WO2020020378A1 - 充电器 - Google Patents
充电器 Download PDFInfo
- Publication number
- WO2020020378A1 WO2020020378A1 PCT/CN2019/098226 CN2019098226W WO2020020378A1 WO 2020020378 A1 WO2020020378 A1 WO 2020020378A1 CN 2019098226 W CN2019098226 W CN 2019098226W WO 2020020378 A1 WO2020020378 A1 WO 2020020378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- power
- electronic switch
- battery pack
- charging
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
- H02J7/04—Regulation of charging current or voltage
Definitions
- the invention relates to the field of charging, in particular to a charger and a charging system capable of preventing the failure of an electronic switch.
- the existing charger uses a controller to control a single electronic switch to switch on and off to realize the charging circuit.
- the electronic switch often needs to work under high current, high power, and frequent on and off conditions. Therefore, the electronic switch is prone to short-circuit failure. Phenomenon, that is, the battery pack cannot be shut down normally.
- Phenomenon that is, the battery pack cannot be shut down normally.
- the charging process is abnormal or the battery pack is full, it is necessary to stop charging the battery pack, but the failed electronic switch cannot be shut off in a controlled manner, and the charging circuit cannot terminate the charging of the battery pack. It may cause overcharging of the battery pack, resulting in damage to the battery pack life or even safety risks.
- the conventional method is to use at least two electronic switches in series at the same position of the charging circuit, and use the same control signal to control the on and off of the at least two electronic switches, thereby preventing the failure of a single electronic switch, but using multiple electronic switches in series Higher cost, difficult to obtain for large-volume manufacturing companies Greater economic benefits.
- An object of the present invention is to solve the above problems and provide a charger capable of effectively preventing the failure of an electronic switch.
- a charger for charging a battery pack.
- the charger includes a power circuit that receives an external power input and converts the external power into a DC power output that matches the charging voltage of the battery pack.
- a charging circuit operable to use the DC power output to charge the battery pack, the charging circuit includes a first electronic switch, and the first electronic switch has two states: off and on.
- the charging circuit When the first electronic switch is in an on state, the charging circuit can charge the battery pack, and when the first electronic switch is in an off state, the charging circuit cannot charge the battery pack; a monitoring circuit Can monitor the status of the battery pack, the charging circuit, and the power supply circuit; the control circuit can control the working state of the charger according to the monitoring results of the monitoring circuit; when the monitoring circuit detects any When a preset state occurs, the control circuit outputs a control signal to control the charger to perform the following actions: turn off the first electronic switch, and reduce or Off the power supply circuit DC power output.
- control circuit includes a controller, and the controller sends control signals from at least two pins to control the working state of the first electronic switch and the power circuit, respectively.
- control signal includes at least one set of high-level signals and one set of low-level signals.
- control signal includes at least one group of signals that change periodically.
- the charger further includes a unidirectional conducting element located between the first electronic switch and the battery pack, and the unidirectional conducting element is conducted in a charging current direction.
- the power supply circuit includes a power supply processor and a PWM adjustment circuit, and the power supply processor may control the PWM adjustment circuit according to the control signal to reduce or turn off a DC power output of the power supply circuit.
- the power supply circuit includes a power supply processor, a PWM adjustment circuit, and an auxiliary power supply circuit.
- the auxiliary power supply circuit provides working power to the power supply processor, and the power supply processor can control the PWM adjustment circuit when it receives power.
- the power circuit In order to adjust the DC power output of the power circuit, when the power processor cannot obtain power, the power circuit has no DC power output, and the auxiliary power circuit can cut off the power to the power processor according to the control signal. .
- the charger further includes a second electronic switch, and the control circuit outputs a control signal to turn on the second electronic switch to short-circuit the positive and negative poles of the DC power output of the power circuit.
- the power supply circuit includes a power supply processor, and when the power supply processor detects a short circuit in the output, it enters a protection lockout mode and turns off the output.
- the preset state includes at least a charger abnormality, a battery pack abnormality, and a battery pack full.
- the abnormality of the charger includes an abnormality of the power circuit, an abnormality of the charging circuit, an abnormality of the monitoring circuit, and a failure of the control circuit.
- the abnormality of the battery pack includes overheating of the battery pack, overcharging of the battery pack, or uneven voltage of the battery pack. The battery is fully charged when the battery pack voltage reaches the nominal voltage.
- the abnormality of the charging circuit includes an overcurrent of the charging circuit and failure of any electronic device of the charging circuit.
- the invention also provides a charger comprising: a power circuit configured to convert an AC input into a controllable DC output; a charging circuit configured to be operable to use the DC output for charging a battery module, the charging circuit
- the electronic switch includes an off state and an on state. When the electronic switch is in an on state, the charging circuit can charge a battery module.
- the charging circuit cannot charge the battery module;
- the control circuit is configured to monitor the states of the battery module and the charging circuit, and when any preset state is monitored, the control circuit outputs a control signal to turn off the electronics A switch;
- a feedback circuit configured to feedback a control signal of the control circuit to the power supply circuit; when the control circuit outputs a control signal to turn off the electronic switch, a control signal is simultaneously output to the feedback circuit, the The feedback circuit feeds back a control signal to the power circuit, which reduces or turns off the DC output.
- the multiple preset states in the charging process include at least an abnormality of the charging circuit, an abnormality of the battery module, and a fully charged state of the battery module.
- the abnormal state of the charging circuit is an over-current state
- the abnormal state of the battery module includes an over-temperature state of the battery module and a single-cell over-charge state
- the full state of the battery module is that the battery module voltage reaches a nominal voltage
- the feedback circuit includes a photocoupler circuit
- the power supply circuit includes a PWM adjustment circuit
- the photocoupler circuit feeds back a control signal output by the control circuit to the PWM adjustment circuit, and the PWM adjustment circuit reduces or Shut down the DC output.
- the invention also provides a charger comprising: a power circuit configured to convert an AC input into a controllable DC output; a charging circuit configured to be operable to use the DC output for charging a battery module, the charging circuit
- the first electronic switch includes two states: off and on. When the first electronic switch is on, the charging circuit can charge a battery module.
- the charging circuit cannot charge the battery module;
- the control circuit is configured to monitor the state of the battery module and the charging circuit, and when any preset state is monitored, the control circuit Outputting a control signal to turn off the electronic switch;
- a feedback circuit configured to feedback the control signal of the control circuit to the power supply circuit;
- the charger further includes a failure detection circuit configured to output a control signal when the control circuit outputs a control signal
- the control circuit judges based on the electrical parameter Said first electronic switch is invalid, it is determined if the first electronic switch failure, the power supply circuit to reduce the DC output on or off.
- the multiple preset states in the charging process include at least an abnormality of the charging circuit, an abnormality of the battery module, and a fully charged state of the battery module.
- the abnormal state of the charging circuit is an over-current state
- the abnormal state of the battery module includes an over-temperature state of the battery module and a single-cell over-charge state
- the full state of the battery module is that the battery module voltage reaches a nominal voltage
- the failure detection circuit detects whether a voltage exists at a preset node on the side of the first electronic switch, and determines that the first electronic switch has failed if a voltage exists at the preset node.
- the failure detection circuit detects whether a current exists in the charging circuit, and determines that the first electronic switch has failed if a current exists in the charging circuit.
- the first electronic switch Before the charging is started, the first electronic switch is in an off state, and the failure detection circuit detects a voltage of the preset node or a current of the charging circuit, and if it is determined that the first electronic switch has failed
- the control circuit outputs a control signal to the feedback circuit, the feedback circuit feeds back a control signal to the power circuit, and the power circuit turns off the DC output.
- the feedback circuit includes a photocoupler circuit
- the power supply circuit includes a PWM adjustment circuit
- the photocoupler circuit feeds back a control signal output by the control circuit to the PWM adjustment circuit, and the PWM adjustment circuit is turned off DC output, prohibit charging on.
- the control circuit outputs a control signal to the feedback circuit, the feedback circuit feeds back a control signal to the power circuit, and the power circuit is reduced. Or turn off the DC output.
- the feedback circuit includes a photocoupler circuit
- the power supply circuit includes a PWM adjustment circuit
- the photocoupler circuit feeds back a control signal output by the control circuit to the PWM adjustment circuit, and the PWM adjustment circuit reduces or Shut down the DC output.
- control circuit and the power circuit are independent from each other, and the power circuit is electrically connected to the control circuit and the charging circuit through positive and negative electrodes of a direct current output of the power circuit.
- the control circuit outputs a control signal to the feedback circuit.
- the feedback circuit short-circuits the positive and negative electrodes of the DC output of the power circuit, and the power circuit is turned off. Off output.
- the feedback circuit includes a second electronic switch, and the control circuit outputs a control signal to turn on the second electronic switch to short-circuit the positive and negative electrodes of the DC output of the power circuit.
- the power supply circuit includes a power supply processor, and when the power supply processor detects a short circuit of the charging circuit, it enters a protection lockout mode and turns off the output.
- a charging system including a battery pack and a charger for charging the battery pack, the charger including: a power circuit, receiving an external power input, and converting the external power into A DC power output matching a battery pack charging voltage; a charging circuit operable to use the DC power output to charge the battery pack; the battery pack including: at least one energy storage unit that stores the DC power output by the charging circuit ;
- the charging system includes at least one of a first electronic switch located in the charger and a second electronic switch located in the battery pack, the first electronic switch and the second electronic switch are off and on The two states are turned on. When the first electronic switch and the second electronic switch are in an on state, the charging circuit can charge the battery pack.
- the charging circuit When the first electronic switch or the second electronic switch is When the switch is in the off state, the charging circuit cannot charge the battery pack; the charging system further includes a monitoring circuit that monitors the battery pack and the charging And the state of the power supply circuit; the charging system further includes a control circuit that can control the working state of the charging system according to the monitoring result of the monitoring circuit; when the monitoring circuit detects that any preset state occurs , The control circuit outputs a control signal to control the charging system to perform at least two of the following preset actions;
- the charging system includes a first electronic switch located on the charger.
- the control circuit When the monitoring circuit detects that any preset state occurs, the control circuit outputs a control signal to control the charging system to perform the following pre-settings. Set action: turn off the first electronic switch, and reduce or turn off the DC power output of the power circuit.
- the charging system includes a second electronic switch located in the battery pack.
- the control circuit When any of the preset states is monitored by the monitoring circuit, the control circuit outputs a control signal to control the charging system to perform the following pre-settings. Set action: turn off the second electronic switch, and reduce or turn off the DC power output of the power circuit.
- the charging system includes a first electronic switch located on the charger and a second electronic switch located on the battery pack.
- the control circuit Outputting a control signal to control the charging system to perform the following preset actions: turn off the first electronic switch, and turn off the second electronic switch.
- control circuit includes a controller, and the controller sends control signals from at least two pins to control working states of the first electronic switch, the second electronic switch, and the power supply circuit.
- control signal includes at least one set of high-level signals and one set of low-level signals.
- control signal includes at least one group of signals that change periodically.
- the charging system further includes a unidirectional conducting element located between the first electronic switch or the second electronic switch and the at least one energy storage unit, and the unidirectional conducting element conducts along a charging current direction. through.
- the power supply circuit includes a power supply processor and a PWM adjustment circuit, and the power supply processor may control the PWM adjustment circuit according to the control signal to reduce or turn off a DC power output of the power supply circuit.
- the power supply circuit includes a power supply processor, a PWM adjustment circuit, and an auxiliary power supply circuit.
- the auxiliary power supply circuit provides working power to the power supply processor, and the power supply processor can control the PWM adjustment circuit when it receives power.
- the power circuit In order to adjust the DC power output of the power circuit, when the power processor cannot obtain power, the power circuit has no DC power output, and the auxiliary power circuit can cut off the power to the power processor according to the control signal. .
- the charging system further includes a third electronic switch, and the control circuit outputs a control signal to turn on the third electronic switch to short-circuit the positive and negative poles of the DC power output of the power circuit.
- the power supply circuit includes a power supply processor, and when the power supply processor detects a short circuit in the output, it enters a protection lockout mode and turns off the output.
- the preset states include abnormality of the charger, abnormality of the battery pack, full battery pack, abnormality of the monitoring circuit, and failure of the control circuit.
- the abnormality of the charger includes an abnormality of the power circuit and the abnormality of the charging circuit
- the abnormality of the battery pack includes overheating of the battery pack, overcharging of the battery pack, uneven voltage of the energy storage unit, and failure of the energy storage unit.
- the status is that the battery pack voltage has reached the nominal voltage.
- the abnormality of the charging circuit includes an overcurrent of the charging circuit and failure of any electronic device of the charging circuit.
- the present invention also provides a charging system including a battery pack and a charger for charging the battery pack.
- the charger includes a power circuit that receives an external power input and converts the external power into the battery pack. A DC power output matching the charging voltage; a charging circuit operable to use the DC power output to charge the battery pack; the battery pack includes: at least one energy storage unit that stores the DC power output by the charging circuit;
- the charging system includes at least one of a first electronic switch located on the charger and a second electronic switch located on the battery pack. The first electronic switch and the second electronic switch are both off and on.
- the charging system further includes a monitoring circuit that monitors the battery pack, the charging circuit, and The state of the power supply circuit; the charging system further includes a control circuit that can control the working state of the charging system according to the monitoring result of the monitored circuit, and when the monitoring circuit detects that any preset state occurs, the The control circuit outputs a control signal to turn off at least one of the first electronic switch and the second electronic switch; the charging system further includes a failure detection circuit for turning off the first circuit when the control circuit outputs a control signal Detecting at least one of the electronic switch and the second electronic switch whether there is a voltage at a preset node on the charging current outflow side of the first electronic switch and / or the second electronic switch, and if the preset node The presence of a voltage determines that the first electronic switch and
- the preset state includes at least an abnormality of the charger, an abnormality of the battery pack, a full battery pack, an abnormality of the monitoring circuit, and a failure of the control circuit.
- the abnormality of the charger includes an abnormality of the power circuit and the abnormality of the charging circuit
- the abnormality of the battery pack includes overheating of the battery pack, overcharging of the battery pack, uneven voltage of the energy storage unit, failure of the energy storage unit, and the battery pack being full
- the status is that the battery pack voltage has reached the nominal voltage.
- the abnormality of the charging circuit includes an overcurrent of the charging circuit and failure of any electronic device of the charging circuit.
- control circuit includes a controller, and the controller sends control signals from at least two pins to control working states of the first electronic switch, the second electronic switch, and the power supply circuit.
- control signal includes at least one set of high-level signals and one set of low-level signals.
- control signal includes at least one group of signals that change periodically.
- the charging system further includes a unidirectional conducting element located between the first electronic switch or the second electronic switch and the energy storage unit, and the unidirectional conducting element is turned on in a charging current direction.
- the first electronic switch and / or the second electronic switch are in an off state. If it is determined that the first electronic switch and / or the The second electronic switch is disabled, and the control circuit outputs a control signal to turn off the DC power output of the power circuit, preventing charging from turning on.
- the control circuit outputs a control signal to reduce or turn off a DC power output of the power circuit.
- the power supply circuit includes a power supply processor and a PWM adjustment circuit, and the power supply processor may control the PWM adjustment circuit according to the control signal to reduce or turn off a DC power output of the power supply circuit.
- the power supply circuit includes a power supply processor, a PWM adjustment circuit, and an auxiliary power supply circuit.
- the auxiliary power supply circuit provides working power to the power supply processor, and the power supply processor can control the PWM adjustment circuit when it receives power.
- the power circuit In order to adjust the DC power output of the power circuit, when the power processor cannot obtain power, the power circuit has no DC power output, and the auxiliary power circuit can cut off the power to the power processor according to a control signal.
- control circuit and the power supply circuit are independent from each other. If it is determined that the first electronic switch and / or the second electronic switch are invalid, the control circuit outputs a control signal to cause the DC power supply of the power supply circuit to output. The positive and negative terminals are shorted.
- the charging system further includes a third electronic switch, and the control circuit outputs a control signal to turn on the third electronic switch to short-circuit the positive and negative poles of the DC power output of the power circuit.
- the power supply circuit includes a power supply processor, and when the power supply processor detects a short circuit in the output, it enters a protection lockout mode and turns off the output.
- FIG. 1 shows one of the module structure diagrams of the charger of the first embodiment.
- FIG. 2 shows a schematic structural diagram of a power circuit module.
- FIG. 3 is a second schematic diagram of the module structure of the charger of the first embodiment.
- FIG. 4 shows a schematic diagram of a controller outputting a control signal.
- FIG. 5 shows one of the module structure diagrams of the charging system of the second embodiment.
- FIG. 6 shows a second schematic block diagram of the charging system of the second embodiment.
- FIG. 7 shows the third block diagram of the charging system of the second embodiment.
- FIG. 8 shows a fourth schematic block diagram of the charging system of the second embodiment.
- Fig. 9 shows a control flowchart of the first embodiment and the second embodiment.
- FIG. 10 shows one of the module structure diagrams of the charging system of the third embodiment.
- FIG. 11 shows one of the control flowcharts of the third embodiment.
- FIG. 12 shows a second schematic block diagram of the charging system of the third embodiment.
- FIG. 13 shows the second control flowchart of the third embodiment.
- FIG. 14 shows the third block diagram of the charging system of the third embodiment.
- FIG. 15 shows a fourth schematic block diagram of the charging system of the third embodiment.
- FIG. 16 shows a fifth schematic block diagram of the charging system of the third embodiment.
- FIG. 1 is a schematic diagram showing a module structure of a charger according to a first embodiment of the present invention.
- the charger is used to charge a battery pack 15 and includes a power source circuit 11 for receiving an input of an external power source 10 and The input is converted into a DC power output that matches the charging voltage of the battery pack.
- the external power source 10 here may be an AC power source or a DC power source higher than the battery pack voltage.
- the charger also includes a charging circuit 12 to operatively convert the power source circuit.
- a DC power output of 11 is used to charge the battery pack 15.
- the charging circuit includes a first electronic switch 13, which can be controlled to be in an off or on state.
- the charging circuit 12 can charge the battery pack, and when the first electronic switch 13 is in an off state, the charging circuit cannot charge the battery pack.
- the first electronic switch may include But it is not limited to controllable electrical switching elements such as MOS tube, triode, relay, IGBT and so on.
- the charger may further include a monitoring circuit 16 and a control circuit 17, wherein the monitoring circuit 16 is used to monitor the status of the battery pack 15, the charging circuit 12, and the power supply circuit 11.
- the status here can be understood as the normal operation of the above parts
- the battery pack status can be measured directly by the monitoring circuit 16 through the battery pack interface, or it can be set by the relevant circuit inside the battery pack to detect the working state of the battery pack and The detection result is transmitted to the monitoring circuit; the control circuit 17 controls the working state of the charger according to the monitoring result of the monitoring circuit 16.
- the control circuit 17 can control the working state of the charger including, but not limited to, the following situations: processing of the monitoring result, Adjustment of power supply circuit, state switch of electronic switch, etc.
- the control circuit 17 When the monitoring circuit 16 detects that any preset state occurs, the control circuit 17 outputs a control signal to control the charger to perform the following two preset actions: turn off the first electronic switch 13 and reduce or turn off the direct current of the power circuit 11 Power Output.
- preset states include, but are not limited to, abnormal chargers, abnormal battery packs, and full battery packs, among which abnormalities in chargers include abnormal power circuits, abnormal charging circuits, abnormal monitoring circuits, and control circuit failures, and abnormal battery packs include battery packs. Over temperature, battery pack overcharging, and battery pack voltage imbalance. The battery pack is fully charged when the battery pack voltage reaches the nominal voltage, and the abnormality of the charging circuit includes overcurrent of the charging circuit and failure of any electronic device of the charging circuit.
- the control circuit 17 outputs a control signal to turn off the first electronic switch 13 and reduce or turn off the DC power output of the power circuit 11
- the two preset processing actions of turning off the first electronic switch 13 and reducing or turning off the DC power output of the power circuit 11 may be performed by the control circuit 17 outputting the control signal at the same time, or the control circuit may output first A group of control signals performs one of the processing actions, and then outputs another group of control signals to perform another processing action, and there is no need to add other judgment conditions during the interval between the two processing actions performed in sequence.
- the control circuit 17 can directly control the DC power output of the power circuit 11.
- a feedback circuit 18 can be provided in the charger.
- the control circuit 17 outputs a control signal to the feedback circuit 18, and the feedback circuit 18 feeds back the control signal.
- the output of the power circuit 11 is further changed to the power circuit 11; as shown in FIG. 2, the power circuit 11 may include a power processor 111, a PWM adjusting circuit 112, and a main transformer 113, and the power processor 111 may receive a control signal of the control circuit. And output a control signal to the PWM adjusting circuit 112.
- the PWM adjusting circuit 112 changes the duty cycle within the range of 0-100% according to the control signal of the power processor to thereby change the output of the main transformer 113 to achieve the output adjustment of the power circuit.
- the power processor 111 controls the PWM adjustment circuit to reduce the duty cycle below a safe preset value or directly makes the duty cycle to 0 to reduce or turn off DC power output of the power circuit.
- the power supply circuit may further include an auxiliary power supply circuit 114.
- the auxiliary power supply circuit 114 is used to provide working power for the power processor 111, and may be turned on or off according to a control signal of the control circuit 17.
- the PWM adjustment circuit 112 can be controlled to change the duty cycle to adjust the DC power output of the power circuit.
- the power circuit will not have a DC power output. Therefore, when the feedback circuit 18 will control the control circuit 17
- the auxiliary power supply circuit 114 cuts off the power supply to the power processor 111, thereby turning off the DC power output.
- the control circuit 17 and the power circuit 11 are independent of each other, that is, the control circuit 17 cannot directly control the DC power output of the power circuit 11, and the power circuit 11 and the control circuit 17 and the charging circuit 12 pass the DC output of the power circuit.
- the positive and negative electrodes are electrically connected.
- the charging system may further include a second electronic switch 19. One side of the second electronic switch 19 is connected to the DC output positive pole of the power circuit 11 and the other side is connected to the DC output negative pole of the power circuit 11. When the switch 19 is turned on, the DC output of the power circuit 11 enters a short-circuit state.
- the power circuit 11 further includes a power processor, which has an output abnormality processing function.
- the power processor is combined with the second electronic switch 19 to turn off the power circuit. 11 DC output.
- the control circuit 17 outputs a control signal to turn on the first electronic switch 13 and the second electronic switch 19.
- the second electronic switch 19 is turned on, the DC output of the power circuit 11 enters a short circuit state. ;
- the power supply processor in the power supply circuit 11 detects an output short circuit, it enters a protection lockout mode and turns off the output of the power supply circuit 11.
- the control circuit cannot control the output of the power circuit directly under abnormal conditions.
- the control circuit shorts the output of the power circuit to make The power circuit detects the output short circuit and then turns off the output, which realizes that the control circuit indirectly turns off the output of the power circuit, which effectively solves the problem that it is difficult to shut down the charging in the abnormal state of the separate charger.
- the control circuit 17 of the charger may include a controller (MCU).
- MCU controller
- the controller In order to prevent the controller pins from failing during work, that is, the pins are not controlled by the internal chip program. Outputs constant high or low uncontrollable level signals.
- control signals can be sent from at least two pins to control different parts of the charger.
- the multiple sets of control signals include at least one set of high-level signals, and there is a set of low-level signals.
- Pin1 outputs a low-level signal and Pin2 outputs a high-level signal;
- the control signal includes at least one group of signals that change periodically.
- Pin1 is a waveform signal with a certain frequency
- Pin2 is a high-level signal.
- Pin1 and Pin2 is a signal with the opposite waveform.
- the charger is provided with a unidirectional conducting element at the position between the electronic switch and the battery pack in the charging circuit.
- the diode 14 as a unidirectional conducting element can be charged along the current during charging. It is turned on in the direction and cut off in the opposite direction of the charging current, thereby effectively preventing the discharge of the battery pack from flowing back.
- FIG. 5 shows one of the module structure diagrams of a charging system according to a second embodiment of the present invention.
- the charging system includes a battery pack and a charger for charging the battery pack.
- the charger includes a power source circuit 21 for receiving an external power source 20 Input, and convert the input of the external power source 20 into a DC power source output that matches the battery pack charging voltage.
- the external power source 20 here can be an AC power source or a DC power source higher than the battery pack voltage; the charger also includes a charging circuit 22. Operate the DC power output of the power circuit 21 to charge the battery pack.
- the battery pack includes at least one energy storage unit 25, and the energy storage unit 25 is used to store the DC power output by the charging circuit.
- the charging system also includes at least one of a first electronic switch 23 located in the charger and a second electronic switch 24 located in the battery pack.
- FIG. 5 shows only one of these cases, that is, the first electronic switch is present at the same time. 23 and the second electronic switch 24, but the specific solution of this embodiment is not limited to this, and the first electronic switch 23 or the second electronic switch 24 may exist alone (see the detailed description of each case below);
- the first electronic switch 23 and the second electronic switch 24 can be controlled to be turned off or on.
- the charging circuit can charge the battery pack.
- the charging circuit 22 cannot charge the battery pack.
- the electronic switch may include, but is not limited to, a MOS tube, Controllable electrical switching elements such as triodes, relays, IGBTs.
- the charging system may further include a monitoring circuit 26 and a control circuit 27, wherein the monitoring circuit 26 is used to monitor the status of the battery pack, the charging circuit 22, and the power circuit 21, and the status here can be understood as when the above parts work normally
- Control circuit 27 controls the working state of the charging system according to the monitoring result of the monitoring circuit 26, and the control circuit 27 can control the working state of the charging system including, but not limited to, the following situations: Processing of monitoring results, adjustment of power circuits, switching of electronic switches, etc.
- the control circuit 27 When the monitoring circuit 26 detects that any preset state occurs, the control circuit 27 outputs a control signal to control the charging system to perform at least two of the following preset actions: 1) turning off the first electronic switch 23, 2) turning off Turning off the second electronic switch 24, 3) reduces or turns off the DC power output of the power circuit 21. It can be understood that when the control circuit 27 outputs a control signal to perform the above-mentioned preset action, the control circuit 27 may output a control signal to perform the above-mentioned preset action at the same time, or may first output a group of control signals to perform one of the processing actions, and then output The other set of control signals performs another processing action, and no other judgment conditions need to be added in the interval between the two processing actions described above.
- preset states include, but are not limited to, abnormal chargers, abnormal battery packs, full battery packs, abnormal monitoring circuits, and control circuit failures.
- abnormalities in chargers include, but are not limited to, abnormal power circuits, abnormal charging circuits, and batteries.
- Package exceptions include battery pack overtemperature, battery pack overcharge, energy storage unit voltage imbalance, energy storage unit failure, and battery pack full state when the battery pack voltage reaches the nominal voltage.
- abnormal charging circuits include charging circuit overcurrent, Any electronics in the charging circuit have failed.
- the above charging system may have the following four implementation modes:
- the charging system includes a charger and a battery pack.
- the charger includes a power circuit, a charging circuit, a first electronic switch, a monitoring circuit, a control circuit, and a feedback circuit. There is no electronic switch in the battery pack.
- the control circuit When any preset state is detected, the control circuit outputs a control signal to control the charging system to perform the following two actions: turn off the first electronic switch, and reduce or turn off the DC power output of the power circuit.
- This embodiment is similar to the first The description of one embodiment is the same, and is not repeated here.
- the charging system includes a charger and a battery pack
- the charger includes a power circuit 21 and a charging circuit 22
- the battery pack includes a second electronic switch 24
- the monitoring circuit includes a charger monitoring circuit 261
- the control circuit includes a charger control circuit 271 and a battery pack control circuit 272. It should be noted that there is no first electronic switch in the charger.
- the charger monitoring circuit 261 monitors the working status of the charging circuit 22 and the power supply circuit 21, the battery pack monitoring circuit monitors 262 the status of the second electronic switch 24, and the energy storage unit 25, and the charger control circuit 271 can learn the charger monitoring circuit 261 Monitoring results and controlling the working state of the charger, the battery pack control circuit 272 can control the state of the second electronic switch 24, and can obtain the monitoring results of the battery pack monitoring circuit 262 and transmit the monitoring results to the charger control circuit 271, further The charger control circuit 271 can also output a control signal to the battery pack control circuit 272 to switch the state of the second electronic switch 24.
- the battery pack control circuit 272 When the battery pack monitoring circuit 262 detects that there is an abnormality in the battery pack, the battery pack control circuit 272 performs a preset action of turning off the second electronic switch 24, and transmits the abnormal state to the charger control circuit 271, the charger control circuit 271 Perform a preset action of reducing or shutting down the DC power output of the power supply circuit 21; and when the charger monitoring circuit 261 detects a charger abnormality, the charger control circuit 271 performs a pre-reduction of reducing or shutting down the DC power output of the power supply circuit 21 Set the action, and output a control signal to the battery pack control circuit 272 to perform a preset action of turning off the second electronic switch 24.
- the charging system includes a charger and a battery pack.
- the charger includes a power circuit 21, a charging circuit 22, and a first electronic switch 23.
- the battery pack includes a second electronic switch 24 and energy storage.
- the monitoring circuit includes a charger monitoring circuit 261 and a battery pack monitoring circuit 262, and the control circuit includes a charger control circuit 271 and a battery pack control circuit 272. It should be noted that, at this time, the charging system includes a first An electronic switch 23 and a second electronic switch 24 located in the battery pack.
- the charger monitoring circuit 27 monitors the working states of the first electronic switch 23, the charging circuit 22, and the power supply circuit 21, the battery pack monitoring circuit 262 monitors the states of the second electronic switch 24, and the energy storage unit 25, and the charger control circuit 271 can Obtain the monitoring result of the charger monitoring circuit 261 and control the working state of the charger.
- the battery pack control circuit 272 can control the state of the second electronic switch 24, and can obtain the monitoring result of the battery pack monitoring circuit 262 and transmit the monitoring result to charging.
- the charger control circuit 271 and the further charger control circuit 271 may also output a control signal to the battery pack control circuit 272 to switch the state of the second electronic switch 24.
- the battery pack control circuit 272 When the battery pack monitoring circuit 262 detects that there is an abnormality in the battery pack, the battery pack control circuit 272 performs a preset action of turning off the second electronic switch 24, and transmits the abnormal state to the charger control circuit 271, the charger control circuit 271 Perform a preset action to turn off the first electronic switch 23; and when the charger monitoring circuit 261 detects a charger abnormality, the charger control circuit 271 performs a preset action to turn off the first electronic switch 23 and outputs a control signal to The battery pack control circuit 272 performs a predetermined action of turning off the second electronic switch 24.
- the composition of the charging system is the same as that in the third implementation manner.
- the battery pack control circuit 272 executes the shutdown. Turn off the preset action of the second electronic switch 24 and transmit the abnormal state to the charger control circuit 271.
- the charger control circuit 271 performs the preset action of turning off the first electronic switch 23 and lowers or turns off the power circuit 21 The preset action of the DC power output; and when the charger monitoring circuit 261 detects that the charger is abnormal, the charger control circuit 271 performs a preset action of turning off the first electronic switch 23 and lowering or turning off the power circuit 21 The preset action output by the DC power supply and outputs a control signal to the battery pack control circuit 272 to perform the preset action of turning off the second electronic switch 24. In this implementation, the charging system performs all three preset actions .
- the charging system when the charging system performs the above-mentioned preset actions of reducing or shutting down the DC power output of the power circuit 21, it can be divided into the following two cases:
- the charger control circuit 271 can directly control the DC power output of the power circuit 21, as shown in FIGS. 6 and 7, a feedback circuit 28 can be provided in the charging system.
- the power circuit 21 can further include a power processor, a PWM adjustment circuit, The main transformer and the auxiliary power supply circuit control the output of the power supply circuit by combining control signals with various parts of the feedback circuit and the power supply circuit.
- the implementation manner is the same as that described in the first embodiment, and will not be described again.
- the charger control circuit 271 and the power supply circuit 21 are independent of each other, that is, the charger control circuit 271 cannot directly control the DC power output of the power supply circuit 21, and the power supply circuit 21 and the charger control circuit 271 and the charging circuit 22 Electrical connection is established through the positive and negative poles of the DC output of the power circuit.
- a third electronic switch 30 may be added to the charger.
- the third electronic switch 30 is connected to the positive and negative DC output of the power circuit.
- the power circuit 21 further includes a power processor, which has an output abnormality processing function.
- the DC output of the power circuit 21 is turned off by the power processor in combination with the third electronic switch 30.
- the battery pack control circuit 272 may include a battery pack controller
- the charger control circuit 271 may include a charger controller.
- the controller can be set to send control signals from at least two pins to control the electrical components in the charger or the battery pack.
- a unidirectional conducting element is set in the middle between the electronic switch and the battery pack.
- the diode 29 as a unidirectional conducting element can conduct in the direction of the current during charging and cut off in the opposite direction of the charging current, thereby effectively preventing the discharge of the battery pack.
- the one-way conduction component can only be placed in the charger, but not in the battery pack. Otherwise, the battery pack cannot be discharged normally when it needs to supply power to the electrical device.
- the second embodiment includes multiple implementation forms
- FIG. 9 shows an exemplary control flowchart.
- the monitoring circuit detects abnormality, fullness, or other needs to stop.
- the electronic switch failure prevention program 1 starts, and proceeds to step 101 to determine whether the electronic switch control signal is off. If the control circuit judges the electronic switch control signal at this time, If it is a shutdown signal, the process proceeds to step 102, the control circuit outputs a control signal to the feedback circuit, and then proceeds to step 103.
- the power supply circuit performs the operation of reducing or turning off the DC output according to the control control signal of the feedback circuit, and then ends the electronic switch failure Preventive procedures. It should be understood that the above process is only one exemplary description, and one preset action is performed first and another preset action is performed. In the implementation process of the foregoing embodiment, two preset actions may be performed simultaneously. Set the action.
- FIG. 10 shows one of the module structure diagrams of a charging system according to a third embodiment of the present invention.
- the charging system includes a battery pack and a charger for charging the battery pack.
- the charger includes a power supply circuit 31 for receiving Input of external power and convert the input of external power into DC power output matching the battery pack charging voltage.
- the external power here can be AC power or DC power higher than the battery pack voltage;
- the charger also includes charging A circuit 32 is operable to use the DC power output of the power circuit 31 to charge a battery pack;
- the battery pack includes a plurality of energy storage units 35, and the energy storage unit 35 is used to store the DC power output by the charging circuit;
- the charging system further includes at least one of a first electronic switch 33 located in the charger and a second electronic switch 34 located in the battery pack. Only one of the cases is shown in FIG. 10, that is, the first electronic switch is simultaneously present. 33 and the second electronic switch 34, but the specific solution of this embodiment is not limited to this, that is, the first electronic switch 33 or the second electronic switch 34 alone (see the detailed description below); among them, the first The electronic switch 33 and the second electronic switch 34 can be controlled to be turned off or on. When the first electronic switch 33 and the second electronic switch 34 are on, the charging circuit 32 can charge the battery pack, and When the first electronic switch 33 or the second electronic switch 34 is in the off state, the charging circuit 32 cannot charge the battery pack.
- the above electronic switch may include, but is not limited to, a MOS tube, a transistor , Relay, IGBT and other controllable electrical switching elements.
- the charging system may further include a monitoring circuit 36 and a control circuit 37, wherein the monitoring circuit 36 is used to monitor the status of the battery pack, the charging circuit, and the power supply circuit, and the status here can be understood as the routine when the above parts work normally.
- the operating state and the abnormal state when an abnormality occurs the control circuit 37 further controls the working state of the charging system according to the monitoring result of the monitoring circuit.
- the control of the charging system by the control circuit may include, but is not limited to, the following situations: acquisition processing of monitoring results , Adjusting the power circuit, switching the state of the electronic switch, etc .; when the monitoring circuit 36 detects that any preset state occurs, the control circuit will output a control signal to turn off the first electronic switch 33 and the second electronic switch 34 At least one.
- a variety of preset states include, but are not limited to, abnormal chargers, abnormal battery packs, full battery packs, abnormal monitoring circuits, and control circuit failures.
- abnormalities in chargers include, but are not limited to, abnormal power circuits, abnormal charging circuits, and batteries.
- Package exceptions include battery pack overtemperature, battery pack overcharge, energy storage unit voltage imbalance, energy storage unit failure, and battery pack full state when the battery pack voltage reaches the nominal voltage.
- abnormal charging circuits include charging circuit overcurrent, Any electronics in the charging circuit have failed.
- the charging system further adds a failure detection circuit 38 for turning off the electronic switches (33, 34) when the control circuit 37 outputs a control signal (herein and below, it means the first electronic switch 33 or the second (At least one of the electronic switches 34), the electrical parameters of the charging circuit 32 are detected, and the control circuit 37 determines whether the electronic switch has failed based on the detected electrical parameters. If it is determined that the electronic switch has failed, the control circuit will output a control signal to reduce or turn off Disconnect the DC power output from the power circuit.
- a failure detection circuit 38 for turning off the electronic switches (33, 34) when the control circuit 37 outputs a control signal (herein and below, it means the first electronic switch 33 or the second (At least one of the electronic switches 34), the electrical parameters of the charging circuit 32 are detected, and the control circuit 37 determines whether the electronic switch has failed based on the detected electrical parameters. If it is determined that the electronic switch has failed, the control circuit will output a control signal to reduce or turn off Disconnect the DC power output from the power circuit.
- the failure detection circuit 38 is configured to detect electrical parameters in the charging circuit 32 before charging starts.
- the specific detection method is as described above, and will not be described in detail. It should be noted that the conditions that should be provided before the charging point starts are that the power circuit 31 has been connected to a 220V AC power source or other high-voltage DC power source, and a DC power output suitable for charging the battery pack has been generated. Installed in the charging base, and the control circuit 37 outputs a control signal to turn off the electronic switches (33, 34); since the electronic switches (33, 34) should be in the off state before charging starts, the corresponding electrical characteristics should not be detected The existence of the parameter.
- the control circuit 37 can judge that the electronic switch (33, 34) has failed, and the control circuit 37 will output a control signal to turn off the DC of the power circuit 31. Output. In order to avoid the failure of the electronic switches (33, 34), charging will continue to start. If the failure detection circuit 38 does not detect the presence of the corresponding voltage or current, it indicates that the electronic switch (33, 34) is normal, and the control circuit 37 outputs a control signal to turn on the electronic switch (33, 34), so that the DC power of the power circuit 31 The output is supplied to the battery pack via the charging circuit, and the battery pack begins to charge.
- the control circuit 37 outputs a control signal to turn off the electronic switch. (33, 34).
- the failure detection circuit 38 detects the electrical parameters in the charging circuit 32.
- the specific detection method is as described above and will not be described in detail. It should be noted that when the control circuit 37 outputs a control signal to turn off the electronic switch (33, 34), the electronic switch (33, 34) should be in an off state, so the existence of the corresponding electrical parameter should not be detected. If the failure detection circuit 38 detects the existence of the corresponding electrical parameter, the control circuit 37 can judge that the electronic switch (33, 34) has failed, and the control circuit 37 will output a control signal to adjust the DC output of the power circuit 31.
- the charging system when the charging system performs the foregoing preset action of reducing or shutting down the DC power output of the power circuit 31, it can be divided into the following two cases:
- the control circuit 37 can directly control the DC power output of the power supply circuit 31. As shown in FIG. 10, a feedback circuit 39 can be set in the charging system at this time.
- the power supply circuit further includes a power processor, a PWM adjusting circuit, a main transformer, and an auxiliary circuit.
- the power supply circuit controls the output of the power supply circuit through a control signal in combination with the feedback circuit 39 and each part of the power supply circuit. The implementation manner is the same as that described in the first embodiment, and will not be described again.
- FIG 11 shows the main control flow of the above scheme.
- the electronic switch failure prevention program 2 is directly entered before charging begins; in the second application scenario, when the monitoring circuit detects an abnormal, full, or other preset state that needs to stop charging, the control circuit reports to The electronic switch outputs a shutdown signal and enters the electronic switch failure prevention program 2.
- the electronic switch failure prevention program After the electronic switch failure prevention program is started, it proceeds to step 201 to determine whether the electronic switch control signal is off. If the control circuit determines that the electronic switch control signal is an off signal at this time, it proceeds to step 202 and the failure detection circuit detects the charging circuit.
- the electrical parameters are used by the control circuit to determine whether the electronic switch has failed; if it is determined that the electronic switch has not failed, the electronic switch failure prevention program ends; if it is determined that the electronic switch has failed, proceed to step 203, the control circuit outputs a control signal to the feedback circuit, and Go to step 204, the power supply circuit performs the operation of reducing or turning off the DC output according to the control control signal of the feedback circuit, and then ends the electronic switch failure prevention program.
- the control circuit 37 and the power circuit 31 are independent from each other, that is, the control circuit 37 cannot directly control the DC power output of the power circuit 31, and the power circuit 31 and the control circuit 37 and the charging circuit 32 only pass the DC of the power circuit.
- the positive and negative poles of the output are electrically connected.
- a third electronic switch 41 may be added to the charging system. One side of the third electronic switch 41 is connected to the DC output positive pole of the power circuit, and the other side is connected to the DC output negative pole of the power circuit. When the DC output of the power supply circuit is turned on, a short circuit occurs.
- the power supply circuit 31 further includes a power supply processor.
- the power supply processor has an output abnormality processing function.
- the power supply processor is combined with a third electronic switch to turn off the DC output of the power supply circuit.
- the control circuit 37 determines that the first electronic switch 33 and / or the second electronic switch 34 have failed, the control circuit 37 outputs a control signal to turn on the third electronic switch 41, and the DC output of the power circuit 31 enters a short circuit state; the power circuit
- the power supply processor in 31 detects an output short circuit, it enters a protection lockout mode and turns off the output of the power supply circuit 31.
- the control circuit and the power circuit are independent of each other, when the control circuit detects that the electronic switch fails, the power circuit cannot be directly controlled to adjust the output.
- the output short circuit allows the power supply circuit to detect the output short circuit and then turn off the output, which realizes that the control circuit indirectly turns off the output of the power circuit, which effectively solves the problem that it is difficult for the separate charger to stop charging when the electronic switch fails.
- Figure 13 shows the main control flow of the above scheme.
- the electronic switch failure prevention program is directly entered before charging starts.
- the control circuit sends the The switch outputs a shutdown signal and enters the electronic switch failure prevention program 3.
- the electronic switch failure prevention program After the electronic switch failure prevention program is started, it proceeds to step 301 to determine whether the control signal of the first electronic switch and / or the second electronic switch is off. If the control circuit determines that the first electronic switch and / or the second electronic switch are controlled at this time, If the signal is an off signal, the process proceeds to step 302.
- the failure detection circuit detects the electrical parameters of the charging circuit to determine whether the first electronic switch and / or the second electronic switch have failed.
- the electronic switch failure prevention program is ended; if it is determined that the first electronic switch and / or the second electronic switch is invalid, the process proceeds to step 303, and the control circuit outputs a control signal to the feedback circuit to turn on the third electronic switch, and then enters In step 304, the power supply processor detects a short circuit in the output. In step 305, the power supply processor enters a protection lockout mode and turns off the output of the power supply circuit; then, the electronic switch failure prevention program is ended.
- the above charging system may have the following three implementation modes:
- the charging system includes a charger and a battery pack.
- the charger includes a power circuit 31, a charging circuit 32, and a first electronic switch 33.
- the battery pack includes an energy storage unit 35 and the monitoring circuit includes a charger.
- the monitoring circuit 361 and the battery pack monitoring circuit 362, the control circuit includes a charger control circuit 371 and the battery pack control circuit 372, and the failure detection circuit includes a charger failure detection circuit 381.
- the charger monitoring circuit 361, the charger control circuit 371, and the charger failure detection circuit 381 are located in the charger.
- the battery pack monitoring circuit 362 and the battery pack control circuit 372 are located in the battery pack. Two electronic switches.
- the charger monitoring circuit 361 monitors the working status of the charging circuit and the power supply circuit
- the battery pack monitoring circuit 362 monitors the status of the battery pack
- the charger control circuit 371 can obtain the monitoring result of the charger monitoring circuit 361 and the charger failure detection circuit 381
- the battery pack control circuit 372 can obtain the monitoring result of the battery pack monitoring circuit 362 and transmit the monitoring result to the charger control circuit 371.
- the battery pack control circuit 372 transmits the abnormal state to the charger control circuit 371, and the charger control circuit 371 outputs a control signal to turn off the first electronic switch 33, or, when When the charger monitoring circuit 361 detects that the charger is abnormal, the charger control circuit 371 outputs a control signal to turn off the first electronic switch 33; after the charger control circuit 371 turns off the first electronic switch 33, the charger failure detection circuit 381 detects Electrical parameters of the charging circuit 32. Specifically, the charger failure detection circuit 381 can detect whether a voltage exists at a preset node on the side of the first electronic switch 33, and the preset node should be set to charge when the electronic switch 33 is normally turned on.
- the charger failure detection circuit 381 may also detect whether there is a current in the charging circuit 32, and the detection of the current is not limited to a fixed node; because the charger control circuit 371 has output a control signal to turn off the first Electronic switch 33, so there should be no voltage at the preset node or no current in the charging circuit.
- the electrical appliance failure detection circuit 381 detects the presence of a voltage at a preset node, or detects the presence of a current in the charging circuit 32. From this, the charger control circuit 371 can determine that the first electronic switch 33 has failed, and the charger control circuit 371 will output The control signal regulates the DC output of the power supply circuit 31.
- the charging system includes a charger and a battery pack.
- the charger includes a power circuit 31 and a charging circuit 32.
- the battery pack includes a second electronic switch 34 and an energy storage unit 35.
- the monitoring circuit includes The charger monitoring circuit 361 and the battery pack monitoring circuit 362, the control circuit includes a charger control circuit 371 and the battery pack control circuit 362, and the failure detection circuit includes a battery pack failure detection circuit 382. It should be noted that the charger monitoring circuit 361 and the charger control circuit 371 are located in the charger. There is no first electronic switch in the charger.
- the battery pack monitoring circuit 362, the battery pack control circuit 372, and the battery pack failure detection circuit 382 are located in the charger. Battery pack.
- the charger monitoring circuit 361 monitors the working status of the charging circuit 32 and the power supply circuit 31
- the battery pack monitoring circuit 362 monitors the status of the second electronic switch 34 and the energy storage unit 35
- the charger control circuit 371 can learn the charger monitoring circuit 361 Monitoring result and controlling the working state of the charger
- the battery pack control circuit 372 can control the state of the second electronic switch 34, and can obtain the monitoring result of the battery pack monitoring circuit 362 and the detection result of the battery pack failure detection circuit 382, and
- the monitoring result and detection result are transmitted to the charger control circuit 371, and the further charger control circuit 371 can also output a control signal to the battery pack control circuit 372 to switch the state of the second electronic switch 34.
- the battery pack control circuit 372 When the battery pack monitoring circuit 362 detects an abnormality in the battery pack, the battery pack control circuit 372 outputs a control signal to turn off the second electronic switch 34, or when the charger monitoring circuit 361 detects that the charger is abnormal, the charger control circuit 371 outputs a control signal to the battery pack control circuit 372 to turn off the second electronic switch 34 through the battery pack control circuit 372. After the battery pack control circuit 372 turns off the first electronic switch 34, the battery pack failure detection circuit 382 detects the charging circuit. Electrical parameters, specific detection methods are as described above, and will not be described in detail. Since the battery pack control circuit 372 has output a control signal to turn off the second electronic switch 34, the corresponding electrical parameters should not be detected.
- the battery pack control circuit 372 If the battery pack failure detection circuit 382 detects the presence of the corresponding electrical parameters, the battery pack control circuit 372 It can be determined that the second electronic switch 34 has failed, the battery pack control circuit 372 outputs the failure detection result to the charger control circuit 371, and the charger control circuit 371 outputs a control signal to regulate the DC output of the power supply circuit 31.
- the charging system includes a charger and a battery pack.
- the charger includes a power circuit 31, a charging circuit 32, and a first electronic switch 33.
- the battery pack includes a second electronic switch 34 and energy storage. Unit 35.
- the monitoring circuit includes a charger monitoring circuit 361 and a battery pack monitoring circuit 362.
- the control circuit includes a charger control circuit 371 and a battery pack control circuit 372.
- the failure detection circuit includes a charger failure detection circuit 381 and a battery pack failure detection circuit 382. . It should be noted that the charger monitoring circuit 361, the charger control circuit 371, and the charger failure detection circuit 381 are located in the charger, and the battery pack monitoring circuit 362, the battery pack control circuit 372, and the battery pack failure detection circuit 382 are located in the battery pack.
- the charging system includes a first electronic switch 33 in the charger and a second electronic switch 34 in the battery pack, and a failure detection circuit 381 in the charger and a failure detection circuit 382 in the battery pack.
- the charger monitoring circuit 361 monitors the working status of the first electronic switch 33, the charging circuit 32, and the power supply circuit 31
- the battery pack monitoring circuit 361 monitors the status of the second electronic switch 34, and the energy storage unit 35
- the charger control circuit 371 can Obtain the monitoring result of the charger monitoring circuit 361 and the detection result of the charger failure detection circuit 381 and control the working state of the charger.
- the battery pack control circuit 372 can control the state of the second electronic switch 34 and can know the battery pack monitoring circuit
- the monitoring result of 362 and the detection result of the battery pack failure detection circuit 382 are transmitted to the charger control circuit 371.
- the further charger control circuit 371 can also output a control signal to the battery pack control circuit 372 to switch State of the second electronic switch 34.
- the charger control circuit 371 When the charger monitoring circuit 361 detects an abnormality in the charger, the charger control circuit 371 outputs a control signal to turn off the first electronic switch 33. After the charger control circuit 371 turns off the first electronic switch 33, the charger fails to detect The circuit 381 detects the electrical parameters of the charging circuit. The specific detection method is as described above and will not be described in detail. Since the charger control circuit 371 has output a control signal to turn off the second electronic switch 33, the existence of the corresponding electrical parameter should not be detected. If the charger failure detection circuit 381 detects the existence of the corresponding electrical parameter, the charger control circuit 371 can thereby judge that the first electronic switch 33 has failed, and the charger control circuit 371 adjusts the output control signal to adjust the DC output of the power circuit 31.
- the battery pack control circuit 372 outputs a control signal to turn off the second electronic switch 34. After the battery pack control circuit 372 turns off the second electronic switch 34, the battery pack fails The detection circuit 382 detects the electrical parameters of the charging circuit. The specific detection method is as described above and will not be described in detail. Since the battery pack control circuit 372 has output a control signal to turn off the second electronic switch 34, the existence of the corresponding electrical parameters should not be detected.
- the battery pack control circuit 372 can thereby judge that the second electronic switch 34 has failed, the battery pack control circuit 372 outputs the failure detection result to the charger control circuit 371, and the charger control circuit 371 outputs a control signal to regulate the DC output of the power supply circuit 31.
- the battery pack control circuit 372 may include a battery pack controller
- the charger control circuit 371 may include a charger controller.
- the controller may also be set from at least two The pins respectively send out control signals to control the electrical components in the charger or the battery pack. The specific implementation manner is the same as that described in the first embodiment, so it will not be repeated here.
- a unidirectional conducting element is provided in the middle between the electronic switch and the battery pack.
- the diode 40 as a unidirectional conducting element can conduct in the direction of the current during charging and cut off in the opposite direction of the charging current, thereby effectively preventing the discharge of the battery pack.
- the one-way conduction component can only be placed in the charger, but not in the battery pack. Otherwise, the battery pack cannot be discharged normally when it needs to supply power to the electrical device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种充电系统,包括:电池包(25)和充电器。该充电器包括:电源电路(21)和充电电路(22);电池包(25)包括储能单元;该充电系统还包括充电器内的第一电子开关(23)和电池包(25)内的第二电子开关(24);充电系统进一步包括监测电路(26),监测电池包(25)、充电电路(22)、电源电路(21)的状态;以及控制电路(27),可根据监测电路(26)的监测结果控制充电系统的工作状态;当监测电路(26)监测到预设状态发生时,控制电路(27)控制充电系统执行以下动作中的至少两个:1)关断第一电子开关(23);2)关断第二电子开关(24);3)降低或关断电源电路(21)的直流电源输出。该方案的有益效果是通过执行两处关断动作保障在需要关停充电进程时不论电子开关是否失效都能有效防止充电异常的产生或恶化。
Description
本发明涉及充电领域,尤其是涉及一种能够预防电子开关失效的充电器及充电系统。
现有充电器通过控制器控制单一电子开关通断来实现充电电路的开关,然而充电过程中电子开关常需要在大电流、大功率、频繁通断的条件下工作,因此电子开关容易产生短路失效的现象,即无法正常关断,在充电过程出现异常或电池包充满时,需要停止对电池包的充电,但失效的电子开关无法可控的关断,充电电路无法终止对电池包充电,最终可能引起电池包过充,造成电池包寿命损伤甚至产生安全风险;此外,在充电开始前并不知晓电子开关已失效,如果充电照常进行,也将为充电埋下安全隐患;为解决上述问题,常规的方法是采用至少两个电子开关串联在充电电路的同一位置,并使用同一控制信号控制该至少两个电子开关的通断,从而预防单一电子开关失效,但使用多个电子开关串联的方式成本较高,对于大批量制造产品的企业来说难以获得较大的经济效益。
此外,在适配器与充电座分离的充电系统中,由于控制电路与电源电路相互独立,即控制电路无法直接控制电源电路的输出,也为电子开关失效的处理增加了难度。
发明内容
本发明的目的是解决上述问题,提供一种能够有效预防电子开关失效的充电器。
为实现本发明的上述目的,提供了一种充电器,用于为电池包充电,包括:电源电路,接收外部电源输入,并将外部电源转换成与所述电池包充电电压匹配的直流电源输出;充电电路,可操作地将所述直流电源输出用于给所述电池包充电,所述充电电路包括第一电子开关,所述第一电子开关存在关断和导通两种状态,当所述第一电子开关处于导通状态时,所述充电电路可对所述电池包充电,当所述第一电子开关处于关断状态时,所述充电电路无法对所述电池包充电;监测电路,可监测所述电池包、所述充电电路以及所述电源电路的状态;控制电路,可根据所述监测电路的监测结果控制所述充电器的工作状态;当所述监测电路监测到任一预设状态发生时,所述控制电路输出控制信号以控制所述充电器执行以下动作:关断所述第一电子开关,且降低或关断所述电源电路的直流电源输出。
优选的,所述控制电路包括控制器,所述控制器从至少两个引脚分别发出控制信号控制所述第一电子开关、所述电源电路中的工作状态。
优选的,所述控制信号包括至少一组高电平信号和一组低电平信号。
优选的,所述控制信号包括至少一组周期性变化的信号。
优选的,所述充电器还包括位于所述第一电子开关与所述电池包之间的单向导通元件,所述单向导通元件沿充电电流方向导通。
优选的,所述电源电路包括电源处理器,PWM调节电路,所述电源处理器可根据所述控制信号控制所述PWM调节电路以降低或关断所述电源电路的直流电源输出。
优选的,所述电源电路包括电源处理器,PWM调节电路,辅助供电电路,所述辅助供电电路为所述电源处理器提供工作电源,所述电源处理器获得供电时可控制所述PWM调节电路以调节所述电源电路的直流电源输出,所述电源处理器无法获得供电时,所述电源电路无直流电源输出,所述辅助供电电路可根据所述控制信号切断对所述电源处理 器的供电。
优选的,所述充电器还包括第二电子开关,所述控制电路输出控制信号导通所述第二电子开关,使所述电源电路的直流电源输出的正负极短路。
优选的,所述电源电路包括电源处理器,所述电源处理器检测到输出短路时,进入保护锁死模式,关断输出。
优选的,所述预设状态至少包括充电器异常、电池包异常、电池包充满。
优选的,所述充电器异常包括电源电路异常、充电电路异常、监测电路异常、控制电路失效,所述电池包异常包括电池包过温、电池包过充、电池包电压不均衡,所述电池包充满状态为电池包电压达到标称电压。
优选的,所述充电电路异常包括充电电路过流、充电电路的任意电子器件失效。
本发明还提供了一种充电器,包括:电源电路,配置为将交流输入转换成可控的直流输出;充电电路,配置为可操作的将直流输出用于给电池模块充电,所述充电电路包括电子开关,所述电子开关存在关断和导通两种状态,当所述电子开关处于导通状态时,所述充电电路可对电池模块充电,当所述电子开关处于关断状态时,所述充电电路无法对电池模块充电;控制电路,配置为可监测电池模块及所述充电电路的状态,当监测到任一预设状态发生时,所述控制电路输出控制信号关断所述电子开关;反馈电路,配置为将所述控制电路的控制信号反馈至所述电源电路;当所述控制电路输出控制信号关断所述电子开关时,同时输出控制信号至所述反馈电路,所述反馈电路将控制信号反馈至所述电源电路,所述电源电路降低或关断直流输出。
优选的,所述充电过程中的多种预设状态至少包括充电电路异常、电池模块异常、电池模块充满状态。
优选的,其中,所述充电电路异常状态为过流状态,所述电池模块异常状态包括电池模块过温状态、单节过充状态,所述电池模块充满状态为电池模块电压达到标称电压。
优选的,所述反馈电路包括光耦电路,所述电源电路包括PWM调节电路,所述光耦电路将所述控制电路输出的控制信号反馈至所述PWM调节电路,所述PWM调节电路降低或关断直流输出。
本发明还提供了一种充电器,包括:电源电路,配置为将交流输入转换成可控的直流输出;充电电路,配置为可操作的将直流输出用于给电池模块充电,所述充电电路包括第一电子开关,所述第一电子开关存在关断和导通两种状态,当所述第一电子开关处于导通状态时,所述充电电路可对电池模块充电,当所述第一电子开关处于关断状态时,所述充电电路无法对电池模块充电;控制电路,配置为可监测电池模块及所述充电电路的状态,当监测到任一预设状态发生时,所述控制电路输出控制信号关断所述电子开关;反馈电路,配置为将所述控制电路的控制信号反馈至所述电源电路;所述充电器进一步包括失效检测电路,配置为当所述控制电路输出控制信号关断所述第一电子开关时,检测所述充电电路的电性参数,所述控制电路根据所述电性参数判断所述第一电子开关是否失效,若判定所述第一电子开关失效,所述电源电路降低或关断直流输出。
优选的,所述充电过程中的多种预设状态至少包括充电电路异常、电池模块异常、电池模块充满状态。
优选的,所述充电电路异常状态为过流状态,所述电池模块异常状态包括电池模块过温状态、单节过充状态,所述电池模块充满状态为电池模块电压达到标称电压。
优选的,所述失效检测电路检测所述第一电子开关一侧的预设节点是否存在电压,若所述预设节点存在电压则判定所述第一电子开关失效。
优选的,所述失效检测电路检测所述充电电路中是否存在电流,若所述充电电路中存在电流则判定所述第一电子开关失效。
优选的,在充电开始前,所述第一电子开关处于关断状态,所述失效检测电路检测所述预设节点的电压或所述充电电路的电流,若所判定所述第一电子开关失效,所述控制电路输出控制信号至所述反馈电路,所述反馈电路将控制信号反馈至所述电源电路,所述电源电路关断直流输出。
优选的,所述反馈电路包括光耦电路,所述电源电路包括PWM调节电路,所述光耦电路将所述控制电路输出的控制信号反馈至所述PWM调节电路,所述PWM调节电路关断直流输出,禁止充电开启。
优选的,在充电过程中,若判定所述第一电子开关失效,所述控制电路输出控制信号至所述反馈电路,所述反馈电路将控制信号反馈至所述电源电路,所述电源电路降低或关断直流输出。
优选的,所述反馈电路包括光耦电路,所述电源电路包括PWM调节电路,所述光耦电路将所述控制电路输出的控制信号反馈至所述PWM调节电路,所述PWM调节电路降低或关断直流输出。
优选的,其特征在于:所述控制电路与所述电源电路相互独立,所述电源电路与所述控制电路及所述充电电路通过所述电源电路的直流输出的正负极建立电性连接。在充电过程中,若判定所述第一电子开关失效,所述控制电路输出控制信号至所述反馈电路,所述反馈电路使所述电源电路的直流输出正负极短路,所述电源电路关断输出。
优选的,所述反馈电路包括第二电子开关,所述控制电路输出控制信号导通所述第二电子开关,使所述电源电路的直流输出正负极短路。
优选的,所述电源电路包括电源处理器,所述电源处理器检测到所述充电电路短路时,进入保护锁死模式,关断输出。
根据本发明的另一方面,提供了一种充电系统,包括电池包和为电池包充电的充电器,所述充电器包括:电源电路,接收外部电源输入,并将外部电源转换成与所述电池包充电电压匹配的直流电源输出;充电电路,可操作地将所述直流电源输出用于给所述电池包充电;所述电池包包括:至少一个储能单元,存储充电电路输出的直流电源;所述充电系统包括位于所述充电器的第一电子开关和位于所述电池包的第二电子开关中的至少一个,所述第一电子开关和所述第二电子开关存在关断和导通两种状态,当所述第一电子开关和所述第二电子开关处于导通状态时,所述充电电路可对所述电池包充电,当所述第一电子开关或所述第二电子开关处于关断状态时,所述充电电路无法对所述电池包充电;所述充电系统还包括监测电路,监测所述电池包、所述充电电路以及所述电源电路的状态;所述充电系统进一步包括控制电路,可根据所述监测电路的监测结果控制所述充电系统的工作状态;当所述监测电路监测到任一预设状态发生时,所述控制电路输出控制信号以控制所述充电系统执行以下预设动作中的至少两个;
1)关断所述第一电子开关;
2)关断所述第二电子开关;
3)降低或关断所述电源电路的直流电源输出。
优选的,所述充电系统包括位于所述充电器的第一电子开关,当所述监测电路监测到任一预设状态发生时,所述控制电路输出控制信号以控制所述充电系统执行以下预设动作:关断所述第一电子开关,且降低或关断所述电源电路的直流电源输出。
优选的,所述充电系统包括位于所述电池包的第二电子开关,当所述监测电路监测到任一预设状态发生时,所述控制电路输出控制信号以控制所述充电系统执行以下预设 动作:关断所述第二电子开关,且降低或关断所述电源电路的直流电源输出。
优选的,所述充电系统包括位于所述充电器的第一电子开关,以及位于所述电池包的第二电子开关,当所述监测电路监测到任一预设状态发生时,所述控制电路输出控制信号以控制所述充电系统执行以下预设动作:关断所述第一电子开关,且关断所述第二电子开关。
优选的,所述控制电路包括控制器,所述控制器从至少两个引脚分别发出控制信号控制所述第一电子开关、所述第二电子开关、所述电源电路中的工作状态。
优选的,所述控制信号包括至少一组高电平信号和一组低电平信号。
优选的,所述控制信号包括至少一组周期性变化的信号。
优选的,所述充电系统还包括位于所述第一电子开关或所述第二电子开关与所述至少一个储能单元之间的单向导通元件,所述单向导通元件沿充电电流方向导通。
优选的,所述电源电路包括电源处理器,PWM调节电路,所述电源处理器可根据所述控制信号控制所述PWM调节电路以降低或关断所述电源电路的直流电源输出。
优选的,所述电源电路包括电源处理器,PWM调节电路,辅助供电电路,所述辅助供电电路为所述电源处理器提供工作电源,所述电源处理器获得供电时可控制所述PWM调节电路以调节所述电源电路的直流电源输出,所述电源处理器无法获得供电时,所述电源电路无直流电源输出,所述辅助供电电路可根据所述控制信号切断对所述电源处理器的供电。
优选的,所述充电系统还包括第三电子开关,所述控制电路输出控制信号导通所述第三电子开关,使所述电源电路的直流电源输出的正负极短路。
优选的,所述电源电路包括电源处理器,所述电源处理器检测到输出短路时,进入保护锁死模式,关断输出。
优选的,所述预设状态包括充电器异常、电池包异常、电池包充满、监测电路异常、控制电路失效。
优选的,所述充电器异常包括电源电路异常、充电电路异常,所述电池包异常包括电池包过温、电池包过充、储能单元电压不均衡、储能单元失效,所述电池包充满状态为电池包电压达到标称电压。
优选的,所述充电电路异常包括充电电路过流、充电电路的任意电子器件失效。
此外,本发明还提供一种充电系统,包括电池包和为所述电池包充电的充电器;所述充电器包括:电源电路,接收外部电源输入,并将外部电源转换成与所述电池包充电电压匹配的直流电源输出;充电电路,可操作地将所述直流电源输出用于给所述电池包充电;所述电池包包括:至少一个储能单元,存储充电电路输出的直流电源;所述充电系统包括位于所述充电器的第一电子开关和位于所述电池包的第二电子开关中的至少一个,所述第一电子开关和所述第二电子开关存在关断和导通两种状态,当所述第一电子开关和所述第二电子开关处于导通状态时,所述充电电路可对所述电池包充电,当所述第一电子开关或所述第二电子开关处于关断状态时,所述充电电路无法对所述电池包充电;所述充电系统还包括监测电路,监测所述电池包、所述充电电路以及所述电源电路的状态;所述充电系统还包括控制电路,可根据所监测电路的监测结果控制所述充电系统的工作状态,当所述监测电路监测到任一预设状态发生时,所述控制电路输出控制信号以关断所述第一电子开关和第二电子开关中的至少一个;所述充电系统进一步包括失效检测电路,用于当所述控制电路输出控制信号关断所述第一电子开关和所述第二电子开关中的至少一个时,检测所述第一电子开关和/或所述第二电子开关的充电电流流出侧的预设节点是否存在电压,若所述预设节点存在电压则判定所述第一电子开关和/或所述 第二电子开关失效,所述控制电路输出控制信号以降低或关断所述电源电路的直流电源输出。
优选的,所述预设状态至少包括充电器异常、电池包异常、电池包充满、监测电路异常、控制电路失效。
优选的,所述充电器异常包括电源电路异常、充电电路异常,所述电池包异常包括电池包过温、电池包过充、储能单元电压不均衡、储能单元失效,所述电池包充满状态为电池包电压达到标称电压。
优选的,所述充电电路异常包括充电电路过流、充电电路的任意电子器件失效。
优选的,所述控制电路包括控制器,所述控制器从至少两个引脚分别发出控制信号控制所述第一电子开关、所述第二电子开关、所述电源电路中的工作状态。
优选的,所述控制信号包括至少一组高电平信号和一组低电平信号。
优选的,所述控制信号包括至少一组周期性变化的信号。
优选的,所述充电系统还包括位于所述第一电子开关或所述第二电子开关与所述储能单元之间的单向导通元件,所述单向导通元件沿充电电流方向导通。
优选的,在充电开始前,所述电源电路存在直流电源输出,所述第一电子开关和/或所述第二电子开关处于关断状态,若所判定所述第一电子开关和/或所述第二电子开关失效,所述控制电路输出控制信号以关断所述电源电路的直流电源输出,阻止充电开启。
优选的,在充电过程中,若判定所述第一电子开关和/或所述第二电子开关失效,所述控制电路输出控制信号以降低或关断所述电源电路的直流电源输出。
优选的,所述电源电路包括电源处理器,PWM调节电路,所述电源处理器可根据所述控制信号控制所述PWM调节电路以降低或关断所述电源电路的直流电源输出。
优选的,所述电源电路包括电源处理器,PWM调节电路,辅助供电电路,所述辅助供电电路为所述电源处理器提供工作电源,所述电源处理器获得供电时可控制所述PWM调节电路以调节所述电源电路的直流电源输出,所述电源处理器无法获得供电时,所述电源电路无直流电源输出,所述辅助供电电路可根据控制信号切断对所述电源处理器的供电。
优选的,所述控制电路与所述电源电路相互独立,若判定所述第一电子开关和/或所述第二电子开关失效,所述控制电路输出控制信号使所述电源电路的直流电源输出的正负极短路。
优选的,所述充电系统还包括第三电子开关,所述控制电路输出控制信号导通所述第三电子开关,使所述电源电路的直流电源输出的正负极短路。
优选的,所述电源电路包括电源处理器,所述电源处理器检测到输出短路时,进入保护锁死模式,关断输出。
参考以下详细的说明及附图,本发明的技术方案将更易于理解掌握。
图1示出第一实施例的充电器的模块结构示意图之一。
图2示出电源电路模块结构示意图。
图3示出第一实施例的充电器的模块结构示意图之二。
图4示出控制器输出控制信号示意图。
图5示出第二实施例的充电系统的模块结构示意图之一。
图6示出第二实施例的充电系统的模块结构示意图之二。
图7示出第二实施例的充电系统的模块结构示意图之三。
图8示出第二实施例的充电系统的模块结构示意图之四。
图9示出第一实施例和第二实施例的控制流程图。
图10示出第三实施例的充电系统的模块结构示意图之一。
图11示出第三实施例的控制流程图之一。
图12示出第三实施例的充电系统的模块结构示意图之二。
图13示出第三实施例的控制流程图之二。
图14示出第三实施例的充电系统的模块结构示意图之三。
图15示出第三实施例的充电系统的模块结构示意图之四。
图16示出第三实施例的充电系统的模块结构示意图之五。
在详细说明本发明的任意实施方案之前,要理解的是,本发明在其应用方面不限于在下面说明中所给出或在附图中所示的部件的结构和布置细节。本发明能够具有其它实施方案,或者按照各种方式实施或实现。
图1示出本发明第一实施例的充电器的模块结构示意图,充电器,用于为电池包15充电,包括:电源电路11,用于接收外部电源10的输入,并将外部电源10的输入转换成与电池包充电电压匹配的直流电源输出,此处的外部电源10可以是交流电源也可以是高于电池包电压的直流电源;充电器还包括充电电路12,可操作地将电源电路11的直流电源输出用于给电池包15充电,充电电路包括第一电子开关13,该第一电子开关可受控的处于关断或导通的状态,当第一电子开关13处于导通状态时,充电电路12可对电池包充电,而当第一电子开关13处于关断状态时,充电电路无法对电池包充电,其中,在一些示例性的实施方式中,上述第一电子开关可以包括但不限于MOS管、三极管、继电器、IGBT等可控的电气开关元件。
进一步的,充电器还可包括监测电路16和控制电路17,其中,监测电路16用以监测电池包15、充电电路12以及电源电路11的状态,此处的状态可以理解为上述各部分正常工作时的常规运行状态、以及出现异常时的非常规状态,电池包状态可以是由监测电路16通过电池包接口直接测得,也可以是由电池包内部设置相关电路检测电池包的工作状态并将检测的结果传输给监测电路;控制电路17根据监测电路16的监测结果进而控制充电器的工作状态,控制电路17对充电器工作状态的控制可以包括但不限于如下情形:对监测结果的处理、对电源电路的调节、对电子开关的状态切换等。
当监测电路16监测到任一预设状态发生时,控制电路17输出控制信号以控制充电器执行以下两个预设动作:关断第一电子开关13,且降低或关断电源电路11的直流电源输出。其中,多种预设状态包括但不限于充电器异常、电池包异常、电池包充满,其中充电器异常包括电源电路异常、充电电路异常、监测电路异常、控制电路失效,电池包异常包括电池包过温、电池包过充、电池包电压不均衡,所述电池包充满状态为电池包电压达到标称电压,再者充电电路异常包括充电电路过流、充电电路的任意电子器件失效。
在充电过程中,当监测电路16监测到上述多种预设状态中的至少一种状态时,控制电路17输出控制信号关断第一电子开关13并降低或关断电源电路11的直流电源输出,可以理解的是,关断第一电子开关13与降低或关断电源电路11的直流电源输出这两个预设处理动作可以是控制电路17输出控制信号同时执行,也可以是控制电路先输出一组控制信号执行其中一个处理动作,再输出另一组控制信号执行另外一个处理动作,并且在先后执行上述两个处理动作的间隔中并不需要增加其他判断条件。通过本方案可实现, 当发生需要停止充电的情况时,通过执行两处预设的关断动作,不需要对其中一处关断状态检测,有效简化电路结构及控制流程。
具体的,当充电器执行上述降低或关断电源电路11的直流电源输出的预设动作时,可分为如下两种情况:
1.如图1所示,控制电路17可以直接控制电源电路11的直流电源输出,在充电器中可以设置反馈电路18,控制电路17输出控制信号至反馈电路18,反馈电路18将控制信号反馈给电源电路11进而改变电源电路11的输出;其中,如图2所示,电源电路11可以包括电源处理器111、PWM调节电路112、主变压器113,电源处理器111可接收控制电路的控制信号,并向PWM调节电路112输出控制信号,PWM调节电路112根据电源处理器的控制信号在0-100%的范围内改变占空比从而改变主变压器113的输出,实现电源电路的输出调节,因此当反馈电路18将控制电路的控制信号反馈给电源处理器111后,电源处理器111控制PWM调节电路将占空比降到安全预设值以下或直接使占空比为0以降低或关断电源电路的直流电源输出。进一步的,电源电路还可以包括辅助供电电路114,辅助供电电路114用于为电源处理器111提供工作电源,并且可根据控制电路17的控制信号接通或切断供电,当电源处理器111获得供电时可控制PWM调节电路112改变占空比来调节电源电路的直流电源输出,电源处理器111无法获得供电时,电源电路将不会有直流电源输出,因此当反馈电路18将控制电路17的控制信号反馈给辅助供电电路114时,辅助供电电路114切断对电源处理器111的供电,从而关断直流电源输出。
2.如图3所示,控制电路17与电源电路11相互独立,即控制电路17无法直接控制电源电路11的直流电源输出,电源电路11与控制电路17及充电电路12通过电源电路的直流输出的正负极建立电性连接。在该种情况下,充电系统中还可包括第二电子开关19,第二电子开关19一侧接电源电路11的直流输出正极,另一侧接电源电路11的直流输出负极,当第二电子开关19导通时电源电路11的直流输出进入短路状态,电源电路11进一步包括电源处理器,该电源处理器具备输出异常处理功能,通过电源处理器结合第二电子开关19来实现关断电源电路11的直流输出。当监测到任一预设状态发生时,控制电路17输出控制信号导通第一电子开关13以及第二电子开关19,由于第二电子开关19导通将使电源电路11的直流输出进入短路状态;电源电路11中的电源处理器检测到输出短路时,进入保护锁死模式,关断电源电路11的输出。
在适配器与充电座分离的充电器中,由于控制电路与电源电路相互独立,在异常状态下控制电路无法控制直接控制电源电路的输出,采用上述方案,控制电路通过将电源电路的输出短路,让电源电路自己检测到输出短路进而关断输出,实现了控制电路间接的关断电源电路输出,有效解决了分离式充电器异常状态下难以关停充电的问题。
作为本实施例的优化方式,如图4所示,充电器的控制电路17可以包括控制器(MCU),为了防止在工作过程中控制器引脚失效,即引脚不受内部芯片程序的控制输出恒高或恒低的不可控电平信号,在控制器通过引脚输出控制信号控制充电器的工作状态时,可从至少两个引脚分别发出控制信号以控制充电器内的不同部分,其中,多组控制信号中至少包括一组高电平信号,且有一组低电平信号,如图4(a)所示,Pin1输出低电平信号,Pin2输出高电平信号;或者多组控制信号中包括至少一组信号周期性变化的信号,如图4(b)所示,Pin1为具有一定频率的波形信号,Pin2为高电平信号;如图4(c)所示,Pin1和Pin2为波形相反的信号。
此外,由于在电池包充满或异常状态下,电源电路的输出将降低,但电池包尚未从充电器上取出,可能导致电池包向充电器电路放电产生回流,容易对充电器内的电气元件造成损伤,为此,充电器在充电电路中位于电子开关与电池包之间的位置设置了单向 导通元件,如图1、3中所示,作为单向导通元件的二极管14可沿充电时电流方向导通,沿充电电流的相反方向截止,从而有效防止电池包的放电回流。
图5示出本发明第二实施例的充电系统的模块结构示意图之一,该充电系统,包括电池包和为电池包充电的充电器,充电器包括电源电路21,用于接收外部电源20的输入,并将外部电源20的输入转换成与电池包充电电压匹配的直流电源输出,此处的外部电源20可以是交流电源也可以是高于电池包电压的直流电源;充电器还包括充电电路22,可操作地将电源电路21的直流电源输出用于给电池包充电;电池包包括至少一个储能单元25,储能单元25用于存储充电电路输出的直流电源;
充电系统还包括位于充电器内的第一电子开关23和位于电池包内的第二电子开关24两者中的至少一个,图5中仅示出其中一种情况,即同时存在第一电子开关23和第二电子开关24的情形,但本实施例的具体方案并不限于此,即可单独存在第一电子开关23或单独存在第二电子开关24(见下文分情况详述);其中,第一电子开关23和第二电子开关24可受控的处于关断或导通的状态,当第一电子开关23和第二电子开关24处于导通状态时,充电电路可对电池包充电,而当第一电子开关23或第二电子开关24处于关断状态时,充电电路22无法对电池包充电,其中,在一些示例性的实施方式中,上述电子开关可以包括但不限于MOS管、三极管、继电器、IGBT等可控的电气开关元件。
进一步的,充电系统还可包括监测电路26和控制电路27,其中,监测电路26用以监测电池包、充电电路22以及电源电路21的状态,此处的状态可以理解为上述各部分正常工作时的常规运行状态、以及出现异常时的非常规状态;控制电路27根据监测电路26的监测结果进而控制充电系统的工作状态,控制电路27对充电系统工作状态的控制可以包括但不限于如下情形:对监测结果的处理、对电源电路的调节、对电子开关的状态切换等。
当监测电路26监测到任一预设状态发生时,控制电路27将输出控制信号用以控制充电系统执行以下预设动作中的至少两个:1)关断第一电子开关23,2)关断第二电子开关24,3)降低或关断电源电路21的直流电源输出。可以理解的是,控制电路27输出控制信号执行上述预设动作时,可以是控制电路27输出控制信号同时执行上述预设动作,也可以是先输出一组控制信号执行其中一个处理动作,再输出另一组控制信号执行另外一个处理动作,并且在先后执行上述两个处理动作的间隔中不需要增加其他判断条件,通过连续执行两处预设的关断动作,不需要对其中一处关断状态检测,有效简化电路结构及控制流程。其中,多种预设状态包括但不限于充电器异常、电池包异常、电池包充满、监测电路异常、控制电路失效,进一步的,充电器异常包括但不限于电源电路异常、充电电路异常,电池包异常包括电池包过温、电池包过充、储能单元电压不均衡、储能单元失效,电池包充满状态为电池包电压达到标称电压,再者,充电电路异常包括充电电路过流、充电电路任意电子器件失效。
具体的,上述充电系统可以具有如下四种实现方式:
作为第一种实现方式,充电系统包括充电器和电池包,充电器包括电源电路、充电电路、第一电子开关、监测电路、控制电路、反馈电路,电池包内并无电子开关,当监测电路监测到任一预设状态发生时,控制电路输出控制信号以控制充电系统执行以下两个动作:关断第一电子开关,并且降低或关断电源电路的直流电源输出,此种实施方式与第一实施例所述相同,不再赘述。
作为第二种实现方式,如图6所示,充电系统包括充电器和电池包,充电器包括电源电路21、充电电路22,电池包包括第二电子开关24,监测电路包括充电器监测电路261和电池包监测电路262,控制电路包括充电器控制电路271和电池包控制电路272, 需要注意的是,充电器内并无第一电子开关。其中,充电器监测电路261监测充电电路22、电源电路21的工作状态,电池包监测电路监测262第二电子开关24、储能单元25的状态,充电器控制电路271能够获知充电器监测电路261的监测结果并控制充电器的工作状态,电池包控制电路272能够控制第二电子开关24的状态,并能获知电池包监测电路262的监测结果并将监测结果传输给充电器控制电路271,进一步的充电器控制电路271还可以输出控制信号给电池包控制电路272以切换第二电子开关24的状态。
当电池包监测电路262监测到电池包内存在异常时,电池包控制电路272执行关断第二电子开关24的预设动作,并将异常状态传输给充电器控制电路271,充电器控制电路271执行降低或关断电源电路21的直流电源输出的预设动作;而当充电器监测电路261监测到充电器异常时,充电器控制电路271执行降低或关断电源电路21的直流电源输出的预设动作,并输出控制信号给电池包控制电路272以执行关断第二电子开关24的预设动作。
作为第三种实现方式,如图7所示,充电系统包括充电器和电池包,充电器包括电源电路21、充电电路22、第一电子开关23,电池包包括第二电子开关24、储能单元25,监测电路包括充电器监测电路261和电池包监测电路262,控制电路包括充电器控制电路271和电池包控制电路272,需要注意的是,此时充电系统同时包括位于充电器内的第一电子开关23,以及位于电池包内的第二电子开关24。其中,充电器监测电路27监测第一电子开关23、充电电路22、电源电路21的工作状态,电池包监测电路262监测第二电子开关24、储能单元25的状态,充电器控制电路271能够获知充电器监测电路261的监测结果并控制充电器的工作状态,电池包控制电路272能够控制第二电子开关24的状态,并能获知电池包监测电路262的监测结果并将监测结果传输给充电器控制电路271,进一步的充电器控制电路271还可以输出控制信号给电池包控制电路272以切换第二电子开关24的状态。
当电池包监测电路262监测到电池包内存在异常时,电池包控制电路272执行关断第二电子开关24的预设动作,并将异常状态传输给充电器控制电路271,充电器控制电路271执行关断第一电子开关23的预设动作;而当充电器监测电路261监测到充电器异常时,充电器控制电路271执行关断第一电子开关23的预设动作,并输出控制信号给电池包控制电路272以执行关断第二电子开关24的预设动作。
第四种实现方式,如图7所示,充电系统的组成与第三种实现方式中充电系统的组成相同,当电池包监测电路监测到电池包内存在异常时,电池包控制电路272执行关断第二电子开关24的预设动作,并将异常状态传输给充电器控制电路271,充电器控制电路271执行关断第一电子开关23的预设动作以及降低或关断所述电源电路21的直流电源输出的预设动作;而当充电器监测电路261监测到充电器异常时,充电器控制电路271执行关断第一电子开关23的预设动作以及降低或关断所述电源电路21的直流电源输出的预设动作,并输出控制信号给电池包控制电路272以执行关断第二电子开关24的预设动作,在此种实现方式中,充电系统执行了所有三个预设动作。
具体的,当充电系统执行上述降低或关断电源电路21的直流电源输出的预设动作时,可分为如下两种情况:
1.充电器控制电路271可以直接控制电源电路21的直流电源输出,如图6、7所示,在充电系统中可以设置反馈电路28,电源电路21可进一步包括电源处理器、PWM调节电路、主变压器、辅助供电电路,通过控制信号结合反馈电路与电源电路的各部分实现对电源电路输出的控制,该实现方式与实施例一所述相同,故不再赘述。
2.如图8所示,充电器控制电路271与电源电路21相互独立,即充电器控制电路 271无法直接控制电源电路21的直流电源输出,电源电路21与充电器控制电路271及充电电路22通过电源电路的直流输出的正负极建立电性连接。在该种情况下,充电器中可增设第三电子开关30,第三电子开关30连接电源电路的直流输出正负极,电源电路21进一步包括电源处理器,该电源处理器具备输出异常处理功能,通过电源处理器结合第三电子开关30来实现关断电源电路21的直流输出。具体实现方式与实施例一所述相同,故不再赘述。
同样的,在本实施例的第二、三、四种实现方式中电池包控制电路272可包括电池包控制器,充电器控制电路271可包括充电器控制器,为了防止控制器引脚失效,同样可设定控制器从至少两个引脚分别发出控制信号以控制充电器内或电池包内的电气元件,具体实现方式与实施例一所述相同,故不再赘述。
此外,由于在电池包充满或异常状态下,电源电路的输出将降低,可能导致电池包向充电器电路放电产生回流,容易对充电器内的电气元件造成损伤,为此,充电器在充电电路中位于电子开关与电池包之间的位置设置了单向导通元件,作为单向导通元件的二极管29可沿充电时电流方向导通,沿充电电流的相反方向截止,从而有效防止电池包的放电回流,应当注意的是,该单向导通元件仅可设置于充电器内,而不可设置于电池包内,否则电池包需要给用电装置供电时将无法正常放电。
容易理解的是,采用上述第一实施例和第二实施例的技术方案(第二实施例包括多种实现形式),在充电过程中监测到预设的异常、充满等需要停止充电的情况下,通过执行两处预设的关断动作,因此即便其中一处的关断功能失效,由于另一处也处于断开或低输出状态,同样能够防止异常状态的产生或恶化,在此方案中不需要其他冗余的备份电子开关、或是检测电子开关是否失效的检测电路以及保护电路,极大的简化了电路结构,降低充电器的生产成本。
为直观清晰的反应上述第一实施例和第二实施例中预防电子开关失效的具体方案,图9示出了一种示例性的控制流程图,在监测电路监测到异常、充满或其他需要停止充电的预设状态时,控制电路向电子开关输出关断信号后,电子开关失效预防程序1启动,进入步骤101,判断电子开关控制信号是否为关断,如果控制电路判断此时电子开关控制信号是关断信号,则进入步骤102,控制电路向反馈电路输出控制信号,之后再进入步骤103,由电源电路根据反馈电路的控制控制信号执行降低或关断直流输出的操作,然后结束电子开关失效预防程序。应当理解的是,上述流程仅为其中一个示例性的说明,采用的是先执行一个预设动作,在执行另一预设动作,而在上述实施例的实现过程也可采用同时执行两个预设动作。
图10示出本发明第三实施例的一种充电系统的模块结构示意图之一,该充电系统,包括电池包和为电池包充电的充电器;其中,充电器包括电源电路31,用于接收外部电源的输入,并将外部电源的输入转换成与电池包充电电压匹配的直流电源输出,此处的外部电源可以是交流电源也可以是高于电池包电压的直流电源;充电器还包括充电电路32,可操作地将电源电路31的直流电源输出用于给电池包充电;电池包包括若干储能单元35,储能单元35用于存储充电电路输出的直流电源;
充电系统还包括位于充电器内的第一电子开关33和位于电池包内的第二电子开关34两者中的至少一个,图10中仅示出其中一种情况,即同时存在第一电子开关33和第二电子开关34的情形,但本实施例的具体方案并不限于此,即可单独存在第一电子开关33或单独存在第二电子开关34(见下文详述);其中,第一电子开关33和第二电子开关34可受控的处于关断或导通的状态,当第一电子开关33和第二电子开关34处于导通状态时,充电电路32可对电池包充电,而当第一电子开关33或第二电子开关34处于关断 状态时,充电电路32无法对电池包充电,其中,在一些示例性的实施方式中,上述电子开关可以包括但不限于MOS管、三极管、继电器、IGBT等可控的电气开关元件。
进一步的,充电系统还可包括监测电路36和控制电路37,其中,监测电路36用以监测电池包、充电电路以及电源电路的状态,此处的状态可以理解为上述各部分正常工作时的常规运行状态、以及出现异常时的非常规状态,控制电路37根据监测电路的监测结果进而控制充电系统的工作状态,控制电路对充电系统的控制可以包括但不限于如下情形:对监测结果的获取处理、对电源电路的调节、对电子开关的状态切换等;当监测电路36监测到任一预设状态发生时,控制电路将输出控制信号以关断第一电子开关33和第二电子开关34中的至少一个。
其中,多种预设状态包括但不限于充电器异常、电池包异常、电池包充满、监测电路异常、控制电路失效,进一步的,充电器异常包括但不限于电源电路异常、充电电路异常,电池包异常包括电池包过温、电池包过充、储能单元电压不均衡、储能单元失效,电池包充满状态为电池包电压达到标称电压,再者,充电电路异常包括充电电路过流、充电电路的任意电子器件失效。
因此不难理解的是,监测到上述任一预设状态时关断电子开关的目的在于充电系统内出现了异常状态或者电池包已经充满,需要停止充电进程。但由于不知此时的电子开关是否失效,故充电系统是否确实停止充电不得而知,如果电子开关失效,充电将继续进行,可能产生异常恶化、电池包过充从而带来安全隐患。
为此,充电系统进一步增加了失效检测电路38,用于当控制电路37输出控制信号关断电子开关(33、34)(此处及下文未做特别说明即指第一电子开关33或第二电子开关34中的至少一个)时,检测充电电路32的电性参数,控制电路37根据检测的电性参数判断电子开关是否失效,若判定电子开关失效,控制电路将输出控制信号以降低或关断电源电路的直流电源输出。
作为本实施例的第一种应用场景,失效检测电路38配置为在充电开始前检测充电电路32中的电性参数,具体的检测方式如上文所述,不再详述。应当说明的是,充点开始前应该具备的条件是电源电路31已与诸如市电220伏的交流电源或其他高电压直流电源接通,并且产生适合电池包充电的直流电源输出,电池包已安装到充电座中,而控制电路37输出控制信号关断电子开关(33、34);由于在充电开始前电子开关(33、34)本应当处于关断状态,故不应该检测到相应电性参数的存在,如果失效检测电路38检测到相应电性参数的存在,控制电路37由此可判断电子开关(33、34)已失效,控制电路37将输出控制信号以关断电源电路31的直流输出。从而避免电子开关(33、34)失效的情况下仍将继续开始充电。如果失效检测电路38未检测到相应的电压或电流的存在,表明电子开关(33、34)正常,控制电路37则输出控制信号导通电子开关(33、34),使电源电路31的直流电源输出经充电电路供给到电池包,电池包开始充电。
作为本实施例的第二种应用场景,在充电过程中,当监测电路36监测到上文所述的多种预设状态中的至少一种状态时,控制电路37输出控制信号关断电子开关(33、34),在控制电路37输出关断信号后,失效检测电路38检测充电电路32中的电性参数,具体的检测方式如上文所述,不再详述。应当说明的是,在控制电路37输出控制信号关断电子开关(33、34)的情况下,电子开关(33、34)应当处于关断状态,故不应该检测到相应电性参数的存在,如果失效检测电路38检测到相应电性参数的存在,控制电路37由此可判断电子开关(33、34)已失效,控制电路37将输出控制信号以调节电源电路31的直流输出。
具体的,当充电系统执行上述降低或关断电源电路31的直流电源输出的预设动作时, 可分为如下两种情况:
1.控制电路37可以直接控制电源电路31的直流电源输出,如图10所示,此时可以在充电系统中设置反馈电路39,电源电路进一步包括电源处理器、PWM调节电路、主变压器、辅助供电电路,通过控制信号结合反馈电路39与电源电路的各部分实现对电源电路输出的控制,该实现方式与实施例一所述相同,故不再赘述。
图11示出了上述方案的主要控制流程。在第一种应用场景下,充电开始前直接进入电子开关失效预防程序2;在第二种应用场景下,当监测电路监测到异常、充满或其他需要停止充电的预设状态时,控制电路向电子开关输出关断信号,进入电子开关失效预防程序2。在电子开关失效预防程序启动后,进入步骤201,判断电子开关控制信号是否为关断,如果控制电路判断此时电子开关控制信号是关断信号,则进入步骤202,失效检测电路检测充电电路的电性参数,控制电路以此判断电子开关是否失效;若判断电子开关未失效,则结束电子开关失效预防程序;若判断电子开关失效,进入步骤203,控制电路向反馈电路输出控制信号,之后再进入步骤204,由电源电路根据反馈电路的控制控制信号执行降低或关断直流输出的操作,然后结束电子开关失效预防程序。
2.如图所示12,控制电路37与电源电路31相互独立,即控制电路37无法直接控制电源电路31的直流电源输出,电源电路31与控制电路37及充电电路32仅通过电源电路的直流输出的正负极建立电性连接。在该种情况下,充电系统中可增设第三电子开关41,第三电子开关41一侧接电源电路的直流输出正极,另一侧接电源电路的直流输出负极,当第三电子开关41导通时电源电路的直流输出产生短路,电源电路31进一步包括电源处理器,该电源处理器具备输出异常处理功能,通过电源处理器结合第三电子开关来实现关断电源电路的直流输出。具体的,当控制电路37判断第一电子开关33和/或第二电子开关34已失效,控制电路37输出控制信号导通第三电子开关41,电源电路31的直流输出进入短路状态;电源电路31中的电源处理器检测到输出短路时,进入保护锁死模式,关断电源电路31的输出。
在适配器与充电座分离的充电器中,由于控制电路与电源电路相互独立,当控制电路检测到电子开关失效时无法直接控制电源电路调节输出,采用本实施例的方案控制电路通过将电源电路的输出短路,让电源电路自己检测到输出短路进而关断输出,实现了控制电路间接的关断电源电路输出,有效解决了分离式充电器在电子开关失效情况下难以关停充电的问题。
图13示出了上述方案的主要控制流程。在第一种应用场景下,充电开始前直接进入电子开关失效预防程序,在第二种应用场景下,当监测电路监测到异常、充满或其他需要停止充电的预设状态时,控制电路向电子开关输出关断信号,进入电子开关失效预防程序3。在电子开关失效预防程序启动后,进入步骤301,判断第一电子开关和/或第二电子开关控制信号是否为关断,如果控制电路判断此时第一电子开关和/或第二电子开关控制信号是关断信号,则进入步骤302,失效检测电路检测充电电路的电性参数,以此判断第一电子开关和/或第二电子开关是否失效;若判断第一电子开关和/或第二电子开关未失效,则结束电子开关失效预防程序;若判断第一电子开关和/或第二电子开关失效,进入步骤303,控制电路向反馈电路输出控制信号导通第三电子开关,之后再进入步骤304,电源处理器检测输出短路,进入步骤305,电源处理器进入保护锁死模式,关断电源电路输出;然后结束电子开关失效预防程序。
更细化的,上述充电系统可以具有如下三种实现方式:
作为第一种实现方式,如图14,充电系统包括充电器和电池包,充电器包括电源电路31、充电电路32、第一电子开关33,电池包包括储能单元35,监测电路包括充电器 监测电路361和电池包监测电路362,控制电路包括充电器控制电路371和电池包控制电路372,失效检测电路包括充电器失效检测电路381。需要注意的是,充电器监测电路361、充电器控制电路371、充电器失效检测电路381位于充电器中,电池包监测电路362和电池包控制电路372位于电池包中,电池包内并无第二电子开关。其中,充电器监测电路361监测充电电路、电源电路的工作状态,电池包监测电路362监测电池包的状态,充电器控制电路371能够获知充电器监测电路361的监测结果以及充电器失效检测电路381的检测结果,并控制充电器的工作状态,电池包控制电路372能够获知电池包监测电路362的监测结果并将监测结果传输给充电器控制电路371。
当电池包监测电路362监测到电池包内存在异常时,电池包控制电路372将异常状态传输给充电器控制电路371,充电器控制电路371输出控制信号关断第一电子开关33,或者,当充电器监测电路361监测到充电器异常时,充电器控制电路371输出控制信号关断第一电子开关33;在充电器控制电路371关断第一电子开关33后,充电器失效检测电路381检测充电电路32的电性参数,具体的,充电器失效检测电路381可以检测第一电子开关33一侧的预设节点是否存在电压,该预设节点应当设置于电子开关33正常导通情况下充电电流流出的一侧;作为替代,充电器失效检测电路381也可以检测充电电路32中是否存在电流,电流的检测并不限于固定的节点;由于充电器控制电路371已输出控制信号关断第一电子开关33,故预设节点处不应该存在电压或充电电路中不应该存在电流,如果充电器失效检测电路381在预设节点检测到电压的存在,或者检测到充电电路32中电流的存在,充电器控制电路371由此可判断第一电子开关33已失效,充电器控制电路371将输出控制信号调节电源电路31的直流输出。
作为第二种实现方式,如图15所示,充电系统包括充电器和电池包,充电器包括电源电路31、充电电路32,电池包包括第二电子开关34、储能单元35,监测电路包括充电器监测电路361和电池包监测电路362,控制电路包括充电器控制电路371和电池包控制电路362,失效检测电路包括电池包失效检测电路382。需要注意的是,充电器监测电路361、充电器控制电路371位于充电器中,充电器内并无第一电子开关,电池包监测电路362、电池包控制电路372和电池包失效检测电路382位于电池包中。其中,充电器监测电路361监测充电电路32、电源电路31的工作状态,电池包监测电路362监测第二电子开关34、储能单元35的状态,充电器控制电路371能够获知充电器监测电路361的监测结果并控制充电器的工作状态,电池包控制电路372能够控制第二电子开关34的状态,并能获知电池包监测电路362的监测结果和电池包失效检测电路382的检测结果,并将监测结果与检测结果传输给充电器控制电路371,进一步的充电器控制电路371还可以输出控制信号给电池包控制电路372以切换第二电子开关34的状态。
当电池包监测电路362监测到电池包内存在异常时,电池包控制电路372输出控制信号关断第二电子开关34,或者,当充电器监测电路361监测到充电器异常时,充电器控制电路371输出控制信号给电池包控制电路372以通过电池包控制电路372关断第二电子开关34;在电池包控制电路372关断第一电子开关34后,电池包失效检测电路382检测充电电路的电性参数,具体的检测方式如上文所述,不再详述。由于电池包控制电路372已输出控制信号关断第二电子开关34,故不应该检测到相应电性参数存在,如果电池包失效检测电路382检测到相应电性参数的存在,电池包控制电路372由此可判断第二电子开关34已失效,电池包控制电路372将失效检测结果输出给充电器控制电路371,充电器控制电路371输出控制信号调节电源电路31的直流输出。
作为第三种实现方式,如图16所示,充电系统包括充电器和电池包,充电器包括电源电路31、充电电路32、第一电子开关33,电池包包括第二电子开关34、储能单元35, 监测电路包括充电器监测电路361和电池包监测电路362,控制电路包括充电器控制电路371和电池包控制电路372,失效检测电路包括充电器失效检测电路381和电池包失效检测电路382。需要注意的是,充电器监测电路361、充电器控制电路371和充电器失效检测电路381位于充电器中,电池包监测电路362、电池包控制电路372和电池包失效检测电路382位于电池包中。此时充电系统同时包括位于充电器内的第一电子开关33和位于电池包内的第二电子开关34,以及位于充电器内的失效检测电路381和位于电池包内的失效检测电路382。其中,充电器监测电路361监测第一电子开关33、充电电路32、电源电路31的工作状态,电池包监测电路361监测第二电子开关34、储能单元35的状态,充电器控制电路371能够获知充电器监测电路361的监测结果以及充电器失效检测电路381的检测结果,并控制充电器的工作状态,电池包控制电路372能够控制第二电子开关34的状态,并能获知电池包监测电路362的监测结果和电池包失效检测电路382的检测结果,并将监测结果与检测结果传输给充电器控制电路371,进一步的充电器控制电路371还可以输出控制信号给电池包控制电路372以切换第二电子开关34的状态。
当充电器监测电路361监测到充电器内存在异常时,充电器控制电路371输出控制信号关断第一电子开关33,在充电器控制电路371关断第一电子开关33后,充电器失效检测电路381检测充电电路的电性参数,具体的检测方式如上文所述,不再详述。由于充电器控制电路371已输出控制信号关断第二电子开关33,故不应该检测到相应电性参数的存在,如果充电器失效检测电路381检测到相应电性参数的存在,充电器控制电路371由此可判断第一电子开关33已失效,充电器控制电路371将输出控制信号调节电源电路31的直流输出。
或者当电池包监测电路362监测到电池包内存在异常时,电池包控制电路372输出控制信号关断第二电子开关34,在电池包控制电路372关断第二电子开关34后,电池包失效检测电路382检测充电电路的电性参数,具体的检测方式如上文所述,不再详述。由于电池包控制电路372已输出控制信号关断第二电子开关34,故不应该检测到相应电性参数的存在,如果电池包失效检测电路382检测到相应电性参数的存在,电池包控制电路372由此可判断第二电子开关34已失效,电池包控制电路372将失效检测结果输出给充电器控制电路371,充电器控制电路371输出控制信号调节电源电路31的直流输出。
同样的,在本实施例中电池包控制电路372可包括电池包控制器,充电器控制电路371可包括充电器控制器,为了防止控制器引脚失效,同样可设定控制器从至少两个引脚分别发出控制信号以控制充电器内或电池包内的电气元件,具体实现方式与实施例一所述相同,故不再赘述。
此外,由于在电池包充满或异常状态下,电源电路的输出将降低,可能导致电池包向充电器电路放电产生回流,容易对充电器内的电气元件造成损伤,为此,充电器在充电电路中位于电子开关与电池包之间的位置设置了单向导通元件,作为单向导通元件的二极管40可沿充电时电流方向导通,沿充电电流的相反方向截止,从而有效防止电池包的放电回流,应当注意的是,该单向导通元件仅可设置于充电器内,而不可设置于电池包内,否则电池包需要给用电装置供电时将无法正常放电。
以上描述的实施例仅表达了本发明的几种实施方式,由于文字表达得有限性,而在客观上存在无限的可能结构,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (27)
- 一种充电器,用于为电池包充电,包括:电源电路,接收外部电源输入,并将外部电源转换成与所述电池包充电电压匹配的直流电源输出;充电电路,可操作地将所述直流电源输出用于给所述电池包充电,所述充电电路包括第一电子开关,所述第一电子开关存在关断和导通两种状态,当所述第一电子开关处于导通状态时,所述充电电路可对所述电池包充电,当所述第一电子开关处于关断状态时,所述充电电路无法对所述电池包充电;监测电路,可监测所述电池包、所述充电电路以及所述电源电路的状态;控制电路,可根据所述监测电路的监测结果控制所述充电器的工作状态;其特征在于:当所述监测电路监测到任一预设状态发生时,所述控制电路输出控制信号以控制所述充电器执行以下动作:关断所述第一电子开关,且降低或关断所述电源电路的直流电源输出。
- 根据权利要求1所述的充电器,其特征在于,所述控制电路包括控制器,所述控制器从至少两个引脚分别发出控制信号控制所述第一电子开关以及所述电源电路的工作状态。
- 根据权利要求2所述的充电器,其特征在于,所述控制信号包括至少一组高电平信号和一组低电平信号。
- 根据权利要求2所述的充电器,其特征在于,所述控制信号包括至少一组周期性变化的信号。
- 根据权利要求1至4任一项所述的充电器,其特征在于,所述充电器还包括位于所述第一电子开关与所述电池包之间的单向导通元件,所述单向导通元件沿充电电流方向导通。
- 根据权利要求1所述的充电器,其特征在于,所述电源电路包括电源处理器,PWM调节电路,所述电源处理器可根据所述控制信号控制所述PWM调节电路以降低或关断所述电源电路的直流电源输出。
- 根据权利要求1所述的充电器,其特征在于,所述电源电路包括电源处理器,PWM调节电路,辅助供电电路,所述辅助供电电路为所述电源处理器提供工作电源,所述电源处理器获得供电时可控制所述PWM调节电路以调节所述电源电路的直流电源输出,所述电源处理器无法获得供电时,所述电源电路无直流电源输出,所述辅助供电电路可根据所述控制信号切断对所述电源处理器的供电。
- 根据权利要求1所述的充电器,其特征在于,所述充电器进一步包括第二电子开关,所述控制电路输出控制信号导通所述第二电子开关,使所述电源电路的直流电源输出的正负极短路。
- 根据权利要求8所述的充电器,其特征在于,所述电源电路包括电源处理器,所述电源处理器检测到输出短路时,自动进入保护锁死模式,关断输出。
- 根据权利要求1所述的充电器,其特征在于,所述预设状态至少包括充电器异常、电池包异常、电池包充满。
- 根据权利要求10所述的充电器,其特征在于,所述充电器异常包括电源电路异常、充电电路异常、监测电路异常、控制电路失效,所述电池包异常包括电池包过温、电池包过充、电池包电压不均衡,所述电池包充满状态为电池包电压达到标称电压。
- 根据权利要求11所述的充电器,其特征在于,所述充电电路异常包括充电电路过流、充电电路的任意电子器件失效。
- 一种充电系统,包括电池包和为所述电池包充电的充电器,其特征在于:所述充电器包括:电源电路,接收外部电源输入,并将外部电源转换成与所述电池包充电电压匹配的直流电源输出;充电电路,可操作地将所述直流电源输出提供给所述电池包充电;所述电池包包括:至少一个储能单元,存储充电电路供给的电能,并可在需要时为用电装置提供电能;所述充电系统包括位于所述充电器的第一电子开关和位于所述电池包的第二电子开关中的至少一个,所述第一电子开关和所述第二电子开关存在关断和导通两种状态,当所述第一电子开关和所述第二电子开关处于导通状态时,所述充电电路可对所述电池包充电,当所述第一电子开关或所述第二电子开关处于关断状态时,所述充电电路无法对所述电池包充电;所述充电系统还包括监测电路,监测所述电池包、所述充电电路以及所述电源电路的状态;所述充电系统进一步包括控制电路,根据所述监测电路的监测结果控制所述充电系统的工作状态;当所述监测电路监测到任一预设状态发生时,所述控制电路输出控制信号以控制所述充电系统执行以下预设动作中的至少两个;1)关断所述第一电子开关;2)关断所述第二电子开关;3)降低或关断所述电源电路的直流电源输出。
- 根据权利要求13所述的充电系统,其特征在于,所述充电系统包括位于所述充电器的第一电子开关,当所述监测电路监测到任一预设状态发生时,所述控制电路输出控制信号以控制所述充电系统执行以下预设动作:关断所述第一电子开关,且降低或关断所述电源电路的直流电源输出。
- 根据权利要求13所述的充电系统,其特征在于,所述充电系统包括位于所述电池包的第二电子开关,当所述监测电路监测到任一预设状态发生时,所述控制电路输出控制信号以控制所述充电系统执行以下预设动作:关断所述第二电子开关,且降低或关断所述电源电路的直流电源输出。
- 根据权利要求13所述的充电系统,其特征在于,所述充电系统包括位于所述充电器的第一电子开关,以及位于所述电池包的第二电子开关,当所述监测电路监测到任一预设状态发生时,所述控制电路输出控制信号以控制所述充电系统执行以下预设动作:关断所述第一电子开关,且关断所述第二电子开关。
- 根据权利要求13所述的充电系统,其特征在于,所述控制电路包括控制器,所述控制器从至少两个引脚分别发出控制信号控制所述第一电子开关、所述第二电子开关、所述电源电路中的工作状态。
- 根据权利要求17所述的充电系统,其特征在于,所述控制信号包括至少一组高电平信号和一组低电平信号。
- 根据权利要求17所述的充电系统,其特征在于,所述控制信号包括至少一组周期性变化的信号。
- 根据权利要求13所述的充电系统,其特征在于,所述充电系统还包括位于所述第一电子开关或所述充电电路与所述电池包之间的单向导通元件,所述单向导通元件沿充电电流方向导通。
- 根据权利要求13至15任一项所述的充电系统,其特征在于,所述电源电路包括电源处理器,PWM调节电路,所述电源处理器可根据所述控制信号控制所述PWM调节电路以降低或关断所述电源电路的直流电源输出。
- 根据权利要求13至15任一项所述的充电系统,其特征在于,所述电源电路包括电源处理器,PWM调节电路,辅助供电电路,所述辅助供电电路为所述电源处理器提供工作电源,所述电源处理器获得供电时可控制所述PWM调节电路以调节所述电源电路的直流电源输出,所述电源处理器无法获得供电时,所述电源电路无直流电源输出,所述辅助供电电路可根据所述控制信号切断对所述电源处理器的供电。
- 根据权利要求13至15任一项所述的充电系统,其特征在于,所述充电系统进一步包括第三电子开关,所述控制电路输出控制信号导通所述第三电子开关,使所述电源电路的直流电源输出的正负极短路。
- 根据权利要求23所述的充电系统,其特征在于,所述电源电路包括电源处理器,所述电源处理器检测到输出短路时,自动进入保护锁死模式,关断输出。
- 根据权利要求13所述的充电系统,其特征在于,所述预设状态包括充电器异常、电池包异常、电池包充满、监测电路异常、控制电路失效。
- 根据权利要求25所述的充电系统,其特征在于,所述充电器异常包括电源电路异常、充电电路异常,所述电池包异常包括电池包过温、电池包过充、储能单元电压不均衡、储能单元失效,所述电池包充满状态为电池包电压达到标称电压。
- 根据权利要求26所述的充电系统,其特征在于,所述充电电路异常包括充电电路过流、充电电路的任意电子器件失效。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980005493.9A CN111316532B (zh) | 2018-07-27 | 2019-07-29 | 充电器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810845242.9 | 2018-07-27 | ||
CN201810845242 | 2018-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020020378A1 true WO2020020378A1 (zh) | 2020-01-30 |
Family
ID=69181356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/098226 WO2020020378A1 (zh) | 2018-07-27 | 2019-07-29 | 充电器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111316532B (zh) |
WO (1) | WO2020020378A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114006433A (zh) * | 2021-11-01 | 2022-02-01 | 长沙优力电驱动系统有限公司 | 电池装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7482782B2 (en) * | 2006-09-06 | 2009-01-27 | Integrated Systems Solution Corp. | Charge control system using pulse width modulation |
CN205195331U (zh) * | 2015-11-06 | 2016-04-27 | 天长市万德福电子有限公司 | 电池充电器及其补充电电路 |
CN106787058A (zh) * | 2017-01-13 | 2017-05-31 | 中惠创智无线供电技术有限公司 | 一种用于电池充电的接收端保护电路及充电设备 |
CN206517124U (zh) * | 2015-12-07 | 2017-09-22 | 苏州宝时得电动工具有限公司 | 充电器 |
CN107919699A (zh) * | 2017-11-23 | 2018-04-17 | 深圳市沃特玛电池有限公司 | 电动汽车及其电池包 |
CN108306400A (zh) * | 2018-03-22 | 2018-07-20 | 广州云阳电子科技有限公司 | 一种可检测过放保护电池组连接并自动启动充电的智能充电器及其实现方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102148526B (zh) * | 2010-02-05 | 2014-07-02 | 苏州宝时得电动工具有限公司 | 充电器 |
CN102957173B (zh) * | 2011-08-23 | 2015-03-11 | 福建睿能科技股份有限公司 | 一种多节串联锂电池组均衡及保护系统 |
CN102694403B (zh) * | 2012-05-30 | 2015-01-21 | 江苏科技大学 | 一种充电器及其控制方法 |
-
2019
- 2019-07-29 WO PCT/CN2019/098226 patent/WO2020020378A1/zh active Application Filing
- 2019-07-29 CN CN201980005493.9A patent/CN111316532B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7482782B2 (en) * | 2006-09-06 | 2009-01-27 | Integrated Systems Solution Corp. | Charge control system using pulse width modulation |
CN205195331U (zh) * | 2015-11-06 | 2016-04-27 | 天长市万德福电子有限公司 | 电池充电器及其补充电电路 |
CN206517124U (zh) * | 2015-12-07 | 2017-09-22 | 苏州宝时得电动工具有限公司 | 充电器 |
CN106787058A (zh) * | 2017-01-13 | 2017-05-31 | 中惠创智无线供电技术有限公司 | 一种用于电池充电的接收端保护电路及充电设备 |
CN107919699A (zh) * | 2017-11-23 | 2018-04-17 | 深圳市沃特玛电池有限公司 | 电动汽车及其电池包 |
CN108306400A (zh) * | 2018-03-22 | 2018-07-20 | 广州云阳电子科技有限公司 | 一种可检测过放保护电池组连接并自动启动充电的智能充电器及其实现方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114006433A (zh) * | 2021-11-01 | 2022-02-01 | 长沙优力电驱动系统有限公司 | 电池装置 |
Also Published As
Publication number | Publication date |
---|---|
CN111316532A (zh) | 2020-06-19 |
CN111316532B (zh) | 2022-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5517398B2 (ja) | 蓄電システム | |
WO2018090438A1 (zh) | 一种高压锂电池包故障的安全管理系统 | |
CN103633683B (zh) | 充电装置 | |
CN110350255B (zh) | 电池包及充电组合 | |
CN104885325B (zh) | 供电设备 | |
CN202856431U (zh) | 避免电池浮充的控制系统及供电系统 | |
WO2016192515A1 (zh) | 电池组、充电管理系统和方法 | |
EP3692618A2 (en) | Battery driven ground power unit with improved construction, durability and maintenance | |
CN107370168B (zh) | 电能存储设备 | |
US20130002027A1 (en) | Uninterruptible power supply | |
WO2023124502A1 (zh) | 一种储能系统和储能系统的控制方法 | |
CN101783519A (zh) | 一种充电器管理电路 | |
CN206226070U (zh) | 一种高压锂电池包故障的安全管理系统 | |
CN109586368B (zh) | 储能系统启动装置、启动方法及储能系统 | |
WO2020020378A1 (zh) | 充电器 | |
WO2022217721A1 (zh) | 智慧电池 | |
CN117141233B (zh) | 一种电池控制系统 | |
JP2009071922A (ja) | 直流バックアップ電源装置およびその制御方法 | |
JP4932026B1 (ja) | 直流給電システム | |
CN116260218A (zh) | 一种功率变换装置及储能装置 | |
KR20170116697A (ko) | 방전시 적용 가능한 하이볼티지(High-Voltage)용 연결 스위치의 패일세이프(fail-safe) 제어 장치 | |
WO2021082884A1 (zh) | 电动工具 | |
KR101785662B1 (ko) | 백업전원 기능을 포함한 배터리 에너지 저장 시스템용 배터리 보호 회로장치 | |
KR101158414B1 (ko) | 디지털식 배터리충전장치 | |
EP3365957A1 (en) | Method of supplying an emergency supply module and emergency supply module with reduced power consumption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19840379 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19840379 Country of ref document: EP Kind code of ref document: A1 |