WO2018019127A1 - 一种大功率便携式电动工具用锂电池包 - Google Patents

一种大功率便携式电动工具用锂电池包 Download PDF

Info

Publication number
WO2018019127A1
WO2018019127A1 PCT/CN2017/092611 CN2017092611W WO2018019127A1 WO 2018019127 A1 WO2018019127 A1 WO 2018019127A1 CN 2017092611 W CN2017092611 W CN 2017092611W WO 2018019127 A1 WO2018019127 A1 WO 2018019127A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium battery
battery pack
voltage
controller
circuit
Prior art date
Application number
PCT/CN2017/092611
Other languages
English (en)
French (fr)
Inventor
佟天野
Original Assignee
苏州绿恺动力电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州绿恺动力电子科技有限公司 filed Critical 苏州绿恺动力电子科技有限公司
Publication of WO2018019127A1 publication Critical patent/WO2018019127A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits

Definitions

  • the present invention relates to the field of application of lithium battery technology, and particularly relates to a lithium battery pack for high-power portable electric tools, which is particularly suitable for use as a power supply for electric welding machines, cutting machines, AC mobile power sources and small electric vehicles, and can be directly used as a DC power supply. .
  • the prior art proposes a design scheme of a high voltage lithium battery pack + a power device.
  • the prior art charges the high-voltage lithium battery pack into a plurality of sub-lithium battery packs connected in series, which are called multiple sets of parallel charging. Since each sub-battery group is separately charged, the charging current and the voltage are inconsistent between the respective sub-battery groups, so that the charging speed of each self-battery group is inconsistent and the charging voltage is inconsistent, thereby causing the entire high-voltage lithium battery pack.
  • the imbalance is more serious, which shortens the life of the battery pack and reduces the safety of the high-voltage lithium battery pack.
  • the main purpose of the present application is to provide a lithium battery pack for a high-power portable power tool to improve the safety of a lithium battery pack for a high-power portable power tool.
  • the present application provides a lithium battery pack for a high-power portable power tool, including a battery management system, a high-voltage lithium battery pack, and a discharge protection device;
  • the input end of the battery management system is connected to a DC power source, and the positive and negative poles of the output end of the battery management system are connected to the positive and negative poles of the high voltage lithium battery pack;
  • An input end of the discharge protection device is connected to an output end of the high voltage lithium battery pack, and the discharge protection device The output is used as the power output of the lithium battery pack.
  • the positive and negative terminals of the output end of the battery management system are respectively connected to the positive and negative poles of each series of lithium batteries in the high-voltage lithium battery pack.
  • the battery management system includes a charge/discharge control circuit and a passive equalization system coupled thereto;
  • the input end of the charge/discharge control circuit is connected to the DC power source, and the positive and negative terminals of the output end of the charge/discharge control circuit are connected to the positive and negative poles of the high-voltage lithium battery pack;
  • the passive equalization system includes a plurality of sets of passive equalization circuits connected in series; each set of passive equalization circuits is connected to a corresponding sub-lithium battery pack of the high-voltage lithium battery pack for monitoring and equalizing each string of the corresponding sub-lithium battery packs; The voltage of the lithium battery.
  • the charge/discharge control circuit includes a PTC thermistor, a third controllable switch, a DC boost circuit, a second controllable switch, a temperature monitoring circuit, a discharge detecting circuit, and a first control.
  • the PTC thermistor is configured to provide a primary protection function of overcurrent and overtemperature during charging; a first end of the PTC thermistor is used to connect a positive pole of the DC power source, and a PTC thermistor The two ends are connected to the anode of the input end of the DC boost circuit;
  • the third controllable switch is configured to provide a secondary protection function when the charging is abnormal; the first end of the third controllable switch is configured to connect a negative pole of the DC power source, and the second end of the third controllable switch Connecting a negative terminal of the input end of the DC boosting circuit; the control end of the third controllable switch is connected to the first controller, and is configured to receive a control signal sent by the first controller, to turn on or off the a DC power source supplies power to the DC boost circuit;
  • the anode of the output end of the DC boost circuit is connected to the anode of the high voltage lithium battery, and the anode of the DC boost circuit is connected to the first end of the second controllable switch;
  • the second controllable switch is configured to provide a three-level protection function during charging; the second end of the second controllable switch is connected to the negative pole of the high-voltage lithium battery pack, and the control end of the second controllable switch is connected An output end of the passive equalization system is configured to turn on or off an output end of the DC boost circuit to supply power to the high voltage lithium battery pack;
  • An output end of the temperature monitoring circuit is connected to an input end of the first controller, configured to monitor temperature data of the high voltage lithium battery pack, and output the same to the first controller, by the first control Perform analysis and processing, and perform corresponding actions;
  • An output end of the discharge detecting circuit is connected to an input end of the first controller, and is configured to detect a current and a voltage when the high-voltage lithium battery pack is discharged, and output the same to the first controller,
  • the first controller performs analysis processing and performs corresponding actions;
  • the first controller includes a first communication interface connected to the passive equalization circuit, configured to acquire a voltage of the high voltage lithium battery pack collected by the passive equalization circuit;
  • the first controller includes a second communication interface for data communication with an external control system of the lithium battery pack.
  • each of the passive equalization circuits of the passive equalization system includes a voltage monitoring circuit, a second controller, and a plurality of sets of resistance energy consuming circuits;
  • the input end of the voltage monitoring circuit is connected to the positive pole and the negative pole of each string of lithium batteries in the corresponding lithium battery pack through a corresponding RC filter for monitoring the voltage of each string of lithium batteries; the output end of the voltage monitoring circuit Connected to the second controller for outputting a voltage of each string of lithium batteries;
  • the output end of the voltage monitoring circuit is further connected to the control end of the second controllable switch for controlling to turn the second controllable switch on or off;
  • the output end of the second controller is sequentially connected to the input end of the resistor consuming circuit, and is configured to control each group of the resistor consuming circuit to be turned on according to the voltage of each string of lithium batteries received at the input end shut down;
  • the second controller is connected to the first controller for implementing data transmission.
  • each of the resistor consuming circuits includes a first resistor, an optocoupler, a second resistor, a third resistor, and a triode;
  • Two ends of the first resistor are respectively connected to an anode of the optocoupler and an output end of the second controller, and a cathode of the optocoupler is grounded;
  • the collector of the optocoupler is connected to the anode of a string of lithium batteries in the sub-lithium battery, and the emitter of the optocoupler is connected to the base of the triode;
  • a first end of the second resistor is connected to a base of the triode, and a second end is connected to a cathode of a string of lithium batteries in the sub-lithium battery;
  • a first end of the third resistor is connected to a positive pole of a string of lithium batteries in the sub-lithium battery, and a second end is connected to a collector of the triode;
  • the emitter of the triode is connected to the cathode of a string of lithium batteries in the sub-lithium battery.
  • the discharge protection device includes an overcurrent protector and a first controllable switch
  • the first end of the overcurrent protector is connected to the positive pole of the high voltage lithium battery pack, and the second end of the overcurrent protector is the positive pole of the output end of the lithium battery pack;
  • the first end of the first controllable switch is connected to the negative pole of the high-voltage lithium battery pack, and the second end of the first controllable switch is a negative pole of the output end of the lithium battery pack, and the control end of the first controllable switch is connected
  • the output of the first controller is configured to receive a control signal sent by the first controller to turn on or off a negative pole of the high voltage lithium battery pack.
  • the overcurrent protection is a fuse or a PTC thermistor.
  • the DC boost circuit includes a full bridge DC/DC boost circuit.
  • the voltage range of the high voltage lithium battery pack is DC90V-DC273V.
  • the lithium battery pack of the present application can boost the input DC power supply to a voltage suitable for charging the entire high-voltage lithium battery pack, and then perform overall series charging on the high-voltage lithium battery pack.
  • the applied lithium battery pack achieves the consistency of charging current and voltage, reduces the pressure of the balanced high-voltage lithium battery pack, and improves the safety of the lithium battery pack for high-power portable power tools.
  • the present application avoids the problem that the prior art needs to convert the input voltage into multiple sets of voltages and separately control each sub-lithium battery pack, resulting in a complicated hardware circuit, high cost, and large volume.
  • FIG. 1 is a structural block diagram of a preferred embodiment of a lithium battery pack for a high-power portable power tool according to an embodiment of the present application
  • FIG. 2 is a block diagram showing the structure of the battery management system of Figure 1;
  • FIG. 3 is a block diagram showing the structure of the charge/discharge control circuit of Figure 2;
  • FIG. 4 is a structural block diagram of the passive equalization circuit of FIG. 2;
  • FIG. 5 is a block diagram showing the structure of the discharge protection device of Figure 1.
  • a lithium battery pack for a high-power portable power tool may include a battery management system, a high-voltage lithium battery pack, and a discharge protection device.
  • the battery management system collects various types of information (such as voltage, current, temperature, residual capacity, etc.) of the high-voltage lithium battery pack, and comprehensively manages and controls the charging and discharging processes of the high-voltage lithium battery pack to ensure that the high-voltage lithium battery pack is in a safe environment.
  • the discharge protection device constitutes the discharge protection of the high-voltage lithium battery pack and is controlled by the battery management system.
  • the input end of the battery management system is connected to a DC power source, and the positive and negative poles of the output end of the battery management system are connected to the positive and negative poles of the high-voltage lithium battery pack;
  • the DC power source may be a low-voltage DC power source. Its
  • the output voltage can be, for example, DC12V-DC42V.
  • the positive and negative poles of the output end of the battery management system are respectively connected to the positive and negative poles of each series of lithium batteries in the high-voltage lithium battery pack.
  • An input end of the discharge protection device is connected to an output end of the high voltage lithium battery pack, and an output end of the discharge protection device is used as a power output end of the lithium battery pack.
  • the high-voltage lithium battery pack can be composed of a plurality of single-cell lithium batteries by string and parallel combination to form a multi-string and multi-lithium lithium battery pack, and the post-voltage range can be formed, and can be DC90V-DC273V as needed.
  • the battery management system can include a charge/discharge control circuit and a passive equalization system coupled thereto.
  • the input end of the charge/discharge control circuit is connected to a DC power source; the output terminal of the charge/discharge control circuit is positively connected to the positive pole of the high voltage lithium battery pack, and the output terminal of the charge/discharge control circuit is connected to the negative pole The negative electrode of the high voltage lithium battery pack.
  • the passive equalization system may include a plurality of sets of passive equalization circuits connected in series; each set of passive equalization circuits is connected to a corresponding sub-lithium battery pack of the high-voltage lithium battery pack for monitoring and equalizing each of the corresponding sub-lithium battery packs The voltage of a string of lithium batteries.
  • the charge/discharge control circuit may include a PTC thermistor (ie, a positive temperature coefficient thermistor), a third controllable switch, and a DC boost circuit (the DC rise described in the exemplary embodiment).
  • the voltage circuit can be a full bridge DC/DC boost circuit), a second controllable switch, a temperature monitoring circuit, a discharge detection circuit, and a first controller.
  • the PTC thermistor is used to provide a primary protection function of overcurrent and overtemperature during charging; the first end of the PTC thermistor is used to connect the positive pole of the DC power source, and the second end of the PTC thermistor Connect the positive terminal of the input of the full bridge DC/DC boost circuit.
  • the third controllable switch is configured to provide a secondary protection function when the charging is abnormal; the first end of the third controllable switch is used to connect the negative pole of the DC power source, and the second end of the third controllable switch is connected to the second end a negative terminal of the input end of the full-bridge DC/DC boosting circuit; the control end of the third controllable switch is connected to the first controller for receiving a control signal sent by the first controller, turning on or off The DC power source supplies power to the full bridge DC/DC boost circuit.
  • An output terminal of the full-bridge DC/DC boost circuit is positively connected to a positive pole of the high-voltage lithium battery pack, and an output terminal of the full-bridge DC/DC boost circuit is connected to a first end of the second controllable switch.
  • the full-bridge DC/DC boosting circuit charges the high-voltage lithium battery pack in series, which can ensure the charging current and duration of the lithium battery pack are consistent, the voltage is balanced, and the battery life is greatly extended.
  • the full-bridge DC/DC boost circuit can also collect charging voltage, current, and other parameters of the high-voltage lithium battery pack, and feed back these parameters to the first controller, and the first controller can Choose the right parameters Charging mode, such as constant current, constant voltage, constant power charging mode.
  • the second controllable switch is configured to provide a three-level protection function during charging; the second end of the second controllable switch is connected to the negative pole of the high-voltage lithium battery pack, and the control end of the second controllable switch is connected
  • An output of the passive equalization system is configured to turn on or off an output end of the full-bridge DC/DC boost circuit to supply power to the high-voltage lithium battery pack.
  • An output end of the temperature monitoring circuit is connected to an input end of the first controller, configured to monitor temperature data of the high voltage lithium battery pack, and output the same to the first controller, by the first control
  • the device performs analysis processing and performs corresponding actions.
  • An output end of the discharge detecting circuit is connected to an input end of the first controller, and is configured to detect current, voltage, and the like information when the high-voltage lithium battery pack is discharged, and output the same to the first controller,
  • the first controller performs an analysis process and performs a corresponding action.
  • the first controller includes at least two sets of serial communication ports, which are respectively connected to the passive equalization circuit, and are used for acquiring information such as voltages of the high-voltage lithium battery packs collected by the passive equalization circuit for comprehensive data analysis. ,management;
  • the first controller further includes a serial port communication port 0, which is led out at a suitable position of the lithium battery pack for data communication with a control system other than the lithium battery pack or the lithium battery pack.
  • each of the passive equalization circuits of the passive equalization system may include a voltage monitoring circuit, a second controller, and a plurality of sets of resistance consuming circuits.
  • the input end of the voltage monitoring circuit is connected to the positive pole and the negative pole of each string of lithium batteries in the corresponding lithium battery pack through a corresponding RC filter for monitoring the voltage of each string of lithium batteries; the output end of the voltage monitoring circuit Connected to the second controller for outputting the voltage of each string of lithium batteries.
  • the output of the voltage monitoring circuit is further connected to the control end of the second controllable switch for controlling the second controllable switch to be turned on or off.
  • the output ends (OPJ1-OPJ13) of the second controller are sequentially connected to the input end of the resistance consuming circuit, and are configured to control each group according to the voltage information of each string of lithium batteries received at the input end.
  • the resistor consuming circuit is turned on or off.
  • the second controller further includes a serial port communication port 1 and is connected to the first group of serial port communication 1 port of the first controller for data transmission.
  • Each set of the resistor consuming circuits includes a first resistor (RJ), an optocoupler (OC), a second resistor (RB), a third resistor (RD), and a triode (BJT).
  • RJ first resistor
  • OC optocoupler
  • RB second resistor
  • RD third resistor
  • BJT triode
  • Two ends of the first resistor (RJ) are respectively connected to an anode of the optocoupler (OC) and one of the second controller At the output, the cathode of the optocoupler (OC) is grounded.
  • the collector of the optocoupler (OC) is connected to the anode of a string of lithium batteries in the sub-lithium battery, and the emitter of the optocoupler (OC) is connected to the base of the triode (BJT).
  • the first end of the second resistor (RB) is connected to the base of the triode (BJT), and the second end is connected to the negative pole of a string of lithium batteries in the sub-lithium battery.
  • the first end of the third resistor (RD) is connected to the anode of a string of lithium batteries in the sub-lithium battery, and the second end is connected to the collector of the triode (BJT).
  • the triode (BJT) emitter is connected to a cathode of a string of lithium batteries in the sub-lithium battery.
  • the discharge protection device can include an overcurrent protector and a first controllable switch.
  • the first end of the overcurrent protector is connected to the positive pole of the high voltage lithium battery pack, and the second end of the overcurrent protector is a positive pole of the output end of the lithium battery pack; preferably, the overcurrent protector is a fuse or PTC thermistor, etc.
  • the first end of the first controllable switch is connected to the negative pole of the high-voltage lithium battery pack, the second end of the first controllable switch is the negative pole of the output end of the lithium battery pack; and the control end of the first controllable switch
  • the output of the first controller is connected to receive a control signal sent by the first controller to turn on or off the negative pole of the high voltage lithium battery pack.
  • the power management system When the power management system recognizes that the charger is plugged in, it detects the charging input voltage. If it is not within the specified allowable input voltage (such as DC12V-DC42V), charging is prohibited. Within this range, the first controller controls the closing. The three controllable switches, and then the DC boost circuit begins to work. During the charging process, the voltage monitoring circuit located in the passive equalization circuit monitors the voltage of each string of battery packs in real time. If the set full voltage is not reached, the second controllable switch is closed to charge the high voltage lithium battery pack. During charging, the first controller also detects the charging current, and once an overcurrent occurs, the third controllable switch is turned off.
  • the specified allowable input voltage such as DC12V-DC42V
  • Discharge principle When the first controller receives the discharge signal (such as the switch and the button trigger signal), the first controllable switch is closed, the high-voltage lithium battery pack can be discharged externally, and the discharge detection circuit collects the discharge voltage, current, etc. in real time. The parameter, once the allowed discharge condition is exceeded, immediately disconnects the first controllable switch and stops the discharge.
  • the discharge signal such as the switch and the button trigger signal
  • the lithium battery pack for high-power portable electric tools can be directly used as the DC power supply, which has the advantages of small size, light weight, high power, low cost and convenient carrying;
  • the lithium battery pack for high-power portable electric tools of the present invention is a lithium battery pack in which a plurality of single-cell lithium batteries are combined in series and parallel to form a multi-string and multi-group lithium battery pack, which has strong expandability and wide application range; Electric welder, cutting machine, AC power supply and power supply for small electric vehicles;
  • the high voltage lithium battery pack adopts a full bridge DC/DC boost circuit for high voltage series charging, and has the advantages of simple circuit, low cost, easy wiring, high production efficiency, and the like compared with the existing low voltage packet charging scheme;
  • the full-bridge DC/DC boosting circuit of the invention can ensure the charging current and duration of the lithium battery pack are consistent, avoiding the safety hazard caused by the battery imbalance caused by the charging, and greatly prolonging the battery life;
  • the discharge protection device of the invention has a two-stage protection function of controllable switch and overcurrent protection, which further improves the safety and reliability of the lithium battery during discharge, and significantly reduces the risk level.
  • the lithium battery pack for a high-power portable electric tool of the present invention is a high-voltage lithium battery pack in which a plurality of single-cell lithium batteries are combined in series and in parallel, and has high expandability and application range.
  • the bridge DC/DC boost circuit can ensure the charging current and duration of the lithium battery pack are consistent, avoiding the safety hazard caused by the battery imbalance caused by charging, and greatly prolonging the battery life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种大功率便携式电动工具用锂电池包,其包括电池管理系统、高压锂电池组和放电保护装置;所述电池管理系统的输入端用于与直流电源连接,所述电池管理系统的输出端的正、负极与所述高压锂电池组的正、负极对应连接;所述放电保护装置的输入端与所述高压锂电池组的输出端连接,所述放电保护装置的输出端用作所述锂电池包的电源输出端。该方案可以提高大功率便携式电动工具用锂电池包的安全性,降低其成本、体积和电路冗杂性。

Description

一种大功率便携式电动工具用锂电池包
本申请要求2016年07月25日递交的申请号为201610585427.1、发明名称为“一种大功率便携式电动工具用锂电池包”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锂电池技术应用领域,尤其涉及一种大功率便携式电动工具用锂电池包,特别适合用作电焊机、切割机、交流移动电源以及小型电动汽车的供电电源,可直接作为直流供电电源。
背景技术
传统用电设备在野外、停电等情况下使用非常不便,尤其在应急、抢修、抢险等场所使用的电焊机、切割机、交流移动电源等用电设备,通常需要搬运燃油发电机或驾驶移动电力车等大型发电设备来供应电源。此类方法不仅耗费大量人力物力,而且在一些无铺装道路的地方行进缓慢甚至无法前行,延误时间,造成生命财产损失。
为解决上述技术问题,现有技术提出了一种高压锂电池包+用电设备的设计方案。然而,在充电时,现有技术将高压锂电池包组分成多个串联的子锂电池组进行分别充电,称之为多组并联式充电。由于各个子电池组分别单独充电,各个子电池组之间容易出现充电电流及电压不一致,从而出现各个自电池组间充电快慢不一致、充电电压高低不一致的问题,由此导致整个高压锂电池包的不均衡现象比较严重,从而缩短了电池组的使用寿命,降低了高压锂电池包的安全性。
发明内容
本申请的主要目的在于提供一种大功率便携式电动工具用锂电池包,以提高大功率便携式电动工具用锂电池包的安全性。
为达到上述目的,本申请提供了一种大功率便携式电动工具用锂电池包,包括电池管理系统、高压锂电池组和放电保护装置;
所述电池管理系统的输入端用于与直流电源连接,所述电池管理系统的输出端的正、负极与所述高压锂电池组的正、负极对应连接;
所述放电保护装置的输入端与所述高压锂电池组的输出端连接,所述放电保护装置 的输出端用作所述锂电池包的电源输出端。
在本申请一个较佳实施例中,所述电池管理系统的输出端的正、负极分别与所述高压锂电池组中每串锂电池的正、负极对应连接。
在本申请一个较佳实施例中,所述电池管理系统包括充/放电控制电路和与其相连的被动均衡系统;
所述充/放电控制电路的输入端用于与所述直流电源连接,所述充/放电控制电路的输出端的正、负极与所述高压锂电池组的正、负极对应连接;
所述被动均衡系统包括若干组依次串接的被动均衡电路;每组被动均衡电路与所述高压锂电池组中对应的子锂电池组连接,用于监测、均衡对应子锂电池组中每串锂电池的电压。
在本申请一个较佳实施例中所述充/放电控制电路包括PTC热敏电阻、第三可控开关、直流升压电路、第二可控开关、温度监测电路、放电检测电路和第一控制器;
所述PTC热敏电阻用于提供充电时过流、过温的一级保护功能;所述PTC热敏电阻的第一端用于连接所述直流电源的正极,所述PTC热敏电阻的第二端连接所述直流升压电路输入端的正极;
所述第三可控开关用于充电异常时提供二级保护功能;所述第三可控开关的第一端用于连接所述直流电源的负极,所述第三可控开关的第二端连接所述直流升压电路输入端的负极;所述第三可控开关的控制端连接所述第一控制器,用于接收所述第一控制器发出的控制信号,接通或断开所述直流电源向所述直流升压电路供电;
所述直流升压电路的输出端的正极连接所述高压锂电池组的正极,所述直流升压电路的输出端负极连接所述第二可控开关的第一端;
所述第二可控开关用于提供充电时的三级保护功能;所述第二可控开关的第二端连接所述高压锂电池组的负极,所述第二可控开关的控制端连接所述被动均衡系统的输出端,用于接通或断开所述直流升压电路的输出端向所述高压锂电池组供电;
所述温度监测电路的输出端连接所述第一控制器的输入端,用于监测所述高压锂电池组的温度数据,并将其输出至所述第一控制器,由所述第一控制器进行分析处理,执行相应动作;
所述放电检测电路的输出端连接所述第一控制器的输入端,用于检测所述高压锂电池组放电时的电流、电压,并将其输出至所述第一控制器,由所述第一控制器进行分析处理,执行相应动作;
所述第一控制器包括与所述被动均衡电路连接的第一通信接口,用于获取所述被动均衡电路采集的所述高压锂电池组的电压;
所述第一控制器包括第二通信接口,用于与锂电池包的外部控制系统进行数据通信。
在本申请一个较佳实施例中,所述被动均衡系统的每一组所述被动均衡电路包括电压监测电路、第二控制器和多组电阻耗能电路;
所述电压监测电路的输入端经过对应的RC滤波器连接对应子锂电池组中每一串锂电池的正极和负极,用于监测每一串锂电池的电压;所述电压监测电路的输出端与所述第二控制器连接,用于输出每一串锂电池的电压;
所述电压监测电路的输出端还连接所述第二可控开关的控制端,用于控制接通或关断所述第二可控开关;
所述第二控制器的输出端依次与所述电阻耗能电路的输入端连接,用于根据输入端接收到的每一串锂电池的电压,控制每一组所述电阻耗能电路打开或关闭;
所述第二控制器与所述第一控制器连接,用于实现数据传输。
在本申请一个较佳实施例中,每一组所述电阻耗能电路均包括第一电阻、光耦、第二电阻、第三电阻和三极管;
所述第一电阻的两端分别连接所述光耦的阳极和所述第二控制器的一个输出端,所述光耦的阴极接地;
所述光耦的集电极连接所述子锂电池组中一串锂电池的正极,所述光耦的发射极连接所述三极管的基极;
所述第二电阻的第一端连接所述三极管的基极,第二端连接所述子锂电池组中一串锂电池的负极;
所述第三电阻的第一端连接所述子锂电池组中一串锂电池的正极,第二端连接所述三极管的集电极;
所述三极管的发射极连接所述子锂电池组中一串锂电池的负极。
在本申请一个较佳实施例中,所述放电保护装置包括过流保护器和第一可控开关;
所述过流保护器的第一端连接所述高压锂电池组的正极,所述过流保护器的第二端为锂电池包输出端的正极;
所述第一可控开关的第一端连接所述高压锂电池组的负极,第一可控开关的第二端为锂电池包输出端的负极,所述第一可控开关的控制端连接所述第一控制器的输出端,用于接收所述第一控制器发出的控制信号,接通或断开所述高压锂电池组的负极。
在本申请一个较佳实施例中,所述过流保护为保险丝或PTC热敏电阻。
在本申请一个较佳实施例中,所述直流升压电路包括全桥DC/DC升压电路。
在本申请一个较佳实施例中,所述高压锂电池组的电压范围为DC90V-DC273V。
由以上本申请提供的技术方案可见,本申请的锂电池包可将输入的直流电源升压至适合整个高压锂电池组充电的电压,然后对高压锂电池组进行整体串联式充电,因此,本申请的锂电池包实现了充电电流、电压的一致性,降低了均衡高压锂电池组的压力,提高了大功率便携式电动工具用锂电池包的安全性。此外,本申请避免了现有技术需要将输入电压转换成多组电压并要对每一个子锂电池组分别控制,而导致硬件电路冗杂、成本高、体积大的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本申请实施例的一种大功率便携式电动工具用锂电池包的一较佳实施例的结构框图;
图2是图1中电池管理系统的结构框图;
图3是图2中充/放电控制电路的结构框图;
图4是图2中被动均衡电路的结构框图;
图5是图1中放电保护装置的结构框图。
具体实施方式
如图1所示,本申请实施例的一种大功率便携式电动工具用锂电池包,可以包括电池管理系统、高压锂电池组和放电保护装置。电池管理系统收集高压锂电池组的各类信息(例如电压、电流、温度、剩余容量等,并对高压锂电池组的充电和放电过程进行综合管理与控制,保证高压锂电池组在安全环境下工作使用,放电保护装置构成高压锂电池组的放电保护,受控于电池管理系统。
所述电池管理系统的输入端用于与直流电源连接,所述电池管理系统的输出端的正、负极与所述高压锂电池组的正、负极对应连接;所述直流电源可以是低压直流电源,其 输出电压例如可以为DC12V-DC42V。所述电池管理系统的输出端的正、负极分别与所述高压锂电池组中每串锂电池的正、负极对应连接。
所述放电保护装置的输入端与所述高压锂电池组的输出端连接,所述放电保护装置的输出端用作所述锂电池包的电源输出端。
所述高压锂电池组可以由若干单节锂电池通过串、并联组合而成多串多并的锂电池组,组成后电压范围,根据需要可以为DC90V-DC273V。
结合图2所示,所述电池管理系统可以包括充/放电控制电路和与其相连的被动均衡系统。
所述充/放电控制电路的输入端用于与直流电源连接;所述充/放电控制电路的输出端正极连接所述高压锂电池组的正极,所述充/放电控制电路的输出端负极连接所述高压锂电池组的负极。
所述被动均衡系统可以包括若干组依次串接的被动均衡电路;每组被动均衡电路与所述高压锂电池组中对应的子锂电池组连接,用于监测、均衡对应子锂电池组中每串锂电池的电压。
结合图3所示,所述充/放电控制电路可以包括PTC热敏电阻(即正温度系数热敏电阻)、第三可控开关、直流升压电路(本示例性实施例中所述直流升压电路可以为全桥DC/DC升压电路)、第二可控开关、温度监测电路、放电检测电路和第一控制器。
所述PTC热敏电阻用于提供充电时过流、过温的一级保护功能;所述PTC热敏电阻的第一端用于连接直流电源的正极,所述PTC热敏电阻的第二端连接所述全桥DC/DC升压电路输入端的正极。
所述第三可控开关用于充电异常时提供二级保护功能;所述第三可控开关的第一端用于连接直流电源的负极,所述第三可控开关的第二端连接所述全桥DC/DC升压电路输入端的负极;所述第三可控开关的控制端连接所述第一控制器,用于接收所述第一控制器发出的控制信号,接通或断开所述直流电源向所述全桥DC/DC升压电路供电。
所述全桥DC/DC升压电路的输出端正极连接所述高压锂电池组的正极,所述全桥DC/DC升压电路的输出端负极连接所述第二可控开关第一端。所述全桥DC/DC升压电路对所述高压锂电池组整体串联充电,能够保证锂电池组的充电电流、时长一致,电压均衡,大大延长电池使用寿命。
此外,所述全桥DC/DC升压电路还可以采集高压锂电池组的充电电压、电流、等参数,并将这些参数反馈至所述第一控制器,所述第一控制器可根据这些参数选择合适的 充电模式,如恒流、恒压、恒功率充电模式。所述第二可控开关用于提供充电时的三级保护功能;所述第二可控开关的第二端连接所述高压锂电池组的负极,所述第二可控开关的控制端连接所述被动均衡系统的输出端,用于接通或断开所述全桥DC/DC升压电路的输出端向所述高压锂电池组供电。
所述温度监测电路的输出端连接所述第一控制器的输入端,用于监测所述高压锂电池组的温度数据,并将其输出至所述第一控制器,由所述第一控制器进行分析处理,执行相应动作。
所述放电检测电路的输出端连接所述第一控制器的输入端,用于检测所述高压锂电池组放电时的电流、电压等信息,并将其输出至所述第一控制器,由所述第一控制器进行分析处理,执行相应动作。
所述第一控制器包括至少2组串口通信1端口,分别和所述被动均衡电路连接,用于获取所述被动均衡电路采集的所述高压锂电池组的电压等信息,以进行综合数据分析、管理;
所述第一控制器还包括串口通信0端口,在锂电池包的合适位置引出此端口,用于与锂电池包或锂电池包之外的控制系统进行数据通信。
结合图4所示,所述被动均衡系统的每一组所述被动均衡电路可以包括电压监测电路、第二控制器和多组电阻耗能电路。
所述电压监测电路的输入端经过对应的RC滤波器连接对应子锂电池组中每一串锂电池的正极和负极,用于监测每一串锂电池的电压;所述电压监测电路的输出端与所述第二控制器连接,用于输出每一串锂电池的电压。
所述电压监测电路的输出端还连接所述第二可控开关的控制端,用于控制接通或关断所述第二可控开关。
所述第二控制器的输出端(OPJ1-OPJ13)依次与所述电阻耗能电路的输入端连接,用于根据输入端接收到的每一串锂电池的电压信息,控制每一组所述电阻耗能电路打开或关闭。
所述第二控制器还包括串口通信1端口,与所述第一控制器的1组串口通信1端口连接,用于数据传输。
每一组所述电阻耗能电路均包括第一电阻(RJ)、光耦(OC)、第二电阻(RB)、第三电阻(RD)和三极管(BJT)。
所述第一电阻(RJ)的两端分别连接所述光耦(OC)的阳极和所述第二控制器的一 个输出端,所述光耦(OC)的阴极接地。
所述光耦(OC)的集电极连接所述子锂电池组中一串锂电池的正极,所述光耦(OC)的发射极连接所述三极管(BJT)的基极。
所述第二电阻(RB)的第一端连接所述三极管(BJT)的基极,第二端连接所述子锂电池组中一串锂电池的负极。
所述第三电阻(RD)的第一端连接所述子锂电池组中一串锂电池的正极,第二端连接所述三极管(BJT)的集电极。
所述三极管(BJT)发射极连接所述子锂电池组中一串锂电池的负极。
结合图5所示,所述放电保护装置可以包括过流保护器和第一可控开关。
所述过流保护器的第一端连接所述高压锂电池组的正极,所述过流保护器的第二端为锂电池包输出端的正极;优选地,所述过流保护器为保险丝或PTC热敏电阻等。
所述第一可控开关的第一端连接所述高压锂电池组的负极,所述第一可控开关的第二端为锂电池包输出端的负极;所述第一可控开关的控制端连接第一控制器的输出端,用于接收所述第一控制器发出的控制信号,接通或断开所述高压锂电池组的负极。
为便于理解本申请,下介绍本申请实施例的大功率便携式电动工具用锂电池包的充放电工作原理:
充电原理:电源管理系统识别到充电器插入时,检测充电输入电压,若不在指定的允许输入电压(例如DC12V-DC42V)范围内,则禁止充电;在此范围内,第一控制器控制闭合第三可控开关,进而直流升压电路开始工作。在充电过程中,位于被动均衡电路中的电压监测电路实时监测每一串电池组的电压,若未达到设定的满电电压,则控制闭合第二可控开关,为高压锂电池组充电。在充电过程中,第一控制器还检测充电电流,一旦发生过流,则断开第三可控开关。
放电原理:第一控制器收到放电信号(如开关、按键触发的信号)时,控制第一可控开关闭合,高压锂电池组可对外放电,同时放电检测电路实时采集放电的电压、电流等参数,一旦超出允许的放电条件,立即断开第一可控开关,停止放电。
与现有技术方案相比,本发明技术方案具有下述明显优点:
1、大功率便携式电动工具用锂电池包可直接作为直流供电电源,具有体积小、重量轻、功率大,成本低、方便携带等优点;
2、本发明一种大功率便携式电动工具用锂电池包是将若干单节锂电池通过串、并联组合而成多串多并的锂电池组,扩展性强、应用范围广;特别适合用作电焊机、切割机、 交流移动电源以及小型电动汽车的供电电源;
3、本发明对高压锂电池组采用全桥DC/DC升压电路进行高压串联充电,与现有的低压分组充电方案相比,具有电路简单、成本低、接线容易、生产效率高等优点;同时本发明全桥DC/DC升压电路能够保证锂电池组的充电电流、时长一致,避免由充电导致电池不均衡带来的安全隐患,大大延长电池使用寿命;
4、本发明放电保护装置具有可控开关和过流保护的两级保护功能,进一步提升了锂电池放电时的安全性与可靠性,显著降低了风险等级。
综上所述,本发明的一种大功率便携式电动工具用锂电池包,是将若干单节锂电池通过串、并联组合而成多串多并的高压锂电池组,扩展性强、应用范围广,特别适合用作电焊机、切割机、交流移动电源以及小型电动汽车的供电电源,可直接作为直流供电电源,具有体积小、重量轻、功率大,成本低、方便携带等优点,同时全桥DC/DC升压电路能够保证锂电池组的充电电流、时长一致,避免由充电导致电池不均衡带来的安全隐患,大大延长电池使用寿命。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种大功率便携式电动工具用锂电池包,其特征在于,包括电池管理系统、高压锂电池组和放电保护装置;
    所述电池管理系统的输入端用于与直流电源连接,所述电池管理系统的输出端的正、负极与所述高压锂电池组的正、负极对应连接;
    所述放电保护装置的输入端与所述高压锂电池组的输出端连接,所述放电保护装置的输出端用作所述锂电池包的电源输出端。
  2. 根据权利要求1所述的大功率便携式电动工具用锂电池包,其特征在于,所述电池管理系统的输出端的正、负极分别与所述高压锂电池组中每串锂电池的正、负极对应连接。
  3. 根据权利要求2所述的大功率便携式电动工具用锂电池包,其特征在于,所述电池管理系统包括充/放电控制电路和与其相连的被动均衡系统;
    所述充/放电控制电路的输入端用于与所述直流电源连接,所述充/放电控制电路的输出端的正、负极与所述高压锂电池组的正、负极对应连接;
    所述被动均衡系统包括若干组依次串接的被动均衡电路;每组被动均衡电路与所述高压锂电池组中对应的子锂电池组连接,用于监测、均衡对应子锂电池组中每串锂电池的电压。
  4. 根据权利要求3所述的大功率便携式电动工具用锂电池包,其特征在于,所述充/放电控制电路包括PTC热敏电阻、第三可控开关、直流升压电路、第二可控开关、温度监测电路、放电检测电路和第一控制器;
    所述PTC热敏电阻用于提供充电时过流、过温的一级保护功能;所述PTC热敏电阻的第一端用于连接所述直流电源的正极,所述PTC热敏电阻的第二端连接所述直流升压电路输入端的正极;
    所述第三可控开关用于充电异常时提供二级保护功能;所述第三可控开关的第一端用于连接所述直流电源的负极,所述第三可控开关的第二端连接所述直流升压电路输入端的负极;所述第三可控开关的控制端连接所述第一控制器,用于接收所述第一控制器发出的控制信号,接通或断开所述直流电源向所述直流升压电路供电;
    所述直流升压电路的输出端的正极连接所述高压锂电池组的正极,所述直流升压电路的输出端负极连接所述第二可控开关的第一端;
    所述第二可控开关用于提供充电时的三级保护功能;所述第二可控开关的第二端连 接所述高压锂电池组的负极,所述第二可控开关的控制端连接所述被动均衡系统的输出端,用于接通或断开所述直流升压电路的输出端向所述高压锂电池组供电;
    所述温度监测电路的输出端连接所述第一控制器的输入端,用于监测所述高压锂电池组的温度数据,并将其输出至所述第一控制器,由所述第一控制器进行分析处理,执行相应动作;
    所述放电检测电路的输出端连接所述第一控制器的输入端,用于检测所述高压锂电池组放电时的电流、电压,并将其输出至所述第一控制器,由所述第一控制器进行分析处理,执行相应动作;
    所述第一控制器包括与所述被动均衡电路连接的第一通信接口,用于获取所述被动均衡电路采集的所述高压锂电池组的电压;
    所述第一控制器包括第二通信接口,用于与锂电池包的外部控制系统进行数据通信。
  5. 根据权利要求4所述的大功率便携式电动工具用锂电池包,其特征在于,所述被动均衡系统的每一组所述被动均衡电路包括电压监测电路、第二控制器和多组电阻耗能电路;
    所述电压监测电路的输入端经过对应的RC滤波器连接对应子锂电池组中每一串锂电池的正极和负极,用于监测每一串锂电池的电压;所述电压监测电路的输出端与所述第二控制器连接,用于输出每一串锂电池的电压;
    所述电压监测电路的输出端还连接所述第二可控开关的控制端,用于控制接通或关断所述第二可控开关;
    所述第二控制器的输出端依次与所述电阻耗能电路的输入端连接,用于根据输入端接收到的每一串锂电池的电压,控制每一组所述电阻耗能电路打开或关闭;
    所述第二控制器与所述第一控制器连接,用于实现数据传输。
  6. 根据权利要求5所述的大功率便携式电动工具用锂电池包,其特征在于,每一组所述电阻耗能电路均包括第一电阻、光耦、第二电阻、第三电阻和三极管;
    所述第一电阻的两端分别连接所述光耦的阳极和所述第二控制器的一个输出端,所述光耦的阴极接地;
    所述光耦的集电极连接所述子锂电池组中一串锂电池的正极,所述光耦的发射极连接所述三极管的基极;
    所述第二电阻的第一端连接所述三极管的基极,第二端连接所述子锂电池组中一串 锂电池的负极;
    所述第三电阻的第一端连接所述子锂电池组中一串锂电池的正极,第二端连接所述三极管的集电极;
    所述三极管的发射极连接所述子锂电池组中一串锂电池的负极。
  7. 根据权利要求4所述的大功率便携式电动工具用锂电池包,其特征在于,所述放电保护装置包括过流保护器和第一可控开关;
    所述过流保护器的第一端连接所述高压锂电池组的正极,所述过流保护器的第二端为锂电池包输出端的正极;
    所述第一可控开关的第一端连接所述高压锂电池组的负极,第一可控开关的第二端为锂电池包输出端的负极,所述第一可控开关的控制端连接所述第一控制器的输出端,用于接收所述第一控制器发出的控制信号,接通或断开所述高压锂电池组的负极。
  8. 根据权利要求7所述的大功率便携式电动工具用锂电池包,其特征在于,所述过流保护为保险丝或PTC热敏电阻。
  9. 根据权利要求4所述的大功率便携式电动工具用锂电池包,其特征在于,所述直流升压电路包括全桥DC/DC升压电路。
  10. 根据权利要求1所述的大功率便携式电动工具用锂电池包,其特征在于,所述高压锂电池组的电压范围为DC90V-DC273V。
PCT/CN2017/092611 2016-07-25 2017-07-12 一种大功率便携式电动工具用锂电池包 WO2018019127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610585427.1A CN106208197B (zh) 2016-07-25 2016-07-25 一种大功率便携式电动工具用锂电池包
CN201610585427.1 2016-07-25

Publications (1)

Publication Number Publication Date
WO2018019127A1 true WO2018019127A1 (zh) 2018-02-01

Family

ID=57491460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092611 WO2018019127A1 (zh) 2016-07-25 2017-07-12 一种大功率便携式电动工具用锂电池包

Country Status (2)

Country Link
CN (1) CN106208197B (zh)
WO (1) WO2018019127A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336801A (zh) * 2018-04-23 2018-07-27 长沙优力电驱动系统有限公司 信号采集电路及电池管理系统
CN110376529A (zh) * 2019-07-31 2019-10-25 苍南县磊铭电动车有限公司 储能式多功能锂电池检测系统
CN111384742A (zh) * 2018-12-29 2020-07-07 沈阳新松机器人自动化股份有限公司 一种串锂电池组控制装置及方法
CN113316865A (zh) * 2019-03-11 2021-08-27 喜利得股份公司 可充电电池的熔断器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208197B (zh) * 2016-07-25 2019-01-22 苏州绿恺动力电子科技有限公司 一种大功率便携式电动工具用锂电池包
CN106505690B (zh) * 2016-12-26 2023-06-02 苏州绿恺动力电子科技有限公司 一种汽车应急启动电源安全管理系统
CN106712225B (zh) * 2017-03-28 2019-05-24 湖南科技大学 适用于2-8s锂电池组的均衡充电器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130663A (ja) * 2003-10-27 2005-05-19 Sony Corp 電池パック
CN103730936A (zh) * 2014-01-03 2014-04-16 桂林电子科技大学 电动汽车动力电池均衡管理系统和均衡管理方法
CN103972869A (zh) * 2014-04-18 2014-08-06 深圳市诺比邻科技有限公司 电池的双重保护系统及方法
CN104868546A (zh) * 2015-05-25 2015-08-26 沈阳中科一唯电子技术有限公司 一种电池管理系统
CN106208197A (zh) * 2016-07-25 2016-12-07 苏州绿恺动力电子科技有限公司 一种大功率便携式电动工具用锂电池包
CN205863993U (zh) * 2016-07-25 2017-01-04 苏州绿恺动力电子科技有限公司 一种大功率便携式电动工具用锂电池包

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130663A (ja) * 2003-10-27 2005-05-19 Sony Corp 電池パック
CN103730936A (zh) * 2014-01-03 2014-04-16 桂林电子科技大学 电动汽车动力电池均衡管理系统和均衡管理方法
CN103972869A (zh) * 2014-04-18 2014-08-06 深圳市诺比邻科技有限公司 电池的双重保护系统及方法
CN104868546A (zh) * 2015-05-25 2015-08-26 沈阳中科一唯电子技术有限公司 一种电池管理系统
CN106208197A (zh) * 2016-07-25 2016-12-07 苏州绿恺动力电子科技有限公司 一种大功率便携式电动工具用锂电池包
CN205863993U (zh) * 2016-07-25 2017-01-04 苏州绿恺动力电子科技有限公司 一种大功率便携式电动工具用锂电池包

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336801A (zh) * 2018-04-23 2018-07-27 长沙优力电驱动系统有限公司 信号采集电路及电池管理系统
CN108336801B (zh) * 2018-04-23 2024-04-09 长沙优力电驱动系统有限公司 信号采集电路及电池管理系统
CN111384742A (zh) * 2018-12-29 2020-07-07 沈阳新松机器人自动化股份有限公司 一种串锂电池组控制装置及方法
CN113316865A (zh) * 2019-03-11 2021-08-27 喜利得股份公司 可充电电池的熔断器
CN110376529A (zh) * 2019-07-31 2019-10-25 苍南县磊铭电动车有限公司 储能式多功能锂电池检测系统
CN110376529B (zh) * 2019-07-31 2022-09-27 浙江磊铭新能源科技有限公司 储能式多功能锂电池检测系统

Also Published As

Publication number Publication date
CN106208197B (zh) 2019-01-22
CN106208197A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018019127A1 (zh) 一种大功率便携式电动工具用锂电池包
US9219373B2 (en) Lossless charger
WO2017092200A1 (zh) 高压锂电池包及包括该高压锂电池包的便携式用电设备
CN103078384B (zh) 一种不间断电源
CN104300606A (zh) 一种多串电池保护系统
CN106655369A (zh) 一种便携式减压启动交流移动电源
CN108432084A (zh) 串联电池组均衡充放电方法和电路、直流电隔离降压电路
CN202405763U (zh) 过放电保护电路及使用该电路的电池
CN106712520A (zh) 一种基于便携式锂电池包的电焊机用逆变弧焊系统
CN102122812A (zh) 充电电池的过充电保护装置
CN211908469U (zh) 一种应急储能系统
CN206098603U (zh) 基于双模全功能电池管理的电源系统
CN2922234Y (zh) 动力锂离子电池的过放电保护电路
CN104283276A (zh) 一种新型锂电池组保护板
CN111181224A (zh) 一种多节串联电池组用充电系统及其充电方法
CN2174006Y (zh) 多功能充电装置
TW201724635A (zh) 主動式平衡充電裝置
CN214506576U (zh) 一种多串锂电池混合均衡电路
CN2922233Y (zh) 动力锂离子电池的过充电保护电路
CN212486147U (zh) 一种对讲电池组的充电系统
CN103855776A (zh) 一种应用于汽车动力电池的均衡充电系统
CN113659675A (zh) 多电芯锂离子电池充放电保护器
CN203813475U (zh) 一种应用于汽车动力电池的均衡充电系统
CN205863993U (zh) 一种大功率便携式电动工具用锂电池包
CN104022491A (zh) 电瓶连接线极性智能识别保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833430

Country of ref document: EP

Kind code of ref document: A1