WO2018090438A1 - 一种高压锂电池包故障的安全管理系统 - Google Patents

一种高压锂电池包故障的安全管理系统 Download PDF

Info

Publication number
WO2018090438A1
WO2018090438A1 PCT/CN2016/112056 CN2016112056W WO2018090438A1 WO 2018090438 A1 WO2018090438 A1 WO 2018090438A1 CN 2016112056 W CN2016112056 W CN 2016112056W WO 2018090438 A1 WO2018090438 A1 WO 2018090438A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switch
battery pack
battery
control
Prior art date
Application number
PCT/CN2016/112056
Other languages
English (en)
French (fr)
Inventor
谢军
Original Assignee
深圳市盈动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市盈动力科技有限公司 filed Critical 深圳市盈动力科技有限公司
Publication of WO2018090438A1 publication Critical patent/WO2018090438A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection

Definitions

  • the invention relates to the technical field of high-voltage lithium batteries, in particular to a safety management system for failure of a high-voltage lithium battery pack.
  • High-voltage lithium battery packs are widely used in electric vehicles such as electric bicycles and electric wheelchairs, as well as electric tools such as electric drills, cutting machines, and lawn mowers.
  • the high-voltage lithium battery pack is to connect a plurality of lithium batteries in parallel or in series to form a high voltage to supply power to the load.
  • the output voltage is up to several tens of volts or even hundreds of volts. If there is a failure during charging or use, it will cause combustion and explosion. And other serious consequences. Therefore, a more reliable fault management system is required for high-voltage lithium battery packs to ensure their safety.
  • the embodiment of the present invention provides a safety management system for a high voltage lithium battery pack failure to ensure the safety of charging and discharging a high voltage lithium battery pack.
  • the embodiment of the invention provides a safety management system for a fault of a high-voltage lithium battery pack, comprising: a first controllable switch, wherein the controlled switch of the first controllable switch is connected in series in a charging or discharging circuit of the battery pack for controlling The battery charging or discharging circuit is connected or disconnected; a plurality of equalizing control boards, each of the equalizing control boards includes: a voltage detecting unit for detecting voltages at both ends of the battery; and a first connecting switch, the first of the plurality of equalizing control boards Connecting the switch in series; one end connected in series is connected to the first preset voltage source, the first preset voltage source is used to control the controlled switch of the first controllable switch to be turned on, and the other end connected in series is connected to the first a control terminal connected to the voltage detecting unit, configured to control the equalization when the voltage detecting unit on the equalization control board detects that the voltage across the battery is greater than the first preset voltage The first connection switch on the control panel is turned off.
  • the safety management system of the high voltage lithium battery pack failure further includes at least one second controllable switch, wherein the controlled switch of the second controllable switch is connected in series in the battery charging or discharging circuit, For controlling the battery charging or discharging circuit to be connected or disconnected; correspondingly, each of the equalizing control boards further includes: a second connecting switch, the second connecting switches of the plurality of equalizing control boards are connected in series; and the one end connected in series is connected to the second a preset voltage source, the second preset voltage source is configured to control a controlled switch of the second controllable switch to be turned on, and the other end connected in series is connected to a control end of the second controllable switch; The unit is further configured to control the second connection switch on the equalization control board to be turned off when the voltage detecting unit on the equalization control board detects that the voltage across the battery is greater than the second preset voltage.
  • the safety management system of the high-voltage lithium battery pack failure further includes: a main controller, which is respectively connected to the voltage detecting units on the plurality of equalization control boards, and is configured to have a battery in the battery pack When the voltage at both ends reaches the third preset voltage, the charger is controlled to stop charging.
  • the first preset voltage is smaller than the second preset voltage.
  • the third preset voltage is smaller than the first preset voltage.
  • the safety management system of the high-voltage lithium battery pack failure further includes: a temperature detecting unit, configured to detect a temperature of the battery in the battery pack; the main controller is further configured with the temperature detecting unit, the first The control ends of the control switches are respectively connected to control the battery charging or discharging circuit to be disconnected when the temperature of the battery in the battery pack is greater than the first preset temperature value.
  • the safety management system of the high-voltage lithium battery pack failure further includes: a first temperature switch connected to the control end of the first controllable switch, configured to detect a temperature of the battery in the battery pack, and when the battery pack When the temperature of the inner battery is greater than the second preset temperature value, the battery charging or discharging circuit is controlled to be disconnected.
  • the safety management system of the high-voltage lithium battery pack failure further includes: a second temperature switch, configured to detect a temperature of the battery in the battery pack, and when detecting that the temperature of the battery in the battery pack is greater than a third preset temperature value
  • the cooling device is configured to cool the battery in the battery pack according to the control command.
  • the safety management system of the high-voltage lithium battery pack failure further includes: a current detecting unit configured to detect a current in a battery charging or discharging circuit in the battery pack; the main controller is further connected to the current detecting unit And for controlling the charging or discharging circuit to be disconnected when the current in the battery charging or discharging circuit is greater than a preset current value.
  • a third controllable switch and a current limiting resistor are further connected in parallel to the two ends of the first controllable switch, and the controlled switch of the third controllable switch is connected in parallel with the current limiting resistor; Including isolation And a switch for receiving a command to turn on the short circuit detecting function, and controlling the third controllable switch to be turned on or off; and the control end of the third controllable switch is connected to the isolating switch.
  • the two ends of the load are further connected with a sensitivity resistor and an optocoupler; the primary side of the optocoupler is connected in series with the sensitivity resistor; and one end of the secondary side of the optocoupler
  • the safety management system for the failure of the high-voltage lithium battery pack includes setting a plurality of equalization control boards, and setting a first connection switch on the equalization control board, and the first connection switches of the plurality of equalization control boards are connected in series, after being connected in series One end is connected to the first preset voltage source, and the other end connected in series is connected to the control end of the first controllable switch, so as to control the first controllable switch to be turned on or off by the first preset voltage source, thereby controlling battery charging or discharging.
  • the loop is connected or disconnected; further, the control unit on the equalization control board is connected to the voltage detecting unit, and is configured to control the first connection switch to be turned off when the voltage detecting unit detects that the voltage across the battery is greater than the first preset voltage, thereby The first controllable switch is turned off, and then the charging or discharging circuit is disconnected to ensure the safety of filling and discharging the high voltage lithium battery pack.
  • FIG. 1 shows a schematic diagram of a safety management system for a high voltage lithium battery pack failure in accordance with an embodiment of the present invention.
  • the safety management system of the high voltage lithium battery pack failure includes a first controllable switch 100 and a plurality of equalization control boards.
  • the controlled switch of the first controllable switch 100 is connected in series in the battery pack charging or discharging circuit for controlling the battery charging or discharging circuit to be connected or disconnected.
  • the first controllable switch 100 is a relay or an AC contactor.
  • the battery pack includes a first battery 210, a second battery 310, and a third battery 410. Accordingly, the first equalization control board 220, the second equalization control board 320, and the third equalization control board 420 are included.
  • the first equalization control board 220 includes a voltage detecting unit 221, a control unit 222, and a first connection switch 223.
  • the voltage detecting unit 221 is configured to detect a voltage across the first battery 210.
  • the control unit 222 is connected to the voltage detecting unit 221, and is configured to control the first equalization control board 220 when the voltage detecting unit 221 on the first equalizing control board 220 detects that the voltage across the first battery 210 is greater than the first preset voltage.
  • the first connection switch 223 is turned off.
  • the second equalization control board 320 includes a voltage detecting unit 321, a control unit 322, and a first connection switch 323.
  • the voltage detecting unit 321 is configured to detect a voltage across the first battery 310.
  • the control unit 322 is connected to the voltage detecting unit 321 for controlling the second equalization control board 320 when the voltage detecting unit 321 on the second equalization control board 320 detects that the voltage across the second battery 310 is greater than the first preset voltage.
  • the first connection switch 323 is turned off.
  • the third equalization control board 420 includes a voltage detecting unit 421, a control unit 422, and a first connection switch 423.
  • the voltage detecting unit 421 is configured to detect a voltage across the first battery 410.
  • the control unit 422 is connected to the voltage detecting unit 421 for controlling the third equalization control board 420 when the voltage detecting unit 421 on the third equalizing control board 420 detects that the voltage across the third battery 410 is greater than the first preset voltage.
  • the first connection switch 423 is turned off.
  • the first connection switches of the plurality of equalization control boards are connected in series; the one end of the line is connected to the first preset voltage source, and the first preset voltage source is used to control the controlled switch of the first controllable switch to be turned on, and the other line is One end is connected to the control end of the first controllable switch. That is, the first end of the first connection switch 223 in FIG. 1 is connected to the first preset voltage source 500, the second end is connected to the first end of the first connection switch 323, and the second end of the first connection switch 323 is The first end of the first connection switch 423 is connected; first The second end of the connection switch 423 is connected to the control end of the first controllable switch 100.
  • the above-mentioned safety management system for the failure of the high-voltage lithium battery pack includes setting a plurality of equalization control boards, and setting a first connection switch on the equalization control board, the first connection switches of the plurality of equalization control boards are connected in series, and one end of the line is connected to the first a preset voltage source, the other end of the line is connected to the control end of the first controllable switch, so as to control the first controllable switch to be turned on or off by the first preset voltage source, thereby controlling the battery charging or discharging circuit to be connected or disconnected
  • the control unit on the equalization control board is connected to the voltage detecting unit, and is configured to control the first connection switch to be disconnected when the voltage detecting unit detects that the voltage across the battery is greater than the first preset voltage, thereby making the first controllable The switch is disconnected, and then the charging or discharging circuit is disconnected to ensure the safety of charging and discharging the high voltage lithium battery pack.
  • the high-voltage lithium battery pack failure safety management system further includes at least one second controllable switch and at least one second preset voltage source, and correspondingly, each equalization control
  • the board also includes at least one second connection switch.
  • the controlled switch of the second controllable switch 600 is connected in series in the battery pack charging or discharging circuit for controlling the battery charging or discharging circuit to be connected or disconnected.
  • the first equalization control board 220 further includes a second connection switch 224.
  • the control unit 222 is further configured to: when the voltage detecting unit 221 on the equalization control board 220 detects that the voltage across the first battery 210 is greater than the second preset voltage.
  • the second connection switch 224 on the control equalization control board 220 is turned off.
  • the second equalization control board 320 further includes a second connection switch 324.
  • the control unit 322 is further configured to control the equalization when the voltage detecting unit 321 on the equalization control board 320 detects that the voltage across the second battery 310 is greater than the second preset voltage.
  • the second connection switch 324 on the control board 320 is turned off.
  • the third equalization control board 420 further includes a second connection switch 424.
  • the control unit 422 is further configured to control the equalization when the voltage detecting unit 421 on the equalization control board 420 detects that the voltage across the third battery 410 is greater than the second preset voltage.
  • the second connection switch 424 on the control board 420 is turned off.
  • the second connection switches of the plurality of equalization control boards are connected in series; the one end of the line is connected to the second preset voltage source, and the second preset voltage source is used to control the controlled switch of the second controllable switch to be turned on, and the other line One end is connected to the control end of the second controllable switch. That is, the first end of the second connection switch 224 in FIG. 1 is connected to the second preset voltage source 700, and the second end is connected to the first end of the second connection switch 324. The second end of the second connection switch 324 is connected to the first end of the second connection switch 424; the second end of the second connection switch 424 is connected to the control end of the second controllable switch 600.
  • FIG. 1 only shows that the safety management system of the high voltage lithium battery pack failure includes a second controllable switch and a second preset voltage source, and accordingly the equalization control panel includes an example of a second connection switch.
  • the technical solution of the present application is not limited thereto, and may further include a plurality of second controllable switches and a second set of voltage sources, and correspondingly, the equalization control board includes a plurality of second connection switches.
  • the high-voltage lithium battery pack failure safety management system further includes a main controller 800, which is respectively connected to the voltage detecting units on the plurality of equalization control boards, for example, through a serial port connection, for When the voltage in the battery pack reaches the third preset voltage, the control charger stops charging. That is, the main controller 800 is connected to the voltage detecting unit 221, the voltage detecting unit 321, and the voltage detecting unit 421, respectively, and the voltage across the battery of the first battery 210, the second battery 310, and the third battery 410 reaches the third level. When the voltage is preset, the main control 800 controls the charger to stop charging. The main control 800 can directly control the charger dedicated to the battery pack to stop charging. The specific form of the main controller 800 for controlling the charger to stop charging is not limited.
  • the first preset voltage, the second preset voltage, and the third preset voltage may be equal or not equal.
  • the first preset voltage is less than the second preset voltage
  • the third preset voltage is less than the first preset voltage.
  • the third preset voltage is 4.15V
  • the first preset voltage is 4.20V
  • the second preset voltage is 4.22V.
  • the main control 800 first controls the charger to stop charging to prevent the voltage from being too high.
  • the main control 800 fails and the charger continues to charge the battery, when the battery voltage is greater than 4.20V, the corresponding first connection switch is disconnected, and the first preset power supply 500 cannot pass through the first of the equalization control boards.
  • the line connecting the switches in series controls the first controllable switch 100 to be turned on, that is, when the battery voltage is greater than 4.20V, the first controllable switch 100 is disconnected, the battery charging circuit is disconnected, and the safety of charging is ensured again.
  • the charger continues to charge the battery.
  • the battery voltage is greater than 4.22V
  • the corresponding second connection switch is disconnected, and the second preset power supply 700 cannot be connected through the second connection switch in each equalization control board to form a second controllable switch 600. That is, when the battery voltage is greater than 4.22V, the second controllable switch 600 is disconnected, and the battery charging circuit is disconnected, further ensuring the safety of charging.
  • the safety management system for the failure of the high-voltage lithium battery pack causes the first preset voltage source to control the first controllable switch through a line in which the first connection switch is connected in series, or to connect the second preset voltage source through the second connection switch in series.
  • the formed line controls the second controllable switch to control the charging and discharging circuits to be connected or disconnected, so that when the voltage detecting unit on any equalizing control board detects that the battery voltage is abnormal, the charging and discharging circuits are disconnected, thereby ensuring safety.
  • the charging and discharging circuits are also disconnected to prevent the battery from being disabled due to the failure of the safety mechanism.
  • the safety management system of the high-voltage lithium battery pack failure includes three different actuators, namely, a first controllable switch, a second controllable switch, and a charger that can be directly controlled by the controller.
  • the three different actuators are connected in series.
  • the charging or discharging circuit can be disconnected by controlling the disconnection of any one of the actuators, thereby realizing a triple safety mechanism to ensure that the battery voltage is not too high, thereby ensuring the charging and discharging safety of the high-voltage lithium battery.
  • the second controllable switch 600 is a one-way controllable switch, such as a thyristor, a triode, a MOS transistor, an IGBT, and the second controllable switch 600 is only connected in the charging circuit.
  • the safety management system for the failure of the high voltage lithium battery pack further includes a temperature detecting unit 900 for detecting the temperature of the battery in the battery pack.
  • the main controller 800 is also respectively connected to the temperature detecting unit 900 and the control end of the first controllable switch 100 for controlling the battery charging or discharging circuit to be disconnected when the temperature of the battery in the battery pack is greater than the first preset temperature value.
  • the safety management system for the failure of the high-voltage lithium battery pack further includes a first temperature switch 1000 connected to the control end of the first controllable switch 100 for detecting the temperature of the battery in the battery pack, and when the battery When the temperature of the battery in the bag is greater than the second preset temperature value, the battery charging or discharging circuit is controlled to be disconnected.
  • the main controller 800 controls the first controllable switch 100 to be turned off; when discharging, when the battery temperature is greater than 65 degrees, the main controller 800 controls the first controllable switch 100 disconnected.
  • the safety management system for the failure of the high voltage lithium battery pack further includes a second temperature switch 1100 and a temperature lowering device 1200.
  • the second temperature switch 1100 is configured to detect a temperature of the battery in the battery pack, and generate a control command when detecting that the temperature of the battery in the battery pack is greater than a third preset temperature value.
  • the cooling device 1200 is configured to cool the battery in the battery pack according to the control command.
  • the values of the first preset temperature value, the second preset temperature value, and the third preset temperature value are different, and the size order of the application is not limited.
  • the first preset temperature value is greater than the second preset temperature value
  • the second preset temperature value is greater than the third preset temperature value.
  • the cooling device is activated to cool the battery. If the battery temperature continues to rise above the second preset temperature value, the first temperature switch is turned on to control the first controllable switch to open, and the charging or discharging circuit is disconnected. If the first temperature switch fails and the battery temperature continues to rise above the first preset temperature value, the main controller controls the first controllable switch to open and disconnect the charging or discharging circuit. Therefore, the safety management system of the high-voltage lithium battery pack failure realizes the safety of charging and discharging of the high-voltage lithium battery through the three-stage temperature monitoring mechanism.
  • the safety management system for the failure of the high voltage lithium battery pack further includes a current detecting unit 1300 for detecting the current in the battery charging or discharging circuit in the battery pack.
  • the main controller 800 is further connected to the current detecting unit for controlling the charging or discharging circuit to be disconnected when the current in the battery charging or discharging circuit is greater than the preset current value, thereby ensuring that the current is not charged during charging and discharging of the high voltage lithium battery. Will be too high to ensure the safety of charging and discharging of high-voltage lithium batteries.
  • the current detecting unit 1300 can be connected to both the charging circuit and the discharging circuit, as shown in the position A in FIG.
  • the current detecting unit 1300 is only connected in the discharge circuit, as shown in FIG. 1, and is only used to ensure that the current is not excessively high during discharge of the high voltage lithium battery.
  • a diode 2100 is further disposed in the charging circuit, and the charger Parallel connection to both ends of the load to prevent the battery from discharging to the charger during charging.
  • a fuse 2000 is also disposed in the discharge circuit, and the fuse current is 40A to 80A, which is used to protect the current in the discharge circuit from being excessively large, thereby ensuring battery discharge safety.
  • the third controllable switch 1400 and the current limiting resistor 1500 are connected in parallel at both ends of the first controllable switch, and the controlled switch and limit of the third controllable switch Flow resistors are connected in parallel.
  • the system also includes an isolation switch 1600 for receiving a command to turn on the short circuit detection function and controlling the third controllable switch 1400 to be turned "on” or "off".
  • the command for turning on the short-circuit detection function may be issued by a user through a button outside the battery pack, or may be issued by another function module, which is not limited in this application.
  • the control end of the third controllable switch 1400 is coupled to the isolating switch 1600.
  • the isolating switch receives the command and controls the third controllable switch 1400 to be turned on. If the load is short-circuited, the discharge current flows through the third controllable switch 1400 and the current limiting resistor 1500 to form a loop, and the current limiting resistor 1500 makes the loop current not excessive.
  • the voltage across the battery pack in the battery pack is mainly borne by the current limiting resistor, and the voltage across the load is small. If the voltage detection unit is connected in parallel across the load, the load can be judged to be short-circuited according to the voltage across the load.
  • the sensitivity resistor 1700 and the optocoupler 1800 are also connected in parallel at both ends of the load.
  • the primary side of the optocoupler 1700 is connected in series with the sensitivity resistor; one end of the secondary side of the optocoupler 1700 is connected to the power supply, and the other end is connected to the detection resistor 1900.
  • the main controller 800 can judge whether the load is short-circuited by the magnitude of the detected voltage of the detecting resistor 1900.
  • the sensitivity of the detection can also be adjusted by the sensitivity resistor 1700.
  • the main controller 800 is further connected to the detecting resistor 1900, and is configured to control the first controllable switch to be turned off when the voltage across the detecting resistor 1900 is less than a preset voltage value, so that when the high voltage lithium battery supplies power to the load, if the load is short-circuited, the system The discharge backflow can be automatically disconnected to ensure the safety of discharge of the high voltage lithium battery.
  • the embodiment of the present invention exemplifies the technical solution of the present invention by taking a battery pack as a series connection of three batteries. It should be noted that the number of batteries in the battery pack may be multiple, not limited to three; and the connection manner of the battery is not limited to series connection, or may be parallel connection, or first series connection, parallel connection, first parallel connection, and then serial connection. .

Abstract

一种高压锂电池包故障的安全管理系统,包括:第一可控开关(100),第一可控开关(100)的被控开关串联在电池组充电或放电回路中,用于控制电池(210,310,410)充电或放电回路连通或断开;多个均衡控制板(220,320,420),每个均衡控制板(220,320,420)包括:电压检测单元(221,321,421),用于检测电池(210,310,410)两端的电压;第一连接开关(223,323,423),多个均衡控制板(220,320,420)的第一连接开关(223,323,423)串联;串联后的一端连接第一预设电压源(500),第一预设电压源(500)用于控制第一可控开关(100)的被控开关导通,串联后的另一端连接第一可控开关(100)的控制端;控制单元(222,322,422),与电压检测单元(221,321,421)连接,用于当均衡控制板(220,320,420)上的电压检测单元(221,321,421)检测到电池(210,310,410)两端的电压大于第一预设电压时,控制均衡控制板(220,320,420)上的第一连接开关(223,323,423)断开。由此可以确保高压锂电池包充、放电的安全性。

Description

一种高压锂电池包故障的安全管理系统 技术领域
本发明涉及高压锂电池技术领域,具体涉及一种高压锂电池包故障的安全管理系统。
背景技术
高压锂电池包广泛应用于电动自行车、电动轮椅等电动交通工具和电钻、切割机、割草机等电动工具。高压锂电池包是将多个锂电池并联或串联在一起,形成高电压给负载供电,其输出电压高达几十伏,甚至几百伏,在充电或使用时如果出现故障,会造成燃烧、爆炸等严重后果。因此,对于高压锂电池包需要更为可靠的故障管理系统来保证其安全性。
发明内容
有鉴于此,本发明实施例提供了一种高压锂电池包故障的安全管理系统,以保证高压锂电池包充、放电的安全性。
本发明实施例提供了一种高压锂电池包故障的安全管理系统,包括:第一可控开关,所述第一可控开关的被控开关串联在电池组充电或放电回路中,用于控制电池充电或放电回路连通或断开;多个均衡控制板,每个所述均衡控制板包括:电压检测单元,用于检测电池两端的电压;第一连接开关,多个均衡控制板的第一连接开关串联;串联后的一端连接第一预设电压源,所述第一预设电压源用于控制所述第一可控开关的被控开关导通,串联后的另一端连接所述第一可控开关的控制端;控制单元,与所述电压检测单元连接,用于当所述均衡控制板上的电压检测单元检测到电池两端的电压大于第一预设电压时,控制所述均衡控制板上的所述第一连接开关断开。
可选地,所述高压锂电池包故障的安全管理系统还包括至少一个第二可控开关,所述第二可控开关的被控开关串联在电池组充电或放电回路中, 用于控制电池充电或放电回路连通或断开;相应地,每个所述均衡控制板还包括:第二连接开关,多个均衡控制板的第二连接开关串联;串联后的一端连接第二预设电压源,所述第二预设电压源用于控制所述第二可控开关的被控开关导通,串联后的另一端连接所述第二可控开关的控制端;所述控制单元,还用于当所述均衡控制板上的电压检测单元检测到电池两端的电压大于第二预设电压时,控制所述均衡控制板上的所述第二连接开关断开。
可选地,所述高压锂电池包故障的安全管理系统还包括:主控制器,与多个所述均衡控制板上的所述电压检测单元分别连接,用于当所述电池包内有电池两端的电压达到第三预设电压时,控制充电器停止充电。
可选地,所述第一预设电压小于所述第二预设电压。
可选地,所述第三预设电压小于所述第一预设电压。
可选地,所述高压锂电池包故障的安全管理系统还包括:温度检测单元,用于检测电池包内电池的温度;所述主控制器还与所述温度检测单元、所述第一可控开关的控制端分别连接,用于当电池包内电池的温度大于第一预设温度值时,控制电池充电或放电回路断开。
可选地,所述高压锂电池包故障的安全管理系统还包括:第一温度开关,与所述第一可控开关的控制端连接,用于检测电池包内电池的温度,并且当电池包内电池的温度大于第二预设温度值时,控制电池充电或放电回路断开。
可选地,所述高压锂电池包故障的安全管理系统还包括:第二温度开关,用于检测电池包内电池的温度,并且当检测到电池包内电池的温度大于第三预设温度值时,产生控制指令;降温装置,用于根据控制指令,给电池包内的电池降温。
可选地,所述高压锂电池包故障的安全管理系统还包括:电流检测单元,用于检测电池包内电池充电或放电回路中的电流;所述主控制器还与所述电流检测单元连接,用于当电池充电或放电回路中的电流大于预设电流值时,控制所述充电或放电回路断开。
可选地,所述第一可控开关的两端还并联有第三可控开关和限流电阻,所述第三可控开关的被控开关与所述限流电阻并联;所述系统还包括隔离 开关,用于接收开启短路检测功能的命令,并控制所述第三可控开关导通或断开;所述第三可控开关的控制端与所述隔离开关连接。
可选地,所述电池包与负载连接时,所述负载的两端还并联有灵敏度电阻和光耦;所述光耦的原边与所述灵敏度电阻串联;所述光耦的副边的一端连接电源,另一端连接检测电阻;所述主控制器还与所述检测电阻连接,用于当所述检测电阻两端的电压小于预设电压值时控制所述第一可控开关断开。
本发明实施例提供的高压锂电池包故障的安全管理系统,包括设置多个均衡控制板,在均衡控制板上设置第一连接开关,多个均衡控制板的第一连接开关串联,串联后的一端连接第一预设电压源,串联后的另一端连接第一可控开关的控制端,以便通过第一预设电压源控制第一可控开关导通或断开,从而控制电池充电或放电回路连通或断开;此外,设置均衡控制板上的控制单元与电压检测单元连接,用于当电压检测单元检测到电池两端的电压大于第一预设电压时控制第一连接开关断开,从而使得第一可控开关断开,继而断开充电或放电回路,以确保高压锂电池包充、放电的安全性。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1示出了根据本发明实施例的高压锂电池包故障的安全管理系统的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1示出了根据本发明实施例的高压锂电池包故障的安全管理系统的示意图。根据图1所示,该高压锂电池包故障的安全管理系统包括第一可控开关100和多个均衡控制板。该第一可控开关100的被控开关串联在电池组充电或放电回路中,用于控制电池充电或放电回路连通或断开。可选地,该第一可控开关100为继电器或交流接触器。
如图1所示,电池组包括第一电池210、第二电池310和第三电池410。相应地,包括第一均衡控制板220、第二均衡控制板320和第三均衡控制板420。
第一均衡控制板220包括电压检测单元221、控制单元222和第一连接开关223。电压检测单元221用于检测第一电池210两端的电压。控制单元222与电压检测单元221连接,用于当第一均衡控制板220上的电压检测单元221检测到第一电池210两端的电压大于第一预设电压时,控制第一均衡控制板220上的第一连接开关223断开。
第二均衡控制板320包括电压检测单元321、控制单元322和第一连接开关323。电压检测单元321用于检测第一电池310两端的电压。控制单元322与电压检测单元321连接,用于当第二均衡控制板320上的电压检测单元321检测到第二电池310两端的电压大于第一预设电压时,控制第二均衡控制板320上的第一连接开关323断开。
第三均衡控制板420包括电压检测单元421、控制单元422和第一连接开关423。电压检测单元421用于检测第一电池410两端的电压。控制单元422与电压检测单元421连接,用于当第三均衡控制板420上的电压检测单元421检测到第三电池410两端的电压大于第一预设电压时,控制第三均衡控制板420上的第一连接开关423断开。
上述多个均衡控制板的第一连接开关串联成线;线的一端连接第一预设电压源,第一预设电压源用于控制第一可控开关的被控开关导通,线的另一端连接第一可控开关的控制端。也即,图1中第一连接开关223的第一端与第一预设电压源500连接,第二端与第一连接开关323的第一端连接;第一连接开关323的第二端与第一连接开关423的第一端连接;第一 连接开关423的第二端与第一可控开关100的控制端连接。
上述高压锂电池包故障的安全管理系统,包括设置多个均衡控制板,在均衡控制板上设置第一连接开关,多个均衡控制板的第一连接开关串联成线,线的一端连接第一预设电压源,线的另一端连接第一可控开关的控制端,以便通过第一预设电压源控制第一可控开关导通或断开,从而控制电池充电或放电回路连通或断开;此外,设置均衡控制板上的控制单元与电压检测单元连接,用于当电压检测单元检测到电池两端的电压大于第一预设电压时控制第一连接开关断开,从而使得第一可控开关断开,继而断开充电或放电回路,以确保高压锂电池包充、放电的安全性。
作为图1所示实施例的一种可选实施方式,高压锂电池包故障的安全管理系统还包括至少一个第二可控开关和至少一个第二预设电压源,相应地,每个均衡控制板还包括至少一个第二连接开关。
如图1所示,第二可控开关600的被控开关串联在电池组充电或放电回路中,用于控制电池充电或放电回路连通或断开。
相应地,第一均衡控制板220还包括第二连接开关224,控制单元222还用于当均衡控制板220上的电压检测单元221检测到第一电池210两端的电压大于第二预设电压时,控制均衡控制板220上的第二连接开关224断开。
第二均衡控制板320还包括第二连接开关324,控制单元322还用于当均衡控制板320上的电压检测单元321检测到第二电池310两端的电压大于第二预设电压时,控制均衡控制板320上的第二连接开关324断开。
第三均衡控制板420还包括第二连接开关424,控制单元422还用于当均衡控制板420上的电压检测单元421检测到第三电池410两端的电压大于第二预设电压时,控制均衡控制板420上的第二连接开关424断开。
上述多个均衡控制板的第二连接开关串联成线;线的一端连接第二预设电压源,第二预设电压源用于控制第二可控开关的被控开关导通,线的另一端连接第二可控开关的控制端。也即,图1中第二连接开关224的第一端与第二预设电压源700连接,第二端与第二连接开关324的第一端连 接;第二连接开关324的第二端与第二连接开关424的第一端连接;第二连接开关424的第二端与第二可控开关600的控制端连接。
需要补充说明的是,图1仅仅给出了高压锂电池包故障的安全管理系统包括一个第二可控开关和一个第二预设电压源,相应地均衡控制板包括一个第二连接开关的示例。然而本申请的技术方案并不限于此,还可以包括多个第二可控开关和第二与设电压源,相应地均衡控制板包括多个第二连接开关。
作为本实施例的一种可选实施方式,该高压锂电池包故障的安全管理系统还包括主控制器800,与多个均衡控制板上的电压检测单元分别连接,例如通过串口连接,用于当电池包内有电池两端的电压达到第三预设电压时,控制充电器停止充电。也即,主控制器800与电压检测单元221、电压检测单元321、电压检测单元421分别连接,当第一电池210、第二电池310、第三电池410中任一电池两端的电压达到第三预设电压时,主控制800控制充电器停止充电。主控制800可以直接控制电池包专用的充电器停止充电,本申请对主控制器800控制充电器停止充电的具体形式不作限定。
上述第一预设电压、第二预设电压和第三预设电压可以相等,也可以不相等。可选地,第一预设电压小于第二预设电压,第三预设电压小于第一预设电压。例如,第三预设电压为4.15V,第一预设电压为4.20V,第二预设电压为4.22V。
即,在充电的过程中,电池包内电池电压逐步上升,当有电池两端的电压大于4.15V时,首先主控制800控制充电器停止充电,以防止电压过高造成危险。
而若主控制800出现故障、充电器继续给电池充电,则当有电池电压大于4.20V时,对应的第一连接开关会断开,第一预设电源500不能通过各均衡控制板中第一连接开关串联而成的线控制第一可控开关100导通,即当有电池电压大于4.20V时,第一可控开关100会断开,电池充电回路断开,再次确保充电的安全性。
进一步地,当第一可控开关100未成功断开,则充电器继续给电池充 电,当有电池电压大于4.22V时,对应的第二连接开关会断开,第二预设电源700不能通过各均衡控制板中第二连接开关串联而成线控制第二可控开关600导通,即当有电池电压大于4.22V时,第二可控开关600会断开,电池充电回路断开,进一步确保充电的安全性。
上述高压锂电池包故障的安全管理系统,使第一预设电压源通过第一连接开关串联而成的线控制第一可控开关,或者使第二预设电压源通过第二连接开关串联而成的线控制第二可控开关,从而控制充、放电回路连通或断开,从而当任一均衡控制板上的电压检测单元检测到电池电压异常时,充、放电回路都会断开,从而保证安全性。另一方面,当任一第一连接开关或第二连接开关之间的导线断开而导致线断开时,充、放电回路也会断开,以防止由于该安全机制失效而不能够在电池电压异常时成功断开充、放电回路。此外,在电池电压大于第三预设电压级别时,通过主控制器控制充电器断开;在电池电压大于第二预设电压级别时,通过均衡控制板上的第一连接开关串联而成的线控制第一可控开关断开;在电池电压大于第二预设电压级别时,通过均衡控制板上的第一连接开关串联而成的线控制第一可控开关断开,由此可见,本高压锂电池包故障的安全管理系统中包括三个不同的执行机构,即第一可控开关、第二可控开关以及控制器可直接控制的充电器,这三个不同的执行机构串联在充电或放电回路中,通过控制任意一个执行机构断开即可断开充电或者放电回路,从而实现三重安全机制确保电池电压不会过高,从而确保高压锂电池的充、放电安全性。
可选地,第二可控开关600为单向可控开关,如可控硅、三极管、MOS管、IGBT,该第二可控开关600仅连接在充电回路中。
如图1所示,高压锂电池包故障的安全管理系统还包括温度检测单元900,用于检测电池包内电池的温度。主控制器800还与温度检测单元900、第一可控开关100的控制端分别连接,用于当电池包内电池的温度大于第一预设温度值时,控制电池充电或放电回路断开。
高压锂电池包故障的安全管理系统还包括第一温度开关1000,与第一可控开关100的控制端连接,用于检测电池包内电池的温度,并且当电池 包内电池的温度大于第二预设温度值时,控制电池充电或放电回路断开。
例如,在充电时,当电池温度大于45度时,主控制器800控制第一可控开关100断开;在放电时,当电池温度大于65度时,主控制器800控制第一可控开关100断开。
高压锂电池包故障的安全管理系统还包括第二温度开关1100和降温装置1200。第二温度开关1100用于检测电池包内电池的温度,并且当检测到电池包内电池的温度大于第三预设温度值时,产生控制指令。降温装置1200,用于根据控制指令,给电池包内的电池降温。
上述第一预设温度值、第二预设温度值、第三预设温度值的数值不同,本申请对其大小顺序不作限定。
可选地,上述第一预设温度值大于第二预设温度值,第二预设温度值大于第三预设温度值。从而,当电池温度大于第三预设温度值时,降温装置启动,给电池降温。若电池温度继续升高至大于第二预设温度值时,第一温度开关开启从而控制第一可控开关断开,断开充电或放电回路。若第一温度开关出现故障,电池温度继续升高至大于第一预设温度值时,主控制器控制第一可控开关断开,断开充电或放电回路。因此,本高压锂电池包故障的安全管理系统实现了通过三级温度监控机制确保高压锂电池的充、放电安全性。
如图1所示,高压锂电池包故障的安全管理系统还包括电流检测单元1300,用于检测电池包内电池充电或放电回路中的电流。主控制器800还与电流检测单元连接,用于当电池充电或放电回路中的电流大于预设电流值时,控制充电或放电回路断开,从而能够确保高压锂电池充、放电过程中电流不会过高,以确保高压锂电池的充、放电安全性。可选地,电流检测单元1300,可以既连接在充电回路中,又连接在放电回路中,如图1中A位置所示,用于确保高压锂电池充、放电过程中电流不会过高;或者,电流检测单元1300仅连接在放电回路中,如图1所示,仅用于确保高压锂电池放电过程中电流不会过高。
进一步地,如图1所示,充电回路中还设置有二极管2100,与充电器 串联后并联在负载两端,用于防止充电过程中电池对充电器放电。放电回路中还设置有保险丝2000,其熔断电流为40A至80A,用于保护放电电路中的电流不会过大,确保电池放电安全性。
如图1所示,高压锂电池包故障的安全管理系统中第一可控开关的两端还并联有第三可控开关1400和限流电阻1500,第三可控开关的被控开关与限流电阻并联。该系统还包括隔离开关1600,用于接收开启短路检测功能的命令,并控制第三可控开关1400导通或断开。该开启短路检测功能的命令可以是用户通过电池包外的按钮发出的,也可以是其他功能模块发出的,本申请并不对此作限定。第三可控开关1400的控制端与隔离开关1600连接。
在电池给负载供电前,第一可控开关100断开情况下,当需要进行短路检测时,隔离开关接收命令,并控制第三可控开关1400导通。若负载短路,则放电电流流经第三可控开关1400和限流电阻1500形成回路,限流电阻1500使得回路电流不会过大。
此时,电池包内电池组两端的电压主要由限流电阻承担,而负载两端的电压很小。若在负载两端并联电压检测单元则可以根据负载两端的电压判断负载是否短路。
作为本实施例的一种可选实施方式,电池包与负载连接时,负载的两端还并联有灵敏度电阻1700和光耦1800。光耦1700的原边与灵敏度电阻串联;光耦1700的副边的一端连接电源,另一端连接检测电阻1900。若负载短路时,流过光耦1800原边的电流很小,从而主控制800所检测到的检测电阻1900的电压较小;若负载不短路,则不能形成电流回路,电池组两端的电压全部加载在负载两端,因此流过光耦1800原边的电流较大。由此,主控制器800可以通过所检测到的检测电阻1900的电压大小来判断负载是否短路。还可以通过灵敏度电阻1700来调整检测的灵敏度。主控制器800还与检测电阻1900连接,用于当检测电阻1900两端的电压小于预设电压值时控制第一可控开关断开,从而在高压锂电池对负载供电时,若负载短路,系统能够自动断开放电回流,从而确保高压锂电池放电的安全性。
本发明实施例仅以电池组为三个电池串联为例来阐述本发明的技术方案。需要补充说明的是,电池组中的电池个数可以为多个,并不限于三个;且电池的连接方式也不限于串联,还可以是并联,或者是先串联后并联、先并联后串联。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (11)

  1. 一种高压锂电池包故障的安全管理系统,其特征在于,包括:
    第一可控开关,所述第一可控开关的被控开关串联在电池组充电或放电回路中,用于控制电池充电或放电回路连通或断开;
    多个均衡控制板,每个所述均衡控制板包括:
    电压检测单元,用于检测电池两端的电压;
    第一连接开关,多个均衡控制板的第一连接开关串联;串联后的一端连接第一预设电压源,所述第一预设电压源用于控制所述第一可控开关的被控开关导通,串联后的另一端连接所述第一可控开关的控制端;
    控制单元,与所述电压检测单元连接,用于当所述均衡控制板上的电压检测单元检测到电池两端的电压大于第一预设电压时,控制所述均衡控制板上的所述第一连接开关断开。
  2. 根据权利要求1所述的高压锂电池包故障的安全管理系统,其特征在于,还包括至少一个第二可控开关,所述第二可控开关的被控开关串联在电池组充电或放电回路中,用于控制电池充电或放电回路连通或断开;
    相应地,每个所述均衡控制板还包括:
    第二连接开关,多个均衡控制板的第二连接开关串联;串联后的一端连接第二预设电压源,所述第二预设电压源用于控制所述第二可控开关的被控开关导通,串联后的另一端连接所述第二可控开关的控制端;
    所述控制单元,还用于当所述均衡控制板上的电压检测单元检测到电池两端的电压大于第二预设电压时,控制所述均衡控制板上的所述第二连接开关断开。
  3. 根据权利要求1所述的高压锂电池包故障的安全管理系统,其特征在于,还包括:
    主控制器,与多个所述均衡控制板上的所述电压检测单元分别连接,用于当所述电池包内有电池两端的电压达到第三预设电压时,控制充电器停止充电。
  4. 根据权利要求2所述的高压锂电池包故障的安全管理系统,其特征在于,所述第一预设电压小于所述第二预设电压。
  5. 根据权利要求3所述的高压锂电池包故障的安全管理系统,其特征在于,所述第三预设电压小于所述第一预设电压。
  6. 根据权利要求3所述的高压锂电池包故障的安全管理系统,其特征在于,还包括:
    温度检测单元,用于检测电池包内电池的温度;
    所述主控制器还与所述温度检测单元、所述第一可控开关的控制端分别连接,用于当电池包内电池的温度大于第一预设温度值时,控制电池充电或放电回路断开。
  7. 根据权利要求1所述的高压锂电池包故障的安全管理系统,其特征在于,还包括:
    第一温度开关,与所述第一可控开关的控制端连接,用于检测电池包内电池的温度,并且当电池包内电池的温度大于第二预设温度值时,控制电池充电或放电回路断开。
  8. 根据权利要求1所述的高压锂电池包故障的安全管理系统,其特征在于,还包括:
    第二温度开关,用于检测电池包内电池的温度,并且当检测到电池包内电池的温度大于第三预设温度值时,产生控制指令;
    降温装置,用于根据控制指令,给电池包内的电池降温。
  9. 根据权利要求3所述的高压锂电池包故障的安全管理系统,其特征在于,还包括:
    电流检测单元,用于检测电池包内电池充电或放电回路中的电流;
    所述主控制器还与所述电流检测单元连接,用于当电池充电或放电回路中的电流大于预设电流值时,控制所述充电或放电回路断开。
  10. 根据权利要求1所述的高压锂电池包故障的安全管理系统,其特征在于,所述第一可控开关的两端还并联有第三可控开关和限流电阻,所述第三可控开关的被控开关与所述限流电阻并联;
    所述系统还包括隔离开关,用于接收开启短路检测功能的命令,并控制所述第三可控开关导通或断开;所述第三可控开关的控制端与所述隔离开关连接。
  11. 根据权利要求3所述的高压锂电池包故障的安全管理系统,其特征 在于,所述电池包与负载连接时,所述负载的两端还并联有灵敏度电阻和光耦;
    所述光耦的原边与所述灵敏度电阻串联;所述光耦的副边的一端连接电源,另一端连接检测电阻;
    所述主控制器还与所述检测电阻连接,用于当所述检测电阻两端的电压小于预设电压值时控制所述第一可控开关断开。
PCT/CN2016/112056 2016-11-17 2016-12-26 一种高压锂电池包故障的安全管理系统 WO2018090438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611034302.6 2016-11-17
CN201611034302.6A CN106374588B (zh) 2016-11-17 2016-11-17 一种高压锂电池包故障的安全管理系统

Publications (1)

Publication Number Publication Date
WO2018090438A1 true WO2018090438A1 (zh) 2018-05-24

Family

ID=57891132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112056 WO2018090438A1 (zh) 2016-11-17 2016-12-26 一种高压锂电池包故障的安全管理系统

Country Status (2)

Country Link
CN (1) CN106374588B (zh)
WO (1) WO2018090438A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631413A (zh) * 2018-07-04 2018-10-09 樊朝晖 一种基于阻断式ptc的电池保护装置及其方法
CN110535208A (zh) * 2019-09-11 2019-12-03 杭州协能科技股份有限公司 储能设备的主回路控制电路
CN111326806A (zh) * 2020-03-19 2020-06-23 湖北亿纬动力有限公司 一种电池管理系统以及车辆
CN112428873A (zh) * 2020-11-04 2021-03-02 天津恒天新能源汽车研究院有限公司 一种具有加热功能的电动三轮车锂电池管理系统
CN113809812A (zh) * 2020-06-12 2021-12-17 北京小米移动软件有限公司 双电池电路及其控制方法、电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086629A (zh) * 2017-05-23 2017-08-22 苏州盈动力新能源科技有限公司 高压锂电池包充放电控制系统及增程控制方法
CN111555386A (zh) * 2020-04-30 2020-08-18 科华恒盛股份有限公司 一种供电电源产品以及供电电源的电池充电保护电路
CN111697659A (zh) * 2020-06-24 2020-09-22 北京捷莱特技术有限公司 一种电池管理电路
CN112201865A (zh) * 2020-09-28 2021-01-08 山东精工电源科技有限公司 一种基于plc可任意控制充、放电时间且能显示故障原因的自动智能锂电池
CN113258146B (zh) * 2021-03-29 2022-12-30 华为数字能源技术有限公司 一种电池系统、驱动系统及储能集装箱

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347300B2 (ja) * 1999-06-10 2002-11-20 エヌイーシートーキン栃木株式会社 シリーズ接続電池用保護回路及び該保護回路を備えた電池パック並びにバックアップ電源装置
CN101286644A (zh) * 2007-04-13 2008-10-15 富港电子(东莞)有限公司 充电及放电系统
CN101394080A (zh) * 2007-09-21 2009-03-25 深圳市比克电池有限公司 电池组保护装置
CN101752882A (zh) * 2008-11-28 2010-06-23 比亚迪股份有限公司 一种均衡器及均衡充电方法
CN102195327A (zh) * 2010-01-28 2011-09-21 六逸科技股份有限公司 具有自动旁路功能的串联电池系统
CN105978106A (zh) * 2016-07-08 2016-09-28 卓尔悦欧洲控股有限公司 串联电池的均衡充电电路及其装置
CN206226070U (zh) * 2016-11-17 2017-06-06 深圳市盈动力科技有限公司 一种高压锂电池包故障的安全管理系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347300B2 (ja) * 1999-06-10 2002-11-20 エヌイーシートーキン栃木株式会社 シリーズ接続電池用保護回路及び該保護回路を備えた電池パック並びにバックアップ電源装置
CN101286644A (zh) * 2007-04-13 2008-10-15 富港电子(东莞)有限公司 充电及放电系统
CN101394080A (zh) * 2007-09-21 2009-03-25 深圳市比克电池有限公司 电池组保护装置
CN101752882A (zh) * 2008-11-28 2010-06-23 比亚迪股份有限公司 一种均衡器及均衡充电方法
CN102195327A (zh) * 2010-01-28 2011-09-21 六逸科技股份有限公司 具有自动旁路功能的串联电池系统
CN105978106A (zh) * 2016-07-08 2016-09-28 卓尔悦欧洲控股有限公司 串联电池的均衡充电电路及其装置
CN206226070U (zh) * 2016-11-17 2017-06-06 深圳市盈动力科技有限公司 一种高压锂电池包故障的安全管理系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631413A (zh) * 2018-07-04 2018-10-09 樊朝晖 一种基于阻断式ptc的电池保护装置及其方法
CN110535208A (zh) * 2019-09-11 2019-12-03 杭州协能科技股份有限公司 储能设备的主回路控制电路
CN111326806A (zh) * 2020-03-19 2020-06-23 湖北亿纬动力有限公司 一种电池管理系统以及车辆
CN113809812A (zh) * 2020-06-12 2021-12-17 北京小米移动软件有限公司 双电池电路及其控制方法、电子设备
CN112428873A (zh) * 2020-11-04 2021-03-02 天津恒天新能源汽车研究院有限公司 一种具有加热功能的电动三轮车锂电池管理系统

Also Published As

Publication number Publication date
CN106374588A (zh) 2017-02-01
CN106374588B (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
WO2018090438A1 (zh) 一种高压锂电池包故障的安全管理系统
US11522370B2 (en) Equalization circuit, a charging device and an energy storage device
JP5517398B2 (ja) 蓄電システム
CN101145686B (zh) 电动工具
CN108099636B (zh) 一种电池组均衡及保护的装置和方法
KR101696160B1 (ko) 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
US10199844B2 (en) Power-supplying device
TW201722012A (zh) 鋰離子二次電池之保護電路及電池組
JP2007141572A (ja) 電池パック
US9472941B2 (en) Battery module
WO2018019127A1 (zh) 一种大功率便携式电动工具用锂电池包
JP2013230003A (ja) 電源装置、電源装置を備える車両及び蓄電装置並びに組電池の放電方法
CN206226070U (zh) 一种高压锂电池包故障的安全管理系统
WO2021083149A1 (zh) 充电方法和充电系统
US20160049812A1 (en) Battery expansion system having a single route for charging and discharging and battery charging and discharging control method thereof
JP2014143795A (ja) 蓄電池装置および蓄電池システム
AU2008241371B2 (en) Battery management system
KR102586102B1 (ko) 배터리 보호 회로 및 이를 포함하는 배터리 팩
JP6397673B2 (ja) 電源制御装置の制御方法
WO2017191818A1 (ja) 電源装置
JP2015173568A (ja) 電池保護回路および電池パック
KR20160076825A (ko) 돌입전류 방지 및 배터리 고장 진단이 가능한 배터리 충전 방법
US20220094178A1 (en) Battery pack and electric device system
JP2020058124A (ja) バッテリパック
WO2020020378A1 (zh) 充电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16921728

Country of ref document: EP

Kind code of ref document: A1