WO2017092200A1 - 高压锂电池包及包括该高压锂电池包的便携式用电设备 - Google Patents

高压锂电池包及包括该高压锂电池包的便携式用电设备 Download PDF

Info

Publication number
WO2017092200A1
WO2017092200A1 PCT/CN2016/077324 CN2016077324W WO2017092200A1 WO 2017092200 A1 WO2017092200 A1 WO 2017092200A1 CN 2016077324 W CN2016077324 W CN 2016077324W WO 2017092200 A1 WO2017092200 A1 WO 2017092200A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
lithium battery
battery pack
output
circuit
Prior art date
Application number
PCT/CN2016/077324
Other languages
English (en)
French (fr)
Inventor
谢军
Original Assignee
深圳市盈动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市盈动力科技有限公司 filed Critical 深圳市盈动力科技有限公司
Publication of WO2017092200A1 publication Critical patent/WO2017092200A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0018Circuits for equalisation of charge between batteries using separate charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits

Definitions

  • the present invention relates to the field of lithium battery technology, and in particular to a high voltage lithium battery pack and a device including the high voltage lithium battery pack, and more particularly to a high voltage lithium battery pack capable of achieving low voltage charging and high voltage discharge.
  • the widely used electric welding machines or cutting machines are generally corded equipment, which are powered by AC AC power. They are generally AC110V and AC220V AC power supply. These traditional AC110V and AC220V corded equipment technologies are very mature, but there are defects that require external AC110V or AC220V AC power to work properly, so it is not convenient to use them without such external AC power, such as new construction, simple The construction environment and power outage environment are medium and not portable.
  • the technical problem to be solved by the present invention is that the electrical equipment such as the electric welder or the cutting machine in the prior art has poor portability and poor stability.
  • a low-voltage charging/high-voltage discharge high-voltage lithium battery pack of the present invention includes at least three low-voltage charging circuits and at least three lithium battery packs;
  • each of the low voltage charging circuits is connected to a low voltage power supply, and the output end is connected to a lithium battery pack for charging a lithium battery pack;
  • the at least three lithium battery packs are connected in series.
  • each of the low voltage charging circuits includes an isolation boost circuit, a second controllable switch, and a passive equalization battery management system;
  • the input end of the isolation boost circuit is connected to a low voltage power supply, the first output is connected to the positive pole of a lithium battery pack, and the second output is connected to the first end of the second controllable switch for low voltage
  • the power supply is isolated and boosted, and the second end of the second controllable switch is connected to the negative pole of the one lithium battery pack, and the control end of the second controllable switch is connected to the passive equalization battery management system.
  • the output end is connected to control to connect or disconnect the second output end of the isolated booster circuit and the negative pole of the one lithium battery pack;
  • the passive equalization battery management system is configured to detect a voltage of each string of lithium batteries in the one lithium battery pack, and accordingly generate a corresponding control signal to output through the output end thereof.
  • the passive equalization battery management system includes a first controller, a voltage detection circuit, and a multi-channel energy consumption circuit;
  • the input end of the first controller is connected to the output end of the voltage detecting circuit, and the first output end is used as an output end of the passive equalization battery management system, and the plurality of other output ends are respectively corresponding to the multi-channel consumption
  • the input end of the energy circuit is connected, and is used for controlling the voltage output of the plurality of other output terminals according to the signal received by the input terminal;
  • the plurality of input ends of the voltage detecting circuit are respectively connected to the positive poles of each series of lithium batteries in the one lithium battery group, and are used for detecting the voltage of each string of lithium batteries and outputting the same;
  • each of the energy consuming circuits is connected to a positive pole of a string of lithium batteries in the one lithium battery pack, and a second input end is connected to one other output end of the first controller, and the output end is The negative electrode of the string of lithium batteries is connected to consume the power of the string of lithium batteries.
  • each of the energy consuming circuits includes a first triode, a second triode, a first resistor, a second resistor, a third resistor, and a fourth resistor; an emitter of the first triode Connected to a positive pole of a string of lithium batteries in the lithium battery pack, the collector is connected in series with the first resistor and connected to the cathode of the string of lithium batteries, and the base is connected in series with the third resistor a collector connection of the second transistor; the base of the second transistor is connected in series with the fourth resistor as an input of the energy consuming circuit and one of the other outputs of the first controller The terminal is connected, the collector is grounded; and the second resistor is connected across the emitter and the base of the first transistor.
  • the high-voltage lithium battery pack is mainly composed of three 13-string/48V lithium battery packs connected in series, and the output high-voltage DC voltage is DC120V-DC162V; or
  • the high-voltage lithium battery pack is mainly composed of four 10-string/36V lithium battery packs connected in series, and the output high-voltage DC voltage is DC120V-DC168V; or
  • the high-voltage lithium battery pack is mainly composed of four 13-string/48V lithium battery packs connected in series, and the transmission thereof
  • the high voltage DC voltage is DC160V-DC216V; or
  • the high-voltage lithium battery pack is mainly composed of five 13-string/48V lithium battery packs connected in series, and the output high-voltage DC voltage is DC200V-DC270V.
  • a portable electric device of the present invention comprises the above-mentioned low-voltage charging/high-voltage discharge high-voltage lithium battery pack.
  • the device is a cordless welding device, a cordless cutting device or a mobile AC power source.
  • the cordless welding device is a cordless inverter arc welding electric welder, a stud welding machine or a spot welding machine.
  • the cordless cutting device is an air plasma cutting machine.
  • the cordless inverter arc welding electric welder further comprises an inverter circuit, a transformer and a first controllable switch;
  • a positive pole of the high voltage lithium battery pack is connected to a first input end of the inverter circuit, a negative pole is connected to a first end of the first controllable switch; a second end of the first controllable switch is a second input end of the inverter circuit is connected to connect or disconnect the negative pole of the high voltage lithium battery pack and the inverter under the control of the switch control signal received by the control end of the first controllable switch a second input of the circuit;
  • An output end of the inverter circuit is connected to an input end of the transformer, and is configured to invert the high voltage direct current voltage outputted by the high voltage lithium battery pack into an alternating current voltage; the transformer is configured to step down the alternating current voltage into Low voltage.
  • the cordless inverter arc welding electric welder further comprises a rectifying and filtering circuit, wherein an input end thereof is connected to an output end of the transformer, and an output end of the rectifying and filtering circuit is a DC current providing end of the device, The low voltage is rectified and filtered and output.
  • the cordless inverter arc welding electric welder further includes a second controller, wherein an input end thereof is connected to a positive pole of the high voltage lithium battery pack, and an output end is connected to a control end of the first controllable switch, Detecting the voltage of the high-voltage lithium battery pack, and accordingly generating a corresponding control signal to output through the output end thereof, and balancingly managing the power of the high-voltage lithium battery pack.
  • a second controller wherein an input end thereof is connected to a positive pole of the high voltage lithium battery pack, and an output end is connected to a control end of the first controllable switch, Detecting the voltage of the high-voltage lithium battery pack, and accordingly generating a corresponding control signal to output through the output end thereof, and balancingly managing the power of the high-voltage lithium battery pack.
  • the low-voltage charging/high-voltage discharging high-voltage lithium battery pack provided by the embodiment of the invention provides at least three low-voltage charging circuits and at least three lithium battery packs, and each low-voltage charging circuit charges a lithium battery pack, thereby realizing The low voltage charging of the group.
  • a high-voltage lithium battery pack is formed to provide a high-voltage DC voltage output, which is particularly suitable for use in equipment such as electric welders, or cutters or mobile AC power supplies, and
  • the high-voltage lithium battery pack is used as the power supply, no external power supply is required, and the lithium battery has the advantages of small size, large output power, light weight, low cost, etc.
  • the weight of the lithium battery pack storing 1KWH electric energy is only about 7KG, thereby greatly improving The portability of the electric equipment using the high-voltage lithium battery pack.
  • the low-voltage charging/high-voltage discharge high-voltage lithium battery pack provided by the embodiment of the present invention provides a passive equalization BMS for each lithium battery pack by providing a passive equalization BMS for each low-voltage charging current, thereby extending the lithium battery.
  • the service life of the group further improves the stability of the equipment. Moreover, the requirement for long-term consistency of the lithium battery can also be reduced, so that the domestic lithium battery with lower cost can be used, and the cost of the device can be reduced.
  • the low-voltage charging/high-voltage discharging high-voltage lithium battery pack provided by the embodiment of the present invention is configured to connect the plurality of input ends of the voltage detecting circuit to the positive pole of each of the lithium battery packs in a lithium battery pack. Can detect the voltage of each string of lithium batteries by setting the first controller The voltage of the output terminal connected to the energy consuming circuit can be adjusted according to the corresponding voltage of each string of lithium batteries received, so as to adjust the charging/discharging current of each string of lithium batteries, thereby ensuring the balance of each string of lithium batteries. Extends the life of the lithium battery.
  • the low-voltage charging/high-voltage discharge high-voltage lithium battery pack provided by the embodiment of the invention can be respectively connected by three 13-string/48V lithium battery packs in series and four 10-string/36V lithium batteries by setting a high-voltage lithium battery pack.
  • Group series connection four 13 series / 48V lithium battery packs connected in series or five 13 series / 48V lithium battery packs connected in series, can provide DC120V-DC162V, DC120V-DC168V, DC160V-DC216V or DC200V-DC270V high voltage output voltage Therefore, for example, it can be applied as a 160A/28V, 160A/28V, 160A/28V-250A/34V, 250A/34V-315A/36V electric welder, respectively, and obtains four standard output capacities (160A/28V) in the current welding machine industry. , 200A/32V, 250A/34V, 315A/36V) welding machine.
  • the application of the standard type of cutting machine and the mobile AC power source in the industry can also be obtained.
  • the low-voltage charging/high-voltage discharging lithium battery-powered device provided by the embodiment of the present invention can realize equalization management between at least three lithium battery groups by providing a second controller, and provide two-stage equalization for the lithium battery pack. Protection, which further extends the life of the equipment.
  • Embodiment 1 is a view of a low-voltage charging/high-voltage discharge high-voltage lithium battery pack according to Embodiment 1 of the present invention; A block diagram of a specific example;
  • FIG. 2 is a schematic block diagram of a specific example of a low voltage charging circuit of the present invention.
  • FIG. 3 is a schematic block diagram of a specific example of a passive equalization battery management system of the present invention.
  • FIG. 4 is a schematic block diagram showing a specific example of a low-voltage charging/high-voltage discharge lithium battery-powered cordless inverter arc welding electric welding machine according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic block diagram showing another specific example of a low-voltage charging/high-voltage discharge lithium battery-powered cordless inverter arc welding electric welder according to Embodiment 2 of the present invention.
  • the embodiment provides a low-voltage charging/high-voltage discharge high-voltage lithium battery pack, as shown in FIG. 1, comprising at least three low-voltage charging circuits 10 and at least three lithium battery packs 20.
  • the lithium battery pack may be, for example, a 13-string/48-V lithium battery pack, and the number of lithium battery packs is not limited to three, and more lithium battery packs are also feasible.
  • three 13-string/48V lithium battery packs are connected in series, and the output high-voltage DC voltage is DC120V-DC162V; or four 10-string/36V lithium battery packs are connected in series, and the output high-voltage DC voltage is DC120V-DC168V; or Four 13-string/48V lithium battery packs are connected in series, and the output high-voltage DC voltage is DC160V-DC216V; or five 13-string/48V lithium battery packs are connected in series, and the output high-voltage DC voltage is DC200V-DC270V.
  • 160A/28V, 160A/28V, 160A/28V-250A/34V, 250A/34V-315A/36V electric welder respectively, and obtains four standard output capacities (160A/28V, currently in the electric welder industry). 200A/32V, 250A/34V, 315A/36V) welding machine.
  • the application of the standard type of cutting machine and the mobile AC power source in the industry can also be obtained.
  • each low voltage charging circuit 10 is connected to a low voltage power supply, and the output is connected to a lithium battery pack 20 for charging a lithium battery pack 20.
  • the low-voltage power supply is a DC24V-DC36V power supply. Since the low-voltage power supply is less than 36V, it does not pose a safety hazard to the human body and improves the safety of the welding machine. At least three lithium battery packs 20 are connected in series.
  • the high-voltage lithium battery pack of the above low-voltage charging/high-voltage discharge is provided by charging at least three low-voltage charging circuits and at least three lithium battery packs, and each low-voltage charging circuit charges a lithium battery pack. Thereby low voltage charging of the packet is achieved.
  • a high-voltage lithium battery pack is formed to provide a high-voltage DC voltage output, which is particularly suitable for use in equipment such as electric welders, or cutters or mobile AC power supplies, and
  • the high-voltage lithium battery pack is used as the power supply, no external power supply is required, and the lithium battery has the advantages of small size, large output power, light weight, low cost, etc.
  • the weight of the lithium battery pack storing 1KWH electric energy is only about 7KG, thereby greatly improving The portability of the electric equipment using the high-voltage lithium battery pack.
  • each low voltage charging circuit 10 includes an isolated boost circuit 11, a second controllable switch 12, and a passive equalization battery management system (BMS) 13.
  • BMS passive equalization battery management system
  • the input end of the isolation boost circuit 11 is connected to the low voltage power supply, the first output is connected to the positive pole of a lithium battery pack 20, and the second output is connected to the first end of the second controllable switch 12 for supplying low voltage power.
  • the power supply is isolated and boosted, and the second end of the second controllable switch 12 is connected to the negative pole of a lithium battery pack 20.
  • the control end of the second controllable switch 12 is connected to the output end of the passive equalization BMS13 for controlling communication. Or disconnect the second output of the booster circuit 11 and the negative of a lithium battery pack 20.
  • the passive equalization BMS 13 is used to detect the voltage of each string of lithium batteries in a lithium battery pack 20, and accordingly generate corresponding control signals for output through its output.
  • the low voltage charging current is not limited to being implemented by the specific circuits described above, but may be implemented by other circuits capable of low voltage charging of the lithium battery.
  • the above-mentioned low-voltage charging/high-voltage discharging high-voltage lithium battery pack provides a passive charging/discharging balance for the lithium battery pack by setting a passive equalization BMS for each low-voltage charging current, thereby prolonging the service life of the lithium battery pack and further improving The stability of the device. And it can also reduce the requirement for long-term consistency of lithium batteries, so that domestic lithium batteries with lower cost can be used. To reduce the cost of equipment.
  • the passive equalization BMS 13 includes a first controller 131, a voltage detecting circuit 132, and a multi-channel consuming circuit 133.
  • the input end of the first controller 131 is connected to the output end of the voltage detecting circuit 132, the first output end is used as the output end of the passive equalization BMS13, and the plurality of other output terminals BJ1-BJ13 are respectively corresponding to the multi-channel energy consuming circuit 133.
  • the input terminal is connected to adjust the voltage of the output of the plurality of other outputs according to the signal received by the input terminal.
  • the plurality of input terminals VBD1+ to VBD13+ of the voltage detecting circuit 132 are respectively connected in one-to-one correspondence with the positive poles of each of the lithium battery packs 20 for detecting the voltage of each string of lithium batteries and outputting them.
  • the plurality of input terminals VBD1+ to VBD13+ may also be respectively connected to the RC filter circuit, and then respectively connected to the positive pole of each string of lithium batteries in one lithium battery pack 20 in one-to-one correspondence, thereby improving anti-interference ability. .
  • each energy consuming circuit 133 is connected to the positive pole of a string of lithium batteries in a lithium battery pack 20, the second input end is connected to one other output end of the first controller 131, and the output end is connected with a string of lithium.
  • the negative connection of the battery is used to consume the power of a string of lithium batteries.
  • the passive equalization BMS is not limited to being implemented by the specific circuits described above, but may be implemented by other circuits capable of providing balanced management for lithium batteries.
  • the high-voltage lithium battery pack of the low-voltage charging/high-voltage discharge is connected to the positive pole of each string of lithium batteries in a lithium battery pack by setting a plurality of input ends of the voltage detecting circuit, and each string of lithium can be detected.
  • the voltage of the battery can be adjusted according to the voltage of each string of lithium batteries received by the first controller to adjust the voltage of the output connected to the energy-consuming circuit to adjust the charging/discharging current of each string of lithium batteries. Thereby ensuring the balance of each string of lithium batteries and prolonging the service life of the lithium battery.
  • each of the energy consuming circuits 133 includes a first transistor QPJ13, a second transistor QNJ11, a first resistor RJ131, a second resistor RJ132, a third resistor RJ133, and a fourth resistor RJ134; the first transistor
  • the emitter of QPJ13 is connected to the anode of a string of lithium batteries in a lithium battery pack 20.
  • the collector is connected in series with the first resistor RJ131 and connected to the cathode of a string of lithium batteries.
  • the base is connected in series with the third resistor RJ133 and the second three.
  • the collector of the second transistor QNJ11 is connected in series; the base of the second transistor QNJ11 is connected in series with the fourth resistor RJ134, and is connected as an input end of the energy dissipation circuit 133 to one other output end of the first controller 131, and the collector is grounded;
  • the two resistor RJ132 is connected across the emitter and the base of the first transistor QPJ13.
  • the energy consuming circuit is not limited to being implemented by the specific circuit described above, but may be implemented by other circuits capable of discharging power for the lithium battery.
  • the high-voltage lithium battery pack of the low-voltage charging/high-voltage discharge described above improves the discharge current by setting the first triode and the second triode, and improves the efficiency of the passive equalization BMS to implement the power management of the lithium battery.
  • the embodiment provides a portable electric device, comprising the low-voltage charging/high-voltage discharging high-voltage lithium battery pack of the above-described first embodiment.
  • the portable electrical device is a cordless welding device, a cordless cutting device or a mobile AC power source or the like.
  • the cordless welding device is a cordless inverter arc welding electric welder, a stud welding machine or a spot welding machine.
  • the cordless cutting device is an air plasma cutting machine or the like.
  • the mobile AC power source When a high-voltage lithium battery pack is applied to a mobile AC power source, for example, the mobile AC power source includes a high-voltage lithium battery pack that is sequentially connected, a high-frequency BOOST boost circuit, and a power frequency inverter circuit, and a DC output from the high-voltage lithium battery pack.
  • the high-frequency BOOST boost circuit can be omitted, and the high-voltage lithium battery pack and the power frequency inverter circuit can be directly connected, thereby avoiding the voltage rise. High cost and low efficiency generated by more than 3 times higher.
  • the stud welder When a high voltage lithium battery pack is applied to a stud welder, for example, the stud welder includes a high voltage lithium battery pack and a thyristor circuit that are sequentially connected.
  • the power supply of the existing air plasma cutting machine can be directly replaced with the high-voltage lithium battery pack.
  • the electric welder includes the low-voltage charging/high-voltage discharge high-voltage lithium battery pack 101, the inverter circuit 30, the transformer 40, and the first controllable switch 60 in the above-described first embodiment.
  • the anode of the high voltage lithium battery pack is connected to the first input end of the inverter circuit 30, the cathode is connected to the first end of the first controllable switch 60; the second end of the first controllable switch 60 and the second end of the inverter circuit 30
  • the input terminal is connected to connect or disconnect the negative pole of the high voltage lithium battery pack and the second input end of the inverter circuit 30 under the control of the switch control signal received by the control end of the first controllable switch 60.
  • the output end of the inverter circuit 30 is connected to the input end of the transformer 40 for inverting the high voltage DC voltage outputted by the high voltage lithium battery pack into an AC voltage; the transformer 40 is used to step down the AC voltage to a low voltage suitable for welding. Voltage.
  • the above-mentioned cordless inverter arc welding electric welder is configured by connecting three lithium battery packs in series to form a high voltage lithium battery pack to provide a high voltage DC voltage, thereby reducing the inverter current to prevent the controllable switching element in the circuit from being damaged. , improve the stability of the welding machine. Since the controllable switching elements in the circuit are not easily damaged, the service life of the welding machine is also prolonged. And because the high-voltage lithium battery pack can provide high-voltage DC voltage, so that the inverter current is small, the welding tool holder does not have large jitter when welding, the welding clamp is easier to handle, and the welding feel is good, thereby improving the welding. quality.
  • the lithium battery has the advantages of small volume, large output power, light weight, low cost, etc.
  • the weight of the lithium battery pack storing 1KWH electric energy is only about 7KG, thereby greatly reducing the weight of the electric welding machine and the power welding machine.
  • the volume increases the portability of the welder.
  • independent constant-current constant-voltage charging is performed for each lithium battery pack, which can achieve stable low-voltage charging, thereby preventing safety hazards to people and improving the safety of the welding machine.
  • the cordless inverter arc welding electric welder further includes a rectifying and filtering circuit 50, the input end of which is connected to the output end of the transformer 40, and the output end of the rectifying and filtering circuit 50 is DC welding of the electric welding machine.
  • the above-mentioned inverter circuit 30, transformer 40 and rectifying and filtering circuit 50 can adopt the circuit in the conventional AC110V inverter arc welding electric welding machine, that is, the output of the high-voltage lithium battery pack is directly matched with the conventional AC110V inverter arc welding electric welding machine.
  • the inverter circuit connection (other embodiments can use the circuit in the conventional AC220V inverter arc welding electric welder), as shown in Fig. 5, constitutes a 160A/28V electric welder. Since the welding machine is modified on the basis of the conventional AC110V inverter arc welding electric welding machine, resources can be saved to reduce the production cost.
  • the cordless inverter arc welding electric welder further includes a second controller, wherein the input end is connected to the positive pole of the high voltage lithium battery pack, and the output end is connected to the control end of the first controllable switch 60 for detecting the high voltage lithium battery.
  • the voltage of the package, and accordingly corresponding control signals are output through its output terminal, which balances the power of the high-voltage lithium battery pack and provides a secondary equalization protection for the lithium battery pack, thereby further prolonging the service life of the lithium battery.
  • the second controller is also respectively connected to each passive equalization BMS 13 for detecting And control the passive equalization of the working state of the BMS 13.
  • the second controller also has a communication interface for communicating with the outside world.
  • the embodiment provides a low-voltage charging/high-voltage discharge lithium battery-powered cordless inverter arc welding electric welder.
  • the high-voltage lithium battery pack is composed of four 10-string/36V lithium battery packs connected in series.
  • the output of the high-voltage DC voltage is DC120V-DC168V, which can be used as an output capacity of 160A/28V welding machine.
  • the output of the high voltage lithium battery pack can be directly connected to the inverter circuit in the conventional AC 110V inverter arc welding electric welder to form a 160A/28V electric welder.
  • the embodiment provides a low-voltage charging/high-voltage discharge lithium battery-powered cordless inverter arc welding electric welder.
  • the high-voltage lithium battery pack is connected in series by four 13-string/48-volt lithium battery packs.
  • the connection structure, the output of the high-voltage DC voltage is DC160V-DC216V, can be used as an output capacity of 160A/28V-250A/34V welding machine application.
  • the output of the high voltage lithium battery pack can be directly connected to the inverter circuit in the conventional AC220V inverter arc welding electric welder to form a 160A/28V-250A/34V electric welder.
  • This embodiment provides a low-voltage charging/high-voltage discharge lithium battery-powered cordless inverter arc welding electric welder.
  • the high-voltage lithium battery pack consists of five 13-string/48-volt lithium batteries. The group is connected in series, and its output high-voltage DC voltage is DC200V-DC270V, which can be used as an output capacity of 250A/34V-315A/36V welding machine.
  • the output of the high voltage lithium battery pack can be directly connected to the inverter circuit in the conventional AC220V inverter arc welding electric welder to form a 250A/34V-315A/36V electric welder.

Abstract

一种高压锂电池包及包括该高压锂电池包的设备。该高压锂电池包包括至少三路低压充电电路(10)和至少三个锂电池组(20);每一路低压充电电路(10)的输入端与低压供电电源连接,输出端与一个锂电池组(20)连接,用于给一个锂电池组(20)充电;至少三个锂电池组(20)串联连接。该高压锂电池包及包括该高压锂电池包的设备具有便携性好、稳定性好的优点。

Description

高压锂电池包及包括该高压锂电池包的便携式用电设备 技术领域
本发明涉及锂电池技术领域,具体涉及一种高压锂电池包及包括该高压锂电池包的设备,尤其是涉及一种能够实现低电压充电和高电压放电的高压锂电池包。
背景技术
目前应用较为广泛的电焊机或切割机普遍都是有绳设备,采用AC交流电源供电,其一般有AC110V和AC220V交流电源供电两种。此类传统的AC110V和AC220V有绳设备技术已经很成熟,但是存在需要外接AC110V或AC220V交流电源才能正常工作的缺陷,所以不便于在不具有此类外接交流电源的场合下使用,例如新建、简陋的工程施工环境、停电环境中等,不具有便携性。
为此,现有技术中有提供一些改进的、具有发电功能的无绳发电电焊机或切割机,无需外接交流电源,解决了需要外接交流电源才能正常工作的问题。但是现有的此类设备需要汽油驱动,重量和体积都比较大,搬运及放置都非常不便。而且此类设备运行噪声比较大,一般会达到100分贝以上,也会造成施工现场的噪声污染。所以便携性没有得到太大改善。
现有技术中还有提供一些采用可充电电池供电的无绳电焊机或切割机,也无需外接交流电源,也解决了需要外接交流电源才能正常工作的问题。但是现有的此类设备使用的可充电电池一般为DC48V和DC36V,供电电压较 低,所以所需的DC/DC逆变电流较大,从而很容易炸坏电子开关,因此此类设备的稳定性非常差。
发明内容
因此,本发明要解决的技术问题在于现有技术中的电焊机或切割机等用电设备的便携性差、稳定性差。
为此,本发明的一种低压充电/高压放电的高压锂电池包,包括至少三路低压充电电路和至少三个锂电池组;
每一路所述低压充电电路的输入端与低压供电电源连接,输出端与一个锂电池组连接,用于给一个锂电池组充电;
所述至少三个锂电池组串联连接。
优选地,每一个所述低压充电电路均包括隔离升压电路、第二可控开关和被动均衡电池管理系统;
所述隔离升压电路的输入端与低压供电电源连接,第一输出端与一个锂电池组的正极连接,第二输出端与所述第二可控开关的第一端连接,用于将低压供电电源进行隔离升压后输出;所述第二可控开关的第二端与所述一个锂电池组的负极连接,所述第二可控开关的控制端与所述被动均衡电池管理系统的输出端连接,用于控制连通或断开所述隔离升压电路的第二输出端和所述一个锂电池组的负极;
所述被动均衡电池管理系统用于检测所述一个锂电池组中每一串锂电池的电压,并据此产生相应的控制信号通过其输出端输出。
优选地,所述被动均衡电池管理系统包括第一控制器、电压检测电路和多路耗能电路;
所述第一控制器的输入端与所述电压检测电路的输出端连接,第一输出端作为所述被动均衡电池管理系统的输出端,多个其他输出端一一对应地分别与多路耗能电路的输入端连接,用于根据输入端接收的信号控制调节多个其他输出端输出的电压大小;
所述电压检测电路的多个输入端一一对应地分别与所述一个锂电池组中每一串锂电池的正极连接,用于检测每一串锂电池的电压并将其输出;
每一路所述耗能电路的第一输入端与所述一个锂电池组中的一串锂电池的正极连接,第二输入端与所述第一控制器的一个其他输出端连接,输出端与所述一串锂电池的负极连接,用于消耗所述一串锂电池的电量。
优选地,每一路所述耗能电路均包括第一三极管、第二三极管、第一电阻、第二电阻、第三电阻和第四电阻;所述第一三极管的射极与所述一个锂电池组中一串锂电池的正极连接,集电极串接所述第一电阻后与所述一串锂电池的负极连接,基极串接所述第三电阻后与所述第二三极管的集电极连接;所述第二三极管的基极串接所述第四电阻后作为所述耗能电路的输入端与所述第一控制器的一个所述其他输出端连接,集电极接地;所述第二电阻跨接在所述第一三极管的射极和基极上。
优选地,
所述高压锂电池包主要由三个13串/48V锂电池组串联连接构成,其输出的高压直流电压为DC120V-DC162V;或者
所述高压锂电池包主要由四个10串/36V锂电池组串联连接构成,其输出的高压直流电压为DC120V-DC168V;或者
所述高压锂电池包主要由四个13串/48V锂电池组串联连接构成,其输 出的高压直流电压为DC160V-DC216V;或者
所述高压锂电池包主要由五个13串/48V锂电池组串联连接构成,其输出的高压直流电压为DC200V-DC270V。
本发明的一种便携式用电设备,包括上述的低压充电/高压放电的高压锂电池包。
优选地,所述设备为无绳焊接设备、无绳切割设备或移动交流电源。
优选地,所述无绳焊接设备为无绳逆变弧焊电焊机、螺柱焊机或点焊机。
优选地,所述无绳切割设备为空气等离子切割机。
优选地,所述无绳逆变弧焊电焊机还包括逆变电路、变压器和第一可控开关;
所述高压锂电池包的正极与所述逆变电路的第一输入端连接,负极与所述第一可控开关的第一端连接;所述第一可控开关的第二端与所述逆变电路的第二输入端连接,用于在所述第一可控开关的控制端所接收到的开关控制信号的控制下连通或断开所述高压锂电池包的负极和所述逆变电路的第二输入端;
所述逆变电路的输出端与所述变压器的输入端连接,用于将所述高压锂电池包输出的高压直流电压逆变成交流电压;所述变压器用于将所述交流电压降压成低压电压。
优选地,所述无绳逆变弧焊电焊机还包括整流滤波电路,其输入端与所述变压器的输出端连接,所述整流滤波电路的输出端为所述设备的直流电流提供端,用于将所述低压电压进行整流和滤波后输出。
优选地,所述无绳逆变弧焊电焊机还包括第二控制器,其输入端与所述高压锂电池包的正极连接,输出端与所述第一可控开关的控制端连接,用于检测所述高压锂电池包的电压,并据此产生相应的控制信号通过其输出端输出,均衡管理所述高压锂电池包的电量。
本发明技术方案,具有如下优点:
1.本发明实施例提供的低压充电/高压放电的高压锂电池包,通过设置至少三路低压充电电路和至少三个锂电池组,且每一路低压充电电路给一个锂电池组充电,从而实现了分组的低压充电。通过设置将至少三个锂电池组串联连接,后构成高压锂电池包,以提供高压直流电压输出,从而特别适合于当在电焊机、或切割机或移动交流电源等设备中使用,并且由于使用了高压锂电池包作为供电电源,无需外接电源,且由于锂电池具有体积小、输出功率大、重量轻、成本低等优点,例如储存1KWH电能的锂电池组重量只有7KG左右,从而极大地提高了使用了该高压锂电池包的用电设备的便携性。
2.本发明实施例提供的低压充电/高压放电的高压锂电池包,通过为每一个低压充电电流设置被动均衡BMS,为锂电池组提供了被动式充电/放电的全程均衡,从而延长了锂电池组的使用寿命,进一步提高了设备的稳定性。并且也可以降低对锂电池长期一致性的要求,从而可以使用成本较低的国产锂电池,可以降低设备的成本。
3.本发明实施例提供的低压充电/高压放电的高压锂电池包,通过设置将电压检测电路的多个输入端一一对应地分别与一个锂电池组中每一串锂电池的正极连接,可以检测出每一串锂电池的电压,通过设置第一控制器 可以根据接收到的每一串锂电池的电压相应的控制调节与耗能电路连接的输出端的电压大小,以调节每一串锂电池的充电/放电电流,从而保证了每一串锂电池的均衡,延长了锂电池的使用寿命。
4.本发明实施例提供的低压充电/高压放电的高压锂电池包,创新的通过设置高压锂电池包可以分别由三个13串/48V锂电池组串联连接、四个10串/36V锂电池组串联连接、四个13串/48V锂电池组串联连接或五个13串/48V锂电池组串联连接构成,可以分别提供DC120V-DC162V、DC120V-DC168V、DC160V-DC216V或DC200V-DC270V高压输出电压,从而例如可以分别作为160A/28V、160A/28V、160A/28V-250A/34V、250A/34V-315A/36V电焊机来应用,获得目前电焊机行业中标准的4种输出能力(160A/28V、200A/32V、250A/34V、315A/36V)的电焊机。同时,根据实际应用对于切割机和移动交流电源的供电电压的需求,也可以获得行业中标准型号的切割机和移动交流电源的应用。
5.本发明实施例提供的低压充电/高压放电的锂电池供电的设备,通过设置第二控制器,能够实现对至少三个锂电池组之间的均衡管理,为锂电池组提供二级均衡保护,从而进一步延长了设备的使用寿命。
附图说明
为了更清楚地说明本发明具体实施方式中的技术方案,下面将对具体实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1中低压充电/高压放电的高压锂电池包的一个 具体示例的原理框图;
图2为本发明低压充电电路的一个具体示例的原理框图;
图3为本发明被动均衡电池管理系统的一个具体示例的原理框图;
图4为本发明实施例2中低压充电/高压放电的锂电池供电无绳逆变弧焊电焊机的一个具体示例的原理框图;
图5为本发明实施例2中低压充电/高压放电的锂电池供电无绳逆变弧焊电焊机的另一个具体示例的原理框图。
附图标记:10-低压充电电路,20-锂电池组,30-逆变电路,40-变压器,50-整流滤波电路,60-第一可控开关,11-隔离升压电路,12-第二可控开关,13-被动均衡电池管理系统,131-第一控制器,132-电压检测电路,133-耗能电路,101-高压锂电池包。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施例提供一种低压充电/高压放电的高压锂电池包,如图1所示,包括至少三路低压充电电路10和至少三个锂电池组20。该锂电池组例如可以是13串/48V锂电池组,锂电池组的数量不限于三个,更多个锂电池组也是可行的。例如,三个13串/48V锂电池组串联连接,其输出的高压直流电压为DC120V-DC162V;或者四个10串/36V锂电池组串联连接,其输出的高压直流电压为DC120V-DC168V;或者四个13串/48V锂电池组串联连接,其输出的高压直流电压为DC160V-DC216V;或者五个13串/48V锂电池组串联连接,其输出的高压直流电压为DC200V-DC270V。从而例如可以分别作为160A/28V、160A/28V、160A/28V-250A/34V、250A/34V-315A/36V电焊机来应用,获得目前电焊机行业中标准的4种输出能力(160A/28V、200A/32V、250A/34V、315A/36V)的电焊机。同时,根据实际应用对于切割机和移动交流电源的供电电压的需求,也可以获得行业中标准型号的切割机和移动交流电源的应用。
每一路低压充电电路10的输入端与低压供电电源连接,输出端与一个锂电池组20连接,用于给一个锂电池组20充电。优选地,低压供电电源为DC24V-DC36V供电电源,由于低压供电电源小于36V,所以不会对人体带来安全隐患,提高了电焊机的安全性。至少三个锂电池组20串联连接。
上述低压充电/高压放电的高压锂电池包,通过设置至少三路低压充电电路和至少三个锂电池组,且每一路低压充电电路给一个锂电池组充电, 从而实现了分组的低压充电。通过设置将至少三个锂电池组串联连接,后构成高压锂电池包,以提供高压直流电压输出,从而特别适合于当在电焊机、或切割机或移动交流电源等设备中使用,并且由于使用了高压锂电池包作为供电电源,无需外接电源,且由于锂电池具有体积小、输出功率大、重量轻、成本低等优点,例如储存1KWH电能的锂电池组重量只有7KG左右,从而极大地提高了使用了该高压锂电池包的用电设备的便携性。
优选地,如图2所示,每一个低压充电电路10均包括隔离升压电路11、第二可控开关12和被动均衡电池管理系统(BMS)13。
隔离升压电路11的输入端与低压供电电源连接,第一输出端与一个锂电池组20的正极连接,第二输出端与第二可控开关12的第一端连接,用于将低压供电电源进行隔离升压后输出;第二可控开关12的第二端与一个锂电池组20的负极连接,第二可控开关12的控制端与被动均衡BMS13的输出端连接,用于控制连通或断开隔离升压电路11的第二输出端和一个锂电池组20的负极。
被动均衡BMS13用于检测一个锂电池组20中每一串锂电池的电压,并据此产生相应的控制信号通过其输出端输出。
本领域的技术人员应当理解,低压充电电流并不限于由上述具体电路来实现,也可以由其他能够为锂电池组进行低压充电的电路来实现。
上述低压充电/高压放电的高压锂电池包,通过为每一个低压充电电流设置被动均衡BMS,为锂电池组提供了被动式充电/放电的全程均衡,从而延长了锂电池组的使用寿命,进一步提高了设备的稳定性。并且也可以降低对锂电池长期一致性的要求,从而可以使用成本较低的国产锂电池,可 以降低设备的成本。
优选地,如图3所示,被动均衡BMS13包括第一控制器131、电压检测电路132和多路耗能电路133。第一控制器131的输入端与电压检测电路132的输出端连接,第一输出端作为被动均衡BMS13的输出端,多个其他输出端BJ1-BJ13一一对应地分别与多路耗能电路133的输入端连接,用于根据输入端接收的信号控制调节多个其他输出端输出的电压大小。
电压检测电路132的多个输入端VBD1+至VBD13+一一对应地分别与一个锂电池组20中每一串锂电池的正极连接,用于检测每一串锂电池的电压并将其输出。优选地,如图3所示,多个输入端VBD1+至VBD13+还可以分别连接RC滤波电路后再一一对应地分别与一个锂电池组20中每一串锂电池的正极连接,提高抗干扰能力。
每一路耗能电路133的第一输入端与一个锂电池组20中的一串锂电池的正极连接,第二输入端与第一控制器131的一个其他输出端连接,输出端与一串锂电池的负极连接,用于消耗一串锂电池的电量。
本领域的技术人员应当理解,被动均衡BMS并不限于由上述具体电路来实现,也可以由其他能够为锂电池提供均衡管理的电路来实现。
上述低压充电/高压放电的高压锂电池包,通过设置将电压检测电路的多个输入端一一对应地分别与一个锂电池组中每一串锂电池的正极连接,可以检测出每一串锂电池的电压,通过设置第一控制器可以根据接收到的每一串锂电池的电压相应的控制调节与耗能电路连接的输出端的电压大小,以调节每一串锂电池的充电/放电电流,从而保证了每一串锂电池的均衡,延长了锂电池的使用寿命。
优选地,每一路耗能电路133均包括第一三极管QPJ13、第二三极管QNJ11、第一电阻RJ131、第二电阻RJ132、第三电阻RJ133和第四电阻RJ134;第一三极管QPJ13的射极与一个锂电池组20中一串锂电池的正极连接,集电极串接第一电阻RJ131后与一串锂电池的负极连接,基极串接第三电阻RJ133后与第二三极管QNJ11的集电极连接;第二三极管QNJ11的基极串接第四电阻RJ134后作为耗能电路133的输入端与第一控制器131的一个其他输出端连接,集电极接地;第二电阻RJ132跨接在第一三极管QPJ13的射极和基极上。
本领域的技术人员应当理解,耗能电路并不限于由上述具体电路来实现,也可以由其他能够为锂电池释放电量的电路来实现。
上述低压充电/高压放电的高压锂电池包,通过设置第一三极管和第二三极管,提高了放电电流,提高了被动均衡BMS对锂电池实施电量管理的效率。
实施例2
本实施例提供一种便携式用电设备,包括上述实施例1的低压充电/高压放电的高压锂电池包。优选地,便携式用电设备为无绳焊接设备、无绳切割设备或移动交流电源等。优选地,无绳焊接设备为无绳逆变弧焊电焊机、螺柱焊机或点焊机等。优选地,无绳切割设备为空气等离子切割机等。
当高压锂电池包应用到移动交流电源中时,例如,移动交流电源包括顺次连接的高压锂电池包、高频BOOST升压电路和工频逆变电路,当高压锂电池包所输出的直流电压足够高时,还可以省略高频BOOST升压电路,直接将高压锂电池包和工频逆变电路连接,从而也可以避免若要将电压升 高3倍以上所产生的高成本和低效率。
当高压锂电池包应用到螺柱焊机中时,例如,螺柱焊机包括顺次连接的高压锂电池包和可控硅电路。
当高压锂电池包应用到空气等离子切割机中时,可以直接将现有的空气等离子切割机的供电电源替换为高压锂电池包。
下面以低压充电/高压放电的锂电池供电的无绳逆变弧焊电焊机为例对上述便携式用电设备进行介绍。
如图4所示,该电焊机包括上述实施例1中的低压充电/高压放电的高压锂电池包101、逆变电路30、变压器40和第一可控开关60。
高压锂电池包的正极与逆变电路30的第一输入端连接,负极与第一可控开关60的第一端连接;第一可控开关60的第二端与逆变电路30的第二输入端连接,用于在第一可控开关60的控制端所接收到的开关控制信号的控制下连通或断开高压锂电池包的负极和逆变电路30的第二输入端。
逆变电路30的输出端与变压器40的输入端连接,用于将高压锂电池包输出的高压直流电压逆变成交流电压;变压器40用于将所述交流电压降压成适合于焊接的低压电压。
上述无绳逆变弧焊电焊机,通过设置将三个锂电池组串联连接后构成高压锂电池包,以提供高压直流电压,从而可以减小逆变电流以防止炸坏电路中的可控开关元件,提高了电焊机的稳定性。由于电路中的可控开关元件不易损坏,所以也延长了电焊机的使用寿命。并且由于高压锂电池包能够提供高压直流电压,从而使得逆变电流小,电焊工师傅焊接时手持焊钳不会出现大的抖动,焊钳更易操控、焊接手感好,从而能够提高焊接的 质量。同时由于锂电池具有体积小、输出功率大、重量轻、成本低等优点,例如储存1KWH电能的锂电池组重量只有7KG左右,从而相比于发电电焊机,极大地减轻了电焊机的重量和体积,提高了电焊机的便携性。另外,通过设置低压充电电路,分别为每一个锂电池组进行独立的恒流恒压充电,可以实现稳定的低电压充电,从而不会对人带来安全隐患,提高了电焊机的安全性。
优选地,如图5所示,上述无绳逆变弧焊电焊机还包括整流滤波电路50,其输入端与变压器40的输出端连接,整流滤波电路50的输出端为所述电焊机的直流焊接电流提供端,用于将所述适于焊接的低压电压进行整流和滤波后输出,能够提供稳定的直流焊接电流。
优选地,上述逆变电路30、变压器40和整流滤波电路50可以采用目前传统的AC110V逆变弧焊电焊机中的电路,即将高压锂电池包的输出直接与传统AC110V逆变弧焊电焊机中的逆变电路连接(其他实施例可采用传统AC220V逆变弧焊电焊机中的电路),如图5所示,构成一个160A/28V电焊机。由于该电焊机是在传统AC110V逆变弧焊电焊机的基础上改造而成的,从而可以节约资源,以降低生产成本。
优选地,上述无绳逆变弧焊电焊机还包括第二控制器,其输入端与高压锂电池包的正极连接,输出端与第一可控开关60的控制端连接,用于检测高压锂电池包的电压,并据此产生相应的控制信号通过其输出端输出,均衡管理高压锂电池包的电量,为锂电池组提供了二级均衡保护,从而进一步延长了锂电池的使用寿命。
优选地,第二控制器还分别与每一个被动均衡BMS13连接,用于检测 和控制被动均衡BMS13的工作状态。第二控制器还具有通讯接口,用于与外界进行通讯连接。
实施例3
本实施例提供一种低压充电/高压放电的锂电池供电无绳逆变弧焊电焊机,与实施例2中所不同的是,高压锂电池包由四个10串/36V锂电池组串联连接构成,其输出的高压直流电压为DC120V-DC168V,可作为输出能力为160A/28V电焊机的应用。优选地,高压锂电池包的输出可直接与传统AC110V逆变弧焊电焊机中的逆变电路连接,以构成一个160A/28V电焊机。
实施例4
本实施例提供一种低压充电/高压放电的锂电池供电无绳逆变弧焊电焊机,与实施例2和3中所不同的是,高压锂电池包由四个13串/48V锂电池组串联连接构成,其输出的高压直流电压为DC160V-DC216V,可作为输出能力为160A/28V-250A/34V电焊机的应用。优选地,高压锂电池包的输出可直接与传统AC220V逆变弧焊电焊机中的逆变电路连接,以构成一个160A/28V-250A/34V电焊机。
实施例5
本实施例提供一种低压充电/高压放电的锂电池供电无绳逆变弧焊电焊机,与实施例2、3和4中所不同的是,高压锂电池包由五个13串/48V锂电池组串联连接构成,其输出的高压直流电压为DC200V-DC270V,可作为输出能力为250A/34V-315A/36V电焊机的应用。优选地,高压锂电池包的输出可直接与传统AC220V逆变弧焊电焊机中的逆变电路连接,以构成一个250A/34V-315A/36V电焊机。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (11)

  1. 一种低压充电/高压放电的高压锂电池包,其特征在于,包括至少三路低压充电电路(10)和至少三个锂电池组(20);
    每一路所述低压充电电路(10)的输入端与低压供电电源连接,输出端与一个锂电池组(20)连接,用于给一个锂电池组(20)充电;
    所述至少三个锂电池组(20)串联连接。
  2. 根据权利要求1所述的高压锂电池包,其特征在于,每一个所述低压充电电路(10)均包括隔离升压电路(11)、第二可控开关(12)和被动均衡电池管理系统(13);
    所述隔离升压电路(11)的输入端与低压供电电源连接,第一输出端与一个锂电池组(20)的正极连接,第二输出端与所述第二可控开关(12)的第一端连接,用于将低压供电电源进行隔离升压后输出;所述第二可控开关(12)的第二端与所述一个锂电池组(20)的负极连接,所述第二可控开关(12)的控制端与所述被动均衡电池管理系统(13)的输出端连接,用于控制连通或断开所述隔离升压电路(11)的第二输出端和所述一个锂电池组(20)的负极;
    所述被动均衡电池管理系统(13)用于检测所述一个锂电池组(20)中每一串锂电池的电压,并据此产生相应的控制信号通过其输出端输出。
  3. 根据权利要求2所述的高压锂电池包,其特征在于,所述被动均衡电池管理系统(13)包括第一控制器(131)、电压检测电路(132)和多路耗能电路(133);
    所述第一控制器(131)的输入端与所述电压检测电路(132)的输出端连接,第一输出端作为所述被动均衡电池管理系统(13)的输出端,多个其他输出端一一对应地分别与多路耗能电路(133)的输入端连接,用于根据输入端接收的信号控制调节多个其他输出端输出的电压大小;
    所述电压检测电路(132)的多个输入端一一对应地分别与所述一个锂电池组(20)中每一串锂电池的正极连接,用于检测每一串锂电池的电压并将其输出;
    每一路所述耗能电路(133)的第一输入端与所述一个锂电池组(20)中的一串锂电池的正极连接,第二输入端与所述第一控制器(131)的一个其他输出端连接,输出端与所述一串锂电池的负极连接,用于消耗所述一串锂电池的电量。
  4. 根据权利要求3所述的高压锂电池包,其特征在于,每一路所述耗能电路(133)均包括第一三极管(QPJ13)、第二三极管(QNJ11)、第一电阻(RJ131)、第二电阻(RJ132)、第三电阻(RJ133)和第四电阻(RJ134);所述第一三极管(QPJ13)的射极与所述一个锂电池组(20)中一串锂电池的正极连接,集电极串接所述第一电阻(RJ131)后与所述一串锂电池的负极连接,基极串接所述第三电阻(RJ133)后与所述第二三极管(QNJ11)的集电极连接;所述第二三极管(QNJ11)的基极串接所述第四电阻(RJ134)后作为所述耗能电路(133)的输入端与所述第一控制器(131)的一个所述其他输出端连接,集电极接地;所述第二电阻(RJ132)跨接在所述第一三极管(QPJ13)的射极和基极上。
  5. 根据权利要求1-4任一项所述的高压锂电池包,其特征在于,
    所述高压锂电池包主要由三个13串/48V锂电池组串联连接构成,其输出的高压直流电压为DC120V-DC162V;或者
    所述高压锂电池包主要由四个10串/36V锂电池组串联连接构成,其输出的高压直流电压为DC120V-DC168V;或者
    所述高压锂电池包主要由四个13串/48V锂电池组串联连接构成,其输出的高压直流电压为DC160V-DC216V;或者
    所述高压锂电池包主要由五个13串/48V锂电池组串联连接构成,其输出的高压直流电压为DC200V-DC270V。
  6. 一种便携式用电设备,其特征在于,包括如权利要求1-5任一项所述的低压充电/高压放电的高压锂电池包。
  7. 根据权利要求6所述的便携式用电设备,其特征在于,所述设备为无绳焊接设备、无绳切割设备或移动交流电源。
  8. 根据权利要求7所述的便携式用电设备,其特征在于,所述无绳焊接设备为无绳逆变弧焊电焊机、螺柱焊机或点焊机;
    所述无绳切割设备为空气等离子切割机。
  9. 根据权利要求8所述的便携式用电设备,其特征在于,所述无绳逆变弧焊电焊机还包括逆变电路(30)、变压器(40)和第一可控开关(60);
    所述高压锂电池包的正极与所述逆变电路(30)的第一输入端连接,负极与所述第一可控开关(60)的第一端连接;所述第一可控开关(60)的第二端与所述逆变电路(30)的第二输入端连接,用于在所述第一可控开关(60)的控制端所接收到的开关控制信号的控制下连通或断开所述高压锂电池包的负极和所述逆变电路(30)的第二输入端;
    所述逆变电路(30)的输出端与所述变压器(40)的输入端连接,用于将所述高压锂电池包输出的高压直流电压逆变成交流电压;所述变压器(40)用于将所述交流电压降压成低压电压。
  10. 根据权利要求9所述的便携式用电设备,其特征在于,所述无绳逆变弧焊电焊机还包括整流滤波电路(50),其输入端与所述变压器(40)的输出端连接,所述整流滤波电路(50)的输出端为所述设备的直流电流提供端,用于将所述低压电压进行整流和滤波后输出。
  11. 根据权利要求9或10所述的便携式用电设备,其特征在于,所述无绳逆变弧焊电焊机还包括第二控制器,其输入端与所述高压锂电池包的正极连接,输出端与所述第一可控开关(60)的控制端连接,用于检测所述高压锂电池包的电压,并据此产生相应的控制信号通过其输出端输出,均衡管理所述高压锂电池包的电量。
PCT/CN2016/077324 2015-10-28 2016-03-25 高压锂电池包及包括该高压锂电池包的便携式用电设备 WO2017092200A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201520843455 2015-10-28
CN201510711331 2015-10-28
CN201510884510.4 2015-12-04
CN201510884510.4A CN105356549B (zh) 2015-10-28 2015-12-04 高压锂电池包及包括该高压锂电池包的便携式用电设备

Publications (1)

Publication Number Publication Date
WO2017092200A1 true WO2017092200A1 (zh) 2017-06-08

Family

ID=55332457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077324 WO2017092200A1 (zh) 2015-10-28 2016-03-25 高压锂电池包及包括该高压锂电池包的便携式用电设备

Country Status (2)

Country Link
CN (2) CN105356549B (zh)
WO (1) WO2017092200A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105356549B (zh) * 2015-10-28 2018-03-20 深圳市盈动力科技有限公司 高压锂电池包及包括该高压锂电池包的便携式用电设备
CN105762894A (zh) * 2016-05-04 2016-07-13 广东金莱特电器股份有限公司 锂电池均衡充电算法
CN106655369A (zh) * 2016-07-25 2017-05-10 苏州绿恺动力电子科技有限公司 一种便携式减压启动交流移动电源
CN106712520A (zh) * 2016-07-25 2017-05-24 苏州绿恺动力电子科技有限公司 一种基于便携式锂电池包的电焊机用逆变弧焊系统
CN111725851B (zh) * 2019-03-20 2022-08-16 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) 高压锂电池储能系统及方法
CN110266068B (zh) * 2019-06-18 2023-11-07 季华实验室 高压电池控制电路、控制方法及存储介质
CN111509808A (zh) * 2020-05-11 2020-08-07 浙江科技学院 一种锂电池组电池管理系统及管理方法
CN115663974A (zh) * 2022-11-21 2023-01-31 宁波芯合为一电子科技有限公司 一种移动储能式脉冲焊接电源的控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101312252A (zh) * 2006-09-20 2008-11-26 上海中科大研究发展中心有限责任公司 电池组
US20110227537A1 (en) * 2010-03-16 2011-09-22 Creator Teknisk Utveckling Ab Combined battery charger and battery equalizer
CN105024419A (zh) * 2014-04-17 2015-11-04 深圳迈瑞生物医疗电子股份有限公司 用于移动式医疗设备的供电装置、移动式医疗设备
CN105356549A (zh) * 2015-10-28 2016-02-24 富尔盛科技(深圳)有限公司 高压锂电池包及包括该高压锂电池包的便携式用电设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101077154B1 (ko) * 2008-04-22 2011-10-27 한국과학기술원 직렬연결 배터리 스트링을 위한 2단 전하 균일 방법 및장치
CN101325271B (zh) * 2008-07-30 2010-08-11 赵建和 一种串联电池组均衡管理装置
CN101752882B (zh) * 2008-11-28 2013-04-10 比亚迪股份有限公司 一种均衡器及均衡充电方法
CN101728852B (zh) * 2009-11-04 2012-05-02 秦永振 电池平衡充电及检测修复装置
CN101985187A (zh) * 2010-09-19 2011-03-16 深圳市华意隆实业发展有限公司 一种抢险急救用储能逆变式空气等离子切割机
CN101969214B (zh) * 2010-10-09 2013-01-23 华为技术有限公司 一种电池组及其控制方法
CN201985554U (zh) * 2010-12-08 2011-09-21 夏正奎 锂离子动力电池主动式自管理充电装置
CN103187744A (zh) * 2011-12-30 2013-07-03 鸿富锦精密工业(深圳)有限公司 电源装置
CN103208828B (zh) * 2012-01-17 2015-07-29 中国科学院广州能源研究所 一种串联电池组管理系统
CN102593897A (zh) * 2012-02-16 2012-07-18 荆门东光新能源科技有限公司 一种动力锂电池组填谷式均衡模块
US10014695B2 (en) * 2014-01-27 2018-07-03 Fairchild Semiconductor Corporation Control and current measurement function for battery charging, protection and fuel gauge coulomb counting
CN203840036U (zh) * 2014-05-28 2014-09-17 耿直 升压式蓄电池组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101312252A (zh) * 2006-09-20 2008-11-26 上海中科大研究发展中心有限责任公司 电池组
US20110227537A1 (en) * 2010-03-16 2011-09-22 Creator Teknisk Utveckling Ab Combined battery charger and battery equalizer
CN105024419A (zh) * 2014-04-17 2015-11-04 深圳迈瑞生物医疗电子股份有限公司 用于移动式医疗设备的供电装置、移动式医疗设备
CN105356549A (zh) * 2015-10-28 2016-02-24 富尔盛科技(深圳)有限公司 高压锂电池包及包括该高压锂电池包的便携式用电设备

Also Published As

Publication number Publication date
CN105356549B (zh) 2018-03-20
CN105356549A (zh) 2016-02-24
CN205178589U (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2017092200A1 (zh) 高压锂电池包及包括该高压锂电池包的便携式用电设备
US7592781B2 (en) Charger control circuit with automatic polarity selection
WO2018019127A1 (zh) 一种大功率便携式电动工具用锂电池包
CN108075562B (zh) 大功率便携式用电设备及其电源控制装置及方法
CN102205455B (zh) 便携式充电直流电焊机
CN104485709A (zh) 用于ups中防过放的锂电池管理系统取电电路
CN207559679U (zh) 大功率便携式用电设备及其电源控制装置
CN107394862A (zh) 一种充电电池电路
CN210380317U (zh) 一种组合式储能电站
CN103227502A (zh) 一种智能电池
CN2174006Y (zh) 多功能充电装置
US7230353B2 (en) Charging circuit in uninterruptible power supply system
CN104659847A (zh) 一种电池充电控制电路及灯具
CN211556970U (zh) Ups设备的辅助电源供电拓扑结构和ups设备
CN210111646U (zh) 一种蓄电池过充控制装置
CN211556969U (zh) Ups设备的辅助电源供电拓扑结构和ups设备
CN100369353C (zh) 一种电池充电器
CN104080224A (zh) 一种供电电路及灯具
CN209673953U (zh) 一种电源ic产品的测试电路
CN203933116U (zh) 一种手机充电器
CN202708700U (zh) 一种高效三充电多用led灯
CN102548171B (zh) 一种应急灯的控制电路
CN207447573U (zh) 一种锂电池逆变焊机电路
CN207021719U (zh) 一种充电耳机
CN204858532U (zh) 一种手机锂电池过充放保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A 17/10/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16869514

Country of ref document: EP

Kind code of ref document: A1