WO2020021687A1 - 水処理プラント - Google Patents
水処理プラント Download PDFInfo
- Publication number
- WO2020021687A1 WO2020021687A1 PCT/JP2018/028151 JP2018028151W WO2020021687A1 WO 2020021687 A1 WO2020021687 A1 WO 2020021687A1 JP 2018028151 W JP2018028151 W JP 2018028151W WO 2020021687 A1 WO2020021687 A1 WO 2020021687A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water treatment
- unit
- calculation
- control
- calculation model
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/006—Regulation methods for biological treatment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/001—Upstream control, i.e. monitoring for predictive control
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/005—Processes using a programmable logic controller [PLC]
- C02F2209/006—Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/005—Processes using a programmable logic controller [PLC]
- C02F2209/008—Processes using a programmable logic controller [PLC] comprising telecommunication features, e.g. modems or antennas
Definitions
- the present invention relates to a water treatment plant for treating water such as tap water or sewage.
- water treatment control is performed while changing a control target value or a control operation amount according to environmental changes.
- the water treatment control according to the environmental change is performed in the water treatment plant by changing the control target value or the control operation amount in accordance with changes in seasonal temperature difference, inflow water flow rate, inflow water quality, and the like. ing.
- Patent Literature 1 proposes a technique using AI (Artificial @ Intelligent) for control of a sewage treatment device so that an operator's experience can be reflected on a change in a control target value according to an environmental change.
- AI Artificial @ Intelligent
- detection data output from a sensor that detects a state in the sewage treatment device is input to the AI device, and the sewage treatment device is controlled based on the output of the AI device.
- water treatment control using AI can be performed.
- a water treatment plant is composed of a plurality of devices such as a water treatment device, a control device, and a central monitoring device
- the conventional water treatment control technology using AI as described above does not allow installation of AI. There is room for improvement because the location is not taken into account.
- the present invention has been made in view of the above, and an object of the present invention is to provide a water treatment plant capable of effectively performing water treatment control in a water treatment plant including a plurality of devices.
- a water treatment plant is a water treatment plant that causes a first water treatment device and a second water treatment device to perform water treatment, wherein a central monitoring device, a first control device, a second control device, An operation unit.
- the central monitoring device monitors the first water treatment device and the second control device.
- the first control device performs a first control on the first water treatment device.
- the second control device performs a second control on the second water treatment device.
- the first calculation unit is disposed outside the central monitoring device, and performs a first calculation related to the first control using a first calculation model generated by the first machine learning.
- FIG. 3 is a diagram illustrating a configuration example of a control device according to the first embodiment;
- FIG. 3 is a diagram showing an example of a data table stored in a learning data storage unit according to the first embodiment.
- FIG. 4 is a diagram illustrating an example of information stored in a model storage unit according to the first embodiment.
- FIG. 3 is a diagram illustrating a configuration example of a control unit of the control device according to the first embodiment
- 5 is a flowchart illustrating an example of a process performed by the control device according to the first embodiment
- 5 is a flowchart illustrating an example of a learning data storage process of the control device according to the first embodiment
- 5 is a flowchart illustrating an example of a learning model process of the control device according to the first embodiment
- FIG. 2 is a diagram illustrating an example of a hardware configuration of a control device according to the first embodiment. The figure which shows the example of a structure of the water treatment plant concerning Embodiment 2.
- the figure which shows the outline of the water treatment plant concerning Embodiment 5 The figure which shows the example of a structure of the cloud server concerning Embodiment 5.
- FIG. 1 is a diagram schematically illustrating a water treatment plant according to the first embodiment.
- the water treatment plant 100 according to the first embodiment includes a plurality of water treatment apparatuses 1 1 to 1 n and a plurality of sensors for respectively detecting states of the plurality of water treatment apparatuses 1 1 to 1 n. 2 1 to 2 n , control devices 3 1 to 3 n for controlling the plurality of water treatment devices 1 1 to 1 n , respectively, and a central monitoring device 4 for monitoring the plurality of water treatment devices 1 1 to 1 n.
- n is an integer of 2 or more.
- the control devices 3 1 to 3 n and the central monitoring device 4 are communicably connected to each other via a communication network 5.
- the communication network 5 is, for example, a LAN (Local Area Network), a WAN (Wide Area Network), or a dedicated line.
- the plurality of water treatment devices 1 1 to 1 n are devices that perform water treatment such as tap water or sewage.
- Sensor 2 1 detects a water treatment device 1 1 of water processing environment, and outputs the detection data including the detection result to the control unit 3 1.
- Controller 3 based on the detection data output from the sensor 2 1, controls the water treatment device 1 1.
- the sensor 2 n detects the water processing environment of the water treatment apparatus 1 n, and outputs the detection data including the detection result to the control unit 3 n.
- the control device 3n controls the water treatment device 1n based on the detection data output from the sensor 2n .
- Water treatment device 1 1 ⁇ 1 n of the water treatment environment includes at least one water processing environment that is external to the water processing environment and the water treatment device 1 1 ⁇ 1 n at the inside of the water treatment device 1 1 ⁇ 1 n .
- Central monitoring unit 4 the control unit 3 1, detection data output from a plurality of sensors 2 1 2 n via 3 n acquires, based on the detection data, a plurality of water treatment apparatus 1 1 1 n Monitor the status of.
- the central monitoring device 4 can control the water treatment devices 1 1 to 1 n by the control devices 3 1 to 3 n based on the operation of the operator of the water treatment plant 100.
- each of the plurality of water treatment devices 1 1 to 1 n is shown without distinction, it is referred to as a water treatment device 1.
- a sensor 2 when each of the plurality of sensors 2 1 to 2 n is shown without being distinguished, it is described as a sensor 2.
- control device 3 when each of the plurality of control devices 3 1 to 3 n is shown without distinction, it is described as the control device 3.
- the control device 3 includes a calculation unit 38 that performs a calculation related to the control of the water treatment device 1 using a calculation model generated by machine learning, and a control that controls the water treatment device 1 based on a calculation result of the calculation unit 38. And a unit 39.
- the calculation model used by the calculation unit 38 is, for example, a calculation model that inputs detection data output from the sensor 2 and outputs information related to control of the water treatment apparatus 1.
- the control device 3 is, for example, an AI called artificial intelligence or the like, and outputs information related to control of the water treatment device 1 via machine learning based on input detection data.
- the calculation unit 38 receives, for example, detection data output from the sensor 2, and performs calculation using a calculation model that outputs information on a predicted value of a water treatment environment of the water treatment apparatus 1 detected by the sensor 2. Information on the predicted value of the water treatment environment of the treatment device 1 can be obtained.
- the arithmetic unit 38 controls the water treatment apparatus 1 based on the predicted value of the water treatment environment of the water treatment apparatus 1 so that the state of the water treatment in the water treatment apparatus 1 satisfies a preset water treatment condition. Calculate the target value.
- the control unit 39 can control the water treatment apparatus 1 based on the information on the control target value obtained by the calculation unit 38.
- the control target value is, for example, a target value of a control amount of a control target device such as a pump or a blower that controls the water treatment state of the water treatment device 1.
- the control unit 39 uses the predicted value of the water treatment environment of the water treatment device 1 calculated by the calculation unit 38 so that the state of the water treatment in the water treatment device 1 satisfies the preset water treatment condition.
- a configuration for controlling the processing device 1 may be employed.
- the calculation unit 38 receives the detection data output from the sensor 2 and calculates the control target value of the water treatment apparatus 1 by a calculation using a calculation model that outputs information on the control target value of the controlled device. You can also get information.
- the control unit 39 can control the water treatment apparatus 1 based on the information on the control target value obtained by the calculation unit 38.
- the water treatment plant 100 includes, for each water treatment device 1, the control device 3 that performs an operation related to control of the water treatment device 1 by using a calculation model generated by machine learning. It can be arranged near the water treatment device 1. Therefore, for example, data transmission delay and the like can be suppressed, and control processing of the water treatment apparatus 1 based on detection data output from the sensor 2 can be speeded up. Therefore, water treatment control can be effectively performed in a water treatment plant including a plurality of water treatment devices.
- FIG. 2 is a diagram illustrating a configuration example of the water treatment apparatus according to the first embodiment.
- FIG. 2 shows only one of the plurality of control devices 3 shown in FIG.
- sewage treatment will be described as an example of water treatment performed by the water treatment device 1.
- the water treatment plant 100 may have a configuration in which the plurality of water treatment apparatuses 1 perform the same type of water treatment, and some or all of the plurality of water treatment apparatuses 1 may perform the same type of water treatment. May be performed.
- the water treatment device 1 shown in FIG. 2 is a sewage treatment device for treating sewage as treated water.
- the water treatment apparatus 1 stores a sewage, which is an inflow water from a sewer, and sediments relatively sedimentable solids in the sewage.
- the first sedimentation tank 11 and the supernatant water of the first sedimentation tank 11 are subjected to aerobic treatment.
- a final sedimentation tank 13 for separating the activated sludge mixture flowing from the treatment tank 12 into supernatant water and activated sludge.
- the supernatant water of the final settling tank 13 is discharged from the final settling tank 13 as treated water.
- the supernatant water flowing from the precipitation tank 11 at first contains organic matter, and for example, the organic matter contained in the supernatant water is treated by digestion of aerobic microorganisms such as phosphorus accumulating bacteria, nitrifying bacteria, and denitrifying bacteria. You.
- the water treatment apparatus 1 is further provided on a blower 14 for sending air into the treatment tank 12 to dissolve the air in the activated sludge mixture, and a pipe connecting the final sedimentation tank 13 and the treatment tank 12. And a pump 15 for returning the activated sludge from the treatment tank 13 to the treatment tank 12.
- a blower 14 and the pump 15 is an example of the above-described control target device.
- control target devices when the blower 14 and the pump 15 are not distinguished from each other, they may be referred to as control target devices.
- the water treatment plant 100 is provided with a sensor 2 including a plurality of sensors 20 1 to 20 m that respectively detect a water treatment environment of the water treatment device 1.
- Each of the sensors 20 1 to 20 m detects, for example, a characteristic indicating a state or environment in the water treatment apparatus 1.
- sensors 20 1 to 20 4 detects the incoming water characteristic is a characteristic of the flowing water into the first settling tank 11.
- Sensor 20 1 detects the inflow of flowing water.
- Sensor 20 2 BOD of the inflow water: detecting a (Biochemical Oxygen Demand biochemical oxygen demand).
- Sensor 20 3 detects the temperature of the incoming water.
- Sensor 20 4 the concentration of NH 3 in the inflow water to detect NH 4 + concentration or ammonium nitrogen concentration, the influent.
- the sensors 20 5 to 20 m ⁇ 3 detect characteristics in the processing tank indicating the state of the processing tank 12.
- Sensor 20 5 detects the amount of dissolved oxygen in the treatment tank 12.
- Sensor 20 6 detects the active microbe concentration in the treatment tank 12.
- Sensor 20 7 detects the BOD in the processing tank 12.
- the sensors 20 8 to 20 m ⁇ 3 include, for example, a plurality of sensors that respectively detect ammonia nitrogen concentration, nitrate nitrogen concentration, total nitrogen concentration, phosphoric phosphorus concentration, and total phosphorus concentration.
- the sensors 20 m ⁇ 2 to 20 m detect a treated water characteristic that is a characteristic of treated water discharged from the final sedimentation tank 13.
- the sensor 20m-2 detects an outflow amount of the treated water.
- the sensor 20 m-1 detects the BOD of the treated water.
- the sensor 20m detects the total nitrogen concentration of the treated water.
- the sensor 2 may have a configuration that does not include a part of the sensors 20 1 to 20 m . Further, the sensors 20 1 to 20 m described above detect a characteristic value indicating a state in the water treatment device 1, but the sensor 2 may include an imaging device that outputs imaging data as detection data.
- FIG. 3 is a diagram illustrating a configuration example of the control device according to the first embodiment.
- the control device 3 according to the first embodiment includes a data acquisition unit 30, a data selection unit 31, a learning data storage unit 32, a learning processing unit 33, a model storage unit 34, an update It includes a determination unit 35, a simulator unit 36, a state determination unit 37, a calculation unit 38, a control unit 39, and a communication unit 40.
- the learning processing unit 33, the model storage unit 34, and the calculation unit 38 are examples of AI.
- the data acquisition unit 30 acquires detection data from the sensor 2.
- the sensor 2 includes the plurality of sensors 20 1 to 20 m as described above, and the data acquisition unit 30 periodically acquires detection data output from the plurality of sensors 20 1 to 20 m .
- the data selection unit 31 selects detection data that satisfies a data selection condition that is a preset condition from among the detection data acquired by the data acquisition unit 30, and stores the selected detection data in the learning data storage unit 32.
- the data selection condition is, for example, a condition for selecting detection data suitable for generating and updating a calculation model.
- the detection data suitable for generating and updating the calculation model is, for example, detection data output from the sensor 2 in a state where the environment of the area including the water treatment plant 100 satisfies the set environmental conditions.
- the environmental conditions include, for example, that in a region including the water treatment plant 100, the weather is not heavy rainfall, that rivers are not flooded, and that water is not cut off.
- the environmental condition may include that a typhoon is not coming and that it is not a rainy season.
- Environmental information indicating the environment of the area including the water treatment plant 100 is notified from the central monitoring device 4 to the data selection unit 31 via the communication network 5 and the communication unit 40, for example.
- the data selection unit 31 selects detection data that satisfies a data selection condition that is a preset condition among the detection data acquired by the data acquisition unit 30 based on the environment information notified from the central monitoring device 4.
- the data selection condition may be that the detection data output from the sensor 2 is within a set range.
- the setting range is a range suitable for generating and updating the calculation model, and is set, for example, to exclude detection data indicating a numerical value that does not appear during normal operation of the water treatment plant 100.
- the data selection unit 31 selects detection data within the setting range and does not select detection data outside the setting range. Thus, only the detection data within the preset range can be stored in the learning data storage unit 32.
- the data selection condition can be set from the central monitoring device 4.
- the operator of the water treatment plant 100 can transmit information on data selection conditions from the central monitoring device 4 to the control device 3.
- the data selection unit 31 acquires information on data selection conditions transmitted from the central monitoring device 4 from the communication unit 40, and detects detection data based on the acquired information on data selection conditions.
- the data selection unit 31 can select detection data using a preset time range as one unit. For example, the data selection unit 31 can determine whether the detection data satisfies the selection condition on a time or day basis. In this case, for example, after once storing the detection data in the learning data storage unit 32, the data selection unit 31 deletes the detection data in units of time or days including detection data that does not satisfy the selection condition from the learning data storage unit 32. can do.
- the data selection unit 31 combines the information of the control target value of the control target device controlled by the control unit 39 based on the detection data satisfying the selection condition with the detection data satisfying the selection condition, together with the detection data satisfying the selection condition. They can be stored in the learning data storage unit 32 in association with each other.
- the learning data storage unit 32 associates the detection data selected by the data selection unit 31 with the information of the control target value of the control target device controlled by the control unit 39 based on the detection data satisfying the selection condition. To be stored.
- FIG. 4 is a diagram illustrating an example of a data table stored in the learning data storage unit according to the first embodiment.
- the data table shown in FIG. 4 is a data table including detection data on a time zone basis or a day basis.
- the data table stored in the learning data storage unit 32 is not limited to a data table including detection data for each time zone or each day.
- the data table stored in the learning data storage unit 32 may be a data table including monthly detection data or yearly detection data.
- the data table shown in FIG. 4 includes detection data for each time and a control target value.
- the detection data D1 (t0), D1 (t1 ), ⁇ , D1 (tp) is the detection data of the sensor 20 1, the measured value of the flow rate of inflow water detected by the sensor 20 1 Da1 including.
- Detection data D2 (t0), D2 (t1 ), ⁇ , D2 (tp) is the detection data of the sensor 20 2, including the measured value Da2 the BOD of the inflow water detected by the sensor 20 2.
- Detection data D3 (t0), D3 (t1 ), ⁇ , D3 (tp) is the detection data of the sensor 20 3, including a measured value Da3 the temperature of the incoming water detected by the sensor 20 3.
- Detection data D4 (t0), D4 (t1 ), ⁇ , D4 (tp) is the detection data of the sensor 20 4, including the measured value Da4 of NH 3 in the inflow water detected by the sensor 20 4.
- Detection data Dm (t0), Dm (t1 ), ⁇ , Dm (tp) is the detection data of the sensor 20 m, including the measured value Dam of the total nitrogen concentration in the treated water detected by the sensor 20 m .
- p is, for example, an integer of 3 or more.
- the detection data D1 (t0), D2 (t0), D3 (t0), D4 (t0),..., Dm (t0) are data constituting D (t0) output from the sensor 2 at time t0. is there.
- the detection data D1 (t1), D2 (t1), D3 (t1), D4 (t1),..., Dm (t1) are data constituting D (t1) output from the sensor 2 at time t1. is there.
- the detection data D1 (tp), D2 (tp), D3 (tp), D4 (tp),..., Dm (tp) are data constituting D (tp) output from the sensor 2 at time tp. is there.
- detection data D (t0), D (t1),..., D (tp) output from the sensor 2 may be described as detection data D.
- measured values Da1 to Dam included in the detection data D1 to Dm are indicated without distinction, they may be referred to as measured values Da.
- control target values RV1 (t0), RV1 (t1),..., RV1 (tp) are control target values of the blower 14.
- the control target values RV2 (t0), RV2 (t1),..., RV2 (tp) are control target values of the pump 15.
- control target values RV1 (t0), RV1 (t1),..., RV1 (tp) when each of the control target values RV1 (t0), RV1 (t1),..., RV1 (tp) is indicated without distinction, it is described as a control target value RV1, and the control target values RV2 (t0), RV2.
- control target values RV1 and RV2 when each of the control target values RV1 and RV2 are indicated without being distinguished from each other, they may be described as control target values RV.
- the learning processing unit 33 generates and updates a calculation model used in the calculation unit 38 based on the information stored in the learning data storage unit 32.
- a calculation model is a neural network, but may be a calculation model generated by a learning algorithm such as linear regression or logistic regression.
- the learning processing unit 33 can execute learning processing of a plurality of types of calculation models.
- the calculation model is generated and updated by the calculation model learning process.
- the learning processing unit 33 can generate and update a plurality of first calculation models M1 1 to M1 m and a second calculation model M2.
- the plurality of first calculation models M1 1 to M1 m are calculation models that receive detection data output from the sensor 2 as input and output information on a predicted value of a state in the water treatment apparatus 1.
- the second calculation model M2 is a calculation model that receives detection data output from the sensor 2 as input and outputs information on control target values RV1 and RV2 of a plurality of control target devices.
- first calculation model M1 1 to M1 m when each of the first calculation models M1 1 to M1 m is shown without distinction, it may be described as a first calculation model M1. Further, when each of the first calculation model M1 and the second calculation model M2 is shown without distinction, it may be described as a calculation model M.
- the update of the calculation model M is the re-generation of the calculation model M.
- generation and the update of the calculation model M may be referred to as the generation of the calculation model M without distinction between them.
- the learning processing unit 33 can generate the first calculation model M1 using the time-series detection data output from the sensor 2. For example, the learning processing unit 33, the learning data storage unit 32 detects the data of the stored time series D1 (t0), D1 (t1 ), ⁇ , with D1 (tp), the first calculation model M1 1 Can be generated. First calculation model M1 1 inputs the detection data of the time series output from the sensor 20 1, a calculation model for outputting data of the predicted value F1 of the flow rate of the influent water in the future. In the future, the time Ta is shown after the current time. The time Ta can be set arbitrarily.
- the learning processing unit 33 detects the data of the stored time series D2 (t0), D2 (t1 ), ⁇ , using D2 (tp), the first calculation model M1 2 Can be generated.
- First calculation model M1 2 inputs the detection data of the time series output from the sensor 20 2, a calculation model for outputting data of the predicted value F2 of the BOD of the inflow water after time Ta.
- the learning processing unit 33 detects the data of the stored time series D3 (t0), D3 (t1 ), ⁇ , using D3 (tp), the first calculation model M1 3 Can be generated.
- First calculation model M1 3 inputs the detection data of the time series output from the sensor 20 3, a calculation model for outputting data of the predicted value F3 of the temperature of the incoming water after time Ta.
- the learning processing unit 33 detects the data of the stored time series D4 (t0), D4 (t1 ), ⁇ , using D4 (tp), the first calculation model M1 4 Can be generated.
- First calculation model M1 4 receives the detection data of the time series output from the sensor 20 4, a calculation model for outputting data of the predicted value F4 of the temperature of the incoming water after time Ta.
- the learning processing unit 33 outputs predicted values F5 to Fm after the time Ta by using the time-series detection data output from the sensors 20 5 to 20 m and stored in the learning data storage unit 32, respectively.
- the first calculation models M1 5 to M1 m can be generated.
- the first calculation model M1 is, for example, a convolutional neural network or a recurrent neural network.
- the predicted values F1 to Fm are shown without distinction, they may be referred to as predicted values F in some cases.
- the learning processing unit 33 generates the first calculation model M1 using only the past measured value Da of the characteristic to be predicted, but the measured value Da of the characteristic other than the past measured value Da of the predicted characteristic is used. Also, the first calculation model M1 can be generated using the control destination VR. For example, the learning processing unit 33 determines the time-series detection data D1 (t0) to D1 (tp), D2 (t0) to D2 (tp), D3 (t0) to D3 (tp), D4 (t0) to D4 ( tp), the first calculation models M1 5 to M1 m can be generated using the time-series control target values VR1 and VR2 used by the control unit 39. Such first calculation model M1 5, for example, enter a control target value VR1, VR2 detection data and a time series of time series output from the sensor 20 1 to 20 4, the predicted value F5 ⁇ Fm after time Ta This is a calculation model for outputting data.
- the first calculation model M1 is not limited to the above-described example, as long as it can output the predicted values F1 to Fm based on the time-series detection data D.
- each of the first calculation models M1 1 to M1 m is a calculation model that inputs time-series detection data D1 to Dm and time-series control target values VR1 and VR2, and outputs data of prediction values F1 to Fm. There may be.
- the learning processing unit 33 can generate the second calculation model M2 using the detection data D and the control target values RV1 and RV2 stored in the learning data storage unit 32 as learning data.
- the second calculation model M2 is a calculation model that receives, for example, detection data output from the sensors 20 1 to 20 m and outputs control target values RV1 and RV2 of a plurality of control target devices.
- the learning processing unit 33 stores the generated calculation model M in the model storage unit 34.
- FIG. 5 is a diagram illustrating an example of information stored in the model storage unit according to the first embodiment.
- a plurality of first calculation model M1 1, M1 2, M1 3 , M1 4, M1 5 ⁇ M1 m-3, M1 m-2, M1 m-1, M1 m and the second calculation model M2 are stored.
- the update determination unit 35 determines whether or not the calculation model M used in the calculation unit 38 needs to be updated based on the result of the calculation using the calculation model M by the calculation unit 38. For example, the update determination unit 35 updates the first calculation model M1 based on a difference between the state of the water treatment apparatus 1 predicted by the first calculation model M1 and the state of the water treatment apparatus 1 detected by the sensor 2. Can be determined as necessary.
- the update determination unit 35 For example, the update determination unit 35, a predicted value F1 of the flow rate of incoming water calculated by the calculation unit 38 by using the first calculation model M1 1 For future prediction of the flow rate of inflow water, detected after a time Ta by the sensor 2 The difference between the measured inflow water flow rate and the actually measured value Da1 is calculated.
- the update determination unit 35 determines whether the difference between the predicted value F1 and the measured value Da1 is equal to or larger than the threshold value Vth1, and determines whether the difference between the predicted value F1 and the measured value Da1 is equal to or larger than the threshold value Vth1. M1 is determined that it is necessary to 1 of the update. Update determination section 35, if the difference between the measured value Da1 and the predicted value F1 is less than the threshold Vth1, it determines that the first calculation model M1 1 update is not required.
- the update determining unit 35 sets the moving average of the difference between the predicted value F1 and the measured value Da1 to be equal to or greater than the threshold value Vth2. Can be determined. In this case, the update determination unit 35 determines that when the moving average of the difference between the measured value Da1 and the predicted value F1 is the threshold value Vth2 or more, it is necessary to first calculate the model M1 1 update. Update determination unit 35, when the moving average of the difference between the measured value Da1 and the predicted value F1 is less than the threshold Vth2, it determines that the first calculation model M1 1 update is not required.
- the update determination unit 35 can be by the same process as in the first calculation model M1 1, determines whether or not it is necessary to update the first calculation model M1 2 ⁇ M1 m. Note that, for example, when the total value of the difference between the predicted value F and the measured value Da in the plurality of first calculation models M1 is equal to or larger than the threshold, the update determination unit 35 updates the plurality of first calculation models M1. It can be determined that it is necessary.
- the update determination unit 35 updates the plurality of first calculation models M1 when the moving average of the sum of the differences between the predicted values F and the measured values Da in the plurality of first calculation models M1 is equal to or greater than a threshold. Can be determined to be necessary. For example, when the moving average of the total value of the difference between the predicted value F and the actual measurement value Da in each of the first calculation models M1 1 to M1 4 is equal to or greater than a threshold, the update determination unit 35 sets the plurality of first calculation models M1 1 it can be determined that it is necessary to ⁇ M1 4 updates.
- the update determination unit 35 determines the prediction accuracy of the first calculation model M1 based on the result calculated by the simulator unit 36, and based on the determination result, updates the first calculation model M1. Can also be determined.
- the simulator unit 36 is, for example, an activated sludge model simulator that performs calculations using an activated sludge model to simulate physical, biological, and scientific behavior in water treatment.
- an activated sludge model is a model that mathematically describes a biological reaction process and a change in water quality of a material balance, and is published by, for example, IWA (International Water Association).
- the simulator unit 36 can predict the characteristics in the treatment tank and the characteristics of the treated water from the detection data D output from the sensor 2, for example, by calculation using an activated sludge model.
- the update determination unit 35 calculates the predicted values of the characteristics in the processing tank calculated by the simulator unit 36 and the predicted values F4 to Fm-3 by the first calculation models M1 5 to M1 m-3 calculated by the calculation unit 38. By comparison, it can be determined that the first calculation models M1 5 to M1 m-3 need to be updated. For example, the update determination unit 35, the difference between the predicted value of the amount of dissolved oxygen is calculated by the simulator section 36, a first calculation model M1 5 predicted value F5 dissolved oxygen amount calculated by the calculation unit 38 using ⁇ F5 Is calculated.
- Update determination unit 35 determines a moving average value of the difference ⁇ F5 that computed difference ⁇ F5 is or if operation the threshold value Vth3 or when the threshold value Vth3 or more, it is necessary to update the first calculation model M1 5 be able to.
- the update determination unit 35 calculates the predicted values of the treated water characteristics calculated by the simulator unit 36 and the predicted values of the first calculation models M1 m-2 , M1 m-1 , and M1 m calculated by the calculation unit 38. By comparing Fm-2, Fm-1, and Fm, it can be determined that the first calculation models M1 m-2 , M1 m-1 , and M1 m need to be updated.
- the update determination unit 35 may determine that the second calculation model M2 needs to be updated based on the control target values RV1 and RV2 obtained by the calculation performed by the calculation unit 38 using the second calculation model M2. it can. For example, the update determination unit 35 determines whether the control target values RV1 and RV2 calculated by the calculation unit 38 using the second calculation model M2 are within a preset range Rth. The update determination unit 35 determines that the second calculation model M2 needs to be updated when it determines that the control target values RV1 and RV2 calculated by the calculation unit 38 are not within the predetermined range Rth.
- the update determining unit 35 can calculate the control target value RV from the detection data D output from the sensor 2 using the activated sludge model.
- the update determination unit 35 calculates a difference ⁇ RV between the control target value RV obtained by the activated sludge model and the control target value RV obtained by calculation by the calculation unit 38 using the second calculation model M2.
- the update determination unit 35 determines that the second calculation model M2 needs to be updated when the difference ⁇ RV is equal to or greater than the threshold value RVth or when the moving average value of the difference ⁇ RV is equal to or greater than the threshold value RVth.
- the update determination unit 35 determines whether the calculation model M used in the calculation unit 38 needs to be updated based on the result of the calculation using the calculation model M by the calculation unit 38.
- the determination of whether the calculation model M needs to be updated is not limited to the example described above.
- the update determination unit 35 may determine that the calculation model M used in the calculation unit 38 needs to be updated at every preset cycle.
- the state determination unit 37 determines whether the calculation model M is to be updated by the learning processing unit 33 based on the load state of the calculation resources used for the learning processing by the learning processing unit 33. It is determined whether or not the learning process can be performed.
- the processing resources used for the learning processing by the learning processing unit 33 in the control device 3 are CPUs (Central Processing Unit)
- the load state of the processing resources is the load state of the CPU, for example, the usage rate of the CPU.
- the state determination unit 37 determines that the learning processing unit 33 can perform the learning process when the computation resource is the CPU, for example, when the CPU usage rate is less than the threshold Rth1.
- the state determination unit 37 determines that the learning processing by the learning processing unit 33 is not possible, for example, when the CPU usage rate is equal to or more than the threshold Rth1.
- the learning processing unit 33 executes a learning process based on the determination result by the state determination unit 37. For example, the learning processing unit 33 determines that the learning processing by the learning processing unit 33 is possible by the state determination unit 37. The learning process is performed in the state in which the learning is performed. The learning processing unit 33 does not perform the learning process in a state where the state determination unit 37 determines that the learning process by the learning processing unit 33 is not possible.
- the state determination unit 37 determines whether the load state of the computational resource satisfies a preset stop condition while the learning processing unit 33 is performing the learning process.
- the state determination unit 37 determines that the stop condition is satisfied when the computational resource is the CPU, for example, when the usage rate of the CPU is equal to or greater than the threshold Rth2.
- the threshold value Rth2 is, for example, a value smaller than the threshold value Rth1.
- the state determination unit 37 determines whether the load state of the computational resource satisfies a preset restart condition while the learning processing by the learning processing unit 33 is stopped.
- the state determination unit 37 determines that the restart condition is satisfied when the computation resource is a CPU, for example, when the CPU usage rate is less than a threshold Rth3.
- the threshold value Rth3 is, for example, a value smaller than the threshold value Rth2.
- the learning processing unit 33 stops the execution of the learning process when the state determination unit 37 determines that the load state of the computational resource satisfies the stop condition during the execution of the learning process.
- the learning processing unit 33 restarts the execution of the learning process when the state determination unit 37 determines that the load state of the computational resource satisfies the restart condition while the learning process is stopped.
- the state determination unit 37 determines whether the learning processing unit 33 can perform the learning process. Is not limited to the example described above. For example, the state determination unit 37 can determine whether the learning processing unit 33 can perform the learning process regardless of whether the update determination unit 35 determines that the calculation model M needs to be updated. In this case, the control device 3 does not need to include the update determination unit 35. Further, a configuration in which the state determination unit 37 is not provided in the control device 3 may be employed. In this case, the learning processing unit 33 performs a learning process when the update determination unit 35 determines that the calculation model M needs to be updated.
- the operation unit 38 has a first mode and a second mode as operation modes.
- the operation unit 38 performs an operation using the first calculation model M1 when the operation mode is set to the first mode.
- the calculation unit 38 performs a calculation using the second calculation model M2.
- the operator of the water treatment plant 100 can transmit information on the operation mode of the arithmetic section 38 from the central monitoring device 4 to the control device 3.
- the operation unit 38 acquires the operation mode information transmitted from the central monitoring device 4 from the communication unit 40, and calculates the calculation model in one of the first mode and the second mode based on the acquired operation mode information. An operation using M can be performed.
- the calculation unit 38 acquires the time-series detection data D of the sensor 2 acquired by the data acquisition unit 30.
- the calculation unit 38 performs a calculation using the plurality of first calculation models M1 1 to M1 m to which the acquired time-series detection data D is input, and predictive values output from the first calculation models M1 1 to M1 m F1 to Fm are obtained.
- the arithmetic unit 38 performs an operation using the first calculation model M1 1 which receives detection data D1 of the time series output from the sensor 20 1, the influent water is first calculation model M1 1 output The predicted value F1 of the flow rate is obtained.
- the arithmetic unit 38 performs an operation using the first calculation model M1 2 which receives detection data D2 of the time series output from the sensor 20 2, the influent water is first calculated model M1 2 output The predicted value F2 of the BOD is obtained.
- the arithmetic unit 38 performs an operation using the first calculation model M1 3 which receives detection data D3 of the time series output from the sensor 20 3, influent water, which is the output of the first calculation model M1 3 Of the temperature F3 is obtained.
- the arithmetic unit 38 performs an operation using the first calculation model M1 4 which receives detection data D4 of the time series output from the sensor 20 4, the influent water, which is the output of the first calculation model M1 4 obtaining a predicted value F4 of NH 3.
- the calculation unit 38 calculates the control target values RV1 and RV2 of the controlled device based on the predicted values F1 to Fm obtained by the calculation using the first calculation models M1 1 to M1 m , and calculates the calculated control target value RV1. , RV2 to the control unit 39.
- the calculating unit 38 can calculate the control target values RV1 and RV2 from the predicted values F1 to Fm using a calculation model that inputs the predicted values F1 to Fm and outputs the control target values RV1 and RV2.
- a calculation model can be generated and updated by the learning processing unit 33 based on the data stored in the learning data storage unit 32, for example.
- the calculation unit 38 obtains the prediction values F1 to Fm every time the detection data D newly obtained by the data obtaining unit 30 is obtained. Can be.
- the calculation unit 38 acquires the detection data D of the sensor 2 acquired by the data acquisition unit 30 when the operation mode is set to the second mode.
- the calculation unit 38 inputs the acquired time-series detection data D to the second calculation model M2, performs a calculation using the second calculation model M2, and controls the control target values RV1, RV2 output from the second calculation model M2. To get.
- the operation unit 38 outputs the control target values RV1 and RV2 obtained by the operation using the second calculation model M2 to the control unit 39.
- the neural network described above is an artificial neural network.
- the artificial neural network is a computational model in which a weighted sum of input signals is taken, and a perceptron that outputs a non-linear function called an activation function and is output is hierarchically arranged.
- a perceptron takes a two-dimensional signal corresponding to an image as an input, calculates a weighted sum of the input, and passes it to the next layer.
- a sigmoid function or a ReLU (Rectified ⁇ Linear ⁇ Unit) function is used.
- the above-described perceptrons are hierarchically arranged, and each layer processes an input signal to calculate a discrimination result.
- the output of the activation function is used as the task output as it is, and if the task type is a classification task, the softmax function is applied to the final layer. And output the task.
- an artificial network is configured as a two-dimensional signal map.
- Each of the two-dimensional signals can be regarded as corresponding to a perceptron, and a result obtained by calculating a weighted sum for the feature map of the previous layer and applying the activation function is output.
- the above processing is called a convolution operation, and in addition, a pooling layer for performing pooling processing may be inserted in each layer.
- This pooling layer performs downsampling by performing an average value operation or a maximum value operation on the feature map.
- Error back propagation is a framework in which the output error of the artificial neural network is propagated from the final layer to the previous layer in order to update the weight.
- the control unit 39 can control the water treatment device 1 by controlling the blower 14, the pump 15, and the like.
- the control unit 39 can control the concentration of dissolved oxygen in the activated sludge mixture by controlling the blower 14 to adjust the amount of air sent into the activated sludge mixture.
- the control unit 39 controls the pump 15 to adjust the flow rate of the activated sludge returned from the final sedimentation tank 13 to the treatment tank 12.
- FIG. 6 is a diagram illustrating a configuration example of a control unit of the control device according to the first embodiment. As shown in FIG. 6, the control unit 39 includes a blower control unit 51 and a pump control unit 52.
- the blower control unit 51 acquires the control target value RV1 output from the calculation unit 38. Further, the blower control unit 51 obtains the numerical data indicating the amount of dissolved oxygen detected by the sensor 20 5 from the sensor 20 5. The blower control unit 51 generates a control signal by PI (Proportional Integral) control or PID (Proportional Integral Differential) control based on the control target value RV1 of the blower 14 and the acquired dissolved oxygen amount. The blower control unit 51 outputs the generated control signal to the blower 14. The blower 14 adjusts the amount of air sent into the processing tank 12 based on a control signal output from the blower control unit 51.
- PI Proportional Integral
- PID Proportional Integral Differential
- the pump control unit 52 acquires the control target value RV2 output from the calculation unit 38. In addition, the pump control unit 52 acquires numerical data indicating the flow rate of the activated sludge from the final sedimentation tank 13 to the treatment tank 12 from a sensor that detects the flow rate of the activated sludge. The pump control unit 52 generates a control signal by PI control or PID control based on the control target value RV2 of the pump 15 and the acquired flow rate of the activated sludge. The pump control unit 52 outputs the generated control signal to the pump 15. The pump 15 adjusts the flow rate of the activated sludge from the final sedimentation tank 13 to the treatment tank 12 based on a control signal output from the pump control unit 52.
- the communication unit 40 outputs the detection data D acquired by the data acquisition unit 30 and the control target values RV and RV2 computed by the computing unit 38 to the central monitoring device 4.
- the central monitoring device 4 displays the detection data D and the control target values RV and RV2 transmitted from the communication unit 40 on a display unit (not shown). Thereby, the operator of the water treatment plant 100 can monitor the state of the water treatment apparatus 1 and the state of the water treatment control by the control device 3.
- FIG. 7 is a flowchart illustrating an example of a process of the control device according to the first embodiment, which is repeatedly executed by the control device 3.
- step S10 the data acquisition unit 30 of the control device 3 executes a process of acquiring the detection data D from the sensor 2 (Step S10).
- step S11 the control device 3 executes a learning data storage process (step S11).
- the processing in step S11 is processing in steps S20 and S21 shown in FIG. 8, and will be described later in detail.
- step S12 the control device 3 executes water treatment control (step S12).
- the processing in step S12 is the processing in steps S30 to S33 shown in FIG. 9, and will be described later in detail.
- step S13 the control device 3 executes a learning model process (step S13).
- the processing in step S13 is the processing in steps S40 to S48 shown in FIG. 10 and will be described later in detail.
- step S13 ends the control device 3 ends the processing illustrated in FIG.
- the control device 3 can also execute the processing of steps S11, S12, and S13 in parallel. Further, the control device 3 can also perform the process of step S13 at a longer cycle than the processes of steps S11 and S12.
- FIG. 8 is a flowchart illustrating an example of a learning data storage process of the control device according to the first embodiment.
- the data selection unit 31 of the control device 3 determines whether the detection data D satisfies the set selection condition (Step S20). When determining that the detection data D satisfies the selection condition (Step S20: Yes), the data selection unit 31 stores the detection data D satisfying the selection condition in the learning data storage unit 32 (Step S21).
- step S21 ends or when it is determined that the detection data D does not satisfy the set selection condition (step S20: No), the data selection unit 31 ends the process illustrated in FIG.
- FIG. 9 is a flowchart illustrating an example of water treatment control of the control device according to the first embodiment.
- the calculation unit 38 of the control device 3 determines whether the operation mode is set to the first mode (Step S30). When the operation unit 38 determines that the operation mode is set to the first mode (step S30: Yes), the operation unit 38 performs an operation process in the first mode (step S31).
- the calculation processing in the first mode is processing for obtaining the control target values RV1 and RV2 based on the calculation using the plurality of first calculation models M1 described above.
- step S30 When the operation unit 38 determines that the operation mode is not set to the first mode (step S30: No), the operation unit 38 performs an operation process in the second mode (step S32).
- the calculation processing in the second mode is processing for obtaining the control target values RV1 and RV2 based on the calculation using the above-described second calculation model M2.
- the control unit 39 controls the water treatment apparatus 1 based on the result of the arithmetic processing by the arithmetic unit 38 (Step S33). In the process of step S33, the control unit 39 controls the blower 14 and the pump 15 of the water treatment device 1 based on the control target values RV1 and RV2 obtained by the calculation unit 38. When the process in step S33 ends, the control unit 39 ends the process illustrated in FIG.
- FIG. 10 is a flowchart illustrating an example of a learning model process of the control device according to the first embodiment.
- the process illustrated in FIG. 10 is performed for each calculation model stored in the model storage unit 34.
- the learning model process for the first calculation model M1 1 among the plurality of first calculation models M1 1 to M1 m and the second calculation model M2 stored in the model storage unit 34 will be described as an example.
- learning model processing for the first calculation model M1 2 ⁇ M1 m and the second calculation model M2 is also carried out similarly to the learning model processing for the first calculation model M1 1.
- the state determination unit 37 of the control device 3 determines whether the first learning processing of the calculation model M1 1 is being executed (step S40). If the state determination unit 37 determines that the first learning processing of the calculation model M1 1 is being executed (step S40: Yes), the load state of the computational resources it is determined whether stop condition is satisfied (step S41 ). Learning processing unit 33, when the load state of the computing resources by the state determination unit 37 is determined to stop condition is satisfied (step S41: Yes), it stops the first calculation model M1 1 of the learning process (step S42).
- State determining unit 37 when the first learning processing of the calculation model M1 1 is determined not to be running (step S40: No), the first learning processing of the calculation model M1 1 is determined whether the stopped (Step S43). State determining unit 37, when the first learning processing of the calculation model M1 1 is determined to be stopped (Step S43: Yes), the load state of the computational resources determines whether resume condition is satisfied (step S44 ). Learning processing unit 33, when the load state of the computing resources by the state determination unit 37 is determined to resume condition is satisfied (step S44: Yes), resumes the first calculation model M1 1 of the learning process (step S45).
- Update determination section 35 when the first learning processing of the calculation model M1 1 by the state determination unit 37 is determined not to be stopped (Step S43: No), whether it is necessary to first calculate the model M1 1 Update It is determined whether or not it is (step S46).
- State determining unit 37 when it is determined that the update determination unit 35 is required first calculation model M1 1 update (step S46: Yes), based on the load state of the computational resource, the first calculation model M1 1 It is determined whether or not the update of is possible (step S47).
- Step S47 Yes
- step S48 first calculated starts model M1 1 of the learning process
- step S42 When the processing of step S42 is completed, the processing of step S45 is completed, the processing of step S48 is completed, or the control device 3 determines that the stop condition is not satisfied (step S41: No), the control device 3 sets a restart condition. Is satisfied (Step S44: No), it is determined that the calculation model M does not need to be updated (Step S46: No), or it is determined that the calculation model M cannot be updated (Step S47). : No), the processing shown in FIG. 10 ends.
- FIG. 11 is a diagram illustrating an example of a hardware configuration of the control device according to the first embodiment.
- the control device 3 includes a computer including a processor 101, a memory 102, and an interface circuit 103.
- the processor 101, the memory 102, and the interface circuit 103 can transmit and receive data to and from each other via the bus 104.
- the communication unit 40 is realized by the interface circuit 103.
- the learning data storage unit 32 and the model storage unit 34 are realized by the memory 102.
- the processor 101 reads out and executes the program stored in the memory 102, and thereby obtains the data acquisition unit 30, the data selection unit 31, the learning processing unit 33, the update determination unit 35, the simulator unit 36, the state determination unit 37, and the calculation unit. And the function of the control unit 39.
- the processor 101 is an example of a processing circuit, and includes at least one of a CPU, a DSP (Digital Signal Processor), and a system LSI (Large Scale Integration).
- the memory 102 includes one or more of a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, and an EPROM (Erasable Programmable Read Only Memory).
- the memory 102 includes a recording medium in which the above-mentioned program that can be read by a computer is recorded.
- a recording medium includes at least one of a nonvolatile or volatile semiconductor memory, a magnetic disk, a flexible memory, an optical disk, a compact disk, and a DVD.
- control unit 39 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- control unit 39 calculates the control target values RV1 and RV2 based on the outputs of the first calculation models M1 1 to M1 m in the calculation unit 38.
- the control target values RV1 and RV2 may be calculated based on the outputs of M1 1 to M1 m .
- the blower 14 and the pump 15 have been described as examples of the control target devices controlled by the control device 3.
- the control target devices controlled by the control device 3 are other than the blower 14 and the pump 15.
- Equipment may be included.
- the control target device may be a heater that adjusts the temperature of water in the processing bath 12 and a device that controls the supply of a chemical solution into the processing bath 12.
- the water treatment plant 100 controls the central monitoring device 4 that monitors the plurality of water treatment devices 1 and the control of the corresponding water treatment device 1 among the plurality of water treatment devices 1.
- a plurality of control devices 3 to be executed and an operation unit 38 arranged outside the central monitoring device 4 and performing an operation related to control of the water treatment apparatus 1 using a calculation model M generated by machine learning are provided.
- the calculation unit 38 is disposed outside the central monitoring device 4, water treatment control can be effectively performed in a water treatment plant including a plurality of devices.
- the water treatment device 1 1 corresponds to the first water treatment apparatus
- the water treatment apparatus 1 n is an example of a second water treatment apparatus
- the control unit 3 1 is an example of the first control device
- the control The device 3n is an example of a second control device.
- the arithmetic unit 38 included in the control unit 3 1 is an example of the first calculation unit.
- Arithmetic unit 38 included in the control unit 3 n is an example of a second operation unit.
- the arithmetic unit 38 included in the control device 3 is an AI
- the control device 3 is, for example, an AI device.
- the water treatment plant 100 includes a plurality of sensors 2 each detecting a state of the corresponding water treatment device 1 among the plurality of water treatment devices 1, and each of the plurality of control devices 3 Based on the detection data D output from the corresponding sensor 2, the control of the corresponding water treatment apparatus 1 among the plurality of water treatment apparatuses 1 is performed.
- Each of the plurality of control devices 3 includes an operation unit 38 that performs an operation related to control of a corresponding one of the plurality of water treatment devices 1 using a calculation model M generated by machine learning.
- the AI that performs the calculation related to the water treatment control can be arranged near the water treatment device 1.
- the sensor 2 1 is an example of the first sensor
- the sensor 2 n is an example of a second sensor.
- calculation model M calculation unit 38 uses included in the control unit 3 1 is an example of the first calculation model
- calculation model M calculation unit 38 uses included in the control unit 3 n is the second calculation model This is an example.
- the central monitoring device 4 monitors the water treatment device 1 that has been controlled based on the calculation of the calculation unit 38 included in the control device 3. Thereby, the state of the water treatment control in the water treatment device 1 can be monitored by the central monitoring device 4.
- control device 3 includes a data selection unit 31, a learning data storage unit 32, and a learning processing unit 33.
- the data selection unit 31 selects the detection data D that satisfies a preset condition from the detection data D.
- the detection data D that satisfies a preset condition among the detection data D is an example of the condition satisfaction detection data.
- the learning data storage unit 32 stores the detection data D selected by the data selection unit 31.
- the learning processing unit 33 performs at least one of generation and update of the calculation model M based on the detection data D stored in the learning data storage unit 32.
- the learning process of the calculation model M is performed by the control device 3 as described above, it is possible to perform the water treatment control by the AI even when an abnormality occurs in the communication between the control device 3 and the central monitoring device 4, for example. And water treatment control can be performed effectively. Further, since the detection data D that satisfies a preset condition is selected from the detection data D, the storage capacity of the learning data storage unit 32 is reduced as compared with the case where all the detection data D is used for the learning process of the calculation model M. be able to.
- machine learning calculation model M by the arithmetic unit 38 is used that is included in the control unit 3 1 is an example of a first machine learning
- machine learning calculation model M calculation unit 38 included in the control unit 3 n is used Is an example of the second machine learning.
- the control device 3 includes a state determination unit 37 that determines whether or not the learning processing is possible based on the load state of the computational resources used for the learning processing by the learning processing unit 33.
- the learning processing unit 33 performs a learning process based on the determination result by the state determination unit 37.
- the state determination unit 37 determines whether or not the learning processing is possible based on the load state of the computational resources used for the learning processing by the learning processing unit 33.
- the state determination unit 37 determines whether the load state satisfies a preset stop condition during the execution of the learning process by the learning processing unit 33.
- the learning processing unit 33 stops the execution of the learning process when the state determination unit 37 determines that the load state satisfies the stop condition during the execution of the learning process. This makes it possible to avoid, for example, a situation that affects other processes in the control device 3 during execution of the learning process.
- the control device 3 includes an update determination unit 35 that determines whether the calculation model M needs to be updated based on the result of the calculation using the calculation model M.
- the learning processing unit 33 performs a learning process based on the determination result by the update determination unit 35. Accordingly, for example, when the calculation model M becomes unsuitable for predicting the current state of the water treatment apparatus 1, the calculation model M can be updated. Therefore, for example, the frequency of updating the calculation model M can be reduced as compared with the case where the calculation model M is periodically updated. Therefore, even when the control device 3 has a small amount of calculation resources, the calculation model M can be updated efficiently.
- the calculation model M is a model that outputs the predicted value F of the state of the water treatment device 1 as an output.
- the update determination unit 35 updates the calculation model M based on the difference between the actually measured value Da of the state of the water treatment apparatus 1 detected by the sensor 2 at the time predicted by the calculation model M and the prediction value F of the calculation model M. Determine if it is necessary.
- the time predicted by the calculation model M is a time after the above-described time Ta.
- the difference between the measured value Da and the predicted value F is a so-called prediction error of the calculation model M. This makes it possible to accurately determine that the calculation model M has become unsuitable for prediction of the current state of the water treatment apparatus 1.
- the control device 3 further includes a simulator unit 36 that outputs a predicted value of the state of the water treatment device 1 based on the state of the water treatment device 1.
- the calculation model M is a calculation model that outputs a predicted value F of the state of the water treatment device 1 as an output.
- the update determination unit 35 determines whether the calculation model M needs to be updated based on the difference between the predicted value of the simulator unit 36 and the predicted value F of the calculation model M. This makes it possible to accurately determine that the calculation model M has become unsuitable for prediction of the current state of the water treatment apparatus 1.
- the control device 3 controls the water treatment device 1 by proportional integral control or proportional integral derivative control. Thereby, the water treatment apparatus 1 can be accurately controlled.
- the calculation unit 38 may calculate a control operation amount, and the control unit 39 may control the water treatment apparatus 1 based on information on the calculated control operation amount.
- Embodiment 2 is different from Embodiment 1 in which the simulator is provided in the control device in that the simulator is provided in the central monitoring device.
- components having the same functions as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. The description will focus on differences from the water treatment plant 100 of the first embodiment.
- FIG. 12 is a diagram illustrating a configuration example of a water treatment plant according to the second embodiment.
- a water treatment plant 100A according to the second embodiment includes a water treatment device 1, a sensor 2, a control device 3A, and a central monitoring device 4A.
- a control device 3A is illustrated in FIG. 12, the water treatment plant 100A includes a plurality of control devices 3A as in the water treatment plant 100.
- the control device 3A is different from the control device 3 in that the simulator unit 36 is not provided.
- the central monitoring device 4A is different from the central monitoring device 4 in that a simulator unit 46 is provided.
- the simulator unit 46 has the same function as the simulator unit 36.
- the simulator unit 46 performs an operation using the activated sludge model.
- the simulator unit 46 obtains, for example, detection data D output from the sensor 2 from each control device 3 and, based on the obtained detection data D, calculates the characteristics in the treatment tank and the characteristics of the treated water in each water treatment device 1 using an activated sludge model. Can be predicted by calculation using
- the update determination unit 35 of each control device 3A acquires, for example, the predicted value of the characteristic in the treatment tank and the predicted value of the treated water characteristic calculated by the simulator unit 46 from the central monitoring device 4A, and calculated by the calculation unit 38.
- the obtained predicted value F by the first calculation model M1 is obtained.
- the update determination unit 35 compares the predicted value calculated by the simulator unit 46 with the predicted value F by the first calculation model M1, and determines that the first calculation model M1 needs to be updated based on the comparison result. can do.
- the hardware configuration example of the control device 3A according to the second embodiment is the same as the control device 3 according to the first embodiment except that the simulator unit 36 has no function. Further, the central monitoring device 4A according to the second embodiment can have the same configuration as the hardware configuration shown in FIG.
- the processor 101 can execute the function of the simulator unit 46 by reading and executing the program stored in the memory 102.
- control device 3A does not include the simulator unit 36, and the central monitoring device 4A includes the simulator unit 46. Accordingly, the control device 3A has a simpler configuration than the control device 3 and has a higher manufacturing cost, while speeding up the control processing of the water treatment device 1 based on the detection data D output from the sensor 2. Can be reduced. Further, since the plurality of control devices 3A perform the learning model processing at different timings from each other, efficient processing can be performed using one simulator unit 46.
- Embodiment 3 is different from the first embodiment in which the generation and update of the calculation model used in each control device are performed by the central monitoring device, and the generation and update of the calculation model are performed by each control device.
- components having the same functions as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. The description will focus on differences from the water treatment plant 100 of the first embodiment.
- FIG. 13 is a diagram illustrating a configuration example of a water treatment plant according to the third embodiment.
- the water treatment plant 100B according to the third embodiment includes a water treatment device 1, a sensor 2, a control device 3B, and a central monitoring device 4B. Although only one control device 3B is shown in FIG. 13, the water treatment plant 100B includes a plurality of control devices 3B, like the water treatment plant 100.
- the control device 3B is different from the control device 3 in that the data selection unit 31, the learning data storage unit 32, the learning processing unit 33, the update determination unit 35, the simulator unit 36, and the state determination unit 37 are not provided. Also, the central monitoring device 4B is provided with a data selection unit 41, a learning data storage unit 42, a learning processing unit 43, an update determination unit 45, a simulator unit 46, a state determination unit 47, and a communication unit 50. Different from the central monitoring device 4.
- the data selection unit 41, the learning data storage unit 42, the learning processing unit 43, the update determination unit 45, the simulator unit 46, and the state determination unit 47 include a data selection unit 31, a learning data storage unit 32, a learning processing unit 33, and an update determination
- the unit 35, the simulator unit 36, and the state determination unit 37 have the same functions.
- the data selection unit 41, the learning data storage unit 42, the learning processing unit 43, the update determination unit 45, the simulator unit 46, and the state determination unit 47 are provided in common by a plurality of control devices 3B. It is used for generating and updating the calculation model used in each control device 3B. Note that the data selection unit 41, the learning data storage unit 42, the learning processing unit 43, the update determination unit 45, the simulator unit 46, and the state determination unit 47 may be provided for each control device 3B.
- the data selection unit 41, the update determination unit 45, the simulator unit 46, and the state determination unit 47 obtain the necessary data from each control device 3B via the communication network 5 and the communication unit 50.
- the unit 31, the update determination unit 35, the simulator unit 36, and the state determination unit 37 are different from each other.
- the learning processing unit 43 differs from the learning processing unit 33 in that the generated calculation model M is transmitted from the communication unit 50 to each control device 3B via the communication network 5.
- Each control device 3B stores the calculation model M transmitted from the central monitoring device 4B in the model storage unit 34.
- An example of a hardware configuration of a control device 3B according to the third embodiment is that the data selection unit 31, the learning processing unit 33, the update determination unit 35, the simulator unit 36, and the state determination unit 37 do not have the function, and the learning data storage.
- the configuration is the same as the control device 3 according to the first embodiment except that the unit 32 is not provided.
- the central monitoring device 4B according to the third embodiment can have the same configuration as the hardware configuration shown in FIG.
- the processor 101 reads out and executes the program stored in the memory 102 to execute the functions of the data selection unit 41, the learning processing unit 43, the update determination unit 45, the simulator unit 46, and the state determination unit 47. it can.
- the learning data storage unit 42 is realized by the memory 102.
- the central monitoring device 4B generates the calculation model M used in each control device 3B. Accordingly, the control device 3B has a simpler configuration than the control device 3 while increasing the speed of the control processing of the water treatment device 1 based on the detection data D output from the sensor 2, and has a higher manufacturing cost. Can be reduced. Further, efficient processing can be performed by the plurality of control devices 3B performing the learning model processing at mutually different timings.
- Embodiment 4 FIG.
- the generation and update of the calculation model and the calculation using the calculation model are performed by the central monitoring device. Therefore, the generation and update of the calculation model and the calculation using the calculation model are performed by the control device.
- the control device Different from the first embodiment.
- components having the same functions as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. The description will focus on differences from the water treatment plant 100 of the first embodiment.
- FIG. 14 is a diagram schematically illustrating a water treatment plant according to the fourth embodiment.
- a water treatment plant 100C according to the fourth embodiment includes a plurality of water treatment apparatuses 1 1 to 1 n , a plurality of sensors 2 1 to 2 n, and a plurality of water treatment apparatuses 1 1 to 1 n. and a control unit 3C 1 ⁇ 3C n for each control n, and a central monitoring unit 4C to monitor multiple water treatment device 1 1 ⁇ 1 n.
- n is an integer of 2 or more.
- each of the plurality of control devices 3C 1 to 3C n is shown without distinction, it is described as a control device 3C.
- FIG. 15 is a diagram illustrating a configuration example of a water treatment apparatus according to the fourth embodiment.
- FIG. 15 illustrates only one control device 3C among the plurality of control devices 3C illustrated in FIG.
- the control device 3C does not include the data selection unit 31, the learning data storage unit 32, the learning processing unit 33, the model storage unit 34, the update determination unit 35, the simulator unit 36, the state determination unit 37, and the calculation unit 38. Is different from the control device 3.
- the central monitoring device 4C includes a data selection unit 41, a learning data storage unit 42, a learning processing unit 43, a model storage unit 44, an update determination unit 45, a simulator unit 46, a state determination unit 47, a calculation unit 48, and a communication unit.
- the central monitoring device 4 differs from the central monitoring device 4 in that the central monitoring device 4 is provided.
- the data selection unit 41, the learning data storage unit 42, the learning processing unit 43, the model storage unit 44, the update determination unit 45, the simulator unit 46, the state determination unit 47, and the calculation unit 48 include the data selection unit 31, the learning data storage unit 32, a learning processing unit 33, a model storage unit 34, an update determination unit 35, a simulator unit 36, a state determination unit 37, and a calculation unit 38, respectively.
- the data selection unit 41, the learning data storage unit 42, the learning processing unit 43, the model storage unit 44, the update determination unit 45, the simulator unit 46, the state determination unit 47, and the calculation unit 48 It is provided in common with the control devices 3C, and is used for generation and update of the calculation model M used in each control device 3C, and for calculations using the calculation model M.
- the data selection unit 41, the learning data storage unit 42, the learning processing unit 43, the model storage unit 44, the update determination unit 45, the simulator unit 46, the state determination unit 47, and the calculation unit 48 It may be provided corresponding to each device 3C.
- the data selection unit 41, the update determination unit 45, and the simulator unit 46 are different from the data selection unit 31 in that the required data is obtained from each control device 3C via the communication network 5 and the communication unit 50.
- the operation unit 48 differs from the operation unit 38 in that information on the control target value RV, which is the operation result, is transmitted from the communication unit 50 to the control unit 39 via the communication network 5.
- Each control device 3C controls the water treatment device 1 based on the information on the control target value RV transmitted from the central monitoring device 4C.
- the hardware configuration example of the control device 3C according to the fourth embodiment includes a data selection unit 31, a learning data storage unit 32, a learning processing unit 33, a model storage unit 34, an update determination unit 35, a simulator unit 36, and a state determination unit 37. And the control unit 3 according to the first embodiment, except that the calculation unit 38 is not provided. Further, the central monitoring device 4C according to the fourth embodiment can have the same configuration as the hardware configuration shown in FIG.
- the processor 101 reads out and executes the program stored in the memory 102 to execute the functions of the data selection unit 41, the learning processing unit 43, the update determination unit 45, the simulator unit 46, the state determination unit 47, and the calculation unit 48. Can be performed.
- the learning data storage unit 42 and the model storage unit 44 are realized by the memory 102.
- the water treatment plant 100C respectively detects the central monitoring device 4C that monitors the plurality of water treatment devices 1 and the state of the corresponding water treatment device among the plurality of water treatment devices 1.
- a plurality of sensors 2 and a plurality of control devices 3 ⁇ / b> C that respectively execute control of a corresponding one of the plurality of water treatment devices 1 are provided.
- the central monitoring device 4C includes a calculation unit 48 that performs a calculation related to control of each water treatment device 1 based on the detection data D output from the sensor 2 using a calculation model M generated by machine learning.
- Each of the plurality of control devices 3C controls the corresponding one of the plurality of water treatment devices 1 based on the result of the calculation using the calculation model M by the central monitoring device 4C.
- the water treatment control by AI can be performed without changing the control device in the water treatment system, and the water treatment control is effectively performed by AI by the water treatment plant 100C including the plurality of water treatment devices 1. It can be carried out. Further, since various kinds of past data are stored in the central monitoring device 4C, water treatment control can be efficiently performed.
- Embodiment 5 the generation and update of the calculation model and the calculation using the calculation model are performed by the cloud server. Therefore, the generation and update of the calculation model and the calculation using the calculation model are performed by the control device or the central monitoring unit. It is different from the first and fourth embodiments performed by the device. In the following, components having the same functions as those of the first and fourth embodiments are denoted by the same reference numerals, and the description thereof will be omitted. The differences from the water treatment plants 100 and 100C of the first and fourth embodiments will be mainly described. explain.
- FIG. 16 is a diagram schematically illustrating a water treatment plant according to the fifth embodiment.
- the water treatment plant 100D according to the fifth embodiment includes a plurality of water treatment devices 1 1 to 1 n , a plurality of sensors 2 1 to 2 n , control devices 3C 1 to 3C n , A central monitoring device 4D for monitoring the plurality of water treatment devices 1 1 to 1 n ;
- control devices 3C 1 to 3C n is shown without distinction, it is described as a control device 3C.
- the central monitoring device 4D is communicably connected to a cloud server 6 for generating and updating the calculation model M and performing calculations using the calculation model M via a communication network 7.
- the communication network 7 is, for example, the Internet.
- the cloud server 6 is a server arranged on the Internet.
- the central monitoring device 4D transmits the detection data D acquired from the control device 3C to the cloud server 6 via the communication network 7.
- FIG. 17 is a diagram illustrating a configuration example of the cloud server according to the fifth embodiment.
- the cloud server 6 includes a data selection unit 61, a learning data storage unit 62, a learning processing unit 63, a model storage unit 64, an update determination unit 65, a simulator unit 66, a state determination unit 67, and a calculation unit 68. , And a communication unit 70.
- the data selection unit 61, the learning data storage unit 62, the learning processing unit 63, the model storage unit 64, the update determination unit 65, the simulator unit 66, the state determination unit 67, and the calculation unit 68 include the data selection unit 31, the learning data storage unit 32, a learning processing unit 33, a model storage unit 34, an update determination unit 35, a simulator unit 36, a state determination unit 37, and a calculation unit 38, respectively.
- the data selection unit 61, the learning data storage unit 62, the learning processing unit 63, the model storage unit 64, the update determination unit 65, the simulator unit 66, the state determination unit 67, and the calculation unit 68 It is provided in common with the device 3C, and is used for generation and update of the calculation model M used in each control device 3C, and for calculation using the calculation model M.
- the data selection unit 61, the learning data storage unit 62, the learning processing unit 63, the model storage unit 64, the update determination unit 65, the simulator unit 66, the state determination unit 67, and the calculation unit 68 are controlled by the control device 3C. It may be provided corresponding to each case.
- the data selector 61 differs from the data selector 31 in that the detection data D is obtained from the central monitoring device 4D via the communication network 7.
- the operation unit 68 differs from the operation unit 38 in that information on the control target value RV, which is the operation result, is transmitted from the communication unit 70 to the central monitoring device 4D via the communication network 7.
- the central monitoring device 4D transmits information on the control target value RV transmitted from the cloud server 6 to the control unit 39 of the control device 3C.
- the control unit 39 of the control device 3C controls the water treatment device 1 based on the information on the control target value RV received from the central monitoring device 4D.
- the hardware configuration example of the cloud server 6 according to the fifth embodiment can have the same configuration as the hardware configuration shown in FIG.
- the processor 101 reads out and executes the program stored in the memory 102 to execute the functions of the data selection unit 61, the learning processing unit 63, the update determination unit 65, the simulator unit 66, the state determination unit 67, and the calculation unit 68. Can be performed.
- the learning data storage unit 62 and the model storage unit 64 are realized by the memory 102.
- the water treatment plant 100D controls the central monitoring device 4D that monitors the plurality of water treatment devices 1 and the control of the corresponding water treatment device 1 among the plurality of water treatment devices 1 respectively.
- the control device includes a plurality of control devices 3C to be executed, and a calculation unit 68 disposed outside the central monitoring device and performing calculations related to control of the water treatment device 1 using a calculation model M generated by machine learning.
- the calculation unit 68 is located in the cloud server 6.
- the cloud server 6 can manage the plurality of water treatment plants 100D, and can efficiently operate the plurality of water treatment plants 100D by using the AI.
- the water treatment plant 100D includes a plurality of sensors 2 that respectively detect the state of the corresponding water treatment device 1 among the plurality of water treatment devices 1.
- the cloud server 6 performs an operation using a calculation model M generated by machine learning, and performs an operation related to control of each water treatment apparatus 1 based on the detection data D output from the sensor 2.
- the control device 3C controls the corresponding water treatment device 1 based on the calculation result of the calculation unit 68 provided in the cloud server 6. As described above, the cloud server 6 performs an operation using the calculation model M.
- control device 3B may be provided instead of control device 3C.
- the calculation model M generated by the learning processing unit 63 of the cloud server 6 is transmitted to the control device 3B via the central monitoring device 4D.
- the control device 3B can control the water treatment device 1 using the calculation model M generated by the cloud server 6.
- 1,1 1 to 1 n water treatment device 2,2 1 to 2 n , 20,20 1 to 20 m sensor, 3,3A, 3B, 3C, 3 1 to 3 n , 3C 1 to3 n control device, 4,4A, 4B, 4C, 4D central monitoring device, 5,7 communication network, 6 cloud server, 11 first sedimentation tank, 12 processing tank, 13 final sedimentation tank, 14 blower, 15 pump, 30 data acquisition unit, 31, 41, 61 data selection unit, 32, 42, 62 learning data storage unit, 33, 43, 63 learning processing unit, 34, 44, 64 model storage unit, 35, 45, 65 update determination unit, 36, 46, 66 simulator Unit, 37, 47, 67 state determination unit, 38, 48, 68 calculation unit, 39 control unit, 40, 50 communication unit, 51 blower control unit, 52 pump control unit, 100, 100A, 100B, 100C, 100 Water treatment plant, D, D1 ⁇ Dm detection data, M calculation model, M1, M1 1 ⁇ M1 m first calculation model, M2
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Activated Sludge Processes (AREA)
Abstract
水処理プラント(100)は、中央監視装置(4)と、制御装置(31)と、制御装置(3n)と、演算部(38)とを備え、水処理装置(11)および水処理装置(1n)に水処理を実行させる。中央監視装置(4)は、水処理装置(11)および水処理装置(1n)を監視する。制御装置(31)は、水処理装置(11)に対する第1制御を行う。制御装置(3n)は、水処理装置(1n)に対する第2制御を行う。演算部(38)は、中央監視装置(4)の外部に配置してあり、第1機械学習によって生成される第1計算モデルを用いて第1制御に関わる第1演算を行う。
Description
本発明は、上水または下水などの水処理を行う水処理プラントに関する。
水処理プラントでは、環境変化に応じて制御目標値または制御操作量を変更しつつ、水処理制御が行われている。例えば、季節の温度差、流入水の流量、流入水の水質などの変化に伴い制御目標値または制御操作量が変更されることで、水処理プラントにおいて環境変化に応じた水処理制御が行われている。
制御目標値または制御操作量の変更は、オペレータが過去の経験などに基づいて行っており、専門性が要求される。特許文献1では、環境変化に応じた制御目標値の変更に対してオペレータの経験を反映できるように、下水処理装置の制御にAI(Artificial Intelligent)を用いる技術が提案されている。かかる技術では、下水処理装置内の状態を検出するセンサから出力される検出データがAI装置に入力され、かかるAI装置の出力に基づいて下水処理装置が制御される。
上述したような従来の技術では、AIを用いた水処理制御を行うことができる。しかしながら、水処理装置、制御装置、中央監視装置などの複数の装置から水処理プラントが構成されているにもかかわらず、上述したような従来のAIを用いた水処理制御技術では、AIの設置位置が考慮されていないため、改善の余地がある。
本発明は、上記に鑑みてなされたものであって、複数の装置を備える水処理プラントで効果的に水処理制御を行うことができる水処理プラントを得ることを目的とする。
本発明に係る水処理プラントは、第1水処理装置および第2水処理装置に水処理を実行させる水処理プラントにおいて、中央監視装置と、第1制御装置と、第2制御装置と、第1演算部とを備える。中央監視装置は、第1水処理装置および第2制御装置を監視する。第1制御装置は、第1水処理装置に対する第1制御を行う。第2制御装置は、第2水処理装置に対する第2制御を行う。第1演算部は、中央監視装置の外部に配置してあり、第1機械学習によって生成される第1計算モデルを用いて第1制御に関わる第1演算を行う。
本発明によれば、複数の装置を備える水処理プラントで効果的に水処理制御を行うことができる、という効果を奏する。
以下に、本発明の実施の形態にかかる水処理プラントを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、実施の形態1にかかる水処理プラントの概略を示す図である。図1に示すように、実施の形態1にかかる水処理プラント100は、複数の水処理装置11~1nと、複数の水処理装置11~1nの状態を各々検出する複数のセンサ21~2nと、複数の水処理装置11~1nを各々制御する制御装置31~3nと、複数の水処理装置11~1nを監視する中央監視装置4とを備える。なお、nは、2以上の整数である。
図1は、実施の形態1にかかる水処理プラントの概略を示す図である。図1に示すように、実施の形態1にかかる水処理プラント100は、複数の水処理装置11~1nと、複数の水処理装置11~1nの状態を各々検出する複数のセンサ21~2nと、複数の水処理装置11~1nを各々制御する制御装置31~3nと、複数の水処理装置11~1nを監視する中央監視装置4とを備える。なお、nは、2以上の整数である。
制御装置31~3nと中央監視装置4とは、互いに通信ネットワーク5を介して通信可能に接続される。通信ネットワーク5は、例えば、LAN(Local Area Network)、WAN(Wide Area Network)、または専用線である。
複数の水処理装置11~1nは、例えば、上水または下水などの水処理を行う装置である。センサ21は、水処理装置11の水処理環境を検出し、検出結果を含む検出データを制御装置31に出力する。制御装置31は、センサ21から出力される検出データに基づいて、水処理装置11を制御する。同様に、センサ2nは、水処理装置1nの水処理環境を検出し、検出結果を含む検出データを制御装置3nに出力する。制御装置3nは、センサ2nから出力される検出データに基づいて、水処理装置1nを制御する。水処理装置11~1nの水処理環境は、水処理装置11~1nの内部にある水処理環境および水処理装置11~1nの外部にある水処理環境の少なくとも一方を含む。
中央監視装置4は、制御装置31~3n経由で複数のセンサ21~2nから出力される検出データを取得し、かかる検出データに基づいて、複数の水処理装置11~1nの状態を監視する。中央監視装置4は、水処理プラント100のオペレータからの操作に基づいて、水処理装置11~1nを制御装置31~3nに各々制御させることができる。
以下、複数の水処理装置11~1nの各々を区別せずに示す場合、水処理装置1と記載する。また、複数のセンサ21~2nの各々を区別せずに示す場合、センサ2と記載する。また、複数の制御装置31~3nの各々を区別せずに示す場合、制御装置3と記載する。
制御装置3は、機械学習によって生成される計算モデルを用いて水処理装置1の制御に関わる演算を行う演算部38と、演算部38の演算結果に基づいて、水処理装置1を制御する制御部39とを備える。演算部38によって用いられる計算モデルは、例えば、センサ2から出力される検出データを入力し、水処理装置1の制御に関わる情報を出力する計算モデルである。制御装置3は、例えば、人工知能などと呼ばれるAIであり、入力された検出データに基づく機械学習を介し、水処理装置1の制御に関わる情報を出力する。
演算部38は、例えば、センサ2から出力される検出データを入力し、センサ2で検出される水処理装置1の水処理環境の予測値の情報を出力する計算モデルを用いた演算によって、水処理装置1の水処理環境の予測値の情報を得ることができる。演算部38は、水処理装置1の水処理環境の予測値に基づいて、水処理装置1における水処理の状態が予め設定された水処理条件を満たすように、水処理装置1を制御する制御目標値を演算する。
制御部39は、演算部38によって得られる制御目標値の情報に基づいて、水処理装置1を制御することができる。制御目標値は、例えば、水処理装置1の水処理状態を制御するポンプまたはブロワなどの制御対象機器の制御量の目標値である。なお、制御部39は、演算部38によって演算された水処理装置1の水処理環境の予測値から、水処理装置1における水処理の状態が予め設定された水処理条件を満たすように、水処理装置1を制御する構成であってもよい。
また、演算部38は、例えば、センサ2から出力される検出データを入力し、制御対象機器の制御目標値の情報を出力する計算モデルを用いた演算によって、水処理装置1の制御目標値の情報を得ることもできる。制御部39は、演算部38によって得られる制御目標値の情報に基づいて、水処理装置1を制御することができる。
このように、水処理プラント100では、水処理装置1毎に、機械学習によって生成される計算モデルを用いて水処理装置1の制御に関わる演算を行う制御装置3を有しており、AIを水処理装置1の近くに配置することができる。そのため、例えば、データの伝送遅延などを抑制することができ、センサ2から出力される検出データに基づく水処理装置1の制御処理の高速化を図ることができる。したがって、複数の水処理装置を備える水処理プラントで効果的に水処理制御を行うことができる。
以下、実施の形態1にかかる水処理プラント100について詳細に説明する。図2は、実施の形態1にかかる水処理装置の構成例を示す図である。なお、図2では、図1に示す複数の制御装置3のうち一つのみ図示している。また、以下においては、水処理装置1が行う水処理の一例として、下水処理について説明する。なお、水処理プラント100は、複数の水処理装置1が互いに同じ種類の水処理を行う構成であってもよく、また、複数の水処理装置1の一部または全部が互いに同じ種類の水処理を行う構成であってもよい。
図2に示す水処理装置1は、被処理水として下水を処理する下水処理装置である。かかる水処理装置1は、下水道などからの流入水である下水を貯留し、下水中の比較的沈みやすい固形物などを沈殿させる最初沈殿槽11と、最初沈殿槽11の上澄み水を好気処理する処理槽12と、処理槽12から流入する活性汚泥混合液を上澄み水と活性汚泥とに分離する最終沈殿槽13とを備える。最終沈殿槽13の上澄み水は処理水として最終沈殿槽13から放出される。
処理槽12において、最初沈殿槽11から流入する上澄み水は、有機物を含んでおり、例えば、りん蓄積菌、硝化菌、および脱窒菌といった好気性微生物の消化によって上澄み水に含まれる有機物が処理される。
水処理装置1は、さらに、処理槽12に空気を送り込んで活性汚泥混合液中に空気を溶解させるブロワ14と、最終沈殿槽13と処理槽12とを接続する配管に設けられ、最終沈殿槽13から処理槽12に活性汚泥を返送するポンプ15とを備える。ブロワ14およびポンプ15の各々は、上述した制御対象機器の一例であり、以下、ブロワ14とポンプ15とを互いに区別せずに示す場合、制御対象機器と記載する場合がある。
水処理プラント100には、水処理装置1の水処理環境を各々検出する複数のセンサ201~20mを含むセンサ2が設けられる。各センサ201~20mは、例えば、水処理装置1内の状態または環境を示す特性を検出する。具体的には、センサ201~204は、最初沈殿槽11への流入水の特性である流入水特性を検出する。センサ201は、流入水の流入量を検出する。センサ202は、流入水のBOD(Biochemical Oxygen Demand:生物化学的酸素要求量)を検出する。センサ203は、流入水の温度を検出する。センサ204は、流入水のNH3の濃度、流入水のNH4
+の濃度、またはアンモニア性窒素濃度を検出する。
センサ205~20m-3は、処理槽12の状態を示す処理槽内特性を検出する。センサ205は、処理槽12における溶存酸素量を検出する。センサ206は、処理槽12における活性微生物濃度を検出する。センサ207は、処理槽12におけるBODを検出する。センサ208~20m-3は、例えば、アンモニア性窒素濃度、硝酸性窒素濃度、全窒素濃度、リン酸性リン濃度、および全リン濃度を各々検出する複数のセンサを含む。
センサ20m-2~20mは、最終沈殿槽13から放出される処理水の特性である処理水特性を検出する。センサ20m-2は、処理水の流出量を検出する。センサ20m-1は、処理水のBODを検出する。センサ20mは、処理水の全窒素濃度を検出する。
なお、センサ2は、センサ201~20mのうち一部を含まない構成であってもよい。また、上述したセンサ201~20mは、水処理装置1内の状態を示す特性値を検出するが、センサ2は、撮像データを検出データとして出力する撮像装置を含んでいてもよい。
図3は、実施の形態1にかかる制御装置の構成例を示す図である。図3に示すように、実施の形態1にかかる制御装置3は、データ取得部30と、データ選択部31と、学習データ記憶部32と、学習処理部33と、モデル記憶部34と、更新判定部35と、シミュレータ部36と、状態判定部37と、演算部38と、制御部39と、通信部40とを備える。学習処理部33、モデル記憶部34、および演算部38は、AIの一例である。
データ取得部30は、センサ2から検出データを取得する。センサ2は、上述したように複数のセンサ201~20mを含んでおり、データ取得部30は、これら複数のセンサ201~20mから出力される検出データを周期的に取得する。
データ選択部31は、データ取得部30によって取得された検出データのうち予め設定された条件であるデータ選択条件を満たす検出データを選択し、選択した検出データを学習データ記憶部32に記憶する。
データ選択条件は、例えば、計算モデルの生成および更新に適した検出データを選択するという条件である。計算モデルの生成および更新に適した検出データは、例えば、水処理プラント100を含む地域の環境が設定された環境条件を満たす状態でセンサ2から出力される検出データである。環境条件は、例えば、水処理プラント100を含む地域において、天候が豪雨でないこと、河川が氾濫していないこと、および断水が生じていないことなどである。また、環境条件は、台風がきていないこと、および梅雨の時期でないことを含んでいてもよい。
水処理プラント100を含む地域の環境を示す環境情報は、例えば、中央監視装置4から通信ネットワーク5および通信部40を介してデータ選択部31へ通知される。データ選択部31は、中央監視装置4から通知される環境情報に基づいて、データ取得部30によって取得された検出データのうち予め設定された条件であるデータ選択条件を満たす検出データを選択する。
また、データ選択条件は、センサ2から出力される検出データが設定範囲内であることであってもよい。この場合、設定範囲は、計算モデルの生成および更新に適した範囲であり、例えば、水処理プラント100の平常運転時では現われない数値を示す検出データを除外するように設定される。データ選択部31は、設定範囲内の検出データを選択し、設定範囲外の検出データを選択しない。これにより、予め設定された範囲内の検出データのみを学習データ記憶部32に記憶することができる。
なお、データ選択条件は、中央監視装置4から設定することができる。水処理プラント100のオペレータは、中央監視装置4を操作することで、データ選択条件の情報を中央監視装置4から制御装置3へ送信することができる。データ選択部31は、中央監視装置4から送信されるデータ選択条件の情報を通信部40から取得し、取得したデータ選択条件の情報に基づいて、検出データを検出する。
また、データ選択部31は、予め設定された時間範囲を1つの単位として検出データを選択することができる。例えば、データ選択部31は、時間単位または日単位で検出データが選択条件を満たすか否かを判定することができる。この場合、データ選択部31は、例えば、学習データ記憶部32に検出データを一旦記憶した後、選択条件を満たさない検出データを含む時間単位または日単位の検出データを学習データ記憶部32から削除することができる。
また、データ選択部31は、選択条件を満たす検出データと共に、選択条件を満たす検出データに基づいて制御部39によって制御される制御対象機器の制御目標値の情報を、選択条件を満たす検出データと関連付けて学習データ記憶部32に記憶することができる。
学習データ記憶部32は、データ選択部31によって選択された検出データと、選択条件を満たす検出データに基づいて制御部39によって制御される制御対象機器の制御目標値の情報とを関連付けて学習データとして記憶する。
図4は、実施の形態1にかかる学習データ記憶部に記憶されるデータテーブルの一例を示す図である。図4に示すデータテーブルは、時間帯単位または日単位の検出データを含むデータテーブルである。なお、学習データ記憶部32に記憶されるデータテーブルは、時間帯毎または日毎の検出データを含むデータテーブルに限定されない。例えば、学習データ記憶部32に記憶されるデータテーブルは、月単位の検出データまたは年単位の検出データを含むデータテーブルであってもよい。
図4に示すデータテーブルには、時刻毎の検出データ、および制御目標値が含まれる。図4において、検出データD1(t0),D1(t1),・・・,D1(tp)は、センサ201の検出データであり、センサ201によって検出された流入水の流量の実測値Da1を含む。検出データD2(t0),D2(t1),・・・,D2(tp)は、センサ202の検出データであり、センサ202によって検出された流入水のBODの実測値Da2を含む。検出データD3(t0),D3(t1),・・・,D3(tp)は、センサ203の検出データであり、センサ203によって検出された流入水の温度の実測値Da3を含む。
検出データD4(t0),D4(t1),・・・,D4(tp)は、センサ204の検出データであり、センサ204によって検出された流入水のNH3の実測値Da4を含む。検出データDm(t0),Dm(t1),・・・,Dm(tp)は、センサ20mの検出データであり、センサ20mによって検出された処理水の全窒素濃度の実測値Damを含む。pは、例えば、3以上の整数である。
検出データD1(t0),D2(t0),D3(t0),D4(t0),・・・,Dm(t0)は、時刻t0にセンサ2から出力されるD(t0)を構成するデータである。検出データD1(t1),D2(t1),D3(t1),D4(t1),・・・,Dm(t1)は、時刻t1にセンサ2から出力されるD(t1)を構成するデータである。
検出データD1(tp),D2(tp),D3(tp),D4(tp),・・・,Dm(tp)は、時刻tpにセンサ2から出力されるD(tp)を構成するデータである。以下、センサ2から出力される検出データD(t0),D(t1),・・・,D(tp)を各々区別せずに示す場合、検出データDと記載する場合がある。また、検出データD1~Dmに各々含まれる実測値Da1~Damを各々区別せずに示す場合、実測値Daと記載する場合がある。
また、図4に示すデータテーブルには、各時刻において演算部38から制御部39に出力された各制御対象機器の制御目標値の情報が含まれる。図4において、制御目標値RV1(t0),RV1(t1),・・・,RV1(tp)は、ブロワ14の制御目標値である。また、制御目標値RV2(t0),RV2(t1),・・・,RV2(tp)は、ポンプ15の制御目標値である。
以下、制御目標値RV1(t0),RV1(t1),・・・,RV1(tp)の各々を区別せずに示す場合、制御目標値RV1と記載し、制御目標値RV2(t0),RV2(t1),・・・,RV2(tp)の各々を区別せずに示す場合、制御目標値RV2と記載する場合がある。また、制御目標値RV1,RV2を各々区別せずに示す場合、制御目標値RVと記載する場合がある。
図3に戻って、制御装置3の説明を続ける。学習処理部33は、学習データ記憶部32に記憶された情報に基づいて、演算部38で用いられる計算モデルの生成および更新を行う。かかる計算モデルは、ニューラルネットワークであるが、線形回帰、ロジスティック回帰といった学習アルゴリズムで生成される計算モデルであってもよい。
学習処理部33は、複数種類の計算モデルの学習処理を実行することができる。計算モデルの学習処理によって、計算モデルの生成および更新が行われる。例えば、学習処理部33は、複数の第1計算モデルM11~M1mおよび第2計算モデルM2の生成および更新を実行することができる。
複数の第1計算モデルM11~M1mは、センサ2から出力される検出データを入力とし、水処理装置1内の状態の予測値の情報を出力とする計算モデルである。第2計算モデルM2は、センサ2から出力される検出データを入力とし、複数の制御対象機器の制御目標値RV1,RV2の情報を出力とする計算モデルである。
なお、以下、第1計算モデルM11~M1mの各々を区別せずに示す場合、第1計算モデルM1と記載する場合がある。また、第1計算モデルM1および第2計算モデルM2の各々を区別せずに示す場合、計算モデルMと記載する場合がある。なお、計算モデルMの更新は計算モデルMの再生成であり、以下、計算モデルMの生成と更新を各々区別せずに計算モデルMの生成と記載する場合がある。
学習処理部33は、センサ2から出力される時系列の検出データを用いて第1計算モデルM1を生成することができる。例えば、学習処理部33は、学習データ記憶部32に記憶された時系列の検出データD1(t0),D1(t1),・・・,D1(tp)を用いて、第1計算モデルM11を生成することができる。第1計算モデルM11は、センサ201から出力される時系列の検出データを入力し、将来における流入水の流入量の予測値F1のデータを出力する計算モデルである。なお、将来は、現時点から時間Ta後を示す。時間Taは、任意に設定することができる。
また、学習処理部33は、学習データ記憶部32に記憶された時系列の検出データD2(t0),D2(t1),・・・,D2(tp)を用いて、第1計算モデルM12を生成することができる。第1計算モデルM12は、センサ202から出力される時系列の検出データを入力し、時間Ta後における流入水のBODの予測値F2のデータを出力する計算モデルである。
また、学習処理部33は、学習データ記憶部32に記憶された時系列の検出データD3(t0),D3(t1),・・・,D3(tp)を用いて、第1計算モデルM13を生成することができる。第1計算モデルM13は、センサ203から出力される時系列の検出データを入力し、時間Ta後における流入水の温度の予測値F3のデータを出力する計算モデルである。
また、学習処理部33は、学習データ記憶部32に記憶された時系列の検出データD4(t0),D4(t1),・・・,D4(tp)を用いて、第1計算モデルM14を生成することができる。第1計算モデルM14は、センサ204から出力される時系列の検出データを入力し、時間Ta後における流入水の温度の予測値F4のデータを出力する計算モデルである。
同様に、学習処理部33は、センサ205~20mから出力され且つ学習データ記憶部32に記憶された時系列の検出データを各々用いて、時間Ta後の予測値F5~Fmを各々出力する第1計算モデルM15~M1mを生成することができる。なお、第1計算モデルM1は、例えば、畳み込みニューラルネットワーク、またはリカレントニューラルネットワークである。以下、予測値F1~Fmを各々区別せずに示す場合、予測値Fと記載する場合がある。
上述した例では、学習処理部33は、予測する特性の過去の実測値Daのみを用いて第1計算モデルM1を生成したが、予測する特性の過去の実測値Da以外の特性の実測値Daおよび制御目標地VRを用いて第1計算モデルM1を生成することもできる。例えば、学習処理部33は、時系列の検出データD1(t0)~D1(tp),D2(t0)~D2(tp),D3(t0)~D3(tp),D4(t0)~D4(tp)、制御部39で用いられた時系列の制御目標値VR1,VR2を用いて、第1計算モデルM15~M1mを生成することができる。かかる第1計算モデルM15は、例えば、センサ201~204から出力される時系列の検出データと時系列の制御目標値VR1,VR2を入力し、時間Ta後における予測値F5~Fmのデータを出力する計算モデルである。
なお、第1計算モデルM1は、時系列の検出データDに基づいて、予測値F1~Fmを出力することができる構成であればよく、上述した例に限定されない。例えば、各第1計算モデルM11~M1mは、時系列の検出データD1~Dmと時系列の制御目標値VR1,VR2とを入力し、予測値F1~Fmのデータを出力する計算モデルであってもよい。
また、学習処理部33は、学習データ記憶部32に記憶された検出データDおよび制御目標値RV1,RV2を学習データとして用いて、第2計算モデルM2を生成することができる。かかる第2計算モデルM2は、例えば、センサ201~20mから出力される検出データを入力とし、複数の制御対象機器の制御目標値RV1,RV2を出力とする計算モデルである。
学習処理部33は、生成した計算モデルMをモデル記憶部34に記憶する。図5は、実施の形態1にかかるモデル記憶部に記憶される情報の一例を示す図である。図5に示す例では、モデル記憶部34には、複数の第1計算モデルM11,M12,M13,M14,M15~M1m-3,M1m-2,M1m-1,M1mと第2計算モデルM2とが記憶されている。
図3に戻って、制御装置3の説明を続ける。更新判定部35は、演算部38による計算モデルMを用いた演算の結果に基づいて、演算部38で用いる計算モデルMの更新が必要か否かを判定する。例えば、更新判定部35は、第1計算モデルM1によって予測された水処理装置1の状態とセンサ2によって検出された水処理装置1の状態との差に基づいて、第1計算モデルM1の更新が必要か否かを判定することができる。
例えば、更新判定部35は、流入水の流量の将来予測を行う第1計算モデルM11を用いて演算部38によって演算された流入水の流量の予測値F1と、センサ2によって時間Ta後に検出された流入水の流量の実測値Da1との差を演算する。更新判定部35は、予測値F1と実測値Da1の差が閾値Vth1以上であるか否かを判定し、予測値F1と実測値Da1の差が閾値Vth1以上である場合に、第1計算モデルM11の更新が必要であると判定する。更新判定部35は、予測値F1と実測値Da1の差が閾値Vth1未満である場合に、第1計算モデルM11の更新が不要であると判定する。
また、更新判定部35は、予測値F1と実測値Da1の差が閾値Vth1以上であるか否かを判定することに代えて、予測値F1と実測値Da1の差の移動平均が閾値Vth2以上であるか否かを判定することができる。この場合、更新判定部35は、予測値F1と実測値Da1の差の移動平均が閾値Vth2以上である場合に、第1計算モデルM11の更新が必要であると判定する。更新判定部35は、予測値F1と実測値Da1の差の移動平均が閾値Vth2未満である場合に、第1計算モデルM11の更新が不要であると判定する。
同様に、更新判定部35は、第1計算モデルM11の場合と同様の処理によって、各第1計算モデルM12~M1mの更新が必要か否かを判定することができる。なお、更新判定部35は、例えば、複数の第1計算モデルM1における予測値Fと実測値Daとの差の合計値が閾値以上である場合に、かかる複数の第1計算モデルM1の更新が必要であると判定することができる。
また、更新判定部35は、複数の第1計算モデルM1における予測値Fと実測値Daとの差の合計値の移動平均が閾値以上である場合に、かかる複数の第1計算モデルM1の更新が必要であると判定することができる。例えば、更新判定部35は、各第1計算モデルM11~M14における予測値Fと実測値Daとの差の合計値の移動平均が閾値以上である場合に、複数の第1計算モデルM11~M14の更新が必要であると判定することができる。
また、更新判定部35は、シミュレータ部36によって演算される結果に基づいて、第1計算モデルM1による予測精度を判定し、かかる判定結果に基づいて、第1計算モデルM1の更新が必要であると判定することもできる。
シミュレータ部36は、例えば、活性汚泥モデルを用いた演算を行って水処理における物理的、生物的、および科学的な挙動を模擬する活性汚泥モデルシミュレータである。かかる活性汚泥モデルは、生物反応プロセスと物質収支の水質変化などを数学的に記述したモデルであり、例えば、IWA(International Water Association)によって発表されている。シミュレータ部36は、例えば、活性汚泥モデルを用いた演算によって、センサ2から出力される検出データDから処理槽内特性および処理水特性を予測することができる。
更新判定部35は、シミュレータ部36によって演算される処理槽内特性の予測値と、演算部38によって演算される第1計算モデルM15~M1m-3による予測値F4~Fm-3とを比較することで、各第1計算モデルM15~M1m-3の更新が必要であると判定することができる。例えば、更新判定部35は、シミュレータ部36によって演算される溶存酸素量の予測値と、第1計算モデルM15を用いて演算部38によって演算された溶存酸素量の予測値F5との差ΔF5を演算する。更新判定部35は、演算した差ΔF5が閾値Vth3以上である場合または演算した差ΔF5の移動平均値が閾値Vth3以上である場合に、第1計算モデルM15の更新が必要であると判定することができる。
同様に、更新判定部35は、シミュレータ部36によって演算される処理水特性の予測値と、演算部38によって演算された第1計算モデルM1m-2,M1m-1,M1mによる予測値Fm-2,Fm-1,Fmとを比較することで、各第1計算モデルM1m-2,M1m-1,M1mの更新が必要であると判定することができる。
また、更新判定部35は、第2計算モデルM2を用いた演算部38による演算によって得られる制御目標値RV1,RV2に基づいて、第2計算モデルM2の更新が必要であると判定することができる。例えば、更新判定部35は、第2計算モデルM2を用いて演算部38によって演算される制御目標値RV1,RV2が予め設定された範囲Rthであるか否かを判定する。更新判定部35は、演算部38によって演算される制御目標値RV1,RV2が予め設定された範囲Rthではないと判定した場合に、第2計算モデルM2の更新が必要であると判定する。
また、更新判定部35は、活性汚泥モデルを用いて、センサ2から出力される検出データDから制御目標値RVを演算することができる。更新判定部35は、活性汚泥モデルにより得られる制御目標値RVと、第2計算モデルM2を用いた演算部38による演算によって得られる制御目標値RVとの差ΔRVを演算する。更新判定部35は、差ΔRVが閾値RVth以上である場合、または差ΔRVの移動平均値が閾値RVth以上である場合に、第2計算モデルM2の更新が必要であると判定する。
なお、上述した例では、更新判定部35は、演算部38による計算モデルMを用いた演算の結果に基づいて、演算部38で用いる計算モデルMの更新が必要か否かを判定するが、計算モデルMの更新の要否判定は、上述した例に限定されない。例えば、更新判定部35は、予め設定された周期毎に演算部38で用いる計算モデルMの更新が必要であると判定することもできる。
状態判定部37は、更新判定部35によって計算モデルMの更新が必要であると判定された場合、学習処理部33による学習処理に用いられる演算資源の負荷状態に基づいて、学習処理部33による学習処理の可否を判定する。制御装置3内において学習処理部33による学習処理に用いられる演算資源がCPU(Central Processing Unit)の場合、演算資源の負荷状態は、CPUの負荷状態であり、例えば、CPUの使用率である。
状態判定部37は、演算資源がCPUである場合、例えば、CPUの使用率が閾値Rth1未満である場合に、学習処理部33による学習処理が可能であると判定する。また、状態判定部37は、例えば、CPUの使用率が閾値Rth1以上である場合に、学習処理部33による学習処理が不可であると判定する。
学習処理部33は、状態判定部37による判定結果に基づいて、学習処理を実行する、例えば、学習処理部33は、状態判定部37によって学習処理部33による学習処理が可能であると判定されている状態で、学習処理を行う。また、学習処理部33は、状態判定部37によって学習処理部33による学習処理が不可であると判定されている状態で、学習処理を行わない。
また、状態判定部37は、学習処理部33による学習処理の実行中に演算資源の負荷状態が予め設定された停止条件を満たすか否かを判定する。状態判定部37は、演算資源がCPUである場合、例えば、CPUの使用率が閾値Rth2以上である場合に、停止条件を満たすと判定する。なお、閾値Rth2は、例えば、閾値Rth1より小さい値である。
また、状態判定部37は、学習処理部33による学習処理の停止中に演算資源の負荷状態が予め設定された再開条件を満たすか否かを判定する。状態判定部37は、演算資源がCPUである場合、例えば、CPUの使用率が閾値Rth3未満である場合に、再開条件を満たすと判定する。なお、閾値Rth3は、例えば、閾値Rth2より小さい値である。
学習処理部33は、学習処理の実行中に状態判定部37によって演算資源の負荷状態が停止条件を満たすと判定された場合に、学習処理の実行を停止する。また、学習処理部33は、学習処理の停止中に状態判定部37によって演算資源の負荷状態が再開条件を満たすと判定された場合に、学習処理の実行を再開する。
なお、上述した例では、状態判定部37は、更新判定部35によって計算モデルMの更新が必要であると判定された場合に、学習処理部33による学習処理の可否を判定するが、学習処理の可否の判定は、上述した例に限定されない。例えば、状態判定部37は、更新判定部35によって計算モデルMの更新が必要であると判定されたか否かにかかわらず、学習処理部33による学習処理の可否を判定することもできる。この場合、制御装置3には、更新判定部35を設けなくてもよい。また、制御装置3に状態判定部37を設けない構成であってもよい。この場合、学習処理部33は、更新判定部35によって計算モデルMの更新が必要と判定された場合に学習処理を行う。
演算部38は、動作モードとして第1モードと第2モードとを有している。演算部38は、動作モードが第1モードに設定されている場合、第1計算モデルM1を用いた演算を行う。また、演算部38は、動作モードが第2モードに設定されている場合、第2計算モデルM2を用いた演算を行う。
水処理プラント100のオペレータは、中央監視装置4を操作することで、演算部38の動作モードの情報を中央監視装置4から制御装置3へ送信することができる。演算部38は、中央監視装置4から送信される動作モードの情報を通信部40から取得し、取得した動作モードの情報に基づいて、第1モードおよび第2モードの一方の動作モードで計算モデルMを用いた演算を行うことができる。
まず、第1モードについて説明する。演算部38は、動作モードが第1モードに設定されている場合、データ取得部30によって取得されたセンサ2の時系列の検出データDを取得する。演算部38は、取得した時系列の検出データDを入力とする複数の第1計算モデルM11~M1mを用いた演算を行い、第1計算モデルM11~M1mから出力される予測値F1~Fmを取得する。
例えば、演算部38は、センサ201から出力される時系列の検出データD1を入力とする第1計算モデルM11を用いた演算を行い、第1計算モデルM11の出力である流入水の流量の予測値F1を取得する。また、演算部38は、センサ202から出力される時系列の検出データD2を入力とする第1計算モデルM12を用いた演算を行い、第1計算モデルM12の出力である流入水のBODの予測値F2を取得する。
同様に、演算部38は、センサ203から出力される時系列の検出データD3を入力とする第1計算モデルM13を用いた演算を行い、第1計算モデルM13の出力である流入水の温度の予測値F3を取得する。また、演算部38は、センサ204から出力される時系列の検出データD4を入力とする第1計算モデルM14を用いた演算を行い、第1計算モデルM14の出力である流入水のNH3の予測値F4を取得する。
演算部38は、第1計算モデルM11~M1mを用いた演算によって得られる予測値F1~Fmに基づいて、制御対象機器の制御目標値RV1,RV2を演算し、演算した制御目標値RV1,RV2を制御部39へ出力する。例えば、演算部38は、予測値F1~Fmを入力し、制御目標値RV1,RV2を出力する計算モデルを用いて、予測値F1~Fmから制御目標値RV1,RV2を演算することができる。かかる計算モデルは、例えば、学習データ記憶部32に記憶されたデータに基づいて学習処理部33によって生成および更新することができる。なお、演算部38は、第1計算モデルM11~M1mがリカレントニューラルネットワークである場合、データ取得部30によって新たに取得された検出データDを取得する毎に予測値F1~Fmを得ることができる。
次に、第2モードについて説明する。演算部38は、動作モードが第2モードに設定されている場合、データ取得部30によって取得されたセンサ2の検出データDを取得する。演算部38は、取得した時系列の検出データDを第2計算モデルM2に入力して第2計算モデルM2を用いた演算を行い、第2計算モデルM2から出力される制御目標値RV1,RV2を取得する。演算部38は、第2計算モデルM2を用いた演算によって得られる制御目標値RV1,RV2を制御部39へ出力する。
上述したニューラルネットワークは、人工ニューラルネットワークである。人工ニューラルネットワークは、入力信号の重み付き和を取り、活性化関数と呼ばれる非線形関数を適用して出力とするパーセプトロンを階層的に配置した計算モデルである。パーセプトロンの出力outは、入力をX=(x1,x2,・・・,xn)、重みをW=(w1,w2,・・・,wn)、活性化関数をf(・)とし、かつ、*をベクトルの要素積として以下の式(1)により表すことができる。
out=f(X*W)・・・(1)
畳み込みニューラルネットワークにおいて、パーセプトロンは画像に対応する2次元信号を入力にとり、入力の重み付き和を計算して次の層に渡す。活性化関数には、シグモイド関数またはReLU(Rectified Linear Unit)関数が用いられる。
人工ニューラルネットワークには、上述のパーセプトロンが階層的に配置されており、各層が入力信号を処理していくことで、識別結果が計算される。なお、最終層は、例えば、人工ニューラルネットワークにおけるタスクの種別が回帰タスクであれば活性化関数の出力をそのままタスクの出力とし、タスクの種別が分類タスクであれば最終層についてソフトマックス関数を適用し、タスクの出力とする。
畳み込みニューラルネットワークの場合、2次元信号のマップとして人工ネットワークが構成される。2次元信号の各々がパーセプトロンに対応するとみなすことができ、前層の特徴マップに対し重み付き和を計算して活性化関数を適用した結果を出力する。
畳み込みニューラルネットワークにおいて、上述の処理は畳み込み演算と呼ばれ、このほかにプーリング処理を行うプーリング層が各層に挿入される場合がある。このプーリング層は、特徴マップに対して平均値演算または最大値演算を行うことによりダウンサンプリングを行う。
このような人工ニューラルネットワークの学習は、誤差逆伝播により行われるものであり、例えば、公知の確率的勾配降下法が用いられる。誤差逆伝播とは、人工ニューラルネットワークの出力誤差を最終層から順に前の層に向かって伝播させ、重みを更新させていく枠組みのことである。
次に、図1および図3に示す制御部39について説明する。制御部39は、ブロワ14およびポンプ15などを制御することで、水処理装置1を制御することができる。例えば、制御部39は、ブロワ14を制御して活性汚泥混合液中に送り込む空気の量を調整することで、活性汚泥混合液中の溶在酸素濃度を制御することができる。また、制御部39は、ポンプ15を制御することで、最終沈殿槽13から処理槽12に返送する活性汚泥の流量を調整する。
制御部39は、演算部38から出力される制御目標値RV1に基づいて、水処理装置1のブロワ14を制御する。また、制御部39は、演算部38から出力される制御目標値RV2に基づいて、水処理装置1のポンプ15を制御する。図6は、実施の形態1にかかる制御装置の制御部の構成例を示す図である。図6に示すように、制御部39は、ブロワ制御部51と、ポンプ制御部52とを備える。
ブロワ制御部51は、演算部38から出力される制御目標値RV1を取得する。また、ブロワ制御部51は、センサ205で検出される溶存酸素量を示す数値データをセンサ205から取得する。ブロワ制御部51は、ブロワ14の制御目標値RV1と取得した溶存酸素量とに基づいて、PI(Proportional Integral)制御またはPID(Proportional Integral Differential)制御によって制御信号を生成する。ブロワ制御部51は、生成した制御信号をブロワ14へ出力する。ブロワ14は、ブロワ制御部51から出力される制御信号に基づいて、処理槽12へ送り込む空気の量を調整する。
ポンプ制御部52は、演算部38から出力される制御目標値RV2を取得する。また、ポンプ制御部52は、活性汚泥の流量を検出するセンサから、最終沈殿槽13から処理槽12への活性汚泥の流量を示す数値データを取得する。ポンプ制御部52は、ポンプ15の制御目標値RV2と取得した活性汚泥の流量とに基づいて、PI制御またはPID制御によって制御信号を生成する。ポンプ制御部52は、生成した制御信号をポンプ15へ出力する。ポンプ15は、ポンプ制御部52から出力される制御信号に基づいて、最終沈殿槽13から処理槽12への活性汚泥の流量を調整する。
通信部40は、データ取得部30によって取得される検出データD、および演算部38によって演算される制御目標値RV,RV2などを中央監視装置4へ出力する。中央監視装置4は、通信部40から送信される検出データDおよび制御目標値RV,RV2などを不図示の表示部に表示する。これにより、水処理プラント100のオペレータは、水処理装置1の状態および制御装置3による水処理制御の状態を監視することができる。
つづいて、制御装置3の動作を、フローチャートを用いて説明する。図7は、実施の形態1にかかる制御装置の処理の一例を示すフローチャートであり、制御装置3によって繰り返し実行される。
図7に示すように、制御装置3のデータ取得部30は、センサ2から検出データDを取得する処理を実行する(ステップS10)。次に、制御装置3は、学習データ記憶処理を実行する(ステップS11)。かかるステップS11の処理は、図8に示すステップS20,S21の処理であり、後で詳述する。
次に、制御装置3は、水処理制御を実行する(ステップS12)。かかるステップS12の処理は、図9に示すステップS30~S33の処理であり、後で詳述する。また、制御装置3は、学習モデル処理を実行する(ステップS13)。かかるステップS13の処理は、図10に示すステップS40~S48の処理であり、後で詳述する。
制御装置3は、ステップS13の処理が終了した場合、図7に示す処理を終了する。なお、ステップS11,S12,S13の処理は、上述した順序に限定されない。また、制御装置3は、ステップS11,S12,S13の処理を並行して実行することもできる。また、制御装置3は、ステップS13の処理を、ステップS11,S12の処理よりも長い周期で行うこともできる。
図8は、実施の形態1にかかる制御装置の学習データ記憶処理の一例を示すフローチャートである。図8に示すように、制御装置3のデータ選択部31は、検出データDが設定された選択条件を満たすか否かを判定する(ステップS20)。データ選択部31は、検出データDが選択条件を満たすと判定した場合(ステップS20:Yes)、選択条件を満たす検出データDを学習データ記憶部32に記憶する(ステップS21)。
データ選択部31は、ステップS21の処理が終了した場合、または検出データDが設定された選択条件を満たさないと判定した場合(ステップS20:No)、図8に示す処理を終了する。
図9は、実施の形態1にかかる制御装置の水処理制御の一例を示すフローチャートである。図9に示すように、制御装置3の演算部38は、動作モードが第1モードに設定されているか否かを判定する(ステップS30)。演算部38は、動作モードが第1モードに設定されていると判定した場合(ステップS30:Yes)、第1モードの演算処理を行う(ステップS31)。第1モードの演算処理は、上述した複数の第1計算モデルM1を用いた演算に基づいて、制御目標値RV1,RV2を求める処理である。
演算部38は、動作モードが第1モードに設定されていないと判定した場合(ステップS30:No)、第2モードの演算処理を行う(ステップS32)。第2モードの演算処理は、上述した第2計算モデルM2を用いた演算に基づいて、制御目標値RV1,RV2を求める処理である。
制御部39は、演算部38による演算処理の結果に基づいて、水処理装置1を制御する(ステップS33)。ステップS33の処理において、制御部39は、演算部38によって得られる制御目標値RV1,RV2に基づいて、水処理装置1のブロワ14およびポンプ15を制御する。制御部39は、ステップS33の処理が終了した場合、図9に示す処理を終了する。
図10は、実施の形態1にかかる制御装置の学習モデル処理の一例を示すフローチャートである。図10に示す処理は、モデル記憶部34に記憶されている計算モデル毎に行われる。以下、モデル記憶部34に記憶される複数の第1計算モデルM11~M1mおよび第2計算モデルM2のうち、第1計算モデルM11についての学習モデル処理を例に挙げて説明するが、第1計算モデルM12~M1mおよび第2計算モデルM2についての学習モデル処理も、第1計算モデルM11についての学習モデル処理と同様に行われる。
図10に示すように、制御装置3の状態判定部37は、第1計算モデルM11の学習処理が実行中であるか否かを判定する(ステップS40)。状態判定部37は、第1計算モデルM11の学習処理が実行中であると判定した場合(ステップS40:Yes)、演算資源の負荷状態が停止条件を満たすか否かを判定する(ステップS41)。学習処理部33は、状態判定部37によって演算資源の負荷状態が停止条件を満たすと判定された場合(ステップS41:Yes)、第1計算モデルM11の学習処理を停止する(ステップS42)。
状態判定部37は、第1計算モデルM11の学習処理が実行中ではないと判定した場合(ステップS40:No)、第1計算モデルM11の学習処理が停止中であるか否かを判定する(ステップS43)。状態判定部37は、第1計算モデルM11の学習処理が停止中であると判定した場合(ステップS43:Yes)、演算資源の負荷状態が再開条件を満たすか否かを判定する(ステップS44)。学習処理部33は、状態判定部37によって演算資源の負荷状態が再開条件を満たすと判定された場合(ステップS44:Yes)、第1計算モデルM11の学習処理を再開する(ステップS45)。
更新判定部35は、状態判定部37によって第1計算モデルM11の学習処理が停止中ではないと判定された場合(ステップS43:No)、第1計算モデルM11の更新が必要であるか否かを判定する(ステップS46)。状態判定部37は、更新判定部35によって第1計算モデルM11の更新が必要であると判定された場合(ステップS46:Yes)、演算資源の負荷状態に基づいて、第1計算モデルM11の更新が可能であるか否かを判定する(ステップS47)。
学習処理部33は、状態判定部37によって第1計算モデルM11の更新が可能であると判定された場合(ステップS47:Yes)、第1計算モデルM11を更新するために、第1計算モデルM11の学習処理を開始する(ステップS48)。
制御装置3は、ステップS42の処理が終了した場合、ステップS45の処理が終了した場合、ステップS48の処理が終了した場合、停止条件を満たさないと判定した場合(ステップS41:No)、再開条件を満たさないと判定した場合(ステップS44:No)、計算モデルMの更新が必要でないと判定した場合(ステップS46:No)、または計算モデルMの更新が可能ではないと判定した場合(ステップS47:No)、図10に示す処理を終了する。
図11は、実施の形態1にかかる制御装置のハードウェア構成の一例を示す図である。図11に示すように、制御装置3は、プロセッサ101と、メモリ102と、インタフェイス回路103とを備えるコンピュータを含む。
プロセッサ101、メモリ102およびインタフェイス回路103は、バス104によって互いにデータの送受信が可能である。通信部40は、インタフェイス回路103によって実現される。学習データ記憶部32およびモデル記憶部34は、メモリ102によって実現される。プロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、データ取得部30、データ選択部31、学習処理部33、更新判定部35、シミュレータ部36、状態判定部37、演算部38、および制御部39の機能を実行する。プロセッサ101は、処理回路の一例であり、CPU、DSP(Digital Signal Processer)、およびシステムLSI(Large Scale Integration)のうち一つ以上を含む。
メモリ102は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、およびEPROM(Erasable Programmable Read Only Memory)のうち一つ以上を含む。また、メモリ102は、コンピュータが読み取り可能な上述のプログラムが記録された記録媒体を含む。かかる記録媒体は、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルメモリ、光ディスク、コンパクトディスク、およびDVDのうち一つ以上を含む。
また、制御装置3が専用のハードウェアで実現される場合、データ取得部30、データ選択部31、学習処理部33、更新判定部35、シミュレータ部36、状態判定部37、演算部38、および制御部39は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。
なお、上述した例では、演算部38において第1計算モデルM11~M1mの出力に基づいて制御目標値RV1,RV2を演算するが、演算部38に代えて制御部39が第1計算モデルM11~M1mの出力に基づいて制御目標値RV1,RV2を演算する構成であってもよい。
また、上述した例では、制御装置3によって制御される制御対象機器の例として、ブロワ14およびポンプ15を説明したが、制御装置3によって制御される制御対象機器は、ブロワ14およびポンプ15以外の機器を含んでもよい。例えば、制御対象機器は、処理槽12における水の温度を調整するヒータ、および処理槽12への薬液の投入を制御する機器であってもよい。
以上のように、実施の形態1にかかる水処理プラント100は、複数の水処理装置1を監視する中央監視装置4と、複数の水処理装置1のうち対応する水処理装置1の制御を各々実行する複数の制御装置3と、中央監視装置4の外部に配置してあり、機械学習によって生成される計算モデルMを用いて水処理装置1に対する制御に関わる演算を行う演算部38とを備える。このように、演算部38を中央監視装置4の外部に配置しているため、複数の装置を備える水処理プラントで効果的に水処理制御を行うことができる。なお、例えば、水処理装置11が第1水処理装置に相当し、水処理装置1nが第2水処理装置の一例であり、制御装置31が第1制御装置の一例であり、制御装置3nが第2制御装置の一例である。また、例えば、制御装置31に含まれる演算部38が第1演算部の一例である。制御装置3nに含まれる演算部38が第2演算部の一例である。また、制御装置3に含まれる演算部38は、AIであり、制御装置3は、例えば、AI装置である。
また、水処理プラント100は、複数の水処理装置1のうち対応する水処理装置1の状態を各々検出する複数のセンサ2を備え、複数の制御装置3の各々は、複数のセンサ2のうち対応するセンサ2から出力される検出データDに基づいて、複数の水処理装置1のうち対応する水処理装置1の制御を実行する。複数の制御装置3の各々は、機械学習によって生成される計算モデルMを用いて、複数の水処理装置1のうち対応する水処理装置1の制御に関わる演算を行う演算部38を備える。これにより、水処理制御に関わる演算を行うAIを水処理装置1の近くに配置することができる。そのため、例えば、データの伝送遅延などを抑制することができ、センサ2から出力される検出データDに基づく水処理装置1の制御処理の高速化を図ることができる。したがって、複数の水処理装置1を備える水処理プラント100において、効果的に水処理制御を行うことができる。なお、例えば、センサ21が第1センサの一例であり、センサ2nが第2センサの一例である。また、例えば、制御装置31に含まれる演算部38が用いる計算モデルMが第1計算モデルの一例であり、制御装置3nに含まれる演算部38が用いる計算モデルMが第2計算モデルの一例である。
また、中央監視装置4は、制御装置3に含まれる演算部38の演算に基づく制御が行われた水処理装置1を監視する。これにより、水処理装置1における水処理制御の状態を中央監視装置4で監視することができる。
また、制御装置3は、データ選択部31と、学習データ記憶部32と、学習処理部33とを備える。データ選択部31は、検出データDのうち予め設定された条件を満たす検出データDを選択する。検出データDのうち予め設定された条件を満たす検出データDは、条件充足検出データの一例である。学習データ記憶部32は、データ選択部31によって選択された検出データDを記憶する。学習処理部33は、学習データ記憶部32に記憶された検出データDに基づいて、計算モデルMの生成および更新のうち少なくとも一方を行う。このように計算モデルMの学習処理を制御装置3で行うことから、例えば、制御装置3と中央監視装置4との通信に異常が生じた場合などにおいても、AIによる水処理制御を行うことができ、効果的に水処理制御を行うことができる。また、検出データDのうち予め設定された条件を満たす検出データDを選択することから、検出データDをすべて計算モデルMの学習処理に用いる場合に比べ、学習データ記憶部32の記憶容量を抑えることができる。なお、例えば、制御装置31に含まれる演算部38が用いる計算モデルMの機械学習が第1機械学習の一例であり、制御装置3nに含まれる演算部38が用いる計算モデルMの機械学習が第2機械学習の一例である。
また、制御装置3は、学習処理部33による学習処理に用いられる演算資源の負荷状態に基づいて、学習処理の可否を判定する状態判定部37を備える。学習処理部33は、状態判定部37による判定結果に基づいて、学習処理を実行する。これにより、例えば、演算資源の負荷が高い場合などにおいて、学習処理が実行されることを抑制できる。そのため、例えば、制御装置3における他の処理に影響を及ぼさずに学習処理を実行することができ、制御装置3において演算資源の少ない場合であっても、学習処理を実行することができる。
また、状態判定部37は、学習処理部33による学習処理の実行中に負荷状態が予め設定された停止条件を満たすか否かを判定する。学習処理部33は、学習処理を実行中に状態判定部37によって負荷状態が停止条件を満たすと判定された場合に、学習処理の実行を停止する。これにより、学習処理を実行中において、例えば、制御装置3における他の処理に影響を及ぼすような状況を回避することができる。
また、制御装置3は、計算モデルMを用いた演算の結果に基づいて、計算モデルMの更新が必要か否かを判定する更新判定部35を備える。学習処理部33は、更新判定部35による判定結果に基づいて、学習処理を実行する。これにより、例えば、計算モデルMが現状の水処理装置1の状態に対する予測に適しなくなった場合に、計算モデルMの更新を行うことができる。そのため、例えば、定期的な計算モデルMの更新に比べ、計算モデルMの更新の頻度を低減することが可能になる。したがって、制御装置3において演算資源の少ない場合であっても、計算モデルMの更新を効率的に行うことができる。
また、計算モデルMは、水処理装置1の状態の予測値Fを出力とするモデルである。更新判定部35は、計算モデルMによる予測時間においてセンサ2で検出される水処理装置1の状態の実測値Daと計算モデルMの予測値Fとの差に基づいて、計算モデルMの更新が必要か否かを判定する。計算モデルMによる予測時間は、上述した時間Ta後の時間である。また、実測値Daと予測値Fとの差は、いわゆる計算モデルMの予測誤差である。これにより、計算モデルMが現状の水処理装置1の状態に対する予測に適しない状態になったことを精度よく判定することができる。
また、制御装置3は、水処理装置1の状態に基づいて水処理装置1の状態の予測値を出力するシミュレータ部36を備える。計算モデルMは、水処理装置1の状態の予測値Fを出力とする計算モデルである。更新判定部35は、シミュレータ部36の予測値と計算モデルMの予測値Fの差に基づいて、計算モデルMの更新が必要か否かを判定する。これにより、計算モデルMが現状の水処理装置1の状態に対する予測に適しない状態になったことを精度よく判定することができる。
また、制御装置3は、比例積分制御または比例積分微分制御によって水処理装置1の制御を行う。これにより、水処理装置1を精度よく制御することができる。
上記の実施の形態1では、演算部38が制御目標値を演算する一例について説明した。しかしながら本発明は、当一例に限定されない。例えば、演算部38が制御操作量を演算し、演算した制御操作量の情報に基づいて制御部39が水処理装置1を制御するように構成してもよい。
実施の形態2.
実施の形態2では、シミュレータ部が中央監視装置に設けられている点で、シミュレータ部が制御装置に設けられている実施の形態1と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1の水処理プラント100と異なる点を中心に説明する。
実施の形態2では、シミュレータ部が中央監視装置に設けられている点で、シミュレータ部が制御装置に設けられている実施の形態1と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1の水処理プラント100と異なる点を中心に説明する。
図12は、実施の形態2にかかる水処理プラントの構成例を示す図である。図12に示すように、実施の形態2にかかる水処理プラント100Aは、水処理装置1と、センサ2と、制御装置3Aと、中央監視装置4Aとを備える。なお、図12では、制御装置3Aが一つのみ図示されているが、水処理プラント100Aは、水処理プラント100と同様に、制御装置3Aを複数備える。
制御装置3Aは、シミュレータ部36が設けられていない点で制御装置3と異なる。また、中央監視装置4Aは、シミュレータ部46が設けられている点で、中央監視装置4と異なる。
シミュレータ部46は、シミュレータ部36と同様の機能を有している。かかるシミュレータ部46は、活性汚泥モデルを用いた演算を行う。シミュレータ部46は、例えば、センサ2から出力される検出データDを各制御装置3から取得し、取得した検出データDから各水処理装置1における処理槽内特性および処理水特性を、活性汚泥モデルを用いた演算によって、予測することができる。
各制御装置3Aの更新判定部35は、例えば、中央監視装置4Aからシミュレータ部46によって演算された処理槽内特性の予測値および処理水特性の予測値を取得し、また、演算部38によって演算された第1計算モデルM1による予測値Fを取得する。更新判定部35は、シミュレータ部46によって演算された予測値と第1計算モデルM1による予測値Fとを比較し、かかる比較結果に基づいて、第1計算モデルM1の更新が必要であると判定することができる。
実施の形態2にかかる制御装置3Aのハードウェア構成例は、シミュレータ部36の機能がない点以外は、実施の形態1にかかる制御装置3と同じである。また、実施の形態2にかかる中央監視装置4Aは、図11に示すハードウェア構成と同様の構成とすることができる。プロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、シミュレータ部46の機能を実行することができる。
以上のように、実施の形態2にかかる制御装置3Aは、シミュレータ部36を有しておらず、中央監視装置4Aは、シミュレータ部46を有している。これにより、制御装置3Aは、センサ2から出力される検出データDに基づく水処理装置1の制御処理の高速化を図りつつも、制御装置3に比べて、構成が簡易になり、製造コストなどを低減することができる。また、複数の制御装置3Aが互いに異なるタイミングで学習モデル処理を行うことで、一つのシミュレータ部46を用いて効率的な処理を行うことができる。
実施の形態3.
実施の形態3では、各制御装置で用いられる計算モデルの生成および更新が中央監視装置によって行われる点で、計算モデルの生成よび更新が各制御装置によって行われる実施の形態1と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1の水処理プラント100と異なる点を中心に説明する。
実施の形態3では、各制御装置で用いられる計算モデルの生成および更新が中央監視装置によって行われる点で、計算モデルの生成よび更新が各制御装置によって行われる実施の形態1と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1の水処理プラント100と異なる点を中心に説明する。
図13は、実施の形態3にかかる水処理プラントの構成例を示す図である。図13に示すように、実施の形態3にかかる水処理プラント100Bは、水処理装置1と、センサ2と、制御装置3Bと、中央監視装置4Bとを備える。なお、図13では、制御装置3Bが一つのみ図示されているが、水処理プラント100Bは、水処理プラント100と同様に、制御装置3Bを複数備える。
制御装置3Bは、データ選択部31、学習データ記憶部32、学習処理部33、更新判定部35、シミュレータ部36、および状態判定部37が設けられていない点で制御装置3と異なる。また、中央監視装置4Bは、データ選択部41、学習データ記憶部42、学習処理部43、更新判定部45、シミュレータ部46、状態判定部47、および通信部50が設けられている点で、中央監視装置4と異なる。
データ選択部41、学習データ記憶部42、学習処理部43、更新判定部45、シミュレータ部46、および状態判定部47は、データ選択部31、学習データ記憶部32、学習処理部33、更新判定部35、シミュレータ部36、および状態判定部37と各々同様の機能を有している。
図13に示す例では、データ選択部41、学習データ記憶部42、学習処理部43、更新判定部45、シミュレータ部46、および状態判定部47は、複数の制御装置3Bで共通に設けられており、各制御装置3Bで用いられる計算モデルの生成および更新に用いられる。なお、データ選択部41、学習データ記憶部42、学習処理部43、更新判定部45、シミュレータ部46、および状態判定部47は、制御装置3B毎に設けられてもよい。
なお、データ選択部41、更新判定部45、シミュレータ部46、および状態判定部47は、必要なデータを各制御装置3Bから通信ネットワーク5および通信部50を経由して取得する点で、データ選択部31、更新判定部35、シミュレータ部36、および状態判定部37と各々異なる。また、学習処理部43は、生成した計算モデルMを、通信部50から通信ネットワーク5経由で各制御装置3Bへ送信する点で、学習処理部33と異なる。各制御装置3Bは、中央監視装置4Bから送信される計算モデルMをモデル記憶部34に記憶する。
実施の形態3にかかる制御装置3Bのハードウェア構成例は、データ選択部31、学習処理部33、更新判定部35、シミュレータ部36、および状態判定部37の機能がない点、および学習データ記憶部32がない点以外は、実施の形態1にかかる制御装置3と同じである。また、実施の形態3にかかる中央監視装置4Bは、図11に示すハードウェア構成と同様の構成とすることができる。プロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、データ選択部41、学習処理部43、更新判定部45、シミュレータ部46、および状態判定部47の機能を実行することができる。また、学習データ記憶部42は、メモリ102によって実現される。
以上のように、実施の形態3にかかる中央監視装置4Bは、各制御装置3Bで用いられる計算モデルMの生成を行う。これにより、制御装置3Bは、センサ2から出力される検出データDに基づく水処理装置1の制御処理の高速化を図りつつも、制御装置3に比べて、構成が簡易になり、製造コストなどを低減することができる。また、複数の制御装置3Bが互いに異なるタイミングで学習モデル処理を行うことで効率的な処理を行うことができる。
実施の形態4.
実施の形態4では、計算モデルの生成および更新、および計算モデルを用いた演算が中央監視装置によって行われる点で、計算モデルの生成および更新、および計算モデルを用いた演算が制御装置によって行われる実施の形態1と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1の水処理プラント100と異なる点を中心に説明する。
実施の形態4では、計算モデルの生成および更新、および計算モデルを用いた演算が中央監視装置によって行われる点で、計算モデルの生成および更新、および計算モデルを用いた演算が制御装置によって行われる実施の形態1と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1の水処理プラント100と異なる点を中心に説明する。
図14は、実施の形態4にかかる水処理プラントの概略を示す図である。図14に示すように、実施の形態4にかかる水処理プラント100Cは、複数の水処理装置11~1nと、複数のセンサ21~2nと、複数の水処理装置11~1nを各々制御する制御装置3C1~3Cnと、複数の水処理装置11~1nを監視する中央監視装置4Cとを備える。なお、nは、2以上の整数である。以下、複数の制御装置3C1~3Cnの各々を区別せずに示す場合、制御装置3Cと記載する。
図15は、実施の形態4にかかる水処理装置の構成例を示す図である。なお、図15では、図14に示す複数の制御装置3Cのうち一つの制御装置3Cのみを図示している。制御装置3Cは、データ選択部31、学習データ記憶部32、学習処理部33、モデル記憶部34、更新判定部35、シミュレータ部36、状態判定部37、および演算部38が設けられていない点で制御装置3と異なる。また、中央監視装置4Cは、データ選択部41、学習データ記憶部42、学習処理部43、モデル記憶部44、更新判定部45、シミュレータ部46、状態判定部47、演算部48、および通信部50が設けられている点で、中央監視装置4と異なる。
データ選択部41、学習データ記憶部42、学習処理部43、モデル記憶部44、更新判定部45、シミュレータ部46、状態判定部47、および演算部48は、データ選択部31、学習データ記憶部32、学習処理部33、モデル記憶部34、更新判定部35、シミュレータ部36、状態判定部37、および演算部38と各々同様の機能を有している。
図15に示す例では、データ選択部41、学習データ記憶部42、学習処理部43、モデル記憶部44、更新判定部45、シミュレータ部46、状態判定部47、および演算部48は、複数の制御装置3Cに対応して共通に設けられており、各制御装置3Cで用いられる計算モデルMの生成および更新、かかる計算モデルMを用いた演算に用いられる。なお、中央監視装置4Cにおいて、データ選択部41、学習データ記憶部42、学習処理部43、モデル記憶部44、更新判定部45、シミュレータ部46、状態判定部47、および演算部48は、制御装置3C毎に対応して設けられてもよい。
なお、データ選択部41、更新判定部45、およびシミュレータ部46は、必要なデータを各制御装置3Cから通信ネットワーク5および通信部50を経由して取得する点で、データ選択部31、更新判定部35、およびシミュレータ部36と各々異なる。また、演算部48は、演算結果である制御目標値RVの情報を通信部50から通信ネットワーク5経由で制御部39へ送信する点で、演算部38と異なる。各制御装置3Cは、中央監視装置4Cから送信される制御目標値RVの情報に基づいて、水処理装置1を制御する。
実施の形態4にかかる制御装置3Cのハードウェア構成例は、データ選択部31、学習データ記憶部32、学習処理部33、モデル記憶部34、更新判定部35、シミュレータ部36、状態判定部37、および演算部38がない点以外は、実施の形態1にかかる制御装置3と同じである。また、実施の形態4にかかる中央監視装置4Cは、図11に示すハードウェア構成と同様の構成とすることができる。プロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、データ選択部41、学習処理部43、更新判定部45、シミュレータ部46、状態判定部47、および演算部48の機能を実行することができる。また、学習データ記憶部42およびモデル記憶部44は、メモリ102によって実現される。
以上のように、実施の形態4にかかる水処理プラント100Cは、複数の水処理装置1を監視する中央監視装置4Cと、複数の水処理装置1のうち対応する水処理装置状態を各々検出する複数のセンサ2と、複数の水処理装置1のうち対応する水処理装置1の制御を各々実行する複数の制御装置3Cとを備える。中央監視装置4Cは、機械学習によって生成される計算モデルMを用いて、センサ2から出力される検出データDに基づく水処理装置1毎の制御に関わる演算を行う演算部48を備える。複数の制御装置3Cの各々は、中央監視装置4Cによる計算モデルMを用いた演算の結果に基づいて、複数の水処理装置1のうち対応する水処理装置1の制御を実行する。これにより、例えば、水処理システムにおいて制御装置を変更することなく、AIによる水処理制御を行うことができ、複数の水処理装置1を備える水処理プラント100CによってAIによって効果的に水処理制御を行うことができる。また、中央監視装置4Cには、過去の種々のデータが記憶されるため、効率的に水処理制御を行うことができる。
実施の形態5.
実施の形態5では、計算モデルの生成および更新、および計算モデルを用いた演算がクラウドのサーバによって行われる点で、計算モデルの生成および更新、および計算モデルを用いた演算が制御装置または中央監視装置によって行われる実施の形態1,4と異なる。以下においては、実施の形態1,4と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1,4の水処理プラント100,100Cと異なる点を中心に説明する。
実施の形態5では、計算モデルの生成および更新、および計算モデルを用いた演算がクラウドのサーバによって行われる点で、計算モデルの生成および更新、および計算モデルを用いた演算が制御装置または中央監視装置によって行われる実施の形態1,4と異なる。以下においては、実施の形態1,4と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1,4の水処理プラント100,100Cと異なる点を中心に説明する。
図16は、実施の形態5にかかる水処理プラントの概略を示す図である。図16に示すように、実施の形態5にかかる水処理プラント100Dは、複数の水処理装置11~1nと、複数のセンサ21~2nと、制御装置3C1~3Cnと、複数の水処理装置11~1nを監視する中央監視装置4Dとを備える。以下、複数の制御装置3C1~3Cnの各々を区別せずに示す場合、制御装置3Cと記載する。
中央監視装置4Dは、計算モデルMの生成および更新、および計算モデルMを用いた演算を行うクラウドサーバ6と互いに通信ネットワーク7を介して通信可能に接続される。通信ネットワーク7は、例えば、インターネットである。クラウドサーバ6は、インターネット上に配置されるサーバである。中央監視装置4Dは、制御装置3Cから取得した検出データDを通信ネットワーク7経由でクラウドサーバ6へ送信する。
図17は、実施の形態5にかかるクラウドサーバの構成例を示す図である。図17に示すように、クラウドサーバ6は、データ選択部61、学習データ記憶部62、学習処理部63、モデル記憶部64、更新判定部65、シミュレータ部66、状態判定部67、演算部68、および通信部70を有する。データ選択部61、学習データ記憶部62、学習処理部63、モデル記憶部64、更新判定部65、シミュレータ部66、状態判定部67、および演算部68は、データ選択部31、学習データ記憶部32、学習処理部33、モデル記憶部34、更新判定部35、シミュレータ部36、状態判定部37、および演算部38と各々同様の機能を有している。
図17に示す例では、データ選択部61、学習データ記憶部62、学習処理部63、モデル記憶部64、更新判定部65、シミュレータ部66、状態判定部67、演算部68は、複数の制御装置3Cに対応して共通に設けられ、各制御装置3Cで用いられる計算モデルMの生成および更新、および計算モデルMを用いた演算に用いられる。なお、クラウドサーバ6において、データ選択部61、学習データ記憶部62、学習処理部63、モデル記憶部64、更新判定部65、シミュレータ部66、状態判定部67、演算部68は、制御装置3C毎に対応して設けられてもよい。
なお、データ選択部61は、検出データDを中央監視装置4Dから通信ネットワーク7を経由して取得する点で、データ選択部31と各々異なる。また、演算部68は、演算結果である制御目標値RVの情報を通信部70から通信ネットワーク7経由で中央監視装置4Dへ送信する点で、演算部38と異なる。中央監視装置4Dは、クラウドサーバ6から送信される制御目標値RVの情報を制御装置3Cの制御部39へ送信する。制御装置3Cの制御部39は、中央監視装置4Dから受信した制御目標値RVの情報に基づいて、水処理装置1を制御する。
実施の形態5にかかるクラウドサーバ6のハードウェア構成例は、図11に示すハードウェア構成と同様の構成とすることができる。プロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、データ選択部61、学習処理部63、更新判定部65、シミュレータ部66、状態判定部67、および演算部68の機能を実行することができる。また、学習データ記憶部62およびモデル記憶部64は、メモリ102によって実現される。
以上のように、実施の形態5にかかる水処理プラント100Dは、複数の水処理装置1を監視する中央監視装置4Dと、複数の水処理装置1のうち対応する水処理装置1の制御を各々実行する複数の制御装置3Cと、中央監視装置の外部に配置してあり、機械学習によって生成される計算モデルMを用いて水処理装置1に対する制御に関わる演算を行う演算部68とを備える。そして、演算部68は、クラウドサーバ6内に位置する。これにより、例えば、水処理システムにおいて制御装置を変更することなく、AIによる水処理制御を行うことができ、複数の水処理装置1を備える水処理プラント100DによってAIによって効果的に水処理制御を行うことができる。また、クラウドサーバ6は、複数の水処理プラント100Dを管理することができ、複数の水処理プラント100DをAIによって効率的に運用することができる。
また、水処理プラント100Dは、複数の水処理装置1のうち対応する水処理装置1の状態を各々検出する複数のセンサ2を備える。クラウドサーバ6は、機械学習によって生成される計算モデルMを用いた演算であってセンサ2から出力される検出データDに基づく水処理装置1毎の制御に関わる演算を行う。制御装置3Cは、クラウドサーバ6に設けられる演算部68の演算結果に基づいて、対応する水処理装置1の制御を実行する。このように、クラウドサーバ6は、計算モデルMを用いた演算を行う。
なお、水処理プラント100Dにおいて、制御装置3Cに代えて制御装置3Bを設ける構成であってもよい。この場合、クラウドサーバ6の学習処理部63によって生成された計算モデルMが中央監視装置4Dを介して制御装置3Bへ送信される。制御装置3Bは、クラウドサーバ6によって生成された計算モデルMを用いて、水処理装置1を制御することができる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1,11~1n 水処理装置、2,21~2n,20,201~20m センサ、3,3A,3B,3C,31~3n,3C1~3Cn 制御装置、4,4A,4B,4C,4D 中央監視装置、5,7 通信ネットワーク、6 クラウドサーバ、11 最初沈殿槽、12 処理槽、13 最終沈殿槽、14 ブロワ、15 ポンプ、30 データ取得部、31,41,61 データ選択部、32,42,62 学習データ記憶部、33,43,63 学習処理部、34,44,64 モデル記憶部、35,45,65 更新判定部、36,46,66 シミュレータ部、37,47,67 状態判定部、38,48,68 演算部、39 制御部、40,50 通信部、51 ブロワ制御部、52 ポンプ制御部、100,100A,100B,100C,100D 水処理プラント、D,D1~Dm 検出データ、M 計算モデル、M1,M11~M1m 第1計算モデル、M2 第2計算モデル。
Claims (16)
- 第1水処理装置および第2水処理装置に水処理を実行させる水処理プラントにおいて、
前記第1水処理装置および前記第2水処理装置を監視する中央監視装置と、
前記第1水処理装置に対する第1制御を行う第1制御装置と、
前記第2水処理装置に対する第2制御を行う第2制御装置と、
前記中央監視装置の外部に配置してあり、第1機械学習によって生成される第1計算モデルを用いて前記第1制御に関わる第1演算を行う第1演算部とを備える
ことを特徴とする水処理プラント。 - 前記中央監視装置は、前記第1演算に基づく前記第1制御が行われた前記第1水処理装置を監視する
ことを特徴とする請求項1に記載の水処理プラント。 - 前記第1演算部は、AIである
ことを特徴とする請求項1または2に記載の水処理プラント。 - 前記中央監視装置の外部に配置してあり、第2機械学習によって生成される第2計算モデルを用いて前記第2制御に関わる第2演算を行う第2演算部を備える
ことを特徴とする請求項1から3のいずれか一つに記載の水処理プラント。 - 前記中央監視装置は、前記第2演算に基づく前記第2制御を行った前記第2水処理装置を監視する
ことを特徴とする請求項4に記載の水処理プラント。 - 前記第1水処理装置の水処理環境を検出する第1センサと、
前記第2水処理装置の水処理環境を検出する第2センサとを備え、
前記第1演算部は、前記第1計算モデルと前記第1センサの検出データとに基づき、前記第1演算を行い、
前記第2演算部は、前記第2計算モデルと前記第2センサの検出データとに基づき、前記第2演算を行う
ことを特徴とする請求項4または5に記載の水処理プラント。 - 前記第2演算部は、AIである
ことを特徴とする請求項4から6のいずれか一つに記載の水処理プラント。 - 前記第1演算部および前記第2演算部は、クラウドサーバ内に位置する
ことを特徴とする請求項4から7のいずれか一つに記載の水処理プラント。 - 前記第1制御装置は、
前記第1演算部と、
前記第1センサの検出データのうち予め設定された条件を満たす条件充足検出データを選択するデータ選択部と、
前記データ選択部によって選択された前記条件充足検出データを記憶する学習データ記憶部と、
前記学習データ記憶部に記憶された前記条件充足検出データに基づいて、前記第1計算モデルの生成または更新を行う学習処理を実行する学習処理部と、を備える
ことを特徴とする請求項6に記載の水処理プラント。 - 前記第1制御装置は、
前記学習処理部による前記学習処理に用いられる演算資源の負荷状態に基づいて、前記学習処理の可否を判定する状態判定部を備え、
前記学習処理部は、
前記状態判定部による判定結果に基づいて、前記学習処理を実行する
ことを特徴とする請求項9に記載の水処理プラント。 - 前記状態判定部は、
前記学習処理部による前記学習処理の実行中に前記負荷状態が予め設定された停止条件を満たすか否かを判定し、
前記学習処理部は、
前記学習処理を実行中に前記状態判定部によって前記負荷状態が前記停止条件を満たすと判定された場合に、前記学習処理の実行を停止する
ことを特徴とする請求項10に記載の水処理プラント。 - 前記第1計算モデルを用いた前記第1演算の結果に基づいて、前記第1計算モデルの更新が必要か否かを判定する更新判定部を備え、
前記学習処理部は、
前記更新判定部による判定結果に基づいて、前記学習処理を実行する
ことを特徴とする請求項9から11のいずれか一つに記載の水処理プラント。 - 前記第1計算モデルは、前記第1水処理装置の状態の予測値を出力とするモデルであり、
前記更新判定部は、
前記第1センサによる前記第1水処理装置の状態の実測値と前記第1計算モデルの前記予測値との差に基づいて、前記第1計算モデルの更新が必要か否かを判定する
ことを特徴とする請求項12に記載の水処理プラント。 - 前記第1水処理装置の状態に基づいて前記第1水処理装置の状態の予測値を出力するシミュレータ部を備え、
前記第1計算モデルは、前記第1水処理装置の状態の予測値を出力とするモデルであり、
前記更新判定部は、
前記シミュレータ部の前記予測値と前記第1計算モデルの前記予測値の差に基づいて、前記第1計算モデルの更新が必要か否かを判定する
ことを特徴とする請求項12に記載の水処理プラント。 - 前記第1制御装置は、
比例積分制御または比例積分微分制御によって前記第1制御を行う
ことを特徴とする請求項1から14のいずれか一つに記載の水処理プラント。 - 前記第1制御装置は、AI装置である
ことを特徴とする請求項1から15のいずれか一つに記載の水処理プラント。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/253,633 US11649183B2 (en) | 2018-07-26 | 2018-07-26 | Water treatment plant |
PCT/JP2018/028151 WO2020021687A1 (ja) | 2018-07-26 | 2018-07-26 | 水処理プラント |
JP2018562682A JP6764486B2 (ja) | 2018-07-26 | 2018-07-26 | 水処理プラント |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/028151 WO2020021687A1 (ja) | 2018-07-26 | 2018-07-26 | 水処理プラント |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020021687A1 true WO2020021687A1 (ja) | 2020-01-30 |
Family
ID=69180914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/028151 WO2020021687A1 (ja) | 2018-07-26 | 2018-07-26 | 水処理プラント |
Country Status (3)
Country | Link |
---|---|
US (1) | US11649183B2 (ja) |
JP (1) | JP6764486B2 (ja) |
WO (1) | WO2020021687A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022025859A (ja) * | 2020-07-30 | 2022-02-10 | 株式会社明電舎 | 水処理施設の運転支援装置 |
WO2022163549A1 (ja) * | 2021-01-29 | 2022-08-04 | 栗田工業株式会社 | 推定装置、予測装置、制御装置、推定システム、予測システム、制御システム、推定プログラム、予測プログラム、制御プログラム、推定方法、予測方法及び制御方法 |
JP7286035B1 (ja) * | 2022-03-24 | 2023-06-02 | 三菱電機株式会社 | 水処理制御システムおよび水処理装置の制御方法 |
JP7345917B1 (ja) | 2022-04-20 | 2023-09-19 | Wota株式会社 | 生物処理システム、生物処理装置、水浄化システム、生物処理方法及び水浄化方法 |
US12099926B2 (en) | 2018-07-26 | 2024-09-24 | Mitsubishi Electric Corporation | Water treatment plant and method for operating water treatment plant |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06187137A (ja) * | 1992-12-18 | 1994-07-08 | Hitachi Ltd | 計算機システム |
JP2002126721A (ja) * | 2000-10-20 | 2002-05-08 | Meidensha Corp | 薬品注入率制御方法及びその装置 |
JP2017140595A (ja) * | 2016-02-12 | 2017-08-17 | 株式会社東芝 | 管理支援システム、管理支援方法及び管理支援プログラム |
JP2017204110A (ja) * | 2016-05-11 | 2017-11-16 | 三菱電機株式会社 | 監視制御システムおよび制御装置 |
WO2018070548A1 (ja) * | 2016-10-14 | 2018-04-19 | 株式会社日建 | 濾過処理装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000218263A (ja) * | 1999-02-01 | 2000-08-08 | Meidensha Corp | 水質制御方法及びその装置 |
KR100456413B1 (ko) | 2002-06-21 | 2004-11-10 | 에치투엘 주식회사 | 신경회로망 및 역전파 알고리즘에 의한 하폐수처리인공지능제어 시스템 및 방법 |
WO2006130786A2 (en) * | 2005-06-01 | 2006-12-07 | Siemens Water Technologies Holding Corp. | Water treatment system and process |
US8388833B2 (en) * | 2010-09-23 | 2013-03-05 | Biofilter Systems, Llc | System and process for removing nitrogen compounds and odors from wastewater and wastewater treatment system |
WO2011131806A1 (es) * | 2010-04-19 | 2011-10-27 | Universidad Nacional De Educación A Distancia (Uned) | Método de control avanzado para optimizar los costes de operación en estaciones depuradoras de aguas residuales con eliminación de nitrógeno |
JP5859866B2 (ja) * | 2012-02-07 | 2016-02-16 | メタウォーター株式会社 | 監視対象量予測方法及び監視対象量予測装置 |
US20180161694A1 (en) * | 2013-01-03 | 2018-06-14 | Huei Meng Chang | Data collection systems and methods for water/fluids |
US10562787B2 (en) * | 2014-08-12 | 2020-02-18 | Water Planet, Inc. | Intelligent fluid filtration management system |
WO2016073725A1 (en) * | 2014-11-07 | 2016-05-12 | Hach Company | Monitoring via neural network model |
US9766818B2 (en) * | 2014-12-31 | 2017-09-19 | Samsung Electronics Co., Ltd. | Electronic system with learning mechanism and method of operation thereof |
CA2978882C (en) * | 2015-03-16 | 2023-07-25 | Environmental Operating Solutions, Inc. | Control system and process for nitrogen and phosphorus removal |
US20160340206A1 (en) * | 2015-05-18 | 2016-11-24 | Shane Antos | System and method of predicting water quality in a decentralized treatment system |
JP5925371B1 (ja) * | 2015-09-18 | 2016-05-25 | 三菱日立パワーシステムズ株式会社 | 水質管理装置、水処理システム、水質管理方法、および水処理システムの最適化プログラム |
US10429830B2 (en) * | 2015-10-02 | 2019-10-01 | Aquasight LLC | Systems and methods for optimizing water utility operation |
KR101621495B1 (ko) * | 2015-11-23 | 2016-05-16 | 주식회사 에스아이시스템 | Pid 제어를 통한 실시간 수처리 시스템 및 수처리 방법 |
JP6742051B2 (ja) | 2016-02-10 | 2020-08-19 | 株式会社東芝 | ゲートウェイ装置 |
US10685081B2 (en) * | 2017-06-20 | 2020-06-16 | Intel Corporation | Optimized data discretization |
-
2018
- 2018-07-26 US US17/253,633 patent/US11649183B2/en active Active
- 2018-07-26 JP JP2018562682A patent/JP6764486B2/ja active Active
- 2018-07-26 WO PCT/JP2018/028151 patent/WO2020021687A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06187137A (ja) * | 1992-12-18 | 1994-07-08 | Hitachi Ltd | 計算機システム |
JP2002126721A (ja) * | 2000-10-20 | 2002-05-08 | Meidensha Corp | 薬品注入率制御方法及びその装置 |
JP2017140595A (ja) * | 2016-02-12 | 2017-08-17 | 株式会社東芝 | 管理支援システム、管理支援方法及び管理支援プログラム |
JP2017204110A (ja) * | 2016-05-11 | 2017-11-16 | 三菱電機株式会社 | 監視制御システムおよび制御装置 |
WO2018070548A1 (ja) * | 2016-10-14 | 2018-04-19 | 株式会社日建 | 濾過処理装置 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12099926B2 (en) | 2018-07-26 | 2024-09-24 | Mitsubishi Electric Corporation | Water treatment plant and method for operating water treatment plant |
JP2022025859A (ja) * | 2020-07-30 | 2022-02-10 | 株式会社明電舎 | 水処理施設の運転支援装置 |
JP7494631B2 (ja) | 2020-07-30 | 2024-06-04 | 株式会社明電舎 | 水処理施設の運転支援装置 |
WO2022163549A1 (ja) * | 2021-01-29 | 2022-08-04 | 栗田工業株式会社 | 推定装置、予測装置、制御装置、推定システム、予測システム、制御システム、推定プログラム、予測プログラム、制御プログラム、推定方法、予測方法及び制御方法 |
JP2022117306A (ja) * | 2021-01-29 | 2022-08-10 | 栗田工業株式会社 | 推定装置、予測装置、制御装置、推定システム、予測システム、制御システム、推定プログラム、予測プログラム、制御プログラム、推定方法、予測方法及び制御方法 |
JP7145375B2 (ja) | 2021-01-29 | 2022-10-03 | 栗田工業株式会社 | 推定装置、予測装置、制御装置、推定システム、予測システム、制御システム、推定プログラム、予測プログラム、制御プログラム、推定方法、予測方法及び制御方法 |
JP7286035B1 (ja) * | 2022-03-24 | 2023-06-02 | 三菱電機株式会社 | 水処理制御システムおよび水処理装置の制御方法 |
WO2023181276A1 (ja) * | 2022-03-24 | 2023-09-28 | 三菱電機株式会社 | 水処理制御システムおよび水処理装置の制御方法 |
JP7345917B1 (ja) | 2022-04-20 | 2023-09-19 | Wota株式会社 | 生物処理システム、生物処理装置、水浄化システム、生物処理方法及び水浄化方法 |
JP2023159764A (ja) * | 2022-04-20 | 2023-11-01 | Wota株式会社 | 生物処理システム、生物処理装置、水浄化システム、生物処理方法及び水浄化方法 |
Also Published As
Publication number | Publication date |
---|---|
US11649183B2 (en) | 2023-05-16 |
JPWO2020021687A1 (ja) | 2020-08-06 |
JP6764486B2 (ja) | 2020-09-30 |
US20210171383A1 (en) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020021687A1 (ja) | 水処理プラント | |
WO2020021688A1 (ja) | 水処理プラントおよび水処理プラントの運転方法 | |
El-Din et al. | A neural network model to predict the wastewater inflow incorporating rainfall events | |
Rastegar et al. | Online identification of Takagi–Sugeno fuzzy models based on self-adaptive hierarchical particle swarm optimization algorithm | |
Verma et al. | Predicting the total suspended solids in wastewater: a data-mining approach | |
Nasr et al. | Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT | |
Padmini et al. | Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models | |
Kang et al. | An intelligent virtual metrology system with adaptive update for semiconductor manufacturing | |
KR102440372B1 (ko) | 빅데이터 및 인공지능 기반의 하수처리시설의 유입수 환경 정보 관리 방법, 장치 및 컴퓨터-판독가능 기록매체 | |
Song et al. | Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model | |
JP6541913B1 (ja) | 水処理プラントおよび水処理プラントの運転方法 | |
JP2004025160A (ja) | 神経回路網及び逆転波アルゴリズムによる下排水処理人工知能制御システム及び方法 | |
Wei | Modeling and optimization of wastewater treatment process with a data-driven approach | |
Bloch et al. | Neural networks for process control and optimization: Two industrial applications | |
Alharbi et al. | Sliding window neural network based sensing of bacteria in wastewater treatment plants | |
Senn et al. | Reducing the computational effort of optimal process controllers for continuous state spaces by using incremental learning and post-decision state formulations | |
Ordieres-Meré et al. | Comparison of models created for the prediction of the mechanical properties of galvanized steel coils | |
Djeddou et al. | The use of a neural network technique for the prediction of sludge volume index in municipal wastewater treatment plant | |
JP4146610B2 (ja) | 濁度予測システム、濁度制御システムおよび濁度管理システム | |
Valgaev et al. | Adequacy of neural networks for wide-scale day-ahead load forecasts on buildings and distribution systems using smart meter data | |
Kemper et al. | Forecasting of residential unit’s heat demands: a comparison of machine learning techniques in a real-world case study | |
Li et al. | Including snowmelt in influent generation for cold climate WRRFs: comparison of data-driven and phenomenological approaches | |
JP2022015249A (ja) | 放流水質予測装置および放流水質予測方法 | |
Szeląg et al. | Sludge volume index (SVI) modelling: data mining approach | |
Vyas et al. | Artificial neural networks for forecasting wastewater parameters of a common effluent treatment plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018562682 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18927688 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18927688 Country of ref document: EP Kind code of ref document: A1 |