed on the portion 62).
  • the overlapping portion 74 is a portion of the mask sheet 80 that overlaps the convex portion 62, and includes a contact portion and a periphery of the contact portion.
  • the vapor deposition particles 76 are also attached to other parts of the mask sheet 80.
  • the adhered substance 42 remains around the abutting portion of the mask sheet 80 after the coating mask 70 is separated from the deposition target substrate 60 (Step S65).
  • the deposited film (the hole injection layer 50, the common hole transport layer 51, and the electron blocking layer 52) formed on the convex portion 62 in the previous process may be transferred to the contact portion.
  • the deposits 42 and / or the transferred deposited film remaining on the overlapping portion 74 are contamination sources.
  • Other portions of the first surface 80a of the mask sheet 80 tend to be considerably lighter than the overlapping portion 74 that is soiled by the deposits 42 and / or the transferred deposited film.
  • FIG. 12 is a plan view schematically illustrating the overlapping portion 74 shown in FIG.
  • the shape of the convex portion 62 is substantially a truncated cone, and the shape of the overlapping portion 74 is substantially circular in plan view.
  • the attached matter 42 is likely to be formed in a region of the overlapping portion 74 other than the contact portion 46 of the local portion 48.
  • the contact portion 46 is a portion of the mask sheet 80 that contacts the protrusion 62.
  • a peripheral portion 47 (around the contact portion) surrounding the contact portion 46, the distance from the side surface of the convex portion 62 to the first surface 80 a of the mask sheet 80 is short, and the film formation substrate 60 is It is separated from the first surface 80a. For this reason, the attached matter 42 tends to be formed in the peripheral part 47.
  • the peripheral portion 47 does not always coincide with the region of the overlapping portion 74 except for the contact portion 46.
  • the outer circumference of the peripheral portion 47 is located inside the overlapping portion 74, and when the height of the convex portion 62 is short, the outer circumference of the peripheral portion 47 is located outside the overlapping portion 74.
  • the height of the spine of the convex portion 62 is such that the outer periphery of the peripheral portion 47 is located inside the overlapping portion 74.
  • the vapor deposition particles 76 fly from the vapor deposition hole H, the attached matter 42 tends to be formed on the vapor deposition hole H side of the contact portion 46. Due to these tendencies, the deposit 42 is likely to be formed in a region that is inside the local 48 and outside the contact portion 46.
  • the local portion 48 includes the contact portion 47 and a region of the peripheral portion 47 on the side of the deposition hole H with respect to the contact portion 47.
  • the rest of the first surface 80a of the mask sheet 80 tends to be much lighter than the local 48, which is soiled by the deposits 42 and / or the transferred deposited film. is there.
  • step S56 the coating vapor deposition mask 70 for the blue light emitting layer 54B is cleaned.
  • the mask 70 for separate coating and vapor deposition is cleaned in a step S70 performed continuously to the step S60 (second step). Then, in the step S60 (third step) performed on the next substrate to be formed, which is performed continuously to the step 70, the coating mask 70 for the separate coating after the step 70 is used again. More specifically, in step S70, the first surface 80a (facing the film-forming substrate side) of the mask sheet 80 of the deposition mask 70 is separately irradiated with laser light (S71) (fifth step). Then, the laser beam is locally applied to the local portion 48 including at least the contact portion 46 of the first surface 80a of the mask sheet 80 (S72) (removal step).
  • the process is not limited to the process illustrated in FIG. 10, and the step S60 may be any process as long as the local portion 48 can be selectively cleaned.
  • step S72 may be performed prior to step S71; step S71 may be omitted.
  • the overall surface temperature of the first surface 80a of the mask sheet 80 is set higher than the vapor deposition temperature of the vapor deposition material, and the vapor deposition material attached to the entire first surface 80a is removed. be able to.
  • the other parts of the first surface 80a tend to be considerably lighter than the local portions 48. For this reason, even if the entire surface of the mask 70 for separate coating and vapor deposition is cleaned in step S71, dirt may remain on the local portion 48 in some cases.
  • the local temperature of the local portion 48 of the mask sheet 80 is made higher than the vapor deposition temperature of the vapor deposition material by the local irradiation of the laser beam in step S72, and the deposits 42 remaining on the local portion 48 and / or the transferred vapor deposited film are removed. be able to. For this reason, the local part 48 is cleaned by step S72.
  • the deposition temperature is typically between 250 and 350 degrees Celsius. If the local part 48 is overheated, the contact part mask may be deformed. Therefore, it is preferable to irradiate the laser beam in step S72 so that the surface temperature of the local part 48 becomes 250 degrees Celsius or more and 500 degrees or less.
  • the local irradiation region (region including the local region) of the laser beam in step S72 may be a region including the local region 48 of the mask sheet 80, and may be a plurality of regions.
  • the local irradiation region may be, for example, a region where the contact portion 46 and the peripheral portion 47 are combined, or may be the overlapping portion 74.
  • the local irradiation region may be, for example, a plurality of regions having a diameter of 5 ⁇ m or more and 50 ⁇ m or less including one local 48, or one or a plurality of regions having a diameter of 10 mm or more and 100 mm or less including a plurality of locals 48. Good.
  • the local irradiation of the laser beam in step S72 may be performed simultaneously on a plurality of ranges or sequentially.
  • the description regarding the film forming step S60 and the cleaning step S70 described above can be applied to the separate deposition mask corresponding to any of the red light emitting element ES_R, the green light emitting element ES_G, and the blue light emitting element ES_B.
  • FIG. 13 is a schematic plan view showing an arrangement example of the red light emitting element ES_R, the green light emitting element ES_G, and the blue light emitting element ES_B, which constitute the display device manufactured by the manufacturing method according to the present embodiment.
  • FIG. 14 is a plan view illustrating a schematic configuration of an effective portion YA of a mask sheet 80R stretched over a separate deposition mask for the red light emitting layer 54R.
  • FIG. 15 is a plan view illustrating a schematic configuration of an effective portion YA of a mask sheet 80G stretched over a separate deposition mask for the green light emitting layer 54G.
  • FIG. 16 is a plan view illustrating a schematic configuration of an effective portion YA of a mask sheet 80B stretched over a separate deposition mask for the blue light emitting layer 54R.
  • the photo spacer is provided on the mask for separate deposition instead of being provided on the substrate on which the film is formed.
  • the convex portion 64R is provided on the mask sheet 80R for the red light emitting layer 54R
  • the convex portion 64G is provided on the mask sheet 80G for the green light emitting layer 54G
  • the convex portion 64B is provided on the mask sheet 80B for the blue light emitting layer 54R. It is provided as a photo spacer.
  • the convex portions 64R, 64G, and 64B provided on the mask sheets 80R, 80G, and 80B are formed of a material softer than the deposited film so as not to damage the deposited film formed on the deposition target substrate. And the like.
  • the light emitting elements ES_R, ES_G, and ES_B of each color have different shapes. Therefore, as shown in FIG. 14 to FIG. 16, the vapor deposition holes H provided in the mask sheets 80R, 80G, and 80B respectively corresponding to the red light emitting layer 54R, the green light emitting layer 54G, and the blue light emitting layer 54B also have different shapes. different. For this reason, the projections 64R, 64G, and 64B provided around the evaporation holes H are different in the arrangement with respect to the deposition target substrate even if the arrangement with respect to the evaporation holes H is the same. In the arrangement examples shown in FIGS.
  • four convex portions 64R, 64G, and 64B are arranged for one pixel 40, but the arrangement of the convex portions 64R, 64G, and 64B is not limited to this.
  • the number of projections 64R, 64G, and 64B for each pixel 40 may be smaller or different.
  • the number of projections 64R, 64G, and 64B with respect to some of the pixels 40 may be zero.
  • the manufacturing method according to the present embodiment is substantially the same as the manufacturing method according to the above-described first embodiment except that the photospacer is provided not on the substrate on which the film is to be formed but on the mask for separate deposition.
  • FIG. 17 is a schematic cross-sectional view showing (a) a vapor deposition step and (b) a separation step shown in FIG. 10 for a mask sheet 80B of a separate vapor deposition mask for the blue light emitting layer 54B according to the present embodiment.
  • step S63 in the aligned state, the separate deposition mask for the blue light emitting layer 54B is provided on the deposition target substrate 60 ′.
  • the convex portions 64B provided on the mask sheet 80B are arranged to face each other so as to contact a part of the substrate 60 ′.
  • step S64 in the present embodiment when the deposition particles 76, which are particles of the deposition material, are deposited on the deposition target substrate 60 ′ through the deposition holes H of the mask sheet 80B for the blue light emitting layer 54B, the deposition particles 76 become blue light emitting elements.
  • the blue light-emitting layer 54B is attached to the formation region of ES_B. Further, since the vapor deposition particles 76 easily adhere to the periphery of the contact portion, the vapor deposition particles 76 form the deposit 44 on the vapor deposition hole H side of the convex portion 64B.
  • the contact portion is a portion of the convex portion 64B that comes into contact with the film formation substrate 60 ′ when the convex portion 64B is in contact with the film formation substrate 60 ′.
  • the vapor deposition particles 76 are also attached to other parts of the mask sheet 80B.
  • the deposit 44 remains on the convex portion 64B after the separate deposition mask for the blue light emitting layer 54B is separated from the deposition target substrate 60 ′ (step S65). There is.
  • the deposited film (the hole injection layer 50 and the common hole transport layer 51) formed on the deposition target substrate 60 'in the previous process may be transferred to the contact portion of the projection 64B.
  • the deposits 44 remaining on the protrusions 64B and / or the transferred deposited film are contamination sources. Other portions of the mask sheet 80B tend to be much lighter than the protrusions 64B that are smudged by the deposit 44 and / or the transferred deposited film.
  • FIG. 18 is a plan view schematically showing the projection 64B shown in FIG. 17B in plan view.
  • the shape of the projection 64B is substantially a truncated cone.
  • the attached matter 44 is formed on the surface of the convex portion 64 ⁇ / b> B in a region other than the contact portion 46 ′ of the local 48 ′.
  • Cheap the other surfaces of the mask sheet 80B tend to be fairly lightly soiled, as compared to the locals 48 'that are smeared by the deposits 44 and / or the transferred deposited film.
  • step S72 in the present embodiment a region including the convex portion 64B is locally irradiated with laser light.
  • step S71 even if the surface of the coating vapor deposition mask 70 excluding the local portion 48 'is cleaned, dirt may remain on the local portion 48'.
  • the surface temperature of the local portion 48 'of the mask sheet 80B is set higher than the vapor deposition temperature of the vapor deposition material, and the deposits 44 remaining on the local portion 48' and / or the transferred vapor deposited film are transferred. Can be removed. For this reason, the local part 48 'is cleaned by step S72.
  • the deposition temperature is typically between 250 and 350 degrees Celsius. If the local portion 48 'is excessively heated, the convex portions 64B and / or the mask sheet 80B may be deformed.
  • the post bake temperature of the convex portion 64B is usually 500 degrees Celsius or higher. Therefore, it is preferable to irradiate the laser beam in step S72 so that the surface temperature of the local portion 48 'becomes 250 to 500 degrees Celsius.
  • the local irradiation region of the laser beam in step S72 may be a region including at least the local portion 48 'of the mask sheet 80B, and may be a plurality of regions.
  • the local irradiation region may be, for example, a region in which the contact portion 46 'and the peripheral portion 47' are combined, or a region including the entire convex portion 64B.
  • the local irradiation region may be, for example, a plurality of regions having a diameter of 5 ⁇ m or more and 50 ⁇ m or less including one local 48 ′, or one or a plurality of regions having a diameter of 10 mm or more and 100 mm or less including a plurality of locals 48 ′. You may.
  • the local irradiation of the laser beam in step S72 may be performed simultaneously on a plurality of ranges or sequentially.
  • step S 72 If the heated contact portion 46 ′ contacts the deposition target substrate 60 ′ at a high temperature in step S 72, the deposited film of the deposition target substrate 60 ′ may be thermally destroyed. For this reason, it is preferable to cool the contact part 46 'by step S63. Specifically, it is preferable to cool the surface temperature of the convex portion 64B to less than the deposition temperature at which the deposition material can be deposited as the deposition particles 76 by step S63.
  • the projections 64R, 64G, and 64B are provided on the mask sheet of the separate deposition mask corresponding to the red light emitting layer 54R, the green light emitting layer 54G, and the blue light emitting layer 54B, as in the above-described second embodiment.
  • the convex portion 66 (see FIG. 19) is provided on the mask sheet 90 of the mask for separate vapor deposition corresponding to the blue hole transport layer 51B, the green hole transport layer 51G, and the red hole transport layer 51R.
  • the manufacturing method according to the present embodiment is substantially the same as the manufacturing method according to the above-described second embodiment.
  • FIG. 19 is a schematic cross-sectional view showing step S33 of forming the blue hole transport layer 51B in the manufacturing method according to the present embodiment. 19, the detailed structure (first opening K, second opening KK, concave portion L) of the mask sheet 90 for the blue hole transport layer 51B is omitted for simplicity.
  • the convex portion 66 is formed of an organic vapor-deposited film so that the organic vapor-deposited film (the hole injection layer 50 and the common hole transport layer 51, an organic layer common to a plurality of pixels) formed on the substrate 60 ′ can be cut. It is formed of a harder material, for example, is made of metal, and is formed of the same metal material as the main body of the separate deposition mask 70 such as invar steel, or of the separate deposition mask 70 such as stainless steel. It is made of a metal material different from the main body.
  • the hole injection layer 50 and the common hole transport layer 51 are cut (ruptured) by the protrusions 66. Therefore, crosstalk between the blue light emitting element ES_B and the light emitting element adjacent thereto through the hole injection layer 50 and the common hole transport layer 51 can be prevented.
  • the hole injection layer 50 and the common hole transport layer 51 be completely separated into the inside and outside of the formation region of the blue light emitting element ES_B. Therefore, it is preferable that the protrusions 66 formed on the mask sheet 90 for the blue hole transport layer 51B have a frame shape that surrounds the evaporation holes H of the mask sheet 90 without interruption.
  • step S34 of forming the green hole transport layer 51G and step S35 of forming the red hole transport layer 51R can be prevented in step S34 of forming the green hole transport layer 51G and step S35 of forming the red hole transport layer 51R.
  • the blue light emitting element ES_B, the red light emitting element ES_R, and the green light emitting element ES_G have the hole injection layer 50 and the common hole transport layer 51 between adjacent light emitting elements broken. You may.
  • the convex portions 68 (see 20) provided on the mask sheet 92 of the mask for separate deposition corresponding to the blue hole transport layer 51B, the green hole transport layer 51G, and the red hole transport layer 51R are formed by laser. Heat by light irradiation. Except for this point, the manufacturing method according to the present embodiment is substantially the same as the manufacturing method according to the aforementioned third embodiment.
  • the convex portion 68 may be made of metal so that it can withstand heating and thermally break the organic vapor deposition film (the hole injection layer 50 and the common hole transport layer 51) formed on the deposition target substrate 60 '.
  • metal the same metal material as the main body of the separate deposition mask 70 such as Invar steel, or to be formed of a metal material different from the main body of the separate deposition mask 70 such as stainless steel.
  • FIG. 20 is a schematic cross-sectional view showing step S33 of forming the blue hole transport layer 51B in the manufacturing method according to the present embodiment. 20, the detailed structure (first opening K, second opening KK, concave portion L) of the mask sheet 92 for the blue hole transport layer 51B is omitted for simplicity.
  • the protrusions 68 formed on the mask sheet 92 for the blue hole transport layer 51B have a frame shape that surrounds the evaporation holes H of the mask sheet 92 without interruption.
  • crosstalk can be prevented in step S34 of forming the green hole transport layer 51G and step S35 of forming the red hole transport layer 51R. Note that only one or two of the blue light emitting element ES_B, the red light emitting element ES_R, and the green light emitting element ES_G have the hole injection layer 50 and the common hole transport layer 51 between adjacent light emitting elements broken. You may.
  • the convex portion 68 is heated so that the temperature is equal to or higher than the vapor deposition temperature of the vapor deposition material.
  • the deposition temperature is typically between 250 and 350 degrees Celsius. If the protrusion 68 is excessively heated, the edge cover 23 may be deformed.
  • the post-bake temperature of the edge cover 23 is usually 500 degrees Celsius or higher. Therefore, it is preferable to heat the projection 68 so that the temperature of the projection 68 is not less than 250 degrees Celsius and not more than 500 degrees Celsius, and particularly preferably about 300 degrees Celsius.
  • the heating of the protrusions 68 for breaking the hole injection layer 50 and the common hole transport layer 51 may be performed in a dedicated heating step or in step 72 (see FIG. 7).
  • a method for manufacturing a display device is a method for manufacturing a display device including a substrate and a vapor-deposited film formed on the substrate, the display device including a plurality of pixels.
  • a first step of performing a vapor deposition process by disposing a part of the vapor deposition mask and a part of the substrate so as to be in contact with each other to form the vapor deposition film on the substrate; and
  • a third step to be performed.
  • the method according to the above aspect 1, wherein the second step includes a removing step of removing the deposition material attached in the first step around the contact portion may be.
  • the region including the local portion is locally irradiated with laser light in the removing step, so that the area around the contact portion is A method of removing the deposition material attached in the first step may be used.
  • the method for manufacturing a display device according to aspect 4 of the present invention may be configured so that, in the above-described aspect 3, in the removing step, the region including the local region is a region including one local region and having a size of 5 ⁇ m or more and 50 ⁇ m or less. .
  • the method for manufacturing a display device according to aspect 5 of the present invention may be configured so that, in the above-described aspect 3, in the removing step, the region including the local region is a region including a plurality of local regions and not less than 10 mm and not more than 100 mm. .
  • the local surface temperature may be set to be 250 degrees Celsius or more and 500 degrees Celsius or less by irradiating the laser beam.
  • a method of heating the local portion may be used.
  • the plurality of pixels each include a plurality of sub-pixels
  • the deposition mask is one of the plurality of sub-pixels. May be used as a mask for separate deposition corresponding to the sub-pixel that emits light.
  • a photo spacer is formed on the substrate, and the local portion of the evaporation mask is the one of the evaporation masks.
  • the method may be included in an overlapping portion that overlaps with the photo spacer.
  • a photo spacer is formed on the evaporation mask, and the local portion of the evaporation mask is included in the photo spacer. It is good also as a method.
  • the method for manufacturing a display device according to Aspect 10 of the present invention is the method according to Aspect 9, wherein the method is performed before the first step, and further includes a fourth step of forming an organic layer common to the plurality of pixels, In the first step, a method may be employed in which the organic layer is broken by the photo spacer.
  • the photo spacer may be made of metal.
  • the method for manufacturing a display device according to aspect 12 of the present invention may be configured so that, in the above-mentioned aspect 10, the organic layer is cut by the photo spacer in the first step.
  • the method for manufacturing a display device according to aspect 13 of the present invention may be configured so that, in the above-described aspect 10, in the first step, the organic layer is thermally destroyed by the photo spacer heated by the irradiation of the laser beam.
  • the plurality of pixels each include a plurality of subpixels
  • the evaporation mask includes a plurality of evaporation masks.
  • Each of the plurality of deposition masks is a separate deposition mask corresponding to the sub-pixel for each sub-pixel emitting a different color among the plurality of sub-pixels, and the plurality of deposition masks are mutually separated.
  • the arrangement of the photospacer with respect to the substrate may be different.
  • the photospacer may have a frame shape surrounding an evaporation hole provided in the evaporation mask.
  • the method for manufacturing a display device according to aspect 16 of the present invention may be the method according to aspect 1, further including a fifth step of cleaning the entire deposition mask.

Abstract

The present invention includes: a first step (S60) for forming a vapor deposited film on a substrate, by placing a vapor deposition mask and a substrate to make these components oppose each other (S63) such that a part of the vapor deposition mask and a part of the substrate make contact with each other and by performing a vapor deposition process (S64); a second step (S70) performed continuously from the first step (S60) and for cleaning (S72) a contact part between the vapor deposition mask and the substrate in a selective manner; and a third step (S60) for performing the vapor deposition process (S64) using the vapor deposition mask after the second step (S70).

Description

表示デバイスの製造方法Method for manufacturing display device
 本発明は、表示デバイスの製造方法に関する。 The present invention relates to a method for manufacturing a display device.
 近年、さまざまなフラットパネルディスプレイが開発されており、特に、有機EL(Electro luminescence)表示装置は、低消費電力化、薄型化および高画質化などを実現できる点から、優れたフラットパネルディスプレイとして高い注目を浴びている。 2. Description of the Related Art In recent years, various flat panel displays have been developed. In particular, organic EL (Electro Luminescence) display devices are highly regarded as excellent flat panel displays because they can realize low power consumption, thinning, and high image quality. It is getting attention.
 このような有機EL表示装置の製造工程においては、基板上に高精細な発光層を含む蒸着膜を形成するため、塗分け蒸着方法を用いる場合が多い。 In the manufacturing process of such an organic EL display device, a separate deposition method is often used in order to form a deposition film including a high-definition light emitting layer on a substrate.
 このような塗分け蒸着方法を用いて蒸着を行う際に、塗分け蒸着用マスクと、蒸着膜が形成される対象である基板とを、完全に密着させて蒸着を行うと、蒸着後に、塗分け蒸着用マスクを基板から離す際に、蒸着膜に欠損が生じてしまうという問題がある。具体的に例を挙げて説明すると、先ず、赤色発光層形成用の塗分け蒸着用マスクを用いて、基板上に赤色発光層を形成した後、上記赤色発光層形成用の塗分け蒸着用マスクとは異なる位置に蒸着孔が形成された緑色発光層形成用の塗分け蒸着用マスクを用いて、基板上に緑色発光層を形成する場合において、上記緑色発光層形成用の塗分け蒸着用マスクと、赤色発光層が形成された基板とを完全に密着させて蒸着を行うと、上記緑色発光層形成用の塗分け蒸着用マスクの非蒸着孔部分が基板上の赤色発光層と直接接触することとなり、上記緑色発光層形成用の塗分け蒸着用マスクを基板から離す際に、赤色発光層に欠損が生じてしまうのである。 When vapor deposition is performed using such a separate vapor deposition method, when the vapor deposition mask and the substrate on which the vapor deposition film is to be formed are completely adhered and vapor deposition is performed, after the vapor deposition, the coating is performed. When the separation evaporation mask is separated from the substrate, there is a problem that a defect occurs in the evaporation film. Specifically, an example will be described. First, a red light emitting layer is formed on a substrate using a red light emitting layer forming separate deposition mask, and then the red light emitting layer forming separate deposition mask is used. In the case where a green light emitting layer is formed on a substrate by using a green light emitting layer forming coating mask for forming a green light emitting layer in which a vapor deposition hole is formed at a different position from the above, the green light emitting layer forming separate coating vapor deposition mask is used. And, when the deposition is performed by completely adhering the substrate on which the red light emitting layer is formed, the non-deposited hole portion of the separate deposition mask for forming the green light emitting layer directly contacts the red light emitting layer on the substrate. In other words, when the coating mask for forming the green light emitting layer is separated from the substrate, a defect occurs in the red light emitting layer.
 このような問題点を解消するため、従来から以下のような試みがなされている。 試 み The following attempts have been made to solve such problems.
 図21は、同一のアクティブマトリクス基板100内において、高さの異なるエッジカバー108a・108bを形成し、高さの高いエッジカバー108bによって、アクティブマトリクス基板100と塗分け蒸着用マスク101とが、完全に密着しない場合を説明するための図である。 FIG. 21 shows that the edge covers 108a and 108b having different heights are formed in the same active matrix substrate 100, and the active matrix substrate 100 and the separate deposition mask 101 are completely separated by the high edge cover 108b. FIG. 7 is a diagram for explaining a case where the sheet does not adhere to the sheet.
 図21の(a)に図示されているように、アクティブマトリクス基板100の塗分け蒸着用マスク101と対向する面には、高さの高いエッジカバー108bが設けられており、このエッジカバー108bによって、アクティブマトリクス基板100と塗分け蒸着用マスク101とが、完全に密着しないように一定の距離を維持することができる。 As shown in FIG. 21A, a high edge cover 108b is provided on a surface of the active matrix substrate 100 which faces the separate deposition mask 101, and the edge cover 108b In addition, a certain distance can be maintained so that the active matrix substrate 100 and the separately-applied deposition mask 101 do not completely adhere to each other.
 アクティブマトリクス基板100と塗分け蒸着用マスク101とが、一定の距離に維持された状態で、蒸着源(図示せず)から射出された蒸着粒子が、塗分け蒸着用マスク101の蒸着孔103を介して、アクティブマトリクス基板100上に、所定形状に形成されることとなる。 In a state where the active matrix substrate 100 and the mask 101 for separate deposition are maintained at a fixed distance, the deposition particles emitted from the deposition source (not shown) pass through the deposition holes 103 of the mask 101 for separate deposition. Through this, the active matrix substrate 100 is formed in a predetermined shape.
 図21の(b)は、アクティブマトリクス基板100の概略構成を示す図である。 FIG. 21B is a diagram showing a schematic configuration of the active matrix substrate 100.
 図示されているように、アクティブマトリクス基板100は、基板104上に、TFT素子105と、平坦化膜である層間絶縁膜106と、電極107と、エッジカバー108a・108bとが設けられた構成となっている。 As shown in the drawing, the active matrix substrate 100 has a configuration in which a TFT element 105, an interlayer insulating film 106 serving as a planarizing film, an electrode 107, and edge covers 108a and 108b are provided on a substrate 104. Has become.
 エッジカバー108a・108b(バンクとも称する)の本来の役割は、電極107の端部で発光層などの蒸着膜が薄く形成され、電極107と対向する電極(図示せず)との間で短絡するのを防止するために、電極107の端部を覆うように形成されるものである。そして、エッジカバー108a・108bの高さは、後工程で、共通層(例えば、電極107と対向する電極層)を面一状に形成することを考慮すると、所定の高さ以上で形成するのは困難である。 The original role of the edge covers 108a and 108b (also referred to as banks) is that a thin deposited film such as a light emitting layer is formed at the end of the electrode 107, and short-circuits between the electrode 107 and an opposing electrode (not shown). In order to prevent this, the electrode 107 is formed so as to cover the end of the electrode 107. The height of the edge covers 108a and 108b is more than a predetermined height in consideration of forming a common layer (for example, an electrode layer facing the electrode 107) in a later step. It is difficult.
 したがって、アクティブマトリクス基板100においては、複数の電極107が規則的に形成されるアクティブエリアの境界に形成されるエッジカバーは、高さが高いエッジカバー108b(高さ2μm)とし、アクティブエリア内に形成されるエッジカバーは、高さが低いエッジカバー108a(高さ1μm)とした。 Therefore, in the active matrix substrate 100, the edge cover formed at the boundary of the active area where the plurality of electrodes 107 are regularly formed is the high edge cover 108b (2 μm in height), The edge cover to be formed was an edge cover 108a having a low height (1 μm in height).
 塗分け蒸着方法を用いて蒸着を行う際に、アクティブマトリクス基板100を用いることにより、エッジカバー108bによって、アクティブマトリクス基板100と塗分け蒸着用マスク101とが、完全に密着しないように一定の距離で維持できるので、塗分け蒸着用マスク101をアクティブマトリクス基板100から離す際に、蒸着膜である発光層などに欠損が生じるのを抑制できる。 When vapor deposition is performed using the color-separated deposition method, the active matrix substrate 100 is used, and the edge cover 108b allows the active matrix substrate 100 and the color-separated deposition mask 101 to have a predetermined distance so as not to be completely adhered to each other. Therefore, it is possible to suppress the occurrence of defects in the light-emitting layer or the like, which is a deposition film, when the separate deposition mask 101 is separated from the active matrix substrate 100.
 また、従来の塗分け蒸着用マスクには、塗分け蒸着用マスク側に凸部を設けた構成について知られている(例えば、下記特許文献1参照)。 Also, a configuration in which a projection is provided on the side of the mask for separate coating deposition is known in the conventional mask for separate coating deposition (for example, see Patent Document 1 below).
 図22は、従来の塗分け蒸着用マスク201の概略構成を示す図である。 FIG. 22 is a diagram showing a schematic configuration of a conventional mask 201 for separate coating deposition.
 図示されているように、塗分け蒸着用マスク201は、マスク本体202と枠体203とで構成されており、マスク本体202において、蒸着膜を形成する対象である基板と対向する面には、凸部205が図中上下方向に隣接する蒸着孔204間に形成されている。 As shown in the figure, the mask 201 for separate deposition is composed of a mask body 202 and a frame 203. In the mask body 202, a surface facing a substrate on which a deposition film is formed is provided. Convex portions 205 are formed between vapor deposition holes 204 that are vertically adjacent in the drawing.
 塗分け蒸着方法を用いて蒸着を行う際に、塗分け蒸着用マスク201を用いることにより、塗分け蒸着用マスク201と蒸着膜を形成する対象である基板とが、完全に密着しないようにできるので、塗分け蒸着用マスク201を蒸着膜を形成する対象である基板から離す際に、蒸着膜である発光層などに欠損が生じるのを抑制できると記載されている。 When vapor deposition is performed using the separate deposition method, by using the separate deposition mask 201, the separate deposition mask 201 and the substrate on which the deposition film is formed can be prevented from being completely adhered. Therefore, it is described that when the separated deposition mask 201 is separated from a substrate on which a deposition film is formed, it is possible to suppress occurrence of defects in a light emitting layer or the like which is a deposition film.
日本国公開特許公報「特開2003‐323980号」公報(2003年11月14日公開)Japanese Unexamined Patent Publication "JP-A-2003-323980" (published on November 14, 2003)
 しかしながら、図21の(a)及び図21の(b)に図示するアクティブマトリクス基板100において、アクティブマトリクス基板100の高さの高いエッジカバー108bに付着した蒸着材料は、剥離することがあり、剥離した蒸着材料は、製造工程に用いられる蒸着室(チャンバー)の汚染源となることがある。例えば、別の塗分け蒸着用マスク101に転写され、上記蒸着室内を浮遊することがある。また、上記従来の塗分け蒸着用マスク201の場合には、マスク本体202の凸部205に付着した蒸着材料が剥離することがあり、剥離した蒸着材料は蒸着室の汚染源となる。 However, in the active matrix substrate 100 shown in FIGS. 21A and 21B, the vapor deposition material attached to the high edge cover 108b of the active matrix substrate 100 may be peeled off. The deposited material may become a source of contamination in a deposition chamber used in the manufacturing process. For example, it may be transferred to another mask 101 for separate deposition and float in the deposition chamber. Further, in the case of the above-mentioned conventional mask 201 for separate deposition, the deposition material adhered to the convex portion 205 of the mask body 202 may peel off, and the peeled deposition material becomes a source of contamination in the deposition chamber.
 このような汚染源に起因して、表示装置では、コンタミや混色などの不良が発生しやすいという問題を生じることがあった。 表示 Due to such a contamination source, the display device may have a problem that defects such as contamination and color mixing easily occur.
 本発明は、上記の問題点に鑑みてなされたものであり、不良品率を低減して製造歩留りを向上することができる表示装置の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method of manufacturing a display device capable of reducing a defective product rate and improving a manufacturing yield.
 本発明の一態様に係る表示装置の製造方法は、基板と、前記基板上に形成された蒸着膜とを備え、複数の画素を含む表示デバイスの製造方法であって、蒸着用マスクと前記基板とを、前記蒸着用マスクの一部と前記基板の一部とが当接するように対向配置して蒸着処理を行い、前記蒸着膜を前記基板上に形成する第1工程と、前記第1工程に連続して行われ、前記蒸着用マスクの、前記基板との当接部を含む局所を選択的にクリーニングする第2工程と、前記第2工程を経た前記蒸着用マスクを用いて蒸着処理を行う第3工程とを含む方法である。 A method for manufacturing a display device according to one embodiment of the present invention is a method for manufacturing a display device including a substrate and a vapor-deposited film formed on the substrate, and including a plurality of pixels. A first step of performing a vapor deposition process by disposing a part of the vapor deposition mask and a part of the substrate so as to be in contact with each other to form the vapor deposition film on the substrate; and A second step of selectively cleaning a local portion of the deposition mask including a contact portion with the substrate, and performing a deposition process using the deposition mask that has passed through the second step. And a third step to be performed.
 本発明の一態様に係る表示装置の製造方法によれば、不良品率を低減して製造歩留りを向上することができる。 According to the method for manufacturing a display device according to one embodiment of the present invention, a defective product rate can be reduced and a manufacturing yield can be improved.
表示デバイスの製造方法の一例を示すフローチャートである。5 is a flowchart illustrating an example of a method for manufacturing a display device. 表示デバイスの表示領域の構成を示す断面図である。FIG. 3 is a cross-sectional view illustrating a configuration of a display area of the display device. 図1に示した発光素子を形成する工程の一例を示すフローチャートである。2 is a flowchart illustrating an example of a process for forming the light emitting device illustrated in FIG. 1. 本発明の一実施形態に係る製造方法によって製造される表示デバイスを構成する赤色発光素子、緑色発光素子、青色発光素子の配置例を示す概略平面図である。FIG. 2 is a schematic plan view showing an example of the arrangement of a red light emitting element, a green light emitting element, and a blue light emitting element constituting a display device manufactured by the manufacturing method according to one embodiment of the present invention. 図2に示したEL層の積層構造の一例を示す、図4のA-A線断面図である。FIG. 5 is a cross-sectional view taken along the line AA of FIG. 4, illustrating an example of a stacked structure of the EL layer illustrated in FIG. 2; 図3に示したEL層を形成する工程の一例を示すフローチャートである。4 is a flowchart showing an example of a process for forming the EL layer shown in FIG. 本発明の一実施形態に係る製造方法で用いる青色発光層用の塗分け蒸着用マスクの概略構成を示す平面図である。It is a top view showing the schematic structure of the mask for separate application vapor deposition for the blue light emitting layer used by the manufacturing method concerning one embodiment of the present invention. は、図7に示した青色発光層用のマスクシートの概略構成の一例を示す平面図である。FIG. 8 is a plan view illustrating an example of a schematic configuration of a mask sheet for a blue light emitting layer illustrated in FIG. 7. (a)は、マスクシート80の有効部YAを第1面80a側(上面)から見た平面図であり、(b)10は、図9の(a)のA-A断面図である。10A is a plan view of the effective portion YA of the mask sheet 80 as viewed from the first surface 80a side (upper surface), and FIG. 10B is a cross-sectional view taken along the line AA of FIG. 図6に示した成膜工程とクリーニング工程とおけるより詳細なフローの一例を示すフローチャートである。7 is a flowchart illustrating an example of a more detailed flow of the film forming step and the cleaning step illustrated in FIG. 6. 本発明の前記一実施形態に係る青色発光層用の塗分け蒸着用マスクについて(a)蒸着工程および(b)離脱工程を示す概略断面図である。It is a schematic sectional drawing which shows the (a) vapor deposition process and the (b) detachment process about the coating mask for blue light emission layer which concerns on the said one Embodiment of this invention. 図11の(b)に示した重畳部を模式化した平面図である。FIG. 12 is a plan view schematically illustrating the superimposed portion illustrated in FIG. 本発明の別の一実施形態に係る製造方法によって製造される表示デバイスを構成する赤色発光素子、緑色発光素子、青色発光素子の配置例を示す概略平面図である。It is a schematic plan view showing an example of arrangement of a red light emitting element, a green light emitting element, and a blue light emitting element which constitute a display device manufactured by a manufacturing method according to another embodiment of the present invention. 図13に示した配置例における赤色発光層用の塗分け蒸着用マスクに架張されるマスクシートの有効部の概略構成を示す平面図である。FIG. 14 is a plan view illustrating a schematic configuration of an effective portion of a mask sheet stretched over a coating mask for red light-emitting layer in the arrangement example illustrated in FIG. 13. 図13に示した配置例における緑色発光層用の塗分け蒸着用マスクに架張されるマスクシートの有効部の概略構成を示す平面図である。FIG. 14 is a plan view illustrating a schematic configuration of an effective portion of a mask sheet stretched over a separate deposition mask for a green light emitting layer in the arrangement example illustrated in FIG. 13. 図13に示した配置例における青色発光層用の塗分け蒸着用マスクに架張されるマスクシートの有効部の概略構成を示す平面図である。FIG. 14 is a plan view illustrating a schematic configuration of an effective portion of a mask sheet stretched over a separately-applied vapor deposition mask for a blue light emitting layer in the arrangement example illustrated in FIG. 13. 本発明の前記別の一実施形態に係る青色発光層用の塗分け蒸着用マスクについて(a)蒸着工程および(b)離脱工程を示す概略断面図である。It is a schematic sectional drawing which shows the (a) vapor deposition process and the (b) detachment process about the coating mask for blue light emission layer which concerns on the said another one Embodiment of this invention. 図17の(b)に示した凸部を模式化した平面図である。It is the top view which modeled the convex part shown to FIG.17 (b). 本発明の別の一実施形態に係る製造方法の青色正孔輸送層を形成する工程を示す概略断面図である。FIG. 6 is a schematic cross-sectional view illustrating a step of forming a blue hole transport layer in a manufacturing method according to another embodiment of the present invention. 本発明の別の一実施形態に係る製造方法の青色正孔輸送層を形成する工程を示す概略断面図である。FIG. 6 is a schematic cross-sectional view illustrating a step of forming a blue hole transport layer in a manufacturing method according to another embodiment of the present invention. 高さの異なるエッジカバーが備えられた従来のアクティブマトリクス基板と、従来の塗分け蒸着用マスクとが、完全に密着しない場合を説明するための図である。It is a figure for explaining the case where the conventional active matrix substrate provided with the edge cover from which height differs, and the conventional mask for separate application vapor deposition do not adhere completely. 従来の塗分け蒸着用マスクの概略構成を示す図である。It is a figure showing the schematic structure of the conventional mask for separate application deposition.
 以下においては、「同層」とは同一のプロセス(成膜工程)にて形成されていることを意味し、「下層」とは、比較対象の層よりも先のプロセスで形成されていることを意味し、「上層」とは比較対象の層よりも後のプロセスで形成されていることを意味する。 In the following, “the same layer” means being formed by the same process (film formation step), and “lower layer” is being formed by a process earlier than the layer to be compared. And “upper layer” means that it is formed in a process subsequent to the layer to be compared.
 図1は表示デバイスの製造方法の一例を示すフローチャートである。図2は、表示デバイス1の表示領域の構成を示す断面図である。図3は、図1に示したステップS4の一例を示すフローチャートである。 FIG. 1 is a flowchart showing an example of a method for manufacturing a display device. FIG. 2 is a cross-sectional view illustrating a configuration of a display area of the display device 1. FIG. 3 is a flowchart showing an example of step S4 shown in FIG.
 フレキシブルな表示デバイスを製造する場合、図1および図2に示すように、まず、透光性の支持基板(例えば、マザーガラス)上に樹脂層12を形成する(ステップS1)。次いで、バリア層3を形成する(ステップS2)。次いで、TFT層4を形成する(ステップS3)。次いで、トップエミッション型の発光素子層5を形成する(ステップS4)。次いで、封止層6を形成する(ステップS5)。次いで、封止層6上に上面フィルムを貼り付ける(ステップS6)。 In the case of manufacturing a flexible display device, first, as shown in FIGS. 1 and 2, a resin layer 12 is formed on a light-transmitting support substrate (for example, mother glass) (Step S1). Next, the barrier layer 3 is formed (Step S2). Next, the TFT layer 4 is formed (Step S3). Next, a top emission type light emitting element layer 5 is formed (Step S4). Next, the sealing layer 6 is formed (Step S5). Next, an upper surface film is attached on the sealing layer 6 (Step S6).
 次いで、レーザ光の照射等によって支持基板を樹脂層12から剥離する(ステップS7)。次いで、樹脂層12の下面に下面フィルム10を貼り付ける(ステップS8)。次いで、下面フィルム10、樹脂層12、バリア層3、TFT層4、発光素子層5、封止層6を含む積層体を分断し、複数の個片を得る(ステップS9)。次いで、得られた個片に機能フィルム39を貼り付ける(ステップS10)。次いで、複数の副画素が形成された表示領域の周囲の額縁領域の一部(端子部)に電子回路基板(例えば、ICチップおよびFPC)をマウントする(ステップS11)。なお、ステップS1~S11は、表示デバイス製造装置(ステップS1~S5の各工程を行う成膜装置を含む)が行う。 Next, the support substrate is separated from the resin layer 12 by laser light irradiation or the like (Step S7). Next, the lower surface film 10 is attached to the lower surface of the resin layer 12 (Step S8). Next, the laminate including the lower film 10, the resin layer 12, the barrier layer 3, the TFT layer 4, the light emitting element layer 5, and the sealing layer 6 is divided to obtain a plurality of pieces (Step S9). Next, the functional film 39 is attached to the obtained individual pieces (Step S10). Next, an electronic circuit board (for example, an IC chip and an FPC) is mounted on a part (terminal part) of a frame area around a display area where a plurality of sub-pixels are formed (step S11). Steps S1 to S11 are performed by a display device manufacturing apparatus (including a film forming apparatus that performs each step of steps S1 to S5).
 図3に示すようにステップS4において、まず、トランジスタのソース電極またはドレイン電極と電気接続するためのコンタクトホールを平坦化膜21に形成する(ステップS21)。次いで、アノード22を、前記コンタクトホールを通じてトランジスタのソース電極またはドレイン電極と電気接続するように、発光素子ESの形成領域ごとに島状に形成する(ステップS22)。次いで、エッジカバー23を形成する(ステップS23)。次いで、EL層24を形成する(ステップS24)。次いで、カソード25を形成する。 (3) As shown in FIG. 3, in step S4, first, a contact hole for electrically connecting to the source electrode or the drain electrode of the transistor is formed in the flattening film 21 (step S21). Next, the anode 22 is formed in an island shape for each formation region of the light emitting element ES so as to be electrically connected to the source electrode or the drain electrode of the transistor through the contact hole (Step S22). Next, the edge cover 23 is formed (Step S23). Next, the EL layer 24 is formed (Step S24). Next, the cathode 25 is formed.
 樹脂層12の材料としては、例えばポリイミド等が挙げられる。樹脂層12の部分を、二層の樹脂膜(例えば、ポリイミド膜)およびこれらに挟まれた無機絶縁膜で置き換えることもできる。 ポ リ イ ミ ド As a material of the resin layer 12, for example, polyimide or the like can be used. The resin layer 12 may be replaced with a two-layer resin film (for example, a polyimide film) and an inorganic insulating film sandwiched between them.
 バリア層3は、水、酸素等の異物がTFT層4および発光素子層5に侵入することを防ぐ層であり、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。 The barrier layer 3 is a layer that prevents foreign substances such as water and oxygen from entering the TFT layer 4 and the light emitting element layer 5. For example, a silicon oxide film, a silicon nitride film, or an oxynitride film formed by a CVD method. It can be composed of a silicon film or a laminated film of these.
 TFT層4は、半導体膜15と、半導体膜15よりも上層の無機絶縁膜16(ゲート絶縁膜)と、無機絶縁膜16よりも上層の、ゲート電極GEおよびゲート配線GHと、ゲート電極GEおよびゲート配線GHよりも上層の無機絶縁膜18と、無機絶縁膜18よりも上層の容量電極CEと、容量電極CEよりも上層の無機絶縁膜20と、無機絶縁膜20よりも上層のソース配線SHと、ソース配線SHよりも上層の平坦化膜21(層間絶縁膜)とを含む。 The TFT layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) above the semiconductor film 15, a gate electrode GE and a gate wiring GH, and a gate electrode GE above the inorganic insulating film 16. The inorganic insulating film 18 above the gate wiring GH, the capacitor electrode CE above the inorganic insulating film 18, the inorganic insulating film 20 above the capacitor electrode CE, and the source wiring SH above the inorganic insulating film 20. And a planarizing film 21 (interlayer insulating film) above the source wiring SH.
 半導体膜15は、例えば低温ポリシリコン(LTPS)あるいは酸化物半導体(例えばIn-Ga-Zn-O系の半導体)で構成され、半導体膜15およびゲート電極GEを含むようにトランジスタ(TFT)が構成される。図2では、トランジスタがトップゲート構造で示されているが、ボトムゲート構造でもよい。 The semiconductor film 15 is made of, for example, low-temperature polysilicon (LTPS) or an oxide semiconductor (for example, an In—Ga—Zn—O-based semiconductor), and a transistor (TFT) is formed to include the semiconductor film 15 and the gate electrode GE. Is done. In FIG. 2, the transistor is illustrated as having a top-gate structure, but may have a bottom-gate structure.
 ゲート電極GE、ゲート配線GH、容量電極CE、およびソース配線SHは、例えば、アルミニウム、タングステン、モリブデン、タンタル、クロム、チタン、銅の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成される。図2のTFT層4には、一層の半導体層および三層のメタル層が含まれる。 The gate electrode GE, the gate wiring GH, the capacitor electrode CE, and the source wiring SH are formed of, for example, a single-layer film or a stacked film of a metal containing at least one of aluminum, tungsten, molybdenum, tantalum, chromium, titanium, and copper. You. The TFT layer 4 in FIG. 2 includes one semiconductor layer and three metal layers.
 無機絶縁膜16・18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。平坦化膜21は、例えば、ポリイミド、アクリル等の塗布可能な有機材料によって構成することができる。 (4) The inorganic insulating films 16, 18, and 20 can be composed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a stacked film of these films formed by a CVD method. The flattening film 21 can be made of a coatable organic material such as polyimide or acrylic.
 発光素子層5は、平坦化膜21よりも上層のアノード22と、アノード22のエッジを覆う絶縁性のエッジカバー23と、エッジカバー23よりも上層のEL(エレクトロルミネッセンス)層24と、EL層24よりも上層のカソード25とを含む。エッジカバー23は、例えば、ポリイミド、アクリル等の有機材料を塗布した後にフォトリソグラフィよってパターニングすることで形成される。 The light emitting element layer 5 includes an anode 22 above the planarizing film 21, an insulating edge cover 23 covering the edge of the anode 22, an EL (electroluminescence) layer 24 above the edge cover 23, and an EL layer 24 and a cathode 25 above. The edge cover 23 is formed, for example, by applying an organic material such as polyimide or acrylic and then patterning by photolithography.
 副画素ごとに、島状のアノード22、EL層24、およびカソード25を含む発光素子ES(例えば、OLED:有機発光ダイオード,QLED:量子ドットダイオード)が発光素子層5に形成され、発光素子ESを制御する副画素回路がTFT層4に形成される。 For each sub-pixel, a light emitting element ES (for example, OLED: organic light emitting diode, QLED: quantum dot diode) including an island-shaped anode 22, EL layer 24, and cathode 25 is formed in the light emitting element layer 5, and the light emitting element ES Is formed in the TFT layer 4.
 EL層24は、例えば、下層側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層を積層することで構成される。発光層は、蒸着法あるいはインクジェット法によって、エッジカバー23の開口(副画素ごと)に、島状に形成される。他の層は、島状あるいはベタ状(共通層)に形成する。また、正孔注入層、正孔輸送層、電子輸送層、電子注入層のうち1以上の層を形成しない構成も可能である。 The EL layer 24 is formed by, for example, stacking a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the lower layer side. The light emitting layer is formed in an island shape at the opening (for each sub-pixel) of the edge cover 23 by a vapor deposition method or an inkjet method. Other layers are formed in an island shape or a solid shape (common layer). Further, a configuration in which one or more of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are not formed is also possible.
 OLEDの発光層を蒸着形成する場合は、FMM(ファインメタルマスク)を用いる。FMMは多数の蒸着孔を有するシート(例えば、インバー材製)であり、1つの蒸着孔を通過した有機物質によって島状の発光層(1つの副画素に対応)が形成される。 In the case where the light emitting layer of the OLED is formed by vapor deposition, an FMM (fine metal mask) is used. The FMM is a sheet having a large number of evaporation holes (for example, made of Invar material), and an island-like light-emitting layer (corresponding to one sub-pixel) is formed by an organic substance passing through one evaporation hole.
 QLEDの発光層は、例えば、量子ドットを拡散させた溶媒をインクジェット塗布することで、島状の発光層(1つの副画素に対応)を形成することができる。 The light emitting layer of the QLED can form an island-shaped light emitting layer (corresponding to one sub-pixel), for example, by inkjet coating a solvent in which quantum dots are diffused.
 アノード(陽極)22は、例えばITO(Indium Tin Oxide)とAg(銀)あるいはAgを含む合金との積層によって構成され、光反射性を有する。カソード(陰極)25は、MgAg合金(極薄膜)、ITO、IZO(Indium zinc Oxide)等の透光性の導電材で構成することができる。 The anode (anode) 22 is made of, for example, a laminate of ITO (Indium Tin Oxide) and Ag (silver) or an alloy containing Ag, and has light reflectivity. The cathode (cathode) 25 can be made of a light-transmitting conductive material such as an MgAg alloy (extremely thin film), ITO, or IZO (Indium Zinc Oxide).
 発光素子ESがOLEDである場合、アノード22およびカソード25間の駆動電流によって正孔と電子が発光層内で再結合し、これによって生じたエキシトンが基底状態に遷移する過程で光が放出される。カソード25が透光性であり、アノード22が光反射性であるため、EL層24から放出された光は上方に向かい、トップエミッションとなる。 When the light emitting element ES is an OLED, holes and electrons are recombined in the light emitting layer due to a driving current between the anode 22 and the cathode 25, and light is emitted in a process in which the generated excitons transition to the ground state. . Since the cathode 25 is translucent and the anode 22 is light-reflective, the light emitted from the EL layer 24 is directed upward, resulting in top emission.
 発光素子ESがQLEDである場合、アノード22およびカソード25間の駆動電流によって正孔と電子が発光層内で再結合し、これによって生じたエキシトンが、量子ドットの伝導帯準位(conduction band)から価電子帯準位(valence band)に遷移する過程で光(蛍光)が放出される。 When the light emitting device ES is a QLED, holes and electrons are recombined in the light emitting layer due to the driving current between the anode 22 and the cathode 25, and the excitons generated by the recombination generate conduction band levels of the quantum dots. Light (fluorescence) is emitted in the process of transitioning from to the valence band (valence band).
 発光素子層5には、前記のOLED、QLED以外の発光素子(無機発光ダイオード等)を形成してもよい。 発 光 A light emitting element (such as an inorganic light emitting diode) other than the OLED and QLED may be formed in the light emitting element layer 5.
 封止層6は透光性であり、カソード25を覆う無機封止膜26と、無機封止膜26よりも上層の有機バッファ膜27と、有機バッファ膜27よりも上層の無機封止膜28とを含む。発光素子層5を覆う封止層6は、水、酸素等の異物の発光素子層5への浸透を防いでいる。 The sealing layer 6 is translucent, and covers an inorganic sealing film 26 covering the cathode 25, an organic buffer film 27 above the inorganic sealing film 26, and an inorganic sealing film 28 above the organic buffer film 27. And The sealing layer 6 covering the light emitting element layer 5 prevents foreign substances such as water and oxygen from penetrating into the light emitting element layer 5.
 無機封止膜26および無機封止膜28はそれぞれ無機絶縁膜であり、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機バッファ膜27は、平坦化効果のある透光性有機膜であり、アクリル等の塗布可能な有機材料によって構成することができる。有機バッファ膜27は例えばインクジェット塗布によって形成することができるが、液滴を止めるためのバンクを額縁領域に設けてもよい。 Each of the inorganic sealing film 26 and the inorganic sealing film 28 is an inorganic insulating film, and is formed of, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film formed by a CVD method, or a stacked film thereof. be able to. The organic buffer film 27 is a light-transmitting organic film having a flattening effect, and can be made of an applicable organic material such as acrylic. The organic buffer film 27 can be formed by, for example, ink-jet coating, but a bank for stopping droplets may be provided in the frame region.
 下面フィルム10は、支持基板を剥離した後に樹脂層12の下面に貼り付けることで柔軟性に優れた表示デバイスを実現するための、例えばPETフィルムである。機能フィルム39は、例えば、光学補償機能、タッチセンサ機能、保護機能の少なくとも1つを有する。 The lower surface film 10 is, for example, a PET film for realizing a display device having excellent flexibility by peeling off the support substrate and attaching the lower surface film 10 to the lower surface of the resin layer 12. The functional film 39 has, for example, at least one of an optical compensation function, a touch sensor function, and a protection function.
 以上にフレキシブルな表示デバイスについて説明したが、非フレキシブルな表示デバイスを製造する場合は、一般的に樹脂層の形成、基材の付け替え等が不要であるため、例えば、ガラス基板上にステップS2~S5の積層工程を行い、その後ステップS9に移行する。 Although a flexible display device has been described above, when a non-flexible display device is manufactured, it is generally unnecessary to form a resin layer, replace a base material, and the like. The stacking step of S5 is performed, and then the process proceeds to step S9.
 〔実施形態1〕
 以下、本発明の一実施形態について、図4から図12を参照して以下に説明する。
[Embodiment 1]
Hereinafter, an embodiment of the present invention will be described below with reference to FIGS.
 図4は、本実施形態に係る製造方法によって製造される表示デバイス(表示装置)を構成する赤色発光素子ES_R(副画素)、緑色発光素子ES_G(副画素)、青色発光素子ES_B(副画素)の配置例を示す概略平面図である。図5は、EL層24の積層構造の一例を示す、図4のA-A線断面図である。 FIG. 4 shows a red light emitting element ES_R (subpixel), a green light emitting element ES_G (subpixel), and a blue light emitting element ES_B (subpixel) that constitute a display device (display device) manufactured by the manufacturing method according to the present embodiment. It is a schematic plan view which shows the example of arrangement | positioning of. FIG. 5 is a cross-sectional view taken along the line AA of FIG. 4, showing an example of a laminated structure of the EL layer 24.
 図4に示す配置例において、1つの画素40に含まれる各色の発光素子ES_R・ES_G・ES_Bは、面積・形状・数が互いに異なるが、これに限らず、面積・形状・数のうちの何れか1つ以上が互いに同じであってもよい。フォトスペーサーとしての凸部62(フォトスペーサー)がエッジカバー23上に設けられている。凸部62は、例えば、エッジカバー23と同層に形成されている。図4に示す配置例において、各画素40に対して凸部62を6(=1×2+0.5×6+0.25×4)つ配置しているが、凸部62の配置はこれに限らない。例えば、各画素40に対する凸部62の配置数がより少なくてもよく、一部の画素40に対する凸部62の配置数が0であってもよい。 In the arrangement example shown in FIG. 4, the light-emitting elements ES_R, ES_G, and ES_B of each color included in one pixel 40 have different areas, shapes, and numbers, but are not limited thereto. One or more may be the same as each other. A protrusion 62 (photo spacer) as a photo spacer is provided on the edge cover 23. The protrusion 62 is formed, for example, in the same layer as the edge cover 23. In the arrangement example shown in FIG. 4, six (= 1 × 2 + 0.5 × 6 + 0.25 × 4) convex portions 62 are arranged for each pixel 40, but the arrangement of the convex portions 62 is not limited to this. . For example, the number of protrusions 62 for each pixel 40 may be smaller, or the number of protrusions 62 for some pixels 40 may be zero.
 図5に示すように、EL層24は、アノード22とカソード25との間に、正孔注入層50(複数の画素に共通する有機層)、共通正孔輸送層51(複数の画素に共通する有機層)、電子遮断層52、正孔遮断層56、電子輸送層58、および電子注入層59がこの順に形成された構成を有しうる。なおこの積層順は、アノード22がカソード25よりも下層である場合の積層順であり、アノード22がカソード25よりも上層である場合には、積層順が反転する。 As shown in FIG. 5, the EL layer 24 includes a hole injection layer 50 (an organic layer common to a plurality of pixels) and a common hole transport layer 51 (an organic layer common to a plurality of pixels) between the anode 22 and the cathode 25. Organic layer), an electron blocking layer 52, a hole blocking layer 56, an electron transport layer 58, and an electron injection layer 59 may be formed in this order. Note that this stacking order is the stacking order when the anode 22 is lower than the cathode 25, and the stacking order is reversed when the anode 22 is higher than the cathode 25.
 さらに、赤色発光素子ES_Rの形成領域では、共通正孔輸送層51と電子遮断層52との間に赤色正孔輸送層51R(蒸着膜)が形成され、電子遮断層52と正孔遮断層56との間に赤色発光層54R(蒸着膜)が形成される。緑色発光素子ES_Gの形成領域では、共通正孔輸送層51と電子遮断層52との間に緑色正孔輸送層51G(蒸着膜)が形成され、電子遮断層52と正孔遮断層56との間に緑色発光層54G(蒸着膜)が形成される。また、青色発光素子ES_Bの形成領域では、共通正孔輸送層51と電子遮断層52との間に青色正孔輸送層51B(蒸着膜)が形成され、電子遮断層52と正孔遮断層56との間に青色発光層54B(蒸着膜)が形成される。 Further, in the formation region of the red light emitting element ES_R, a red hole transport layer 51R (evaporated film) is formed between the common hole transport layer 51 and the electron blocking layer 52, and the electron blocking layer 52 and the hole blocking layer 56 are formed. The red light-emitting layer 54R (vapor-deposited film) is formed between the two. In the formation region of the green light emitting element ES_G, a green hole transport layer 51G (evaporated film) is formed between the common hole transport layer 51 and the electron blocking layer 52. A green light-emitting layer 54G (evaporated film) is formed therebetween. In the formation region of the blue light emitting element ES_B, a blue hole transport layer 51B (evaporated film) is formed between the common hole transport layer 51 and the electron blocking layer 52, and the electron blocking layer 52 and the hole blocking layer 56 are formed. A blue light-emitting layer 54B (vapor-deposited film) is formed between them.
 有機EL表示デバイスにおけるEL層24を構成する正孔注入層50、正孔輸送層51・51B・51G・51R、電子遮断層52、発光層54R・54G・54B、正孔遮断層56、電子輸送層58、および電子注入層59は、有機材料から成る有機層である。 The hole injection layer 50, the hole transport layers 51, 51B, 51G, 51R, the electron blocking layer 52, the light emitting layers 54R, 54G, 54B, the hole blocking layer 56, and the electron transport that constitute the EL layer 24 in the organic EL display device. The layer 58 and the electron injection layer 59 are organic layers made of an organic material.
 なおEL層24は図5に示す積層構造例に限らず、要求されるEL層の特性に応じて所望の積層構造を採用可能である。EL層24は例えば、共通正孔輸送層と正孔注入層とが一体化された正孔注入層兼正孔輸送層を設けられてもよく;共通正孔輸送層と正孔注入層との一方または両方が設けられなくてもよく;青色正孔輸送層と赤色正孔輸送層と緑色正孔輸送層とのうちの1つ以上が設けられなくてもよく;電子遮断層が設けられなくてもよい。また、EL層24は例えば、電子輸送層と電子注入層とが一体化された電子注入層兼電子輸送層を設けられてもよく;電子輸送層と電子注入層との一方または両方が設けられなくてもよく;正孔遮断層が設けられなくてもよい。 The EL layer 24 is not limited to the example of the laminated structure shown in FIG. 5, and a desired laminated structure can be adopted according to required characteristics of the EL layer. The EL layer 24 may be provided with, for example, a hole injection layer / hole transport layer in which the common hole transport layer and the hole injection layer are integrated; one of the common hole transport layer and the hole injection layer Or both may not be provided; one or more of the blue hole transport layer, the red hole transport layer, and the green hole transport layer may not be provided; and the electron blocking layer may not be provided. Is also good. In addition, the EL layer 24 may be provided with, for example, an electron injection layer and an electron transport layer in which the electron transport layer and the electron injection layer are integrated; one or both of the electron transport layer and the electron injection layer are provided. It is not necessary to provide a hole blocking layer.
 (EL層を形成する工程)
 図6は、図3に示したEL層を形成する工程(ステップS24)の一例を示すフローチャートである。
(Step of forming EL layer)
FIG. 6 is a flowchart showing an example of the step (step S24) of forming the EL layer shown in FIG.
 図6に示すようにステップS24において、まず、正孔注入層50が表示領域全面に形成される(ステップS31)(第4工程)。次に、共通正孔輸送層51が表示領域全面に形成される(ステップS32)(第4工程)。次に、青色正孔輸送層51Bが、青色正孔輸送層51B用の塗分け蒸着用マスクを用いて島状に形成される(ステップS33)(第1工程)。次に、緑色正孔輸送層51Gが、緑色正孔輸送層51G用の塗分け蒸着用マスクを用いて島状に形成される(ステップS34)(第1工程)。次に、赤色正孔輸送層51Rが、赤色正孔輸送層51R用の塗分け蒸着用マスクを用いて島状に形成される(ステップS35)(第1工程)。次に、電子遮断層52が表示領域全面に形成される(ステップS36)。次に、赤色発光層54Rが、赤色発光層54R用の塗分け蒸着用マスクを用いて島状に形成される(ステップS37)(第1工程)。次に、緑色発光層54Gが、緑色発光層54G用の塗分け蒸着用マスクを用いて島状に形成される(ステップS38)(第1工程)。次に、青色発光層54Bが、青色発光層54B用の塗分け蒸着用マスクを用いて島状に形成される(ステップS39)(第1工程)。次に、正孔遮断層56が表示領域全面に形成される(ステップS40)。次に、電子輸送層58が表示領域全面に形成される(ステップS41)。次に、電子注入層59が表示領域全面に形成される(ステップS42)。このように、様々な蒸着膜を形成される被成膜基板は、ステップS31が行われる蒸着室からステップS42が行われる蒸着室へ順次搬送される。なお、ステップ33・S34・S35の順序は可換である。ステップ37・S38・S39の順序も可換である。 よ う As shown in FIG. 6, in step S24, first, the hole injection layer 50 is formed on the entire display region (step S31) (fourth step). Next, the common hole transport layer 51 is formed on the entire display area (step S32) (fourth step). Next, the blue hole transport layer 51B is formed in the shape of an island using a separate deposition mask for the blue hole transport layer 51B (step S33) (first step). Next, the green hole transport layer 51G is formed in the shape of an island using a separate deposition mask for the green hole transport layer 51G (step S34) (first step). Next, the red hole transport layer 51R is formed in the shape of an island using a separate deposition mask for the red hole transport layer 51R (step S35) (first step). Next, the electron blocking layer 52 is formed on the entire display area (Step S36). Next, the red light-emitting layer 54R is formed in an island shape using the separate deposition mask for the red light-emitting layer 54R (step S37) (first step). Next, the green light-emitting layer 54G is formed in an island shape using a separate deposition mask for the green light-emitting layer 54G (step S38) (first step). Next, the blue light emitting layer 54B is formed in the shape of an island using a separate deposition mask for the blue light emitting layer 54B (step S39) (first step). Next, the hole blocking layer 56 is formed on the entire display area (Step S40). Next, the electron transport layer 58 is formed on the entire display area (step S41). Next, the electron injection layer 59 is formed on the entire display area (Step S42). As described above, the deposition target substrates on which various deposition films are formed are sequentially transported from the deposition chamber where step S31 is performed to the deposition chamber where step S42 is performed. Note that the order of steps 33, S34, and S35 is interchangeable. The order of steps 37, S38, and S39 is also interchangeable.
 さらに、ステップS33で一度用いられた塗分け蒸着用マスクをクリーニングし(ステップ51)(第2工程)、次の被成膜基板に対して行うステップS33(第3工程)で再度用いる。同様に、ステップS34で一度用いられた塗分け蒸着用マスクをクリーニングし(ステップ52)(第2工程)、次の被成膜基板に対して行うステップS34(第3工程)で再度用いる。同様に、ステップS35で一度用いられた塗分け蒸着用マスクをクリーニングし(ステップ53)(第2工程)、次の被成膜基板に対して行うステップS35(第3工程)で再度用いる。同様に、ステップS37で一度用いられた塗分け蒸着用マスクをクリーニングし(ステップ54)(第2工程)、次の被成膜基板に対して行うステップS37(第3工程)で再度用いる。同様に、ステップS38で一度用いられた塗分け蒸着用マスクをクリーニングし(ステップ55)(第2工程)、次の被成膜基板に対して行うステップS38(第3工程)で再度用いる。同様に、ステップS39で一度用いられた塗分け蒸着用マスクをクリーニングし(ステップ56)(第2工程)、次の被成膜基板に対して行うステップS39(第3工程)で再度用いる。このように、各蒸着膜に対応する蒸着用マスクは、複数の被成膜基板に対して用いられる。 {Circle around (2)} The mask for once-applied deposition used once in step S33 is cleaned (step 51) (second step), and reused in step S33 (third step) performed on the next substrate to be deposited. Similarly, the mask for once-applied deposition that has been used once in step S34 is cleaned (step 52) (second step), and is used again in step S34 (third step) performed on the next deposition target substrate. Similarly, the mask for once-applied deposition that has been used once in step S35 is cleaned (step 53) (second step), and is used again in step S35 (third step) performed on the next deposition target substrate. Similarly, the coating and deposition mask once used in step S37 is cleaned (step 54) (second step), and is used again in step S37 (third step) performed for the next substrate to be formed. Similarly, the coating and deposition mask once used in step S38 is cleaned (step 55) (second step), and is used again in step S38 (third step) performed on the next substrate. Similarly, the mask for once-applied deposition used once in step S39 is cleaned (step 56) (second step), and is used again in step S39 (third step) performed on the next film formation target substrate. Thus, the deposition mask corresponding to each deposition film is used for a plurality of deposition substrates.
 ステップS33・S34・S35・S37・S38・S39は各々、被成膜基板上に対応する塗分け蒸着用マスクを用いて蒸着膜を島状に形成する成膜工程である。ステップS51・S52・S53・S54・S55・S56は各々、対応する塗分け蒸着用マスクをクリーニングするクリーニング工程である。各クリーニング工程は、対応する成膜工程に連続して行われる。また、次の被成膜基板での成膜工程が、対応するクリーニング工程に連続して行われる。つまり、本実施形態では、各塗分け蒸着用マスクにおいて、ある被成膜基板での成膜工程後に、次の被成膜基板での成膜工程の前に、クリーニング工程が必ず行われる。 Steps S33, S34, S35, S37, S38, and S39 are each a film forming process of forming a vapor-deposited film in an island shape on a substrate on which a film is to be formed, using a corresponding mask for separate vapor deposition. Steps S51, S52, S53, S54, S55, and S56 are each a cleaning step for cleaning the corresponding coating mask for separate deposition. Each cleaning step is performed continuously to the corresponding film forming step. Further, a film forming process on the next substrate to be formed is performed continuously to a corresponding cleaning process. In other words, in the present embodiment, in each of the masks for separate coating, a cleaning process is always performed after a film forming process on a certain film forming substrate and before a film forming process on the next film forming substrate.
 本明細書における「被成膜基板」は、各成膜工程が行われる蒸着室に搬入された支持基板とその上の積層構造とを含む。具体的に図5および図6を参照して、例えば、ステップS39における「被成膜基板」は、支持基板2と樹脂層12・TFT層4・アノード22・エッジカバー23とを含み、さらに、正孔注入層50・共通正孔輸送層51・青色正孔輸送層51B・緑色正孔輸送層51G・赤色正孔輸送層51R・電子遮断層52・赤色発光層54R・緑色発光層54Gとを含む。以降、簡便のために、そうではないと述べている場合を除いて、青色発光層54Bを形成するためのステップS39,青色発光層54B用の塗分け蒸着用マスク70,および青色発光層54B用の塗分け蒸着用マスク70をクリーニングするステップS56など、青色発光層54Bに関して例に挙げて説明する。青色発光層54Bに関して説明したことは、そうではないと述べている場合を除いて、その他の島状に形成される有機蒸着膜(すなわち、青色正孔輸送層51B,赤色正孔輸送層51R,緑色正孔輸送層51G,赤色発光層54R,緑色発光層54G)についても適用される。 「The“ substrate to be deposited ”in this specification includes a support substrate carried into a vapor deposition chamber where each deposition process is performed, and a laminated structure thereon. 5 and 6, for example, the “substrate to be deposited” in step S39 includes the support substrate 2, the resin layer 12, the TFT layer 4, the anode 22, and the edge cover 23. The hole injection layer 50, the common hole transport layer 51, the blue hole transport layer 51B, the green hole transport layer 51G, the red hole transport layer 51R, the electron blocking layer 52, the red light emitting layer 54R, and the green light emitting layer 54G. Including. Hereinafter, for the sake of simplicity, unless otherwise stated, step S39 for forming the blue light-emitting layer 54B, a separate deposition mask 70 for the blue light-emitting layer 54B, and a step for forming the blue light-emitting layer 54B The blue light-emitting layer 54B will be described by way of example, for example, step S56 of cleaning the mask 70 for separate deposition. What has been described with respect to the blue light emitting layer 54B, except for the case where it is stated otherwise, is that other organic vapor-deposited films formed in an island shape (that is, the blue hole transport layer 51B, the red hole transport layer 51R, The same applies to the green hole transport layer 51G, the red light emitting layer 54R, and the green light emitting layer 54G).
 (塗分け蒸着用マスク)
 図7は、本実施形態に係る製造方法で用いる青色発光層54B用の塗分け蒸着用マスク70の概略構成を示す平面図である。
(Mask for deposition evaporation)
FIG. 7 is a plan view showing a schematic configuration of a separate deposition mask 70 for the blue light emitting layer 54B used in the manufacturing method according to the present embodiment.
 図7に示すように、青色発光層54B用の塗分け蒸着用マスク70では、フレーム72の開口にマスクシート80が架張されている。図7では、架張されているマスクシート80の枚数は1枚であるが、実際は、フレーム72の開口全体を覆うように複数枚のマスクシート80が架張される。また、フレーム72の縦方向(マスクシートの幅方向)に架けられる複数のサポートシート73(ハウリングシートとも呼ばれる)と、フレーム72の横方向(マスクシートの長手方向)に架けられる複数のカバーシート71と、が設けられていることが好ましい。 As shown in FIG. 7, in the separate deposition mask 70 for the blue light emitting layer 54 </ b> B, the mask sheet 80 is stretched over the opening of the frame 72. In FIG. 7, the number of the stretched mask sheets 80 is one, but actually, a plurality of the mask sheets 80 are stretched so as to cover the entire opening of the frame 72. In addition, a plurality of support sheets 73 (also referred to as a howling sheet) that extend in the vertical direction of the frame 72 (the width direction of the mask sheet) and a plurality of cover sheets 71 that extend in the lateral direction of the frame 72 (the longitudinal direction of the mask sheet). Are preferably provided.
 図8は、図7に示した青色発光層54B用のマスクシート80の概略構成の一例を示す平面図である。 FIG. 8 is a plan view showing an example of a schematic configuration of the mask sheet 80 for the blue light emitting layer 54B shown in FIG.
 図8は図7に示した青色発光層54B用のマスクシート80の概略構成を示す平面図である。図8に示すように、マスクシート80は、短冊状であり、母材として、例えば、厚さ10μm~50μmのインバー材等が用いられている。なお、マスクシート80の上面である第1面80aが被成膜基板と対向する側の面となり、マスクシート80の下面である第2面80bが図2における蒸着源と対向する側の面となる。 FIG. 8 is a plan view showing a schematic configuration of the mask sheet 80 for the blue light emitting layer 54B shown in FIG. As shown in FIG. 8, the mask sheet 80 has a strip shape, and is made of, for example, an invar material having a thickness of 10 μm to 50 μm as a base material. Note that the first surface 80a, which is the upper surface of the mask sheet 80, is the surface on the side facing the deposition target substrate, and the second surface 80b, the lower surface of the mask sheet 80, is the surface on the side facing the deposition source in FIG. Become.
 マスクシート80は、グリップ可能な2つの側端部G1・G2と、中間部Mとを備える。中間部Mは、長手方向に並ぶ複数の有効部YAと、これら有効部YAを取り囲む縁部FAとからなる。有効部YAには複数の蒸着孔Hが形成され、各有効部がOLEDパネル1枚の表示エリアに相当する。すなわち、蒸着源から発せられた蒸着粒子は、蒸着孔Hを通って被成膜基板の表示領域に蒸着する。縁部FAは、基板の表示領域を取り囲む額縁領域と重畳しており、蒸着粒子は縁部FAによって遮断され、額縁領域には到達しない。 The mask sheet 80 includes two side ends G1 and G2 that can be gripped, and an intermediate portion M. The intermediate portion M includes a plurality of effective portions YA arranged in the longitudinal direction, and an edge portion FA surrounding the effective portions YA. A plurality of vapor deposition holes H are formed in the effective portion YA, and each effective portion corresponds to a display area of one OLED panel. That is, the deposition particles emitted from the deposition source pass through the deposition holes H and deposit on the display region of the deposition target substrate. The edge FA overlaps a frame area surrounding the display area of the substrate, and the vapor deposition particles are blocked by the edge FA and do not reach the frame area.
 図9の(a)は、マスクシート80の有効部YAを第1面80a側(上面)から見た平面図であり、図9の(b)は、図9の(a)のA-A断面図である。各蒸着孔Hは、マスクシート80の第1面80aから第2面80bまで貫通しており、第1開口部Kは第1面80aに形成され、第2開口部KKは第2面80bに形成される。各蒸着孔Hは、第1面80aの第1開口部Kから第2面80bに向けてシート面に平行な断面が大きくなる形状であり、第1面80a側の第1開口部Kは、第2面80b側の第2開口部KK(下面エッチングの領域)よりも小さい。 FIG. 9A is a plan view of the effective portion YA of the mask sheet 80 as viewed from the first surface 80a side (upper surface), and FIG. 9B is an AA diagram of FIG. It is sectional drawing. Each deposition hole H penetrates from the first surface 80a to the second surface 80b of the mask sheet 80, the first opening K is formed on the first surface 80a, and the second opening KK is formed on the second surface 80b. It is formed. Each vapor deposition hole H has a shape in which a cross section parallel to the sheet surface increases from the first opening K of the first surface 80a toward the second surface 80b, and the first opening K on the first surface 80a side has: It is smaller than the second opening KK (lower surface etching region) on the second surface 80b side.
 有効部YAの複数の蒸着孔Hは、シートの長手方向および幅方向にマトリクス状に形成され、その第1開口部K(第1面80aの開口)は、青色発光素子ES_Bの形成領域に対応するように、角が丸まった四角形形状もしくは円形の形状となる。有効部YAでは、各蒸着孔Hに対して第1面80a側よりも第2面80b側のエッチングを広範かつ深く行うことで、陰になる部分(隣り合う2つの蒸着孔H間の仕切りの高さ)を小さくし、被成膜基板に対する蒸着精度および蒸着効率を高めている。 The plurality of vapor deposition holes H of the effective portion YA are formed in a matrix in the longitudinal direction and the width direction of the sheet, and the first opening K (the opening of the first surface 80a) corresponds to the formation region of the blue light emitting element ES_B. As a result, the shape becomes a quadrangular shape or a circular shape with rounded corners. In the effective portion YA, the etching on the second surface 80b side is performed more extensively and deeper than the first surface 80a side with respect to each vapor deposition hole H, so that the shaded portion (the partition between two adjacent vapor deposition holes H) is formed. Height) is reduced, and the deposition accuracy and the deposition efficiency for the deposition target substrate are increased.
 ここで、マスクシート80の有効部YAの第1面80aにおいて、隣り合う2つの蒸着孔Hの一方の第1開口部Kと、他方の第1開口部Kとの間には、凹部Lが形成されている。本明細書において、凹部とは、凹んでいるが、貫通していない凹形状の部位を意味する。また、二つの蒸着孔Hが隣り合うとは、二つの蒸着孔Hの間に他の蒸着孔Hが介在しないことを意味する。例えば、図9における右上の蒸着孔Hの第1開口部Kと、その下の第1開口部Kとの間に、凹部Lが形成されている。蒸着孔Hおよび凹部Lは第1面10a上に、単位パターン(第1単位パターン)Ukによって構成される開口パターンを形成している。 Here, on the first surface 80a of the effective portion YA of the mask sheet 80, a recess L is formed between one of the first openings K of two adjacent vapor deposition holes H and the other of the first openings K. Is formed. In this specification, the concave portion means a concave portion that is concave but does not penetrate. Further, that two evaporation holes H are adjacent to each other means that no other evaporation holes H are interposed between the two evaporation holes H. For example, a concave portion L is formed between the first opening K of the vapor deposition hole H at the upper right in FIG. 9 and the first opening K below it. The vapor deposition holes H and the concave portions L form an opening pattern constituted by a unit pattern (first unit pattern) Uk on the first surface 10a.
 このように、マスクシート80では、第1面80a側の蒸着孔Hの開口の隙間に、凹部Lをエッチングによって設け(なお、凹部Lはエッチングにより貫通していないことから、ハーフエッチング部と呼んでもよい)、両面のエッチング量のバランスを取る。換言すれば、マスクシート80表面の圧縮応力のかかった薄皮部分をエッチングし、応力のバランスを取る。これにより、エッチング後でも、マスクシート80の両面におけるエッチング量の差を縮小し、応力バランスを取ることで、マスクシート80の反りの発生を抑制することができる。 As described above, in the mask sheet 80, the concave portion L is provided by etching in the gap between the openings of the vapor deposition holes H on the first surface 80a side (the concave portion L is not penetrated by etching, so it is called a half-etched portion). ), And balance the amount of etching on both sides. In other words, the thin skin portion of the surface of the mask sheet 80 on which the compressive stress is applied is etched to balance the stress. Thus, even after the etching, the difference in the amount of etching on both surfaces of the mask sheet 80 can be reduced, and the stress balance can be maintained, so that the warpage of the mask sheet 80 can be suppressed.
 凹部Lの形状は特に限定されず、様々な形状とすることができる。例えば、図9に示すように、有効部YAの第1面80aを平面視した場合に、凹部Lの輪郭と、第1開口部Kの輪郭とが相似している構成とすることができる。なお、本明細書において、凹部Lの輪郭と、第1開口部Kの輪郭とが相似しているとは、第1開口部Kの輪郭の形状と、凹部Lの輪郭の形状とが同種の形状であることを意味し、例えば、第1開口部Kの輪郭が楕円形状である場合に凹部Lの輪郭も楕円形状である構成や、第1開口部Kの輪郭が矩形形状である場合に凹部Lの輪郭も矩形形状である構成なども、凹部Lの輪郭と、第1開口部Kの輪郭とが相似している構成に包含される。このとき、凹部Lのサイズと、第1開口部Kのサイズとが同一である構成であってもよいし、両サイズが異なっている構成であってもよいが、たとえば、凹部Lの方が、第1開口部Kよりも小さい構成とすることができる。第1開口部Kの輪郭および配置ならびに凹部Lの輪郭および配置は、図9に示した一例に限らない。 形状 The shape of the concave portion L is not particularly limited, and may be various shapes. For example, as shown in FIG. 9, when the first surface 80 a of the effective portion YA is viewed in a plan view, a configuration can be adopted in which the contour of the concave portion L and the contour of the first opening K are similar. In the present specification, the expression that the contour of the recess L is similar to the contour of the first opening K means that the shape of the contour of the first opening K is the same as the shape of the contour of the recess L. For example, when the outline of the first opening K is elliptical, the outline of the recess L is also elliptical, or when the outline of the first opening K is rectangular, The configuration in which the outline of the concave portion L is also rectangular is included in the configuration in which the outline of the concave portion L and the outline of the first opening K are similar. At this time, the size of the concave portion L and the size of the first opening portion K may be the same, or the sizes may be different from each other. , Smaller than the first opening K. The outline and arrangement of the first opening K and the outline and arrangement of the recess L are not limited to the example shown in FIG.
 (成膜工程)
 図10は、図6に示した成膜工程とクリーニング工程とおけるより詳細なフローの一例を示すフローチャートである。
(Deposition process)
FIG. 10 is a flowchart showing an example of a more detailed flow in the film forming step and the cleaning step shown in FIG.
 上述したように、ステップS39における「被成膜基板」は、支持基板2・樹脂層12・TFT層4・アノード22・エッジカバー23・正孔注入層50・共通正孔輸送層51・青色正孔輸送層51B・緑色正孔輸送層51G・赤色正孔輸送層51R・電子遮断層52・赤色発光層54R・緑色発光層54Gを含む。そして、ステップS39では、この被成膜基板に対して、青色発光層54B用の塗分け蒸着用マスクが用いられて、青色発光層54Bが当該被成膜基板上に形成される。 As described above, the “substrate to be deposited” in step S39 includes the support substrate 2, the resin layer 12, the TFT layer 4, the anode 22, the edge cover 23, the hole injection layer 50, the common hole transport layer 51, and the blue hole. It includes a hole transport layer 51B, a green hole transport layer 51G, a red hole transport layer 51R, an electron blocking layer 52, a red light emitting layer 54R, and a green light emitting layer 54G. Then, in step S39, the blue light emitting layer 54B is formed on the film formation substrate by using a separate deposition mask for the blue light emitting layer 54B.
 具体的には、図10に示すように、被成膜基板をステップS39が行われる蒸着室内に搬入し(ステップS61)、それから上記青色発光層54B用の塗分け蒸着用マスク70を用いて青色発光層54Bを島状に形成し(ステップS60)(第1工程)、そして、蒸着室外に搬出する(ステップS66)。詳細に言えば、ステップS60では、まず、塗分け蒸着用マスク70が被成膜基板にアライアメントされる(ステップS62)。次に、アライアメントされた状態で、塗分け蒸着用マスク70が被成膜基板に、被成膜基板に設けられた凸部62(または、凸部62上の蒸着膜)が塗分け蒸着用マスク70の一部に当接するように、対向配置される(ステップS63)。次に、対向配置された状態で、塗分け蒸着用マスク70のマスクシート80に設けられた複数の蒸着口Hを通じて蒸着材料を蒸着する蒸着処理を行うことによって、被成膜基板に青色発光層54Bが島状に形成される(ステップS64)(蒸着工程)。次に、塗分け蒸着用マスク70が被成膜基板から離される(ステップS65)(離脱工程)。 Specifically, as shown in FIG. 10, the deposition target substrate is carried into the deposition chamber where Step S39 is performed (Step S61), and then the blue color is deposited by using the separate deposition mask 70 for the blue light emitting layer 54B. The light emitting layer 54B is formed in an island shape (step S60) (first step), and is carried out of the vapor deposition chamber (step S66). More specifically, in step S60, first, the mask 70 for deposition and deposition is aligned with the substrate on which the film is to be formed (step S62). Next, in the aligned state, the separate deposition mask 70 is coated on the deposition target substrate, and the projections 62 (or the deposition film on the projections 62) provided on the deposition target substrate are deposited and deposited. The mask 70 is disposed so as to face a part of the mask 70 (step S63). Next, in a state of being opposed to each other, a deposition process of depositing a deposition material through a plurality of deposition ports H provided in the mask sheet 80 of the mask 70 for separate deposition deposition is performed, so that a blue light emitting layer is formed on the deposition target substrate. 54B are formed in an island shape (step S64) (vapor deposition step). Next, the coating mask 70 is separated from the deposition target substrate (step S65) (separation step).
 図11は、本実施形態に係る青色発光層54B用の塗分け蒸着用マスク70のマスクシート80について、図10に示した(a)蒸着工程および(b)離脱工程を示す概略断面図である。 FIG. 11 is a schematic cross-sectional view showing the (a) vapor deposition step and (b) detachment step shown in FIG. 10 for the mask sheet 80 of the separate vapor deposition mask 70 for the blue light emitting layer 54B according to the present embodiment. .
 図11の(a)に示すように、マスクシート80の蒸着孔Hを通じて蒸着材料の粒子である蒸着粒子76を被成膜基板60に蒸着する(ステップS64)と、蒸着粒子76は、青色発光素子ES_Bの形成領域に付着して、青色発光層54Bを形成する。さらに、当接部の周囲に付着しやすいので、蒸着粒子76は、重畳部74内の蒸着孔H側に付着物42を形成する。当接部は、マスクシート80のうちの、凸部62(または、凸部62の上に形成されている蒸着膜)がマスクシート80と当接しているときに、凸部62(または、凸部62の上に形成されている蒸着膜)に当接する部分である。重畳部74は、マスクシート80のうち、凸部62に重畳する部分であり、当接部と当接部の周囲とを含む。また、図11に示さないが、蒸着粒子76はマスクシート80の他の場所にも、付着している。 As shown in FIG. 11A, when the deposition particles 76, which are particles of the deposition material, are deposited on the deposition target substrate 60 through the deposition holes H of the mask sheet 80 (Step S64), the deposition particles 76 emit blue light. The blue light-emitting layer 54B is attached to the formation region of the element ES_B. Furthermore, since the vapor deposition particles 76 easily adhere to the periphery of the contact portion, the vapor deposition particles 76 form the deposit 42 on the vapor deposition hole H side in the overlapping portion 74. When the convex portion 62 (or the deposited film formed on the convex portion 62) of the mask sheet 80 is in contact with the mask sheet 80, the contact portion is in contact with the convex portion 62 (or the convex portion). This is a portion that comes into contact with the deposited film formed on the portion 62). The overlapping portion 74 is a portion of the mask sheet 80 that overlaps the convex portion 62, and includes a contact portion and a periphery of the contact portion. Although not shown in FIG. 11, the vapor deposition particles 76 are also attached to other parts of the mask sheet 80.
 図11の(b)に示すように、付着物42は、塗分け蒸着用マスク70が被成膜基板60から離された(ステップS65)後、マスクシート80の当接部の周囲に残ることがある。また、前工程までで凸部62に形成された蒸着膜(正孔注入層50,共通正孔輸送層51、電子遮断層52)が当接部に転写されることもある。重畳部74に残った付着物42および/または転写された蒸着膜は汚染源である。付着物42および/または転写された蒸着膜によって汚れている重畳部74と比較して、マスクシート80の第1面80aのその他の場所は、汚れがかなり軽い傾向にある。 As shown in FIG. 11B, the adhered substance 42 remains around the abutting portion of the mask sheet 80 after the coating mask 70 is separated from the deposition target substrate 60 (Step S65). There is. In addition, the deposited film (the hole injection layer 50, the common hole transport layer 51, and the electron blocking layer 52) formed on the convex portion 62 in the previous process may be transferred to the contact portion. The deposits 42 and / or the transferred deposited film remaining on the overlapping portion 74 are contamination sources. Other portions of the first surface 80a of the mask sheet 80 tend to be considerably lighter than the overlapping portion 74 that is soiled by the deposits 42 and / or the transferred deposited film.
 図12は、図11の(b)に示した重畳部74を平面視して模式化した平面図である。なお、簡便のために、凸部62の形状は略円錐台であり、重畳部74の形状は平面視で略円形である場合を想定している。 FIG. 12 is a plan view schematically illustrating the overlapping portion 74 shown in FIG. For the sake of simplicity, it is assumed that the shape of the convex portion 62 is substantially a truncated cone, and the shape of the overlapping portion 74 is substantially circular in plan view.
 図12に示すように、付着物42は重畳部74のうち、局所48のうちの当接部46を除く領域に形成されやすい。当接部46は、マスクシート80のうち、凸部62に当接する部分である。当接部46を囲む周囲部47(当接部の周囲)では、凸部62の側面からマスクシート80の第1面80aまでの距離が近く、かつ、被成膜基板60がマスクシート80の第1面80aから離間している。このため、付着物42は、周囲部47内に形成される傾向にある。周囲部47は、重畳部74のうちの当接部46を除く領域に必ずしも一致するものではない。例えば、凸部62の背が高い場合、周囲部47の外周は重畳部74の内側に位置し、凸部62の背が低い場合、周囲部47の外周は重畳部74の外側に位置する。通常、凸部62の背は、周囲部47の外周が重畳部74の内側に位置する高さである。さらに、蒸着粒子76は蒸着孔Hから飛来するので、付着物42は、当接部46の蒸着孔H側に形成される傾向にある。これらの傾向のため、付着物42は、局所48内であって当接部46外である領域に形成されやすい。局所48は、当接部47と、周囲部47のうちの当接部47に対して蒸着孔H側の領域とを包含する。 付 着 As shown in FIG. 12, the attached matter 42 is likely to be formed in a region of the overlapping portion 74 other than the contact portion 46 of the local portion 48. The contact portion 46 is a portion of the mask sheet 80 that contacts the protrusion 62. In a peripheral portion 47 (around the contact portion) surrounding the contact portion 46, the distance from the side surface of the convex portion 62 to the first surface 80 a of the mask sheet 80 is short, and the film formation substrate 60 is It is separated from the first surface 80a. For this reason, the attached matter 42 tends to be formed in the peripheral part 47. The peripheral portion 47 does not always coincide with the region of the overlapping portion 74 except for the contact portion 46. For example, when the height of the convex portion 62 is high, the outer circumference of the peripheral portion 47 is located inside the overlapping portion 74, and when the height of the convex portion 62 is short, the outer circumference of the peripheral portion 47 is located outside the overlapping portion 74. Usually, the height of the spine of the convex portion 62 is such that the outer periphery of the peripheral portion 47 is located inside the overlapping portion 74. Furthermore, since the vapor deposition particles 76 fly from the vapor deposition hole H, the attached matter 42 tends to be formed on the vapor deposition hole H side of the contact portion 46. Due to these tendencies, the deposit 42 is likely to be formed in a region that is inside the local 48 and outside the contact portion 46. The local portion 48 includes the contact portion 47 and a region of the peripheral portion 47 on the side of the deposition hole H with respect to the contact portion 47.
 したがって、より正確に言えば、付着物42および/または転写された蒸着膜によって汚れている局所48と比較して、マスクシート80の第1面80aのその他の場所は、汚れがかなり軽い傾向にある。 Thus, more precisely, the rest of the first surface 80a of the mask sheet 80 tends to be much lighter than the local 48, which is soiled by the deposits 42 and / or the transferred deposited film. is there.
 (クリーニング工程)
 ステップS56では、青色発光層54B用の塗分け蒸着用マスク70がクリーニングされる。
(Cleaning process)
In step S56, the coating vapor deposition mask 70 for the blue light emitting layer 54B is cleaned.
 具体的には、図10に示すように、塗分け蒸着用マスク70は、ステップS60に連続して行われるステップS70において、クリーニングされる(第2工程)。そして、ステップ70に連続して行われる次の被成膜基板に対して行うステップS60(第3工程)で、ステップ70を経た塗分け蒸着用マスク70が再度用いられる。詳細に言えば、ステップS70では、レーザ光を塗分け蒸着用マスク70のマスクシート80の(被成膜基板側を向く)第1面80aに全体的に照射し(S71)(第5工程)、レーザ光をマスクシート80の第1面80aのうちの少なくとも当接部46を含む局所48に局所的に照射する(S72)(除去工程)。なお、図10に示した工程に限らず、ステップS60は、局所48を選択的にクリーニングできればよい。例えば、ステップS71よりも先にステップS72を行ってもよく;ステップS71を省略してもよい。 Specifically, as shown in FIG. 10, the mask 70 for separate coating and vapor deposition is cleaned in a step S70 performed continuously to the step S60 (second step). Then, in the step S60 (third step) performed on the next substrate to be formed, which is performed continuously to the step 70, the coating mask 70 for the separate coating after the step 70 is used again. More specifically, in step S70, the first surface 80a (facing the film-forming substrate side) of the mask sheet 80 of the deposition mask 70 is separately irradiated with laser light (S71) (fifth step). Then, the laser beam is locally applied to the local portion 48 including at least the contact portion 46 of the first surface 80a of the mask sheet 80 (S72) (removal step). In addition, the process is not limited to the process illustrated in FIG. 10, and the step S60 may be any process as long as the local portion 48 can be selectively cleaned. For example, step S72 may be performed prior to step S71; step S71 may be omitted.
 ステップS71におけるレーザ光の照射によって、マスクシート80の第1面80aの全体的な表面温度を、蒸着材料の蒸着温度よりも高くして、第1面80aの全体に付着した蒸着材料を除去することができる。 By irradiating the laser beam in step S71, the overall surface temperature of the first surface 80a of the mask sheet 80 is set higher than the vapor deposition temperature of the vapor deposition material, and the vapor deposition material attached to the entire first surface 80a is removed. be able to.
 前述したように、マスクシート80の第1面80aにおいて、局所48と比較して、第1面80aのその他の場所は、汚れがかなり軽い傾向にある。このため、ステップS71によって、塗分け蒸着用マスク70の全面をクリーニングしても、局所48には汚れが残っている場合がある。 よ う As described above, in the first surface 80a of the mask sheet 80, the other parts of the first surface 80a tend to be considerably lighter than the local portions 48. For this reason, even if the entire surface of the mask 70 for separate coating and vapor deposition is cleaned in step S71, dirt may remain on the local portion 48 in some cases.
 ステップS72におけるレーザ光の局所照射によってマスクシート80の局所48の表面温度を、蒸着材料の蒸着温度よりも高くして、局所48に残留する付着物42および/または転写された蒸着膜を除去することができる。このため、ステップS72によって、局所48は清浄にされる。蒸着温度は通常、摂氏250度から350度である。局所48を加熱しすぎた場合、当接部マスクが変形する可能性がある。したがって、局所48の表面温度が摂氏250度以上500度以下になるように、ステップS72においてレーザ光を照射することが好ましい。 The local temperature of the local portion 48 of the mask sheet 80 is made higher than the vapor deposition temperature of the vapor deposition material by the local irradiation of the laser beam in step S72, and the deposits 42 remaining on the local portion 48 and / or the transferred vapor deposited film are removed. be able to. For this reason, the local part 48 is cleaned by step S72. The deposition temperature is typically between 250 and 350 degrees Celsius. If the local part 48 is overheated, the contact part mask may be deformed. Therefore, it is preferable to irradiate the laser beam in step S72 so that the surface temperature of the local part 48 becomes 250 degrees Celsius or more and 500 degrees or less.
 ステップS72におけるレーザ光の局所照射領域(局所を含む領域)は、マスクシート80の局所48を含む領域であればよく、複数の領域から成ってもよい。局所照射領域は、例えば、当接部46と周囲部47とを合わせた領域であっても、重畳部74であってもよい。局所照射領域は、例えば、1つの局所48を含む直径5μm以上50μm以下の複数の領域であってもよく、複数の局所48を含む直径10mm以上100mm以下の1つまたは複数の領域であってもよい。ステップS72におけるレーザ光の局所照射は、複数の範囲を同時に照射しても、順次照射してもよい。 The local irradiation region (region including the local region) of the laser beam in step S72 may be a region including the local region 48 of the mask sheet 80, and may be a plurality of regions. The local irradiation region may be, for example, a region where the contact portion 46 and the peripheral portion 47 are combined, or may be the overlapping portion 74. The local irradiation region may be, for example, a plurality of regions having a diameter of 5 μm or more and 50 μm or less including one local 48, or one or a plurality of regions having a diameter of 10 mm or more and 100 mm or less including a plurality of locals 48. Good. The local irradiation of the laser beam in step S72 may be performed simultaneously on a plurality of ranges or sequentially.
 上述の成膜工程S60およびクリーニング工程S70に関する説明は、赤色発光素子ES_R,緑色発光素子ES_G,青色発光素子ES_Bの何れに対応する塗分け蒸着用マスクにも適用可能である。 The description regarding the film forming step S60 and the cleaning step S70 described above can be applied to the separate deposition mask corresponding to any of the red light emitting element ES_R, the green light emitting element ES_G, and the blue light emitting element ES_B.
 〔実施形態2〕
 以下、本発明の他の一実施形態について、図13~図18を参照して以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材および、上記実施形態にて説明した工程と同じ機能を有する工程については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Hereinafter, another embodiment of the present invention will be described below with reference to FIGS. For convenience of description, members having the same functions as the members described in the above embodiment and steps having the same functions as the steps described in the above embodiment are denoted by the same reference numerals, and description thereof will not be repeated. .
 図13は、本実施形態に係る製造方法によって製造される表示デバイスを構成する赤色発光素子ES_R、緑色発光素子ES_G、青色発光素子ES_Bの配置例を示す概略平面図である。図14は、赤色発光層54R用の塗分け蒸着用マスクに架張されるマスクシート80Rの有効部YAの概略構成を示す平面図である。図15は、緑色発光層54G用の塗分け蒸着用マスクに架張されるマスクシート80Gの有効部YAの概略構成を示す平面図である。図16は、青色発光層54R用の塗分け蒸着用マスクに架張されるマスクシート80Bの有効部YAの概略構成を示す平面図である。 FIG. 13 is a schematic plan view showing an arrangement example of the red light emitting element ES_R, the green light emitting element ES_G, and the blue light emitting element ES_B, which constitute the display device manufactured by the manufacturing method according to the present embodiment. FIG. 14 is a plan view illustrating a schematic configuration of an effective portion YA of a mask sheet 80R stretched over a separate deposition mask for the red light emitting layer 54R. FIG. 15 is a plan view illustrating a schematic configuration of an effective portion YA of a mask sheet 80G stretched over a separate deposition mask for the green light emitting layer 54G. FIG. 16 is a plan view illustrating a schematic configuration of an effective portion YA of a mask sheet 80B stretched over a separate deposition mask for the blue light emitting layer 54R.
 フォトスペーサーは、被成膜基板に設けられる代わりに、塗分け蒸着用マスクに設けられる。例えば、赤色発光層54R用のマスクシート80Rには凸部64Rが、緑色発光層54G用のマスクシート80Gには凸部64Gが、青色発光層54R用のマスクシート80Bには凸部64Bが、フォトスペーサーとして設けられている。マスクシート80R・80G・80Bに設けられる凸部64R・64G・64Bは、被成膜基板に形成された蒸着膜を傷つけないように、蒸着膜よりも軟らかい材料から形成されており、例えば、ポリイミドなどの樹脂材料から形成されている。各色の発光素子ES_R・ES_G・ES_Bは、形状が互いに異なる。このため、図14~図16に示すように、赤色発光層54R・緑色発光層54G・青色発光層54Bに各々対応するマスクシート80R・80G・80Bに設けられた蒸着孔Hも、形状が互いに異なる。このため、蒸着孔Hの周りに設けられる凸部64R・64G・64Bは、蒸着孔Hに対する配置が同じであっても、被成膜基板に対する配置が異なる。図13~図16に示す配置例において、1つの画素40に対して凸部64R・64G・64Bを4つずつ配置しているが、凸部64R・64G・64Bの配置はこれに限らない。例えば、各画素40に対する凸部64R・64G・64Bの配置数がより少なくてもよく、互いに異なっていてもよい。例えば、一部の画素40に対する凸部64R・64G・64Bの配置数が0であってもよい。 The photo spacer is provided on the mask for separate deposition instead of being provided on the substrate on which the film is formed. For example, the convex portion 64R is provided on the mask sheet 80R for the red light emitting layer 54R, the convex portion 64G is provided on the mask sheet 80G for the green light emitting layer 54G, and the convex portion 64B is provided on the mask sheet 80B for the blue light emitting layer 54R. It is provided as a photo spacer. The convex portions 64R, 64G, and 64B provided on the mask sheets 80R, 80G, and 80B are formed of a material softer than the deposited film so as not to damage the deposited film formed on the deposition target substrate. And the like. The light emitting elements ES_R, ES_G, and ES_B of each color have different shapes. Therefore, as shown in FIG. 14 to FIG. 16, the vapor deposition holes H provided in the mask sheets 80R, 80G, and 80B respectively corresponding to the red light emitting layer 54R, the green light emitting layer 54G, and the blue light emitting layer 54B also have different shapes. different. For this reason, the projections 64R, 64G, and 64B provided around the evaporation holes H are different in the arrangement with respect to the deposition target substrate even if the arrangement with respect to the evaporation holes H is the same. In the arrangement examples shown in FIGS. 13 to 16, four convex portions 64R, 64G, and 64B are arranged for one pixel 40, but the arrangement of the convex portions 64R, 64G, and 64B is not limited to this. For example, the number of projections 64R, 64G, and 64B for each pixel 40 may be smaller or different. For example, the number of projections 64R, 64G, and 64B with respect to some of the pixels 40 may be zero.
 青色正孔輸送層51B・緑色正孔輸送層51G・赤色正孔輸送層51Rに各々対応するマスクシートに設けられるフォトスペーサーとしての凸部も同様である。したがって、赤色発光素子ES_Rと緑色発光素子ES_Gと青色発光素子ES_Bと毎に対応する塗分け蒸着用マスクも互いに、被成膜基板に対するフォトスペーサーの位置が異なる。 凸 The same applies to the convex portions as photo spacers provided on the mask sheet corresponding to each of the blue hole transport layer 51B, the green hole transport layer 51G, and the red hole transport layer 51R. Accordingly, the position of the photospacer with respect to the deposition target substrate is different from each other in the separate deposition masks corresponding to the red light emitting element ES_R, the green light emitting element ES_G, and the blue light emitting element ES_B.
 本実施形態に係る製造方法は、フォトスペーサーが被成膜基板側でなく塗分け蒸着用マスク側に設けられていることを除き、前述の実施形態1に係る製造方法と略同様である。 製造 The manufacturing method according to the present embodiment is substantially the same as the manufacturing method according to the above-described first embodiment except that the photospacer is provided not on the substrate on which the film is to be formed but on the mask for separate deposition.
 図17は、本実施形態に係る青色発光層54B用の塗分け蒸着用マスクのマスクシート80Bについて、図10に示した(a)蒸着工程および(b)離脱工程を示す概略断面図である。 FIG. 17 is a schematic cross-sectional view showing (a) a vapor deposition step and (b) a separation step shown in FIG. 10 for a mask sheet 80B of a separate vapor deposition mask for the blue light emitting layer 54B according to the present embodiment.
 (成膜工程)
 図10および図17の(a)に示すように、本実施形態に係るステップS63において、アライアメントされた状態で、上記青色発光層54B用の塗分け蒸着用マスクが被成膜基板60´に、マスクシート80Bに設けられた凸部64Bが被成膜基板60´の一部に当接するように、対向配置される。
(Deposition process)
As shown in FIGS. 10 and 17A, in step S63 according to the present embodiment, in the aligned state, the separate deposition mask for the blue light emitting layer 54B is provided on the deposition target substrate 60 ′. The convex portions 64B provided on the mask sheet 80B are arranged to face each other so as to contact a part of the substrate 60 ′.
 本実施形態におけるステップS64において、青色発光層54B用のマスクシート80Bの蒸着孔Hを通じて蒸着材料の粒子である蒸着粒子76を被成膜基板60´に蒸着すると、蒸着粒子76は、青色発光素子ES_Bの形成領域に付着して、青色発光層54Bを形成する。さらに、当接部の周囲に付着しやすいので、蒸着粒子76は、凸部64Bのうちの蒸着孔H側に付着物44を形成する。当接部は、凸部64Bのうちの、凸部64Bが被成膜基板60´と当接しているときに、被成膜基板60´に当接する部分である。図17に示さないが、蒸着粒子76はマスクシート80Bの他の場所にも、付着している。 In step S64 in the present embodiment, when the deposition particles 76, which are particles of the deposition material, are deposited on the deposition target substrate 60 ′ through the deposition holes H of the mask sheet 80B for the blue light emitting layer 54B, the deposition particles 76 become blue light emitting elements. The blue light-emitting layer 54B is attached to the formation region of ES_B. Further, since the vapor deposition particles 76 easily adhere to the periphery of the contact portion, the vapor deposition particles 76 form the deposit 44 on the vapor deposition hole H side of the convex portion 64B. The contact portion is a portion of the convex portion 64B that comes into contact with the film formation substrate 60 ′ when the convex portion 64B is in contact with the film formation substrate 60 ′. Although not shown in FIG. 17, the vapor deposition particles 76 are also attached to other parts of the mask sheet 80B.
 図17の(b)に示すように、付着物44は、青色発光層54B用の塗分け蒸着用マスクが被成膜基板60´から離された(ステップS65)後、凸部64Bに残ることがある。また、前工程までで被成膜基板60´に形成された蒸着膜(正孔注入層50,共通正孔輸送層51)が凸部64Bの当接部に転写されることもある。凸部64Bに残った付着物44および/または転写された蒸着膜は汚染源である。付着物44および/または転写された蒸着膜によって汚れている凸部64Bと比較して、マスクシート80Bのその他の場所は、汚れがかなり軽い傾向にある。 As shown in FIG. 17B, the deposit 44 remains on the convex portion 64B after the separate deposition mask for the blue light emitting layer 54B is separated from the deposition target substrate 60 ′ (step S65). There is. In addition, the deposited film (the hole injection layer 50 and the common hole transport layer 51) formed on the deposition target substrate 60 'in the previous process may be transferred to the contact portion of the projection 64B. The deposits 44 remaining on the protrusions 64B and / or the transferred deposited film are contamination sources. Other portions of the mask sheet 80B tend to be much lighter than the protrusions 64B that are smudged by the deposit 44 and / or the transferred deposited film.
 図18は、図17の(b)に示した凸部64Bを平面視して模式化した平面図である。なお、簡便のために、凸部64Bの形状は略円錐台である場合を想定している。 FIG. 18 is a plan view schematically showing the projection 64B shown in FIG. 17B in plan view. For the sake of simplicity, it is assumed that the shape of the projection 64B is substantially a truncated cone.
 図18に示すように、前述の実施形態1に係る付着物42と同様に、付着物44は凸部64Bの表面のうち、局所48´のうちの当接部46´を除く領域に形成されやすい。したがって、より正確に言えば、付着物44および/または転写された蒸着膜によって汚れている局所48´と比較して、マスクシート80Bのその他の表面は、汚れがかなり軽い傾向にある。 As shown in FIG. 18, similarly to the attached matter 42 according to the first embodiment, the attached matter 44 is formed on the surface of the convex portion 64 </ b> B in a region other than the contact portion 46 ′ of the local 48 ′. Cheap. Thus, more precisely, the other surfaces of the mask sheet 80B tend to be fairly lightly soiled, as compared to the locals 48 'that are smeared by the deposits 44 and / or the transferred deposited film.
 (クリーニング工程)
 本実施形態におけるステップS72において、レーザ光を凸部64Bを含む領域に局所的に照射する。
(Cleaning process)
In step S72 in the present embodiment, a region including the convex portion 64B is locally irradiated with laser light.
 前述したように、マスクシート80Bにおいて、局所48´と比較して、マスクシート80Bのその他の表面は、汚れがかなり軽い傾向にある。このため、ステップS71によって、局所48´を除く塗分け蒸着用マスク70の表面は清浄にされても、局所48´には汚れが残っている場合がある。 よ う As described above, the other surface of the mask sheet 80B tends to be considerably lighter in dirt than the local portion 48 'in the mask sheet 80B. Therefore, in step S71, even if the surface of the coating vapor deposition mask 70 excluding the local portion 48 'is cleaned, dirt may remain on the local portion 48'.
 ステップS72におけるレーザ光の局所照射によって、マスクシート80Bの局所48´の表面温度を、蒸着材料の蒸着温度よりも高くして、局所48´に残留する付着物44および/または転写された蒸着膜を除去することができる。このため、ステップS72によって、局所48´は清浄にされる。蒸着温度は通常、摂氏250度から350度である。局所48´を加熱しすぎた場合、凸部64Bおよび/またはマスクシート80Bが変形する可能性がある。凸部64Bのポストベーク温度は通常、摂氏500度以上である。したがって、局所48´の表面温度が摂氏250度から500度になるように、ステップS72においてレーザ光を照射することが好ましい。 By the local irradiation of the laser beam in step S72, the surface temperature of the local portion 48 'of the mask sheet 80B is set higher than the vapor deposition temperature of the vapor deposition material, and the deposits 44 remaining on the local portion 48' and / or the transferred vapor deposited film are transferred. Can be removed. For this reason, the local part 48 'is cleaned by step S72. The deposition temperature is typically between 250 and 350 degrees Celsius. If the local portion 48 'is excessively heated, the convex portions 64B and / or the mask sheet 80B may be deformed. The post bake temperature of the convex portion 64B is usually 500 degrees Celsius or higher. Therefore, it is preferable to irradiate the laser beam in step S72 so that the surface temperature of the local portion 48 'becomes 250 to 500 degrees Celsius.
 ステップS72におけるレーザ光の局所照射領域は、マスクシート80Bの局所48´を少なくとも含む領域であればよく、複数の領域から成ってもよい。局所照射領域は、例えば、当接部46´と周囲部47´とを合わせた領域であっても、凸部64B全体を含む領域であってもよい。局所照射領域は、例えば、1つの局所48´を含む直径5μm以上50μm以下の複数の領域であってもよく、複数の局所48´を含む直径10mm以上100mm以下の1つまたは複数の領域であってもよい。ステップS72におけるレーザ光の局所照射は、複数の範囲を同時に照射しても、順次照射してもよい。 The local irradiation region of the laser beam in step S72 may be a region including at least the local portion 48 'of the mask sheet 80B, and may be a plurality of regions. The local irradiation region may be, for example, a region in which the contact portion 46 'and the peripheral portion 47' are combined, or a region including the entire convex portion 64B. The local irradiation region may be, for example, a plurality of regions having a diameter of 5 μm or more and 50 μm or less including one local 48 ′, or one or a plurality of regions having a diameter of 10 mm or more and 100 mm or less including a plurality of locals 48 ′. You may. The local irradiation of the laser beam in step S72 may be performed simultaneously on a plurality of ranges or sequentially.
 ステップS72において加熱された当接部46´が高温のまま被成膜基板60´と当接した場合、被成膜基板60´が有する蒸着膜が熱破壊されうる。このため、当接部46´をステップS63までに冷ますことが好ましい。具体的には、凸部64Bの表面温度をステップS63までに、蒸着材料を蒸着粒子76として蒸着可能な蒸着温度未満に冷ますことが好ましい。 場合 If the heated contact portion 46 ′ contacts the deposition target substrate 60 ′ at a high temperature in step S 72, the deposited film of the deposition target substrate 60 ′ may be thermally destroyed. For this reason, it is preferable to cool the contact part 46 'by step S63. Specifically, it is preferable to cool the surface temperature of the convex portion 64B to less than the deposition temperature at which the deposition material can be deposited as the deposition particles 76 by step S63.
 〔実施形態3〕
 以下、本発明の他の一実施形態について、図19を参照して以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材および、上記実施形態にて説明した工程と同じ機能を有する工程については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 3]
Hereinafter, another embodiment of the present invention will be described below with reference to FIG. For convenience of description, members having the same functions as the members described in the above embodiment and steps having the same functions as the steps described in the above embodiment are denoted by the same reference numerals, and description thereof will not be repeated. .
 本実施形態においては、赤色発光層54R・緑色発光層54G・青色発光層54Bに対応する塗分け蒸着用マスクのマスクシートには、前述の実施形態2と同様に凸部64R・64G・64Bを設ける。一方、青色正孔輸送層51B・緑色正孔輸送層51G・赤色正孔輸送層51Rに対応する塗分け蒸着用マスクのマスクシート90には、凸部66(図19参照)を設ける。この点を除き、本実施形態に係る製造方法は、前述の実施形態2に係る製造方法と略同様である。 In the present embodiment, the projections 64R, 64G, and 64B are provided on the mask sheet of the separate deposition mask corresponding to the red light emitting layer 54R, the green light emitting layer 54G, and the blue light emitting layer 54B, as in the above-described second embodiment. Provide. On the other hand, the convex portion 66 (see FIG. 19) is provided on the mask sheet 90 of the mask for separate vapor deposition corresponding to the blue hole transport layer 51B, the green hole transport layer 51G, and the red hole transport layer 51R. Except for this point, the manufacturing method according to the present embodiment is substantially the same as the manufacturing method according to the above-described second embodiment.
 図19は、本実施形態に係る製造方法の青色正孔輸送層51Bを形成するステップS33を示す概略断面図である。図19においては簡便のために、青色正孔輸送層51B用のマスクシート90の詳細な構造(第1開口部K,第2開口部KK,凹部L)を省略する。 FIG. 19 is a schematic cross-sectional view showing step S33 of forming the blue hole transport layer 51B in the manufacturing method according to the present embodiment. 19, the detailed structure (first opening K, second opening KK, concave portion L) of the mask sheet 90 for the blue hole transport layer 51B is omitted for simplicity.
 凸部66は、被成膜基板60´に形成された有機蒸着膜(正孔注入層50および共通正孔輸送層51,複数の画素に共通する有機層)を切断できるように、有機蒸着膜よりも硬い材料から形成されており、例えば、金属製であり、インバー鋼などの塗分け蒸着用マスク70の本体と同一の金属材料から形成されたり、ステンレス鋼などの塗分け蒸着用マスク70の本体と異なる金属材料から形成されたりする。 The convex portion 66 is formed of an organic vapor-deposited film so that the organic vapor-deposited film (the hole injection layer 50 and the common hole transport layer 51, an organic layer common to a plurality of pixels) formed on the substrate 60 ′ can be cut. It is formed of a harder material, for example, is made of metal, and is formed of the same metal material as the main body of the separate deposition mask 70 such as invar steel, or of the separate deposition mask 70 such as stainless steel. It is made of a metal material different from the main body.
 図9に示すように、正孔注入層50および共通正孔輸送層51は、凸部66によって切断(破断)される。このため、青色発光素子ES_Bとそれに隣接する発光素子との間の正孔注入層50および共通正孔輸送層51を通じたクロストークを防止することができる。クロストーク防止のために、正孔注入層50および共通正孔輸送層51は、青色発光素子ES_Bの形成領域内と形成領域外とに完全に分断されることが好ましい。したがって、青色正孔輸送層51B用のマスクシート90に形成される凸部66は、当該マスクシート90の蒸着孔Hを途切れることなく囲む枠状であることが好ましい。同様に、緑色正孔輸送層51Gを形成するステップS34と、赤色正孔輸送層51Rを形成するステップS35とにおいても、クロストークを防止することができる。なお、青色発光素子ES_B・赤色発光素子ES_R・緑色発光素子ES_Gのうちの1種類または2種類のみが、隣接する発光素子との間の正孔注入層50および共通正孔輸送層51を破断されてもよい。 As shown in FIG. 9, the hole injection layer 50 and the common hole transport layer 51 are cut (ruptured) by the protrusions 66. Therefore, crosstalk between the blue light emitting element ES_B and the light emitting element adjacent thereto through the hole injection layer 50 and the common hole transport layer 51 can be prevented. In order to prevent crosstalk, it is preferable that the hole injection layer 50 and the common hole transport layer 51 be completely separated into the inside and outside of the formation region of the blue light emitting element ES_B. Therefore, it is preferable that the protrusions 66 formed on the mask sheet 90 for the blue hole transport layer 51B have a frame shape that surrounds the evaporation holes H of the mask sheet 90 without interruption. Similarly, crosstalk can be prevented in step S34 of forming the green hole transport layer 51G and step S35 of forming the red hole transport layer 51R. Note that only one or two of the blue light emitting element ES_B, the red light emitting element ES_R, and the green light emitting element ES_G have the hole injection layer 50 and the common hole transport layer 51 between adjacent light emitting elements broken. You may.
 〔実施形態4〕
 以下、本発明の他の一実施形態について、図20を参照して以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材および、上記実施形態にて説明した工程と同じ機能を有する工程については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 4]
Hereinafter, another embodiment of the present invention will be described below with reference to FIG. For convenience of description, members having the same functions as the members described in the above embodiment and steps having the same functions as the steps described in the above embodiment are denoted by the same reference numerals, and description thereof will not be repeated. .
 本実施形態においては、青色正孔輸送層51B・緑色正孔輸送層51G・赤色正孔輸送層51Rに対応する塗分け蒸着用マスクのマスクシート92に設けた凸部68(20参照)をレーザ光の照射によって加熱する。この点を除き、本実施形態に係る製造方法は、前述の実施形態3に係る製造方法と略同様である。 In the present embodiment, the convex portions 68 (see 20) provided on the mask sheet 92 of the mask for separate deposition corresponding to the blue hole transport layer 51B, the green hole transport layer 51G, and the red hole transport layer 51R are formed by laser. Heat by light irradiation. Except for this point, the manufacturing method according to the present embodiment is substantially the same as the manufacturing method according to the aforementioned third embodiment.
 凸部68は、加熱に耐えて、被成膜基板60´に形成された有機蒸着膜(正孔注入層50および共通正孔輸送層51)を熱破壊できるように、金属製であることが好ましい。例えば、インバー鋼などの塗分け蒸着用マスク70の本体と同一の金属材料から形成されたり、ステンレス鋼などの塗分け蒸着用マスク70の本体と異なる金属材料から形成されたりすることが好ましい。 The convex portion 68 may be made of metal so that it can withstand heating and thermally break the organic vapor deposition film (the hole injection layer 50 and the common hole transport layer 51) formed on the deposition target substrate 60 '. preferable. For example, it is preferable to be formed of the same metal material as the main body of the separate deposition mask 70 such as Invar steel, or to be formed of a metal material different from the main body of the separate deposition mask 70 such as stainless steel.
 図20は、本実施形態に係る製造方法の青色正孔輸送層51Bを形成するステップS33を示す概略断面図である。図20においては簡便のために、青色正孔輸送層51B用のマスクシート92の詳細な構造(第1開口部K,第2開口部KK,凹部L)を省略する。 FIG. 20 is a schematic cross-sectional view showing step S33 of forming the blue hole transport layer 51B in the manufacturing method according to the present embodiment. 20, the detailed structure (first opening K, second opening KK, concave portion L) of the mask sheet 92 for the blue hole transport layer 51B is omitted for simplicity.
 図20に示すように、正孔注入層50および共通正孔輸送層51のうち、加熱された凸部68が当接する部分は、熱破壊(破断)され、正孔注入層および正孔輸送層として機能しなくなる熱変性部78になる。このため、色発光素子ES_Bとそれに隣接する発光素子との間の正孔注入層50および共通正孔輸送層51を通じたクロストークを防止することができる。クロストーク防止のために、正孔注入層50および共通正孔輸送層51は、青色発光素子ES_Bの形成領域内と形成領域外とに完全に分断されることが好ましい。したがって、青色正孔輸送層51B用のマスクシート92に形成される凸部68は、当該マスクシート92の蒸着孔Hを途切れることなく囲む枠状であることが好ましい。同様に、緑色正孔輸送層51Gを形成するステップS34と、赤色正孔輸送層51Rを形成するステップS35とにおいても、クロストークを防止することができる。なお、青色発光素子ES_B・赤色発光素子ES_R・緑色発光素子ES_Gのうちの1種類または2種類のみが、隣接する発光素子との間の正孔注入層50および共通正孔輸送層51を破断されてもよい。 As shown in FIG. 20, a portion of the hole injection layer 50 and the common hole transport layer 51, which is in contact with the heated protrusion 68, is thermally broken (ruptured), and the hole injection layer and the hole transport layer The heat denaturing section 78 no longer functions. Therefore, crosstalk between the color light emitting element ES_B and the light emitting element adjacent thereto through the hole injection layer 50 and the common hole transport layer 51 can be prevented. In order to prevent crosstalk, it is preferable that the hole injection layer 50 and the common hole transport layer 51 be completely separated into the inside and outside of the formation region of the blue light emitting element ES_B. Therefore, it is preferable that the protrusions 68 formed on the mask sheet 92 for the blue hole transport layer 51B have a frame shape that surrounds the evaporation holes H of the mask sheet 92 without interruption. Similarly, crosstalk can be prevented in step S34 of forming the green hole transport layer 51G and step S35 of forming the red hole transport layer 51R. Note that only one or two of the blue light emitting element ES_B, the red light emitting element ES_R, and the green light emitting element ES_G have the hole injection layer 50 and the common hole transport layer 51 between adjacent light emitting elements broken. You may.
 凸部68は、温度が蒸着材料の蒸着温度以上になるように加熱されることが好ましい。蒸着温度は通常、摂氏250度から350度である。凸部68を加熱しすぎた場合、エッジカバー23が変形する可能性がある。エッジカバー23のポストベーク温度は通常、摂氏500度以上である。したがって、凸部68の温度が摂氏250度以上500以下になるように、加熱することが好ましく、摂氏約300度が特に好ましい。正孔注入層50および共通正孔輸送層51を破壊するための凸部68の加熱は、専用の加熱工程で行われても、ステップ72(図7参照)で行われてもよい。 It is preferable that the convex portion 68 is heated so that the temperature is equal to or higher than the vapor deposition temperature of the vapor deposition material. The deposition temperature is typically between 250 and 350 degrees Celsius. If the protrusion 68 is excessively heated, the edge cover 23 may be deformed. The post-bake temperature of the edge cover 23 is usually 500 degrees Celsius or higher. Therefore, it is preferable to heat the projection 68 so that the temperature of the projection 68 is not less than 250 degrees Celsius and not more than 500 degrees Celsius, and particularly preferably about 300 degrees Celsius. The heating of the protrusions 68 for breaking the hole injection layer 50 and the common hole transport layer 51 may be performed in a dedicated heating step or in step 72 (see FIG. 7).
 〔まとめ〕
 本発明の態様1に係る表示デバイスの製造方法は、基板と、前記基板上に形成された蒸着膜とを備え、複数の画素を含む表示デバイスの製造方法であって、蒸着用マスクと前記基板とを、前記蒸着用マスクの一部と前記基板の一部とが当接するように対向配置して蒸着処理を行い、前記蒸着膜を前記基板上に形成する第1工程と、前記第1工程に連続して行われ、前記蒸着用マスクの、前記基板との当接部を含む局所を選択的にクリーニングする第2工程と、前記第2工程を経た前記蒸着用マスクを用いて蒸着処理を行う第3工程とを含む方法である。
[Summary]
A method for manufacturing a display device according to an aspect 1 of the present invention is a method for manufacturing a display device including a substrate and a vapor-deposited film formed on the substrate, the display device including a plurality of pixels. A first step of performing a vapor deposition process by disposing a part of the vapor deposition mask and a part of the substrate so as to be in contact with each other to form the vapor deposition film on the substrate; and A second step of selectively cleaning a local portion of the deposition mask including a contact portion with the substrate, and performing a deposition process using the deposition mask that has passed through the second step. And a third step to be performed.
 本発明の態様2に係る表示デバイスの製造方法は、上記の態様1において、前記第2工程は、前記当接部の周囲に前記第1工程において付着した蒸着材料を除去する除去工程を含む方法としてもよい。 In the method for manufacturing a display device according to an aspect 2 of the present invention, the method according to the above aspect 1, wherein the second step includes a removing step of removing the deposition material attached in the first step around the contact portion. It may be.
 本発明の態様3に係る表示デバイスの製造方法は、上記の態様2において、前記除去工程において、前記局所を含む領域に局所的にレーザ光を照射することによって、前記当接部の周囲に前記第1工程において付着した蒸着材料を除去する方法としてもよい。 In the method of manufacturing a display device according to aspect 3 of the present invention, in the above-described aspect 2, the region including the local portion is locally irradiated with laser light in the removing step, so that the area around the contact portion is A method of removing the deposition material attached in the first step may be used.
 本発明の態様4に係る表示デバイスの製造方法は、上記の態様3において、前記除去工程において、前記局所を含む領域は、1つの前記局所を含む5μm以上50μm以下の領域である方法としてもよい。 The method for manufacturing a display device according to aspect 4 of the present invention may be configured so that, in the above-described aspect 3, in the removing step, the region including the local region is a region including one local region and having a size of 5 μm or more and 50 μm or less. .
 本発明の態様5に係る表示デバイスの製造方法は、上記の態様3において、前記除去工程において、前記局所を含む領域は、複数の前記局所を含む10mm以上100mm以下の領域である方法としてもよい。 The method for manufacturing a display device according to aspect 5 of the present invention may be configured so that, in the above-described aspect 3, in the removing step, the region including the local region is a region including a plurality of local regions and not less than 10 mm and not more than 100 mm. .
 本発明の態様6に係る表示デバイスの製造方法は、上記の態様3において、前記除去工程において、前記レーザ光を照射することによって、前記局所の表面温度が摂氏250度以上500度以下になるように、前記局所を加熱する方法としてもよい。 In the method of manufacturing a display device according to aspect 6 of the present invention, in the above aspect 3, in the removing step, the local surface temperature may be set to be 250 degrees Celsius or more and 500 degrees Celsius or less by irradiating the laser beam. Alternatively, a method of heating the local portion may be used.
 本発明の態様7に係る表示デバイスの製造方法は、上記の態様1において、前記複数の画素は各々、複数の副画素を備え、前記蒸着用マスクは、前記複数の副画素のうちの1色を発光する副画素に対応する塗分け蒸着用マスクである方法としてもよい。 In the method for manufacturing a display device according to an aspect 7 of the present invention, in the aspect 1, the plurality of pixels each include a plurality of sub-pixels, and the deposition mask is one of the plurality of sub-pixels. May be used as a mask for separate deposition corresponding to the sub-pixel that emits light.
 本発明の態様8に係る表示デバイスの製造方法は、上記の態様1において、前記基板には、フォトスペーサーが形成されており、前記蒸着用マスクの前記局所は、前記蒸着用マスクのうちの前記フォトスペーサーと重畳する重畳部に含まれる方法としてもよい。 In the method for manufacturing a display device according to Aspect 8 of the present invention, in the above-described aspect 1, a photo spacer is formed on the substrate, and the local portion of the evaporation mask is the one of the evaporation masks. The method may be included in an overlapping portion that overlaps with the photo spacer.
 本発明の態様9に係る表示デバイスの製造方法は、上記の態様1において、前記蒸着用マスクには、フォトスペーサーが形成されており、前記蒸着用マスクの前記局所は、前記フォトスペーサーに含まれる方法としてもよい。 In the method for manufacturing a display device according to a ninth aspect of the present invention, in the first aspect, a photo spacer is formed on the evaporation mask, and the local portion of the evaporation mask is included in the photo spacer. It is good also as a method.
 本発明の態様10に係る表示デバイスの製造方法は、上記の態様9において、前記第1工程よりも前に行われ、前記複数の画素に共通する有機層を形成する第4工程をさらに含み、前記第1工程において、前記フォトスペーサーによって前記有機層を破断する方法としてもよい。 The method for manufacturing a display device according to Aspect 10 of the present invention is the method according to Aspect 9, wherein the method is performed before the first step, and further includes a fourth step of forming an organic layer common to the plurality of pixels, In the first step, a method may be employed in which the organic layer is broken by the photo spacer.
 本発明の態様11に係る表示デバイスの製造方法は、上記の態様10において、前記フォトスペーサーは、金属製である方法としてもよい。 In the method for manufacturing a display device according to aspect 11 of the present invention, in the above-described aspect 10, the photo spacer may be made of metal.
 本発明の態様12に係る表示デバイスの製造方法は、上記の態様10において、前記第1工程において、前記フォトスペーサーによって前記有機層を切断する方法としてもよい。 The method for manufacturing a display device according to aspect 12 of the present invention may be configured so that, in the above-mentioned aspect 10, the organic layer is cut by the photo spacer in the first step.
 本発明の態様13に係る表示デバイスの製造方法は、上記の態様10において、前記第1工程において、レーザ光の照射によって加熱された前記フォトスペーサーによって前記有機層を熱破壊する方法としてもよい。 The method for manufacturing a display device according to aspect 13 of the present invention may be configured so that, in the above-described aspect 10, in the first step, the organic layer is thermally destroyed by the photo spacer heated by the irradiation of the laser beam.
 本発明の態様14に係る表示デバイスの製造方法は、上記の態様10において、前記複数の画素は各々、複数の副画素を備え、前記蒸着用マスクには、複数の蒸着用マスクが用いられ、前記複数の蒸着用マスクは各々、前記複数の副画素のうちの異なる色を発光する副画素毎に、前記副画素に対応する塗分け蒸着用マスクであり、前記複数の蒸着用マスクは互いに、前記基板に対する前記フォトスペーサーの配置が異なる方法としてもよい。 In the method for manufacturing a display device according to Aspect 14 of the present invention, in the above aspect 10, the plurality of pixels each include a plurality of subpixels, and the evaporation mask includes a plurality of evaporation masks. Each of the plurality of deposition masks is a separate deposition mask corresponding to the sub-pixel for each sub-pixel emitting a different color among the plurality of sub-pixels, and the plurality of deposition masks are mutually separated. The arrangement of the photospacer with respect to the substrate may be different.
 本発明の態様15に係る表示デバイスの製造方法は、上記の態様10において、前記フォトスペーサーは、前記蒸着用マスクに設けられた蒸着孔を囲む枠状である方法としてもよい。 In the method for manufacturing a display device according to aspect 15 of the present invention, in the above-described aspect 10, the photospacer may have a frame shape surrounding an evaporation hole provided in the evaporation mask.
 本発明の態様16に係る表示デバイスの製造方法は、上記の態様1において、前記蒸着用マスクの全体を洗浄する第5工程をさらに含む方法としてもよい。 The method for manufacturing a display device according to aspect 16 of the present invention may be the method according to aspect 1, further including a fifth step of cleaning the entire deposition mask.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the embodiments described above, and various modifications are possible within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
2 支持基板
3 バリア層
4 TFT層
5 発光素子層
6 封止層
10 下面フィルム
12 樹脂層
15 半導体膜
16、18、20 無機絶縁膜
21 平坦化膜
22 アノード
23 エッジカバー
24 EL層
25 カソード
26、28 無機封止膜
27 有機バッファ膜
39 機能フィルム
40 画素
42、44 付着物
46、46´ 当接部
47、47´ 周囲部
48、48´ 局所
50 正孔注入層(複数の画素に共通する有機層)
51 共通正孔輸送層(複数の画素に共通する有機層)
51B 青色正孔輸送層(蒸着膜)
51R 赤色正孔輸送層(蒸着膜)
51G 緑色正孔輸送層(蒸着膜)
52 電子遮断層
54R 赤色発光層(蒸着膜)
54G 緑色発光層(蒸着膜)
54B 青色発光層(蒸着膜)
56 正孔遮断層
58 電子輸送層
59 電子注入層
60、60´ 被成膜基板
62、64、64B、64G、64R、66、68 凸部(フォトスペーサ,局所)
70 塗分け蒸着用マスク(蒸着用マスク)
71 カバーシート
72 フレーム
73 サポートシート
74 重畳部(局所)
78 熱変性部
80、80R,80G,80B,90,92 マスクシート(蒸着用マスク,塗分け蒸着用マスク)
ES_R 赤色発光素子(副画素)
ES_B 青色発光素子(副画素)
ES_G 緑色発光素子(副画素)
H 蒸着孔
2 support substrate 3 barrier layer 4 TFT layer 5 light emitting element layer 6 sealing layer 10 bottom film 12 resin layer 15 semiconductor films 16, 18, 20 inorganic insulating film 21 flattening film 22 anode 23 edge cover 24 EL layer 25 cathode 26, 28 Inorganic sealing film 27 Organic buffer film 39 Functional film 40 Pixels 42, 44 Attachment 46, 46 'Abutment 47, 47' Peripheral 48, 48 'Local 50 Hole injection layer (organic common to a plurality of pixels) layer)
51 Common hole transport layer (organic layer common to multiple pixels)
51B Blue hole transport layer (deposited film)
51R Red hole transport layer (deposited film)
51G Green hole transport layer (deposited film)
52 electron blocking layer 54R red light emitting layer (deposited film)
54G green light emitting layer (deposited film)
54B blue light emitting layer (deposited film)
56 Hole blocking layer 58 Electron transport layer 59 Electron injection layer 60, 60 ' Deposition substrate 62, 64, 64B, 64G, 64R, 66, 68 Projection (photo spacer, local)
70 Mask for vapor deposition (mask for vapor deposition)
71 Cover sheet 72 Frame 73 Support sheet 74 Superposed part (local)
78 Thermal denaturation unit 80, 80R, 80G, 80B, 90, 92 Mask sheet (mask for vapor deposition, mask for separate vapor deposition)
ES_R Red light emitting element (sub-pixel)
ES_B Blue light emitting element (sub-pixel)
ES_G Green light emitting element (sub-pixel)
H evaporation hole

Claims (16)

  1.  基板と、前記基板上に形成された蒸着膜とを備え、複数の画素を含む表示デバイスの製造方法であって、
     蒸着用マスクと前記基板とを、前記蒸着用マスクの一部と前記基板の一部とが当接するように対向配置して蒸着処理を行い、前記蒸着膜を前記基板上に形成する第1工程と、
     前記第1工程に連続して行われ、前記蒸着用マスクの、前記基板との当接部を含む局所を選択的にクリーニングする第2工程と、
     前記第2工程を経た前記蒸着用マスクを用いて蒸着処理を行う第3工程とを含むことを特徴とする表示デバイスの製造方法。
    A substrate, comprising a vapor deposition film formed on the substrate, a method for manufacturing a display device including a plurality of pixels,
    A first step of performing a vapor deposition process by disposing a vapor deposition mask and the substrate so that a part of the vapor deposition mask and a part of the substrate are in contact with each other, and performing the vapor deposition process on the substrate; When,
    A second step that is performed continuously to the first step and selectively cleans a local portion of the deposition mask including a contact portion with the substrate;
    A third step of performing a vapor deposition process using the vapor deposition mask after the second step.
  2.  前記第2工程は、前記当接部の周囲に前記第1工程において付着した蒸着材料を除去する除去工程を含むことを特徴とする請求項1に記載の表示デバイスの製造方法。 2. The method according to claim 1, wherein the second step includes a removing step of removing the deposition material attached in the first step around the contact portion. 3.
  3.  前記除去工程において、前記局所を含む領域に局所的にレーザ光を照射することによって、前記当接部の周囲に前記第1工程において付着した蒸着材料を除去することを特徴とする請求項2に記載の表示デバイスの製造方法。 3. The method according to claim 2, wherein in the removing step, a deposition material attached in the first step around the contact portion is removed by locally irradiating a laser beam to a region including the local portion. 4. The manufacturing method of the display device described in the above.
  4.  前記除去工程において、前記局所を含む領域は、1つの前記局所を含む5μm以上50μm以下の領域であることを特徴とする請求項3に記載の表示デバイスの製造方法。 4. The method according to claim 3, wherein, in the removing step, the region including the local region is a region including one local region and having a size of 5 μm or more and 50 μm or less. 5.
  5.  前記除去工程において、前記局所を含む領域は、複数の前記局所を含む10mm以上100mm以下の領域であることを特徴とする請求項3に記載の表示デバイスの製造方法。 4. The method according to claim 3, wherein in the removing step, the region including the local portion is a region including a plurality of the local regions and having a size of 10 mm or more and 100 mm or less. 5.
  6.  前記除去工程において、前記レーザ光を照射することによって、前記局所の表面温度が摂氏250度以上500度以下になるように、前記局所を加熱することを特徴とする請求項3に記載の表示デバイスの製造方法。 4. The display device according to claim 3, wherein, in the removing step, the local area is heated by irradiating the laser beam such that a surface temperature of the local area becomes 250 ° C. or more and 500 ° C. or less. 5. Manufacturing method.
  7.  前記複数の画素は各々、複数の副画素を備え、
     前記蒸着用マスクは、前記複数の副画素のうちの1色を発光する副画素に対応する塗分け蒸着用マスクであることを特徴とする請求項1に記載の表示デバイスの製造方法。
    The plurality of pixels each include a plurality of sub-pixels,
    The method according to claim 1, wherein the deposition mask is a separate deposition mask corresponding to a sub-pixel that emits one color of the plurality of sub-pixels.
  8.  前記基板には、フォトスペーサーが形成されており、
     前記蒸着用マスクの前記局所は、前記蒸着用マスクのうちの前記フォトスペーサーと重畳する重畳部に含まれることを特徴とする請求項1に記載の表示デバイスの製造方法。
    A photo spacer is formed on the substrate,
    The method according to claim 1, wherein the local portion of the deposition mask is included in an overlapping portion of the deposition mask that overlaps the photo spacer.
  9.  前記蒸着用マスクには、フォトスペーサーが形成されており、
     前記蒸着用マスクの前記局所は、前記フォトスペーサーに含まれることを特徴とする請求項1に記載の表示デバイスの製造方法。
    A photo spacer is formed on the evaporation mask,
    The method according to claim 1, wherein the local portion of the deposition mask is included in the photo spacer.
  10.  前記第1工程よりも前に行われ、前記複数の画素に共通する有機層を形成する第4工程をさらに含み、
     前記第1工程において、前記フォトスペーサーによって前記有機層を破断することを特徴とする請求項9に記載の表示デバイスの製造方法。
    A fourth step of forming an organic layer common to the plurality of pixels, which is performed before the first step,
    The method according to claim 9, wherein, in the first step, the organic layer is broken by the photo spacer.
  11.  前記フォトスペーサーは、金属製であることを特徴とする請求項10に記載の表示デバイスの製造方法。 The method according to claim 10, wherein the photo spacer is made of metal.
  12.  前記第1工程において、前記フォトスペーサーによって前記有機層を切断することを特徴とする請求項10に記載の表示デバイスの製造方法。 The method according to claim 10, wherein the organic layer is cut by the photo spacer in the first step.
  13.  前記第1工程において、レーザ光の照射によって加熱された前記フォトスペーサーによって前記有機層を熱破壊することを特徴とする請求項10に記載の表示デバイスの製造方法。 11. The method according to claim 10, wherein, in the first step, the organic layer is thermally destroyed by the photo spacer heated by the irradiation of the laser beam.
  14.  前記複数の画素は各々、複数の副画素を備え、
     前記蒸着用マスクには、複数の蒸着用マスクが用いられ、
     前記複数の蒸着用マスクは各々、前記複数の副画素のうちの異なる色を発光する副画素毎に、前記副画素に対応する塗分け蒸着用マスクであり、
     前記複数の蒸着用マスクは互いに、前記基板に対する前記フォトスペーサーの配置が異なることを特徴とする請求項10に記載の表示デバイスの製造方法。
    The plurality of pixels each include a plurality of sub-pixels,
    A plurality of evaporation masks are used for the evaporation mask,
    Each of the plurality of deposition masks is a separate deposition mask corresponding to the sub-pixel, for each sub-pixel emitting a different color among the plurality of sub-pixels,
    The method according to claim 10, wherein the plurality of deposition masks are different from each other in an arrangement of the photo spacer with respect to the substrate.
  15.  前記フォトスペーサーは、前記蒸着用マスクに設けられた蒸着孔を囲む枠状であることを特徴とする請求項10に記載の表示デバイスの製造方法。 The method according to claim 10, wherein the photospacer has a frame shape surrounding a vapor deposition hole provided in the vapor deposition mask.
  16.  前記蒸着用マスクの全体をクリーニングする第5工程をさらに含むことを特徴とする請求項1に記載の表示デバイスの製造方法。 The method according to claim 1, further comprising a fifth step of cleaning the entire mask for vapor deposition.
PCT/JP2018/028333 2018-07-27 2018-07-27 Method for manufacturing display device WO2020021722A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028333 WO2020021722A1 (en) 2018-07-27 2018-07-27 Method for manufacturing display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028333 WO2020021722A1 (en) 2018-07-27 2018-07-27 Method for manufacturing display device

Publications (1)

Publication Number Publication Date
WO2020021722A1 true WO2020021722A1 (en) 2020-01-30

Family

ID=69180937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028333 WO2020021722A1 (en) 2018-07-27 2018-07-27 Method for manufacturing display device

Country Status (1)

Country Link
WO (1) WO2020021722A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571664A (en) * 2021-07-22 2021-10-29 武汉天马微电子有限公司 Display panel, manufacturing method thereof and display device
WO2022059094A1 (en) * 2020-09-16 2022-03-24 シャープ株式会社 Display device manufacturing method and display device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289347A (en) * 2001-03-27 2002-10-04 Sanyo Electric Co Ltd Electroluminescence display device, its manufacturing method, covering mask and its manufacturing method
JP2003257650A (en) * 2002-03-05 2003-09-12 Sanyo Electric Co Ltd Method of manufacturing organic electro-luminescence panel, organic electro-luminescence element, and mask
KR100487834B1 (en) * 2004-05-01 2005-05-09 주식회사 아이엠티 Method and apparatus for cleaning pattern masks using laser
JP2006169573A (en) * 2004-12-14 2006-06-29 Laser Gijutsu Sogo Kenkyusho Method and device for cleaning vapor deposition mask, and method and apparatus for manufacturing organic el element
JP2006192426A (en) * 2004-11-18 2006-07-27 Samsung Sdi Co Ltd Method for washing mask
KR100796690B1 (en) * 2006-07-31 2008-01-21 삼성에스디아이 주식회사 Cleaning method of mask and method of manufacturing organic light emitting display
JP2010236088A (en) * 2009-03-09 2010-10-21 Hitachi High-Technologies Corp Cleaning device and cleaning method of mask member and organic el display
JP2011187362A (en) * 2010-03-10 2011-09-22 Hitachi High-Technologies Corp Device for cleaning of vapor deposition mask for organic el, apparatus for manufacturing of organic el display, and vapor deposition mask cleaning method for organic el
JP2011195872A (en) * 2010-03-18 2011-10-06 Hitachi High-Technologies Corp Mask cleaning device, cleaning method and apparatus for producing organic electroluminescent element
CN106311681A (en) * 2015-06-18 2017-01-11 上海和辉光电有限公司 A mask foreign matter removing method and a mask foreign matter removing apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289347A (en) * 2001-03-27 2002-10-04 Sanyo Electric Co Ltd Electroluminescence display device, its manufacturing method, covering mask and its manufacturing method
JP2003257650A (en) * 2002-03-05 2003-09-12 Sanyo Electric Co Ltd Method of manufacturing organic electro-luminescence panel, organic electro-luminescence element, and mask
KR100487834B1 (en) * 2004-05-01 2005-05-09 주식회사 아이엠티 Method and apparatus for cleaning pattern masks using laser
JP2006192426A (en) * 2004-11-18 2006-07-27 Samsung Sdi Co Ltd Method for washing mask
JP2006169573A (en) * 2004-12-14 2006-06-29 Laser Gijutsu Sogo Kenkyusho Method and device for cleaning vapor deposition mask, and method and apparatus for manufacturing organic el element
KR100796690B1 (en) * 2006-07-31 2008-01-21 삼성에스디아이 주식회사 Cleaning method of mask and method of manufacturing organic light emitting display
JP2010236088A (en) * 2009-03-09 2010-10-21 Hitachi High-Technologies Corp Cleaning device and cleaning method of mask member and organic el display
JP2011187362A (en) * 2010-03-10 2011-09-22 Hitachi High-Technologies Corp Device for cleaning of vapor deposition mask for organic el, apparatus for manufacturing of organic el display, and vapor deposition mask cleaning method for organic el
JP2011195872A (en) * 2010-03-18 2011-10-06 Hitachi High-Technologies Corp Mask cleaning device, cleaning method and apparatus for producing organic electroluminescent element
CN106311681A (en) * 2015-06-18 2017-01-11 上海和辉光电有限公司 A mask foreign matter removing method and a mask foreign matter removing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059094A1 (en) * 2020-09-16 2022-03-24 シャープ株式会社 Display device manufacturing method and display device
CN113571664A (en) * 2021-07-22 2021-10-29 武汉天马微电子有限公司 Display panel, manufacturing method thereof and display device
CN113571664B (en) * 2021-07-22 2023-11-21 武汉天马微电子有限公司 Display panel, manufacturing method thereof and display device

Similar Documents

Publication Publication Date Title
US10229965B2 (en) Method fabricating organic light emitting diode display device
WO2018179047A1 (en) Display device and method for producing same
US7947519B2 (en) Top emission organic light emitting diode display using auxiliary electrode to prevent voltage drop of upper electrode and method of fabricating the same
TWI674689B (en) Display device and method for fabricating the same
KR102522533B1 (en) Organic electroluminescent device and method for fabricating the same
KR102447049B1 (en) Large area mirror display and method of manufacturing the same
JP2007227129A (en) Organic electroluminescent device, and manufacturing method of the organic electroluminescent device
KR20100004221A (en) Top emission type organic electro-luminescence device
JP5478954B2 (en) Organic electroluminescence display device
WO2019064574A1 (en) Display device
KR20150075017A (en) Organic light emitting display device, method for repair of the same and
WO2018179133A1 (en) Display device, display device production method, display device production apparatus, deposition apparatus, and controller
WO2020021722A1 (en) Method for manufacturing display device
KR102169862B1 (en) Organic light emitting diode display device and fabricating method thereof
WO2018229859A1 (en) Display device, method for producing display device, and apparatus for producing display device
US20160087016A1 (en) Organic light emitting display device
WO2019187139A1 (en) Display device
JP2010244917A (en) Film forming mask, method of manufacturing electro-optical device, and method of manufacturing organic el device
CN111937494A (en) Display device, mask and method for manufacturing display device
WO2018179212A1 (en) Organic el display device and method for manufacturing organic el display device
JP2019020509A (en) Display and method for manufacturing display
US20200274097A1 (en) Display device, exposure device, and manufacturing method of display device
US11114522B2 (en) Display device, manufacturing method of display device, and exposure device
KR20130018007A (en) Method of fabricating organic light emitting diodes
WO2020202274A1 (en) Display device, and method for manufacturing display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP