WO2020021516A1 - Dispositivo concentrador de fluencia de radiación ionizante, que focaliza electrones y fotones x adaptable - Google Patents

Dispositivo concentrador de fluencia de radiación ionizante, que focaliza electrones y fotones x adaptable Download PDF

Info

Publication number
WO2020021516A1
WO2020021516A1 PCT/IB2019/056419 IB2019056419W WO2020021516A1 WO 2020021516 A1 WO2020021516 A1 WO 2020021516A1 IB 2019056419 W IB2019056419 W IB 2019056419W WO 2020021516 A1 WO2020021516 A1 WO 2020021516A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic deflection
collimator
deflection
electron beam
Prior art date
Application number
PCT/IB2019/056419
Other languages
English (en)
French (fr)
Inventor
Rodolfo Gabriel Figueroa Saavedra
Original Assignee
Universidad De La Frontera
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De La Frontera filed Critical Universidad De La Frontera
Priority to US17/263,794 priority Critical patent/US20210287825A1/en
Priority to EP19840953.4A priority patent/EP3831446A4/en
Publication of WO2020021516A1 publication Critical patent/WO2020021516A1/es

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/093Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • H05H9/04Standing-wave linear accelerators
    • H05H9/048Lepton LINACS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/105Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using a laser alignment system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1089Electrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/045Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam bending
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/046Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam deflection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/10Medical devices
    • H05H2277/11Radiotherapy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators

Definitions

  • the present invention relates to the radiotherapy industry.
  • the present invention relates to a method and device that allows to concentrate the radiation of electrons and / or photons X in a given target, allowing to guide and locate the focus of dose concentration in a continuous and less invasive way, within a determined area, without the need to displace the patient, achieving an increase in efficiency to reach tumors that are difficult to access by reducing collateral damage to healthy organs.
  • External radiotherapy equipment that uses linear accelerators has different modalities and ways of applying radiation, be it electron or photon X, they are characterized by having different degrees of freedom, associated with mechanical devices, to achieve a higher level of dose concentration on a certain target or tumor.
  • XX photons the superposition of the radiation fields generated thanks to the movement of the gantry, the head and the treatment table is used, which implies a degree of freedom in rotation and 4 degrees of freedom due to the displacement of the treatment message, C, U, Z and rotation. That is, 6 degrees of freedom.
  • each field can change its shape and shape its intensity thanks to a multi-sheet device.
  • modulated intensity IMRT
  • step and shoot that is, one field is fired, positioned, then another is fired, and so on until all shots are completed with different positions, displacements and angles.
  • VMAT volumetric arc therapy
  • an external device or accessory is presented to the existing radiotherapy equipment and method, which allows two degrees of additional freedom to be delivered, to concentrate the focus of electrons or X-rays in a continuous and less invasive way at a certain point by the operator, without having the need to move the patient, thereby obtaining a higher concentration dual dose of electrons or photons X and a better arrival of said electrons or photons X to tumors of difficult access, and avoid radiation in unwanted places, which generate harmful effects to patients.
  • the present device does not require refrigeration systems.
  • the dose is concentrated to address various pathologies, such as, venous artery malformations, cysts, benign tumors, deep infections (bone), various ablations inside the human or animal organism, as well as concentrating radiation inside of a certain material.
  • the present device and method is able to capture the electron beam from a LINAC for clinical use, deflect it away from its optical axis or incidence line then close it which generates an S-shaped path that at its end points in the direction of the isocenter or focus. If this beam is impacted on a thin target of a high atomic number material, such as tungsten or tungsten "W” or lead "Pb", photons produced by Bremsstrahalung emitted preferentially towards the isocenter are produced, if these X-rays generated in the target, they are collimated by a collimator that points towards the same isocenter, a narrow beam of photons X is achieved in the direction of the focus, or “beamlef (thin parallel beam).
  • the “S” electron path is rotated with respect to the optical axis of the system with an angular velocity greater than 2p rad / s generating a cone of X photon radiation in which the rotating beamlet always points to the isocenter, and cuts the optical axis there.
  • This beamlet by rotating the system, produces the superposition, and consequent concentration of creep and dose in the isocenter zone.
  • the technical problem to be solved is the incorporation of a convergent device at the head outlet of a linear electron accelerator for clinical use (LINAC), with minimal intervention.
  • LINAC linear electron accelerator for clinical use
  • the present device and method has an efficiency and efficiency greater than those a form that maximizes production and a target (target) that does not need water cooling, it cools itself by air due to the rotating movement thanks to heat exchange conductive plates that surround the dissipating shield associated with the target.
  • Another feature of existing devices is that they can be built with X-ray mirrors, based on mono crystals and only reach about 50 keV, in this device it can have a higher energy range. Also starting from low energies. , for the generation of soft X-rays (20-50 keV) to ortho voltage voltages (100-500 keV). This last range allows for more penetrating X-rays and with a higher rate of production of X photons than those of the low energy range.
  • Conventional X-ray generators are formed by an electron emitting device and a point target which in turn is the anode, in the case of the present device it is essentially formed by three elements: an adaptation system to an electron source, a rotary electron deflection system, and a convergent collimation system (Figure 1)
  • An advantage of the electron deflector system of the present device is that deflection can be done through the use of permanent magnets of high intensity, generally the deflectors are conceived with electromagnets.
  • the magnets of the present device allow the electron beam to be deflected at a great angle near 60 ° to 90 ° or more, in a short distance, which is defined as less than 3 centimeters, allowing a large reduction in the dimensions of the device in the direction original beam. This fact is essential for the adaptation of the device at the head exit of a clinical LINAC and allows the incorporation of a patient despite the limited space from the head exit to the isocenter, 42 cm in one of the commercial devices and 48 cm for the other competitor.
  • Another advantage of this modality is that it is not necessary to operate the LINAC with an energy greater than 4 MeV because the maximum dose is more dependent on the geometry than on the energy, therefore the LINAC device to be used can work at its lower energy (4 or 6 MeV) during treatment, which prevents the generation of neutrons that appear at energies above 10 MeV, thus avoiding the peripheral dose generated by neutrons in healthy organs and a bunker with lower requirement of shielding, as well as a lighter device.
  • this device it is possible to apply this device to an even lower energy, of the order of 3 MeV, it is energy that is not used in the current accelerators that are configured to energies of 6, 9, 12, 15, 18 and 21 MeV , that is multiples of 3 and therefore potentially these accelerated could be set to 3 MeV, which makes this innovation a lighter and safer version.
  • this invention is a device that also has a series of other accessories that make it up, and themselves constitute inventions within the main invention, and the absence of external power makes the main version of what is proposed here represents a complete, compact and autonomous novelty characterized by a dual output of electrons and photons X. Although it can also conceive an option with electromagnets with conventional power supply and cable communication.
  • Figure 7 Main deflection system, and electron guide, with perspective A and side B views.
  • Figure 8 Structure of the main deflection system, and electron guide, with perspective views A and side B.
  • Figure 9 Deflection system with the second magnetic deflector embedded inside the head.
  • Figure 10 Deflection system without guide tube with sealed unit.
  • FIG. 12 White thin cylindrical disk with electron filter (19) inserted into the collimator tube (25) in perspective views (A), where the double arrow shows the displacement of the thin cylindrical white disk with electron filter (19 ), to leave the device in electron mode, when the thin cylindrical white disk with electron filter (19) is in the side compartment (90) or to leave the device in X photon mode, when the thin cylindrical white disk with filter electron (19) is in the collimator septum or when the electron beam hits the thin cylindrical white disk with electron filter (19) and detail (B) of the thin cylindrical white disk with electron filter (19).
  • FIG. 13 Collimator with heat sink with built-in filter white (19) with concentric conductive cylinders (82), septa tube (83), septa (84), material attenuation (85) plus heat dissipation rings (86), preferably made of materials with thermal conductivity such as aluminum, copper, boron, among others, in perspective views (A) and axial section (B).
  • FIG. Detail of mobile target area with section views of Figure 1 (A) and zoom (B).
  • FIG. 16 Detail of a fixed target in the tunnel of collimator A and at the exit of head B with conical collimator.
  • FIG. Head shield with perspective views (A) and axial section (B).
  • Figure 18 Device with focus control electron version with fixed focus, with perspective (A) and side (B) views.
  • Figure 19 Device with focus control version electrons or photons X with fixed focus, with perspective views (A) and side (B).
  • Figure 20 Device with electron version focus control, with focus modification through radial displacement for radius modification, with perspective (A) and lateral (B) views.
  • Figure 21 Device with focus control version electrons or photons X, with focus modification through radial displacement for radius modification, with perspective (A) and lateral (B) views.
  • Figure 22 Device with electron version focus control, with focus modification through the variation of the convergence angle, with perspective (A) and lateral (B) views.
  • Figure 23 Device with focus control version electrons or photons X, with focus modification through the variation of the convergence angle, with perspective (A) and lateral (B) views.
  • Figure 24 Device with electron version focus control, with focus modification through the convergence angle variation and with focus modification through radial displacement, with perspective (A) and lateral (B) views.
  • Figure 25 Device with focus control electron or X photon version, with focus modification through the variation of the convergence angle and with focus modification through radial displacement, with perspective (A) and lateral (B) views .
  • Figure 26 Connection to external energy by ring and brushes.
  • FIG. 27 Counterweight support with compartments for the control electronics of the device's motors, wireless communication device and battery.
  • Figure 28 Diagram of the communication and control system.
  • Figure 30 Permanent magnet of oblique incidence (A: isometric view, B: front view, C: rear view and D: view of an exploded view in isometric).
  • Figure 31 Permanent holder of one piece or monoblock
  • Figure 32 Detail of permanent magnet magnetic quadrupole.
  • FIG. 33 Detail of a circular magnetic dipole with permanent magnet focus.
  • Figure 36 Diagram of deflection with magnets if deflection elements, with cuts (A), both inclined with entry and exit on the same faces (B) and equal to the previous one with focus cut (C).
  • Figure 37 Outline 2D scan scan scheme for off-axis dose painting.
  • Figure 38 Device with electron output with extender element (79), which minimizes the dispersion in the air of electrons.
  • Figure 39 Device, with fixed electron output; with fixed output (A) and with lateral displacement and variable angle (B)
  • Figure 42 Laser guides for calibration and visualization of the rotating beam.
  • the device consists of the following main parts:
  • the invention consists of the following: a coupling means (A) by which the accelerator electrons enter, this coupling means is basically a tray (1) that fits in shape and means to which each brand or model is currently used Accelerator, also has cavities and a central hole with window (6). It is followed by a rotation device (B) whose central axis (5) is hollow and is fixed to the coupling means by means of fixing (4) such as bolts, so that the electrons can enter, the motor (8) and the pulleys (9) are fixed in the cavities of the coupling means.
  • the deflection system (C) consisting of a rotating structure (17), thanks to the previous rotation device;
  • This system that deflects and aligns the electron beam is formed by two magnetic deflectors with high intensity permanent near 1 T, the first (13) opens the electron beam and the second closes it (14).
  • the electrons that emerge from the second deflector with focal direction as shown in Figure 1 and Figure 2.
  • electrons may or may not impact on a thin white metallic disk (19a) with a high atomic number, greater than 50, insert to a metallic cylindrical heatsink and electron filter (19b) for thermal dissipation (D);
  • the impact of electrons generates X-rays, mainly in the focal direction of the system.
  • a collimation and shield system (20) (E) allows electrons or X-rays generated in the white disk to be collimated in the direction of the focus and the rest is absorbed by the shield. So you will have a narrow net beam of electrons or photons XX (beamlet) emerging from the collimator output (25) in rotation, with variable turning radius and always pointing towards a focal point similar to that achieved with a converging beam of photons X , but in this case it is a single beamlet in a dynamic mode.
  • the position of the focal point can be modified thanks to a focus control system and scanning (F), this is modified thanks to the movement of the second magnet in conjunction with the coordinated movement of the collimator; beam dosimetry
  • the collimator emergent is measured by a set of ionization chambers and also has or more laser light sources that point to the focus (G).
  • a software controls all the parameters and operating modes of the device (H). The detail of each of these parts is described below.
  • the coupling and entry means of the electrons is formed by a metal plate (1) of similar characteristics to the coupling means that each device already has according to its brand, as shown in Figure 3, the adjusted coupling and entry system to a type of commercial device and in Figure 4 the one used by another commercial brand and in general this coupling means is the same, so it can be adapted with minor modifications of size and shape according to the brand used. It also has cavities (a, b) and a central hole and holes with wires to be able to anchor to the rotation device by bolts.
  • the main version of the rotation device is attached by means of fastening means (4), such as bolts, to the coupling and entry means of the electrons (A) consists of a set of pieces formed by: a central axis (5) is hollowed out that allows the rotation of the system, entrance window (6), and the passage of electrons, with bearings (3) to facilitate and fix the rotation, with a support to the central axis (2) that allows to contain the bearings, with a gear (7) that is part of the central shaft, a coupling flange (8) that allows fixing to the deflection system (503), a gear belt (9) that connects to the gear motor (10) through a pulley with gears (11), which is tensioned by another pulley (40) with shaft that can slide through the rail (41) into a groove that is fixed by a screw (42).
  • fastening means (4) such as bolts
  • Another preferred configuration of the rotation device described above is based on the fact that it goes above the coupling device (A), however, this option implies that the LINAC exit window must be removed, or replaced by another that can be retracted in Concentration mode this option. It implies a greater intervention however there is a better use of the available space, gaining about 8 cm of space between the exit and the isocenter.
  • Another preferred configuration of the rotation device described above is based on an adaptation of the head rotation system of the LINAC itself. Like the previous case, the rotation system is above the coupling device (A) and the deflection system is practically glued to the latter. However, the LINAC exit window must be removed or replaced by another that can be retracted in the concentration mode.
  • the main version consists of two permanent deflector magnets and two permanent magnetic quadrupole and / or focusing dipoles, the first one is a fixed deflector magnet that opens the beam (13) and goes obliquely to the direction of the incident beam of Electrons at the exit of this is a quadrupole magnetic device (15) that aligns the output beam, also built with permanent magnets.
  • the electrons are conducted through a tube of non-magnetic material in the form of S (16) to the vacuum that passes through the different devices, entering through the first deflector magnet until it exits the quadrupole (18) at the exit of the second deflector magnet. See Figure 7.
  • the structure on which the deflection system is mounted has a clamping ring with holes (43) that joins the coupling flange (8) of the rotation system shown in Figure 8.
  • FIG 34 A scheme of a base deflection configuration with the two deflectors with the permanent magnets and the beam correction elements is shown in Figure 34. This beam correction can also be performed by cutting on one or more faces of the base magnets, as shown in Figure 35 and Figure 36 A.
  • Figure 36 B and 36 C A schematic configuration without the correction elements of the electron beam with magnets with and without cuts is shown in Figure 36 B and 36 C.
  • Another preferred configuration of the deflection system described above is with sealed outer housing (34) with the two magnets inclined, with the first magnet at 45 ° inclination for 90 ° output of this magnet, in sealed environment such as the one shown in Figure 9.
  • deflection system Another preferred configuration of the deflection system described above is with an outer casing with the two inclined magnets and armored head attached to it. deflection system with the second magnetic deflector embedded inside the head
  • Another preferred configuration of the deflection system described above has a fixed S-shaped guide tube Figure 11 A.
  • Another preferred configuration of the deflection system described above has an extendable S-shaped guide tube Figure 11 B.
  • Another preferred configuration of the deflection system described above has an extendable and flexible S-shaped guide tube Figure 11 C.
  • This system consists of a thin disk (26) of a light thermal or thermal conductor material Cu or Al, Figure 12 A and B which goes inside the collimation tube Figure 13 A, which is made of several concentric cylinders of different conductive metals (84) and photon attenuators X (87), with a system of circular thermal conductor vanes (82) adhered to the external part of the collimator Figure 13 B and in turn this is connected by a coupling (83) to the structure of the armored head of the rotating deflection system at the exit of the electron beam of the second collimator Figure 10
  • This disk is the white filter (19) where the electrons impact and there X-rays are generated due to the predominantly Bremsstrahlung effect.
  • An adequate combination of the thickness of the target material, its high atomic number and the energy of the electrons will allow the generation of photons X mainly in the direction of incidence and the removal of the disk will allow the exit of electrons
  • Figure 12 A shows the internal part of the collimates and a zoom (B) to which a detail of how the whole of the invention goes in the part where the X-rays are generated are generated, the electrons are screened and They collide.
  • the impact of the electrons on the target generates heat, although they must travel a greater distance and pass through the baffles that expand the beam and degrade it in most X-ray equipment including the LINAC, the heat generated in a small area of the order a dozen square millimeters in the impact zone, which is necessary to extract from there by means of a water cooling system.
  • the target is a ring inserted in a thin disk of a conductive material, of high atomic number greater than 50 (W) all this thermal energy is conducted and distributed in a much larger area through the rings heat exchangers, the water cooling and therefore heat can be extracted by circulating air, due to the movement of the device thanks to the rotary system.
  • This collimation and shielding system (F) is formed by a cylindrical collimator (25) similar to the one used in stereotactic radiosurgery adjusted to lower energy of LINAC operations (6 MeV), since for larger energy larger size is required . That is, the dose concentration mode is recommended at the lowest operating energies of the LINAC. In this way, less powerful magnets are required to perform beam deflection and less shielding, all this translates into cost and space.
  • the collimator has an internal channel or septa (85) (54) Figure 13.
  • the change mechanism consists of a piece that contains the filter blank (94) within a small cavity (95) of approximately 1 cm 3 next to the septum, the piece of the filter blank is attached to a spring (96) in the proximal end which, in turn, the spring is joined by a pin (97) in its other distal, which can move along a curved hole (98), and is fixed at its end by a lock (99).
  • a white disk filter is that it is located inside the septa Figure 16 A.
  • a white disk filter is that it is located at the exit of the armor head of the second magnetic deflector and uses a conical shield collimator Figure 16 B
  • FIG. 17 Another preferred configuration for output of electrons and photons X requires a shield (20) like the one shown in Figure 17, which has a conical rectangular input channel (89), an input coupling means (90), an inlet coupling seal (91) an outer shell (92), an outlet tube (92), an outlet channel (93) and a coupling means for the collimator (94).
  • This system allows to vary the position of the concentration point of the X radiation or focus, although by default this focus is located in the isocenter of the LINAC.
  • the movement of the focus around the isocenter makes it possible to sweep the dose inside the tumor, better known as the "dose painting" technique that is not used in this type of accelerator, but thanks to this invention it is possible to carry out.
  • a preferred configuration without focus control, for electrons in this option the parts are fixed without displacements or rotations, is the simplest version of the invention, as shown in Figure 17.
  • the control or sweep by the focus is performed by movements of the object to be irradiated, for example, moving a stretcher with the patient to be treated.
  • Another preferred configuration is focus control with fixed angle of convergence of electrons, in this configuration it is possible to achieve displacement of the focus by moving the magnet 2 (14) linearly (away or near) with respect to the axis of rotation, the displacement is made when driving a motor (12), where the displacement is along the line of the path of the electrons that is established after passing the magnet 1 (13). This movement is made with deflector 2 (14) in solidarity with the collimator (25), as shown in Figure 19.
  • Another preferred configuration is focus control with fixed convergence angle of electrons or photons X, which corresponds to a dual configuration, in this configuration it is possible to achieve focus displacement by linearly moving (moving away or near) the magnet 2 (14) with respect to the axis of rotation, the displacement is carried out by driving a motor (12), where the displacement is along the line of the path of the electrons that is established after passing the magnet 1 (13). This movement is made with deflector 2 (14) in solidarity with the collimator (25), as shown in Figure 20.
  • Another preferred configuration is focus modification with fixed incidence angle, it is equal to the previous one plus beam correction elements, quadruples and dipoles, not shown in the figures.
  • Another preferred configuration is focus modification with displacement and variable angle: with electron output, in this configuration it is possible to achieve displacement of the focus by angularly displacing the magnet 2 (14) with respect to the axis of rotation, the displacement is performed by driving three step motors step by step, where the magnet 2 (14) is moved by the drive of the first angular motor (22), the angular displacement of the collimator (25) by means of the second angular motor (22a) and with a linear movement, through the linear motor (22L), as shown in Figure 21.
  • Another preferred configuration is focus modification with variable displacement and angle and linear displacement of the focus, where this configuration is possible to achieve focus displacement by moving the magnet 2 (14) linearly (moving away or near) with respect to the axis of rotation, the displacement It is carried out by driving a motor (12), where the displacement is along the line of the path of the electrons that is established after passing the magnet 1 (13), together with the displacement of the focus by angularly shifting the magnet 2 (14) with respect to the axis of rotation, the displacement is made by driving three stepper motors, where the magnet 2 (14) is moved by the first angular motor drive (22), the angular displacement of the collimator ( 25) by means of the second angular motor (22a) and with a linear movement, through the linear motor (12), as shown in Figure 21.
  • Another preferred configuration is a change of focus with displacement and variable angle: with dual output, electrons or photons X.
  • This option adds to the previous one the ability to rotate the magnet 2 with a motor (53) and the collimator (25), in addition to those of displacement.
  • This option is the most complete and in turn more complex and uses at least four stepper motors, as shown in Figure 22.
  • Another preferred configuration is focus modification with offset and variable angle: it is equal to the previous one plus beam correction elements, quadruples and dipoles.
  • Another preferred configuration for achieving a 2D scan of the focus is achieved by a combined movement between the rotation and the angle of exit of the rotating beam in each rotation Figure 37.
  • Another preferred configuration to perform a 3D scan of the area of interest contemplates the application of the rotating beam, either of electrons or X photons, with focus off-axis as shown in Figure 33. This mode is achieved through the controlled angular movement of the second deflector and collimator.
  • FIG. 20 Another preferred configuration of focused irradiation is by rotation with variable radius, helical movements of the rotating beam in this way, an area of greater radiation input and greater concentration in the focus is achieved Figure 20.
  • the dosimetric monitor system consists of two gas ionization chambers with thin aluminized windows, these go to the outlet of the collimator, which, like conventional equipment, allows monitoring the radiation intensity delivered by the device see Figure 37 in addition to this there are two or more laser guides that point to the focus. (Figure 38).
  • the system as a whole is controlled by software that establishes the operating conditions in conjunction with the LINAC operation coordinated the different modes of operation according to the treatment plan that is established.
  • the angular speed of rotation are controllable stepper motors, the braking of electrons, the position of the focus and the angle of the cone of rotation.
  • wireless is via bluetooth
  • this last option is simpler from the mechanical point of view, since it introduces an electronic communication element without physical connectors with respect to the previous option.
  • batteries can be used that can be housed in a compartment (31) located on the arm (30) of the rotation device that supports the counterweight (34) Figure 27.
  • the power to power the motors found in the rotating unit can be directly managed by an external source through a rotary connector (58), which can be “brushes” Figure 26 that connect to two rings conductors (59) that are concentric and surround the coupling means (A).
  • an external software for general operation mode control changes the mode of operation allowing the electron dispersion sheet to be removed, so that the electron beam passes freely by air, which will generate a slight braking of the order of 2% to 5% and dispersion of electrons that reduces creep by 8% to 10%, for a LINAC of 6 MeV, in a standard model of a manufacturer This slight reduction is not significant with respect to the beam at the output of the waveguide reduction of the dispersion sheet Figure 24.
  • Another preferred configuration of the device has a unit for the braking of electrons (61), this allows to add rapid radiation cuts in certain angular positions that follows the first quadrupole which is quick to activate. It has sheets, one or more, metal (62) that close and open magnetically or with one more stepper motors (63) of fast action Figure 25.
  • Permanent magnets of high intensity and in the form of parallelepipeds of reduced dimensions of 2.5 x 2.0 x 5.0 cm were used (the shape and dimensions of the magnets are only referential and can be different) with a surface field of 0.6 Tesla, however, for a spacing of 10 mm and a length of 2 cm requires a field close to 1T to have a deflection at the exit of the magnets close to 90 °. This requirement is impossible to achieve in traditional configurations that use iron and between iron as a field zone.
  • Figure 27 shows a permanent monoblock magnet holder for placing the permanent magnets of the magnetic baffles.
  • Figure 28 shows the magnetic quadruple detail of permanent magnets that are used in this proposal and
  • Figure 29 shows the detail of a circular magnetic dipole with a permanent magnet focus.
  • Weight and dimensions are determined by the size and energy of the external radiotherapy equipment to which it could be adapted as to the operating energy, typically 6 MeV is a very common energy used in the different types of known accelerators, but it is also possible to work with energy lower than 4 MeV, this allows to reduce the weight with respect to a device working at 6 MeV. For a 6 MeV device a weight of about 50 kg has been estimated and for a 4 MeV, this weight could be reduced about 40 kg, for the smaller amount of material destined to the shield.
  • the outer diameter of the device ranges from 85 to about 30 cm in diameter and approximately 20 cm long, depending on the outside diameter of the LINAC head of the company under consideration.
  • All these dimensions include the armor that must be used in the target area and its weight only varies depending on the energy according to what is indicated above.
  • Another element that also adds weight to the device is the collimator, the size of this unit is dependent on the energy to be used and its length varies between 4 and 6 cm for 4 and 6 MeV, respectively.
  • the size and weight can be further reduced if the LINAC's operating energy can be reduced below 4 MeV and the operating principle and ways of controlling the rotating beam, remains the same as described in the previous cases, for all The options described.
  • This invention consists of an ionizing radiation fluency concentrator device (500) of variable focus adaptable to a high energy electron source of an external radiotherapy device with linear accelerator, to focus and guide the focus in a continuous and less invasive manner, within a given area, which includes:
  • an electron deflection system (503) that is in the inner structure (102), wherein the deflection system (503) comprises, a first and a second magnetic deflection device (13, 14);
  • a focus control system which is in the electron deflection system (503), comprising an electronic control system (31) that controls a set to the motors (12, 22) that generate coordinated displacements of the second device of magnetic deflection (14), a correction element and a collimator (25), which allow to change the position of the focal point; Y
  • the coupling structure is a tray (1) with fasteners adapted to the LINAC.
  • the rotation device comprises; bearings (2) or bushings, a gear belt (9) connects a reduction motor (10) with the central shaft gear (7) that is fixed to the coupling structure by bolts (4), the gear belt ( 9) is tensioned by another pulley (40), with a sliding shaft to a rail groove (41), which is fixed by bolts or screws (42).
  • the rotation device is completely constructed with gears (11), (9) which are connected directly to the reduction motor (10) with the central gear (7), where the gear (7) is part of the central axis (5), where the mechanism of the rotation device is placed above the coupling device.
  • the electron magnetic deflection system (503) is formed by a first magnetic deflection device (13) that deflects the electron beam between 60 ° and 100 ° with respect to the direction of the incident electron beam and a second magnetic deflection device (14), of inverse polarity to the first magnetic deflection device (13), diverts electrons to a focal point located on the optical axis, which comprise magnets that have a joint intensity between 0.3 T and 1, 2 T, where the entire magnetic deflection system (503) is fixed to a support structure (17), where electron beam correction elements (504).
  • each magnetic deflection device is positioned a magnetic quadrupole path alignment (15, 18) of the path electron beam (18) and / or dipole (74) that aligns the electron beam.
  • the output of the first magnetic deflection device (13) and / or in front of the first quadrupole (15) is positioned at least one magnetic dipole (74) that focuses the path of the electron beam.
  • the output of the second magnetic deflection device (14) is positioned a magnetic dipole (74) that focuses the path of the electron beam, where the deflection system (503) goes in an outer shell (45) under vacuum, which adapts to the configuration of the magnets, where the first magnetic deflection device (13) is connected to the entrance wall of the box perpendicular to the incident electron beam and the second magnetic deflection device (14) is inclined to more than 0 or , clockwise, with respect to the first deflection device (13).
  • the magnetic deflection devices (13, 14) are inclined so that electron beams emerge from the first magnetic deflection device (13) and deviate in an angle close to 90 °, where the magnetic deflection devices (13, 14) are constructed with permanent magnets (64).
  • the magnetic deflection devices (13, 14) are constructed with electro magnets, where each magnetic deflection device (13, 14) is formed of two magnets (64), where each magnet has an intensity with a magnetic field between 0.2 T and 0.7 T located facing their opposite poles on their polar faces, a non-magnetic lateral support bracket (65), with an elongated hole in the central area, allows the magnets to be positioned (64) thanks to some projections that prevent them from coming together; C-shaped field closure element (66), located on the sides of the magnets, close the magnetic circuit.
  • each of the magnetic deflection devices (13, 14) has a non-magnetic piece with a non-magnetic support with central support (67), so that when the electron beam enters laterally through the area of the central hole of the minus one of the magnetic deflection devices (13, 14) the beam leaves the same face where it entered.
  • quadrupoles (15, 18) manufactured with permanent magnets are used.
  • the at least one dipole (74) is manufactured with permanent magnets.
  • the electron beam correction elements (504), comprise quadrupoles (18) and magnetic dipoles (74) based on permanent magnets.
  • the magnetic deflection devices (13, 14) have an intensity greater than 0.5 T, in another more preferred configuration the magnetic deflection devices (13, 14) have an intensity greater than 1 T.
  • the shape of the pair of permanent magnets that make up the magnetic deflection devices (13, 14) are curved and irregular cuts on one of their faces (77, 78).
  • the magnetic deflection devices (13, 14) have at least one curved field closure element (94), which also comprise at each of its distal ends a curve.
  • the magnetic deflection devices (13, 14) are electrically energized by means of a rotary contact (58) connected by conductive rings (59) which are connected to the electrical terminals of the external radiotherapy device head, in addition It has a non-magnetic S-shaped vacuum electron tube (16) with windows (68) at its ends.
  • the windows (68) are made of beryllium, since it is a lightweight material.
  • the windows (68) are heat conductive.
  • the beam guide has an S-shaped tube (69) or it has a telescopic (70) and cylindrical S-shaped tube or it has a flexible and telescopic tube (72).
  • the focus control system comprises magnetic deflection devices (13, 14) that are fixedly attached to a support structure (17).
  • the focus control system comprises a first stepper motor (12) that moves the second magnetic deflection device (14) along a rail (61) of the second magnet by linearly displacing the second magnetic deflection device (14) with respect to the axis of rotational along the line of the path of the electron beam, where the second magnetic deflection device (14) is joined in solidarity with the collimator (25).
  • the focus control system comprises a second magnetic deflection device (14) rotated by the drive of a second angular motor (22) and the collimator (25) moves angularly by means of a second motor angular (22a) and moves linearly by means of a linear motor (22L) and the collimator rail (21).
  • the focus control system comprises a first stepper motor (12) that moves the second magnetic deflection device (14) along a rail of the second magnet (61) linearly displacing the magnetic deflection device ( 14) with respect to the rotational axis along the line of the path of the electron beam, where the second magnetic deflection device (14) rotates, by the drive of a second angular motor (22) and the collimator (25 ) moves angularly by means of a second angular motor (22a) and moves linearly by means of a linear motor (22L) and the collimator rail (21).
  • the collimator (25) comprises:
  • the collimator (25) also comprises displacement means (89) that transfer the white filter disk (19) to one of its two positions, which are in the side compartment (90) to allow free passage of the electrons or the septa (84) to generate X photons.
  • the heat sink (87) is manufactured with materials with thermal conductivity such as aluminum, copper, boron, tin or titanium or brush or alloy thereof.
  • the heat sink (87) also comprises concentric cylinders (82) that transmit the heat homogeneously, to the outside.
  • the heat sink (87) also comprises dissipation rings (86) to dissipate heat outwards.
  • the displacement means (89) are actuated by manual means, such as a pin (92) that travels through the curved groove (91) and is returned by a spring (90).
  • the travel means (89) are driven by a motor and a wired or wireless communication means.
  • the white of the white disk filter (19) is made of tungsten or lead or silver or gold or tin, or alloys thereof.
  • an external fan to improve thermal dissipation.
  • an armor system (507) comprising a head armor (20) that completely covers the second magnetic deflection device (14), which prevents leakage of X photon radiation.
  • a counterweight (505) and control system comprising a counterweight support (26), a stepper motor counterweight (28), a counterweight (30), wireless communication means, a communication compartment wireless (31) with a control compartment (29) for stepper motor control, and battery compartment (27) that powers all the devices that are rotating.
  • the electron deflection system (503) is in an open environment.
  • a first operation control controls the operation of the LINAC to enable the operation plan
  • a second control for control the rotation speed and stepper motors that allow the variation of the focus position and the device that cuts the electron beam.
  • the collimator (25) comprises at its distal end an extension element (79), for the output of electrons that minimizes the dispersion in the air of said electrons.
  • a dosimetric system (85) monitor which is located at the bottom of the collimator (25) comprising two gas ionization chambers (80) with aluminized windows, to monitor the intensity of radiation delivered by the device (500).
  • the lower part of a support structure (17) at least two laser guides pointing towards the focus are attached.
  • White disk / filter 19a White disk for impact of electrons; 19b Electron filter and heat sink.
  • Electron beam correction elements 504. Electron beam correction elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

Un dispositivo concentrador de fluencia de radiación ionizante (500) de foco variable adaptable a una fuente de electrones de alta energía de un dispositivo de radioterapia externa con acelerador lineal, para focalizar y guiar el foco de manera continua y menos invasiva, dentro de una zona determinada, que comprende: una estructura de acople que une al dispositivo de radioterapia externa con acelerador lineal con una estructura exterior (101 ), cuyo eje central (5) es hueco con una ventana (6) de entrada por el cual ingresan los electrones y medios anclaje para adosarse al dispositivo de rotación mediante medios de sujeción (4); un sistema de rotación que se une a la estructura de acople con una brida de acople (8) hace girar una estructura interior (102); un sistema de deflexión (503) de electrones que está en la estructura interior (102), en donde el sistema de deflexión (503) comprende, un primer y un segundo dispositivo de deflexión magnética (13, 14); un sistema de control de foco, que está en el sistema de deflexión (503) de electrones, que comprende un sistema electrónico de control (31) que controla un conjunto a los motores (12, 22) que generan desplazamientos coordinados del segundo dispositivo de deflexión magnética (14), un elemento de corrección y un colimador (25), que permiten cambiar la posición del punto focal; y al menos dos diodos láser (74) ubicado en el borde del colimador (25) apuntando hacia el foco permitiendo determinar la posición de haz de electrones generado.

Description

DISPOSITIVO CONCENTRADOR DE FLUENCIA DE RADIACIÓN IONIZANTE, QUE FOCALIZA ELECTRONES Y FOTONES X ADAPTABLE
MEMORIA DESCRIPTIVA
CAMPO DE LA INVENCIÓN
La presente invención se relaciona con la industria de la radioterapia. En particular, la presente invención se relaciona con un método y dispositivo que permite concentrar la radiación de electrones y/o fotones X en un determinado blanco, permitiendo guiar y localizar el foco de concentración de dosis de manera continua y menos invasiva, dentro de una zona determinada, sin tener la necesidad de desplazar al paciente, logrando un aumento de la eficacia para alcanzar tumores de difícil acceso reduciendo los daños colaterales en órganos sanos.
DESCRIPCIÓN DE LO CONOCIDO EN LA MATERIA
Los equipos de radioterapia externa que utilizan aceleradores lineales poseen diferentes modalidades y formas de aplicar la radiación, ya sea ésta de electrones o fotones X, se caracterizan por poseer diferentes grados de libertad, asociados a dispositivos mecánicos, para lograr mayor nivel de concentración de dosis en un determinado blanco o tumor. Para ello, en el caso de fotones X X, se utiliza la superposición de los campos de radiación generados gracias al movimiento del gantry, del cabezal y de la mesa de tratamiento, lo que implica un grado de libertad en rotación y 4 grados de libertad debido al desplazamiento de la mensa de tratamientos, C,U,Z y rotación. Es decir, 6 grados de libertad. A esto debe agregarse que cada campo puede cambiar su forma y modelar su intensidad gracias un dispositivo de multi láminas.
Cuando sólo se conforma el contorno de los campos a ser utilizados y se realizada la superposición de éstos se denomina radioterapia 3D, y aún ésta sigue siendo una de la más utilizada hasta la fecha de presentación de la presente solicitud.
Si además de conformar los contornos de los campos, se modula la distribución de las intensidades en la sección del campo abierto, esta modalidad se le denomina intensidad modulada o IMRT, y hoy en día es una técnica que cada vez es más utilizada en diferentes centros de radioterapia del mundo.
Todo lo anterior, se hace en forma de paso y disparo ( step and shoot) es decir: se dispara un campo, se posiciona, luego se dispara otro, y así sucesivamente hasta completar todos los disparos con diferentes posiciones desplazamientos y ángulos.
Todo esto, también hoy en día, puede ser llevado con sistemas de imágenes en vivo que permiten ver lo que se está tratando, es decir, radioterapia con imagen guiada i y además con intensidad modulada (IGRT) y el estado del arte en esta área podría calificarse como conceptualmente similar a lo anterior, pero en movimiento continuo o dinámico y está empezando a ser utilizado en muchos de los centros más avanzados de radioterapia del mundo como una de las técnicas más modernas hasta ahora y se le conoce como terapia de arco volumétrico (VMAT). Por otro lado, los equipos ya no están utilizando los filtros aplanadores de campo, ya que ahora diferencias en fluencia pueden corregirse computacionalmente y con las multi láminas, de modos que los equipos más modernos hacen VMAT y permiten además una mayor entrega de dosis, por tiempo de tratamiento, a fin de acortar la duración de éstos tratamientos.
Todo lo anterior significa que a medida que las técnicas evolucionan, se obtiene una mejora en la distribución de dosis depositada en el tumor logrando que esté mejor conformada y distribuida y con una mayor concentración de dosis en el tumor y con un menor daño en los órganos de riesgo.
Por otra parte, los modernos equipos de radioterapia actualmente permiten además realizar aplicaciones de pequeños campos y tratar a múltiples blancos de tamaño reducidos o metástasis en forma simultánea.
A juzgar por lo expuesto, los equipos de radioterapia externa tradicionales han llegado a un altísimo nivel tecnológico y no se visualizan nuevos y significativos desarrollos como los que han marcado su evolución, sin embargo, aún es posible seguir mejorando la manera en que se aplican los tratamientos de forma tal que sean menos invasivos, más eficaces y aun con menos efectos secundarios.
Existen diversas patentes relacionadas al desvío de haces de electrones, como por ejemplo la US6181771 B1 , que presenta una fuente de rayos X si bien es cierto tiene un emisor para la producción de un haz de electrones y un ánodo en el que el haz de electrones incide en un punto focal de rayos X o eje óptico, y un sistema basado en campos magnéticos que produce un campo dipolar y un campo cuadrupolar, que en conjunto actúan para desviar y enfocar el haz de electrones en el target (blanco) o eje óptico sin embargo esta patente de Los Estados Unidos de América no soluciona el problema técnico de focalizar y guiar los rayos-X generados en el target, en resumen es muy diferente a la planteada y no concentra a los rayos-X, como la planteada en esta invención .
SOLUCIÓN AL PROBLEMA TÉCNICO y APLICACIONES
Para subsanar el problema planteado, se presenta un dispositivo o accesorio externo al equipo de radioterapia ya existente y método, que permite entregar dos grados de libertad adicional, para concentrar el foco de electrones o rayos X de manera continua y menos invasiva en un punto determinado por el operador, sin tener la necesidad de desplazar al paciente, obteniendo con ello una mayor concentración de dosis dual de electrones u fotones X y una mejor llegada de dichos electrones o fotones X a tumores de difícil acceso, y evitar la radiación en lugares no deseados, que generan efectos nocivos a los pacientes. Además, el presente dispositivo, no requiere de sistemas de refrigeración.
Con el presente dispositivo se concentra la dosis para abordar diversas patologías, tales como, mal formaciones artereo venosas, quistes, tumores benignos, infecciones en profundidad (óseas), ablaciones diversas al interior del organismo humano o animal, así como concentrar radiación en el interior de un determinado material.
En su versión de concentrador de electrones, logra concentrar radiación en tumores superficiales (melanomas) o angiomas y hacer un pintado de dosis en dichos tumores (dose painting), eliminándose de esta forma la necesidad de usar aplicadores de electrones basados en molduras de Cerrobend (metal de bajo punto de fusión usados en radioterapia principalmente).
DESCRIPCIÓN GENERAL DE LA INVENCIÓN
El presente dispositivo y método es capaz de captar el haz de electrones proveniente de un LINAC de uso clínico, deflectarlo alejándolo de su eje óptico o línea de incidencia luego cerrarlo lo cual genera una trayectoria con forma de S que en su extremo apunta en la dirección del isocentro o foco. Si este haz se hace impactar en un blanco delgado de un material de número atómico alto, tal como el Wolframio o tungsteno“W” o el plomo“Pb” se producen fotones X por Bremsstrahalung emitidos preferencialmente hacia el isocentro, si estos rayos X generados en el blanco, son colimados por un colimador que apunta hacia el mismo isocentro, se logra un haz de fotones X estrecho en la dirección del foco, o“beamlef (haz paralelo delgado). La trayectoria en forma de“S” de electrones se hace rotar respecto del eje óptico del sistema con una velocidad angular mayor que 2p rad/s generando un cono de radiación de fotones X en el que el beamlet rotante apunta siempre al isocentro, y corta el eje óptico allí. Este beamlet, al rotar el sistema, produce la superposición, y consecuente concentración de fluencia y dosis en la zona del isocentro.
Al aplicar este cono de radiación, producido en forma dinámica por el beamlet rotante a un maniquí de agua (cubo de agua que simula al tejido humano), de modo que la zona del isocentro del cono de rotación quede en el interior de éste, estudios previos (1 , 2) han demostrado que se alcanza un depósito mayor de dosis en el isocentro y bajos niveles de dosis en la zona de entrada del cono de radiación, similar al efecto logrado con el dispositivo de haz convergente patentado por este mismo autor (3). La diferencia fundamental de esta innovación, respecto de la anteriores, radica en la forma en la que se logra el control del haz de electrones y la gran capacidad de adaptabilidad del presente dispositivo a los equipos ya existentes, generando un accesorio de gran utilidad y bajo consumo, ya que se suma su capacidad todas las beneficios de los equipos existentes, al concentrar la dosis aún más en el tumor y disminuirla aún más en los tejidos sanos, resaltando así lo que se aporta con un elemento nuevo, que será de gran interés comercial para las empresas competidoras.
Aunque hoy en día existen diversos dispositivos comerciales de rayos- X de haces divergente esencialmente, y existen otros dispositivos convergentes de rayos X, capaces de generar un haz aproximadamente convergente gracias a dos mecanismos principales; uno de ellos mediante un sistema formado por un conjuntos de espejos multicapas circulares cónicos concéntricos, otros gracias a pequeñas refracciones en materiales (reflexión total interna, posible para energías en torno a 50 keV) metálicos que pueden generar una pequeña deflexión, todo ellos de baja energía muy por debajo de las que se utilizan en los aceleradores lineales, ni son adaptables a un LINAC ni logran solucionar el problema técnico planteado.
El problema técnico a resolver es la incorporación un dispositivo convergente en la salida del cabezal de un acelerador lineal de electrones de uso clínico (LINAC), con mínima intervención.
A diferencia de lo conocido en el arte previo, el presente dispositivo y método posee una eficiencia y eficacia mayor que aquellos una forma que maximiza la producción y un blanco (target) que no necesita refrigeración por agua, éste se auto enfría por aire debido al movimiento giratorio gracias a unas placas conductoras intercambiadoras de calor que circundan el blindaje disipador asociado al blanco. Otra característica de los dispositivos existentes, es que éstos pueden construirse con espejos de rayos X, en base a mono cristales y sólo llegan a unos 50 keV, en el presente dispositivo puede tener un rango de energía más alto Igualmente partiendo también desde las energías bajas, para la generación de rayos X blandos (20-50 keV) hasta energía de orto voltajes (100-500 keV). Este último rango, permite rayos X más penetrantes y con una mayor tasa de producción de fotones X que los del rango de baja energía.
Los generadores de rayos X convencionales están formados por un dispositivo emisor de electrones y un blanco puntual que a su vez es el ánodo, en el caso del presente dispositivo está formada esencialmente por tres elementos: un sistema de adaptación a una fuente de electrones, un sistema de deflexión de electrones rotatorio, y un sistema de colimación convergente (Figura 1)
En resumen, las principales ventajas y diferencias del dispositivo que aquí se presenta son: 1. Genera mayor concentración de dosis.
2. Uso de imanes permanentes de alta intensidad (0,3 T a 1 ,2 T).
3. Mayor rango de energía (1 a 6 MeV).
4. Eficacia y eficiencia optimizada.
5. Material, Plomo o Wolframio.
6. Robustez y simplicidad.
7. Bajo costo de fabricación.
8. Salida con solo electrones, que requiere menos blindaje.
9. Acción dual con salida de haz convergente de electrones o fotones X,
10. Acción de pintado de dosis mediante foco variable en los tres ejes.
Una ventaja del sistema de deflector de electrones del presente dispositivo es que la deflexión la puede hacer mediante el uso de imanes permanentes de alta intensidad, por lo general los deflectores son concebidos con electroimanes. Los imanes del presente dispositivo permiten desviar el haz de electrones en un gran ángulo cercano 60° a 90° o más, en una corta distancia, que se define como menor a 3 centímetros, permitiendo una gran reducción en las dimensiones del dispositivo en la dirección original del haz. Este hecho, es esencial para la adaptación del dispositivo en la salida del cabezal de un LINAC de uso clínico y permite la incorporación de un paciente a pesar de lo limitado de este espacio desde la salida del cabezal al isocentro, 42 cm en uno de los dispositivos comerciales y 48 cm para el otro competidor.
Otra ventaja que reviste esta modalidad, es que no es necesario operar el LINAC con una energía mayor que 4 MeV debido a que la máxima dosis es más dependiente de la geometría que de la energía, por lo tanto el dispositivo LINAC a utilizar puede trabajar a su energía más baja (4 o 6 MeV) durante el tratamiento, lo cual impide la generación de neutrones que aparecen a energías por sobre los 10 MeV, evitándose así la dosis periférica generada por neutrones en los órganos sanos y un bunker con menores requerimiento de blindaje, como así también un dispositivo más liviano.
También, es posible aplicar este dispositivo a una energía aún más baja, del orden de los 3 MeV, es energía que no se utiliza en el los actuales aceleradores que vienen configurados a energías de 6, 9 ,12, 15, 18 y 21 MeV, es decir múltiplos de 3 y por tanto potencial mente estos acelerados podrían configurados a 3 MeV, lo cual hace de esta innovación una versión más ligera y segura.
En resumen, esta invención, es un dispositivo que posee además de una serie de otros accesorios que lo conforman, y en sí constituyen invenciones dentro de la invención principal, y la ausencia de alimentación externa hacen la versión principal de lo que aquí se propone representa una completa, compacta y autónoma novedad caracterizado por una salida dual de electrones y fotones X. Aunque también puede concebirse una opción con electroimanes con alimentación eléctrica convencional y comunicación por cable.
DESCRIPCIÓN DE LAS FIGURAS
Antes de describir cada uno de los dibujos, se incluye la lista numérica de cada uno elementos descritos en las figuras.
Figura 1. Vista resumida de la invención.
Figura 2. Esquema general de la invención vista en perspectiva.
Figura 3. Medio de acople al LINAC en una alternativa comercial.
Figura 4. Medio de acople al LINAC, en otra alternativa comercial.
Figura 5. Dispositivo de rotación en vista en corte general.
Figura 6. Dispositivo de rotación con dos vistas en perspectiva.
Figura 7. Sistema de deflexión principal, y guía de electrones, con vistas en perspectiva A y lateral B.
Figura 8. Estructura del sistema de deflexión principal, y guía de electrones, con vistas en perspectiva A y lateral B.
Figura 9. Sistema de deflexión con el segundo deflector magnético embebido dentro del cabezal.
Figura 10. Sistema de deflexión sin tubo guía con unidad sellada.
Figura 11. Sistema de deflexión con tubos guía, fijo (58) A, telescópico (59) B, telescópico y tubo S flexible y telescópico (60) C.
Figura 12. Disco blanco cilindrico delgado con filtro de electrones (19) inserto dentro del tubo del colimador (25) en vistas en perspectiva (A), en donde la flecha doble muestra el desplazamiento del disco blanco cilindrico delgado con filtro de electrones (19), para dejar el dispositivo en modo electrones, cuando el disco blanco cilindrico delgado con filtro de electrones (19) está en el compartimiento lateral (90) o para dejar el dispositivo en modo fotones X, cuando el disco blanco cilindrico delgado con filtro de electrones (19) está en el septa del colimador o cuando el haz de electrones impacta en el disco blanco cilindrico delgado con filtro de electrones (19) y detalle (B) del disco blanco cilindrico delgado con filtro de electrones (19).
Figura 13. Colimador con disipador de calor con blanco filtro incorporado (19) con cilindros conductores concéntricos (82), tubo septa (83), septa (84), materia de atenuación (85) más anillos disipadores de calor (86), preferente fabricado con materiales con conductividad térmica como el aluminio, cobre, boro, entre otros, en vistas en perspectiva (A) y en corte axial (B).
Figura 14. Disipador de calor cónico (87), en vistas en perspectiva (A) y corte axial (B).
Figura 15. Detalle de zona del blanco móvil con vistas de corte de Figura 1 (A) y zoom (B).
Figura 16. Detalle de un blanco fijo en el túnel del colimador A y a la salida del cabezal B con colimador cónico.
Figura 17. Blindaje cabezal con vistas en perspectiva (A) y corte axial (B).
Figura 18. Dispositivo con control del foco versión electrones con foco fijo, con vistas en perspectiva (A) y lateral (B).
Figura 19. Dispositivo con control del foco versión electrones o fotones X con foco fijo, con vistas en perspectiva (A) y lateral (B).
Figura 20. Dispositivo con control del foco versión electrones, con modificación de foco a través del desplazamiento radial para la modificación del radio, con vistas en perspectiva (A) y lateral (B).
Figura 21. Dispositivo con control del foco versión electrones o fotones X, con modificación de foco a través del desplazamiento radial para la modificación del radio, con vistas en perspectiva (A) y lateral (B).
Figura 22. Dispositivo con control del foco versión electrones, con modificación de foco a través de la variación del ángulo de convergencia, con vistas en perspectiva (A) y lateral (B).
Figura 23. Dispositivo con control del foco versión electrones o fotones X, con modificación de foco a través de la variación del ángulo de convergencia, con vistas en perspectiva (A) y lateral (B).
Figura 24. Dispositivo con control del foco versión electrones, con modificación de foco a través de la variación del ángulo de convergencia y con modificación de foco a través del desplazamiento radial, con vistas en perspectiva (A) y lateral (B).
Figura 25. Dispositivo con control del foco versión electrones o fotones X, con modificación de foco a través de la variación del ángulo de convergencia y con modificación de foco a través del desplazamiento radial, con vistas en perspectiva (A) y lateral (B). Figura 26. Conexión a energía externa mediante anillo y escobillas.
Figura 27. Soporte para contrapeso con compartimentos para la electrónica de control de los motores del dispositivo, dispositivo de comunicación inalámbrica y batería.
Figura 28. Esquema del sistema de comunicación y control.
Figura 29. Esquema de dispositivo de interrupción del haz de electrones.
Figura 30. Imán permanente de incidencia oblicua (A: vista isométrica, B: vista frontal, C: vista posterior y D: vista de un despiece en isométrica).
Figura 31. Porta imanes permanentes de un pieza o monoblock
Figura 32. Detalle de cuadrupolo magnético de imanes permanentes.
Figura 33. Detalle de un dipolo magnético circular de enfoque de imanes permanente.
Figura 34. Esquema del sistema de deflexión, básico con elementos corrección
Figura 35. Imán de cara cortada, como elementos corrección.
Figura 36. Esquema de deflexión con imanes si elementos de deflexión, con cortes (A), ambos inclinados con ingreso y salida por las mismas caras (B) y igual a anterior con corte para enfoque (C).
Figura 37. Esquema del barrido 2D de foco para pintado de dosis fuera del eje.
Figura 38. Dispositivo con salida de electrones con elemento extensor (79), que minimiza la dispersión en el aire de los electrones.
Figura 39. Dispositivo, con salida de electrones fijo; con salida fija (A) y con desplazamiento lateral y ángulo variable (B)
Figura 40. Dispositivo dual (electrones o fotones X) con salida fija (A) y con desplazamiento lateral y ángulo variable (B)
Figura 41. Cámaras de ionización monitoras de radiación.
Figura 42. Guías láser para la calibración y visualización del haz en rotación.
Figura 43. Esquema de irradiación convergente de haces en rotación con radio fijo (A). Esquema de irradiación convergente de haces en rotación con radio de rotación variable (B). DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Tal como se muestra en las Figuras 1 y 2, el dispositivo está formado por las siguientes partes principales:
A. Medio de acople e ingreso de electrones.
B. Dispositivo de rotación.
C. Sistema de deflexión de electrones.
D. Disco blanco y filtro (19) móvil.
E. Para paso de electrones y/o generación de fotones X.
F. Sistema de colimación blindaje y disipación.
G. Sistema de control del foco y barrido.
H. Sistema dosimétrico y guías láser.
I. Sistema de control del dispositivo.
La invención consiste de lo siguiente: un medio de acople (A) por el cual ingresan los electrones del acelerador, este medio de acople es básicamente una bandeja (1) que se ajusta en forma y medios a las que corrientemente utilizan cada marca o modelos de acelerador, posee además cavidades y un agujero central con ventana (6). Le sigue un dispositivo de rotación (B) cuyo eje central (5) es hueco y se fija al medio de acople mediante medios de fijación (4) tal como pernos, para que los electrones puedan entrar, el motor (8) y las poleas (9) se fijan en las cavidades del medio de acople. Más abajo va el sistema de deflexión (C) que consiste en una estructura que gira (17), gracias al dispositivo de rotación anterior; este sistema que deflecta y alinea el haz electrones está formado por dos deflectores magnéticos con permanentes de alta intensidad cercana a 1 T, el primero (13) abre el haz de electrones y el segundo lo cierra (14). Los electrones que emergen del segundo deflector con dirección focal, como se muestra en la Figura 1 y Figura 2. Según la elección los electrones pueden o no impactar en un disco blanco (19a) delgado metálico móvil de número atómico alto, mayor que 50, inserto a un disipador térmico cilindrico metálico y filtro de electrones (19b) para la disipación térmica (D); el impacto de los electrones genera rayos X, principalmente en la dirección focal del sistema. Un sistema de colimación y blindaje (20) (E) permite que los electrones o los rayos X generados en el disco blanco sean colimados en la dirección del foco y el resto sea absorbido por el blindaje. De modo que se tendrá un haz estrecho neto de electrones o fotones X X ( beamlet ) emergiendo de la salida de colimador (25) en rotación, con radio de giro variable y apuntando siempre hacia punto focal similar al logrado con un haz convergente de fotones X, pero en este caso es un único beamlet en un modo dinámico. La posición del punto focal puede ser modificada gracias un sistema de control del foco y barrido (F), éste es modificado gracias al movimiento del segundo imán en conjunto con el movimiento coordinados del colimador; la dosimetría de haz emergente del colimador es medida por un conjunto de cámaras de ionización y también posee o más fuentes de luz láser que apuntan al foco (G). Finalmente, un software controla todos los parámetros y modalidades de funcionamiento del aparato (H). El detalle de cada una de estas partes se describe a continuación.
A. Medio de acople e ingreso de electrones
El medio de acople e ingreso de los electrones está formado por una placa metálica (1) de similares características al medio de acople que ya tiene cada dispositivo de acuerdo a su marca, como se muestra en la Figura 3 el sistema de acople e ingreso ajustado a un tipo de dispositivo comercial y en la Figura 4 el utilizado por otra marca comercial y en general este medio acople es el mismo, por lo que puede ser adaptado con modificaciones menores de tamaño y forma de acuerdo a la marca utilizada. Posee además cavidades (a, b) y un agujero central y orificios con hilos para poder anclarse al dispositivo de rotación mediante pernos.
B. Dispositivo de rotación
La versión principal del dispositivo de rotación va adosado mediante medios de sujeción (4), tales como pernos, al medio de acople e ingreso de los electrones (A) consiste en un conjunto de piezas formado por: un eje central (5) es ahuecado que permite el rotación del sistema, ventana de ingreso (6), y el pasos de los electrones, con rodamientos (3) para facilitar y fijar el giro, con un soporte al eje central (2) que permite contener los rodamientos, con un engranaje (7) que es parte del eje central, una brida de acople (8) que permite la fijación al sistema de deflexión (503), una correa engranaje (9) que conecta al moto reductor (10) a través de una polea con engranes (11), que es tensada por otra polea (40) con eje que puede deslizarse mediante el riel (41) en una ranura que es fijado por un tornillo (42). Todo este conjunto permite el movimiento giratorio del haz de electrones, que se describe a continuación. Figura 5 y Figura 6.
Otra configuración preferente del dispositivo de rotación descrito arriba es construida completamente con engranajes estos conectan directamente a la moto reductora con el engranaje central, su simplicidad es obvia y no se presente dibujo de esta versión.
Otra configuración preferente del dispositivo de rotación descrito arriba se basa en que este va por encima del dispositivo de acople (A), sin embargo, esta opción implica debe ser removida la ventana de salida del LINAC, o reemplazarse esta por otra que pueda retraerse en el modo de concentración esta opción. Implica una mayor intervención sin embargo hay un mejor aprovechamiento del espacio disponible, ganándose alrededor de 8 cm de espacio entre la salida y el isocentro. Otra configuración preferente del dispositivo de rotación descrito arriba se basa en una adaptación del sistema de rotación del cabezal del propio LINAC. Al igual que el caso anterior el sistema de rotación queda por sobre el dispositivo de acople (A) y el sistema de deflexión queda prácticamente pegado a esta última. Sin embargo, debe ser removida la ventana de salida del LINAC o reemplazarse ésta por otra que pueda retraerse en el modo de concentración.
C. Sistema de deflexión de electrones
La versión principal está formada por dos imanes deflectores permanentes y dos cuadrupolo magnéticos permanentes y/o dipolos de enfoque, el primero de ellos es un imán fijo deflector que abre el haz (13) y va en posición oblicua a la dirección del haz incidente de electrones a la salida de éste se encuentra un dispositivo magnético cuadrupolar (15) que alinea el haz de salida, también construido con imanes permanentes. Un segundo imán (14) similar al primero deflecta el haz en dirección contraria, curvándolo hacia el eje, la incidencia de los electrones en este segundo imán es oblicua y éste ocupa la menor distancia posible en la dirección de incidencia. Los electrones son conducidos a través de un tubo de material no magnético con forma de S (16) al vacío que pasa a través de los diferentes dispositivos, entrando por el primer imán deflector hasta salida por el cuadrupolo (18) a la salida del segundo imán deflector. Ver Figura 7. La estructura en la que va montado el sistema de deflexión posee un anillo de sujeción con orificios (43) que se une a la brida de acople (8) del sistema de rotación se muestra en la Figura 8.
Cuando un haz filiforme de electrones cuasi mono cromático, pasa por un elemento de deflexión magnética, experimenta una expansión del haz filiforme, debido a los diferentes radios de curvatura que experimentan los electrones generados por sus diferencias de energía entre los electrones del haz, ya que éste no es 100% monocromático. Un esquema de una configuración base de deflexión con los dos deflectores con los imanes permanente y los elementos de corrección del haz es mostrada en la Figura 34. Esta corrección del haz también puede ser realizada mediante cortes en una o más caras de los imanes base, tal como se muestra en la Figura 35 y Figura 36 A. Una configuración esquemática sin los elementos de corrección del haz de electrones con imanes con y sin cortes es mostrada en la Figura 36 B y 36 C.
Otra configuración preferente del sistema de deflexión descrito arriba es con carcasa exterior sellada (34) con los dos imanes inclinados, con el primer imán a 45° de inclinación para salida a 90° de este imán, en ambiente sellado tal como la que se muestra en la Figura 9.
Otra configuración preferente del sistema de deflexión descrito arriba es con carcasa exterior con los dos imanes inclinados y cabezal blindaje adherido a este sistema de deflexión con el segundo deflector magnético embebido dentro del cabezal
Figura 10
Otra configuración preferente del sistema de deflexión descrito arriba, tiene tubo guía con forma de S fija Figura 11 A.
Otra configuración preferente del sistema de deflexión descrito arriba, tiene tubo guía con forma de S extensible Figura 11 B.
Otra configuración preferente del sistema de deflexión descrito arriba, tiene tubo guía con forma de S extensible y flexible Figura 11 C.
D. Disco y filtro móviles para paso de electrones y/o generación de fotones X
Este sistema consiste en un disco delgado (26) de un material conductor térmico, térmico ligeros Cu o Al, Figura 12 A y B el que va al interior del tubo de colimación Figura 13 A , el cual está fabricado de varias cilindros concéntricos de diferentes metales conductores (84) y atenuadores de fotones X (87) , con un sistema de alabes (82) circulares conductores térmicos adheridos a la parte externa del colimador Figura 13 B y a su vez éste va unido mediante un acople (83) a la estructura del cabezal blindado del sistema de deflexión rotante a salida del haz de electrones del segundo colimador Figura 10 Este disco es el blanco filtro (19) en donde, impactan los electrones y allí se generan rayos-X por efecto del Bremsstrahlung predominantemente. Una adecuada combinación del espesor del material del blanco su alto número atómico y la energía de los electrones permitirá la generación de fotones X principalmente en la dirección de incidencia y la remoción del disco permitirá la salida de electrones
En la Figura 12 A se muestra la parte interna del colimados y un zoom (B) a que se muestra un detalle de cómo va el conjunto de la invención en la parte en donde se generan los rayos X, se filtran los electrones se blindan y se coliman.
E. Sistema de colimación blindaje y disipación
El impacto de los electrones en el blanco genera calor, a pesar que estos deben recorrer una mayor distancia y pasar por los deflectores que expanden el haz y lo degrada energéticamente en la mayoría de los equipos de rayos X incluyendo los LINAC, el calor generado en una zona pequeña del orden una decena de milímetros cuadrados en la zona de impacto, el cual es necesario extraer de allí mediante un sistema de refrigeración por agua. En este caso debido a que el blanco es un anillo insertado en un disco delgado de un material conductor, de alto número atómico mayor que 50 (W) toda esta energía térmica es conducida y distribuida en un área mucho más grande a través de los anillos intercambiadores de calor, no se hace necesaria la refrigeración por agua y por tanto el calor puede ser extraído mediante aire que circula, debido al movimiento del dispositivo gracias al sistema rotatorio.
Este sistema de colimación y blindaje (F) está formado por un colimador cilindrico (25) similar al utilizado en radiocirugía estereotáctica ajustado a energía más bajas de funcionamientos del LINAC (6 MeV), ya que para energía más altas se requiere mayor tamaño de éste. Es decir, el modo de concentración de dosis, es recomendable a las energías más bajas de operación del LINAC. De este modo se requieren imanes menos potentes para realizar la deflexión del haz y menos blindaje, todo esto se traduce en costo y espacio. El colimador presenta un canal interno o septa (85) (54) Figura 13.
Otra opción preferente del sistema de colimación es mediante un colimadorcon sistema de enfriamiento con alabes cónico (88). Figura 14.
Otra opción preferente presenta un blanco filtro de electrones 19móvil lo que permite seleccionar la salida del tipo de radiación, electrones sin el filtro en el canal de la septa (85) o fotones X con el blanco filtro. El mecanismo de cambio consiste de una pieza que contiene al blanco filtro (94) dentro de una pequeña cavidad (95) de aproximadamente de 1 cm3 al costado de la septa, la pieza del blanco filtro va unida a un resorte (96) en el extremo proximal que a su vez el resorte va unido una piola (97) en su otro distal, que puede moverse a lo largo de un orificio curvado (98), y se fija en su extremo mediante una traba (99). Figura 15.
Otra configuración preferente de disco blanco filtro es que este va ubicado en el interior de la septa Figura 16 A.
Otra configuración preferente de disco blanco filtro es que este va ubicado en la salida del cabezal de blindaje del segundo deflector magnético y utiliza colimador de blindaje cónico Figura 16 B
Otra configuración preferente para salida de electrones y fotones X requiere de un blindaje (20) como el que se muestra en la Figura 17, el cual posee un canal de entrada rectangular conico (89), un medio de acople de entrada (90), un sello de acople de entrada (91) una carcasa exterior (92), un tubo de salida (92), un canal de salida (93) y un medio de acople para el colimador (94).
F. Sistema de control del foco, barrido e irradiación
Este sistema permite variar la posición del punto de concentración de la radiación X o foco, aunque por defecto este foco se ubica en el isocentro del LINAC. El movimiento del foco en torno del isocentro permite hacer un barrido de la dosis dentro del tumor, más conocida como técnica de“dose painting” que no se utiliza en este tipo de acelerador, pero gracias a esta invención es posible de llevar a cabo. Control de Foco
Una configuración preferente sin control de foco, para electrones en esta opción las piezas van fijas sin desplazamientos ni rotaciones, es la versión más simple de la invención, como se muestra en la Figura 17. El control o barrido por el foco se realiza mediante movimientos del objeto a irradiar, por ejemplo, mover una camilla con el paciente a tratar.
En otra configuración preferente sin control de foco, para electrones o fotones X, en esta opción las piezas van fijas sin desplazamientos ni rotaciones, es la versión más simple de la invención, como se muestra en la Figura 18. El control o barrido por el foco se realiza mediante movimientos del objeto a irradiar, por ejemplo, mover una camilla con el paciente a tratar.
Otra configuración preferente, es de control de foco con ángulo de convergencia fijo de electrones, en esta configuración es posible conseguir desplazamiento del foco desplazando de linealmente (alejando o acercando) el imán 2 (14) respecto del eje de rotación, el desplazamiento se realiza al accionar un motor (12), en donde el desplazamiento es lo largo de la línea de la trayectoria de los electrones que se establece luego de la pasar el imán 1 (13). Este movimiento se hace con deflector 2 (14) de manera solidaria con el colimador (25), como se muestra en la Figura 19.
Otra configuración preferente, es de control de foco con ángulo de convergencia fijo de electrones o fotones X, que corresponde a una configuración dual, en esta configuración es posible conseguir desplazamiento del foco desplazando de linealmente (alejando o acercando) el imán 2 (14) respecto del eje de rotación, el desplazamiento se realiza al accionar un motor (12), en donde el desplazamiento es lo largo de la línea de la trayectoria de los electrones que se establece luego de la pasar el imán 1 (13). Este movimiento se hace con deflector 2 (14) de manera solidaria con el colimador (25), como se muestra en la Figura 20.
Otra configuración preferente es modificación de foco con ángulo de incidencia fijo, es igual a la anterior más elementos de corrección de haz, cuádruplos y dipolos, no mostrado en las figuras.
Otra configuración preferente es modificación de foco con desplazamiento y ángulo variable: con salida electrones, en esta configuración es posible conseguir desplazamiento del foco desplazando de angularmente el imán 2 (14) respecto del eje de rotación, el desplazamiento se realiza al accionar tres motores paso a paso, en donde se desplazan el imán 2 (14) por el accionamiento del primer motor angular (22), el desplazamiento angular del colimador (25) por medio del segundo motor angular (22a) y con un movimiento lineal, a través del motor lineal (22L), como se muestra en la Figura 21.
Otra configuración preferente es modificación de foco con desplazamiento y ángulo variable y desplazamiento lineal del foco, en donde esta configuración es posible conseguir desplazamiento del foco desplazando de linealmente (alejando o acercando) el imán 2 (14) respecto del eje de rotación, el desplazamiento se realiza al accionar un motor (12), en donde el desplazamiento es lo largo de la línea de la trayectoria de los electrones que se establece luego de la pasar el imán 1 (13), conjunto con el desplazamiento del foco desplazando de angularmente el imán 2 (14) respecto del eje de rotación, el desplazamiento se realiza al accionar tres motores paso a paso, en donde se desplazan el imán 2 (14) por el accionamiento del primer motor angular (22), el desplazamiento angular del colimador (25) por medio del segundo motor angular (22a) y con un movimiento lineal, a través del motor lineal (12), como se muestra en la Figura 21.
Este movimiento se hace con deflector 2 (14) de manera solidaria con el colimador (25), como se muestra en la Figura 20.
Otra configuración preferente es modificación de foco con desplazamiento y ángulo variable: con salida dual, electrones o fotones X. Esta opción agrega a la anterior la capacidad de girar el imán 2 con un motor (53) y el colimador (25), además de los de desplazamiento. Esta opción es la más completa y a su vez más compleja y utiliza al menos cuatro motores paso a paso, como se muestra en la Figura 22.
Otra configuración preferente es modificación de foco con desplazamiento y ángulo variable: es igual a la anterior más elementos de corrección de haz, cuádruplos y dipolos.
Barrido
Otra configuración preferente para lograr un barrido 2D del foco se logra mediante un movimiento combinado entre la rotación y el ángulo de salida del haz en rotación en cada rotación Figura 37. El cual es controlado por el software de barrido que establece los parámetros del ángulo del deflector magnético 2 más colimador en la versión electrones del cabezal del deflector magnético 2 más colimador en la versión dual, esto es por cada rotación y parte de rotación o tiempo de exposición asociada a un punto de barrido, de un modo de barrido discreto o continuo, en otras palabras girando y barriendo a la vez, con un foco de barrido fuera del eje moviéndose (pintando) en el plano C,U , como se muestra en la Figura 37
Otra configuración preferente para realizar un barrido 3D de la zona interés contempla la aplicación del haz rotante, ya sea de electrones o fotones X, con foco fuera del eje tal como se muestra en la Figura 33. Esta modalidad se consigue a través del movimiento angular controlado del segundo deflector y el colimador.
Otra configuración preferente de irradiación focalizada es mediante rotación con radio variable, movimientos helicoidales del haz rotante de esta forma se consigue una área de entrada mayo de la radiación y mayor concentración en el foco Figura 20.
G. Sistema dosimétrico y guías láser
El sistema dosimétrico monitor consiste en dos cámaras de ionización a gas con ventanas delgadas aluminizadas, éstas van a la salida del colimador, que al igual que los equipos convencionales, permiten monitorear las intensidad radiación entregada por el dispositivo ver Figura 37 además de esto van dos o más guías láser que apuntan hacia el foco. (Figura 38).
H. Sistema Control del dispositivo
Como se mencionó anteriormente, el sistema en su conjunto está controlado por un software que establece las condiciones de operación en conjunto con la operación del LINAC coordinada los diferentes modos de operación de acuerdo al plan de tratamiento que se establezca. Son controlables la velocidad angular de rotación los motores paso a paso, el frenado de los electrones, la posición del foco y el ángulo del cono de rotación.
Otra configuración preferente es inalámbrica es mediante bluetooth, esta última opción es más simple desde el punto de vista mecánico, ya que introduce un elemento de comunicación electrónico sin conectores físicos respecto de la opción anterior. En esta opción pueden utilizarse baterías que pueden alojarse en un compartimento (31) ubicado en el brazo (30) del dispositivo de rotación que soporta al contra peso (34) Figura 27.
En una versión, la energía para alimentar a los motores que se encuentra en la unidad rotante puede ser administrada directamente por una fuente externa a través de un conector rotatorio (58), que pueden ser“escobillas” Figura 26 que se conectan a dos anillos conductores (59) que son concéntricos y circundan el medio de acople (A).
Esquema de control: Una vez instalado el dispositivo en el cabezal del LINAC un software externo de control general de modo de operación, cambia el modo de operación permitiendo que la lámina dispersora de electrones sea removida, a fin de que el haz de electrones pase libremente por el aire, el cual generará un leve frenado del orden de un 2% a un 5% y dispersión de los electrones que reduce la fluencia en un 8% a un 10%, para un LINAC de 6 MeV, en un modelo estándar de un fabricante. Esta leve reducción no es significativa con la respecto al haz a la salida de la guía de onda reducción de la lámina dispersora Figura 24.
Otra configuración preferente del dispositivo posee una unidad para el frenado de los electrones (61), ésta permite agregar cortes rápidos de radiación en determinadas posiciones angulares que va a continuación del primer cuadrupolo la cual es de activación rápida. Posee láminas, una o más, metálicas (62) que se cierran y abren de modo magnético o con uno más motores paso a paso (63) de acción rápida Figura 25.
Uno de los elementos más importantes del desafío tecnológico que permite el éxito esta invención en su mejor versión y que es en definitiva permite que esta pueda ser acoplada a un LINAC de un modo operativo, es la capacidad de la deflexión de electrones que viajan en torno a un 96% de la velocidad de la luz en el vacío, en una distancia longitudinal de dos cm. En general se puede utilizar diferentes tipos de imanes, ya sean éstos electroimanes o permanentes. Se usaron imanes permanentes de alta intensidad y con forma de paralelepípedos de dimensiones reducidas de 2,5 x 2,0 x 5,0 cm (la forma y dimensiones de los imanes son sólo referenciales y pueden ser diferentes) con un campo en superficie de 0.6 Tesla, sin embargo, para un espaciado de 10 mm y un largo de 2 cm se requiere un campo cercano a 1T para tener una deflexión a la salida de los imanes cercana a los 90°. Este requisito es imposible de lograr en las configuraciones tradicionales que usan hierro y el entre hierro como zona de campo. La clave está en colocar los imanes de frente, cara a cara, con los polos opuestos y valerse del principio de superposición de campos, sin embargo, esto es muy difícil de lograr dada la gran fuerza de atracción cercana a los 200 kg, que se genera cuando los imanes están a solo 10 u 8 mm de distancia entre sí, para lograrlo se usaron unas piezas soporte no magnética (65) como se muestran en la Figura 26 con incidencia oblicua requiere de otro soporte no magnético (67).
Adicionalmente, se muestran otros dispositivos para armar imanes o que usan imanes, en la Figura 27 se muestra, un porta imanes permanentes monoblock para colocar los imanes permanentes de los deflectores magnéticos. En la Figura 28 se muestra el detalle de cuádruplo magnético de imanes permanentes que se utilizan en esta propuesta y en la Figura 29 se muestra el detalle de un dipolo magnético circular de enfoque de imán permanente.
Peso y dimensiones: El peso y dimensiones de las dimensiones del dispositivo, están determinados por el tamaño y energía del equipo de radioterapia externa al cual podría adaptarse como a la energía de operación, típicamente 6 MeV es una energía muy común utilizada en los diferentes tipos de aceleradores conocidos, pero también es posible trabajar con energía menores como 4 MeV, esto permite reducir el peso respecto un dispositivo trabajando a 6 MeV. Para un dispositivo de 6 MeV se ha estimado un peso de unos 50 kg y para uno de 4 MeV, este peso podría ser reducido unos 40 kg, por la menor cantidad de material destinado al blindaje. El diámetro exterior del dispositivo va desde 85 a unos 30 cm de diámetro y 20 cm de largo aproximadamente, dependiendo del diámetro exterior de la cabeza del LINAC de la empresa que se considere. Todas estas dimensiones incluyen el blindaje que debe ser utilizado en la zona del blanco y su peso solo varía dependiendo de la energía de acuerdo a lo señalados arriba. Otro elemento que también agrega peso al dispositivo es el colimador, el tamaño de esta unidad es dependiente de la energía a ser utilizada y su largo varía entre 4 y 6 cm para 4 y 6 MeV, respectivamente.
El tamaño y el peso puede ser reducido aún más si la energía de operación del LINAC puede ser reducida por debajo de 4 MeV y el principio de operación y formas de control del haz rotante, sigue siendo el mismo descrito en los casos anteriores, para todas las opciones descritas.
DESCRIPCIÓN DETALLADA DE LAS PARTES Y VARIANTES
Esta invención consiste en un dispositivo concentrador de fluencia de radiación ionizante (500) de foco variable adaptable a una fuente de electrones de alta energía de un dispositivo de radioterapia externa con acelerador lineal, para focalizar y guiar el foco de manera continua y menos invasiva, dentro de una zona determinada, que comprende:
una estructura de acople que une al dispositivo de radioterapia externa con acelerador lineal con una estructura exterior (101), cuyo eje central
(5) es hueco con una ventana (6) de entrada por el cual ingresan los electrones y medios anclaje para adosarse al dispositivo de rotación mediante medios de sujeción (4);
un sistema de rotación que se une a la estructura de acople con una brida de acople (8) hace girar una estructura interior (102);
un sistema de deflexión (503) de electrones que está en la estructura interior (102), en donde el sistema de deflexión (503) comprende, un primer y un segundo dispositivo de deflexión magnética (13, 14);
un sistema de control de foco, que está en el sistema de deflexión (503) de electrones, que comprende un sistema electrónico de control (31) que controla un conjunto a los motores (12, 22) que generan desplazamientos coordinados del segundo dispositivo de deflexión magnética (14), un elemento de corrección y un colimador (25), que permiten cambiar la posición del punto focal; y
al menos dos diodos láser (74) ubicado en el borde del colimador (25) apuntando hacia el foco permitiendo determinar la posición de haz de electrones generado. En una configuración preferente la estructura de acople es una bandeja (1) con elementos de sujeción adaptado al LINAC.
El dispositivo de rotación comprende; rodamientos (2) o bujes, una correa con engrane (9) se conecta un motor reductor (10) con el engranaje del eje central (7) que se fija a la estructura de acople mediante pernos (4), la correa con engrane (9) es tensada por otra polea (40), con eje deslizable a una ranura riel (41), que es fijada mediante pernos o tornillos (42).
En otra configuración preferente, el dispositivo de rotación es construido completamente con engranajes (11), (9) los que se conectan directamente al motor reductor (10) con el engranaje central (7), en donde el engranaje (7) es parte del eje central (5), en donde, el mecanismo del dispositivo de rotación se coloca por sobre del dispositivo de acople.
En otra configuración preferente, el sistema de deflexión (503) magnético de electrones, está formado por un primer dispositivo de deflexión magnética (13) que desvía el haz de electrones entre 60° y 100° respecto de la dirección del haz de electrones incidente y un segundo dispositivo de deflexión magnética (14), de polaridad inversa al primer dispositivo de deflexión magnética (13), desvía a los electrones hacia un punto focal ubicado en el eje óptico, los que comprenden imanes que tienen una intensidad conjunta entre 0,3 T y 1 ,2 T, en donde, todo el sistema de deflexión (503) magnético se fija a una estructura soporte (17), en donde unos elementos corrección de haz de electrones (504).
En otra configuración preferente, la salida de cada dispositivo deflexión magnética se posiciona un cuadrupolo magnético alineador de trayectoria (15, 18) del haz de electrones de trayectoria (18) y/o dipolo (74) que alinea el haz de electrones.
En otra configuración preferente, la salida del primer dispositivo deflexión magnética (13) y/o delante de primer cuadrupolo (15) se posiciona al menos un dipolo (74) magnético que enfoca la trayectoria del haz de electrones.
En otra configuración preferente, la salida del segundo dispositivo deflexión magnética (14) se posiciona un dipolo (74) magnético que enfoca la trayectoria del haz de electrones, en donde, el sistema de deflexión (503) van en una carcasa exterior (45) al vacío, que se adapta a la configuración de los imanes, en donde, el primer dispositivo de deflexión magnética (13) está unido a la pared de ingreso de la caja en dirección perpendicular al haz incidente de electrones y el segundo dispositivo de deflexión magnética (14) va inclinado a más de 0o, en sentido horario, respecto del primer dispositivo de deflexión (13).
Los dispositivos de deflexión magnética (13, 14) van inclinados de modo que haz electrones emerge del primer dispositivo de deflexión magnética (13) y se desvía en un ángulo cercano a 90°, en donde, los dispositivos de deflexión magnética (13, 14) son construidos con imanes permanentes (64).
En otra configuración preferente, los dispositivos de deflexión magnética (13, 14) son construidos con electro imanes, en donde, cada dispositivo de deflexión magnética (13, 14) está formado de dos imanes (64), en donde cada imán tiene una intensidad de campo magnético entre 0,2 T y 0,7 T ubicados enfrentando sus polos opuestos en sus caras polares, un soporte no magnético de apoyo lateral (65), con un orificio alargado en la zona central, permiten posicionar los imanes (64) gracias a unas saliente que evitan que estos se junten; elemento de cierre de campo (66) con forma de C, ubicado a los lados de los imanes, cierran el circuito magnético.
Además, cada uno de los dispositivos de deflexión magnética (13, 14) posee una pieza no magnética con un soporte no magnético con apoyo central (67), de modo que cuando el haz de electrones entra lateralmente por la zona del agujero central de al menos uno de los dispositivos de deflexión magnética (13, 14) el haz sale por la misma cara por donde entró.
Por otro lado, se utiliza cuadrupolos (15, 18) fabricados con imanes permanentes.
Además, el al menos un dipolo (74) es fabricado con imanes permanentes.
Los elementos corrección de haz de electrones (504), comprenden cuadrupolos (18) y dipolos (74) magnéticos basados en imanes permanentes.
En otra configuración preferente, los dispositivos de deflexión magnética (13, 14) tienen una intensidad mayor a 0,5 T, en otra configuración más preferente los dispositivos de deflexión magnéticos (13, 14) tienen una intensidad mayor a 1 T.
La forma del par de imanes permanentes que conforman los dispositivos de deflexión magnética (13, 14) son de cortes curvos e irregulares en unas de sus caras (77, 78).
Los dispositivos de deflexión magnética (13, 14) poseen al menos un elemento de cierre de campo curvo (94), los que además comprenden en cada uno de sus extremos distales una curva.
En otra configuración preferente, los dispositivos de deflexión magnética (13, 14) son energizados eléctricamente mediante un contacto rotatorio (58) que lo conectan anillos conductores (59) los que van conectados con los terminales eléctricos del cabezal del dispositivo de radioterapia externa, además posee un tubo de electrones al vacío con forma de S (16) no magnético con ventanas (68) en sus extremos. Por otro lado, las ventanas (68) son de berilio, ya que es un material liviano. Además, las ventanas (68) son conductoras de calor.
En otra configuración preferente, el guía de haz, posee un tubo con forma S (69) o el posee un tubo forma S telescópico (70) y cilindrico o posee un tubo flexible y telescópico (72).
En otra configuración preferente, el sistema de control del foco comprende unos dispositivos de deflexión magnética (13, 14) que están fijados de manera solidaria a una estructura de soporte (17).
En otra configuración preferente, el sistema de control del foco comprende un primer motor (12) paso a paso que mueve el segundo dispositivo de deflexión magnética (14) por un riel (61) del segundo imán desplazando de linealmente el segundo dispositivo de deflexión magnética (14) respecto del eje de rotacional a lo largo de la línea de la trayectoria del haz de electrones, en donde el segundo dispositivo de deflexión magnética (14) está unido de manera solidaria con el colimador (25).
En otra configuración preferente, el sistema de control del foco comprende un segundo dispositivo de deflexión magnética (14) rota por el accionamiento de un segundo motor (22) angular y el colimador (25) se desplaza de manera angular por medio de un segundo motor angular (22a) y se desplaza de manera lineal por medio de un motor lineal (22L) y el riel de colimador (21).
En otra configuración preferente, el sistema de control del foco comprende un primer motor (12) paso a paso que mueve el segundo dispositivo de deflexión magnética (14) por un riel del segundo imán (61) desplazando de linealmente el dispositivo de deflexión magnética (14) respecto del eje de rotacional a lo largo de la línea de la trayectoria del haz de electrones, en donde el segundo dispositivo de deflexión magnética (14) rota, por el accionamiento de un segundo motor (22) angular y el colimador (25) se desplaza de manera angular por medio de un segundo motor angular (22a) y se desplaza de manera lineal por medio de un motor lineal (22L) y el riel de colimador (21).
En otra configuración preferente, el colimador (25) comprende:
a. un tubo septa (83) con una septa (84) que cruza el colimador;
b. un disipador de calor (87), que envuelve al colimador (25);
c. un atenuador de radiación con un material de atenuación (85) con un Z mayor a 70, que envuelve radialmente al tubo septa (83);
d. un disco blanco filtro (19) movible, inserto dentro de dicho colimador (25) en un compartimiento lateral (90) para dejar el paso libre de los electrones, en donde el disco blanco filtro (19) se desplaza a la septa (84) para generar fotones X.
El colimador (25) además comprende unos medios de desplazamiento (89) que trasladan al disco blanco filtro (19) a una de sus dos posiciones, que son en el compartimiento lateral (90) para dejar el paso libre de los electrones o la septa (84) para generar fotones X.
En otra configuración preferente, el disipador de calor (87) es fabricado con materiales con conductividad térmica tales como el aluminio, cobre, boro, estaño o titanio o broce o aleación de ellos.
Por otro lado, el disipador de calor (87) además comprende unos cilindros concéntricos (82) que transmiten el calor homogéneamente, hacia el exterior.
Por otro lado, el disipador de calor (87) además comprende unos anillos de disipación (86) para disipar el calor hacia el exterior.
En otra configuración preferente, los medios de desplazamiento (89) son accionados por unos medios manuales, tales como una piola (92) que se desplaza por la ranura curva (91) y se regresa por un resorte (90).
En otra configuración preferente, los medios de desplazamiento (89) son accionado por uno motor y unos medios de comunicación alámbrico o inalámbrico.
El blanco del disco blanco filtro (19) es fabricado de tungsteno o plomo o plata u oro o estaño, o aleaciones de ellos.
En otra configuración preferente, un ventilador externo para la mejorar la disipación térmica.
Por otro lado, un sistema de blindaje (507) que comprende un blindaje de cabezal (20) que cubre por completo al segundo dispositivo de deflexión magnética (14), que evita las fugas de radiación de fotones X.
En otra configuración preferente, un sistema de contrapeso (505) y control, que comprende un soporte contrapeso (26), un motor paso a paso contrapeso (28), un contrapeso (30), unos medios de comunicación inalámbrica, un compartimento de comunicación inalámbrica (31) con un compartimento de control (29) de control de los motores paso a paso, y compartimento de baterías (27) que energiza todos los dispositivos que van en rotación.
El sistema de deflexión (503) de electrones es en ambiente abierto.
En otra configuración preferente, un primer control de operación, controla la operación del LINAC para habilitar el plan de operación, un segundo control para controlar la velocidad de rotación y los motores paso a paso que permiten la variación de la posición del foco y del dispositivo que corta el haz de electrones.
En otra configuración preferente, el colimador (25) comprende en su extremo distal un elemento extensor (79), para la salida de electrones que minimiza la dispersión en el aire de dichos electrones.
En otra configuración preferente, un sistema dosimétrico (85) monitor, que se ubica en la parte inferior del colimador (25) que comprende dos cámaras de ionización (80) a gas con ventanas aluminizadas, para monitorear la intensidad de radiación entregada por el dispositivo (500).
En otra configuración preferente, la parte inferior de una estructura soporte (17) se adosan al menos unas dos guías láser que apuntan hacia el foco.
Lista de partes
1. Bandeja de acople
2. Soporte eje central
3. Rodamientos (2)
4. Medios de sujeción
5. Eje central
6. Ventana
7. Engranaje eje central
8. Brida de acople
9. Correa con engrane
10. Moto reductor
11. Engranaje polea motor
12. Primer Motor L
13. Primer dispositivo de deflexión magnética.
14. Segundo dispositivo de deflexión magnética.
15. Primer cuádruplo rectificador de trayectoria
16. Tubo de electrones al vacío con forma de S
17. Estructura soporte
18. Segundo cuádruplo rectificado de trayectoria
19. Disco blanco / filtro 19a. Disco blanco para impacto de los electrones; 19b. Filtro de electrones y disipador térmico.
20. Blindaje cabezal
21. Riel base soporte colimador
22. Segundo Motor
23. Base soporte colimador
24. Carcaza porta colimador
25. Colimador
26. Soporte Contrapeso
27. Compartimento de baterías
28. Motor paso a paso contrapeso
29. Compartimento de control
30. Contrapeso
31. Compartimento de comunicación inalámbrica
32. Tornillo contrapeso
33. Soporte ajustable de contrapeso
34. Carcasa exterior sellada
35. Base apoyo contrapeso
36. Polea tensora
37. Tornillo fijación
38. Ranura riel
39. Anillo de sujeción a la brida 40. Ventana
41. Carcasa exterior
42. Ranura para ingreso electrones
43. Septa del colimador
44. Base riel colimador
45. Disco blanco Blanco neto
46. Filtro de electrones
47. Contacto rotatorio
48. Anillos conductores
49. Base para colocación de compensador de peso
50. Freno dinámico de haz
51. Láminas metálicas
52. Solenoide
53. Imán permanente
54. Soporte no magnético de apoyo lateral
55. Elemento de cierre de campo
56. Soporte no magnético de apoyo central
57. Ventanas de berilio tubo
58. Tubo S fijo
59. Tubo S telescópico
60. T ubo S flexible y telescópico
61. Riel del segundo imán
62. Elemento unión del segundo imán con cabezal
63. Luces láser de posicionamiento
64. Imán permanente dipolar
65. Segundo motor paso a paso colimador
66. Eje para rotación angular del colimador
67. Mono bloque no magnético porta imanes permanentes
68. Conjunto cuádruplo
69. Núcleo no magnético soporte del cuádruplo
70. Cilindro ferro magnético de cierre de campos
71. Cuatro Imanes permanentes
72. Base no magnética
73. Carcasa no magnética del dipolo
74. Conjunto dipolo
75. Imán permanente circular toroidal
76. Soporte
77. Imán def lector 1 con corte
78. Imán def lector 2 con corte
79. Tubo extensor de electrones
80. Cámaras de ionización
81. Blindaje para fotones dispersos de la fuente de electrones 82. Cilindros concéntricos conductores
83. Cilindro conductor septa de bajo Z (Al)
84. Septa
85. Cilindros concéntricos macizos del material de blindaje ( W o Pb)
86. Alabes de ventilación
87. Sistema de disipación
88. Filtro de electrones
89. Medio desplazamiento disco blanco filtro
90. Compartimiento lateral
91. Ranura curva de piola
92. Piola
93. T raba
94. Medio de acople de entrada
95. Ranura cónica rectangular de entrada de electrones
96. Aro sello
97. Blindaje
98. Medio de apople de salida al colimador
99. Carcaza externa blindaje
500. Dispositivo concentrador de fluencia de radiación ionizante
501. Estructura exterior
502. Estructura interior
503. Sistema de deflexión
504. Elementos corrección de haz de electrones
505. Sistema de contrapeso

Claims

REIVINDICACIONES
1. Un dispositivo concentrador de fluencia de radiación ionizante (500) de foco variable adaptable a una fuente de electrones de alta energía de un dispositivo de radioterapia externa con acelerador lineal, para focalizar y guiar el foco de manera continua y menos invasiva, dentro de una zona determinada,
CARACTERIZADO porque dicho dispositivo comprende:
una estructura de acople que une al dispositivo de radioterapia externa con acelerador lineal con una estructura exterior (101), cuyo eje central (5) es hueco con una ventana (6) de entrada por el cual ingresan los electrones y medios anclaje para adosarse al dispositivo de rotación mediante medios de sujeción (4);
un sistema de rotación que se une a la estructura de acople con una brida de acople (8) hace girar una estructura interior (102);
un sistema de deflexión (503) de electrones que está en la estructura interior (102), en donde el sistema de deflexión (503) comprende, un primer y un segundo dispositivo de deflexión magnética (13, 14);
un sistema de control de foco, que está en el sistema de deflexión (503) de electrones, que comprende un sistema electrónico de control (31) que controla un conjunto a los motores (12, 22) que generan desplazamientos coordinados del segundo dispositivo de deflexión magnética (14), un elemento de corrección y un colimador (25), que permiten cambiar la posición del punto focal; y
al menos dos diodos láser (74) ubicado en el borde del colimador (25) apuntando hacia el foco permitiendo determinar la posición de haz de electrones generado.
2. El dispositivo (500), según la reivindicación 1 , CARACTERIZADO porque la estructura de acople es una bandeja (1) con elementos de sujeción adaptado al LINAC.
3. El dispositivo (500), según la reivindicación 1 , CARACTERIZADO porque el dispositivo de rotación comprende; rodamientos (2) o bujes, una correa con engrane (9) se conecta un motor reductor (10) con el engranaje del eje central (7) que se fija a la estructura de acople mediante pernos (4), la correa con engrane (9) es tensada por otra polea (40), con eje deslizable a una ranura riel (41), que es fijada mediante pernos o tornillos (42).
4. El dispositivo (500), según la reivindicación 1 y 3, CARACTERIZADO porque el dispositivo de rotación es construido completamente con engranajes (11), (9) los que se conectan directamente al motor reductor (10) con el engranaje central (7).
5. El dispositivo (500) según la reivindicación 1 , CARACTERIZADO porque el engranaje (7) es parte del eje central (5).
6. El dispositivo (500), según ias reivindicaciones 1 y 3, CARACTERIZADO porque el mecanismo del dispositivo de rotación se coloca por sobre del dispositivo de acople.
7. El dispositivo (500), según la reivindicación 1 , CARACTERIZADO porque el sistema de deflexión (503) magnético de electrones, está formado por un primer dispositivo de deflexión magnética (13) que desvía el haz de electrones entre 60° y 100° respecto de la dirección del haz de electrones incidente y un segundo dispositivo de deflexión magnética (14), de polaridad inversa al primer dispositivo de deflexión magnética (13), desvía a los electrones hacia un punto focal ubicado en el eje óptico, los que comprenden imanes que tienen una intensidad conjunta entre 0,3 T y 1 ,2 T, en donde, todo el sistema de deflexión (503) magnético se fija a una estructura soporte (17).
8. El dispositivo (500) según la reivindicación 1 , CARACTERIZADO porque además comprende unos elementos corrección de haz de electrones (504).
9. El dispositivo (500), según las reivindicaciones 7 y 8, CARACTERIZADO porque a la salida de cada dispositivo deflexión magnética se posiciona un cuadrupolo magnético alineador de trayectoria (15, 18) del haz de electrones de trayectoria (18) y/o dipolo (74) que alinea el haz de electrones.
10. El dispositivo (500), según las reivindicaciones 7 y 8, CARACTERIZADO porque a la salida del primer dispositivo deflexión magnética (13) y/o delante de primer cuadrupolo (15) se posiciona al menos un dipolo (74) magnético que enfoca la trayectoria del haz de electrones.
11. El dispositivo (500), según las reivindicaciones 7 y 8, CARACTERIZADO porque a la salida del segundo dispositivo deflexión magnética (14) se posiciona un dipolo (74) magnético que enfoca la trayectoria del haz de electrones.
12. El dispositivo (500), según las reivindicaciones 7 y 8, CARACTERIZADO porque e! sistema de deflexión (503) van en una carcasa exterior (45) al vacío, que se adapta a la configuración de los imanes, en donde, el primer dispositivo de deflexión magnética (13) está unido a la pared de ingreso de la caja en dirección perpendicular al haz incidente de electrones y el segundo dispositivo de deflexión magnética (14) va inclinado a más de 0o, en sentido horario, respecto del primer dispositivo de deflexión (13).
13. El dispositivo (500), según las reivindicaciones 7 y 8, CARACTERIZADO porque los dispositivos de deflexión magnética (13, 14) van inclinados de modo que haz electrones emerge del primer dispositivo de deflexión magnética (13) y se desvía en un ángulo cercano a 90°.
14. El dispositivo (500), según las reivindicaciones 7 y 8, CARACTERIZADO porque los dispositivos de deflexión magnética (13, 14) son construidos con imanes permanentes (64).
15. El dispositivo (500), según las reivindicaciones 7 y 8, CARACTERIZADO porque los dispositivos de deflexión magnética (13, 14) son construidos con electro imanes.
16. El dispositivo (500), según las reivindicaciones 1 , 8 y 14, CARACTERIZADO porque cada dispositivo de deflexión magnética (13, 14) está formado de dos imanes (64), en donde cada imán tiene una intensidad de campo magnético entre 0,2 T y 0,7 T ubicados enfrentando sus polos opuestos en sus caras polares, un soporte no magnético de apoyo lateral (65), con un orificio alargado en la zona central, permiten posicionar los imanes (64) gracias a unas saliente que evitan que estos se junten; elemento de cierre de campo (66) con forma de C, ubicado a los lados de los imanes, cierran el circuito magnético.
17. El dispositivo (500), según las reivindicaciones 1 , 8 y 14, CARACTERIZADO porque cada uno de los dispositivos de deflexión magnética (13, 14) posee una pieza no magnética con un soporte no magnético con apoyo central (67), de modo que cuando el haz de electrones entra lateralmente por la zona del agujero central de al menos uno de los dispositivos de deflexión magnética (13, 14) el haz sale por la misma cara por donde entró.
18. El dispositivo (500) según ia reivindicación 9, CARACTERIZADO porque utiliza cuadrupolos (15, 18) fabricados con imanes permanentes.
19. El dispositivo (500) según la reivindicación 10, CARACTERIZADO porque el al menos un dipolo (74) es fabricado con imanes permanentes.
20. El dispositivo (500) según la reivindicación 7, CARACTERIZADO porque los elementos corrección de haz de electrones (504), comprenden cuadrupolos (18) y dipolos (74) magnéticos basados en imanes permanentes.
21. El dispositivo (500) según la reivindicación 1 , CARACTERIZADO porque los dispositivos de deflexión magnética (13, 14) tienen una intensidad mayor a 0,5 T.
22. El dispositivo (500) según la reivindicación 1 , CARACTERIZADO porque los dispositivos de deflexión magnéticos (13, 14) tienen una intensidad mayor a 1 T.
23. El dispositivo (500) según la reivindicación 8, CARACTERIZADO porque la forma del par de imanes permanentes que conforman los dispositivos de deflexión magnética (13, 14) son de cortes curvos e irregulares en unas de sus caras (77, 78).
24. El dispositivo (500), según la reivindicación 16, CARACTERIZADO porque ¡os dispositivos de deflexión magnética (13, 14) poseen a! menos un elemento de cierre de campo curvo (94), los que además comprenden en cada uno de sus extremos distales una curva.
25. El dispositivo (500), según ¡as reivindicaciones 1 , CARACTERIZADO porque los dispositivos de deflexión magnética (13, 14) son energizados eléctricamente mediante un contacto rotatorio (58) que lo conectan anillos conductores (59) los que van conectados con los terminales eléctricos del cabezal del dispositivo de radioterapia externa.
26. El dispositivo (500), según la reivindicación 1 , CARACTERIZADO porque posee un tubo de electrones al vacío con forma de S (16) no magnético con ventanas (68) en sus extremos.
27. El dispositivo (500), según la reivindicación 26, CARACTERIZADO porque las ventanas (68) son de berilio.
28. El dispositivo (500), según la reivindicación 26, CARACTERIZADO porque las ventanas (68) son conductoras de calor.
29. El dispositivo (500), según la reivindicación 26, CARACTERIZADO porque posee un tubo con forma S (69).
30. El dispositivo (500), según la reivindicación 26, CARACTERIZADO porque el posee un tubo forma S telescópico (70) y cilindrico.
31. El dispositivo (500), según la reivindicación 26, CARACTERIZADO porque que posee un tubo flexible y telescópico (72).
32. El dispositivo (500), según la reivindicación 1 , 7 u 8, CARACTERIZADO porque el sistema de control del foco comprende unos dispositivos de deflexión magnética (13, 14) que están fijados de manera solidaria a una estructura de soporte (17).
33. El dispositivo (500), según la reivindicación 1 , 7 u 8, CARACTERIZADO porque el sistema de control del foco comprende un primer motor (12) paso a paso que mueve el segundo dispositivo de deflexión magnética (14) por un riel (61) del segundo imán desplazando de linealmente el segundo dispositivo de deflexión magnética (14) respecto del eje de rotacional a lo largo de la línea de la trayectoria del haz de electrones, en donde el segundo dispositivo de deflexión magnética (14) está unido de manera solidaria con el colimador (25).
34. El dispositivo (500), según la reivindicación 1 , 7 u 8, CARACTERIZADO porque el sistema de control del foco comprende un segundo dispositivo de deflexión magnética (14) rota por el accionamiento de un segundo motor (22) angular y el colimador (25) se desplaza de manera angular por medio de un segundo motor angular (22a) y se desplaza de manera lineal por medio de un motor lineal (22L) y el riel de colimador (21).
35. El dispositivo (500), según la reivindicación 1 , 7 u 8, CARACTERIZADO porque el sistema de control del foco comprende un primer motor (12) paso a paso que mueve el segundo dispositivo de deflexión magnética (14) por un riel del segundo imán (61) desplazando de linealmente el dispositivo de deflexión magnética (14) respecto del eje de rotacional a lo largo de la línea de la trayectoria del haz de electrones, en donde el segundo dispositivo de deflexión magnética (14) rota, por el accionamiento de un segundo motor (22) angular y el colimador (25) se desplaza de manera angular por medio de un segundo motor angular (22a) y se desplaza de manera lineal por medio de un motor lineal (22L) y el riel de colimador (21).
36. El dispositivo (500) según la reivindicación 1 , 32, 33, 34 o 35, CARACTERIZADO porque el colimador (25) comprende:
a. un tubo septa (83) con una septa (84) que cruza el colimador;
b. un disipador de calor (87), que envuelve al colimador (25);
c. un atenuador de radiación con un material de atenuación (85) con un Z mayor a 70, que envuelve radialmente al tubo septa (83);
d. un disco blanco filtro (19) movible, inserto dentro de dicho colimador (25) en un compartimiento lateral (90) para dejar el paso libre de los electrones, en donde el disco blanco filtro (19) se desplaza a la septa (84) para generar fotones X.
37. El dispositivo (500) según la reivindicación 36, CARACTERIZADO porque el colimador (25) además comprende:
a. unos medios de desplazamiento (89) que trasladan al disco blanco filtro (19) a una de sus dos posiciones, que son en el compartimiento lateral (90) para dejar el paso libre de los electrones o la septa (84) para generar fotones X.
38. El dispositivo (500) según la reivindicación 36, CARACTERIZADO porque el disipador de calor (87) es fabricado con materiales con conductividad térmica tales como el aluminio, cobre, boro, estaño o titanio o broce o aleación de ellos.
39. El dispositivo (500) según la reivindicación 36, CARACTERIZADO porque el disipador de calor (87) además comprende unos cilindros concéntricos (82) que transmiten el calor homogéneamente, hacia el exterior.
40. El dispositivo (500) según la reivindicación 36, CARACTERIZADO porque el disipador de calor (87) además comprende unos anillos de disipación (86) para disipar el calor hacia el exterior.
41. El dispositivo (500) según la reivindicación 36, CARACTERIZADO porque los medios de desplazamiento (89) son accionados por unos medios manuales, tales como una piola (92) que se desplaza por la ranura curva (91) y se regresa por un resorte (90).
42. El dispositivo (500) según la reivindicación 36, CARACTERIZADO porque los medios de desplazamiento (89) son accionado por uno motor y unos medios de comunicación alámbrico o inalámbrico.
43. El dispositivo (500) según la reivindicación 36, CARACTERIZADO porque el blanco del disco blanco filtro (19) es fabricado de tungsteno.
44. El dispositivo (500) según la reivindicación 36, CARACTERIZADO porque el blanco del disco blanco filtro (19) es fabricado de tungsteno o plomo o plata u oro o estaño, o aleaciones de ellos.
45. El dispositivo (500), según la reivindicación 36, CARACTERIZADO porque además comprende un ventilador externo para la mejorar la disipación térmica.
46. El dispositivo (500), según la reivindicación 36, CARACTERIZADO porque además comprende un sistema de blindaje (507) que comprende un blindaje de cabezal (20) que cubre por completo al segundo dispositivo de deflexión magnética (14), que evita las fugas de radiación de fotones X.
47. El dispositivo (500) según la reivindicación 1 , CARACTERIZADO porque además comprende de un sistema de contrapeso (505) y control, que comprende un soporte contrapeso (26), un motor paso a paso contrapeso (28), un contrapeso (30), unos medios de comunicación inalámbrica, un compartimento de comunicación inalámbrica (31) con un compartimento de control (29) de control de los motores paso a paso, y compartimento de baterías (27) que energiza todos los dispositivos que van en rotación.
48. El dispositivo (500) según la reivindicación 1 , CARACTERIZADO porque el sistema de deflexión (503) de electrones es en ambiente abierto.
49. El dispositivo (500) según la reivindicación 1 , CARACTERIZADO porque un primer control de operación, controla la operación del LINAC para habilitar el plan de operación, un segundo control para controlar la velocidad de rotación y los motores paso a paso que permiten la variación de la posición del foco y del dispositivo que corta el haz de electrones.
50. El dispositivo (500) según la reivindicación 1 , CARACTERIZADO porque el colimador (25) comprende en su extremo distal un elemento extensor (79), para la salida de electrones que minimiza la dispersión en el aire de dichos electrones.
51. El dispositivo (500) según la reivindicación 1 , CARACTERIZADO porque además comprende un sistema dosimétrico (85) monitor, que se ubica en la parte inferior del colimador (25) que comprende dos cámaras de ionización (80) a gas con ventanas aluminizadas, para monitorear la intensidad de radiación entregada por el dispositivo (500).
52. El dispositivo (500) según la reivindicación 1 , CARACTERIZADO porque en la parte inferior de una estructura soporte (17) se adosan al menos unas dos guías láser que apuntan hacia el foco.
PCT/IB2019/056419 2018-07-27 2019-07-26 Dispositivo concentrador de fluencia de radiación ionizante, que focaliza electrones y fotones x adaptable WO2020021516A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/263,794 US20210287825A1 (en) 2018-07-27 2019-07-26 Device for concentrating ionising radiation fluence, which focuses electrons and x-ray photons and is adaptable
EP19840953.4A EP3831446A4 (en) 2018-07-27 2019-07-26 DEVICE FOR CONCENTRATION OF IONIZING RADIATION FLUENCE THAT IS FOCUSED AND ADAPTABLE TO ELECTRONS AND X-RAY PHOTONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IBPCT/IB2018/055616 2018-07-27
PCT/IB2018/055616 WO2020021315A1 (es) 2018-07-27 2018-07-27 Dispositivo adaptable a equipos de radioterapia externa que concentra la dosis en el blanco con foco variable

Publications (1)

Publication Number Publication Date
WO2020021516A1 true WO2020021516A1 (es) 2020-01-30

Family

ID=69181389

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2018/055616 WO2020021315A1 (es) 2018-07-27 2018-07-27 Dispositivo adaptable a equipos de radioterapia externa que concentra la dosis en el blanco con foco variable
PCT/IB2019/056419 WO2020021516A1 (es) 2018-07-27 2019-07-26 Dispositivo concentrador de fluencia de radiación ionizante, que focaliza electrones y fotones x adaptable

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/055616 WO2020021315A1 (es) 2018-07-27 2018-07-27 Dispositivo adaptable a equipos de radioterapia externa que concentra la dosis en el blanco con foco variable

Country Status (4)

Country Link
US (1) US20210287825A1 (es)
EP (1) EP3831446A4 (es)
CL (1) CL2021000214A1 (es)
WO (2) WO2020021315A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2595484B (en) * 2020-05-28 2022-11-02 Elekta ltd Linac joints
CN114283952B (zh) * 2021-11-19 2023-05-16 核工业西南物理研究院 垂直向中子相机屏蔽与准直结构
CN116099135B (zh) * 2023-04-13 2023-06-27 智维精准(北京)医疗科技有限公司 一种检测装置和使用该检测装置的直线加速器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134017A (en) * 1976-07-09 1979-01-09 C.G.R.-Mev Radiation device using a beam of charged particles
US6181771B1 (en) 1998-05-06 2001-01-30 Siemens Aktiengesellschaft X-ray source with selectable focal spot size
US20090020711A1 (en) * 2007-07-20 2009-01-22 Siemens Aktiengesellschaft A particle beam application device and an irradiation device as well as a method for guiding a particle beam
US20100012859A1 (en) * 2006-07-06 2010-01-21 Yves Claereboudt Method For Treating A Target Volume With A Particle Beam And Device Implementing Same
US20100301228A1 (en) * 2009-05-27 2010-12-02 Mitsubishi Electric Corporation Particle beam therapy system
KR20130039448A (ko) * 2011-10-12 2013-04-22 한국표준과학연구원 소초점 가변형 콜리메이터
AR086472A1 (es) * 2011-04-20 2013-12-18 Univ La Frontera Aparato generador de haces de electrones y fotones-x convergentes
WO2015102680A2 (en) * 2013-09-11 2015-07-09 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for beam intensity-modulation to facilitate rapid radiation therapies

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056728A (en) * 1972-01-31 1977-11-01 C.G.R.-Mev. Magnetic deflecting and focusing device for a charged particle beam
JPH07227435A (ja) * 1993-12-20 1995-08-29 Mitsubishi Electric Corp 三次元放射線治療装置
JP2001000562A (ja) * 1999-06-25 2001-01-09 Toshiba Corp 治療装置
KR100512558B1 (ko) * 2003-05-09 2005-09-07 허순녕 방사선치료용 콜리메터와 콜리메터어뎁터 및콜리메터어뎁터 장착홀더
JP2005302734A (ja) * 2005-06-03 2005-10-27 Hitachi Ltd 医療用加速器施設
US9324468B2 (en) * 2010-08-23 2016-04-26 Varian Medical Systems, Inc. Multileaf collimators with transverse motion
RU2462009C1 (ru) * 2011-06-08 2012-09-20 Мурадин Абубекирович Кумахов Способ изменения направления движения пучка ускоренных заряженных частиц, устройство для осуществления этого способа, источник электромагнитного излучения, линейный и циклический ускорители заряженных частиц, коллайдер и средство для получения магнитного поля, создаваемого током ускоренных заряженных частиц
CN202263301U (zh) * 2011-09-13 2012-06-06 中国人民解放军第三军医大学第二附属医院 一种电动多叶光栅的适配器外挂装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134017A (en) * 1976-07-09 1979-01-09 C.G.R.-Mev Radiation device using a beam of charged particles
US6181771B1 (en) 1998-05-06 2001-01-30 Siemens Aktiengesellschaft X-ray source with selectable focal spot size
US20100012859A1 (en) * 2006-07-06 2010-01-21 Yves Claereboudt Method For Treating A Target Volume With A Particle Beam And Device Implementing Same
US20090020711A1 (en) * 2007-07-20 2009-01-22 Siemens Aktiengesellschaft A particle beam application device and an irradiation device as well as a method for guiding a particle beam
US20100301228A1 (en) * 2009-05-27 2010-12-02 Mitsubishi Electric Corporation Particle beam therapy system
AR086472A1 (es) * 2011-04-20 2013-12-18 Univ La Frontera Aparato generador de haces de electrones y fotones-x convergentes
KR20130039448A (ko) * 2011-10-12 2013-04-22 한국표준과학연구원 소초점 가변형 콜리메이터
WO2015102680A2 (en) * 2013-09-11 2015-07-09 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for beam intensity-modulation to facilitate rapid radiation therapies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3831446A4 *

Also Published As

Publication number Publication date
EP3831446A1 (en) 2021-06-09
US20210287825A1 (en) 2021-09-16
CL2021000214A1 (es) 2021-06-11
WO2020021315A1 (es) 2020-01-30
EP3831446A4 (en) 2021-10-20

Similar Documents

Publication Publication Date Title
WO2020021516A1 (es) Dispositivo concentrador de fluencia de radiación ionizante, que focaliza electrones y fotones x adaptable
ES2222458T3 (es) Aparato para la aceleracion lineal de electrones para terapia de radiacion interna.
ES2812563T3 (es) Dispositivo para generar haces de fotones x convergentes
US6878951B2 (en) Helical electron beam generating device and method of use
CA3071104C (en) Three-dimensional beam forming x-ray source
US8559598B2 (en) Miniature X-ray source device for effecting radiation therapy
US9330879B2 (en) Bremstrahlung target for intensity modulated X-ray radiation therapy and stereotactic X-ray therapy
EP2095373A1 (en) Collimator
US7231015B2 (en) Device for radiation therapy
EP3409321B1 (en) Kilovoltage radiation therapy
US20220295624A1 (en) Field replacable, disposable, and thermally optimized x-ray target with integral beam current monitoring
CN107432992B (zh) 近端治疗装置及其放射源
ES2871555T3 (es) Dispositivos de administración de radiación
KR102587860B1 (ko) 자기장 생성 장치 및 그의 제어 방법
CN114668986A (zh) 一种放射治疗装置、光子闪疗系统及超高能电子闪疗系统
CN113198114B (zh) 一种磁约束高能电子线放疗设备
ES2907192T3 (es) Dispositivo generador de haz de neutrones
KR102587822B1 (ko) 자기장 생성 장치 및 그의 제어 방법
CN220046869U (zh) 一种适形治疗头及放射治疗设备
ES2644288T3 (es) Aparato de radioterapia
KR20230072718A (ko) 방사선치료용 선형가속기에서 방사선 조사야 확인을 위한 광조사 시스템
JP2023522774A (ja) 磁場生成装置及びその制御方法
CN116899126A (zh) 一种辐射治疗头
CN117045986A (zh) 施治器
CN112439131A (zh) X-射线笔形束扫描调强治疗直线加速器装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019840953

Country of ref document: EP

Effective date: 20210301